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Abstract

In this thesis we look at an alternative proof of Dowker’s theorem [4] using
simplical sets. We prove the strongest version of the theorem [3], which can
be applied to persistence homology in the sense that every nested sequence
of relations gives two filtered simplicial complexes with the same persistence
homology.

We also compare the category of filtered simplicial complexes with the cate-
gory of dissimilarities, and see how this leads to a nice category of O-interleaved
filtered simplicial complexes.
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0.1 Introduction

Dowker’s theorem was first stated and proved by C. H. Dowker in his original
paper [4] from 1952. Starting with two sets X and Y, and a subset of their
product R C X xY, one can create two different simplicial complexes N(R) and
N(RT) with vertex sets X and Y respectively. The original result was that for
a pair Ry C Ry C X x Y, the relative homology groups H,.(N(R1), N(R2)) are
isomorphic to H,(N(RT), N(R})), and similarly for cohomology. It turns out
that every simplicial complex can be written as N(R) for some R, so Dowker’s
theorem gives a new perspective for looking at the topological properties of any
simplicial complex.

Dowker’s result was improved upon by A. Bjorner in 1995 ([2] Theorem
10.9). He used the nerve theorem to show that not only are the (co)homology



groups isomorphic, but the geometric realizations |N(R)| and |N(RT)| are in
fact homotopy equivalent.

With the rise of topological data analysis, Dowker’s theorem has become
more relevant. It is a theorem about constructing topological spaces from
some initial sets and comparing the topology, which is a big part of topo-
logical data analysis. A nice example is when you have a distance function
d: X xX — ]IA%+ := [0, 00], then you can look at the subsets Ry C X x X of
pairs with distance less than ¢. These subsets are nested Ry C Ry, C -+ C Ry
and the nested sequence N(Ry) C N(R;,) C --- C N(Ry) turns out to be
the Cech—complex of the distance. This motivates the question of if the ho-
motopy equivalence between |N(R)| and |[N(RT)| acts nicely with the maps
li| : IN(R)| — |N(R')| and [iT| : IN(RT)| — |[N(R'T)| we get from the inclusion
R C R'. The question was answered by Chowdhury and Mémoli [3] in 2018 when
they showed that the homotopy equivalences commutes up to homotopy with
the maps induced by the inclusions. The original 1952 proof consisted of clever
arguments around subdivisions and contiguous maps of simplicial complexes,
and in [3] they improved the result in very much the same spirit.

In this thesis we will give an alternative proof of this strong form of Dowker’s
theorem. Our proof uses a different approach using the slightly more modern
theory of simplicial sets. One advantage with this proof is that it mostly uses
general results from simplicial sets that are well known, with just a small part
specialized towards the exact problem. In addition, we also get another classi-
cal result regarding contiguous maps (1.1.8) along the way. Dowker’s theorem
ultimately is about simplicial complexes, so we do need quite some machinery
to go back and forth between simplicial complexes and simplicial sets.

The main asset of this strong form of Dowker’s theorem, is that it can be
applied to persistence homology, which is the main tool in topological data
analysis. In persistence homology one constructs a nested family of spaces from
some initial data, then each inclusion induces a homomorphism on the homology
groups. A homology class is said to be born if it is not in the image of such a
homomorphism, and it dies when it merges with an older class. Classes that are
long-lived correspond to topological features in the data, while the shorter-lived
ones might correspond to noise. In the end we construct persistence diagrams,
telling us all we want to know about the topology of the sequence, by plotting
when a class is born and dies (more details in [7]).

In our case the data are the sets X and Y from which we look at a nested
sequence of subsets of their product. This leads to two different nested sequences
(filtration) of simplicial complexes, which by Dowker’s theorem will have the
same persistence diagrams and thus the same topological features.

A popular kind of question in persistence homology concerns how chang-
ing the filtered simplicial complexes will change the corresponding persistence
diagrams. We have the notion of e-interleavings as some measure for how sim-
ilar two filtered simplicial complexes are. The infimum of € > 0, making two
complexes e-interleaved is called the interleaving distance between them. On



the side of persistence diagrams we have the notion of e-matching, where the
infimum of € > 0 is called the bottleneck distance. One can show that two com-
plexes are e-interleaved if and only if their corresponding persistence diagrams
are e-matched, and in particular that the interleaving distance agrees with the
bottleneck distance [1].

In this thesis we will look at the special case when ¢ = 0. We will find a
category of filtered simplicial complexes where isomorphisms are exactly the 0-
interleavings, and show that it is equivalent to other categories with interesting
properties. We arrive at this category by exploring the connection between
filtered simplicial complexes and general functions A : V' x W — R+.

We begin in section 1.1 by looking at Dowker’s original proof of the the-
orem named after him. The proof uses simplicial complexes and barycentric
subdivision, so those concepts are also introduced in this section.

In 1.2 we will define simplicial sets, which are the tools we will use in our
alternative proof. We will in particular look at finite simplicial sets, as they are
needed when defining the geometric realization.

In section 1.3 we define the geometric realization of a simplicial set. We use
the definition Drinfeld gave in [5], where we first give the set of the realization
as a colimit, and then define a metric inducing a topology. This definition is
a bit different from the usual definition used in for example [10], however the
equivalence of these definitions is given in [6] and is not in the scope of this
thesis. We will show that the geometric realization is a functor, and that it
preserves products. The realization uses the notion of colimits, and several
results surrounding it, which we include in the appendix A.1. We will also in
A2 calculate the geometric realization for standard n-simplices.

In 1.4 we take the nerve of small categories to get simplicial sets, and show
some of its properties. The classifying space is the geometric realization of the
nerve, and we show that that the classifying space of a category is homeomorphic
to the classifying space of the dual category. We will also look at special kinds
of functors that gives rise to homotopies on classifying spaces.

As Dowker’s theorem is about simplicial complexes, we look in 1.5 at how to
get simplicial sets starting with simplicial complexes in a way that acts nicely
on the geometric realization. One of the proofs in this section is moved to the
appendix A.3.

Finally, in 1.6 we prove Dowker’s theorem using the tools we have introduced
in the sections before.

In the second part we begin in 2.1 by defining filtered simplicial complexes
and dissimilarities. We define maps between them F', N. and N<, and look at
some properties of these maps. We will show that the maps in some sense give



an upper and lower bound on O-interleaved complexes for any filtered simplicial
complex.

The concepts we introduce in 2.1 will in 2.2 be made categorical. We will
define a category of O-interleaved filtered simplicial complexes, and show that
it is equivalent to both a reflective and coreflective subcategory of the category
of filtered simplicial complexes. We will use some results about localizations,
which we include in A.4.



Part 1

Dowker’s Theorem

In this first part we will state Dowker’s theorem and prove it in two different
ways. We start by looking at the original [4] 1952 proof using barycentric
subdivisions and contiguous maps of simplicial complexes, before delving into
the theory of simplicial sets and their geometric realization. This theory builds
the framework for our alternative proof of the theorem. In the second proof
we will show a stronger theorem which was stated and proved in [3], which is
applicable in topological data analysis.

1.1 Dowker’s Theorem by Simplicial Complexes

We begin by looking at the work of C.H. Dowker [4], but only a simplified case
with a single relation R and not pairs (Ry, R). Like Dowker, we will in this
first section just look at homology, but you can also follow the same arguments
for homotopy [3].

We start with some basic definitions about simplicial complexes. Here and
in the entire thesis we write P(S) for the power set of .S, namely the set of all
finite, non-empty subsets of a set S.

Definition 1.1.1. An (abstract) simplicial complex (K,V), or just K, is
a set V and a subset K C P(V') such that if T € K and 0 C 7 then o € K.

Given a simplicial complex (K, V'), then V is called the vertex set of K, an
element v € V is called a vertex, and an element o € K is called a simplex.
Simplices are written with square brackets o = [v1, va,...,v,| € K wherev; € V.

Definition 1.1.2. Given two simplicial complezes (K,V) and (K',V') then a
stmplicial map F : K — K’ is a function F : V — V' on the vertex sets such
that if o = [v1, va, ..., v.] is a simplex in K then F(o) := [F(v1), F(va), ..., F(v.)]
s a simplex in K'.



Simplicial maps are defined on vertices, so we have that ¢ C ¢’ implies
F(o) C F(¢'). For two simplicial maps F : (K,V) — (K',V’) and F’' :
(K", V') — (K", V"), the composition F’ o F is also a simplicial map. We
denote the category of simplicial complexes by Cpx, where morphisms are
simplicial maps.

We will now define a relation between sets, and construct simplicial com-
plexes from this relation. Dowker’s theorem is about how these complexes relate
to each other.

Definition 1.1.3. A relation R between two sets X and Y is a subset R C
X xY.

A subset R C X x X is called a binary relation of X. Given a relation
R C X x Y, then its transpose relation R” C Y x X is given by

RT = {(y,2) € Y x X|(z,y) € R}. (1.1)

Definition 1.1.4. From a relation R C X XY we define the simplicial complex
(N(R),X) called the Dowker complex of R:

N(R)={o € P(X)|3y €Y such that o x {y} C R}. (1.2)

We first note that the Dowker complex is indeed a simplicial complex. If
there is a y € Y with 7 x {y} C R and if o C 7 then clearly o x {y} C R, and
so o is also in N(R).

If we have two relations R C R C X XY, and if o is in N(R). Then there
exist a y € Y such that o x {y} € R C R, and so ¢ is in N(R'). So the identity
map on vertex sets, defines a simplicial map ¢ : N(R) — N(R’) which we call
the natural inclusion of Dowker complexes.

When we talk about the Dowker complexes of a relation R, we mean both
the Dowker complex of R and the one of RT.

The construction of a Dowker complex is completely general. If (K, V) is a
simplicial complex, let R C V x K be the relation defined by R = {(v,0) |v € o}.
The Dowker complex of this relation is then N(R) = {0 € P(V)|o C ¢’ for
some ¢/ € K} = K. Thus every simplicial complex is the Dowker complex of
some relation.

Starting with a simplicial complex K, we can construct a new simplicial
complex with K as its vertex set.

Definition 1.1.5. The barycentric subdivision of a simplicial complex (K, V)
is the simplicial complex (SdK, K) where the simplices in SAK are the finite
sets of simplices in K which can be ordered by inclusion.

SdK ={[o1 C o2 C -+ Coyllo; € K,n>1}



If we take away some of the o;’s, then the ones that are left are still ordered
by inclusion, so Sd K is indeed a simplicial complex. We can also continue
subdividing in a similar fashion getting simplicial complexes (Sd®K,Sd K),
(SA®¥ K,SdPK), etc. For the barycentric subdivisions of a Dowker complex
we write SAY)(N(R)) = N@(R) for j > 1.

Given a simplicial map F : K — L, we get an induced map Sd F : Sd K —
Sd L given by Sd F([o1,09,...,04]) = [F(01), F(02),...,F(0,)]. Since F is a
simplicial map and o; € K for all 4, then every F(o;) is a simplex in L. If we
have an inclusion o; C ¢; then F'(0;) C F'(0;), and so Sd F' is a simplicial map.

Definition 1.1.6. Given a simplicial complex (K,V.), where V. is a totally
ordered set, we define the least vertex map ¢ : SAK — K by sending vertices
in SAK (i.e. simplices in K ) to their least vertex in V.

Note that for o; C o; we have ¢(0;) > ¢(0;), so ¢ is order reversing on the
vertices.

To show that ¢ is a simplicial map, take a simplex Sdo = [o01,...,0,] €
Sd K, with 01 C 05 C --- C 0, all simplices in K. For all i = 1,...,7 we have
that ¢(o;) € o; C o0,.. So ¢(Sdo) = [p(0;),...,0(0.)] C o, € K, and thus
¢(Sdo) € K as a subset of a simplex.

In the definition of the least vertex map, we needed to introduce an ordering
on the vertex set. We are interested in complexes with no natural order, so next
we want to show that the specific ordering of V. turns out to be unimportant.
To do this we introduce the notion of contiguous maps.

Definition 1.1.7. We say that two simplicial maps F,G : K — L are con-
tiguous if for each simplex o = [v1,...,v.] € K there exists a simplex v € L
such that F(v;) € v and G(v;) € v for alli=1,2,...,r. Equivalently, they are
contiguous if F(o) UG(o) is a simplex in L for allo € K.

If  : Sd K — K is the least vertex map, then ¢(o;) € o; C o, independent
of ordering, so the ¢ corresponding to different orderings of V' are all contigu-
ous, as the images all are contained in the biggest simplex. The reason this is
interesting is that contiguous maps induce homotopic maps on geometric real-
ization. Exactly what we mean by geometric realization of a simplicial complex
we will show in section 1.5, for now we will just state some results. In both the
following lemmas we will use that if f = g are homotopic maps, then f, = g,
on homology groups ([14] 1.10).

Lemma 1.1.8. If F,G : K — L are contiguous simplicial maps then, |F| and
|G| are homotopic. In particular they induce the same maps on homology.

Proof. We prove this in the discussion after 1.5.11, using simplicial sets. For a
classical proof, see [13] Ch. 3.5, Lemma 2. O

Lemma 1.1.9. If ¢ : SdK — K is the least vertex map as in 1.1.6, then || is
a homotopy equivalence. In particular it induces an isomorphism on homology
groups.



Proof. [3], Proposition 22. O

What follows are some technical results about the relationship between
barycentric subdivisions, least vertex maps and Dowker complexes, all discussed
in Dowker’s original paper [4].

Lemma 1.1.10. Let (K,V.) be a simplicial complex with ordered vertex set,

and let ¢ : SAK — K be the least vertex map. Then (Sd¢). : H*(S’d(z)K) —
H,.(SdK) is an isomorphism.

Proof. Let ¢ : SA K — K denote the least vertex map with respect to the
ordering on V.. Let ¢gqk : SA® K — SdK be the least vertex map with
respect to some ordering < of K that refines the order given by the opposite of
inclusions, i.e such that ¢ C 7 implies 7 < 0. By 1.1.9 we know that both these
maps induces isomorphisms on homology, so it is enough to show that the two
compositions ¢ o ¢sq g and ¢ o Sd ¢ are the same.

IfoM) = [og C--- C 0,]is asimplex in Sd K, then ¢x (cM)) = [mvin(ao), ... 71rnvin(0n)}.

So let @ = [0'(()1) c ... C U,(:)] be any simplex in SA® K where we write
0_(1) —[0'- C...Cq
i - 10 = = Ulni]~

We first look at the composition with the map we are interested in. We have
9x0Sd 6 (0?) = oxclor(0), ... b (o)) = [minde(0§"), ... min o (o))
1)

Now we know that ¢x(0,”) = [m‘;n 00, - - - ,mvin Oin,], and that o; C o; implies

1)

that mvin o; < m‘}n oi, and therefore we get m‘;n oK (o,

) = mino;,,. We con-
%

clude that ¢x o Sd¢K(a(2)) = [m‘;n O0ngs - - - ,n%/in Okng)-

The other way we have ¢ o ¢gq x(c?) = ¢K[m§n 061), . ,n}gn a,il)], and
by the definition of the ordering on K we have o; C o; implies 0; < 05. So
m}n 051) = Oin,, and thus the composition is ¢ o¢sq k() = O [Tongs - - - s Okny ] =
[mvin OOngy - - - 5 Ir%/in Okn,] Which is the same as we got for ¢ o Sd ¢ k.

In conclusion we have that since (¢x ). and (¢gq i )« both are isomorphisms,
and since (¢ )« 0 (P ) = (Ax )« 0 (Sd Px )« we get that (Psa i)« = (Sd dx )«
and thus (gb% )« is also an isomorphism. O

Definition 1.1.11. Let N(R) and N(RT) be the Dowker complezes of a relation
R C X xY and its transpose RT CY x X. Define the maps

(a) ®: NO(R) — N(R) to be the least vertex map for some ordering on X.

(b) U : NO(R) — N(RT) by sending vertices 0 € N(R) to ¥(o) =y € Y
such that (s,y) € R for all s € o. (The existence of y is guaranteed by the
definition 1.1.4)
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Recall we defined S (N (R)) = NU)(R). We get similar maps ®7 and &7
by interchanging R +— RT and X +— Y in the definition above.

To show that ¥ is a simplicial map, let o) = [0y C --- C 0,,] € N(U(R) be
a simplex. Let x1 € o1 be a vertex, then z7 € o; for all i = 1,2,...,r. By the
definition of ¥ we then get that (z1,¥(0;)) € R for all the i’s. We know from
1.1.4 that 7 € N(RT) is a simplex if and only if there exist an x € X such that
(z,t) € Rfor all t € 7, s0 U(cW) = [¥(ay),...,¥(0,)] € N(RT) is a simplex
by using = = z7.

Note that the definition of ¥ is dependent on choice, but also here we get that
different choices will give contiguous maps. If ¥; and W5 are two such maps, then
since we picked x; € oq independently of ¥ we still have that (1, ¥1(0;)) € R
and (z1,Us(0;)) € R for all i = 1,2,...,r. Again by the definition 1.1.4 of
N(RT) this implies that [¥q(a1),...,¥i(0,), Ya(o1),...,¥a(0,)] is a simplex
in N(R™) which contains all the images of the vertices of o*) under ¥; and ¥s.

Lemma 1.1.12. (Lemma 5 and 6 in [4], Claim 1 p.16 in [3])
(i) ®T 0 SdV and ¥ o Sd® : N (R) — N(R™) are contiguous.
(i) ® o Sd® and VT o SdV : N (R) — N(R) are contiguous.

Proof. Let 0 = [O’;l), . ,Uﬁl)] € N(Q)(R) be a such that 0%1) Cc...C 051).

(i): To start off we look at Sd¥(s(?)) = [\I/(ng)),...,\Il(agl))]. Since VU is
defined on vertices, we get that o; C o, implies ¥(o;) C ¥(0,), and so Sd ¥(s(?)
is a simplex in N(RT). Now ®7 picks out a vertex (the least) for each of the
simplices \I/(agl))7 but since they all are contained in \I/(ay(,l)), each vertex we

pick is also in \I/(Ugl)). So we get that ®7(Sd ¥ (s(?)) C \Il(m(,l)).

Next we have Sd ®(c(?)) = [@(aﬁl)), ey @(aﬁl))], where ® picks out a (least)
vertex. Since Jfl) - oﬁl) forall i =1,...,r, we get as above that Sd @(0(2)) -
o). Now since U is defined on vertices we also have T(Sd@(0?)) C \I/(ap)).
We conclude that the images of ¢(2) under ®” o0 Sd ¥ and ¥ o Sd® are both

contained in the simplex \I'(aﬁl)), and the maps are therefore contiguous.

(ii): Let @ be as above, such that 09) - 051) forall s = 1,...,r. We first

look at Sd ®(c(?)) = [@(agl)), ce @(ng))]. The function ® picks out the least
vertex which we call o1 = @(051 ) € 01(1). We have [o11; < -+ < 01p,] = 0'%1) C

051) =[os <+ <oy, and so ;1 Coyg foralli=1,...,r.

Now let [y1] = P o Sd@[ail)] = W[@(agl))] = Uloy1]. Then y; € Y is
such that o117 X {y1} € R, and in particular o;; x {1} € R for all ¢ =

11



1,...,7. Now since ® just picks out some vertex we have that ® o Sd ®(c(?) =
®lo11,...,001] = 0j1 for some 1 < j < r, and thus ® o Sd®(c@) x {y1} =
041 X {yl} CR.

Next we look at U7 0Sd ¥ (o)) = \IIT[\II(U§1)), e \I/(Uﬁl))]. First let [z;] =

\I'T[\I'(agl))}, then x; is such that (x;,t) € R for all t € \I/(oi(l)). We have

o11 € 0‘%1)

)

- 051), and since V¥ is defined on vertices we also have that o1 €

o, implies [y1] = Plo11] C \Il(ogl)). Since now y; € \Il(al(l)) is a vertex

for all i = 1,...,7, we get (x;,y1) € R, and thus U7 o SAW(c?) x {5} =
{z1,...,z.} x {y1} C R.

We conclude that the images of ¢(2) under ® 0 Sd ® and U7 0 Sd ¥ are both
contained in ® o Sd®(c®) U U7 0 Sd ¥(¢() which we have just shown is a
simplex in N (R) using definition 1.1.4. Therefore the maps are contiguous. O

Note that since the maps W7 and ®7 are just similar maps but defined
for the relation R and not R, we get that 1.1.12 also is true by exchanging
U+ VT & +— &7 and R +— RT.

We finally arrive at Dowker’s Theorem.

Theorem 1.1.13. (Dowker’s Theorem) Let R be a relation, and N(R), N(RT)
the corresponding Dowker complexes. Then the homology groups H,(N(R)) and
H,(N(RT)) are isomorphic for all p € Z.

