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Abstract

In this thesis, we will focus on hydropower production scheduling for the Bergsdalen
watercourse, operated by the power producer BKK, in Hordaland. The hydropower
production in the Bergsdalen watercourse is subjected to a set of environmental re-
strictions, imposed on the system by the Norwegian Water Resources and Energy Di-
rectorate (NVE). The goal of the thesis is to determine the challenges of implementing
the imposed environmental restrictions in an optimization model and to propose ap-
proximations of the restrictions. We also investigate the loss of revenues caused by
the restrictions.

First, we present hydropower production scheduling in general, for hydropower
systems similar to the Bergsdalen watercourse. The scheduling is formulated as a Lin-
ear Programming (LP) problem. A Stochastic Dual Dynamic Programming (SDDP)
algorithm is presented, in order to solve the scheduling problem. This solution method
is commonly used for hydropower production scheduling in Norway. Then, we will
discuss the environmental restrictions, and the difficulties of including them as con-
straints in the optimization model. As the solution method is considered necessary, we
propose an approximation of the constraints, in order to solve the scheduling problem
for the Bergsdalen watercourse. We have run an SDDP algorithm for two determin-
istic price series. We present the results of the optimization, discuss the validity of
the proposed approximations, and the loss of revenues caused by the approximated
environmental constraints.

We found that restrictions depending on inflow and reservoir volume challenge
the solution method. The environmental restrictions caused 0.7% and 1.2% loss of
revenues for the two price scenarios, respectively.
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Technical terms

Planning period The time period we want to consider when optimizing a production
schedule.

Schedule The production schedule regarding volume, production, bypass and
overflow for each reservoir, during the planning period.

Hydro system Consisting of one or several watercourses, intended for power
production.

Watercourse Consisting of reservoirs and hydro plants, hydrologically
connected.

Hydro plant A facility where water can be either let through turbines, to produce
electrical power, or bypassed further downstream along the
watercourse.

Reservoir A lake or dam where water can be stored.

Module A model representation of a reservoir and a hydro plant.

Inflow Water that is flowing into a reservoir from its surroundings.

Expected future
income

The expected income for all stages from the subsequent stage until
the end of the planning period.

Cut A Benders cut, used for representing the expected future income
function

Stage One discrete time step in the planning period.

State The state of a hydro system. Referring to inflow and reservoir
volume levels

Inflow realization A possible inflow transition between two stages



Abbreviations

HPS Hydropower Production Scheduling.

NVE Norwegian Water Resources and Energy Directorate (Norsk
Vassdrag- og Energidirektorat).

BKK Bergenhalvøens Kommunale Kraftselskap (local energy
producer in Hordaland).

LP Linear Programming.

MILP Mixed Integer Linear Programming.

SDDP Stochastic Dual Dynamic Programming.



Symbols

Index sets

T : Index set for stages.

S : Index set for inflow scenarios.

Ŝ ⊂ S : Index set for sampled scenarios.

I : Index set for reservoirs. I is the total number of reservoirs.

Mi ⊂ I : Index set for all reservoirs directly upstream of reservoir i.

K : Index set for inflow realizations between stages.

Variables

V s
it : Volume of reservoir i at the end of stage t in scenario s. 106m3

Qs
it : Discharge of reservoir i during stage t in scenario s. 106m3

Bs
it : Bypass of reservoir i during stage t in scenario s. 106m3

Os
it : Overflow of reservoir i during stage t in scenario s. 106m3

yst : Power sold during stage t in scenario s. Gwh



vi

Parameters

T : Length of the planning period.

S : Total number of inflow scenarios.

Ŝ : Number of sampled inflow scenarios.

K : Number of possible inflow realizations between two arbitrary stages.

V i : Max volume of reservoir i. 106m3

Qi : Max weekly discharge of reservoir i. 106m3

Bi : Max weekly bypass of reservoir i. 106m3

V s
iT : Lower bound on end reservoir volume V s

iT . 106m3

V 2 : Lower bound on V s
2,t imposed by environmental restriction (ii). 106m3

pt : Power price during stage t. 106 EUR
Gwh

ηi : Energy conversion factor for reservoir i. Gwh
106m3

qiyw : Recorded inflow for reservoir i in year y and week w. 106m3

I : Sufficient weekly inflow to activate constraint (i). 106m3

Zs
it : Transformed inflow into reservoir i during stage t in scenario s.

fit(Z
s
it) : Inflow transformation function.

ϕij : Inflow correlation matrix. Both i and j are in I.

Et : Error of inflow transition from stage t− 1 to t. Stochastic parameter.

fEw : Probability distribution of Et.

ϵsit : Outcome of Et for reservoir i in stage t and scenario s.

P(s) : Probability of scenario s occurring.

tA, ..., tD : Activation times of the ”precise” environmental constraints, (i) through
(iii).

ta, ..., te : Activation times of the approximated environmental constraints, (3.21)
through (3.26).

U : Upper bound on the objective function of the HPS problem.

L̂ : Estimated lower bound on the objective function of the HPS problem,
from a Monte Carlo simulation.

σ : Standard deviation of the Monte Carlo simulation.
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Chapter 1

Introduction

1.1 Introduction to hydropower scheduling
Norway has a large capacity for hydropower. According to Energy in Norway (NVE,
2015), hydropower constituted 96%ofNorwegian energy production in 2014. InHorda-
land, the annual hydropower potential for established hydro plants was roughly 17

TWh, based on yearly average production between 1981 and 2010. With a yearly net
consumption of roughly 13 Twh in Hordaland, the annual hydropower potential is
enough to meet the demand. We will focus on hydropower in Norway, more specifi-
cally, in Hordaland.

Consider a hydropower production company operating a hydro system consisting
of multiple watercourses, each with multiple reservoirs and turbines. Among renew-
able energy sources hydropower has an advantage, due to the ability to store water
and produce power at the most profitable times. Therefore, a hydropower producer
can profit by determining an optimal production schedule. In general, the producer
should save water when the price of power is low, and produce when the price is
high. However, with uncertainty of inflow amount over the course of the planning
period, the producer should maintain a reasonable water level in their reservoirs. If
water levels are too low, the producer reduces ability to produce power during poten-
tial high power prices in the future. On the other hand, if water levels are too high,
the producer increases possibility of overflow, hence loss of resources and possible
damage to equipment and surroundings.

There are several factors to take into account when determining an optimal pro-
duction schedule. With an increasing contribution from renewable energy in the Euro-
pean energy mix, one can expect increasing fluctuations in power price due to varying
availability of cheap renewable energy sources, like solar and wind. It is important to
have some idea about the extent of rain during the planning period, and how inflow
into each reservoir varies within the planning period. Hydro systems such as this can
be large and complex to model. We can either consider one watercourse at a time or
the entire system at once. A physically correct model is complex, and contains non-
linearities. Therefore, a balance between model complexity and computational effi-
ciency must be determined. Additionally, downtime due to scheduled maintenance
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and environmental restrictions are important factors. A hydro system model under the
influence of varying and uncertain inflow and price subject to imposed scheduling
and environmental restrictions, can result in a quite complex problem. In this thesis
we will focus on inflow uncertainty and some environmental restrictions.

Depending on the size of the hydro system and the length of the planning period,
there are different factors that play an essential role. For instance, for a hydro system
constituting a large part of a power market, the power price will depend on the hydro-
logical situation. When considering longer planning periods, we are subject to greater
uncertainty. Hence, the hydro system is often simplified, as we are not interested in the
details. Alternatively when considering a short planning period, the price and inflow
forecasts have less uncertainty, and a complex physical model can be prioritized. As
a consequence, it is common to separate the scheduling to long-, medium-, and short
term scheduling. Long term scheduling, typically 3 to 5 years or longer, provides end
term values for medium term, usually between 1 and 3 years, which in turn provide
end term values for short term scheduling, with a typical planning period of no more
than 2 weeks. Here, we will focus on medium term scheduling. For medium term
scheduling, it is common practice to set the planning period longer than what is ab-
solutely necessary, in order to minimize the effects of the end term values. End term
values can be, for instance, an end reservoir volume bound, or the value of storing
water.

The medium term schedule can be used as decision aid for establishing medium
term energy contracts. Additionally, power producers are usually interested in the
value of their water. As we have a restricted amount of water in each reservoir, we
are interested in the optimal dual values of the restrictions on reservoir water volume.
These values are interpreted as themarginal cost of water, referred to as shadow prices.
They are often more relevant than the medium term schedule, for making daily deci-
sions. Thus, the optimal dual values corresponding to reservoir volume restrictions in
the first weeks are interesting. By formulating a hydropower scheduling problem as a
Linear Programming (LP) problem, we can obtain the shadow prices of the water in
each reservoir. Moreover, the shadow prices of water in the first weeks can be used
as end conditions for short term optimization.
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1.2 Literature

1.2.1 Industry
The hydropower production planning problem considered in this thesis, contains un-
certain parameters and a long planning period, where decisions are made sequentially.
Therefore, the scheduling task can be considered as a multi-stage stochastic program-
ming problem. Different strategies to solve such problems were discussed byM. Apap
and Grossmann (2016). They split uncertainty into two different categories, either en-
dogenous or exogenous. In the endogenous case the outcome of an uncertain param-
eter depends on the decisions we make, and in the exogenous case it is independent
of decisions. Birge (1982) investigated the value of a stochastic solution rather than a
deterministic solution using expected values with sensitivity analysis.

As mentioned, in Hordaland it it sufficient to rely almost only on hydropower.
However, a lot of the relevant research for hydropower planning has been done on sys-
tems also containing thermal power, such as gas or coal plants. These power systems
are usually referred to as hydro-thermal systems in the literature. For hydro-thermal
systems, we consider a hydro-thermal coordination problem, where the objective can
be to cover a certain power need using limited cheap hydropower and supply with
more expensive thermal power at the right times. To do so, it is necessary to deter-
mine the value of water in relation to the cost of burning fuels, to determine how to
cover a load in a cost effective way. A lot of the research mentioned will therefore
also consider hydro-thermal production planning.

For hydro-thermal scheduling on a short timescale, the short term Unit Commit-
ment (UC) problem was described by Antonio et al. (2011). Mixed Integer Linear
Programming (MILP) and Lagrangian Relaxation have been used to solve the UC
problem, but with different strengths and weaknesses each. Antonio et al. (2011) tried
to unify both solution methods.

For hydro-thermal scheduling on a large scale, a stochastic dual dynamic pro-
gramming (SDDP) algorithm was presented by Pereira (1989). The algorithm uses
a multi-stage benders decomposition approach to construct future cost functions, in
order to solve a stochastic dynamic programming problem, without a state-space dis-
cretization. State-space discretization limits the size of the hydro system to be opti-
mized, allowing for a multi reservoir system to be computationally feasible. Gjelsvik
et al. (2010) applied the SDDP solution method to a Nordic hydro power system. The
model has been extended to include pumped-storage and wind power by Helseth et al.
(2013) and extended further to include maintenance scheduling by (Ge et al., 2018).
This solution method requires the problem to be formulated as an LP problem.

For an exact physical representation, the scheduling problem needs to include
non-linear relationships. Turbine efficiency- and head height functions are usually
non-linear, and may lead to non-convex constraints. Cerisola et al. (2012) presented
a model to include such relationships. de Souza Zambelli et al. (2013) used a deter-
ministic non-linear optimization model in a model predictive control approach. This
method was compared to an SDDP method. Hjelmeland et al. (2019) created a ver-
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sion of the SDDP algorithm to include integer variables, thus extending the solution
method presented by Gjelsvik et al. (2010) to solve aMILP problem. Hjelmeland et al.
(2019) found that introducing integers considerably increases computation time.

For an extensive review of work done on multi reservoir hydro system scheduling,
we refer to Labadie (2004). The article provides a good overview of the foundation
for the field today.

1.2.2 Theory
This section gives a brief overview over the theory literature that will be used in the
thesis. A thorough introduction to stochastic programming is given by Kall and Wal-
lace (1994). The solution method we will use is based on Stochastic Dynamic Pro-
gramming, explained in depth by Ross (1983), where Benders decomposition (Ben-
ders, 1962), is used for coupling the stages. Themethod is based on Bellmans principle
of optimality (Bellman and Kalaba, 1966).



Chapter 2

The Hydropower Production
Scheduling Problem

2.1 Problem components
In this section the key components of the Hydropower Production Scheduling Prob-
lem (HPS) are presented. Our goal is to achieve an optimal production schedule over
a certain time period, starting in the present until the end of our planning period. We
optimize the production schedule of a hydro system, under the influence of inflow
and price, considering some environmental restrictions. We assume that the system
is in a liberalized market, with no obligation to meet any power supply demand. Ad-
ditionally, we assume the system is relatively small and does not affect the price of
power.

2.1.1 Hydro system
Hydro systems vary greatly in size and complexity. They consist of several hydro
plants and reservoirs, which may or may not be connected, constructing one or sev-
eral watercourses.

It is up to the producer whether or not to model all watercourses in one system,
or split them up into smaller sub systems. Figure 2.1 is an example of a hydro system
consisting of several watercourses, which is a sub system of the entire hydro system
operated by the producer BKK. If watercourses are completely separated hydrologi-
cally, that is no water flows between them, and we can consider price as an exogenous
factor, then we can split the scheduling problem into a problem for each separate wa-
tercourse.
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Figure 2.1: Matre and adjacent watercourses (bkk.no, 2019)

V h(v)

Figure 2.2: Example of a reservoir with hydro plant

Hydro plants

Themain component of a hydro plant is the turbine. Figure 2.2 illustrates a hydro plant
with a connected reservoir. As water is discharged through the turbine, it produces
energy J with unit (Wh) given by

J(Q, V ) = Q · η(Q) · ρ · g · h(V ) (2.1)
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where

Q : water discharge through turbine (m3/s)
V : reservoir volume (m3)

η(Q) : turbine efficiency at discharge intensity Q

ρ : density of water (kg/m3)

g : gravity acceleration (m/s2)

h(V ) : difference in reservoir and discharge water level at reservoir volume V ,
head height (m).