Proof. From 1.1.12(ii) together with 1.1.8 we have that (¥7),(Sd ¥), = (®).(Sd ®)..
Now using the fact that (®), and (Sd @), both are isomorphisms (by 1.1.9 and
1.1.10), we can take the inverse on both sides to get

(U)o (SA W), 0 (SA@); " o (®);! = 1dp. (n(r))- (1.3)

The contiguity in 1.1.12(i) gives us (®7),(Sd ¥), = (¥).(Sd ®)., so taking in-

verses we get (Sd¥),(Sd®); ! = (®1);1(V),. By substituting the middle in

(1.3) we get (UT), (7)1 o (¥)(®);! = Idy. (n(r)), and similarly by inter-
—1

changing everything with its corresponding transpose we also get (U),(®); ' o

(UT), (@)1 = Ty, (w(gry). Thus (¥),(®)71: H.(N(R)) = H.(N(RT)) is an

*

isomorphism with inverse (U7), (®7); 1. O

This proof uses the contiguity property for all it is worth, and by cleverly
combining it with the barycentric subdivision we get our result. We will next
give an alternative proof using simplical sets, but for that we need some more
tools.

1.2 Simplicial Sets
We now introduce the notion of simplicial sets which is the main tool we use in

the alternative proof of Dowker’s theorem. First we look at two new categories,
which we will need in the definition.
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Definition 1.2.1. Define [n] as the category with objects Obn] = {0,...,n}
and morphisms i — j € Mor[n] if and only if 0 < ¢ < j < n. We write
(i < j) € Mor[n] and composition is given by (j < k)o (i <j) = (i <k).

Definition 1.2.2. The simplex category A is the category with objects Ob A =
{[n]|n > 0} and where the morphisms are functors Homa ([m], [n]) = {functors [m] —

[n]}-

Note that the functors [m] — [n] are exactly the order-preserving functions.
For if f : [n] — [m] is a function such that ¢ < j implies f(¢) < f(j), then
i < j <k implies f(i) < f(j) < f(k) so compositions are preserved, also f(i) =
f(i), so f preserves identities and it is a functor. Conversely if F' : [n] — [m] is
a functor and ! : ¢ — j is the morphism ¢ < j in [n], then F(I) : F(i) — F(j) is
a morphism in [m], i.e. F(i) < F(j), and F is order-preserving.

Definition 1.2.3. A simplicial set is a functor X : A°? — Sets. It gives a

set X, = X([n]) for each n > 0 and functions X, Xle), X, for each order-

preserving map [m] = [n)].

An element = € X, is called an n-simplex. A morphism of simplicial
sets is a natural transformation n : X — Y, i.e. a collection of functions
{nn : Xn = Yy |n > 0} such that for all order-preserving maps « : [m] — [n] we
have n, o X () = Y («) o 1y, as in the diagram

X, Sy

l 5 l""‘ (1.4)

Y, ~y,.

We say 7 is surjective (or injective) if all functions 7,, are surjective (or
injective). We say X is a simplicial subset of Y, written X C Y, if X,, is a
subset of Y, for all n > 0. The set X, is called the set of degree n, and an
element = € X,, is called an n-simplex.

We denote the category of simplicial sets by sSet. One can show that
the product and coproduct (defined in A.1) in this category is defined in each
degree, (X xY), =X, xY,, and (XIIY),, = X,, 1Y,,. The maps induced by
a: [m] = [n]are (X xY)(a) = (X(«),Y(a)) : X, xY;, = X, xY,, for products,
and for coproducts we get the map (X I1Y)(«) mapping = € X,, C X, 1Y, to
X(a)(x) € X, € X, 1Y, and similarly for y € Y,.

An important example of simplicial sets are the standard simplices.

Definition 1.2.4. The standard n-simplex A™ is the simplicial set given by
A™ := Homa(—, [n]).

Given a simplicial set, we now want to extend it to a functor from a more
general category. This will be important later when we define the geometric
realization.

13



Lemma 1.2.5. A functor X : A°? — Sets can be extended to a functor
X' Agfg — Sets, where Ay;y is the category of finite non-empty totally or-
dered sets and order-preserving functions. This extension is unique up to unique
isomorphism.

Proof. First we note that we have the inclusion A C Ay;4. Also every element in
T € Ap;q is isomorphic to a unique element [n] in A by renaming the elements,
we call the isomorphism vp : T — [n]. For example {a < b < ¢} € Ay is
isomorphic to [2] = {0 < 1 < 2}.

To show existence of an extension, let 7" be an object in Ay;, isomorphic to
[n], and define X'(T') := X,,. If h : T — S is a morphism in Ay;,, then this gives
a unique morphism oy, = vsohovy' : [n] — [m]. We define X'(h) := X(ay,) :
X(8) = X(T'). Note that X'(v},)) = X(Idp,)) = Idx,,, so X' is a well-defined
extension which we call the natural extension and write X’ = X.

Let Y : A} — Sets be a functor such that Y([n]) = X, for all n and
Y(a) = X(«) for all &« € A. Then Y(vr) : Y([n]) — Y(T) is an isomorphism,
and every functor h : T — S can be written as h = l/§1 o ap o vp. Now we
calculate Y (h) = Y(vr) o Y(ap) o Y(vg') = Y(vr) o X(ap) o Y(vg)™?, and so
the collection {Y (v7)} defines a unique natural isomorphism between Y and
the natural extension X. O

We have two families of morphisms in A that are particularly important in
relation the simplicial sets, namely the face and degeneracy maps. One can in
fact define simplicial sets by the properties of these maps [8].

Definition 1.2.6. Let o' : [n + 1] — [n] be the map

icn )7 Jor j <i
UO){j_l for j > i, (1.5)

and let §° : [n] — [n + 1] be the map

i JJ for j <
5U>_{j+1 for j > . (1.6)

Now if X is a simplicial set, then we call s; := X (o') the degeneracy maps
and d; :== X (8%) the face maps of X.

A composition of degeneracy maps is called a degeneracy, also if x = Sz
where S is a degeneracy then we say that x is a degeneracy of z. It is easy to
see that 0% o0 §* = Id},;, and since simplicial sets are contravariant functors we
get that d;s; is also the identity.

Definition 1.2.7. An n-simplex x € X,, is degenerate if it can be written as
$;T for some T € Xp41 and some i € [n]. It is non-degenerate if it is not
degenerate.
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Lemma 1.2.8. Every degenerate simplex is a degeneracy of a unique non-
degenerate simplez.

Proof. [8], Prop. 4.8 O

Next we introduce the subclass of finite simplicial sets. The geometric real-
ization of any simplicial set will be defined by the geometric realization of its
finite simplicial subsets.

Definition 1.2.9. A simplicial set is finite if it has finitely many non-degenerate
simplices.

To better understand this definition we look at an important example.
Proposition 1.2.10. The standard n-simplex A™ is finite.

Proof. Let x € A", = Func([m], [n]) for m > n, so in particular z is not injective.
Since z also is order-preserving we know that there is an object 7 in [m] such
that (i) = (i + 1). Let o* be as in (1.5) and §* as in (1.6), then we calculate
the composition
o . for i 2
§odi(y=17 I
i+ 1 forj=r1.
Now z 06" 0 0’(j) = (j), since x(i) = x(i + 1). Recall s; = A™(¢") = —o0d”,
and so z = x 0’ 0 0’ = 5;(x 0 §%), and x is degenerate.

We conclude that z € AT can only be non-degenerate if m < n, but since
A7 has only finitely many elements and n is finite, there is at most finitely
many non-degenerate simplices. O

For the rest of the section we will show that several different operations
preserve finiteness.

Lemma 1.2.11. If X and Y are finite, then the coproduct X I1Y is also finite.

Proof. The coproduct of sets is the disjoint union, so if u is an element in
(X1Y), = X, 1Y, then v is in X,, or in Y,,. Assume u € X,, degenerate,
i.e. u= X(c)(u) for some U € X, 1. By the definition of (X I1Y)(c?) this is
true if and only if (X I1Y)(0?)(u) = u for the same U in X, 11 I Y,41. So a
simplex u € X I1'Y is non-degenerate if and only if it is non-degenerate in X
or in Y. Since X and Y both have finitely many non-degenerate simplices, so
does XIIY. O

Lemma 1.2.12. Simplicial subsets of finite simplicial sets are finite.

Proof. Let Y C X be a simplicial subset, where X is finite. Let y € Y}, be non-
degenerate and assume by contradiction that it is degenerate in X,,, namely
y = 5,7 for some T € X,,_1. If §° : [n — 1] — [n] is the map (1.6) so that d;s; is
the identity, then d;y € Y,,_1, and d;y = d;s;x = x. This is a contradiction on
the fact that y is non-degenerate in Y,,. We conclude that y is non-degenerate
in X,,, and there are finitely many of these. O
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Lemma 1.2.13. IfY is finite and f : Y — X is a surjective morphism, then
X is finite.

Proof. Let S = {z; € X,,, non-degenerate} be the set of non-degenerate sim-
plices in X. Because f is surjective, the preimage f~'S has more than or
the same number of elements as S. Let y be a degenerate simplex in Y, i.e.
y =5,y =Y (c")y, and let z = f(y). Since f is a morphism, and thus a natural
transformation, we have the commuting diagram

Y (o?
Yn M Yn+1

Jf | lf
X, X x

In particular we get * = fo Y (0')y = X(c*) o f(§) = s;(f(¥)), and thus z is de-
generate. So we have that f(y) is degenerate whenever y is. The contrapositive
statement is that if = is non-degenerate, then y € f~!(z) is also non-degenerate.
In particular we have that f~15 is a subset of non-degenerate simplices of Y
which is finite, therefore S is also finite. O

We use some of these properties to define an equivalent definition of finite-
ness, which we will use to show that products of finite simplicial sets are finite.

Lemma 1.2.14. A simplicial set X is finite if and only if there exist a finite
indexing set A, and a surjective map

F: II A" = X. (1.7)
acA

Proof.

(=): Let X be finite, and let T be the set of all non-degenerate simplices of
X. We can now name the elements by some finite indexing set T = {x4 }aca.
Let n, be such that z, € X,,,. Now let F' be the map sending § € Al> to
X(B)ra € Xm. If £ =24 € X, is non-degenerate, then x = X (/d[,,])7, and it
is in the image of F'. If x is degenerate, then by 1.2.8 there is a non-degenerate
simplex z, € X, such that x = s;, 0-+-08;, 74 = X(0% 0---00")z,. Thus
F' is surjective.

(«<): Let A be a finite index set such that (1.7) is surjective. By 1.2.11 this is a

surjective morphism from a finite simplicial set, and so by 1.2.13 the simplicial
set X is finite. O

Lemma 1.2.15. The product of two standard simplices A™ x A™ is finite.

Proof. Let K be the finite set of all injective functors ¢ : [n +m] — [n] x [m],
and define the map
H: 1L A" 5 A" x A™
$eK
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by sending each (3 in the set AZ“" corresponding to ¢ to the composition ¢o .
By 1.2.13 setting ng = n + m for all ¢ € K, it is enough to show that H is
surjective.

For degree k, we have (A™ x A™), = Func([k], [n]) x Func([k],[m]) =
Func([k], [n] X [m]). Any functor f : [k] — [n] x [m] gives a sequence f(0) <
f(1) < --- < f(k) of k+ 1 elements in [n] x [m], where (r,s) < (r,s") if and
only if r < 7" and s < ¢'.

Starting with (0,0) € [n] x [m] we can construct an ordered sequence (not
unique) that contains every f(¢) in order, ending up in (n,m). We do this
inductively by adding one to one of the coordinates that are still less than the
next f(¢) we want to hit. This sequence will have n + m + 1 elements as we
would have to add n times in one direction and m times in the other, starting
with (0,0). This sequence thus corresponds to a functor ¢ : [n+m] — [n] x [m],
which is injective as we always add one to a coordinate in each term. Since it
contains every f(i) in order, we can find a functor f’: [k] — [n + m] such that
f=¢of. Thus f is hit by H. O

To clarify what we just did, let’s look at an example. Let f : [2] — [3] x [2]
be the functor defined by f(0) = (0,1), f(1) = (1,2) and f(2) = (2,2). We then

have a non-unique sequence
(0,0) <(0,1)=f(0) < (1,1) < (1,2)=f(1) < (2,2)=f(2) < (3,2),

going from (0,0) to (3,2) containing every f(i) in order. This corresponds to
the injective functor ¢ : [5] — [3] x [2] defined by ¢(0) = (0,0), (1) = (0,1),

¢(2) = (1,1), and so on. Now f(0) = ¢(1), f(1) = ¢(3) and f(2) = ¢(4), and
we have the map f’: [2] — [5] given by f/(0) =1, f’(1) = 3 and f’(2) =4, such
that f = ¢o f’.

Lemma 1.2.16. If X and Y is finite then X x Y is finite.

Proof. Let R, S,T € Sets and note that the set
(RUS)xT ={(z,t)|Jr e Rorxze S,and t € T}
and the set
(RxT)II(SxT)={(x,t)|(z,t) e RxT or (z,t) € S x T}

are isomorphic, by what we call the distributive bijection. This can be

extended to finite products and disjoint unions. Let X and Y be finite simplicial

sets, and let A and B be finite sets with surjective maps HAA”Q — X and
ae

ﬁHBA"ﬁ — Y. We combine the maps to get a surjective map
€

II A"« I A"s XxY 1.
(LLA™) % (LLA™) =X x (13)
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Looking closer at the right side, and looking in each degree k we have

II A" ) x (IT A" = (II A7) x ( II A}
(G am) (U Am™)) = (1A (A7)
by the definition of products and coproducts of simplicial sets. Using the dis-
tributive bijection first for the left disjoint union then for the right, we get
N ngy __ N nE\Y _ Na ng
(aIéIAA’“ ) X (BgBAk ) = QEA(Ak X (5I€_IBAk ) = QEA ﬁIéIB (A" x A7)

Now this is finite by 1.2.10 and 1.2.11, so (1.8) is a surjective map from a finite
simplicial set, and X x Y is finite by 1.2.13. O

1.3 Geometric Realization

In this section we will define the geometric realization of a simplicial set. The
definition we use is from [5], and it uses results from category theory concerning
colimits and filtered categories. These results can be found in the appendix A.1.

We start off by defining a small and filtered category, from which we can
take limits and colimits into sets by A.1.10.

Definition 1.3.1. Let I = [0,1] be the unit interval, define Ic as the category
with finite subsets F' C I as objects and inclusions as morphisms.

The category Ic is small since Ob Ic is a subset of the powerset P(I). Also
there is at most one morphism between any two objects, so Mor(Ic) is a subset
of the set Ob(Ic) x Ob(Ic). The category Ic is also filtered. Part (b) in A.1.5
follows trivially from the fact that morphisms between objects in Ic are unique.
In the case of (a), for all finite F, G C I the union FUG is finite with F' C FUG
and G C FUG.

Definition 1.3.2. Define the functor

mo(l = (=) : Ic = Ay,
as follows. On objects F, let mo(I — F) be the set of connected components
{Fo,...,Fp} of I — F with the total ordering F; < F; <= xz; < z; for some
x; € F; and some x; € Fj. On morphisms k : F C G, let mo(I —k) : mo(I—G) —
mo(I — F) be the surjective order-preserving function induced by the inclusion
I-G—=1-F,iemny(I—r)(G;)=F; whenever G; C F; as subsets of I.

Note that since mg(I — k) is surjective there is an order-preserving map « :
7o(I —F) — mo({ —G) such that mo(I —x)oa = Idy, (7). Soif X is a simplicial
set extended to Ay as in 1.2.5, then X (o) o X(mo(f — F)) = Idx (ry(1—r))- In
particular we get that X (mo(I — F')) is injective which is one of the conditions
needed in A.1.6.

For every simplicial set we get a topological space which we call the geometric
realization. We will first just look at the underlying set and later add the
topology.
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Definition 1.3.3. Given a simplicial set X, then the underlying set of the
geometric realization of X is

X| =lim X(mo(I — F)). (L9)

Here X : A°? — Sets is extended to AP as in 1.2.5, mo(I — (—)) is as in
1.3.2, and | X]| is the colimit of the functor X o mo(I — (—)) : Ic — Sets which
exists by A.1.10.

Specifically, |X| is a set such that for all finite subsets F' C I there are
functions up : X(mo(I — F)) — | X| satisfying the cocone property up = ug o
X(mo(I — k)) for all morphisms  : F C G. This cocone is universal in the
sense that if d is a set with functions fr : X(no(I — F')) — d such that fr =
fa o X(mo(I — k)) there exists a unique function f’ : |X| — d making the
following diagram commute:

oI — F)) \
X (mo(I— /-;))h \
oI —

(1.10)

/

@)

Our next goal is to give the geometric realization a topology. We will first
define the topology for finite simplicial sets, and later extend this topology to
the general case by looking at the finite simplicial subsets. The topology will
come from a metric defined from the standard measure on the interval I, so we
begin there.

Definition 1.3.4. For any finite subset F' C I we define the measure pp on
mo(I — F) induced by the standard length on I. For each element F; € mo(I — F)
we have that F; = (x;,x;41) is some connected component of I — F and so

pr(Fi) = o —

To get a metric from this we first recall from 1.3.2 that mo(I — F) € Ay
is a finite non-empty totally ordered set. Any subset A C 7o(I — F') with the
induced order will also be in Ay, and the inclusion map a : A — mo(I — F)
will be order-preserving. Thus for every simplicial set X : AOP — Sets we get
an induced map X (o) : X (mo(I — F)) — X(A).

Definition 1.3.5. Let F' be an object in Ic and let X be a simplicial set.
We define the (X, F')-metric on the set X (mo(I — F)), where for each u,v €
X (mo(I — F)) we have the distance

dx p(u,v) =min{up(rg(I —F)—A)|a: A= m(I - F), X(a)(u) = X(a)(v)}



We need to show that this does indeed define a metric. The definition is
clearly symmetric so dx, p(u,v) = dx p(v,u). Since the length of every compo-
nent of I — F' is positive we firstly have that dx, z(u,v) > 0, and secondly that
p(mo(I — F) — A) = 0 if and only if A = mo(I — F'), where « is the identity.
Thus dx 7 (u,v) = 0 if and only if u = X (Id)(u) = X(Id)(v) = v.

Finally, to show the triangle inequality for u, v,w € X (mo(I—F)) let A1, As C
7o(I—F') be the subsets minimizing the distance, such that X (a1)(u) = X (aq)(v)
and X (az)(v) = X(ag)(w), where a; are the inclusion maps. Define B =
A1 N As. The order-preserving inclusion map 5 : B < mo(I — F') can be written
as the composition of the inclusions 7; : B < A; and «; : A; < wo(I — F) for
both ¢ = 1,2. Now X(8) = X (vi) o X (), so since X (a1)(u) = X(a1)(v) and
X(ag)(v) = X (az)(w) we get X(B)(u) = X(B)(v) = X(B)(w). In particular

dX7F(’LL7’w) S ,uF(7r0(I — F) — B) (112)

By letting A® be the complement 7o(/ — F) — A and using the facts that
AP U AY = (A1 N A)¢ and pup(A) >0 for all A C mo(I — F), we conclude

dx,r(u,v) + dx r(v,w) = pp(AY) + pp(AS) = pr(AY N AS) + pr(AT U AS)
= up(A NAS) + pp(BY) > pp(BY) > dx p(u,w).

Where the last inequality comes from 1.12. So the triangle inequality holds, and
dx p defines a metric on X (mo(I — F)).

Note that if X = A" is the standard n-simplex, then A" («)(u) = wo «, and
the distance dan r(u, v) tells us the size of the subset of 7y(I — F') where u and
v disagree.

Next want to extend the (X, F')-metrics to a metric on |X|, but to do that
we need to show that the distances behave nicely with the maps induced by the
inclusions k : F' C G.

Lemma 1.3.6. Let x : ' C G be any morphism of objects in Ic. Let X be any
simplicial set, and let u,v € X (mo(I — F)) be any elements. Then

dx,r(u,v) = dx o(X(mo(I — k))(u), X (mo(I — £))(v)). (1.13)

Proof. For simplicity we write X (mo( — F))(u) = v’ for all u € X (mo(I — F)).
Define TE = {A C mo(I — F)|a: A = m(I — F), X(a)(u) = X(a)(v)}, so
that the distance dx p(u,v) is given by min{ur(mo(I — F) — A)| A € TE 1.

We write mo(I — F) = {F1 < --- < F,}, and since the map mo(I — k) is
surjective and order-preserving we can also write mo(I — G) = {G1, < Gy, <
o < Gh,, <Gy <0 < G, } such that mo(f — x)(Gy;) = F;, or in other
words such that G, is a subset of Fj as subsets of the interval.

(2): Let B € TS, with inclusion 8 : B C mo(I — G), so we have X (B3)(u') =

X(B)(v'). Define the subset B = {F; |G;, € B for some j} C mo(I — F), which
consists of all components of I — F' that includes an element of B. In particular,
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as subsets of I we have B C B, and so ur(mo(I — F)— B) < pug(mo(I —G) — B).
Therefore it is enough to show that B € TF .

Look at the order-preserving map ¢ : B — B given by ¢(F;) = min{G;; €
B}. Let F; € B and let 5 : B < mo(I — F) be the map induced by the inclusion.
Now (I — k) o B o ¢(F;) = mo(I — x)(G};) for some ij;, and since G;; C F; we
get mo(I — k)(Gi,) = F; = B(F;), and thus

B(F;) = mo(I — k) o B o $(F}).

From this we get X (58)(u) = X (¢) o X (8) o X (mo(I — k))(u
and similarly for v. Using the fact that B is in T);,,,
X (B)(v'), and thus we get the equahty X(B)(u) = X(B)(v)

We have thus shown that B is in 7.5, and pp(mo(I—F)—B) < pp(mo(I-G)—
B). Since B was arbitrarily chosen, we conclude that dx, r(u,v) < dx,g(w,v').

(>): Let A € T and define A= {Gi; € mo(I — G)| F; € A} consisting of all
components of I —G which is included in some element of A. As subsets of I, Ais
just A with some finite points in G taken away, so we get that pp(mo(I—F)— A)
and pc(mo(I — G) — A) are the same.

Let v : A — A be the order-preserving map ¢ (G;,) = F;, and let v : A —
7o(I — F) and & : A < 7o(I — G) be the maps induced by the inclusions. Now
ao)(Gi;) = F; and mo(I — k) o a(Gy;) = Fj, so we get a commutative diagram,
which after taking X (—) is

) = X(¢) o X(B)(v),
we have X(8)(u') =

X(mo(I — F)) 2% x(a)
jxwa—n» jxw
X(mo(I — @) X9 x(A).

Now X(a)(vw') = X(&) o X(mo(I — F))(u), which by the diagram is X (¢) o
X(a)(u). Similarly we get X (a)(v') = X(¢) o X(a)(v). Since A € TE we

have X (o) (u) = X(a)(v), and so X(a)(u’) = X(a)(v'). In conclusion we have
A e TS with pp(mo(I — F) — A) = pg(mo(I — G) — A), since A was arbitrary
we have dx r(u,v) > dx g(u/,v). O

We can finally define a metric on the underlying set of the geometric real-
ization.

Definition 1.3.7. Let X be a simplicial set, and (|X|,{us}) a colimit diagram
of X(mo(I — (=))). The Drinfeld-metric dx on |X| is the metric

dx (z,y) = dx r(up'(z), up' (y)). (1.14)
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Recall that Ic is small and filtered, and X (mo(I — k)) injective for all k. We
have by A.1.8 that for all z,y € |X| there is an F such that both z and y are
in the image of ug, and by A.1.6 the map up is injective so the preimages are
uniquely defined. Finally, by 1.3.6 and the cocone property of | X| we see that
the definition is independent of the choice of F, so the metric is well-defined.

The properties of this metric and what it says about the simplicial set might
be interesting in itself. However, to get a realization equivalent to what is
commonly used (as shown by [6]), we need an extra step. We give the realization
of finite simplicial complexes the metric topology, and define the topology in the
general case by looking at the finite simplicial subsets.

Definition 1.3.8. Let X be a finite simplicial set. The geometric realization
of X is the topological space with underlying set | X| and the topology given by
the Drinfeld-metric.

We will first check that this definition is functorial. Let fsSets be the full
subcategory of finite simplicial sets.

Lemma 1.3.9. | — | : fsSet — Top defines a functor. It acts the same as the
composition of mo(I — (=)) defined in 1.8.2 with the colimit-functor defined in
A.1.14 but with added topology.

Proof. From A.1.14 we know it is a functor from fsSet to Sets. We just need
to show the induced maps are continuous. In particular if n : X — Y is a
morphism of finite simplicial sets, and x,y € |X]|, then it is enough to show

dy (Inl(2), nl(y)) < dx(x,y).

Let up : X(mo(I — F)) — |X| be the maps associated to | X| as a colimit,
and similarly let vp be associated to |Y|. Let F be such that z,y € Imup, and
write 2’ = up'(z) and 3’ = uz'(y). These exist and are unique by A.1.8 and
A.1.6. Let a: A C mp(I — F) be such that X(a)(z') = X(«)(y'). Since 7 is a
morphism, and thus a natural transformation, we have

X(mo(I — F)) 2% x(4)

lm’ nA

Y (mo(I — F)) —2% v (4),

where we write g := 17, (71—F). In particular we have Y () (nr(2)) = Y (a)(nr(y)),
and since A was arbitrary, the distance dy g (nr(z'), nr(y')) is less than or equal
to dx r(2/,y') = dx(x,y).
By the definition of maps induced on colimits (diagram (A.6)), we have that
[n] o up = v o nE, and since up and vg are injective we have

vt o |nl(@) = ne o ug! () (1.15)
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whenever x is in the image of up. Straight from the definition of the Drinfeld-
metric we have dy (|n|(2), [l(y)) = dv.r(vp' o [nl(2),vE" o [nl(y)). So from
(1.15) and the fact that z,y € Imup by construction, we have that this distance
equals dy r(nrp oup' (z),nF ouz'(y)). Now using the fact that 2’ = uy'(z) and
Y = upl{y), we get our result that dy (|n|(x), [1l(y)) = dy.r(ne(2'), nr(y')) <
dx(z,y). Thus || is continuous and | — | defines a functor. O

The definition of the colimit functor chooses a colimit diagram to represent
the colimit, so we have a similar choice for the geometric realization. From
A.1.15 we have that for any two geometric realizations | — | and || — ||, and for
any morphism of simplicial sets  : X — Y, we have isomorphisms hx and hy,
and a commuting diagram

x| —s v
hx hy (1.16)
x| 5 gy

The isomorphisms and their inverses are given by the universal property,
which by 1.3.9 are continuous, so they are homeomorphisms.

Before extending our definition to general simplicial sets, we will show that
products are conserved in the geometric realization for finite ones.

Lemma 1.3.10. Let X and Y be finite simplicial sets. The natural bijection
| X xY|— |X| x|Y]| from A.1.12 is a homeomorphism.

Proof. We first note that if X is finite, then by 1.2.13 we have a continuous
surjective map II|A™ | — |X| from a finite disjoint union of compact spaces,
so |X| is compact as the continuous image of a compact space ([12] 26.5). In
particular X x Y is finite by 1.2.16, and so | X x Y| is compact. The space |X|
is Hausdorff, as it gets its topology from a metric, and so the product |X| x |Y]
is also Hausdorff ([12] 19.4). The bijection | X x Y| — | X| x |Y] is given by the
universal property as in (A.5), giving the diagram

X XY

X(mo(I — F)) &5 (X x Y)(mo(I = F)) —2— |X x Y|
[ 1 s (117

~ ~

[ X| e [X| X [Y| == X[ x [Y].

The bijection is given by the universal property induced from the projection
maps, and by the functor properties of geometric realization (1.3.9) this is a
continuous map. We thus have a continuous bijection from a compact space to
a Hausdorff space, so it is a homeomorphism ([12] 26.6). O

Finally in this section we will extend the definition of geometric realization to
all simplicial sets by the geometric realization of their finite simplicial subsets.
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Starting with a simplicial set X we can look at the finite simplicial subsets
S C X. These form a category Fin Xc where the morphisms are inclusions. For
two finite nested subsets T' C S C X, the inclusions defines continuous maps
between the geometric realizations |T| — |S]. So the geometric realization
defines a functor Fin Xc — Top, which we will also call | — |, sending finite
subsets to their realization and inclusions to the continuous maps between them.

Definition 1.3.11. Let X be any simplicial set. The geometric realization
| X| of X is given by
| X|= lim |S]
—
SeFin Xc

This is a colimit in the category Top, so it exists by A.1.11. Since taking
colimits is a functor by A.1.14, we have that | — | : sSet — Top is a functor as
a composition of functors.

When looking at products we do get a small problem. If taking the products
in the category of topological spaces, the geometric realization will not in general
commute as it is not a Cartesian closed category. The fix is to look at a nice sub-
category of Top, namely the category CGHaus of compactly generated Hausdorff
spaces. The main property we need is for colimits to be distributive on products,
h_r)n (XoxY) (hi,n Xao) xY. Assume this is the case. Now if S and T ranges

(e [e3%
over the finite simplicial subsets of X and Y respectively, then |X| x |Y| =

(Hm |S|) X (lim |T> =~ lim <S| x lim |T> > lim lim (|S] x |T|). Now
— 5 —T —5 —T —5—T
we can combine the colimits and use the homeomorphism for finite subsets to

conclude that | X| x |[Y|=1lim  |S x T| = lim |R| = |X xY].
—SxT ——RCXXY

Grayson ([10]. 2.7) goes into details around this, both showing | X | € CGHaus
for all simplicial sets X ([10]. 2.7.13), and that |X x Y| 2 | X| x |Y| when taking
the product in CGHaus ([10]. 2.7.18). He uses a different definition of geometric
realization, but the two are shown to be equivalent by Dundas ([6] p.99).

1.4 Nerves and Classifying Spaces

We will in this section define simplicial sets from small categories, and look at
how this construction acts with the geometric realization. This construction
will be an important link in going from simplicial complexes to simplicial sets
(Section 1.5), and we will directly use it in our proof of Dowker’s theorem (1.6.4).

Definition 1.4.1. Let C be a small category, and define the nerve of the
category C to be the simplicial set NsC where NyC,, = Func([n],C), and where
given a functor o : [m] — [n] we get the function NsC(a) : NyCp — NsCpy
sending F' to F o .

As a special case we have that the standard n-simplex is the nerve of [n],
A™ = Ng[n], where [n] is defined in 1.2.1.
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We begin by showing that the nerve defines a functor that preserves products.

Lemma 1.4.2. N;— : Cat — sSet defines a functor, where if H : C — D
is a functor then (NgH), : NsC, — NyD, sends functors F : [n] — C to
HoF :[n]—D.

Proof. The map HoF is a composition of functors and thus a functor itself, so we
just need to show that N,H defines a natural transformation. Let « : [m] — [n]
be any order-preserving map, and look at the diagram

NSCTL NSCm
l(NgH)n l(NgH)m
N.D, Y2 N D,

Let F' € N,C,. In one direction of the diagram we have (NyH ), o N;C()(F) =
(NsH)m(F o) = Ho F oa, and the other we get N,D(a) o (NyH),,(F)
N,D(a)(HoF)=HoFoua.

oo

Lemma 1.4.3. N, (C; x C3) is isomorphic to NsCq X NsCay

Proof. For any degree n we have Ng(Cy xCz),, = Func([n],Cy xCq). Let f : [n] —
C; x C3 be any such functor, then f is uniquely determined by its composition
with the projection maps f = (m1(f), m2(f)). Conversely, any two functors g; :
[n] = C;, for i = 1,2, uniquely determines a functor g = (g1,¢2) : [n] = C1 X Co
by the universal property. Thus we have a bijection sending f in Func([n],C; x
Cs) to (m1(f),m2(f)) in Func([n],Cy) x Func([n],C2). We see that this also
agrees with maps « : [m] — [n] since a*(h) = hoa = (m1(h) o a,m2(h) 0o @) =
(a*,a*) o (w1 (h), ma(h)). O

We now combine the notion of the nerve, with the geometric realization from
last section.

Definition 1.4.4. The geometric realization of the nerve |NsC| for some small
category C is called the classifying space of the category. As a set this is

|NsC| = lim Func(mo(I — F),C). (1.18)
—F

Corollary 1.4.5. |N; — | : Cat — Top defines a functor.

Proof. This is the composition of the two functors | — | and Ns— and is thus a
functor itself. O

Corollary 1.4.6. |Ns(C x D)| is homeomorphic to |[NsC| x |NsD|, where the
product is taken in CGHaus.

Proof. This follows from 1.3.10 with our discussion below 1.3.11, and 1.4.3. O
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The next thing we want to show is that the classifying space of a category
is homeomorphic to the classifying space of its opposite category. First we
introduce a functor from the category Ic to itself, which we will use to connect
the two spaces.

Definition 1.4.7. Let vy : Ic — Ic be the functor sending F = {xo < -+ < x,}
toy(F)={1—z, <---<1—x}.

Clearly F' C G implies v(F) C v(G), so v is a functor. Also since 1 — (1 —
x;) = x; we have

v3(F) = F. (1.19)

) =
In particular F' C G if and only if fy( ) € v(@G), so we have a 1-1 correspondence

between k : F C G and (k) : v(F) C v(G).

Proposition 1.4.8. Let H : C — D be a functor between small categories.
There are homeomorphisms gc and gp such that the following diagram com-
mutes:

IN,C| —£— |N,coP|

J\Nsm J|N5H°P| (1.20)
|IN,D| -2~ |N,D?|

Proof. We will look at four different colimits:

|IN,C| = lim Func(ﬂ'o(l F),C)

INsC|| = hm Func(m)(f F),~(C))
(N,CP) = h_rr>1 Func(mo(I — F)°P,C)
|N,CP| = hm FunC(WO(I F),CP)

We will find bijections between these by finding bijections of the sets before
taking the colimit.

Since the opposite of a functor acts the same as its dual counterpart on
objects and morphisms, the functor (—)°P : Func(wo(I — F)°?,C) — Func(mo (I —
F'),C°P) defines a bijection. The collection of these bijections for all F' will define
a natural isomorphism from Func(mo(I — (—))°P,C) to Func(mo(I — (—)),CP),
as in the following diagram

Func(mo(I — F)°P,C) Rl Func(mo(I — F),C°P)

J{(‘I\'g([*n)f?;ﬁ)* J{WO(I*/‘C)* (121)
Func(mo (I — G)°P,C) LSl Func(mo (I — G),C°P).

From (1.19) we have the commuting diagram

Func(mo(I — F),C) =—— Func(mo(I —vy(y(F))),C)
|motz=r |motz=2reny” (1.22)
Func(mo(I — G),C) == Func(no(I — v(v(G))),C).
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Now (1.21) in some way connects (N,C°P) with |[N,C°P|, and (1.22) connects
|NsC| with || N,C||, so next we want to find a connection between ||NsC| and
(N,C°P). Specifically we want to find a collection of isomorphisms {ng : mo(I —
~Y(F)) — mo(I — F)°P} which is natural in the sense that for all k : F C G we
have

mo(I —v(G)) — mo(I — G)°P
|motz=~(e) [ty (1.23)
mo(I = y(F)) === mo(I — F)°".

Taking Func(—,C) on this diagram we will get a natural isomorphism between
Func(mo(I — (—))°P,C) and Func(mo(I — v(—)),C).

Write mo(I — F) = {Fy < --- < F,}, where F; C I — F are the connected
components. Then mo(I —(F)) ={1—F, < --- <1—Fy} where 1 — F; =
{1—2|x € F;}. We also have mo(I — F)°? = {F,, < --- < Fy}. We have a clear
isomorphisms (in Ay;y) by the map ng : mo(I — y(F)) — mo(I — F)°P sending
1—F;tonp(l—F;) =F;. We have G; C F; ifand only if 1 — G; C 1 — F}, so
mo(I —v(k))(1 —G;) =1—F; if and only if no(I — k)(G;) = F;. Thus (1.23)
commutes.

By combining the diagrams (1.21)-(1.23), and writing in the colimit cocones,
we get a commuting diagram

Func(mo(I — F),C) —~2 Func(mo(I — v(F)),C%P)
Vy(F)

urp
|NC]| (o (I—r)°P)" mo(I=v(r))" |NsCP|

Vy(G)
Func(mo(I — G),C) —2%5 Func(mo(I — (G)),CP)

for every k : F C G, where Kp = (—)? o (n;(lF))* are all bijections. From
here we see that (|[N,C|,{vy(r)o KFr}) is a cocone of Func(mo(I —(—)),C), and
using (1.19) we also have that (|NC|, {u(r) oK,Y_(})}) is a cocone of Func(my(I—
(=)),C°P). By the universal property of colimits we get unique induced maps
gc : |NsC| — |N,CP| and geor : [N,COP| — |N,C| such that gcoup = vy(pyo Kp
and gcor 0 Vp = U~y (F) © K,y_é,). We now get

gcor © gc O UR = gcop ov,y(F)oszuFngloszuF

for all finite F' C I, where we have used (1.19) in the second equality. By A.1.7
every x € |N,C| is in the image of some ur, s0 geor 0 gc = Id|y,¢|, and similarly
gc © geor = Id|n,cor|. So the unique map gc : |[N,C| — |[N,C| is a bijection,
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and |[N,C°P| and |N,C| are colimits of the same functor for every C, and so by
A.1.15 the diagram (1.20) commutes.

To show g¢ is a homeomorphism we need to show that Kp is a homeo-
morphism in the (N,C, F)-metric. If H : mo(I — F) — C is a functor, and
1-— Fz S 7T0(I - "/(F)), then KF(H)(]. - Fl) = (H On;(lF))Op(]_ — Fz) = H(FZ)
Calculating the distance between the images of two functors, we get

dn,cor(r) (Kr(H), Kp(H')) = min{p, gy (7o(I = y(F)) — A) [ (Kp(H)) =
=y {1l — Fi € mo(I —~(F)) | Kp(H)(1 - F;) # Kp(H')(1 — F})}
= pr{F; € mo(I — F)| H(F;) # H'(F})
=dn,c.r(H,H').

This tells us one way that Kg is continuous, and the other way that K;l is
continuous. Therefore the map g¢ induced on the colimits is a homeomorphism.
O

In the rest of this section we will show that if we have a natural transfor-
mation Hy — H; between functors, then their nerves |NyHy| and |NgH1| are
homotopic.

Lemma 1.4.9. There is a 1-1 correspondence between functors H : [1]xC — D
and natural transformations Hy — Hy where Hy, Hy : C — D are functors.

Proof.

(—): Starting with a functor H : [1] x C — D, define H; : C — D for i = 0,1
such that

H;(c) = H(i,c) for ce ObC, H;(f)= H(1d,, f) for f € MorC.

To show that Hy and H; are functors, let f : c — ¢ and f' : ¢ — ¢’ be
morphisms in C. Then on compositions the map is H;(f" o f) = H(Id; oId;, f' o
1) = H((1d, f')o (id;, f)) = H(Id;, f') o H(id;, f) = Hy(f') o Hy(f), and on the
identity we get H;(Id.) = H(Id;, 1d) = H(Id(;.0)) = Idg(i.e) = Idg, o).

Next let 7. : Ho(c) — Hi(c) be the morphism H(<,Id.) : H(0,¢) — H(1,c)
in D, where <: 0 — 1 is the only morphism, and let f : ¢ — ¢’ be a morphism
in C. Then (<,Ide) o (Ido, f) = (<, f) = (Idy, f) o (<,1d.), so by applying
the functor H we get 7 o Ho(f) = H1(f) o 7.. Thus {7.} describes a natural
transformation 7 : Hy — H;.

(0,¢) u{d"’f (0,¢) Hy(c) M Ho (')
H(—

(S’Iddl l(s,ldcd 20, nl lT

(1,¢) () (1,¢) Hi(c) () Hi(¢)
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(+): Conversely let Hy, H; : C — D be functors and H 5 Hy a natural
transformation. For any object (i,¢) € [1] x C define H(i,¢) = H;(c), and for
any morphism (<, f) : (i,¢) = (4,¢) we define H by

e - {1) =

T o Ho(f) = Hi(f)or. ifi<j
On identities we have H(Id(; ) = H;(Id.) = Idg,() = Idg(,e). Next let
(<, f): (iye) = (4,¢) and (<, f) : (4, ') — (k,¢”) be morphisms in [1] x C, so
0<i<j<k<landc, ¢ €O0bC. In general we have H((<, f')o (<, f)) =
H(<, f'of), and if i = k we just get that this is equal to H;(f’ o f) and we use
the fact that H; is a functor to show the rest. If i = j < k then H(<, f'o f) =
Hy(f o f)ote = Hi(f")o Hi(f)ore = Hi(f') oo o Ho(f) = H(S, f')o H(S, f).
Similarly we can show the same for i < j = k, and so H is indeed a functor.

Note in particular that H(<,Id.) = H;(Id.) o 7. = 7.. Using the operation
we looked at first (—) on the obtained H, we again end up with the two functors
Hy, H; and the natural transformation 7. Similarly using both operations on
any functor H : [1] x C — D, we will end up with the same functor H. Thus we
have described a 1-1 relation. O

Finally we will show that functors H : [1] x C — D give rise to some homo-
topies. By the discussion below 1.3.11 about products of general simplicial sets,
we think of these homotopies in CGHaus if |NsC| is not finite. If it is finite, we
can by 1.3.9 think of them as homotopies in Top as usual.

Lemma 1.4.10. 4 functor H : [1] x C — D gives a homotopy between |NsHq|
and |NsHy| where H; : C — D are given by H;(c) = H(i,c) fori =0,1.

Proof. From 1.4.9 we know Hy and H; are functors, so using the functor prop-
erty 1.4.5 of | Ny — | we have that |[N;Hy| and |NgH;| are continuous maps from
|N,C| to |[NsD|. As before we will write N,[1] = Al

Let ¢ € N,C(mo(I—F)), and let Q € Al(mo(I—0)) be one of the two elements,
0 or 1, which we talked about below A.2.1 and below A.2.4. We can think of
Q as an element of Al(m(I — F)) by taking the map induced by the inclusion
) C F. Now (Q,c) € (A x NyC)(mo(I—F)), and so u?lXNsc(Q,c) € |Atx NC|.
Looking at the homeomorphism |A! x N,C| — |Al| x |[NC| from 1.4.5, which
is defined as in the diagram (1.17) with X = A! and Y = N,C, we get that

ug NC(Q,0) = (uB'(Q), ulC(0)).