Note that hydro plants can be positioned in the watercourse in different ways than
illustrated in Figure 2.2. For instance, some reservoirs discharge water through a
pipeline leading to a turbine, resulting in greater head height.

Since turbines have a maximum discharge capacity it is possible to bypass the
turbine, allowing water to flow downstream in order avoid reservoir overflow.

Reservoirs

Reservoirs are usually regulated lakes or dams with either a hydro plant or another
reservoir immediately downstream. It is reasonable tomodel a group of reservoirs with
no plants in between as one reservoir, since the optimal strategy for these reservoirs
is to ensure that the group is always able to release water to a downstream plant. In
Hordaland, the watercourses are relatively steep, so delay between reservoirs will not
be addressed here.

Due to environmental concerns, it is not common to be allowed to empty reservoirs
completely. Hence, the allowed production volume is not equal to actual reservoir
volume. If a reservoir overflows, the overflow can get directed back into reservoirs
downstream, or get spilled out of the system.

2.1.2 Inflow
Inflow is an important aspect of the HPS problem. If storage levels are too high at the
beginning of a period with high inflow, we risk overflowing reservoirs, which in turn
may result in environmental damage and loss of resources. When dealing with a long
planning period, it is hard to be certain about inflow forecasts. The producer should
brace for the possibility of either entering wet or dry seasons. Hence, minimize the
possibility of overflowing reservoirs, while maintaining production capability when
prices are high.

Even though precipitation around the entire systemmay have low variation, inflow
might vary substantially. Inflow into a reservoir depends on the size, topography and
temperature of the inflow catchment area. Reservoirs in high altitudes tend to have
longer and drier winters, and a larger spring melt, than low altitude reservoirs, where
it tends to be warmer. Figure 2.3 shows recorded inflow into two different reservoirs,
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at two different elevations, for 5 different years. We see that inflow series may vary
in both size and characteristics.

(a) High altitude, 600moh

(b) Low altiude, 50moh

Figure 2.3: Recorded inflow years into two different reservoirs (Haga, 2019)

2.1.3 Price
As mentioned previously, the goal of the HPS problem is to achieve an optimal pro-
duction schedule. In this case, that means the schedule that maximizes revenues. To
do so, the producer want to sell their available resources at the highest prices. There-
fore, it is important to have a good idea about the price of power during the planning
period. However, this is challenging, and price forecasts always come with an uncer-
tainty. The optimal production schedule is then the schedule that maximizes expected
revenues.
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2.1.4 Environmental restrictions
When regulating water levels of large lakes, it is important to respect the interests
of local population, and keep environmental impacts at an acceptable level. In parts
of the hydro system operated by BKK, there have been established some restrictions
by the Norwegian Water Resources and Energy Directorate (NVE) on how BKK is
allowed to regulate water levels at different times of the year. The following restric-
tions are imposed on the operation of the Hamlagrøvatn reservoir in the Bergsdalen
watercourse.

During the winter, when local activity on the water is low, they are allowed to
regulate water levels freely. During this time we have little inflow, we call this the low
inflow period. When snowmelts during the spring flow, we exit the low inflow period,
and fill up the reservoir in order to maintain a suitable water level for the summer. The
low inflow period ends:

• Never before 15. April.

• Between 15. April and 1. May the first day after experiencing

– 5 consecutive days of inflow above the yearly mean, and there is less
then 90% chance of reaching a water level of 584 meters above sea level
(m.a.s.l.) within 1. July without ceasing production at that time. Probability
calculations are made by NVE.

• Between 1. May and 15. May if not already ended, the first day after experienc-
ing

– 5 consecutive days of inflow above the yearly mean.

• 15. May if it has not already ended.

After the end of the low discharge period all discharge must cease until a water
level of 584 m.a.s.l. is reached. After that, BKK is allowed to regulate water level
freely above this water level until 15. August. From 15. August until 1. September
discharge is only allowed as long as it does not lower the water level. This means
that BKK can only discharge the inflow and water released from the reservoir above,
named Torfinnsvatn.
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2.2 Problem formulation
Here, we present the mathematical model of the scheduling problem, in order to for-
mulate the HPS problem. As the uncertainty of inflow is prioritized we require a so-
lution method that is able to solve stochastic problems. In order to be able to use the
solution method proposed in Chapter 3, the HPS problem will be formulated as an LP
problem. As mentioned in Section 1.1, the LP formulation has the advantage of giv-
ing shadow prices. In the data provided for this thesis, time is considered in discrete
weekly timesteps. Thus, time will be considered in weekly stages, t ∈ {1, 2, ...T},
where T is the length of the planning period. Due to the length of our planning period,
the weekly time-resolution is considered appropriate for the problem at hand.

2.2.1 System model
There are numerous strategies on how to model the structure of watercourses. There-
fore, we propose a commonly accepted simplification of a hydro system. Assume that
we aggregate nearby reservoirs, as mentioned in section 2.1.1, and assume that ev-
ery reservoir has a turbine immediately downstream. All modules can release water
to their immediate downstream reservoir (or out of the system at the bottom of the
watercourse) by producing power (discharge) or bypassing the plant. We assume all
overflow is lost. Then we can build the hydro systems of so called hydropowermod-
ules. Figure 2.4 is an example of a module representation of the Matre watercourse
from Figure 2.1. The blue lines indicate inflow into each module, and black lines
indicate waterways.

The efficiency function η(Q) in (2.1) is not linear in Q. Usually, it is concave with
maximum efficiency just below maximum production capacity. We can approximate
η(Q) as a piecewise linear function and include it in the HPS problem. Addition-
ally, the head height function h(V ) depends on the shape of the reservoir, and might
be convex. However, for large reservoirs the head height variations are small com-
pared to the head height, and can be dealt with heuristically, as described by Gjelsvik
et al. (2010). This work shows that an LP model of the HPS problem can approximate
equation (2.1). However, we simplify the efficiency function significantly, and use
an energy conversion factor for each reservoir, as the main focus of this thesis is to
investigate effects of the constraints from section 2.1.4.

2.2.2 Inflow model
In order to make predictions for inflow during the planning period, we construct an
inflow model. For modelling inflow, we assume a correlation between stages. If we
know the inflow volumes for all reservoirs in stage t, we assume that we can somewhat
predict all inflow volumes in stage t + 1. In order to create a model for predicting
inflow, it is common to normalize the inflow series, in an attempt to remove seasonal
variations and make the process stationary. Then, we need to define a function fit(Zit)

to transform inflow values back to un-normalized values. We will go more into detail
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Tverrvatnet Årsdalsvatnet

Kvanngrøvatnet Fridalsvatnet

Krokevatnet

Stordalsvatnet

Figure 2.4: Example of a hydro system modeled with hydro power modules

about the inflow transformation in Section 4.1. Consider the normalized inflow Zit

into reservoir i, during time stage t. We will often refer to normalized inflow without
specifying the fact that it is normalized. As the transformation presented in Section 4.1
is linear and continuous, the specification is often superfluous. Let ϕij be a transition
matrix for predicting inflow during week t (Zit) given the previous week (Zi,t−1),
and ϵkit for k ∈ {1, 2, ...K} be K different prediction errors for week t. Then we can
construct inflow series using the first order correlation

Zit = ϕijZi,t−1 + ϵkit. (2.2)

Consider an arbitrary reservoir i. When constructing possible inflow scenarios we
start with the known inflow of the present week Zi,0, and use (2.2) with K different
prediction errors {ϵ1i,1, ϵ2i,1, ..., ϵKi,1}, resulting in K possible values of Zi,1. Proceeding
the same way for allK values ofZi,1 we getK2 realizations ofZi,2 and so forth. Figure
2.5 is a representation of a scenario tree with two possible prediction errors at every
stage. The prediction errors are referred to as inflow realizations. We see that this
inflow scenario tree has KT possible scenarios. An exponentially growing scenario
tree limits our methods of solving the HPS problem. However, a detailed inflow rep-
resentation is prioritized due to the importance of handling inflow uncertainty. This
motivates the stochastic solution method presented in Chapter 3.

Moreover, a correlation of more than one stage may reduce modelling error, but
this increases the complexity of the solutionmethod. However, a first order correlation
is considered sufficient.
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Z0 Z1 Z2 Z3 Z4

Figure 2.5: Inflow scenario tree with K = 2, T = 4

2.2.3 Price model
As mentioned, price forecasts always have some uncertainty, and should be modeled
as a stochastic process. We assume that the producer is a price taker, meaning the
producer does not affect the price when acting on the power market. Therefore, we
consider the price as an exogenous factor. Due to the solution method we will arrive
at in Section 3.4, the price component needs to be split up in discrete levels, and sub-
problems are to be solved for every price level. This is explained by Gjelsvik et al.
(2010) and Pereira and Pinto (1991). Since the goal of this thesis is to investigate
how the environmental restrictions from 2.1.4 affect the solution, we choose only one
price series as a deterministic component, as the restrictions do not depend directly
upon price. We can think that the environmental restrictions affect the subproblems
for every price level in the same way. Therefore, the effects of state dependent envi-
ronmental restrictions can be tested using a deterministic price series.

2.2.4 Environmental constraints
We suggest a slight simplification to the environmental restrictions presented in sec-
tion 2.1.4. Since our model considers weekly stages, we must determine a weekly
inflow amount I corresponding to five days of consecutive inflow above the yearly
mean. Additionally, we disregard the possibility of not ending the low inflow period
after sufficient inflow between 15. April and 1. May. Lastly, the dates cannot be rep-
resented exactly due to weekly resolution.

In order to formulate the environmental constraints we introduce the following



2.2 Problem formulation 13

symbols.

V2,t : Reservoir volume of Hamlagrøvatn at end of week t.
Q2,t : Discharge volume of Hamlagrøvatn during week t.
Q1,t : Discharge volume of Torfinnsvatn during week t.
B2,t : Bypass volume of Hamlagrøvatn during week t.
B1,t : Bypass volume of Torfinnsvatn during week t.
Z2,t : Normalized inflow into Hamlagrøvatn during week t.

I : Sufficient inflow volume to end low inflow period.
V 2 : Reservoir volume corresponding to a water level of 584 m.a.s.l. in Hamlagrøvatn.

t15.April : Week containing 15. April.
t1.May : Week containing 1. May.
t15.May : Week containing 15. May.

The notation will formally be introduced in Section 2.2.5. Now we define the kick-in-
times for the environmental constraints as

tA = min{ min{t ≥ t15.April : f2,t(Z2,t) > I}, t15.May}, End of low inflow period
tB = min{t ≥ t0 : V2,t ≥ V 2}, Time when sufficient water level is reached
tC : Week containing 15. August
tD : Week containing 1. September

where all the kick-in-times are discrete values, since time is considered discretely.
Then, the ”precise” constraints are formulated as

Q2,t +B2,t = 0 ∀t ∈ [tA, tB) , (2.3a)
V2,t ≥ V 2 ∀t ∈ [tB, tC) , (2.3b)

Q2,t +B2,t ≤ f2,t(Z2,t) +Q1,t +B1,t ∀t ∈ [tC , tD] . (2.3c)

Constraint (2.3a) states that BKK is not allowed to release any water from the Hamla-
grøvatn reservoir from the end of the low inflow period until the reservoir volume is
greater than or equal to V 2. Constraint (2.3b) states that once this V 2 level is reached
in the Hamlagrøvatn reservoir, then V 2 is the lower bound on reservoir volume, until
stage tC . Lastly constraint (2.3c) states that the total water released from the Ham-
lagrøvatn reservoir cannot surpass total water coming into the reservoir, during any
week between tC and tD. Now tB is a discrete variable, depending on Vt. Addition-
ally, as we explain in Section 4.3.2, inflow will be considered as a variable, meaning
tA also depends on a variable. Thus, we cannot represent the constraints (2.3) exactly
in our LP formulation of the HPS problem. Therefore, the constraints do not work
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with the solution method proposed in Chapter 3. However, we prioritize dealing with
the inflow uncertainty, thereby simplifying the constraints in order to try to respect
them in our solution. In Section 3.6 we present a simplification to deal with constraint
(2.3a) and a heuristic to deal with (2.3b).

2.2.5 Optimization problem
Here we define the HPS problem as an LP problem, without considering the environ-
mental constraints (2.3). We assume unlimited power transfer capacity from outside
the system. This means the producer does not have an obligation to meet power de-
mand, and can choose to let consumers buy power from outside the system.

For the presented modeling components we define the following components.

Index sets

T = {1, 2, ...T}, index set for stages.
S = {1, 2, ...S}, index set for inflow scenarios.
I = {1, 2, ...I}, index set for reservoirs.
K = {1, 2, ...K}, index set for inflow realizations.
Mi : index set for all reservoirs immediately upstream of reservoir i.

Parameters

T : Length of the planning period
S : Number of inflow scenarios
I : Number of reserviors
K : Number of Inflow realizations
pt : Power price during stage t.
Zs

it : Normalized inflow into reservoir i during time t in scenario s.
fit(Z

s
it) : Inflow transformation function, for transforming normalized inflow.
ηi : Energy conversion factor for reservoir i.

P(s) : Probability of scenario s occurring.
Φ(V1,t, V2,t, ...VIT ) : Value of the remaining water at the end of the planning period.

as a function of end reservoir volumes.
V i : Max volume of reservoir i.
Qi : Max weekly discharge of reservoir i.
Bi : Max weekly bypass of reservoir i.
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Variables

V s
it : Volume of reservoir i at the end of time t in scenario s.