We discussed below A.2.4 that u%l(O) =y = 1 and u%l(l) =yp =0
in |[Al|g = I. Combining 1.4.5 and A.2.4 we get a homeomorphism @ : |[A! x
N.C| — |Alg x |[N,C| = I x [NC|, which sends up(0,¢) to (1,ul*“(c)), and
similarly up(1,¢) to (0,up*¢(c)).
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Define the map H’ : I x [N,C| — |[NsD| by H = |NsH| o ®~'. This is
continuous and it sends (1,uX*¢(c)) to |N,H (u%lXNSc(O,c)) = urP(H(0,¢)).
By the definition of Hy this is the same as " (Ho(c)) = | Ny Ho|(up¢(c)). By
A.1.7, every element in | NyC| is in the image of some ugsc, so we conclude that
H'(1,2) = |NsHop|(z) for all x € |[N,C|. Similarly we can show that H'(0,z) =
|NgHq|(z), and thus H’' is a homotopy between |NgH;| and |NgHy|. O

1.5 Simplicial Sets from Simplicial Complexes

We will now look at ways of turning simplicial complexes into simplicial sets.
This is an important step in proving Dowker’s theorem, as it is a theorem about
simplicial complexes, using simplicial sets. We will define geometric realization
of simplicial complexes, and compare them with their counterpart in simplicial
sets. We will also show a connection between the barycentric subdivision and
the nerve of a simplicial complex.

The first way we will construct a simplicial set from a simplicial complex
requires an ordering on the vertices. The ordering will not matter in the end,
as they will all give the same geometric realization. We begin by defining the
category of ordered simplicial complexes.

Definition 1.5.1. The category of ordered simplicial complexes, denoted
ordCpz, is the category whose objects are simplicial complexes (K,V.) where
V< has a total order, and whose morphisms f : (K,V<.) — (L,W.) are (non-
strictly) order-preserving simplicial maps.

If we are given a simplicial map f : (K,V) — (L,W.) where W, has a
total order, we can define a partial order on V by saying v < v’ whenever
f(v) < f(v'). Any refinement of this partial order into a total order will make
f order-preserving.

Next we will see that the barycentric subdivision of an ordered simplicial
complex can be given a total order which makes the least vertex map order
preserving.

Definition 1.5.2. Let (K,V.) be an ordered simplicial complex, and let ¢ :
SdK — K the least vertex map. The lexicographic order of the set K with
respect to V. is the total order given by

0<7T <= min(cU7—7) <min(c U7 — o),
where min () = co.

This order will look for the smallest vertex that is not in both simplices, and
define the simplex that contains it to be the smallest.

We first note that if ¢ C 7 then min(cUT—7) = min{) = oo, and 7 < ¢. Thus
the lexicographic order is a refinement of the partial order given by the opposite
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of inclusions. Secondly, if o and 7 is such that ¢(7) < ¢(o), then min(c UT) =
¢(7) and ¢(7) is not in o. So we have that ¢(7) = min(cUr—0) < min(cUr—7),
and therefore 7 < o. By looking at the contrapositive result we get in particular
that o < 7 implies ¢(0) < ¢(7), and we conclude that the lexicographic order
makes the least vertex map order-preserving.

Lemma 1.5.3. Let f : (K, V) — (L, W) be a simplicial map injective on vertex
sets, and give W any total order. The following diagram commutes and all
arrows are order-preserving

(SAK, K) —25 (K, V)
J{Sdf J{f (1.24)
(SdL,L) —2% (L, W),

where V' has any total order making f order-preserving, and K and L have the
lezicographic order with respect to V- and W respectively.

Proof. We know by construction that the least vertex maps ¢x and ¢, and
the map f are all order-preserving. What’s left to show is that the diagram
commutes, and that Sdf is order-preserving. Before starting with the second
point, we recall that for simplices ¢/ = [0g C -+ C 0] in Sd K, the map Sdf is
defined by Sdf(o’) = [f(00) C -+ C f(on)]. So on vertices (simplices of K) we
have Sdf(o) = f(o).

Now let o < 7 in the lexicographic order of K. Since the lexicographic order
is a refinement of the opposite of inclusions, we know o is not included in T,
and we don’t need to look at that case.

If 7 C o, then since f is injective on vertex sets we have f(7) C f(o), and
thus f(o) < f(7).

The last case is when 7 € ¢ and ¢ Z 7. Now if s = min(oc U7 — 7), then in
particular s is in o but not in 7. Using the fact that f is injective on vertices,
we have that f(s) € f(o) U f(7) — f(7). Next let t = min(f (o) U f(7) — f(0)),
so t is in f(7) but not in f(o). Again by injectivity we have f~1(t) € 7 and
f7Xt) ¢ o, and thus f~1(t) € o UT — 0. By assumption o < 7 we have
s < min(c N7 — o) < f~t). Finally, since f is order-preserving we get
min(f(o) U f(r) — f(7)) < f(s) < t, and so f(o) < f(r). Thus Sdf is order-

preserving.

To show that the diagram commute, we look at where a vertex ¢ in SAK is
sent. Calculating directly we get f o ¢x (o) = f(min(o)), and ¢, o Sdf (o) =
min(f(c)). Since f is defined on vertices and is order-preserving, both of these
are the same, and the diagram commutes. O

We see from this that the category of ordered simplicial sets are quite general
in the sense that we only need to choose one ordering to get all the machinery
of barycentric subdivisions directly. We can now define a functor from ordered
simplicial complexes to simplicial sets.
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Definition 1.5.4. Define the functor T : ordCpz — sSet:

For objects (K, V<), let T(K), = {a:[n] = Vo |Ima € K, o order-preserving}
where functors B : [m] — [n] gives functions T(K)(B) : T(K), — T(K), by
T(K)(B)(@) = aop.

For morphisms f : K — L let T(f)n : T(K)n, — T(L),, the map T(f)n(a) =
foa.

Before we continue, we need to check that everything in this definition is
well-defined, and that it indeed defines a functor. If 3 : [m] — [n] is a functor
and a € T(K),, then T(K)(8)(a) = a0 : [m] — V< is a composition of order-
preserving functions, and thus order-preserving itself. Also we have Im(ao ) C
Ima € K, so Im(ao ) is a simplex. Thus T'(K)(8)(«) € T(K), and T(K)(p)
is well-defined.

Similarly if f : (K, V<) — (L, W) is an order-preserving simplicial map then
T(f)n(a) = foa: [n] = W is a composition of order-preserving maps, and
Im(foa) = f(Ima) is an image of a simplex, and thus a simplex itself. So T'(f),
is well defined, and since T'(f), o T(K)(B)(a) = foaof =T (L)(B) o T(f)n(a),
the collection of these defines a morphism of simplicial sets.

To show the functoriality we simply calculate T'(Idg),(a) = Idx o a = «

and T(f o g)n = f cgoa = T(f)n ° T(g)n(a)

The second way of getting a simplicial set from a simplicial complex, we
first make a category and then take its nerve. This method does not use any
ordering.

Definition 1.5.5. Given a simplicial complex K, then the inclusion category
Kc is the small category with Ob(Kc) = {0 € K simplez} and morphisms
oc— o < o Co'. Compositions of morphisms are (¢! C o”)o(c Co') =
(o0 C "), and the identities are Id, = (o C 7).

Note that if f : K — K’ is a simplicial map, then we get the functor
fc : Kc — K{ defined on morphisms by sending ¢ C ¢’ in K to f(o) C f(o')
in K'. For compositions of simplicial maps we have (fog)c (o C o’) = (fog(c) C
fog(o") = fcogc(o Co’),s0 (—)c : Cpx — Cat defines a functor. Composing
this with the nerve functor we get a functor Ny(—)c : Cpx — sSet.

Conversely starting with a functor H : K¢ — K[ between inclusion cat-
egories, we do not in general get a simplicial map, as the image of simplices
consisting of only one vertex can in general consist of multiple vertices.

The two ways of constructing simplicial sets from simplicial complexes turns
out to be linked together by the barycentric subdivision in a very natural way.

Lemma 1.5.6. Let f: (K,V.) — (L, W) be a morphism of ordered simplicial
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complexes. There are isomorphisms T' and T'V, such that the diagram
T(SdK) -2 N, K2

J{T(Sd ) JNS e
T(SdL) " N,L¥

commutes, where the barycentric subdivisions have the lexicographic order.

Proof. Recall that T(SdK),, = {v : [m] — K< |v order-preserving, Imy €
SdK}. Let v € T(SAK),, be such a map. If i < j is a morphism in [m], then
Imy € SdK tells us that either (i) = «(j), or one is included in the other.
Furthermore since v is order-preserving, then (i) < ~(j) in the lexicographic
order, and so () is not strictly included in y(j) by the properties of this order.
We conclude that v(j) C (i), and that v : [m] — K2 defines a functor.

Conversely if H € (N;K&),, = Func([m], KZ) and i < j in [m], then
H(j) C H(i) and so ImH € SdK. Since the lexicographic order is a refinement
of the partial order defined by the opposite of inclusions, we also get H (i) <
H(j), and H as a map from [m] to K. is an element in T(SAK),,. Thus the
function T'E sends v : [m] — K< to the functor [m] — K sending objects
i € Ob[m] to (7). We identify these maps and write T(SAK) = N, K.

Finally to check that this all works on maps, let « : [m] — [n] be a functor.
Directly from 1.4.1 and 1.5.4, we have NyK¥ (o) = —oa = T'(Sd) (). Similarly
if f: K — L a simplicial map, then by 1.4.2 and 1.5.4 we have T(Sdf),, =
Sdf o — and (Nsf&)m = fc o —. Both Sdf and fc send simplices o to fo),
and everything is fine. O

We also have a short nice result when K is a finite simplicial complex,
namely when it has finite vertex and simplex sets.

Lemma 1.5.7. Let (K,V.) be a finite ordered simplicial complex, then T (K)
and N;Kc are both finite simplicial sets.

Proof. If V. has m elements, then V. is isomorphic to [m] in Ay;,. With
this identification T'(K),, = {a : [n] = V< |Ima € K, « order-preserving} is a
subset of A for all n, and so T'(K) is a simplicial subset of A™ which is finite
by 1.2.10. Thus T(K) is finite by 1.2.12.

If K has r elements, then we can refine the order of K¢ into a total order K,
for example by the opposite of the lexicographic order. As above we identify
K. with [r]. A map 8 € (N;Kc), is an order-preserving map from [n] to Kc,
which gives us an order-preserving map from [n] to K. = [r]. This is true for
every n so we have NyKc C A" and N;Kc is finite. O

At last we define the classical notion of geometric realization of a simplicial
complex, before comparing it with the realization of the simplicial sets we have
constructed.
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Definition 1.5.8. Let (K, V) be a simplicial complex. The set of the geometric
realization of K is

K|={a:V=I|{veV]a) #0} €K, > a() =1}
veV

For every simplex o € K we give the subset |o| = {a € |K||{v € V|a(v) #
0} C o} € |K| the topology from the metric d(a, ) = />, e, (a(v) — B(v))2.
We give |K| the coherent topology defined by being the finest topology so that
the inclusions |o| — | K| are continuous.

For a simplicial map f : K — L, we get a continuous map |f| : |K| — |L|
by | fl(a)(w) = 3= ()= @(v) for every vertex w in L. Geometric realization of
simplicial complexes are discussed in more detail in [13] 3.1.

Proposition 1.5.9. If [ : (K,V.) — (L,W.) is a simplicial map injective
on vertex sets between ordered simplicial complexes, then we have a homeomor-
phism between | K| and |T(K)|, and between |L| and |T(L)|, making the following
diagram commute

|K| —— |T'(K)|
bf\ lmm (1.25)
|L| —— |T(L)].

Proof. The proof of this is a bit convoluted and takes a lot of space, so it is
moved to A.3. O

Theorem 1.5.10. Let K and L be simplicial complexes, and let f : K — L
be a simplicial map which is injective on vertex sets. There exist homotopy
equivalences hy : |K| — |[NsKc| and hy, : |L| — |NsLc| such that the following
diagram commutes:

K| s [N K|
lm llefgl (1.26)

L] 2 |N,Lc]|

Proof. From 1.1.9, the least vertex map is a homotopy equivalence between | K|
and |SAK|, this is has a corresponding commuting diagram by 1.5.3. Next, 1.5.9
gives a homeomorphism between |SAK| and |T(SAK)|. From 1.5.6 and using
that | — | is a functor, we get a commuting homeomorphism from |T(SdK)|
to |[NsKZP|, and finally by 1.4.8 there is a homeomorphism from |N,KZ| to
|NsKc|. Every step is a homeomorphism or a homotopy equivalence, and they
all come with a corresponding commuting diagram. O

Finally we will prove the classical result about contiguous maps which we
stated in 1.1.8. Recall from 1.1.7 that f, g : K — K’ are contiguous if f(o)Ug(o)
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is a simplex in K’ for all simplices 0 € K. Now let (fUg)c : Kc — K( be
the map sending o to f(o) Ug(c). If o C o’ then, since simplicial maps are
defined on vertices, we get f(o) C f(¢') and g(o) C g(¢’). In particular we
have f(o)Ug(o) C f(o')Ug(o’), and so (f Ug)c defines a functor. We will use
this fact in the following proposition.

Proposition 1.5.11. Let f,g: K — K’ be contiguous simplicial maps between
simplicial complezes. Then |Ngfc| and |Nsgc| are homotopic.

Proof. We will show that they both are homotopic to |Ny(f U g)c|, and by
symmetry it is enough to show that one of them is.

Let F : [1] x Kc — K{ be the map sending (0,0) to fc(o) and (1,0) to
(fUg)c(o). To see that this is well-defined we need to show that it sends
morphisms to morphsms. A morphism in [1] x K is of the form (<, Q) : (i,0) —
(j,0') where i < j and ¢ C o'. If i = j = 0, then (<,Q) is sent to the
inclusion f(o) C f(o’), which is a well-defined morphisms by the functoriality
of fc. Similarly if ¢ = j = 1 then the morphism (<, C) is sent to the morphism
f(o)Ug(o) C f(o')Ug(o’). Finally if i = 0 and j = 1 then the morphism is sent
to the inclusion f(o) C f(¢') U g(o’) which is well-defined since f(o) C f(o”).

The compositions of morphisms are point-wise, so F' is a functor. Finally
using 1.4.10 we get a homotopy between |N, fc| and |Ns(f U g)c|. O

To complete the proof of 1.1.8, let f,g : K — L be contiguous simplicial
maps. Then by 1.5.11, we have a homotopy |Nsfc| ~ |Nsgc|, and in particular
|Nsfc|ohix ~ |Nsgc| o hi, where hi is as in 1.5.10. Using that the diagram
(1.26) commutes up to homotopy, we have hy, o |f| ~ |N;fc|, and similarly for
g, 80 hpo|f| =~ hr o|g|. Finally using that hz, is a homotopy equivalence we get
our result |f| ~ |g].

1.6 Dowker’s Theorem by Simplicial Sets

We now have enough general results to prove Dowker’s Theorem using simplicial
sets. The final ingredient we need is more specialized towards this one particular
problem, namely a map between the Dowker complexes of a relation.

Definition 1.6.1. Let R C X XY be a relation with Dowker complexes (NR, X)
and (NRT,Y). Define the B-functor of R as the functor B : (NR)c —
(NRT) sending a simplex o to

B(o)={yeY|ox{y} C R}

Recall that the definition of the Dowker complex (1.2) is N(R) = {0 €
P(X)|3y €Y such that o x {y} C R}. We see that B(o) is non-empty, and it
is also a simplex in NR” since B(c) x {s} is in RT for any s in o.

To prove that it is a functor we also need to show that inclusions are reversed.
If o' C o and y € B(o), then ¢/ x {y} C o x {y} C R. So y is in B(¢’') and
B(c) € B(¢'), and B is a well-defined functor.
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Similarly we define the C-functor of R, C : (NRT)EP — (NRTT)"QPOP =
NRc, by sending simplices 7 in NRT to C(7) = {z € X |{z} x 7 C R}.

Lemma 1.6.2. Let R C X XY be a relation, with B- and C- functors B and
C. Then |NgB| is a homotopy equivalence, with homotopy inverse |N,C|.

Proof. Let s € o be a vertex. Now if y is in B(o), then particularly (s, y) is in R.
Thus {s} x B(¢) C R, and s is a vertex in CB(c). Since s was arbitrary we have
an inclusion 0 € C'B(0), which is a morphism in NRc. If o' C o is an inclusion
then we also have an inclusion CB(o’) C CB(o) since CB : NRc — NRc is a
functor as a composition of functors.

So o C CB(0) defines a natural transformation from Idy g, to CD:

Id(¢) ——— CD(0)

[ [

Id(o") —— CD(c").

Using our results from 1.4.9 and 1.4.10 we get a homotopy between [N Idyp |
and |[N,(CD)|. By 1.4.5 the classifying space |N, — | defines a functor, so we
get a homotopy between Id|n_ (vr)c| and |[NsC| o [N,B|. Similarly we get a
homotopy between Id)y, (ygr)or| and |NsB| o | N;C|. O

Proposition 1.6.3. Let RC R’ € X x Y be two relations, and let i : NR —
NR' and i¥ : NRT — NR'T be the natural inclusions of Dowker complexes
from under 1.1.4. Let Bgr and Bg: be the B-functors of R and R’ respectively.
The following diagram commutes up to homotopy:

|NSBR‘
e

INJ(NR)c| N, (NRT)Z|
llwg lle(iT)gl (1.27)
IN,(NR)e| 28 N (VR 2|

Proof. We will look at the diagram without the |Ng — |. The natural inclusion
i, and therefore the functor ic, will send a simplex o € NR to the simplex o
in NR'. Similarly, since the opposite of a functor sends objects and morphisms
to the same as the original functor, we have (iT)%(7) = 7 for all simplices
7€ NRT.

If yisin Br(o), then o x{y} C R C R’. Thus y is also in B/ (o) and we have
the inclusion Br(o) C B/ (o). In particular we have that Brsoic(0) = Br/(0)
and (i7)® o Br(c) = Br(o) both are contained in the union Bg/ (o) U Br(o) =
Br/(c). So Brr oic and (iT)® o Bg are contiguouos maps, and using 1.5.11
we have that the compositions |NBg/| o [Nsic| and |Ns(iT)Z| o [NsBg| are
homotopic. B O
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We are now finally ready to prove Dowker’s theorem using simplicial sets.
The theorem we prove here is exactly the same as Theorem 3 in [3].

Theorem 1.6.4. (Dowker’s Theorem) Let R C R’ C X x Y be relations,
and leti: NR — NR' andi¥ : NRT — NR'T be the natural inclusion between
corresponding Dowker complexes. Then there exist homotopy equivalences I'g :
NR — NRT andTg : NR' — NR'T such that the following diagram commutes
up to homotopy:

INR| —2 |NRT|

JM llir‘ (1.28)

INR/| = |NR'T|

Proof. The inclusion maps i and 7 act like the identity on vertices, so in par-
ticular they are injective on vertex sets. From 1.5.10 setting K = NR, L = NR’
and f = ¢ we get the commuting diagram

INR| —— |[Ny(NR)C|

i |iaic

INR'| —— |[Ns(NR')c|.
From 1.6.3 we have the diagram
INo(NR)c| —— [N(NRT)Z|
lleig\ |y
IN(NR)c| — [No(NRT)Z],

commuting up to isomorphism. We can now use 1.4.8, taking C = (NR”)c,
D= (NR")c, H = (i")c, and mirroring the diagram, giving us

[No(NRT)Z| —— |N(NRT)c|
luvs(ﬂ)g’ lwsuﬁg
|Ns(NRT)2| —— |Ny(NR™)c|.

Finally we can again use 1.5.10 as above, changing the relations with its
transpose, and mirroring the diagram:

IN((NRT)c| —— |NRT]

J{\Nsiél J{\iTl

INg(NR'T)c|. —— |[NR'T|.

Combining all diagrams, we get our result since every single diagram com-
mutes or commutes up to homotopy, and the horizontal maps are all homeo-
morphisms or homotopy equivalences. U
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Now this is a result that can be used in topological data analysis. Starting
with a sequence of relations

RogngRngXXY
this gives us two nested sequences of simplicial complexes
NRyC NR, C---CNR, and NRI C NRTC...Cc NRT.

Now taking homology of this sequence, we get isomorphisms on homology groups
H.(NR;) = H.(NR!) and a commutative diagram:

H.(NRo) —*— H.(NR;) —*— ... - H,(NR,)

L

H.(NRT) —“ H,(NR)) —=— ... - H.(NR,)

This follows from Dowker’s theorem 1.6.4, and the fact that homotopic maps
induce the same map on homology ([14] 1.10.). The persistent homology of
the nested sequence is given by the rank of of the image of the maps i, ([7]
VI.1), so by commutativity we get that the two different sequences have the
same persistent homology.

Note that in the proof of 1.5.10, we referenced the fact 1.1.9 that the least
vertex map induces a homotopy on geometric realizations. This is a result
about simplicial complexes. It would be nice to instead show that the map
|T(¢)| : |T(SAK)| — |T(K)| is a homotopy equivalence, completing the proof
only using simplicial sets. We already know, from the functor property of T’
and the diagram in 1.24, that this would have a nice commuting diagram, and

the proof of 1.5.10 would follow from the sequence of homotopy equivalences

1.5.9 1.5.6 1.4.8
K| 27 0(5)| ~ |T(SAK)| 2 N AT N, K|

We could forget the first and last step in the proof of 1.6.4, to get an analo-
gous theorem but for simplicial sets only. Starting with a relation R C X x Y,
we can define two simplicial set Ng(NR)c and Ng(NR”)c, and we have shown
that their geometric realizations are homotopy equivalent. It might be interest-
ing to explore these kinds of simplicial sets. In [3], they use Dowker’s theorem
to prove the nerve theorem, so maybe something analogous to that might be
done for simplicial sets.
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Part 2

O-Interleavings

Starting with a nested sequence of topological spaces and taking the homol-
ogy we get some unique persistence diagrams telling us about the topological
features of the sequence [7]. These diagrams are realized as a multiset in Rﬁ_,
or equivalently as a multiset of intervals, called a barcode diagram. Stability
theory in topological data analysis in particular looks at questions about how
changing the spaces affects the diagrams. When the topological spaces are sim-
plicial complexes we have the notion of two such sequences being e-interleaved,
as a way of saying how similar they are after some bijection on vertex sets.

In this second part we will look at the simplest case where ¢ = 0. We start
by comparing nested sequences of simplicial complexes with functions from a
product of sets to the extended line of non-negative numbers. From there we
will arrive at a category that identifies the complexes that are O-interleaved.

2.1 The Maps F, N. and N<

We begin by defining the concepts of filtered simplicial complexes and dissim-
ilarities. We will construct maps between them, and look at the properties of
these maps.

Definition 2.1.1. A filtered simplicial complex (K,V), or just K, is a
Jamily of simplicial complexes { (K¢, V) }ier, such that Ky C Ky is a subcomplex
whenever t < t/

As with simplicial complexes say that K has vertex set V.

Definition 2.1.2. Let V and W be arbitrary sets. A map A: V x W — R+ 18
called a (Dowker) dissimilarity.

As an example we have that any distance functions d : X x X — R+ is a
dissimilarity.
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Definition 2.1.3. Given a filtered simplicial complex K, we define the asso-
ciated dissimilarity FK : V x P(V) — Ry by

00 ifvdo
FE(v,o)=1{" o te% K (2.1)
inf{t|joc € K;} ifveoce |J K.

teR,

Definition 2.1.4. Given a dissimilarity A : V. x W — RJF define the open
Dowker nerve of A to be the filtered simplicial complex Ne A = {(N< Ay, V)}teRy
where

N.Ay={o € P(V)|Jw e W with A(s,w) <t forallse€o}. (2.2)

For every ¢, this is a Dowker complex of some relation R, = {(v, w) | A(v,w) <
t} CV xW. Now, if o C 7 and 7 € Nc Ay, then 0 € N A, by the same w € W.
Also if 0 € No Ay and ¢/ > ¢, then A(s,w) <t <t forall s € g,s0 0 € NcAyp.
Thus N.A is indeed a filtered simplicial complex. The same arguments hold if
we change the <’s with <’s.

Definition 2.1.5. For A as above, define the closed Dowker nerve
NcAy={oc e P(V)|3w e W with A(s,w) <t forallse o} (2.3)

Ifd: X x X — R, is a distance function, then N.d or N<d will be the Cech
complex, depending on if you define it by the open or closed balls.

We will compare the open and closed Dowker nerves, and see that a filtered
simplicial complex is contained between the open and closed Dowker nerve of
its associated dissimilarity.

Lemma 2.1.6. Let A : V x W — R, be a dissimilarity. For all e >0 and for
allt € Ry we have NeAy © N<Ay C NoAyie.

Proof. We first note that both NoA and N<A have vertex set V, so inclusions
can happen. For the first inclusion, let ¢ € N.A and let w € W such that
A(s,w) < t for all s in . Then A(s,w) < t for all s € o, and so ¢ is also in
NSA. Thus N<A g NSA

Similarly, let ¢ € N<A and w € W be such that A(s,w) <t for all s € 0.
Now for all € > 0 we clearly have ¢t < t + ¢, and in particular A(s,w) < t+ ¢ for
all s in 0. We conclude that N<A; C NoAyy, for all € > 0. O

Lemma 2.1.7. Let K = {(K;,V)}icr, be a filtered simplicial complex. Then

N.FK; C Ky C N<FKy
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Proof. First note that all filtered simplicial complexes have vertex set V.

Assume 0 € No. FK;. This is true if and only if there exists a 7 € P(V') such
that FK(s,7) <t for all s € 0. By the definition of F'K this implies that o C 7
and that inf{t'|7 € Ky} < t. Since the greatest lower bound is less than ¢, there
must exist an element s € {t'|7 € Ky} such that s < ¢, otherwise ¢ would be
a greater lower bound. Now because K is a filtered simplicial complex, then
T € K, implies 7 € K, for s <t, and o0 C 7 € K; implies 0 € K;.

For the second inclusion, assume o in K;. Then by the definition of F K,
for all s € o, we have FK(s,0) = inf{t'|c € Ky} < t. In particular we get
o € N<FK,. O

Combining 2.1.6 with 2.1.7 by setting A = FFK we get for all t > 0 and all
€ > 0 the series of inclusions

N.FKy C Ky C NeFKy C N FKyy . C Ky,
By splitting this in two, we get two results similar to that of 2.1.6:
N.FK; CK; C N.FK;y., (2.4)

K; C N<FK, C Ky .. (2.5)

The results in 2.1.6, (2.4) and (2.5), are all on the form K; C K| C K; . for
some filtered simplicial complexes K and K'. We could use this as a definition
of some kind of similarity between two filtered simplicial complexes, but this
might be a bit restrictive. We would like the similarity to be symmetric, so we
are not interested in whether or not we have an inclusion K; C K] for all .

Definition 2.1.8. Two filtered simplicial complezes (K,V) and (K',V), with
the same vertex set V., are strictly 0-interleaved if K, C K[, _ and K; C Ky,
for allt € Ry and for all e > 0.

The word ”strictly” is used because we demand the vertex sets to be the
same. We will later generalize the definition to include a wider range of com-
plexes, but for now we continue to show that the results above are just special
cases of being strictly O-interleaved.

Lemma 2.1.9. If (K,V) and (K',V) are two filtered simplicial complezes such
that Ky C K| C Ky for allt € Ry and for alle > 0. Then K and K’ are
strictly 0-interleaved.

Proof. We need to show that Ky C K, and K; C K;,. forallt € R, ¢ > 0.
The second part, K; C Ky, follows trivially from the assumption. From the
assumption we also have K; C K| which again is included in K}, _ by the fact
that K’ is a filtered simplicial complex. O

The following theorem shows that two filtered simplicial complexes are strictly
O-interleaved if and only if they have the same associated Dowker dissimilarities.
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Theorem 2.1.10. Let K = {(K;,V)}er, and K' = {(K{,V)}er, be two
filtered simplicial complexes, then the following are equivalent:

(i) K and K' are strictly 0-interleaved.
(i) Ky € K, and K; C K¢y, for allt € Ry and for all € > 0.
(iii) FK = FK': V x P(V) = R,

Proof.

(i) <= (i1): Definition.

(#4) = (4#i1): Let v € V and o € P(V) be any elements. We want to show that
FK(v,0) = FK'(v,0).

evdoao:

By definition FK (v,0) = FK'(v,0) = oc.
sveco,0¢|JKs:

If o € |JK; then there is a t € R such that o € K;. Since K is filtered
we also get 0 € K[,  for all ¢ > 0. Now since K] C K. by assumption,
o € K}, and thus o € | K]. Symmetrically by changing K and K’ we get that
o € |JK] implies o € |J K;. We conclude that o ¢ |JK; < o ¢ |J K], and
that FK(v,0) = FK'(v,0) = c0.
evEo, o€ K, for someteR,:

Let S = {tlo € K;} and S’ = {t|oc € K}, and assume by contradiction that
FK(v,0) > FK'(v,0), i.e. we assume infS > infS’. Then infS = inf 5" + ¢
for some ¢ > 0, and there exists a 0 < § < & such that § < inf.S. Since § > 0
we have that K] C Ky for all t € R

Now if t € S’ then 0 € K| C K45, so we get that t +5 € S for all t € 5.
Since inf S < s for all s € S we have inf S < ¢+ 4 for all t € S’. By subtracting
d on both sides we get that inf S —§ <t for all t € S’, so it is a lower bound.
Now since inf S’ is the greatest lower bound we know inf S — § < inf S’. But
now we have infS < infS’ + 3 < inf S’ + ¢ = inf S which is a contradiction.
Thus FK(v,0) < FK'(v,0).

By the symmetry of K and K’ we similarly get that FK(v,0) > FK'(v,0),
and we conclude that FK(v,0) = FK'(v,0).

(#91) = (i1): We will show the contrapositive. Assume that there exists t € Ry
and € > 0 such that Ky ¢ K, .. We want to show that FK # FK'. Let 0 € K
be such that o ¢ K}, _, and let v € o be any vertex. Then FK (v, 0) = inf{t|o €
K} <t

Ifo ¢ |J K}, then FK'(v,0) = co and we are done.If this is not the case then,
since K’ is a filtered simplicial complex, we have that if 7 € K] then 7 € K, for
all s > t, equivalently if 7 ¢ K/ then 7 ¢ K for all s <t. Since 0 ¢ K}, _ we get
that t + ¢ <t for all t' € {t|o € K}, so t + ¢ is a lower bound for {t|oc € K|}.
We conclude that FK(v,0) <t <t+¢ < inf{tlo € K|} = FK'(v,0), and in
particular we have FK (v,0) # FK'(v,0).

By symmetry we get the same for K; ¢ K .. O
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From this theorem and the preceding lemmas we get some nice results about
our maps F', No and N<:

Corollary 2.1.11. For any filtered simplicial complex K and any Dowker dis-
similarity A, the following holds.

(i) FN<cA = FN<A
(ii) FK = FN.FK = FN<FK
Proof.

@: From 2.1.6 we have NcAy € N<Ay € NoAyy for allt > 0 and all € > 0.
Next 2.1.9 says that N<A and N<A are strictly O-interleaved, and finally 2.1.10
tells us that this is equivalent to FIN<A and FN<A being equal.

(#4): The second equality follows directly from (7), by setting A = FK. The
proof of the first equality is almost identical to the proof above. From (2.4)
we have Ne FK; C Ky C NoFKyy, for all t > 0 and all € > 0, so by 2.1.9
K and N_.FK are strictly O-interleaved, and from 2.1.10 we get that FK =
FN_FK. O

We note that the closed and open dowker nerve in some way give an upper
and lower bound of strictly O-interleaved complexes. If K and K’ are strictly
O-interleaved, then FK = FK’ and by (2.4) we have Ne FK; C K] C N<FK,.

2.2 Category of O-interleavings

In this section we will begin by making filtered simplicial complexes and dissim-
ilarities into categories, with a structure such that the maps from section 2.1
are functors. We will use the functors to compare the two categories, and create
a new interesting category of O-interleaved simplicial complexes. We will show
this category is equivalent to some of the categories constructed by the theory
from A.4.

First, we define the two basic categories we will build everything from.

Definition 2.2.1. The category of filtered simplicial complexes fsCz is
the category where the objects are filtered simplicial complezes, and morphisms
¢ (K, V) — (K'V') are functions ¢ : V. — V' such that 0 € Ky = ¢(0) €
K. Compositions are composition of functions.

If (K”,V") is a third filtered simplicial complex, and ¢’ : K’ — K" a
morphism. Then ¢ € K;, = ¢(0) € K, = ¢ (¢(0)) € K/, so the
composition ¢’ o ¢ is also a morphism. Associativity and identity of morphisms
is induced by the associativity and identity of ¢ : V' — V' as a functions. Thus
fsCx is indeed a category.

Proposition 2.2.2. Let (K,V) and (K', V') be filtered simplicial complezes.
Then ¢ : K — K’ is an isomorphism if and only if ¢ : V — V' is bijective and
o€ K; < ¢(0) € Kj.
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Proof.

(=): Assume ¢ is an isomorphism. Then there exists a map 1 : V' — V such
that 7 € K| implies ¢(7) € K¢, and such that ¢ o ¢ = Idy and ¢ o ¢p = Idy.
The last part proves exactly bijection of ¢ as a function on the vertices. For the
second part let ¢(o) € K7, then o = Idy (o) = ¢(¢(0)) € Kj.

(«): Assume ¢ : V — V' is a bijection such that o0 € K; <= ¢(o) € K{. This
is a morphism of filtered simplicial complexes by definition, but we also need to
show that ¢! is a morphism. Let 7 € K, C P(V’), since ¢ is a bijection there
exists a subset ¢ C V such that ¢(o) = 7. By assumption ¢(o) € K, implies
that o € K;. So ¢71(7) = 0 € K; and ¢~ is a morphism. O

Definition 2.2.3. The category of dissimilarities is the category Diss where
the objects are dissimilarities, and where if A : VxW — Ry and A : V/ x W' —
R are objects then morphisms (f,g) : A — A’ are pairs of functions f :V — V'
and g : W — W' such that N'(f(v),g(w)) < A(v,w) for all v € V and all
w € W. Compositions are pairwise.

To check this is a category, let A” : V" x W — R be a third dissimilarity
and (f',¢") : A — A” a morphism, then (f’',¢") o (f,g9) = (f o f,¢' 0g). Now
A'(f'(f(v),9'(g(w))) < A'(f(v), g(w)) < A(v,w), so the composition is also a
morphism. We clearly have the identity morphisms Idy = (Idy,Idw) : A — A,
and associativity again follows from associativity of the underlying functions.

Proposition 2.2.4. Let A : V x W — Ry and A’ : V/ x W' — R be dissim-
ilarities. Then (f,g) : A — A is an isomorphism if and only if f : V —= V'
and g : W — W’ both are bijective and N (fv, gw) = A(v,w) for allv € V and
weW.

Proof.

(=): Assume (f,g) is an isomorphism. Then there exist a morphism (f’g’) :
A — A such that (f’ o f, g/ o g) = (Id\/, Idw) and (f o f’, go g') = (Idv/7 IdW/)
The identities implies that f and g are bijective. Since (f,g) is a morphism
we know A'(fv,gw) < A(v,w), and since (f’,¢') is a morphism we know
A(f'v, gw') < N, w') forallv’ € V', w' € W’. In particular A(f'(f(v)), ¢ (g(w))) =
A(v,w) < A(f(v),g(w)), so A(v, w) = N'(f(v), g(w)).

(«): Let f and g both be bijective such that A’(fv, gw) = A(v,w) for allv € V
and w € W. This is a morphism of dissimilarities, since A(v,w) < A(v,w). We
need to show that (f~!,¢g~!) also is a morphism. Since f and g are bijective,
then all v' € V'’ and all w’ € W’ is the image of some element v and w under f
and g respectively, so A(f~1v/, g7 w’) = A(f Lo f(v),97 o g(w)) = A(v,w) =
N (fv,gw) = N'(v',w'), and in particular A(f~1v', g7 w’) < A'(v',w’) for all v/
and w'. O

The next step is to show that the maps F', N. and N< are in some way
functors between the two categories.
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Proposition 2.2.5. Let F': fsCz — Diss be the map K — FK on objects and
@ — (P, d) on morphisms. Then F is a functor.

Proof. Recall from (2.1) that if we start with a filtered simplicial complex (K, V)
then FK :V x P(V) — R, is the Dowker dissimilarity given by

00 ifvédo
FK(v,0) = { > ifod teLD{r Ky
inf{t|oc € K;} otherwise

We need to show that given a morphism ¢ : K — K’ in £sCx then (¢, ¢) :
FK — FK' is also a morphism. Specifically we need to show that if ¢ : V — V’
is such that ¢(K;) C K then FK'(¢(v), (o)) < FK(v,0) for all v € V and all
o€ P(V).

First we look at the cases when FK'(¢(v),¢(c)) = co. One way this can
happen is if ¢(v) ¢ ¢(o), but if this is the case then v ¢ o by the fact that ¢
acts on vertices, and thus FK(v,0) = co. The other way this can happen is
if ¢(0) ¢ K for all t € Ry. Then by the assumption that ¢ is a morphism in
£sCx, we have o ¢ K, for all t € R,. So for both cases we have FK(v,0) = oco.

Next we look at when FK'(¢(v),d(0)) is finite. If FK(v,0) is infinite we
are done. If it is finite then v € o and there is a t € Ry such that o € K.
Let s € {t|o € K;}. Again since ¢ is a morphism we have ¢(0) € K., and
thus {t|o € K;} C {t|#(0) € K;}. The infimum of a subset is greater than or
equal to the infimum of its superset, so we have FK'(¢(v), ¢(0)) = inf{t | ¢(o) €
K} <inf{t|o € K;} = FK(v,0)

Hence we have FK'(¢(v),¢(0)) < FK(v,0) for all v € V and all o
P(V), and so F sends morphisms to morphisms. Clearly F(Idg) = F(Idy) =
(Idy,Idy) =Idpk and F(po¢) = (Yo ¢, v od) = (,¥) 0 (¢, ¢) = F(¢)o F(¢),

so F'is a functor. O

Proposition 2.2.6. Let N, : Diss — fsCz be the map A — N,A on objects
and (f,g) — f on morphisms. Then N, is a functor for both * being < and <.

Proof. As in the previous proposition we need to show that NV, sends morphisms
to morphisms. Let (f,g) : A — A’ be a morphism, where A : V x W — R,
and A’ : V' x W' — R,. Look at the case when x is strictly less than, <. The
filtered simplicial complex N A is, in (2.2), defined by

N.Ay={oce€ P(V)|Jwe W s.th. A(s,w) <tVseo.

Now let ¢ € NcAy, and let w € W be such that A(s,w) < t for all s € o.
Then by the fact that (f,g) is a morphism, we get in particular that there is
an g(w) € W’ such that A'(f(s),g(w)) < A(s,w) < t. for all f(s) € f(o). So
f(o) € NcAj, and f is a morphism from N.A; to N.Aj.
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By changing all < with < the proof is still valid, so N, sends morphisms
to morphisms. N, also preserve identities and composition, since N,(Idy) =
N.(Idy,Idw) = Idy = Idy.x and No((f.9) o (f',9)) = Nu(f o f',g0g) =
fof =N.(f,9)oN(f',g"). Thus N, is a functor for both < and <. O

We sum up what we did in the two previous proofs in a corollary.

Corollary 2.2.7.

(@): If (f,g) : A — A is a morphism in Diss, then f : N.A — N.A' is a
morphism in fsCz.

(i): If ¢ : K — K' is a morphism in fsCz, then (¢,¢) : FK — FK' is a
morphism in Diss. O

Next we want to use these functors within the framework of localizations
(Section A.4) to create some interesting categories. In particular, we want to
look at localizations of sets of morphisms in the category of filtered simplicial
complexes, but the theory we developed in A.4 only works for small categories,
which fsCx is not. We do however have some ways around this problem. One
option would be to use a more sophisticated localization, but that is beyond the
reach of this thesis. Instead, we can look at filtered simplicial complexes whose
vertex set is a subset of some fixed universe, V' C U, then since K; C P(V) C
P(U), every family {K;};cr, can be viewed as an element of the set Ry x P(U).

There might be other interesting subcategories of £sCx to look at, so the only
restrictions we will look at is small subcategories which is nice in the following
way.

Definition 2.2.8. A subcategory F of fsCz is a nice subcategory if it has the
property that if K € F then Ne FK € F and N« FK € F.

Note that £sCx is nice, but not small. Since the vertex set of No FK and
N<FK are the same as the vertex set of K, every subcategory created by some
restriction on the vertex sets will be nice. In particular, both the subcategory of
filtered simplicial complexes with finite vertex sets, and the subcategory where
the vertex sets are subsets of some fixed set are nice subcategories, but only the
second one is small.

Definition 2.2.9. Define the full subcategories SF. and SF< of the some
nice subcategory F C fsCz, with objects ObSF . = {N.FK |K € ObF}, and
ObSF< ={N<FK|K € ObF}.

Proposition 2.2.10. SF< is a reflective subcategory of F with reflective func-
tor N<F', and SF < is a coreflective subcategory with coreflective functor N. F.

Proof. For the reflective case, we need to show that we have a natural (A.22)

bijection Homsr_(N<FK, N<FK') 2, Homr(K, N<FK') for all objects K
and K’ in F.
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Given a morphism k : K — N<FK’, then applying the functors F' and N<
gives us a new morphism N<F(k) : N«FK — N<FN<FK' = NcFK' where
the last equality follows from 2.1.11(é¢). From the definition of the functors, we
have N<F'(k) = k as functions on the vertex set.

Conversely, given a morphism &k : N« FK — N<FK', we want to show that
the function k& on vertex sets also is a morphism from K to N<FK’. So let
o € K;. By 2.1.7 we have 0 € N<F K, and by the definition of morphisms in
£sCx this again implies k(o) € N<FK,. Thus 0 € K, implies k(c) € N<FK]
and k : K - N<FK’ is a morphism.