Qs
it : Discharge of reservoir i during time t in scenario s.

Bs
it : Bypass of reservoir i during time t in scenario s.

Os
it : Overflow of reservoir i during time t in scenario s.
yst : Power sold during time t in scenario s.

Then the HPS problem is formulated as,

maximize
V s
it , Q

s
it, B

s
it, O

s
it, y

s
t

∑
s∈S

P(s)

(
T∑
t=1

pty
s
t + Φ(V1,T , V2,T , ...VIT )

)
(2.4a)

subject to
Non-anticipativity constraints , (2.4b)

V s
it +Qs

it +Bs
it +Os

it − V s
i,t−1 −

∑
j∈Mi

Qs
jt +Bs

jt = f(Zs
it), ∀(i, s, t) ∈ I× S× T, (2.4c)∑

i∈I

ηiQ
s
it − yst = 0 , ∀(s, t) ∈ S× T, (2.4d)

V i ≥ V s
it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (2.4e)

Qi ≥ Qs
it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (2.4f)

Bi ≥ Bs
it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (2.4g)

Os
it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (2.4h)
yst ≥ 0 , ∀(s, t) ∈ S× T. (2.4i)

The optimization problem (2.4) formulates the HPS problem as an LP problem with
discrete stages and a scenario tree to represent inflow uncertainty. In Chapter 3, we
investigate a solution method for this problem. In Section 3.6 we present a linear
approximation of the environmental constraints (2.3) for the Bergsdalen watercourse.

The objective function (2.4a) is the expected total revenue of the planning period.
However, to avoid emptying reservoirs at the end of the planning period, which of
course would make the most money during the planning period, we need to formulate
a reward for saving some of the water for future use. This reward is reflected by Φ(·).
The production schedule is given by the distribution of

{V s
it , Q

s
it, B

s
it, O

s
it ∀(i, t, s) ∈ I× S× T},

among scenarios S.
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Non-anticipativity constraints

The constraints (2.4b) represent non-anticipativity. They state that scenarios with a
common history should have the same set of decisions. That is, a decision made in
each (s, t) ∈ S × T, should be mutual for all scenarios sharing the same history as
that decision. Such constraints reflect the fact that, we can’t anticipate the future. As
an example, consider Figure 2.6, representing 4 inflow scenarios. Let xs

t be decisions
made in each stage and scenario. The non-anticipativity constraints for this scenario
tree are

x1
0 = x2

0 = x3
0 = x4

0,

x1
1 = x2

1,

x3
1 = x4

1.

Possible examples of the decisions xs
t are the decision variables V s

it , Q
s
it, B

s
it, O

s
it, y

s
t in

the optimization problem (2.4). As the non-anticipativity constrains are cumbersome
to formulate, and we implicitly respect them in the proposed solution method, we do
not give them in full detail for this problem.

x1
0 x2

0

x3
0 x4

0

x1
1

x2
1

x3
1

x4
1

x2
2

x3
2

x1
2

x4
2

Figure 2.6: Inflow scenario tree with K = 2, T = 2

Water balance

Tomodel the flow of water in the system in an arbitrary scenario s and stage t, consider
the following equation:

V s
i,t−1 +

(
fit(Z

s
it) +

∑
j∈Mi

(Qs
jt +Bs

jt)
)
−
(
Qs

it +Bs
it +Os

it

)
= V s

it .

We have a volume V s
i,t−1 of water at the start of stage t. Consider the flow of water

in and out of the reservoir, as illustrated by Figure 2.7. Inflow and water from the
immediate upstream hydro plant flows into the reservoir, discharge and bypass are
passed downstream, and overflow is lost. Then at the end of the week, the volume
is V s

t . Constraint (2.4c), referred to as water balance, reflects the water flow. Note
that overflow is allowed to happen even when the reservoir is not full, which is not a
correct physical representation. However, overflow leads to loss of resources, hence



2.2 Problem formulation 17

loss of revenues. Thus, we assume positive overflow values only when absolutely
necessary.

V s
t−1 V s

t

fit(Z
s
it) +

∑
j∈Mi

(Qs
jt +Bs

jt)

Qs
it +Bs

it +Os
it

Figure 2.7: Representation of the flow of water in a stage

Power balance

Constraint (2.4d), power balance, is strictly not necessary. However, if the piecewise
linear approximation of η(Q) in equation (2.1), discussed in Section 2.2.1, is to be
implemented, we can reformulate the constraint to include the approximation.

Decision variable bounds

The constraints (2.4e), (2.4f) and (2.4g) are bounds on volume, discharge and bypass,
respectively. As overflow leads to a loss of revenues, we do not specify an upper
bound. Note that volume levels have zero as lower bound, even though we are not
allowed to empty any reservoirs completely. Volumes are thus allowed production
volumes, not actual volumes of reservoirs .



Chapter 3

Solution method

In this chapter, we will investigate a solution method for problem (2.4), the HPS prob-
lem. This solution method is commonly used for multi-stage stochastic problems, and
the solution algorithm we arrive at is inspired by the one presented in Gjelsvik et al.
(2010). We will illustrate the solution method for a general example, which reflects
the features of the an LP.

Consider a general multi-stage stochastic problem, as formulated by problem (3.1),
where each stage t depends on the previous, t− 1. This problem reflects the features
of the HPS problem (2.4). Non-anticipativity constraints are as described in Section
2.2.5. The goal is to maximize expected total revenues of a hydro system, with respect
to an uncertain parameterDt. In order to illustrate the solution method we define the
following components.

Es : Expectation value operator, with respect to scenarios.

Parameters:
T : Planning horizon.
n : Number of decision variables in each stage.
m : Number of constraints in each stage.

ct ∈ Rn : Revenues of decisions in stage t. Known parameter.
xs
0 ∈ Rn

+ : Initial state. Known parameter, equal for all s ∈ S.
Dt ∈ Rn

+ : Upper bound on decisions in stage t. Stochastic variable.
ds
t ∈ Rm

+ : Realization ofDt in scenario s.
ds
0 ∈ Rm

+ : Initial realization ofDt, equal for all s ∈ S.
A ∈ Rm,n : Coefficient matrix.
F ∈ Rm,n : Coefficient matrix.

pk : Probability of realization k ofDt.
P(s) : Probability of scenario s occurring.
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Index sets:
T = {1, 2, ...T}, index set for stages.
S : Index set for scenarios.

Variables:
xs
t ∈ Rn

+ : Vector of decision variables in stage t and scenario s.

We assume that the outcomes ofDt are finite, then, S is a finite set. The scenarios are
all possible sequences of realizations ofDt for all t in the ordered set T. The uncertain
parameter Dt represents inflow modelling error. The variables in xs

t represents deci-
sions (i.e. production, bypass) and state (i.e. reservoir volume, inflow) of our hydro
system in (s, t). The decisions made in (s, t− 1) affects the state of our system, and
hence the decisions that can be made in (s, t). We begin in the present state xs

0 and
optimize for all possible sequences of Dt towards the planning horizon T . Then the
general multi-stage stochastic problem is

maximize
xs
t

Es

[∑
t∈T

c′tx
s
t

]
subject to Non-anticipativity constraints,

Axs
t + Fxs

t−1 ≤ ds
t , ∀(s, t) ∈ S× T,

xs
t ≥ 0 , ∀(s, t) ∈ S× T.

(3.1)

In stage t = 1 the term Fxs
t−1 is known and should be on the right hand side of the

equation. The matricesA and F represent coefficients for the set of constraints in each
(s, t) ∈ S× T. 0 is the zero vector, containing n zeroes.

Assume that for every stage t there are K possible outcomes of Dt, each with a
probability of pk ∀k ∈ {1, 2, ..., K}, such that

K∑
k=1

pk = 1.

That is
Dt ∈ {d1

t ,d
2
t , ...d

K
t }, ∀t ∈ T (3.2)

with the probability mass function

fDt(d) = pk, d = dk
t , ∀k ∈ {1, 2, ...K}.

The realizations of Dt can be represented by a scenario tree as illustrated in Figure
2.5. The index set for scenarios is

S = {1, 2, ...KT}, (3.3)

which we see grows exponentially with planning horizon T .
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3.1 The Deterministic Equivalent
If the planning horizon T is aptly short, the optimization problem (3.1) can be solved
as the deterministic equivalent of problem (3.1), formulated as

maximize
xs
t

∑
s∈S

P(s)
∑
t∈T

c′tx
s
t

subject to Non-anticipativity constraints,
Axs

t + Fxs
t−1 ≤ ds

t , ∀(s, t) ∈ S× T,

xs
t ≥ 0 , ∀(s, t) ∈ S× T,

(3.4)

where the probability of each scenario is the product of all outcomes in each scenario

P(s) =
T∏
t=1

fDt(d
s
t).

However, in the problem presented in Chapter 2, we want to be able to handle a plan-
ning horizon ranging between 1 and 3 years, with weekly resolution, using the inflow
model described in 2.2.2. In the best case the planning horizon is T = 52 and the
inflow realizations per stage are K = 2. Then, problem (3.4) has KT ∼ 4.5 · 1015 sets
of decision variables and constraints. For formulating a computationally feasible so-
lution method, we will instead use the principles of stochastic dynamic programming
and Benders decomposition to converge to an optimal solution of problem (3.1). First
however, for the purpose of illustration, we will describe the solution method without
considering uncertainty.

3.2 A Dynamic Programming Approach
Consider a version of problem (3.1) with no uncertainty ofDt. That is,K = 1 and S =

{1}. The optimal solution can of course be found by solving problem (3.4), however
we illustrate a dynamic programming approach in order to be able to expand toK > 1

and T of significant size. For now we omit the scenario superscript.
For the purpose of illustration, assume that each xt can take J discrete values, or

states. For now, accept the fact that we have an integer programming problem, op-
posed to an LP problem as intended. By applying the Bellman principle of optimality
we can solve this problem recursively. First, we split Problem (3.1) into T stages, each
with a future income function αt(xt) as such,

αt−1(xt−1) = maximize
xt

c′txt + αt(xt)

subject to Axt ≤ dt − Fxt−1,

xt ≥ 0,

(3.5)

for all t ∈ T. Note that, αT (xT ) = 0 since we do not consider any stages after T , and
α0(x0) is redundant. Then, by solving problem (3.5) in stage t for all J states of xT−1
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we find αT−1(xT−1), which we in turn use for solving (3.5) in stage t − 1 for all J
states of xT−2. By repeating for all t ∈ {T, T − 1, ...1}, we get the optimal solution in
the first stage as

c′1x
∗
1 + α1(x

∗
1),

where x∗
t is the optimal solution of problem (3.5) in stage t = 1.

To use this solution method on an LP problem, that is when xt is continuous, we
need to determine away to approximateαt(xt) from a finite set of points, {x̂1

t , x̂
2
t , ...} ⊂

Rn
+. One way of doing so is simply choosing a sufficient number of points to inter-

polate between, in order to obtain a sufficiently accurate approximation of αt(xt).
If R states of xt are chosen, then we can solve problem (3.5) in stage t + 1 for all
xt ∈ {x̂1

t , x̂
2
t , ...x̂

R
t } to get points to interpolate between. However, if xt has a large

number of components N and we need J values of each component for a sufficiently
accurate approximation, we need to solve problem (3.5) JN times for every stage. This
is bad when considering a multi-reservoir hydro system, where n should be allowed
to be a high number. Therefore, we propose an alternative approach using Benders
decomposition.

3.3 Future income function from the Dual Problem
Consider a two-stage version of problem (3.1) with no uncertainty. That is, T = {1, 2}
and S = {1}. We still omit the scenario index. The problem can then be written as

maximize
x1,x2

c′1x1 + c′2x2

subject to Ax1 ≤ d1 − Fx0,

Ax2 + Fx1 ≤ d2,

x1,x2 ≥ 0.

(3.6)

We can decompose problem (3.6) into

maximize
x1

c′1x1 + α(x1)

subject to Ax1 ≤ d1 − Fx0,

x1 ≥ 0.

(3.7a)

α(x1) = maximize
x2

c′2x2

subject to Ax2 ≤ d2 − Fx1,

x2 ≥ 0

(3.7b)

Since problem (3.7b) is an LP problem, α(x1) is a concave piecewise linear function.
Assume that we have an initial guess, x̂1, of the optimal decision in the first stage, x∗

1.
Now consider the dual of problem (3.7b),
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α(x1) = minimize
π

(d2 − Fx1)
′π

subject to A′π ≥ c2,

π ≥ 0.

(3.8)

Since the dual problem (3.8) is a linear minimization problem, we know that,

α(x1) = min
π

{(d2 − Fx1)
′π : A′π ≥ c2} ≤ (d2 − Fx1)

′π̂, (3.9)

for any feasible π̂. Now choose

π̂ ∈ argmin
π

{(d2 − F x̂1)
′π : A′π ≥ c2}, (3.10)

for the initial guess x̂1. Then we have an upper bound for α(x1)

α(x1) ≤ (d2 − Fx1)
′π̂. (3.11)

Note that, for x1 = x̂1 inequality (3.11) is fulfilled as an equality.
By including equation 3.11 into the first stage problem 3.7a, we have obtained a

linear upper bound for the future income function, known as a Benders cut. We can
now solve

maximize
x1, α

c′1x1 + α (3.12a)

subject to Ax1 ≤ d1 − Fx0, (3.12b)
α + x′

1F
′π̂ ≤ d′

2π̂, (3.12c)
x1 ≥ 0 (3.12d)

to obtain a new guess of the optimal state x∗
1. Here, α(x1) is represented by a free

variable which, due to the problem being a maximization problem, will take a value
on its upper bound.