We now have a bijection given by ¢(k) = k, where the naturality properties
(A.22) follows trivially from the fact that both the left and right adjoint and
the bijection is the identity on the vertex maps. So the inclusion i : SF< — F
has N<F as left adjoint.

To show that SF. is a coreflective subcategory we want to find a natural
bijection Homz(N.FK, K') - Homsr_(N<FK,N.FK").

Starting with a morphism h : N. FK — K’, then applying the functor N F
we get a new morphism N.F(h) = h : NeFN.FK = N.FK — N.FK/',
again using 2.1.11(41).

The other way, starting with a morphism h : Ne FK — N_FK’, then
o0 € Nc FK, implies h(c) € Nc FK]. From 2.1.7 we get that Nc FK| C KJ, so
h(c) € K|, and h : Ne FK — K’ is a morphism.

We see again that the natural bijection is just the identity on the vertex set,
and naturality follows trivially. U

Corollary 2.2.11. If F is a nice and small subcategory of fsCz, then the closed
subcategory SF< of F is equivalent to the localization F[L71] with respect to
the set of morphisms ¥ = {¢ € MorF | N<F(¢) is an iso}.

Proof. This is a direct consequence of the previous proposition and A.4.13. O

Definition 2.2.12. Let F be any subcategory of fsCx. Define the category CF
with objects ObCF = ObF, and where morphisms ¢ : K — K’ are morphisms
of the associated dissimilarities (¢,¢): FK — FK'.

Note that a morphism ¢ : K — K’ in CF is a function ¢ : V. — V' on
the vertex sets, such that FK'(¢(v),¢(0)) < FK(v,0) for all v € V and all
oeP(V).

Also note that if 7/ C F is a subcategory, then CF' is a subcategory of C.F.
In particular we have CF C C(fsCx) for all F.

Definition 2.2.13. Let F be any subcategory of fsCz. Define the category
WF. of F, with objects OOWF . = ObF and the morphisms K — K’ are
morphisms Ne FK — N.FK' as filtered simplicial complexes. Similarly define
the WF < with the same objects, but where morphisms K — K' are morphisms
of filtered complezes N« FK — N<FK'.

A morphism ¢ : K — K’ in WF_, is a function on vertex sets ¢ : V. — V/|
such that ¢(0) € No FK, whenever ¢ € N. FK;.
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Proposition 2.2.14. Let F be any subcategory of fsCx. The categories CF,
WF< and WF< are isomorphic. Furthermore this isomorphism is the identity
on objects and on morphisms as functions on vertex sets, so ¢ : K — K is an
isomorphism in CF if and only if ¢ : K — K’ is an isomorphism in WF., and
similarly for WF<.

Proof. Look at the map CF — WUF,, for % either < or <, being the identity on
objects and the identity on morphisms as vertex sets. This will send morphism to
morphism by 2.2.7(7), and it preserves composition, identities and associativity
in the same way as the functor in 2.2.6.

The other way, let WF, — CF send objects to themselves and morphisms to
the morphism acting the same on vertex sets. A morphism ¢ : K — K’ in WF,,
is a morphism of filtered simplicial complexes ¢ : N,FK — N,FK’'. Using
2.2.7(ii) we get a morphism of dissimilarities (¢,¢) : FN,FK — FN,FK’,
and by 2.1.11(¢4) this is a morphism (¢, ¢) : FK — FK',s0 ¢ : K — K' is a
morphism in CF. This map preserves composition, identities and associativity
by 2.2.5.

Clearly the compositions of these functors are the identity functors, so CF
and W, are isomorphic categories, both when * is < and when it is <. O

By 2.2.4, two filtered complexes K and K’ are isomorphic in CF if and
only if there exist a bijection ¢ : V' — V' between their vertex sets, such that
FK(v,0) = FK'(¢(v),¢(0)). This is close to the properties in 2.1.10, but where
one side is precomposed with ¢. We will now extend the definition of strictly
O-interleaved complexes to an equally (or more) interesting class which includes
complexes with different vertex sets.

Definition 2.2.15. Let (K, V) and (K', V') be filtered simplicial complezes and
let $: V — V' be any function. Then the image of K by ¢, denoted by ¢(K),
is the filtered simplicial complex with vertex set V' and simplices

d(K)y = d(K;) ={r € K, |7 = ¢(c) for some o € K;} (2.6)

To show that ¢(K) is a filtered simplicial complex, we first need to show
that ¢(K); is a simplicial complex for every t. Let 7 = ¢(o) for some o € K;
and let 7/ be any subset of 7. Now since ¢ is a defined on vertices we have
oY )YNo C ¢~ (r)No =0 € Ky, and so ¢~ (7') N o is a simplex in K;. Now
™ =¢(p7 (") N o), so 7" is in ¢(K);, and ¢(K), is a simplicial complex.

We also need ¢(K;) C ¢(Ky ) whenever ¢t < t'. If 7 € ¢(K;), then there is a
o € K; with ¢(0) = 7, but K is filtered so ¢ € Ky and thus 7 € ¢(Ky).

Lemma 2.2.16. Let (K,V) and (K',V') be filtered simplicial complexes and
¢:V — V' a bijection. Then FK o ¢! = F(¢(K))

Proof. Let v' € V' and 7 € P(V') be any elements.
We first start with the infinite case. Recall from the definition of F' in
(2.1) that F(o¢(K))(v',7) = oo if and only if v' ¢ 7 or 7 ¢ ¢(K); for every
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t € Ry. Since ¢ is a bijection by assumption, we have that v’ ¢ 7 if and
only if ¢~ 1(v') ¢ ¢~1(7). By (2.6), 7 is not in ¢(K), if and only if it is not
the image of some o in K;, or since we have a bijection ¢~1(7) # o for any
o € K;, which is the case if and only if ¢! is not a simplex in ¢ K;. So we
have F¢(K)(v',7) = oo if and only if ¢~1(v') ¢ ¢~ 1(7) or ¢~ (1) ¢ K; for all
t € Ry, which is exactly when FK(¢~1(v'),¢71(7)) = o0.

We have just shown that 7 ¢ ¢(K;) if and only if ¢~1(7) ¢ K, so by
contraposition 7 € ¢(Ky) if and only if ¢~1(7) € K;. Therefore in the finite case
we have {t|7 € ¢(K;)} = {t| ¢~ () € K;}, and so Fo(K)(v',7) = inf{t|7 €
B(K)} = inf{t] 6 (7) € Ky} = FK (6~ (o), 671 (7). .

Corollary 2.2.17. Let (K,V) and (K',V') be filtered simplicial complexes.
Then the following are equivalent:

(i): K and K are isomorphic in CF for every subcategory F C fsCz containing
both K and K'.

(i1): K and K are isomorphic in CF for some subcategory F C fsCz containing
both K and K'.

(iti): K and K' are isomorphic in C(fsCz).

(iv): There exists a bijection ¢ : V' — V such that K; C ¢(K{,.) and ¢(K{) C
Ky forallt e R+ and all € > 0.

(v): K and ¢(K') are strictly O-interleaved for some bijection ¢ : V' — V.

Proof.

(iv) <= (v): The statement (iv) with the fact that ¢(K"); := ¢(K}) is exactly
the definition of K and ¢(K’) being strictly O-interleaved.

(v) <= (i): Assume there exists a bijection ¢ : V' — V on vertex sets such
that K and ¢(K') are strictly O-interleaved. This is by definition equivalent
to the statement (7i¢) in 2.1.10, namely that FK = F¢(K'). By using 2.2.16
we have that this is equivalent to FK = FK' o ¢~!. Isomorphisms (K,V) —
(K',V') in CF are bijections ¢’ : V. — V' such that FK = FK' o ¢’. So
¢! : K — K’ is an isomorphism in CF.

(i) = (ii1) = (it): Trivially true.

(15) = (i): Let (K,V) and (K', V') be objects in some subcategory F of £sCx,
so that they are isomorphic in CF. Let F' be another subcategory containing
K and K’. The isomorphism in CF is a bijection ¢ : V — V'’ such that
FK = FK' o ¢, but this definition is independent of F, so this is also an
isomorphism in CF'. O

Definition 2.2.18. Define 0-int := C(fsCz) as the category of 0-interleaved
filtered simplicial complexes. We say K and K' are 0-interleaved if they
are isomorphic in 0-int (and thus satisfy every property in 2.2.17), and the
isomorphism is called a 0-interleaving.
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In particular, by 2.2.17, a O-interleaving ¢ : K — K’ is a bijection on vertex
sets ¢ : V' — V' such that ¢(K;) C K{,_ and K| C ¢(K4.) for all t € Ry and
all € > 0.

The category CF is a subcategory of 0-int for every subcategory F C fsCx.
So two filtered simplicial complexes K, K’ € F are O-interleaved if and only
if they are isomorphic in CF. We call CF the category of 0-interleaved
complexes in F.

From 2.2.14 we have another way of looking at the category CF. We will
now use WJF, to show that the category of O-interleaved complexes in F is
equivalent to both the reflective and coreflective subcategories from 2.1.6.

Lemma 2.2.19. If F is a nice subcategory of fsCz, then the categories CF
SFc, WF<, SF<, and WF< are all equivalent.

Proof. We already known from 2.2.14 that WF <, WF . and CF are isomorphic,
so we just need to show that SF, and WF, are equivalent whenever * is < and
<.

Remember that morphisms ¢ : (K,V) — (K',V’) in WF, are morphisms
of filtered simplicial complexes ¢ : N,FK — N,FK’, which again are some
function ¢ : V' — V' on vertex sets. We have an injective functor SF, — WF,
sending objects N,FK to N,FK, and morphisms ¢ : N,FK — N,FK' to the
morphism of filtered simplicial complexes ¢ : N,FN,FK — N,FN,FK', which
by 2.1.11 is just the original morphism ¢ : N,FK — N,FK. So SF, are in
some way included in WF,.

The other way we have a functor WF, — SF, sending objects K — N,FK,
and morphisms ¢ : N,FK — N,FK' in SF, to the morphisms of filtered
simplicial complexes ¢ : N,FN,FK — N,FN,FK’, which again is the original
morphism by 2.1.11.

The composition SF, — WF, — SF, is now the identity, using N, F K =
N,FN,FK. The other composition WF, — SF, < WUF,, lets call it D, :
WF. — WZF,, maps morphisms ¢ : K — K’ in WF, to morphisms ¢ :
N.FK — N,FK'. For every object (K,V) in WF,, the identity map on ver-
tices induce an isomorphism of filtered simplicial complexes Idy : N, FK —
N,FK' = N,FN,FK, which corresponds to an isomorphisms Idy : K —
N.FK in WF,. Since D.(¢) = ¢ on vertex sets, we have the commuting
diagram

K —4 (D,)(K)
d’J{ J{(D*)(@
K 2 (D)K.

This defines a natural isomorphism between D, and Idyy#,. So the composition
are the identity functor one way, and naturally isomorphic to the identity the
other way. Hence we have an equivalence of categories WF, — SF,. O
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In particular, when F = £sCx, we have that the category of 0O-interleaved
complexes 0-int is equivalent to both a reflective and a coreflective subcategory
of £sCx.

Finally we will see that the O-interleaved complexes with objects in F are
equivalent to the category F localized at the set of O-interleavings.

Lemma 2.2.20. Let F be any nice subcategory of fsCz, and let C : F — WF,
be the functor which is the identity on objects and sending morphisms ¢ : K —
K’ to the morphisms ¢ : K — K' in WF, given by N.F(¢) = ¢ : N.FK —
N.FK'. Then the set X, := {¢ € MorF|Ci(9) is an iso} is the same as the
set ¥ = {¢ € MorF|N<F(¢) is an iso} used in 2.2.11, i.e. o =X =X<.

Proof. The functorial properties of C, comes from the fact that N.F : F — F
is a functor (2.2.5 and 2.2.6).

Let ¢ € MorF. Then by 2.2.14, the map C.(¢) is an isomorphism in
WUF < if and only if C«(¢) is an isomorphism in CF if and only if C(¢) is an
isomorphism in WF <, and similarly for C<(¢). Thus we have ¥ = X<.

Morphisms ¢ : K — K’ in WF<, are morphisms ¢ : N« FK — N<FK' in
F. So the image C<(¢) = N<F(¢) : K — K’ is an isomorphism if and only
if ¢ = N<F(¢) : N«FK — N<FK' is an isomorphism of filtered simplicial
complexes. Thus we have the equality Y¥< = X. O

Corollary 2.2.21. Let F be a small and nice subcategory of filtered simplicial
complexes. The subcategory of 0-interleaved compleres CF C 0-int with objects
in F is equivalent to the localization F[X71] at the set ¥ = {¢ : (K,V) —
(K", VY| : V = V' is a O-interleaving}.

Proof. We know from 2.2.19 that the category CF is equivalent to the SF<
which by 2.2.11 is equivalent to the localization F[X~!] at the set of morphisms
Y = {¢ € MorF|N<F(¢) is an iso. in F}. By 2.2.20, we get ¥ = {¢ €
Homz(K,K')| N<F(¢) = ¢ : K — K’ is an isomorphism in WF,}, but from
2.2.14 we know that ¢ : K — K’ is an isomorphism in W.F, if and only if it is
an isomorphism in CF which is true if and only if it is a O-interleaving. O

The localization of a category C at ¥ has the same objects as C, but it adds
extra inverse morphisms to every element in 3 making them isomorphisms. So
the category of O-interleavings is the same as the category of filtered simplicial
complexes, but with extra inverse morphisms for the 0-interleavings.

Starting with a filtered simplicial complex, we get a unique persistence di-
agram by the homology functor [7]. This functor sends O-interleaved simplicial
complexes to persistence diagrams with bottleneck distance 0 [1]. We say the
diagrams are 0-matched. It would be interesting to see if we could find some
analogous category of O-matched persistence diagrams, as a localization maybe
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in the form of some diagram

H(-) .
fsCx —— PersDiag

Jpz e |

0-int — O-match.

One way of representing persistence diagrams is as a multiset of intervals, called
a barcode diagram. Omne obvious guess is that the corresponding localization
0-match would identify all intervals with the same endpoints, be it open, closed
or half-open intervals.

In general, two filtered simplicial complexes (K,V) and (K’, V') are called
e-interleaved if there is a bijection on vertex sets ¢ : V. — V'’ such that
#(Ky) € K{ s and K; C ¢(Kiys for all t € Ry and all § > e. One might want
to extend the category of O-interleavings to a general . This will probably not
work without problems, since being e-interleaved is not an equivalence class, as
it is not transitive. All we know is that if K and K’ are interleaved by ¢, and
if K’ and K by €/, then K and K" are (¢ 4 ¢’)-interleaved. Trying to do the
same for a general ¢, in the way we have done it for 0, we would end up with a
composition of isomorphisms that is not an isomorphism, so something different
would be needed.
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Appendix A

Appendix

A.1 Colimit Diagrams

In this section we will go through the basic definitions and results concerning
limits and colimits. This is used in section 1.3 and beyond, as we use it to define
geometric realizations. Much of this section is picked from [11].

We start by defining the diagonal functor and a universal morphism, which
we will combine to define colimits. ([11], IIL3).

Definition A.1.1. The diagonal functor A : C — Func(J,C) of a small
category J and a category C is the functor sending objects ¢ € C to the constant
functor Ac(j) = ¢ and Ac(f) = Id. for all j € ObJ and f € MordJ, and

. . Af .
morphisms f : ¢ — d to the natural transformation Ac N given by:

Ac(i) —L— Ad(i)
Ac(g)zld{ lAd(g):zdd
Ac(j) —L— Ad()

where g : i — j is any morphism in J.

Definition A.1.2. Let S : D — C be a functor and c and object in C. A
universal morphism from c to S is a pair (r,u) where v is an object in D and
u:c— Sris a morphism in C such that for any other such pair (d € ObD, f :
¢ — Sd) there is a unique morphism f':r — d where Sf' ou = f.

Lemma A.1.3. If (r,u) and (r',u') are two universal morphisms from c to S,
thenr and r' are isomorphic in D, and the isomorphism is the unique map given
by the property of universal morphisms.

Proof. By applying the definition both ways we get two unique morphisms f :
r— 7" and f':r" — r such that Sfou =u" and Sf’ o' = u. In particular we
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have

W =SfoSflou=8(fof)ou. (A1)

Now (r',S(f o f')ow’) is a pair such that ' € ObD and S(fo f')ou' : ¢ — S/,
so there is a unique morphism ¢ : v — ' with S(g) ow = S(f o f') o'
From (A.1) we see that this is true both for ¢ = Id,~ and for g = f o f’ which
both are morphisms in D. By the uniqueness of g we have Id,» = f o f/, and
symmetrically we can show that Id, = f’ o f. O

Combining the definitions above we get the definition of the colimit of a
functor.

Definition A.1.4. Let J be a small category, C a category, F' € Func(J,C) and
let A : C — Func(J,C) be the diagonal functor of J and C. Then a universal
morphism (r,u) from F to A is called a colimit diagram for F.

The object 7 € ObC is called the colimit of F' and is denoted r = thF
or r =lim F(j). The morphism u : F — A(limF') is a natural transformation,

— —
i.e. a collection of morphisms {u; : F(j) = A(imF)(j) = h_l’}l’lF}jeJ, called the
—

maps associated with limF'. They have the following two properties:
—

(a) For all morphisms g : j — j’, we have u; = u;j 0 F(g). We say (h_r}nF, {u;})
is a cocone of F'.
(b) For any cocone of F, i.e. every pair (d € ObC,{f; : F(j) — d}jes)

where f; = f; o F(g) for any morphism g : j — j’, we have a unique
morphism f’ : limF — d in C such that f' ou; = f; for all j € J. We say
—

(imF, {u;};cs) is universal over every cocone, and the morphism f’ is
—

given by the universal property.

So we get commuting diagrams for all g, and all cocones (d, {f;}):

F(g)

Note that the colimit is unique up to isomorphism. By A.1.3 we have that if
(r,u) and (r',u’) both are colimit diagrams for F' then r and r’ are isomorphic
in C, and the isomorphism between them is given by the universal property.

Putting some extra restraints on on the category J, we get some additional

nice properties of the colimits. One condition we will have in our work with
geometric realization of simplicial set, colimits when J is filtered ([11] XI.1):
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Definition A.1.5. A non-empty category J is filtered if the following are
satisfied:

(a) For any two objects i and j in J there is a third object k with morphisms
i—kandj— k.

(b) For any two arrows u,v : 1 — j there is an object k in J and a morphism
w:j — k such that wu = wov.

Another property we will look at is when the image of every morphism under
the functor of which we take our colimit is injective. With these two conditions
we get some nice properties of the maps associated with the colimit, whenever
the functor goes into the category of sets.

Lemma A.1.6. Let J be a small filtered category and let F' : J — Sets be
a functor such that F(«) is injective for all a : j — j'. Then all the maps
uj : F(j) = Um F associated with imF' are injective.

— —

Proof. We look at the quotient F. := .HJF(j)/ ~ where if z € F(j) and y €
J€

F(j') then & ~ y if and only if for some object k in J there are morphisms
u:j— kand v :j — ksuch that F(u)x = F(u')y.

Let v; : F(j) — F. be the map sending = € F(j) to its class [z]. For any
x € F(j) and o : j — j', since F is a functor, we get the equality F(a)z =
F(Idj/)F(o)x where Id;s : j° — j' is the identity. By the definition of the
equivalence relation we get that z ~ F(a)z and so vj(z) = [z] = [F(a)z] =
vjr o F(a)(x). Since x and « are arbitrary we have that (F., {v;}) is a cocone
of I, and there is a unique function f : hj}l F — F_ such that v; = fou; for all

j € J. Now to show that u; in injective it is enough to show that v; is injective.

Let x,y € F(j) and assume v;(z) = v;(y). By the definition of the equiv-
alence this is true if and only if for some k € Ob J there are u,v : j — k such
that F(u)z = F(v)y. Now using property (b) of filtered categories there is a
morphism w from k to some other £’ in J such that wu = wv. Composing with
F(w) we get F(wu)x = F(wv)y, and since all F(«) are injective we have x = y.
Thus the v; are all injective and so are the u;. O

Lemma A.1.7. Let J be small and filtered, and let F : J — Sets be a functor.
Then every element s € lim F' is in the image of some map u; associated with
—

the colimit.

Proof. We will show that (F., {v;}) we defined in the previous proof is a colimit

diagram, and thus the map f : lim F' — F is an isomorphism by A.1.3. Let
—

(d,{f;}) be a cocone of F. Define the map g : F. — d by f; = gowj, so if

z € F(j) then g([z]) = f;j(z). Now if g is well-defined map on the entire F.,

then it is clearly the unique map where f; = gowv; for all j € J.
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To show that it is well-defined, let x ~ y where x € F(j) and y € F(j'). We
want to show that f;(z) = f;(y). The equivalence gives an object &k in J and
morphisms u : j — k and v’ : j/ — k such that F(u)z = F(u')y. Now since
(d,{f;}) is a cocone of F' we have that f; = fi o F(u) and f;; = fi o F(u'), so
in particular

fi(@) = fro F(u)x = fi o F(u')y = fi(y).
Finally we need to show that the function g is defined on the entire F.,,, but
clearly every element [x] € F., is represented by some z € F(j) for some j and

thus g([z]) = g o v;(x) = f;(x).
So (F.,{v;}) is indeed a colimit diagram, and f : h_r)nF — F. is an isomor-
phism. If s € lim F, then f(s) € F. is some equivalence class, say f(s) = [z]
—
where z € F(j). By A.1.3 we have that f~! is the unique map such that

=1,
uj = f7" owj;, and so

uj(x) = f~rovi(x) = fH([z]) = 1 (f(s) = s
Thus s is in the image of u;. Since s was arbitrary, we get our result. O

We immediately get the following corollary:

Corollary A.1.8. Let J be a small filtered category and let F' : J — Sets be a

functor. Then every pair or elements s,r € hl>nF is in the image of some u,;.