To get an accurate representation of α(x1), we have to obtain an upper bound for
each vertex in the solution space of the dual problem (3.8) of the second stage problem.
If there are too many vertices we can keep solving equation (3.10) for different values
of x̂1, and keep adding cuts, until we have a sufficiently accurate representation of
α(x1).

Since problem (3.12) is a maximization problem we have that α ≥ α(x1), which
is fulfilled as an equality when the cuts represent α(x1) precisely. Hence,

c′1x1 + c′2x2 ≤ c′1x1 + α. (3.13)

By solving the two stages iteratively, we get a new upper bound forα(x1) from solving
problem (3.7b) and a new value of x̂1 from solving (3.7a). At each iteration, since
we get a better representation of α(x1), we get closer to the optimal state x∗

1, hence
each new cut is more ”relevant”. The optimal solution is then where inequality (3.13)
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is fulfilled as an equality. Note that by iteratively improving x̂1 towards its optimal
value, we might not need to construct cuts for all vertices in the second stage dual
problem.

For notational convenience, we propose a reformulation of the Benders cuts. Con-
sider equation (3.11), which we write as

α− x′
1F

′π̂ ≤ β, (3.14)

where β = d′
2π̂. Figure 3.1 illustrates how cuts are made iteratively to improve the

representation of the future income function α(x1). The superscripts of x1 indicate
different values x̂1.

x1

α

x1
1

β1 + x1
1π

1

x2
1

β1 + x2
1π

1

(a) Cut calculated for x1
1

x1

α

x1
1x2

1 x3
1

β2

β1

β3

(b) Piecewise linear future income function

Figure 3.1: One dimensional representation of cuts

3.4 Expected Future Income Function
Consider now the two-stage version of problem (3.1), where all parameters of the first
stage are known, and the second stage has two possible outcomes ofD2, d1

2 and d2
2. Let

p1 and p2 be the probabilities of outcome d1
2 and d2

2 respectively, such that p1+p2 = 1.
Then, K = 2 for the second stage, and S = {1, 2}. We can decompose this problem
into

maximize
x1, α

c′1x1 + α

subject to Ax1 ≤ d1 − Fx0,

x1 ≥ 0.

(3.15a)
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α(x1|d1
2) = maximize

x1
2

c′2x
1
2

subject to Ax1
2 ≤ d1

2 − Fx1,

x1
2 ≥ 0

(3.15b)

α(x1|d2
2) = maximize

x2
2

c′2x
2
2

subject to Ax2
2 ≤ d2

2 − Fx1,

x2
2 ≥ 0

(3.15c)

Note that problem (3.15a) is unbounded before we have found any cuts for α. In order
to handle the uncertainty in D2 we calculate expected cuts, for approximating the
expected future income function, α(x1). Assume an initial guess of optimal decision
in the first stage x̂1. Then, by solving both problems (3.15b) and (3.15c) for x1 =

x̂1, we obtain their dual values π1,π2 and their objective function values β1, β2 as
described in section 3.3. Then, the coefficients of the expected cut are

π = p1π1 + p2π2

β = p1β1 + p2β2,

assuming the 2 outcomes are equiprobable. Lastly, the expected cut is

α− x′
1F

′π ≤ β, (3.16)

which we add as a constraint to problem (3.15a). Now we can solve problem (3.15a)
to obtain a better guess x̂1 of the optimal solution to the first stage problem. This also
gives a value for expected future income; the optimal value of α. By repeating the
process we obtain a better representation of α(x1). As we did in the previous section
with inequality (3.13), we have the optimal solution when

c′1x̂1 + p1c′2x̂
1
2 + p2c′2x̂

2
2 = c′1x̂1 + α.

Here, x̂1
2 and x̂2

2 are the optimal solutions of problems (3.15b) and (3.15c) respectively,
with x1 = x̂1.
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3.5 A Stochastic Dual Dynamic Programming Algo-
rithm

In this section we will outline the two main components of our Stochastic Dual Pro-
gramming (SDDP) Algorithm, the backward recursion and forward simulation. The
algorithm is used to solve problem (3.1). This is an abstract version of the algorithm
we use to solve the HPS problem (2.4). We add the following definitions in order to
describe the algorithm.

Ŝ : Number of scenarios to sample at every iteration.
Ŝ ⊂ S : Index set for sampled scenarios. Sampled from S.

R : Number of cuts at each stage.
x̂s
t ∈ Rn

+ : Initial guess of optimal decision for all (s, t) ∈ Ŝ× T.

K : Number of possible parameter realizations between each stage.
K = {1, 2, ...K} : Index set for possible parameter realizations between each stage.

U : Upper bound on the optimal objective function value.
L : Lower bound on the optimal objective function value.

Start with a set of sampled scenarios for ds
t , where s ∈ Ŝ. Then, recursively solve all

sub problems for the stages t ∈ {T, T − 1, ...2} and construct expected cuts for all
t− 1 stages, as described in Algorithm 1. The upper limit U will be used for checking
convergence. In this example we assume that there is no future income in the last
stage. We initialize R = 0.
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Algorithm 1 Backward recursion
for t = [T − 1, T − 2, ...1] do
Set u = R + 1, as new cut index in stage t
for s ∈ Ŝ do
for k ∈ K do
if t+ 1 = T then
Replace constraints (3.17c) with αT = 0

end if
Solve for the k’th realization of Dt

maximize
xs
t+1, αt+1

c′t+1x
s
t+1 + αt+1 (3.17a)

subject to Axs
t+1 ≤ dk

t+1 − F x̂s
t , (3.17b)

αt+1 − (xs
t+1)

′F ′πr
t+2 ≤ βr

t+2 ∀r ∈ {1, 2, ...R},
(3.17c)

xt+1 ≥ 0. (3.17d)

Get cut coefficients for the k’th realization
πk = dual values of constraints (3.17b)
βk = d

′k
t π

k

end for
Calculate expected cut coefficients to include in stage t
βu
t =

∑
k∈K

pkβk

πu
t =

∑
k∈K

pkπk

u = u+ 1

end for
end for
Update set index for cuts
R = R + Ŝ

U = max
s∈Ŝ

c′1x
s
1 + αs

1

Note that Ŝ cuts are constructed for all but the last stage, stage T , in one run of the
backwards recursion. Each stage shares cuts across scenarios. After constructing new
sets of cuts in every stage, we can sample new scenarios by simulation to obtain new
values for x̂s

t , as described in Algorithm 2. Here, we use a Monte Carlo simulation to
estimate expected income, as the mean of revenues of the Ŝ sampled scenarios.
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Algorithm 2 Forward simulation
Sample Ŝ random scenarios, such that Ŝ ⊂ S

for s ∈ Ŝ do
for t ∈ T do
if t = T then
Replace constraints (3.17c) with αT = 0

end if
Solve

maximize
xs
t , αt

c′tx
s
t + αt

subject to Axs
t ≤ ds

t − F x̂s
t−1,

αt − (xs
t)

′F ′πr
t+1 ≤ βr

t+1 ∀r ∈ {1, 2, ...R},
xt ≥ 0.

Update optimal state guess, x̂s
t = xs

t

end for
end for
L̂ = 1

Ŝ

∑
s∈Ŝ

∑
t∈T

c′tx
s
t

We now have an upper bound U and an estimated lower bound L̂. Since we used a
Monte Carlo simulation we have an uncertainty of the lower bound. Therefore, we
determine a confidence interval for L, for example the 95% confidence interval

[L̂− 1.96σ, L̂+ 1.96σ], (3.18)

given that L is normal distributed. Here, σ is the standard deviation of the revenues of
the simulated scenarios

σ =

√√√√√∑
s∈Ŝ

(∑
t∈T

c′tx
s
t − L̂

)2
S − 1

.

By increasing the number of sample scenarios Ŝ, we obtain greater accuracy, but in-
crease computation time. By alternating between the two algorithms, we can improve
our solution by adding more cuts. Hence, R = 0 initially, and increases after ev-
ery backward recursion 1. As a convergence criterion, we can check when the upper
bound U is inside the confidence interval (3.18). Note that since we simulate a random
subset of all scenarios, the estimated lower bound L̂ may exceed the upper bound U

at random.
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3.6 Modelling the environmental restrictions as linear
constraints

Recall the restrictions (2.3) presented in Section 3.6,

tA = min{ min{t ≥ t15.April : fit(Z2,t) > I}, t15.May}, End of low inflow period
tB = min{t ≥ tA : V2,t ≥ V 2}, Time when sufficient water level is reached
tC : Week containing 15. August
tD : Week containing 1. September

Q2,t +B2,t = 0 ∀t ∈ [tAtB) (i),

V2,t ≥ V 2 ∀t ∈ [tB, tC) (ii),

Q2,t +B2,t ≤ fit(Zt) +Q1,t +B1,t ∀t ∈ [tC , tD] (iii).

As mentioned, the HPS problem (2.4) is formulated as an LP problem. This is a key
property for using the above presented solution method. In the solution method, cut-
ting planes are shared among inflow scenarios in each stage, and scenarios may vary
due to random sampling in each iteration. Thus, the cutting planes are represented by
linear inequalities in (V s

it , Zs
it) for all i ∈ I. Therefore, constraints that are scenario

dependent are not straightforward to implement. The solution method is considered
necessary in order to deal with inflow uncertainty, which is prioritized. However, re-
strictions (i) and (ii) are not linear, thus they cannot be included in our model. There-
fore, we need to introduce the constraints (2.3) in a way that maintains linearity.

If we consider tA and tB as discrete variables depending on the Z2,t and V2,t respec-
tively, then we introduce integers and non-linearities to the problem. The activation
time of (i), as represented by tA, depends on the scenario, and the activation time of
(ii), represented by tB, depends on a decision variable. Thus, we do not accept this
formulation. Note that, restriction (iii) is scenario independent, since tC and tD are
equal for all scenarios. Therefore, (iii) is straightforward to implement, and we will
not discuss it further.

3.6.1 Activation of restriction (i)

The first restriction (i) is activated once we have sufficient inflow into Hamlagrøvatn.
That is, if fit(Z2,t) > I in a certain time period, between 15. April and 15. May, or at
15. May if it is not already activated. Thus, we will introduce a constraint to prevent
production and bypass inHamlagrøvatn if inflow is greater than I, for the periodwhere
the activation time is uncertain. The solution space is illustrated in Figure 3.2a. The
desired solution space is represented by the dashed line in Figure 3.2a. As the desired
solution space is not convex, we can’t represent it using linear constraints. Since we
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need to formulate the problem as an LP problem, we will replace the solution space
with its convex hull.

For further simplification of (i), we replace the set depicted in 3.2a by its convex
hull. In order to do so we add the linear inequality in Q2,t and Z2,t

f2,t(Z2,t) ≤ f2,t(Z2,t)−
f2,t(Z2,t)− I

Q2

Q2,t, (3.20)

whereQ2 is the upper bound on production in Hamlagrøvatn, andZ2,t is the maximum
possible simulated inflow in stage t. Thus, we approximate restriction (i) as shown in
Figure 3.2b, for all t ∈ [t15. April, t15. May). The reasoning is equivalent for B2,t and Z2,t.

f2,t(Z2,t)

Q2,t

I

Q2

f2,t(Z2,t)

(a) Desired solution space

f2,t(Z2,t)

Q2,t

I

Q2

f2,t(Z2,t)

(b) Convex hull of desired solution space

Figure 3.2: Solution space for environmental constraint (i)

Note that, since we expanded the solution space, we might obtain a solution which
is infeasible with respect to (i). Additionally, if inflow decreases after reaching I the
constraint will not be active, which does not represent the environmental constraint
well. However, due to the inflow trend, that is inflow is usually increasing in this
period, we consider this a reasonable simplification. Moreover, since the period where
the activation time of (i) is uncertain is relatively short, we expect the consequence of
the simplification to be small.

When we reach 15. May, production and bypass will be ceased in all scenarios.
Therefore, we can include (i) as a constraint for all t ∈ [t15.May, tB]. However, this
requires determining tB, which is our next challenge.
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3.6.2 Activation of restriction (ii)

Restriction (ii) is a bit more challenging. The period where activation time is uncertain
is significantly longer than for (i), and a simplification analogously to the previous
one does not make sense. Therefore, we consider only scenario independent values
of tB. That is, we assume that tB has the same value in all scenarios. Then, we will
try to solve the problem by complete enumeration of the possible values of tB. Note
that, a scenario dependent tB can give better results, and is a more correct representa-
tion of the restriction. However, for a scenario dependent values of tB, the equivalent
enumeration would be unreasonably large, with nS possible combinations, where n is
the number of possible values for tB in one scenario, and S is the number of scenar-
ios. Moreover, as the producer determines reservoir volume, and tB depends on the
reservoir volume, the producer also somewhat determines tB. Thus, we consider it a
reasonable approximation.

In order to find the optimal scenario independent value for tB, we run the opti-
mization for every possible value tB ∈ {t15.April, t15.April + 1, ..., tC} and compare the
results. This strategy is a way to estimate the optimal deactivation time of (i) and ac-
tivation time of (ii). Note that, if the planning period spans multiple summers, then
the enumeration increases considerably, as we need to include a tB variable for each
summer.

Alternatively, we could consider the historical water level of Hamlagrøvatn, in
order to determine a fixed value of tB. In Figure 3.3 we see recorded water levels
for years 2008 through 2018, and predictions for 2019 and 2020. The horisontal axis
indicate week of the year and the vertical axis represents altitude in m.a.s.l. The figure
indicates that the mean (dashed line) reaches the water level of 584m.a.s.l. in week 26,
where almost all records reach the water level between week 21 and 35. This means,
V 2 is reached on average in week 26. The ending time for constraint (ii) tC is known,
and scenario independent.

Since we solve each stage separately, providing starting conditions for the next
stage, wemight provide starting conditions where constraint (ii) renders the next stage
infeasible. Therefore, we must include (ii) as a soft constraint which we are allowed
to break, at some penalty cost. By increasing the penalty cost, we can ”prioritize” the
necessity of maintaining the constraint.
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3.6.3 Approximated environmental constraints
In order to include the approximated constraints as mentioned above, we propose the
following formulation. We define new activation times in order to reflect the approx-
imation of the environmental constraints. Note that, since tC and tD are fixed values,
and equal for all scenarios, they are easily included. Let,

ta = t15.April : Starting time for when constraint (i) might activate
tb = t15.May : Definitive activation time for constraint (i)

tc = {t0, t0 + 1, ...t3}, : Activation time for constraint (ii)
td = tC : Activation time for constraint (iii)
te = tD : Deactivation time for constraint (iii)

The slope aQ and constant bQ of the constraint defining the convex hull illustrated by
Figure 3.2b is calculated from the two points (I,Q2), (Z2,t, 0). Assume that we know
Z2,t, which is the maximum possible value of simulated inflow into Hamlagrøvatn in
stage t. Equivalently, we can obtain aB and bB for the constraint on bypass and inflow.

Qs
2,t − aQf2,t(Z

s
2,t)− bQ ≤ 0, ∀(s, t) ∈ S× [ta, tb), (3.21)

Bs
2,t − aBf2,t(Z

s
2,t)− bB ≤ 0, ∀(s, t) ∈ S× [ta, tb), (3.22)

Qs
2,t +Bs

2,t = 0, ∀(s, t) ∈ S× [ta, tb), (3.23)
γs
t + V s

2,t ≥ V 2 ∀(s, t) ∈ S× [ta, tb), (3.24)
γs
t ≥ 0 ∀(s, t) ∈ S× T, (3.25)

Qs
2,t +Bs

2,t −Qs
1,t −Bs

1,t ≤ f2,t(Z
s
2,t) ∀(s, t) ∈ S× [ta, tb). (3.26)

Constraints (3.21)-(3.23) are the approximation of (i), constraints (3.24)-(3.25) are
the approximation of (ii) and constraint (3.26) is (iii). The variable γt is the penalty
variable of breaking constraint (3.24). This variable is included in the objective func-
tion in problem (4.6) with a corresponding cost cγ . Note that tc is allowed to be earlier
than tb, as early as ta. Activation of (ii) always implies deactivation of (i), meaning if
(ii) is activated before (i), then constraint (i) is skipped entirely. Also if tc = td, then
constraint (ii) will never be activated.
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Figure 3.3: Historical and predicted water level of Hamlagrøvatn (Haga, 2019)



Chapter 4

Optimizing the Bergsdalen
watercourse

In this chapter we present a version of the HPS problem (2.4), as presented in Chapter
2, applied to the Bergsdalen watercourse. The inflow model is also thoroughly de-
scribed. Figure 4.1 illustrates the watercourse, and Figure 4.2 illustrates its module
representation. In addition to the main HPS problem, we formulate the subproblems
to be solved in the solution method, described in Chapter 3, in order to solve the main
problem.

Figure 4.1: The Bergsdalen watercourse (bkk.no, 2019)
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Storefossen

Dale

Torfinnsvatn

Hamlagrøvatn

Figure 4.2: Module representation of the Bergsdalen watercourse

4.1 Inflow model
As described in Section 2.2.2, we require a model for generating inflow series. We
base the model on time series containing recorded historical inflow corresponding
each reservoir. The inflow modelling procedure is roughly the same as described by
Gjelsvik et al. (2010).

For each hydropower module we have a time series of recorded inflow from 1958

until 2015, qjyw. Thus, we have 58 recorded inflow years for each reservoir. The
recorded inflow series are not from the Bergsdalen watercourse, but from lakes with
similar characteristics, and need to be scaled. We denote the set of lakes with recorded
inflow as J, such that each lake corresponds to a module in the Bergsdalen system,
that is J 7→ I. Each module has an average yearly inflow volume qi,mean, for a refer-
ence period of 30 years, between 1981 and 2010, which we use for scaling the recorded
inflow series to the correct size. In order to scale the inflow series, we consider the
scaled mean

qi,mean =
1

30

2010∑
y=1981

52∑
w=1

ki qjyw ∀(i, j) ∈ {I× J : i = j} (4.1)

of yearly inflow during the reference period. Then

ki =
30 qi,mean

2010∑
y=1981

52∑
w=1

qjyw
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is the scaling coefficient for series i, found by solving equation (4.1) for ki. Thus, the
inflow values for the modules in the Bergsdalen system are

qiyw = ki qjyw ∀(i, js) ∈ {I× J : i = j}

for each year y and week w for all 58 recorded inflow years.s
Some part of the inflow series may be explained purely by seasonal variations.

Therefore, before fitting the auto regressive model described in Section 2.2.2, we pro-
pose a transformation to remove seasonal variations from the inflow modelling. First,
we find the weekly mean over all inflow years qiw, and the corresponding standard
deviation σiw

qiw =
1

58

2015∑
y=1958

qiyw σiw =

√√√√√ 2015∑
y=1958

(qiyw − qiw)
2

58− 1
.

Then, the transformed recorded inflow series Ziyw is

Ziyw =
qiyw − qiw

σiw

.

By doing the same for all 4 time series we get the back-transformation

fit(Z
s
it) = σiwZ

s
it − qiw , w = t mod 52, (4.2)

to be used on simulated inflow values Zs
it. Since the planning period may be longer

than a year, we should index σ and q with week of the year, not stage number in the
planning period. Therefore, the w subscript is the modulus of t and amount of weeks
in the year, 52. We let mod denote the modulus operation, such that a mod b is the
remainder of the integer division a/b. The simulation is described later in this section.

Now, instead of considering the transformed recorded inflow series as years and
weeks, Ziyw, consider them as 4 series with all recorded values consecutively from
start to finish, Zit , i ∈ I, t ∈ {1, 2, ...58 · 52}. For fitting the model we use a first
order vector auto regression. In essence, we find the cross correlation matrix ϕij by
minimizing the sum of squared prediction errors

min
ϕij

58·52∑
t=2

∑
i∈I

(Zit −
∑
j∈I

ϕijZj,t−1)
2.

Now we can simulate inflow series with

Zit =
∑
j∈I

ϕijZj,t−1 + ϵi, (4.3)

where ϵi is a modeling error.
Let ϵ = [ϵ1, ..., ϵ4] be a vector of errors made for all reservoirs for one stage. We

assume that in each week of the year, the model makes a similar modeling error. Then,
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for each week of the year, we get 58 error vectors. For each week we perform a prin-
cipal component analysis (PCA), in order to find the 4 eigenvectors of errors in each
week. Note ϵ ∈ R4 in this case. For each week we choose the first principal compon-
tent, i.e. the eigenvector explaining the most variance of errors. Then, we multiply the
eigenvector with the amount of variance it explains, to construct ϵ̂w. Thus, we have
values for the most common mistake made in week w. The values of ϵ̂w will be used
for ϵit in equation (4.3).

When simulating transformed inflow, we start with a known present inflow value
Zi0. Then, we use equation (4.3) to obtain Zi1 etc. As a random error term we use the
discrete random vector Ew, which can take values from {ϵ̂w,0,−ϵ̂w}. Its probability
mass function is

fEw(ϵ) =


0.2, ϵ = ϵ̂w
0.6, ϵ = 0

0.2, ϵ = −ϵ̂w.
We assume that we are most likely not to make an error, while there is a possibility to
make an error along either direction of the first principal component of errors.

Here, ϵ̂w is the first principal component of errors in week w multiplied with its
explained variance, and 0 is the zero vector. The outcomes of Ew represent the three
possible inflow realizations between every stage. If ϵ̂w is too large, we risk simulating
negative inflow. Therefore a coefficient gt is chosen for all t ∈ T such that inflow will
not be negative. Some weeks have high inflow due to seasonality, making it possible
to simulate larger variation, while avoiding negative inflow. Thus, gt is set larger when
possible, to increase variation in inflow simulation. Variance in inflow simulation and
avoiding negative inflow requires tuning the inflow simulation error coefficients gt,
to achieve an acceptable balance. Now, every week we get the inflow value

Zit =
∑
j∈I

ϕijZi,t−1 + ϵit (4.4)

ϵit = gt · random sample of Ew , w = t mod 52 (4.5)

The PCA and scaling of the error term reduces the number of possible inflow
scenarios, resulting in a loss of the actual inflow uncertainty representation. To avoid
this, we can use more principal components andmodify the transformation fit to avoid
negative inflow. However, we accept the loss of inflow scenarios in order to maintain
a relatively simple model.

Figure 4.3 shows an example of 50 simulated inflow series for all 4 reservoirs of
the Bergsdalen watercourse over one year, in blue. The red lines are simulations where
the error term is either always positive, always negative or always zero.
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4.2 End water values
The endwater volumemay affect the entire production schedule. If the endwater value
is not specified, we will obtain an optimal schedule that leads to an unreasonably low
end volume, and vica versa if the end water value is too high. This leads to a schedule
that spends more water than what is realistic, which may in affect the beginning of the
production schedule. If the beginning of the schedule is sensitive to the end volume
levels, we risk making wrong decisions based on the optimized but unrealistic ”bold”
schedule. As the beginning of the schedule tends to be less sensitive to end water
volume when the planning period is long, it is common practice to set the planning
period longer than what is absolutely necessary. However, since we do not have an
adequate measure of the value of storing water at the end of the planning period, we
instead introduce a bound on end reservoir volumes.

Let V iT be a lower bound for all i end reservoir volumes. Spending water increases
the objective function when there is no value specified for saving water. Therefore,
the optimal solution will seek a low end reservoir volume, thus a lower bound is suf-
ficient. In order to determine values for V iT we can run the optimization with a longer
planning period, to determine a reasonable lower bound in stage t = 52. We do not go
into detail about the determination of end volume bounds. However, since the enu-
meration of activation times for environmental restriction (ii) tc increases significantly
when the planning period spans several years, the proposed method to deal with re-
striction (ii) does not work well with a long planning period. Due to the same problem
with suddenly implementing a volume restriction as mentioned with constraint (ii) in
Section 3.6, we implement the end reservoir volume restrictions as soft constraints.
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Figure 4.3: Simulated inflow for all reservoirs
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4.3 The Bergsdalen HPS problem
Recall the definition of problem (2.4) from Chapter 2. We add the following defini-
tions as presented in this chapter and in Section 3.6.

Parameters

V iT : End reservoir volume bound for reservoir i.
ϵsit : Inflow modelling error for reservoir i in stage t and scenario s.
ϕij : Inflow transition matrix.
cγ : Cost of breaking soft constraints.

πr
itV : Expected optimal dual value of the waterbalance constraint (4.7d).

πr
itZ : Expected optimal dual value of the inflow transition constraint (4.7c).

πr
itV : Expected optimal dual value of waterbalance constraint (??).

βr
t+1 : Expected right hand side of cut.

Variables

γs
t : Penalty variable for breaking soft constraints.

We now formulate an extention of this problem, to be solved in order to determine
an optimal production schedule for the Bergsdalen watercourse.

maximize
∑
s∈S

P(s)
T∑
t=1

(
pty

s
t − cγγ

s
t

)
(4.6a)

subject to
Non-anticipativity constraints , (4.6b)

Environmental constraints (3.21) - (3.26) , (4.6c)
V s
it +Qs

it +Bs
it +Os

it − V s
i,t−1 −

∑
j∈Mi

(
Qs

jt +Bs
jt

)
= fit(Z

s
it), ∀(i, s, t) ∈ I× S× T, (4.6d)∑

i∈I

ηiQ
s
it − yst = 0 , ∀(s, t) ∈ S× T, (4.6e)

γs
T + V s

iT ≥ V iT , ∀(i, s) ∈ I× S, (4.6f)
V i ≥ V s

it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (4.6g)
Qi ≥ Qs

it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (4.6h)
Bi ≥ Bs

it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (4.6i)
Os

it ≥ 0 , ∀(i, s, t) ∈ I× S× T, (4.6j)
yst ≥ 0 , ∀(s, t) ∈ S× T, (4.6k)
γs
t ≥ 0 , ∀(s, t) ∈ S× T. (4.6l)
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Problem (4.6) is an extension of the HPS problem (2.4), where we have included envi-
ronmental restrictions and end volume constraints. The non-anticipativity constraints
(4.6b) are as described in Section 2.2.5. The constraints (4.6c) are the approximated
environmental constraints given in Section 3.6.3.We have introduced the penalty vari-
ables γs

t ∀(s, t) ∈ S × T, in order to handle the soft constraints in the environmental
constraints (4.6c) and the end reservoir volume constraints (4.6f), as presented in Sec-
tion 4.2.