Proof. Let s,r € lim F' be any two elements. Using the A.1.7, we have s = u;(z)
—

and r = uj(y) for some x € F(j) and some y € F(j'). Since J is filtered we have
k € J with morphisms u : j — k and u' : 7/ — k, and by the cocone property
we have uj = up o F(u) and uj = up o F(u'). So s = u;(x) = up(F(u)z) and
r=uj(y) = ux(F(u')y), thus s,r € Imuy,. O

The dual notion of a colimit diagram, is unsurprisingly called a limit diagram.
A limit diagram for F' : J — C, where J is small, is an object imF € Ob(C
—

together with a collection of morphisms {v; : imF — F(j)};cobs which is a
—

cone over F, i.e. for all morphisms g : j — j’ in J we have F(g) ov; = vy, and

which is universal in the sense for any other cone (I, {h; : | = F(j)}jcobs) we

get a unique morphism A’ : [ — limF" in C where h; = vj o h’. Thus we have the
—

following commuting diagram for all g:

F(g) (A3)
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Limits can be defined from universal arrows ([11] III), so limit diagrams are also
unique up to unique isomorphism by A.1.3.

A special case of a limit diagram is the product. If Dis(n) is the discrete cat-
egory with n objects {1,...,n} and n morphisms {Idy,...,Id,}, then a functor
F :Dis(n) — C is uniquely determined by F(i) = C;. We will look at n = 2.

Definition A.1.9. Let C be a category with objects Cy1 and Cy. A product of
Cy and Cy is a limit diagram for the functor H : Dis(2) — C sending H(i) to
C; fori=1,2. We write {inH =Cq x Cs.

So a product is an object C; x C5 in C, unique up to isomorphism, together
with two morphisms 7; : C; x Cy — C; for i = 1,2 such that for any other object
D in C with morphisms f; : D — C; there is a unique morphism f : D — Cy xCy
making the following diagram commute:

/ vf&‘ (A.4)

01<T01XCQL>02

We can in a similar fashion define products of n elements by looking at func-
tors from Dis(n). We can also define coproducts written II;C; by looking at
colimits of such functors. All of this is described in more details in [11] III.

As an example let S7 and S5 be any two sets. We have the Cartesian product
S1 x Sy = {(s1,52) |81 € S1, $2 € 2} together with the usual projection maps
of S; and Ss sending (s1,s2) to s; and s respectively. These give a product in
the category Sets, for if R is any set with functions f; : R — S; for ¢ = 1,2,
then the function (fi, f2) : R — S1 x Sz sending r € R to (f1(r), f2(r)) is the
unique function that makes everything commute. The coproduct Sy I1.55 of sets
is the disjoint union.

What follows are some results concerning limits and colimits, which we use

throughout the thesis.

Theorem A.1.10. The limit and colimit exists for any functor F : J — Sets
where J is any small category.

Proof. [11], V.1. Thm. 1 and Ex. 8. O

Theorem A.1.11. The colimit exists for any functor F : J — Top where
J is any small category. The set of the colimit is the colimit of the functor
F : J — Sets, and the topology is the finest topology making the maps associated
with this colimit all continuous.

Proof. Let (limF,{ur}) be a colimit diagram of the functor F : J — Sets, and
—

let 7 be the finest topology on limF such that up : F'(j) — limF' are continuous
— —
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for all objects j in J. Let (d,{f;}) be any cocone of the functor F' : J — Top.
As sets, the colimit property of limF gives a commuting diagram as the one in

(A.2). We have a function f’: hmF — d, such that f'ou; = f;.

Assume by contradiction that f' is not continuous, so there is an open set
U C d such that V = f'~}(U) is not open. The collection {f;} is a collection
of morphisms in Top, so f; are continuous for all j. In particular fj_l(U ) =

J

topology such that u; are continuous, but we can now add V making it even

finer. Thus f’ is continuous, and limF with the finest topology is a colimit of
—

F:J— Top.

u;l(f’*l(U)) = u; (V) are open for all j, The topology on limF was the finest
—

O

Theorem A.1.12. Let J be a filtered small category, P a finite category and
F : PxJ — Sets a functor, where the product is in the category of small
categories. Then we have a natural bijection

lim lim F(p,j) — lim lim F(p,7)

—j—p —p—rj

Proof. [11], IX.2 Thm. 1. The naturality is given by the diagram:

F(p,j) «——— lim F(p,7j) —% 5 lim lim F(p,j)
! v i

lu V V (A.5)

h_rr)ljF(p,j) ¢ lim lim F(p,j) ==

p—7j p—7j

Theorem A.1.13. Let C be a category where colimits exists for all functors
F:J— C, whenever J is small. Let H : J x J' — C be a functor, where J and
J' are small, then there is an isomorphism

lim lim F(j,5) — lim lim F(j,5)

—i —i

Proof. [11], IX.2 (2). O

Finally we will show that taking the colimit defines a functor.

Lemma A.1.14. If C is such that colimits exist for all functors F : J — C
where J is small, then lim : Func(J,C) — C defines a functor.
—

Proof. ([11] ex V.2.3) We first look at objects. Let F' : J — C be a functor,
then we define 1£>n(F) = h_r}nF(]), which exists by assumption. Note that this

definition makes a choice, choosing one colimit diagram to represent the colimit.
We will address this choice in A.1.15.

98



Now looking at morphisms, let n : F© — G be a natural transformation of
functors F,G : J — C, then for all morphisms « : 5 — ;7' in J we have the
following diagram:

TN
h_H}(f?) . F(a) G(a)h ) lim(G) (A.6)
N 3 wy 7

Clearly if FF = G and n = Idp, then the unique morphism making the dia-
gram commute will be the identity, and so lim(Idr) = [djj(ry. If we have
— —

a composition of natural transformations F' 2 G % H then the composition

lim(J) o lim(n) will make the diagram commute, thus lim : Func(J,C) — C is a

— — —

functor. O
As we noted in the definition of the functor in the previous lemma, we just

choose an arbitrary colimit diagram and say that is the colimit. The following

lemma shows that we have a natural isomorphism between any two such choices,

whenever J is filtered and C = Sets

Lemma A.1.15. Let J be small and filtered, and let lim,lim : Func(J, Sets) —

— —

Sets be two choices of colimit functors as defined in A.1.14. Let n = {n; :
F(j) = G(j)}jes be a natural transformation between functors F and G from
J to C. We then have a commuting diagram

lim(n)
limF —— limG
— —

b o
Tim(n)

limF —— limG,
— —

where the hp’s are the isomorphisms given from the universal property (like in
A.1.3).

Proof. We write the different colimit diagrams as (h_r}nF, {u;}), (H_I>DG7 {v;}),
(limF, {w;}) and (limG, {v;}). Since hr and hg comes from the universal prop-
— —

erty we have
hpou; =1; (A7)

hg o v = vy, (AS)
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for all objects j in J. Similarly, lim(n) and lim(n) are given by the universal
— —

property like in diagram (A.6), so we get

lim(n) o u; = vj o n; (A.9)
lim(n) o wj = vj 0 ;. (A.10)

Now let k& € limF be any element. From A.1.7 we know that there is an
object j in J and?e F(j) such that u;(z) = k. Using this with with (A.9) we
get hg olii>n(n)(k) = hgowv;on;(z), which by (A.8) is 7; on;(x). Now by (A.10)
this again equals @(n) o®@;(z). Finally, using (A.7) and u;(x) = k, we get that
this is indeed h_r)n(n) o hp(k). Since k was arbitrarily chosen, we get our desired

commutative diagram. O

A.2 Geometric Realization of Standard n-Simplex

In this section we will calculate the geometric realization of a standard n-simplex
using the definition we introduced in Section 1.3. In Drinfeld’s paper ([5], Exam-
ple) there were some of the same arguments, but in much less detail. Grayson
also had similar ideas ([10], 2.4), but uses a different definition of geometric
realization.

We start with an intermediate step, looking only at the underlying set of the
geometric realization.

Proposition A.2.1. Define |A"|r := {K : I — [n] piecewise constant, non-
decreasing functions}/ ~, where K ~ K' are equivalent if and only if K(t) #
K'(t) only for a finite number of t € I. Then |A™|r is a colimit of A™(mo(I —
(-))), and thus isomorphic to |A™| as sets.

Proof. Fixing F, let g : I — mo(I — F) be the map sending t € I — F to its
component in mo(I — F) and ¢ € F to one of its two neighboring components.
Let up : Func(mo(I — F), [n]) — |A™|r be the map sending H to [H o wp]. The
choices for mp are only for t € F' a finite number of points, also both H and 7p
are non-decreasing, so ug is well-defined.

We will show that (|A™ |7, {ur}) is a colimit diagram for Func(mo(I—(—)), [n]).
The first thing we need to show is the cocone property, namely that up =
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ug o mo(I — K)* for all morphisms s : F'— G in Ic.

Func(mo(I — F), [n])
o (I—r)* |An‘T (A].]-)
Func(mo(I — G),[n])

Let k : F — G be a morphism in Ic, and let H : mo(I — F) — [n] be any
functor. Now up(H) = [H onp] and ug omg(I — k)*(H) = [H omo(I — k) o mg].
Let t € I be such that ¢ is not in G, and thus also not in F' since F' C G.
By definition 7r sends ¢ to the component of I — F containing ¢. The function
mo(I —k) is induced by the inclusion I—G < I—F so it sends each component G;
of I —G to the component in I — F containing G;. Thus np(t) = mo(I —K)omg(t)
for all t € I — G, and so the functions can therefore only disagree on a finite
number of ¢’s. In particular we get [H omp] = [H omo(I — k) o mg] which is what
we wanted.

To show the universal property, let (d, {fr : Func(mo(I — F), [n]) — d}) be
another cocone. Let k : F C G, and let H : mo(I — F) — [n] be any functor
and define the map f : [A™pr — d by foupr(H) = fr(H). We need to show
that this is indeed a well-defined function on all of |A™ |1, so we need that every
element in |A™|7 is in the image of some up and that fr(H) = fr(H') whenever
UF(H) = ’LLF(H/).

For the first point, let [K] € |A™|r be represented by K : I — [n]. Let
F, = int K~1(r) be the interior of the preimage, which are each connected since
K is non-decreasing. Then the subset FF' = I —J, F, = |, C I is finite,
and mo(I — F) consists of the non-empty F, where F; < F; whenever i < j.
Let H : mo(I — F) — [n] be the functor defined by H(F,) = r, which is non-
decreasing by definition. If ¢ € F,. then H onp(t) = H(F,) =r and K(t) = r
since t € F,. C K~1(r). This is true for all t ¢ F and F is finite, so Homp ~ K,
and thus up(H) = [H o p| = [K].

To show that up(H) = up(H') implies fr(H) = fr(H') we will show the
stronger statement that it in fact implies H = H’. We already know from A.1.6
that this has to be the case for it to be a colimit diagram. We will show the
contrapositive statement, so let H, H' : mo(I — F') — [n] be two functors such
that H # H’, i.e. there is a component F; € mo(I — F') where H(F;) # H'(F;).
Now let ¢t € F; be any point in the component, then H o wp(t) = H(F;) #
H'(F;) = Homp(t). All components in mo(I — F') are open non-empty subsets
of I, hence they have infinite elements. So H o mp # H' o mp for an infinite
number of points, and so up(H) = [H op| # [H' owp] = up(H'). O
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If we look at |Al|r with F = (). Then A'(I — 0) = A'([0]) = Func([0], [1])
which consists of two elements, the inclusion into zero and into one, called 0
and 1 respectively. The element 0 is sent to the class [0] containing the constant
zero-map 0 : I — [1], and similarly 1 is sent to the class [1] containing the
constant map sending everything to 1.

We continue looking at the geometric realization of the standard n-simplices,
now looking at topology as well. We know from 1.2.10 that standard n-simplices
are finite, so we can use the topology from 1.3.7.

Lemma A.2.2. The geometric realization of the standard n-simplex |A™| is
homeomorphic to the subset |A"|g := {(z1,...,2,) € ["|0<z; < -+ - <z, <
1} C R with the standard subspace topology.

Proof. We have from A.2.1 that |A”|r is a colimit, so we can give it the Drinfeld-
metric making it homeomorphic to the geometric realization |A™|. We will
construct a bijection between equivalence classes [K| and families ¢ = (0 =
2o <1 <o S ap S Tpyr = 1)

Starting with such a family x we construct any non-decreasing function
K, : I — [n] such that K, changes value at each z; and K (t) = ¢ whenever x; <
t < x;41. Each such function K, will represent the same unique equivalence
class [K,] since the choices are made only for ¢ = z; which there are finitely
many of.

Conversely let [K] be represented by K : I — [n]. Since K is non-decreasing,
the preimage K ~!([0,7 — 1]) will be some open or closed segment [0,y;). We
write the standard measure of this segment as

yi = (K ~1([0,i = 1]). (A.12)

We have y; < y; whenever ¢ < j, and the measure of any subset is between
0 and 1. So we get an element yrx = {y1 < -+ < y,} in |[A"|g

To see that this is a bijection, let y; < t < y;41. Then ¢ is in [0,y;41) =
K~1([0,4]) but it is not in K~1([0,i — 1]), so K(t) =i = K, (t), so we get the
same class [K,,.| = [K].

The other way, let x = {0 < 27 < --- < z, < 1}. Now let K, be a
function such that K,(t) =i for t € (x;,7;11), then y; = p(K~1([0,i — 1]) =
p(K=1[0,2;)) = z;. Thus yx, = z, and we have a bijection.

Next, we need to show that the bijection is a homeomorphism, but first we
simplify the distances we use both for |[A"|r and |A™|g. From [12] 20.3 we
have that the usual Euclidean metric is equivalent to the [*° metric. So when
x=(r1 <+ <azx,)and y = (y1 <--- <y,) are elements in |A"|g, we can use
the distance

di(x,y) = max |z; — y;|. (A.13)
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As we noted under 1.3.5, the distance da» r measures the size of the subset
of mo(I — F) where two functions differ. If K : I — [n] is piecewise constant and
non-decreasing, then from A.2.1 we have an F' and a function H : 7o(I—F) — [n]
such that H(F;) = K(t) for all t € F; and for all . If K" and H' is another such
pair of functions, then

dr([K], [K']) = dar,p(H, H') = pp({F; | H(F) # H'(F)}) = p({t € T| K(t) # K'(1)}),

where in the last equality we have used the fact that finitely many points have
measure zero. Now using the bijection we can simplify this further. Except for
finitely many points we know that K (t) = K, (t), so we see that K (t) = K'(¢)
if and only if ¢ is in (ys, yis1) N (¥}, yi4,) for some i. We finally get the distance

dr([K], [K') = p (T = g (yi, yirr) N (Y55 Yig1)) - (A.14)

To show that the bijection is indeed a homeomorphism, we note that |A™|g
is a closed and bounded subset of R, and so it’s compact. We also note that
since the topology comes from a metric, both |A”|r and |A™|g are Hausdorff. In
particular the map |A™|g — |A”|r sending y to K, is a bijection from a compact
to a Hausdorff space. If this is continuous, then it is a homeomorphism by [12]
26.6.

We will show continuity by induction on n showing that dr([K,], [K,]) <
n: dl (l‘, y)
Start: Let n = 1, so that x = {x1} and y = {y1} are just a single point. By
symmetry we can assume x; < y1, and we calculate

dr ([Ka], [Ky]) =1 = p((0,21) N (0,51)) — e ((21,1) N (91, 1))
=1-(@-0)—(1-y) =y —a1 =1-di(z,y).
Step: Assume true for n — 1, i.e. if z,y € |A"7Y| then dr([K,], [K,]) < (n —
1) - di(z,y). Let x = {z1,...,2,} and y = {y1,...,yn} be elements in |A"|g,
and define T = x — {z,} and § = y — {y,} both elements in |A"|g. First we

note that d;(x,y) > d;(Z,7), where it is bigger only if the right side is |z, — yn|.
Writing out the definitions we have

dr([Kz), [Ky)) = 1 = 230 (20 2i41) O (93, 9i11)) = 2 (@01, 1) 0 (Y1, 1))
dp (Ko, [Ky)) = 1= T8 (@, 2ag1) O (43, Y1) — (@15 @0) 0 (Yn-1,Yn))
=1 (20, 1) N (Yn, 1)) -

We now have a several different cases of how the size of x,_1, x,,, yn—1 and
yn all relate to each other. For example, if x,_1 <z, < yn_1 < yp, then

dp ([Ko], [Ky]) = dr([Kz], [Ky]) + pyn-1,1) — (@) — p(yn, 1)
< (n - 1) ! dl(fay) + (yn - yn1)
< (n - 1) ' dl(§7?) + |yn - xnl
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Calculating for each case we will similarly get dr([K], [Ky]) < (n—1)-di(Z,7)+
|yn — 2y |. Here the first part of the right hand side is less than or equal to (n—1)-
di(z,y), and the second part is less than or equal to d;(x, y). So we conclude that
dr([K,.), [Ky]) < n-di(z,y), and the bijection is thus a homeomorphism. O

We will just write out some quick results from this.
Corollary A.2.3. |A"| is compact Hausdorff for all n > 0. O

Corollary A.2.4. The geometric realization of the 1-simplex is homeomorphic
to the closed interval I. O

Note that if [0] and [1] in |Al|z are the classes of the constant maps as we
looked at below A.2.1, then yo) = {1} and y;) = {0}. We use this in 1.4.10.

A.3 Proof of Proposition 1.5.9

In this section we will prove 1.5.9.

Let (K,V.) be an ordered simplicial complex. By a slight abuse of notation
we define a new functor T : Kc — sSet sending a simplex o to the simplicial
set T'(0) as in 1.5.4, where we think of o as a simplicial complex with vertex set
V<. Recall that 5 € T(0), is an order-preserving map f : [n] — V< such that
Imp C o, soif o C 7 then § € T(7), and there is a natural inclusion T(o) <
T(7) making T a functor. We compose this with the geometric realization to
get a functor |T'(—)| : Kc — Top.

Lemma A.3.1. If K is an ordered finite simplicial complex, then we have a
homeomorphism |T(K)| = lim |T (o).
HUGKQ

Proof. We first note that if § € T(0), for some simplex, then Imj3 C o is
a simplex in K, and so 8 is in T(K),. Thus we have a family of inclusions
te = {iom} : T(0) = T(K) for every simplex o.

We claim that (T'(K), {is}) is a colimit diagram of the functor 7' : Kc —
sSet. Morphisms ¢ : 0 C 7 are sent by T to inclusions T'(¢) : T(c) < T'(7), and
since every map involved are inclusions we get i, = i, 0T (¢). Thus (T(K), {i,})
is a cocone.

As in A.2.1, to show the universal property it is enough to show that every
element 8 € T(K), is in the image of some i, ., and that § = ' whenever
ton(B) =i6n(B'). Then if (Y,{f,}) is another cocone, the map f': T(K) - Y
defined by iy © f}, = fon is well-defined.

For the first point, we note that if 3 € T(K),, then Im/j is a simpliex
by definition, and g € T(Impj),, so 8 € Im(iimga,,). For the second point,
we assume by contraposition that 8 # 3’ € T(o),, then they are also not
equal after including them into a bigger set, ie. iyn(8) # ion(8). So we
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conclude that (T(K),{i,}) is a colimit diagram, and we have an isomorphism
T(K) 2 lim T(0).
—0o

Looking at the geometric realization, the functor properties gives a home-

omorphism |T(K)| & [lim T(o)| = lim lim T(o)(me(I — F)). By A.1.11 and
— —F—c

A.1.13 using the fact that K¢ are small, we can change order of the colimits

with an isomorphism. Isomorphisms of topological spaces are homeomorphisms,

so |[T(K)| = lim lim T(o)(mo(I — F)) =lim |T(0)|. O
—oc—F —0o

We will do something very similar for |K|. Note that also the geometric
realization of a simplicial complex defines a functor | — | : Kc — Top, for if
o C 7 and « € |o|, then {v € V]a(v) # 0} C o C 7, and we have the inclusion
|o| < |7]. Inclusions are clearly continuous with respect to the euclidean metric.

Lemma A.3.2. If K is an ordered finite simplicial complex, then we have a
homeomorphism | K| = lim lo|.

——oEKc
Proof. This proof is similar to the one for A.3.1. We again look at the inclusions
iy : |o] = |K|, and show that (|K|, {i,}) is a colimit diagram. As in A.3.1, all
maps involved are inclusions, so it is a cocone.