4.3.1 Subproblems
The HPS problem (4.6) will be solved by splitting it into subproblems (4.7), as de-
scribed in Section 3.4. The subproblems will be solved iteratively to construct cuts,
and improve the solution, as described in Section 3.5. The backward recursion algo-
rithm (1) constructs cuts, given a guessed solution, and the forward simulation al-
gorithm (2) improves the solution when new cuts are made. The subproblems to be
solved by the algorithm are formulated as,

maximize pty
s
t + αs

t − cγγt (4.7a)

subject to
Environmental constraints (3.21) - (3.26) , (4.7b)

Zs
it =

∑
j∈I

ϕijZ
s
j,t−1 + ϵsit∀i ∈ I, (4.7c)

V s
it +Qs

it +Bs
it +Os

it −
∑
j∈Mi

(
Qs

jt +Bs
jt

)
− fit(Z

s
it) = V s

i,t−1 ∀i ∈ I, (4.7d)∑
i∈I

ηiQ
s
it − yst = 0, (4.7e)

αs
t −

∑
i∈I

(
πr
i,t+1,V Vit + πr

i,t+1,Z ϕijZit

)
≤ βr

t+1 ∀r ∈ {1, 2, ...R}, (4.7f)

γs
t + V s

it ≥ V it ∀i ∈ I if t = T , (4.7g)
V i ≥ V s

it ≥ 0 ∀i ∈ I, (4.7h)
Qi ≥ Qs

it ≥ 0 ∀i ∈ I, (4.7i)
Bi ≥ Bs

it ≥ 0 ∀i ∈ I, (4.7j)
Os

it ≥ 0 ∀i ∈ I, (4.7k)
yst ≥ 0, (4.7l)
γs
t ≥ 0, (4.7m)

for each (s, t) ∈ S× T. The constraint (4.7c) represents the inflow model, from equa-
tion (4.4). Constraints (4.7f) represents the expected Benders cuts, as presented in
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equation (3.16). The values πr
itV and πr

itZ are the expected optimal dual values of con-
straint (4.7d) and (4.7c), calculated iteratively as described in Section 3.5.

Now every subproblem provides starting conditions for inflow and reservoir vol-
umes, to the subsequent subproblem, similar to xt in Chapter 3. The inflow modelling
error ϵit is the outcome of the random parameter Ew, corresponding to Dt in Chapter
3.

4.3.2 State variables
Recall the decision variables xs

t from Chapter 3. Every decision made in stage t −
1 decided the state in stage t. Similarly for this problem, due to the water balance
constraint (4.7d) and the inflow transition in equation (4.4), we have the same coupling
of stages through states. However, the inflow is not a real decision, but we can interpret
it as a state variable in order to construct cuts that are used for all states in each stage.
Thus in an arbitrary scenario s, both the decision on reservoir volumes V s

i,t−1 and
inflow realizationsZs

i,t−1 for all i ∈ I in the subproblem previous stage t−1 determines
the state of the subproblem in the next stage t.

As we have seen, the inflow states Zi,t−1 ∀i ∈ I helps determine the inflow state
Zit. Now, in every subproblem to be solved in the algorithm, we can create Benders
cuts that are shared among inflow scenarios, in addition to reservoir volume states.
Hence, we interpret both inflow scenario and reservoir volume as state. Since all cuts
are shared within each stage, the subproblems optimize with respect to all future sce-
narios. Additionally, scenarios with the same history will have the same state values
from the previous stage, and make the same decisions. Hence, the non-anticipativity
constraints are respected implicitly.
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4.4 Main algorithm
Recall the algorithms (1) and (2) presented in Section 3.5. Here we compute the upper
limit U and the estimated lower limit L̂ of the objective function in Problem (4.6),
with the standard deviation of simulated lower limits σ. To initialize the algorithm,
that is obtain a start guess of the optimal solution, we propose to perform a forward
simulation where expected future income αs

t is always fixed as zero. Then, we can
write the SDDP algorithm to solve the Bergsdalen HPS problem (4.6) as,

Algorithm 3 SDDP algorithm
Initialize by solving all subproblems (4.7) with αs

t = 0

Initialize convergence criteria: Error = 1, Tolerance = 0

while Error > Tolerance do
Perform the backward recursion algorithm (1) on subproblems (4.7)
Perform the forward simulation algorithm (2) on subproblems (4.7)
Update σ

Error = |U − L̂|
Tolerance = 1.96σ

end while

In each call of the forward simulation (2), we sample a new inflow scenario and up-
date our guess of an optimal production schedule. Then in the following backward
recursion (1) we construct cuts using the recently sampled scenario and production
schedule.



Chapter 5

Experiments

5.1 Goal
The goal of the experiments is to find an optimal production schedule for the Bergs-
dalen watercourse, and determine howwell we are able to represent the environmental
restrictions presented in Section 3.6. We will run the optimization for all possible val-
ues of tc, in order to determine the optimal scenario independent time for activation
constraint (3.24). Then, we will discuss the estimated optimal schedule.

5.2 Setup
The optimization problem described in Section 4.3 is solved by implementing Algo-
rithm 3. The implementation is done in Python. The Pyomo library (Hart et al. (2011)
andHart et al. (2017)) is used formodelling the subproblems (4.7) and interfacingwith
a chosen LP solver. We chose the Gurobi direct solver (Gurobi Optimization, 2018),
utilizing warm starts when possible. As the subproblems do not change drastically
between iterations, warm starts help performance significantly. As multiple scenarios
are solved separately, the algorithm would benefit from implementing parallel pro-
cessing, as shown by Helseth and Braaten (2015). However, this is not utilized in this
implementation.

To construct the inflow model described in Section 4.1 we used the vector auto
regression method from the Python library StatsModels (Seabold and Perktold, 2010).
The principal component analysis is done with the PCA method from the machine
learning library Scikit-Learn (Pedregosa et al., 2011).

We have scaled the input data, in order to keep numerical values at a reasonable
size relative to each other. Bad scaling may crash the solver. Water volumes are con-
sidered in 106m3, and power price in EUR

Gwh
. Thus the energy conversion factor ηi is

Gwh
106m3 . As most values are considered in 106, we let M denote 106. Keep in mind that
we let Mm3 = 106m3, as we do not refer to the SI prefixmega. Additionally, as Python
is zero-indexed, the stages are indexed from 0 to 51 in the plots presented, and not from
1 to 52 we have presented the stage indexes previously.
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Preliminary tests

Some preliminary tests were completed, where we observed many of the cuts in each
stage were similar. As a result, the data passed to the solver each time a subproblem
was solved grew unnecessarily large, and computation time increased. Therefore, we
propose a heuristic to choose fewer but ”more descriptive” cuts in Section 5.2.1.

We noticed the convergence was sensitive to the choice of penalty cost cγ . If we set
the penalty too low, some scenarios might be ”sacrificed” in order to have a ”bolder”
schedule in other scenarios, and increase the expected revenues. Also, if the penalty
is set too high we can obtain a large standard deviation from the forward simulation,
when some scenarios are penalized heavily and others are not. Recall the convergence
criterion in Algorithm 3, stating that the algorithm should stop when |U − L̂| < 1.96σ,
where U is upper bound, L̂ is estimated lower bound and σ is the standard deviation
from the forward simulation. If σ is large, we will accept a large error |U − L̂|, thus
the algorithm may converge prematurely.

As the soft constraints are not intended to be allowed to break, we choose a high
penalty cost cγ = 100 M EUR. In order to prevent premature convergence, an addi-
tional convergence criterion was defined, that the half-size of the convergence interval
is less than 1 M EUR. The additional convergence criterion was added to Algorithm
(3).

5.2.1 Cut selection heuristic
In an effort to keep computation times low, while efficiently constructing expected
future income functions, we propose the following heuristic for only calculating the
”most descriptive” cuts. In general, we want to create cutting planes that cut away as
much of the solution space as possible, and are the least similar to each other. Cuts
with roughly the same coefficients are considered similar to each other. By including
the cuts that are the least similar, we can more efficiently represent the future income
function. If the future income function representation is not efficiently created, the
algorithm converges slowly. We assume that subproblems with similar optimal ob-
jective function value creates similar cuts.

Consider an arbitrary iteration of the algorithm. Recall the backward recursion
algorithm, Algorithm 1, from Section 3.5. For each stage t ∈ {T − 1, T − 2, ...1} we
construct Ŝ cuts from stage t + 1. Let gst be the optimal objective function value in
stage t and scenario s. Assume without loss of generality that

g1t ≤ g2t ≤ ...gŜt .

That is, the scenario indices s ∈ {1, 2, ...Ŝ} are sorted with non-decreasing value of gst .
Then, choose the scenarios {1, Ŝ

3
, 2Ŝ

3
, Ŝ}, for calculating cuts for the previous stage.

Fractions are rounded to the closest integer. In addition, we choose 4 random subprob-
lems for calculating cuts in each stage. Now every iteration adds 8 cutting planes to
the expected future income.
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5.2.2 Dataset
The input data for this optimization model is provided by BKK. We have received
data for price, inflow and system parameters. The optimization starts in week 48 and
planning period is set to one year . Thus t = 0 indicates the beginning of week 48 etc.

The price data consists of different price scenarios, which we assume are all repre-
sentable for our planning period, with probabilities of jumping between scenarios. As
we do not model price uncertainty in our model, we choose one scenario as a deter-
ministic price series for the planning period (pt ∀t ∈ T in problem (2.4)). The inflow
data consists of observed inflow for similar reservoirs to those in the Bergsdalen wa-
tercourse, from 1958 to 2015. In Section 4.1 we described how we generate the inflow
simulation model used in the optimization model. The system parameters determine
maximum values for reservoir volume, production and bypass (V i, Qi, Bi ∀i ∈ I in
problem (2.4)) and a turbine efficiency factor for each reservoir (ηi ∀i ∈ I in problem
(2.4)).

Choice of price series

Figure 5.1 shows the quartile distribution of price values in each stage for all the price
periods in our dataset. We used this to sample a price scenario that somewhat reflects
the typical price profile during the period. Figure 5.4 shows the price scenario we
chose for the optimization.

Figure 5.1: The distribution of price possibilities in each stage
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5.3 Results of experiments
In this section, we present the results of running Algorithm 3 for all possible values
of tc, in order to obtain an estimated optimal solution to Problem (4.6). Recall the
definition of the approximated environmental constraints (3.21) - (3.26) from Section
3.6. tc represent the activation time for the environmental constraint (3.24), which
we consider to be scenario independent. Lastly, we evaluate the estimated optimal
schedule, and discuss the effect of the approximated environmental constraints.

5.3.1 tc analysis
We ran Algorithm 3 for all 18 possible values of tc. In each forward simulation we
simulated 60 inflow scenarios. The calculations finished in approximately 10 hours.
Note that, comparing the upper and lower bound to expected revenues is only valid
when penalties are zero, because the penalty variable does not represent an actual
loss in revenues. We will refer to the mean of total revenues over scenarios, from the
forward simulation Algorithm 2, as estimated lower bound.

Figure 5.2 shows the results of the analysis. In the upper plot we have plotted
the upper and estimated lower bound of expected revenues, for all values of tc. We
know with 95% certainty that the true lower bound is not below the grey dashed line.
The grey dashed line is the estimated lower bound minus its confidence interval half-
size. The lower plot shows the sum of penalties (γs

t ) and overflow, summed over time
and scenarios, for each value of tc. We see that the penalties are insignificantly small
(note the axis scale), however not zero for all tc. The cases with the highest values
for overflow are tc ∈ {33, 35, 36, 37}. The cases with the highest upper bound are
tc ∈ {29, 30, 33}. Note that in t = 27 the estimated lower bound is larger than the
upper bound. As mentioned in Section 3.5 this may happen, due to sampling variation.
Moreover, we observe that the 95% confidence of the lower bound is always below
the upper bound.

Determining the estimated optimal tc

Due to the uncertainty in the estimated lower bound, we can’t be 95% certain of im-
provements of less than 2 M EUR, as the confidence interval half-size of the lower
bound is roughly 1 M EUR for all tc. Additionally, we observe that the bounds are
not monotonously increasing. This might be due to the convergence criterion, where
the tolerance 1.96σ for the error |U − L̂| depends on the standard deviation σ of the
forward simulations. The standard deviation is most likely different for each forward
simulation, as we have a large sample space (KT = 352 as shown in Section 3.1) for
inflow scenarios. Thus, determining an optimal scenario independent value of tc is
difficult when comparing schedules that are not significantly different. However, we
will choose the estimated optimal schedule as the one that looks the most promising.

Recall constraint (3.22), ceasing production and bypass in Hamlagrøvatn until tc.
We can see that if we set tc too late, we risk overflowing. However, if this overflow
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is from Hamlagrøvatn, then in reality we would not be restricted by environmental
restriction (i), because that means V s

2,t > V 2 and (ii) should be activated instead. It
seems unlikely that we would keep the reservoir volume of Hamlagrøvatn below V 2

for tc > 32. Although something interesting happens in tc = 34, wewill not investigate
that production schedule further.

Since the upper bound is a definite upper bound of expected revenues, we will rely
mostly on the upper bound in order to choose the estimated optimal scenario indepen-
dent tc. A high upper bound allows the objective function of the Bergsdalen HPS
problem (4.6) to be high, thus we call schedules with high upper bound promising.
The candidates are tc ∈ {29, 30, 33}. We exclude 33 due to the reason mentioned for
all tc > 32. The upper bound in tc = 29 is slightly larger than tc = 30. The estimated
lower bound is larger in tc = 30, however due to the uncertainty of the lower bound,
we let the upper bound determine the estimated optimal tc = 29.

Figure 5.2: Analysis for estimated optimal scenario independent tc
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5.3.2 Production schedule for tc= 29

Results

We now present the estimated optimal production schedule with tc = 29. We have
simulated 100 inflow scenarios in each forward simulation. The algorithm converged
in roughly 1 hour, with zero penalties.

Table 5.1 shows the upper bound U and estimated lower bound L̂ on expected
revenues, half-size of the confidence interval 1.96σ for the estimated lower bound
and the sum of penalties

∑
s∈Ŝ

∑
t∈T

γs
t , for all iterations. All values except penalties are in

M EUR. The estimated optimal production schedule has expected revenues between
the upper bound U and lower bound L = L̂± 1.96σ

U = 64.5602 M EUR,
L̂± 1.96σ = 64.1836 ± 0.6326 M EUR,

with 95% confidence of the lower bound. We see that the upper bound is steadily
decreasing, whereas the lower bound is only generally increasing after the second
iteration. Between iterations 2 and 10 both the half-size of the confidence interval and
the sum of penalties are relatively high.

Table 5.1: Upper and lower bound, with confidence of lower bound and total penalties
for all iterations.

Iteration U L̂ 1.96σ
∑
s∈Ŝ

∑
t∈T

γs
t

1 74408.4583 41.2196 0.5733 0.0000
2 96.3071 -25075.5509 1338.4892 25113.1818
3 96.3071 -4300.9043 452.7470 4351.7620
4 96.3071 -1388.5201 290.9697 1440.2007
5 93.8197 -673.2475 189.7185 731.2631
6 91.6224 -314.6541 115.5890 374.4670
7 91.6224 -177.0162 97.1947 237.0171
8 91.6224 -115.4890 106.6751 174.9686
9 91.6142 -6.0144 47.5754 66.1176
10 91.5569 18.2698 42.5451 42.3502
11 91.4818 59.7033 4.7890 2.4830
12 79.8821 58.5816 0.7269 0.0000
13 74.0421 57.5564 0.5149 0.0072
14 73.9586 62.9885 0.8027 0.0079
15 64.9756 63.1283 0.6607 0.0000
16 64.9683 63.7342 0.6913 0.0003
17 64.5602 64.1836 0.6326 0.0000
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Figure 5.3 shows the upper bound and the estimated lower bound, in the upper plot.
The purple points are the revenues of each forward simulation, and the grey dashed
line is the confidence interval of the estimated lower bound. The lower plot shows the
distribution of overflow and bypass for all simulated scenarios, of the final iteration.
The solid line is the 0.5 quantile (median), the dark shaded area represent the 0.25

and 0.75 quantile (lower and upper quartile) and the light shaded area represent the
minimum and maximum values (0 and 1 quantile) in every stage. The quantiles show
the distribution among scenarios of bypass and overflow, in each stage. This quantile
representation will be used frequently.

The minimum value for both bypass and overflow are always zero. For overflow,
all values except the maximum values are zero. The maximum overflow is non-zero
for t ∈ {28, 29, 43, 44, 46, 49, 50, 51}, and towards the end of the period, bypass is more
frequent.

Figure 5.3: Convergence of algorithm and total spill in every stage
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Figure 5.4: Total simulated inflow from last iteration, input price and estimated op-
timal schedule.
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Figure 5.4 illustrates the simulated inflow, price input and the estimated optimal
production schedule over the planning period. The inflow plot is the total simulated
inflow of the last iteration. We have included the production schedule from the ini-
tiation step of the algorithm, where expected future income was set to zero, in order
to illustrate the improvement caused by constructing an expected future income func-
tion in every stage. The estimated optimal schedule has more production when the
prices are high, whereas the initial schedule spends the initial volume quickly and is
influenced more by the inflow.

Figure 5.5 illustrates the estimated optimal production schedule for Hamlagrøvatn.
The bypass is kept insignificantly small throughout the period, and only some scenar-
ios had significant overflow, as presented in Table 5.2. We regard everything above 1
Mm3 as significant. The red lines represent the intervals where the different approx-
imated environmental constraints are in effect, as indicated by equation references
under the horizontal axis.

We see that production is zero for most cases while constraint (3.21) is active.
Recall the convex hull (3.21) of the environmental restriction (i), from Section 3.6.We
want to examine how often we are breaking restriction (i) by being in the red area in
Figure 3.2b. Table 5.3 shows how many scenarios had inflow greater than I, meaning
production and bypass should be zero, according to the environmental restriction. We
have compared this to how many scenarios actually has zero production.

(3.21) (3.22)-(3.23) (3.26)

(3.24)

Figure 5.5: Estimated optimal volume and production schedule for Hamlagrøvatn
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Table 5.2: Number of scenarios with significant overflow in Hamlagrøvatn, for the
estimated optimal schedule

Stage Number of scenarios with
significant overflow

Maximum overflow

t = 27 5 15.76

t = 28 13 25.47

Table 5.3: Number of scenarios where production should be restricted, compared to
number of scenarios with zero production.

Stage Number of scenarios with
f2w(Z

s
2,t) > I

Number of scenarios with
zero production

t = 20 41 100

t = 21 77 100

t = 22 87 100

t = 23 96 91

t = 24 96 100

5.3.3 The value of the environmental constraints
In order to get an estimate of the loss of revenues caused by the constraints, we have
run the optimization without including the environmental constraints. For this run, the
algorithm converged in roughly 1 hour, after 21 iterations with the upper bound U and
lower bound L = L̂± 1.96σ on the objective function

U = 65.0013 M EUR,
L̂± 1.96σ = 64.3980 ± 0.7367 M EUR,

with 95% confidence of the lower bound, and zero penalty. Figure 5.6 shows the Ham-
lagrø reservoir volume and production for this solution. Now, the red lines only show
where the environmental constraints should have been activated.
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Figure 5.6: Estimated optimal volume and production schedule for Hamlagrøvatn,
without including environmental restrictions.

5.3.4 Discussion of results
As mentioned in Section 5.2, we observe that the convergence of the algorithm is
affected by the penalties. We have set the penalty cost very high, in order to maintain
the constraint in all scenarios. From Figure 5.3 we observe that the upper bound does
not improve much between iteration 2 and 10. This is arguably the expected future
income function is not represented adequately, and is unable to prevent low reservoir
volumes, resulting in schedules that break the soft lower volume bounds, and thus gets
heavily penalized. Perhaps, a better way of selecting what cuts to include can prevent
this effect. We also note that the large confidence interval of the lower bound makes
it difficult to certainly choose an estimated optimal tc.

We have obtained a production schedule which is expected to yield revenues of
no more than U = 64.5602 M EUR, and no less than L̂ − 1.96σ = 63.551 M EUR
with 95% certainty, for the modeled system. However, we have simplified the actual
hydro system. By multiplying the annual production for all hydro plants in the Bergs-
dalen watercourse 1033.6 Gwh (NVE, 2019) with the mean annual price from last year
(2018) 43.05 EUR/Mwh (Nordpool, 2019), we get an estimated annual revenues of
roughly 44.5MEUR. Considering we used a deterministic price series, we expect the
optimal production schedule is ”bolder”, than if we modeled price as a stochastic pa-
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rameter. A ”bolder” schedule does not consider uncertainties in price, and will obtain
larger revenues if the realized price is the same as we guessed in the beginning of
the planning period. We have set the end volume bound slightly lower than the ini-
tial volume, resulting in a net loss of water over the planning period, although a large
production volume. This may not be representative for the actual decisions made by
the producer, BKK. In addition, the simplification of turbine efficiency functions to a
scalar, as mentioned in Section 2.2, might yield a higher power output than the actual
hydro system. We keep in mind the differences between the actual hydro system and
the model, however we assume that the estimated optimal schedule is still relatable to
the actual hydro system, in terms of comparing one schedule to another.

Figure 5.4 gives an indication that the estimated optimal schedule is trustworthy.
The goal was to store water when prices are low, and produce power when prices are
high.We can see that the large inflow volumes between t = 20 and t = 30 do not affect
the estimated optimal production considerably, because the price is low in this period.
That means, the schedule is able to make use of the storage capacity of the reservoirs
in an efficient manner. We notice that bypass increases considerably towards the end
of the planning period. This may be due to the lower bound on end reservoir volume,
which may not be ideal end term conditions. However, we do not trust the end of the
production schedule due to its sensitivity to the end term conditions as mentioned in
Section 1.1. We also notice dips in the productions at t = 1 and t = 38, where the
price is relatively high compared to the rest of the period, however not to the closest
price points.

In order to determine how well we are able to represent the environmental re-
strictions, we inspect the schedule for Hamlagrøvatn, Figure 5.5. Recall that bypass
was considered insignificant, and only some overflow was considered significant, as
presented in Table 5.2.

We know that restriction (i) is accurately represented from tb to tc, for a scenario
independent tc. From ta to tb it is not accurately represented. However, production is
ceased in most scenarios. When considering the price plot in Figure 5.4 this makes
sense, because the price in this interval is relatively low. Hence, the effect of restriction
(i) depends on the price. Note that in t = 23, we are breaking restriction (i), because
we have non-zero production in 9 scenarios, whereas only 4 scenarios have inflow
volume less than I.

The soft lower bound on reservoir volume from tc to td is maintained. Restriction
(ii) has been adequately represented for a scenario independent activation time. This
means we have set the penalty cost sufficiently high. However, we noticed that the
high penalty cost affected the convergence of the algorithm. For this case, it is possible
to maintain the restriction in all scenarios. If that is not the case we will severely affect
the convergence. Moreover, we have seen that the algorithm captures the productions
dependency on power price. This in turn may affect the optimal value of tc, since
production can wait while prices are low and vice versa. In addition, if tc is set too
late, we get a long period with no production and bypass, and we risk overflowing.
Hence, it is likely that the optimal schedule can be improved if we are able to estimate
a tc value for each scenario. This could be done by implementing a heuristic utilizing
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the two observations above, to push tc back if prices are low, and move tc forward if
we have a high inflow scenario where we risk overflow. However, due to the sharing
of cuts among scenarios in each case, it seems like a complicated task.

We notice that volume is stable from td to te, and restriction (iii) is accurately
represented.

Comparing the production schedules in Figures 5.5 and 5.6, we see that the so-
lution is not excessively affected by the environmental constraints. However for the
schedule without environmental constraints, we see that the Hamlagrøvatn reservoir
is completely emptied around t = 18 for all scenarios. Thus, this schedule is able to
produce more in the beginning of the period. We have not discussed the production
efficiency coefficients. However, the production efficiency is lowest in the Hamlagrø-
vatn reservoir. Although, we still earn more by producing more in Hamlagrøvatn, it
is reasonable to assume that the schedule is able to ”work around” the restriction and
keep production high in modules with higher production efficiency. The production
efficiency coefficients are available at NVE (2019), as energiekvivalent. The upper
bound is 0.7% larger, and the estimated lower bound also indicates that the true lower
bound is larger without the environmental constraints. This indicates that we might
earn a little more if we do not respect the environmental constraints, but we will not
increase revenues by more than 0.7%.

5.4 Price scenario sensitivity
In order to check the algorithms sensitivity to the choice of price series, we perform
the optimization again with a different choice of price series. Figure 5.7 shows the new
price series used for this analysis. This price series is also obtained from the collec-
tion of price series depicted in Figure 5.1. We use the same procedure as previously,
in order to determine an estimated optimal scenario independent tc and evaluate the
estimated optimal schedule.

Figure 5.7: The price series chosen for the price scenario sensitivity analysis
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5.4.1 Second tc analysis
As we did in the previous optimization procedure, we have run Algorithm 3 for all
18 possible values of tc. 60 inflow scenarios were simulated in each forward iteration,
and the calculations finished in approximately 10 hours. Figure 5.8 shows the result of
the tc analysis. We determined tc = 23 as the estimated optimal scenario independent
value for tc.

Figure 5.8: Second analysis for estimated optimal scenario independent tc

5.4.2 Production schedule for tc= 23 with second price series
We ran algorithm (3) with tc = 23, simulating 100 scenarios in the forward simulation.
The algorithm converged in roughly 1.3 hours, after 19 iterations. The upper bound U
and the lower bound L = L̂± 1.96σ were

U = 55.7924 M EUR,
L̂± 1.96σ = 55.3622 ± 0.6876 M EUR,

with 95% confidence, with zero penalty. Figure 5.9 shows the volume and production
of the Hamlagrøvatn reservoir. We observe that from the tc analysis, we have chosen
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tc < tb. As explained in Section 3.6.3, this implies that constraint (3.23) is never
activated.

ta tbtc td te

tc td

Figure 5.9: Estimated optimal volume and production schedule for Hamlagrøvatn
using the second price series

5.4.3 The value of the environmental constraints for the second
price series

We ran the same case as above, without including the environmental constraints. For
this run, the algorithm converged in roughly 50 minutes, after 17 iterations with the
upper bound U and lower bound L = L̂± 1.96σ on the objective function

U = 56.4821 M EUR,
L± 1.96σ = 56.3636 ± 0.7082 M EUR,

with zero penalty. Figure 5.10 shows the Hamlagrøvatn reservoir volume and produc-
tion for this solution.
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Figure 5.10: Estimated optimal volume and production schedule for Hamlagrøvatn,
without including environmental restrictions.

5.4.4 Discussion of results
The price scenario chosen for the analysis, was chosen on purpose because it features
a high power price in a period where production might be completely restricted, de-
pending on the activation of restrictions (ii), tc. When comparing the optimization
for the two price series, we see that tc may depend significantly on the price. Thus, a
scenario independent representation of tc is not ideal if we are to extend this imple-
mentation to include price uncertainty.

For this case, we see that the production schedules in Figures 5.9 and 5.10 are
significantly different. As the price has a peak at t = 27, we see that the Hamlagrøvatn
reservoir volume is usually kept low at this time, arguably due to high production, and
filling start later than in the previous case, Figure 5.6. However, both schedules has
a high chance of producing close to maximum capacity at the price peak in t = 27.
The upper bound is 1.2% larger, and the estimated lower bound also indicates that the
true lower bound is larger without the environmental constraints. For this case, we can
increase revenues a little more by not respecting the environmental constraints, than
in the previous case. However, not by more than 1.2%.
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Conclusions

Hydropower production planning is an important task. Depending on the size and
timescale of the problem, different aspects of the task should be prioritized in the
modeling. As prognoses for inflow and price are subject to a great deal of uncertainty
on a longer timescale, it is important to optimize with respect to these uncertainties,
when determining an optimal production schedule. The solution method method pre-
sented in this thesis is able to handle the uncertainty of future inflow, at the cost of
sacrificing modelling accuracy. In order to use the proposed solution method, we re-
quire the problem to be formulated as an LP problem, in order to construct Benders
cuts to construct a representation of the expected future cost function in each stage.
Additionally, the LP representation has the advantage of giving the shadow prices of
the reservoir volume restrictions, called water values. The water values at the begin-
ning of the planning period may be valuable for making daily decisions. We found
that the environmental restrictions imposed by NVE on the Bergsdalen watercourse
can be included if they are approximated using scenario independent activation times.