If « € |K| then o4 := {v € V| a(v) # 0} is a simplex and « € |04|. So we
have o € Im i, .

Finally if a # o € |o|, then they are still not equal after including them
into a bigger space |K|, so « = o’ whenever i,(a) = i,(a). We conclude that
(IK|,{is}) is a colimit diagram as sets, and we have a bijection | K| & th lo|.

From A.1.11 the colimit is given the finest topology making the maps ‘asso-
ciated with the colimit as sets continuous. The maps associated with |K| as a
colimit are all the inclusions |o| < | K|, so the colimit topology agrees with the
coherent topology, and the bijection is a homeomorphism |K| = h_r}n lo]. O

o

Looking at a general ordered simplicial complex (K, V.), we can look at
the category of finite simplicial subcomplexes K’ C K, where morphisms are
inclusions, and by the exact same arguments as A.3.1 and A.3.2 we get homeo-
morphisms

|K| = lim |K'| and |T(K)| = lim |T(K’)|. (A.15)
— —
K'CK K'CK

We will now show that the geometric realization of a simplex is homeomor-
phic to the realization of a standard simplex.

Lemma A.3.3. Let (K,V.) be an ordered simplicial complex, and o = [v; <
- < ) € K a simplex. Then there is a homeomorphism between |o| and
|A™= LR, where |A™ g is defined as in A.2.2.

Proof. Let o € o] ={a:V = I|{v e V]al) # 0} Co, Y alv) =1}, and

veo
define
20=0, z =av)+- -+ a(v). (A.16)
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Note in particular that z,, = > a(v) =1. Clearly 0 = 29 < 21 < -+ < @y, =

veo
1, 80 @ := (71,72,...,Tp_1) is an element in |A™ 1|g.
Conversely, starting with x = (z1,22,...,7pm_1) € |A™ g, let ag : Vo — 1
be the map
. fi =, €
o () = x;—wi—y forv=wv; €0 (A17)
0 for v # v; € 0.
m m—1
Then {v € V]az(v) #0} Coand > a,(v)= > a;— >, i =x,m =1. So
vEV i=1 i=0
Qg is in |o|.

We now have a bijection |[A™ g — |o|. We know |A™ | is compact, and
|o| is a metric space, so it is Hausdorff, therefore it is enough to show that the
bijection is continuous ([12], 26.6). Let z,y € |A™ |, and let o, and ay, be
their image in |o|, as given by (A.17). Again we use that the Euclidean and
square metrics are equivalent ([12], 20.3), and look at the distances d(o, o) =
max |az(v;) — oy (v;)|, and di(z,y) = max |z; — y;|. We need to show that
vi €0 0<i<m
the bijection is continuous with respect to these distances, so let v; € o be
a vertex such that d(ou,ay) = |az(vj) — ay(vj)]. Then by (A.17), we have
(o, o) = [(2j — zj-1) = (y; — yj-)| = [(&; — ;) + (yj-1 — xj-1)|. Using

the triangle inequality and the fact that |a] = | — al, this less than or equal to
|xj - yj| + |xj71 - yj71| § dl(l’,y) + dl(xay) So d(O&m, ay) S le(wvy)a and the
bijection is continuous, and thus a homeomorphism. O

We will now prove 1.5.9. For clarity we restate it.

Proposition A.3.4. If f : (K,V.) — (L, W) is a simplicial map injective
on vertex sets between ordered simplicial complexes, then we have a homeomor-
phism between |K| and |T(K)|, and between |L| and |T'(L)|, making the following
diagram commute

K| —— |T(K)|
Jm J\T(fn (A.18)
|L| —— |T(L)|.

Proof. We will show that | K| is a colimit of T'(K)(mo(I — (—)), to get a bijection
between |K| and |T(K)|. Then we will show that this bijection is a homeomor-
phism by reducing to the case of simplices and comparing the topologies.

We have T'(K)(mo(I — F)) = {B : mo({ — F) = V< order-preserving |Img €
K}. Define up : T(K)(mo(I — F)) — |K|, by up(8)(v) = pr(B71(v)). We
want to show that this is well-defined by showing up(8) € |K|. The elements
in mo(I — F) are all open intervals, so they all have measure different from
zero. Thus we get up(871)(v) # 0 if and only if 71(v) # 0, and so {v €
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V0|up(B)(v) # 0} =Imp € K. Since § is well-defined the preimages of different
vertices are disjoint, ~(v) N B~ (w) = () for v # w, and the preimage of the
entire vertex set 371(V) is the entire set mo(I — F'). From the first point we
can pull the sum inside the measure, > o\, pr (87 (v)) = pr(Uvev 71 (v)) =
pr(B~1(V)), which from the second point is just the measure of the entire
mo(I — F), which again is just one. So > . ur(8)(v) = 1, and up is well-
defined.

We now want to show that (|K|, {ur}) is a colimit diagram of T(K)(mwo(I —
(=)). We calculate the cocone property directly, up = ug o mo(I — k) for
k: G C F. We know G; C Fj if and only if mo(I — F)(G;) = F}, so if
B € T(K)(mo(I — F)) then

uc o T(K)(mo(I — k))(B)(v) = ug(Bom(I — K))(v)
= pa(mo(I — £) 1 (B (v)))
= puc{Gi|Bomo(l — K)(G;) = v}
= ur{F;|G; C Fj, Bom(I — F)(G;) = v}
= pur{F; | B(F}) = v} =up(B)(v)

For universality let (d,{fr}) be a cocone of T(K)(mo(I — F)), and define
f:|K|—=dby fourp = fr. Asin A.2.1 we will show that this is well-defined
by showing that every « € |K]| is in the image of some up, and that § =
whenever up(8) = up(p’).

Solet a: Vo — I be such that }° o, a(v) =1 and 0o = {v]a(v) # 0} €
K. Since simplices are finite we have «(v) # 0 for finitely many v € V., say
Oq = [v1 < -+ < vy]. Similar to (A.16) we define

x0=0, =z =a)+ - +a() (A.19)

for i = 1,...,n, and note that we still have x,, = 1. Let F = {xg < -+ < 2}
and define g : mo(I — F) — V< by B(F;) = v;, where F; = (z;_1,2;) € mo(I — F).
If v is not in o4, then a(v) = 0 and up(B)(v) = pr(B~1()) = up(®) = 0. If
v; 18 in 04, then up(B8)(v;) = p(F;) = x; — zi—1 = a(v;). So up(B) = o and in
particular o € Imup for some F'.

For the second part of the universality we will show the contrapositive state-
ment, namely that 8 # ' : mo( — F) — V. implies that up(8) # up(p’). If
B # B, then there is an F; € mo(I — F) such that w := 3(F;) # 5'(F;). We
can assume by symmetry that w > §'(F;). By the order-preserving property
of f and /', we get the strict inclusion {F; | B(F;) < w} C {F;|5(F;) < w}
using the fact that §'(F;) < w = B(F;). The sum Y, _, pur(B871(v)) is then
smaller than the sum Y _ pp(6~*(v)) and there must exist a vertex u < w
such that pp(871(u)) < pr(8'~(u)). We conclude that up(3) # up(8'), and
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that (|K|,{ur}) is a colimit diagram of T'(K)(mo(I — (—))). We thus have a
bijection | K| 2 |T(K)|.

To show that (A.18) commutes, we need to show that the map |f| is the

same as the one we get by the universal property between colimits, i.e. we want
the following diagram to commute for all F":

T(K)(mo(I — F) —25 T(L)(mo(I - F))

K L

|£1
K]

If this is the case we use A.1.15 to show that (A.18) commutes. Let 8 €

T(K)(mo(I — F)) and w € W.. In one way of the diagram we have uk o

T(f)(B)(w) = up(f o B)(w) = pp(B~H(f!(w))), and the other way is |f| o
uf(B)(w) = 2 fo)=w pr(B7H(v)). These are the same since we can move the

sum inside the measure by the fact that 371 (v) N f~1(v') whenever v # v'.

Finally we need to show that the bijection |K| — |T(K)| is a homeo-
morphism. From A.3.1, A.3.2 and (A.15) it is enough to show that the in-
duced maps on simplices |o| — |T'(c)| are homeomorphisms for every simplex
o=lv1 < < Up)

Recall that maps 5 € T(0), are order-preserving maps 3 : [n] — Ve such
that 3([n]) C . There is a bijection between such maps and order preserving
maps ( : [n] = o, by just removing the vertices that are never hit. Since o is
isomorphic to [m — 1] in Ay by v; — ¢ — 1, we have that T'(o) is isomorphic to
the standard (m — 1)-simplex A™~1. We now have a bijection |o| — |T(0)], a
homeomorphism |T(c)| = |A™~| — |[A™ 7|z by A.2.2, and a homeomorphism
lo| — |[A™~ Y by A.3.3. We will show that the following diagram commutes

)|

o] 1T (o
\ / (A.20)

A™ g

Let o € |o|. By (A.16) this is mapped to zo = (21 < -+ < Tyy—1) €
|A™ LR, where ; = a(vy) + - - + a(v;).

The other way, let F = (0 =29 <1 < - <z, = 1), F; = (z;_1, ;) for
i=1,...,m,and let 8 : m(I — F) — V- be the map B(F;) = v;, as we showed
above up(f8) = a. Forgetting the vertices not in o, and using the isomorphisms
o = [m — 1], then S can be viewed as the map g : mo(I — F)) — [m — 1] sending
F; toi—1. By (A.12) this map is sent to y = (y1,...,Ym_1) in |A™ g, where
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Yi = u(wgloﬁ_l[O, i—1]). Recall from the start of A.2.1, that g : [ — mo(I—F)
is any map that sends t € F; to F;. Since §(F;) = j — 1, we have

p(rpt o 8710, — 1))
(e ({F 1<) <i}))
p({F; |1 <j<i})
Tje

(ijl’j 1)—1’1‘7$0:I’i

So y = x4, and (A.20) commutes. Thus the bijection |o| — |T'(o)] is a homeo-
morphism, and so is |K| — |T(K)|. O

A.4 Localizations

In this section we will build up all the machinery to define localization of a
category. It is mostly based on [11] IL,7, II,.8 and IV.1, and Chapter 1 in [9].
Intuitively a localization of a category C at ¥ C Mor C adds additional morphism
to the category such that every map in ¥ becomes an isomorphism. We start
of by defining a graph, and looking at its properties.

Definition A.4.1. A (directed) graph G : A :& O is a set of objects O, a

set of arrows A and two functions 0y, 01 : A — O Given an arrow a € A we
say that Oga is the domain of a and 01a is the codomain of a, and we write
a: dya — O1a.

Note that different names are used for what we call directed graphs in the
literature. For instance in representation theory the word quiver is used and
perhaps more historically (in [9]) they used diagram scheme. Some authors
do not allow loops or multiple arrows with the same domain or codomain, but
we do not have any such restrictions.

d g
Definition A.4.2. Let G : A :0§ O and G' + A :O§ O’ be two graphs, then
o, o,

a morphism of graphs D : G — G’ is a pair of functions Do : O — O,
4 A— A such that

Dodoa = 9)Da and Dodra = 8\ D aa for all a € A. (A.21)

Letting composition of two morphisms be pairwise composition of their func-
tions, we get the category of directed graphs, which we denote by Grph.

O

Definition A.4.3. Starting with a graph G : A :0§ O, we can construct the
O1

path category Pa(G) of G, with ObPa(Q) = O and Mor Pa(G) = {co Jo,

.h;l)cn|ci60, fos-oosfno1 € A, n >0}
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A morphism here is called a path from ¢y to ¢, and the integer n is called
the length of the path. Composition of two paths is defined by joining their
common endpoint, e.g. (b % ¢)o(a ERN b) = (a ENEN ¢), and the identities are
the paths of length 0, Id. = (¢). Any path of length n > 0 can be written as a
composition of of paths of length 1,

(clf—1>...f"—_1>cn> :(cn,lfn—_l>cn>0---0(clf—l>02).

d e
LetG:A:O§OandG':A':O¢O'betwographs,andD:G—>G’a
P o,

morphism between them. Look at the map Pa(D) : Pa(G) — Pa(G’) defined by

Pa(D) (Cl EEN LN Cn) = (DO(C1) Path),  DPalinoy) DO(Cn)) .

This is well defined by the properties in (A.21), we have Pa(D)(1d.) = Pa(D)(c) =
(Do(c)) = Idp,,(c), where we think of (c) as the path of length 0. Also

Pa(D) ((b ENOTICER b)) = Pa(D)a L b % o)

_ (Do(a) DA, by 22 DO(C)>

= (Do(b) Lal9), Do(c)> ° (Do(a) 2444), Do(b)>

= Pa(D) (b EN c) o Pa(D) (a ER b) .

Thus Pa(D) is a functor, and we have a functor Pa : Grph — Cat called the
path functor.

Next we want to introduce quotient categories with respect to relations. The
localization is a quotient category.

Definition A.4.4. Let C be a category. A relation on C is a binary relation
R C MorCx MorC such that R = y CRayb is a disjoint union of binary relations
a,be

R, C Home(a,b) x Home(a,b) C MorC x MorC.

The union R is disjoint because if (a, b) # (a’, ") then Home (a, b)NHome (o', b') =
0.

Definition A.4.5. A relation R is a congruence (relation) on C, if for all
R we have the following:

(i): (f,f) € Rap for all f € Home(a,b).
(it): (f,f') € Rap tmplies (f',f) € Rap.
(ii1): (f,f') € Ray and (f', ") € Ray implies (f, ") € Rap.
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(w): If (f, ') € Rap, then (hfg,hf'g) € Ry for all morphisms g : ¢’ — a,
h:b—=10.

The first three just say that R, ; is an equivalence relation, and the last one
gives an extra condition on the relationship between the different parts of the
disjoint union.

Lemma A.4.6. Let C be a category, and R a relation on C. Then there is a
least congruence on C containing R.

Proof. Let A= {—ICAa,b = Ib_ICHomc(a, b) x Home(a,b) € MorC x MorC.
a,be a,be

Now (f, f') € Agp if and only if f and f’ both are in Home(a,b). This is
clearly an equivalence relation, and if g : @’ — a and h : b — b’ are morphisms
then hfg,hf'g : ¢’ — b’ is a morphism, i.e. (hfg,hf'g) € Ayp. In addition
Rap C Agp by definition, so A is a congruence containing R.

Let R’ be the intersection of all congruence relations R” containing R.
Clearly R € R’ and R’ C R” for all congruence relations containing R. So
we just need to show that R’ is a congruence. All parts of this problem follows
trivially from the fact that the R” are congruence relations, and the fact that
(f, f') € R, if and only if (f, f') € Ry, for all R”. For example, for property
(i1) of R we have (f, f') € R, if and only if (f, f') € Ry, for all R which
implies (by property (i) of R”) that (f, f) € Ry, for all R” which is true if
and only if (f/, f) € R, ;. O

Definition A.4.7. Let C be any category and R a relation on C. The quo-
tient category C/R of C by R, is the category with Ob(C/R) = ObC and
Home/r(a,b) = Homc(a,b)/R,, ,, where R’ is the least congruence containing
R.

Let 7 : C — C/R be the quotient functor of C by R that act like identity
on objects and sending morphisms to their equivalence class. To show that this
indeed is a functor, we need to show that compositions in the quotient are well
defined. Let (f, f') € R, and (g,9') € R}, ., so that in particular f = f’ and
g =¢ in C/R. By the property (iv) of congruence we have (¢f,gf’') € R, and
(9f",9'f") € Rac. So by transitivity (property (iii)) we have (9f,¢'f’) € Ra.c,
and gf = ¢'f' in C/R. So we can define compositions in C/R by picking two
arbitrary representatives.

Proposition A.4.8. Let C be a category with relation R. Then the quotient
functor mr : C — C/R has the following properties:

(1): (f, ') € Rap implies nr(f) = mr(f’).

(i1): Let D be any category and H : C — D be a functor such that (f, f') € Rap
implies Hf = Hf' for all f,f' € MorC. Then there exist a unique functor
H':C/R— D such that H omp = H.

Proof. [11] 11,8 Proposition 1. O
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We now have the tools to construct the localization, so let C be a small
category and let X be a subset of MorC. Let dg,d; : MorC — Ob(C be the maps
such that for all morphisms f : a — b we have do(f) = a and §;(f) = b. Define

O,
the graph Gy : MorC I & :Oi Ob(C, where 0y and 0 is given by
01

Oyoiy =08y, O10i1 =201, 0pois=>0i|s, and 0 0iy = dplx.

Here i1 : MorC — MorCII Y and i : ¥ — MorC II X are the natural inclusions
into the disjoint union.

Definition A.4.9. The localization of C at %, written C[Y1] := Pa(Gx)/R,
is the quotient of the category of paths Pa(Gx) by the localization relation R
defined by:

(a) (i1g) o (i1f) ~i1(go f) whenever go f is defined in C.
(b) i1(IdS) ~ 1dP“E>) for all a € OBC.

(c) (i20) o0 (i10) ~ ]dga(cz) and (i10) o (iz0) ~ Idgla(GZ) for allo € 3.

00 ag
The quotient functor of Pa(Gx) by R is called the localization functor,
and we write it like Py : C — C[X71].

Definition A.4.10. Let A and B be categories and F': A — B, G: B — A be
functors between them. Then F is a left adjoint and G is the corresponding
right adjoint if there exists a natural bijection

¢ : Homp(F(a),b) = Hom4(a,G(b)) for alla € ObAb € ObB

The naturality of the bijection is that for all o : @’ — a, 8 : b — ¥,
f:F(a) = band g:a— G(b) we have the following.

(i): ¢(Bo f)=GBog(f)  (iti): ¢~ (goa)=¢""(g)0 Fa
(ii): ¢(f o Fa) = ¢(f)oa  (iv): ¢~ (GBog)=Fod (g)

Theorem A.4.11. Lat A and B be small categories. Let F : A — B be
left adjoint and G : B — A the corresponding right adjoint. Let ¥ = {o €
Mor A|F(o) is an isomorphism}, and Ps : A — A[X7!] the localization func-
tor. Then the following are equivalent:

(A.22)

(i) G is full and faithful

(ii) The functor H : A[X~Y — B from A.4.8 such that F = H o Ps is an
equivalence functor.

Proof. [9] Ch. 1, Proposition 1.3. O
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Definition A.4.12. Let A be any category.

A reflective subcategory is a full subcategory B C A such that the inclusion
functor i : B<— A has a left adjoint L : A — B called the reflection functor.
A coreflective subcategory is a full subcategory B C A such that the inclusion
functor has a right adjoint R : A — B called the coreflective functor.

Corollary A.4.13. Let B C A be a reflective subcategory of a small category
with reflection functor L : A — B. Then B is equivalent to the localization
A7 of A at ¥ = {0 € Mor A|L(o) is an iso}.

Proof. B is a full subcategory so the inclusion is fully faithful. Thus by A.4.11
we have A[X71] is equivalent to B. O

73



Bibliography

[1] U. Bauer, M. Lesnick. Induced Matchings and the Algebraic Stability of
Persistence Barcodes. In: Journal of Computational Geometry 6(2), Pages
162-191, 2015.

[2] A. Bjorner. Topological Methods. In: Handbook of Combinatorics, Elsevier
Science Publisher B.V. Pages 1819-1872. 1995.

[3] S. Chowdhury, F. Mémoli. A Functorial Dowker Theorem and Persis-
tent Homology of Asymmetric Networks. In: arXiv.org e-Print archive,
arXiv:1608.05432v3 [math.AT], 2018.

[4] C.H. Dowker. Homology Groups of Relations. In: Annals of Mathematics
(Vol. 56), Pages 84-95, 1952.

[6] Vladimir Drinfeld. On the Notion of Geometric Realization. In: Moscow
Mathematical Journal, (Vol. 4. No. 3) Pages 619626, 2004.

[6] Bjern Ian Dundas, unpublished notes, Pages 83-100.

[7] H. Edelsbrunner, J. Harer. Computational Topology: An Introduction.
American Mathematical Society. 2010.

[8] G. Friedman. An elementary illustrated introduction to simplicial sets. In:
arXiv.org e-Print archive, arXiv:0809.4221 [math.AT]. 2008.

[9] P. Gabriel, M. Zisman. Calculus of Fractions and Homotopy Theory.
Springer-Verlag New York, 1967.

[10] Daniel R. Grayson. Algebraic K-theory, lecture notes. Available at:
www.math.uiuc.edu/"dan/Courses/2003/Spring/416/GraysonKtheory.ps.

[11] Saunders Mac Lane. Categories for the Working Mathematician (2nd Ed.).
Graduate Texts in Mathematics (Vol. 5), Springer-Verlag New-York, 1998.

[12] James R. Munkres. Topology (2nd edition). Prentice Hall, Upper Saddle
River, NJ 07458, 2000.

[13] Edwin H. Spanier. Algebraic Topology. Springer-Verlag New-York, 1994

74



[14] James W. Vick. Homology Theory: An Introduction to Algebraic Topol-
ogy (2nd Ed.). Graduate Texts in Mathematics (Vol. 145), Springer-Verlag
New-York, 1994.

()