6.1 Scheduling under environmental restrictions
When determining an optimal production schedule for the Bergsdalenwatercourse, we
need to respect the environmental restrictions imposed on the system, by NVE. The
restrictions were divided in to three parts, where all three affect the Hamlagrøvatn
reservoir in the Bergsdalen watercourse. The restrictions are imposed at the earliest
on 15. April, until 1. September. First, once the inflow volume reaches a certain level,
during the springmelt, we are required to cease production and bypass until we reach a
certain reservoir volume level. Then, we are required tomaintain that reservoir volume
level until 15. August. Lastly, we are not allowed to lower the reservoir volume level
until 1. September. We saw that the first two parts challenges the solution method, and
require simplification if we are to model the problem as an LP problem. The third part
was implemented with success.

The first part of the environmental restrictions is activated depending on the inflow
scenario, hence we classified it as scenario dependent. Thus, the restriction might
be activated at different times in different scenarios. We have seen that the solution
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method requires that the Benders cuts are shared among all scenarios in every stage.
Therefore, the restriction is challenging, because all scenarios in each stage need to
share the same circumstances. That is, all subproblems should have the same solution
space in each stage. In addition, the solution spaces need to be convex, due to the LP
requirement.

In order to reflect the first part of the environmental restrictions, we determined
a solution space restricting production and bypass when the inflow volume is suf-
ficiently high to activate the scenario. This allows the possibility of ”deactivating”
the restriction if inflow decreases. However, during the relevant period, which is the
spring melt, inflow usually increases. As a complete stop, that is a discrete activation,
of production and bypass after sufficient inflow resulted in a non-convex solution
space, we replaced the solution space with its convex hull. As a result the optimal
schedule may break the restriction, however to a smaller extent than without any re-
striction. Since the relevant period was relatively short, we considered the effect of
this simplification to be small. Additionally, after analyzing the estimated optimal so-
lution we observed that due to low prices during this period, most scenarios had zero
production evenwhen production was not restricted by the constraint. Hence, the price
affects whether or not the constraint will be binding.

The second part of the environmental restrictions is activated depending on the
reservoir volume, which is a decision variable in the optimization model. If we let
the activation time be a variable depending on the reservoir volume, we introduce a
non-linearity. Additionally, the discrete activation of the function, similar to the first
part, is not consistent with the LP requirement.

As means of approximating the second part of the environmental restrictions, we
simplified the activation time to a scenario independent value, and solved the HPS
problem (2.4) for all possible activation times. This required a long computation time,
and we recommend it only for determining a fixed activation time, for later use. Ad-
ditionally, it was hard to conclude the optimal activation time for this case, due to the
uncertainty in the lower bound. However, the upper bound on the optimal objection
function value can determine what activation time looks the most promising. If the un-
certainty can be lowered, we believe the analysis can be profitable for a hydropower
producer. In reality the optimal activation time is most likely scenario dependent.
Thus, we can consider a fixed activation time, which we have found from running the
analysis of all possible scenario independent activation times. Then, we could inves-
tigate a heuristic to move the activation times forward or backwards, depending on
the scenario. However, as cuts are shared among scenarios, we are quite restricted as
to what strategies could be implemented.

We ran the optimization for a second price series, in order to investigate the effects
of the environmental constraints under another price scenario. The second price series
was selected in order to try to challenge the environmental restrictions. We found
that the scenario independent activation time of the second part of the environmental
constraints may change significantly, depending on the price scenario. Additionally,
we ran the optimization for both price scenarios without including the environmental
constraints. For the first price scenario this increased the upper bound on expected
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revenues by 0.7%, and by 1.2% for the second price scenario.

6.2 Further work
The HPS problem solved in this thesis, problem 2.4, is a simplified version of the
scheduling problem solved by Gjelsvik et al. (2010). There are already established
techniques which expand on this solution method such as piecewise linear production
efficiency curves (mentioned in Section 2.2.1), and parallel processing (mentioned in
Section 5.2). There is great potential in further improving the representation of pro-
duction efficiency functions, for instance by modelling non-convex efficiency func-
tions (Helseth, 2019). The computation time can also be decreased more by improving
parallel processing implementation, as mentioned by Helseth and Braaten (2015).

We have seen that modelling complexity is quite limited when utilizing the solu-
tion method presented in this thesis. If greater detail is required, to implement more
complex constraints, we recommend investigating other techniques. In Section 1.2,
we mentioned some other techniques that have been tried. Modelling the problem as
a Mixed Integer Linear Program (MILP) significantly increases the modeling accu-
racy of the environmental constraints presented in this thesis. However, then we need
to limit the amount of inflow scenarios we take into account. Note that, as mentioned
in the beginning of this chapter, power producers are interested in the water value of
their reservoirs. Thus, a potential solution method should have well a defined dual
problem. If we introduce integers to the optimization model, we lose the water val-
ues. A scenario reduced MILP was solved by Hjelmeland et al. (2019), with a version
av the SDDP algorithm. The introduction of integers resulted in higher computation
time, and the trade-off between improved results and increased computation time was
not justified. However for the Bergsdalen problem, the number of integers to be in-
troduced is limited, as the environmental constraints can only be activated during the
summer. An interesting experiment is to include a scenario dependent activation time
for the second part of the environmental constraint in the solution method presented
by Hjelmeland et al. (2019), and investigate potential improvements of results.



Appendix A

Central components of the algorithm

Here we present the implementation of the main components of the SDDP algorithm
presented in this thesis. We chose to present the first part of the initialization, in order
to give an overview of the attributes belonging to an instance of the Problem class.
An instance of the Problem class represent an instance of all subproblems defined by
(4.7) for all (s, t) ∈ S× T. We have defined object methods for performing backward
recursion, Algorithm (1), and forward simulation, Algorithm (2), on an instance of the
Problem class. Lastly, we run the SDDP algorithm on the Problem class in the main
algorithm, which is outlined by Algorithm (3).

Additionally we have created functionality to read inflow, price and system param-
eter data, generate the inflow model described in Section 4.1, build the pyomo models
of each subproblem (4.7) and plotting results. To access the entire source code, please
visit https://bitbucket.org/harvidsen/hydropowersddp/src/master/. Due to restrictions
on confidential data, the public will not be able to test the code without obtaining
another dataset. Functionality for generating data, may or may not be added to the
repository.

https://bitbucket.org/harvidsen/hydropowersddp/src/master/


A.I Imports

The following are the imported modules for the main script. We have put frequently used operations in
"helpers.py".

In [ ]: from submodel import buildModel

import numpy as np

import matplotlib.pyplot as plt

import pyomo.environ as pyo

from pyomo.opt import SolverFactory, SolverStatus, TerminationCondition

import pandas as pd

import sys

from helpers import *

import math

A.II Initialization

The following method initializes an instance of the Problem class. We show only the first part of the initial-
ization, as the simulation part of the initialization is almost equivalent to the forward simulation.

In [ ]: class Problem:

def __init__(self, S, T, pricedata, inflowModel, params, opt, times, q_ymean):

'''Initializing the Problem class. Creating all containers for values.

Building all subproblems and guessing an optimal production plan,

without considering future income.'''

#Creating structure for a little overview of dimensions

self.opt = opt # The chosen solver

self.params = params # Parameters

self.T = T # Planning horizon

self.S = S # Scenarios to simulate

self.I = len(params) # Number of reservoirs

self.IM = inflowModel # The inflow model

D2container = np.full(shape=(S,T), fill_value = -1.0)

D3container = np.full(shape=(S,T,self.I), fill_value = -1.0)

self.V = np.copy(D3container) # Reservoir volumes

self.Q = np.copy(D3container) # Production

self.B = np.copy(D3container) # Bypass

self.O = np.copy(D3container) # Overflow

self.Z = np.copy(D3container) # Transformed inflow

self.Y = np.copy(D2container) # Sold power

self.gamma = np.copy(D3container) # Penalties

self.EFI = np.copy(D2container) # Expected future income

self.subs = np.copy(D2container).tolist() # List of subproblems

self.revenues = np.copy(D2container) # Revenues in each stage

self.objs = np.copy(D2container) # Objective function

# values in each stage

self.Vcoeffs = [] # Water values for t = 1

self.betas = [] # Cut RHS for t = 1



self.std = [] # Standard deviations

# of each simulation

self.dist = [] # Total revenues

# of each simulation

self.Upper = [] # Upper bounds

self.Lower = [] # Lower bounds

t0, t1, t2, t3, t4 = times

self.times = times # Activation times for environmental constraints

self.q_ymean = q_ymean # Inflow value to activate (i)

#Assigning values

self.p = pricedata # Price of power in each stage

# Number of possible inflow error realizations

self.K = self.IM.e_t_k[0].shape[0] #All times must have the same K

self.V0 = np.empty(self.I) # Initial reservoir volumes

for i in range(self.I):

self.V0[i] = params[i]['V0']

# In case we want to fix some random scenarios

# self.picks = np.full(shape=(S,T), fill_value = 0)

# for s in range(S):

# for t in range(T):

# self.picks[s,t] = np.random.choice(3)

IM = self.IM

##################ACTUAL SCRIPT DOES NOT END HERE###########################

#Perform a forward simulation that generates pyomo models in self.subs[s][t]

# for all (s,t) in self.S and self.T, while solving with EFI fixed to zero.



A.III Backward recursion

The following method is defined in the Problem class. This is the backward recursion method used in the
algorithm.

In [ ]: def backPass(self):

'''Creating cuts for stage T-1 to stage 0, by solving subproblems for

stage T to stage 1. Only creating 8 cuts in each iteration, where

subproblems to create cuts are chosen heuristically to create only the

"most relevant" cuts.'''

#Fetching some values for ease of access

T = self.T

S = self.S

I = self.I

opt = self.opt

subs = self.subs

K = self.K

for t in [T-i-2 for i in range(T-1)]:

#Using heuristic to choose subproblems to generate ''most relevant'' cuts

sampleSampleS, rest = findScatteredVals(self.revenues[:,t+1], S)

sampleSampleS.extend(np.random.choice(rest, size = 4, replace = False))

for s in sampleSampleS:

sub = subs[s][t+1] #Creating cut from t+1

beta = 0

pi = np.zeros(shape = (I))

pi2 = np.zeros(shape = (I))

#Startvalues for t+1

V_prev = self.V[s,t]

Z_prev = self.Z[s,t]

#Solving for all K realizations of inflow modelling error,

# and creating cut coefficients.

p_ind = 0

p_lst = self.IM.p_dist

for e in self.IM.e_t_k[(t+1)%52]:

p = p_lst[p_ind]

p_ind += 1

for i in range(I):

sub.e[i] = e[i]

opt.solve(sub, warmstart = True)

beta += p*pyo.value(sub.obj)

for i in range(I):

dual = sub.dual[sub.waterBalance[i]]

dual2 = sub.dual[sub.inflowTransition[i]]



pi[i] += p*dual

pi2[i] += p*dual2

beta -= np.dot(V_prev,pi)

beta -= np.dot(self.IM.f2((self.IM.cmat @ Z_prev), t+1), pi2)

if t == 1:

self.Vcoeffs.append(pi)

self.betas.append(beta)

#Adding expected cut all scenarios in stage t

for u in range(S):

sub_prev = subs[u][t]

V_expr = pyo.summation(pi, sub_prev.V)

# The following three lines should be one line

Z_expr = sum(self.IM.f(sum(self.IM.cmat[i,j]

* sub_prev.Z[j] for j in sub_prev.I), t+1, i)

* pi2[i] for i in sub_prev.I)

cut = sub_prev.EFI - V_expr - Z_expr <= beta

sub_prev.cuts.add(cut)

#Calculating new upper limit

lst = []

for s in range(S):

opt.solve(subs[s][0], warmstart = True)

lst.append(pyo.value(subs[s][0].obj))

self.Upper.append(max(lst)) #Should be equal anyway



A.IV Forward simulation

The following method is defined in the Problem class. This is the forward simulation method used in the
algorithm.

In [ ]: def forwardPass(self):

'''Simulating new inflow scenarios, and solving all subproblems. As the

backward recursion might alter the state of some subproblems, we assign

them the state of the last simulation.'''

#Fetching some values for ease of access

S = self.S

T = self.T

I = self.I

opt = self.opt

subs = self.subs

IM = self.IM

t0, t1, t2, t3, t4 = self.times

obj_lst = []

for s in range(S):

objective = 0

for t in range(T):

#Determining state of subproblem (s,t)

if t == 0:

V_prev = self.V0

Z_prev = IM.Z0

realized_noise = [0,0,0,0] #Assuming no error in first week

Z = IM.cmat @ Z_prev + realized_noise

else:

V_prev = self.V[s,t-1]

Z_prev = self.Z[s,t-1]

ind = np.random.choice(self.K, p = IM.p_dist)

# # In case we want to fix the scenarios

# realized_noise = self.noise[self.picks[s,t]]

realized_noise = IM.e_t_k[t%52,ind]

Z = IM.cmat @ Z_prev + realized_noise

#Assigning the correct values to the subproblem

sub = subs[s][t]

for i in range(I):

sub.Z0[i] = Z_prev[i]

sub.e[i] = realized_noise[i]

sub.V0[i] = V_prev[i]

#Solving and storing

result = opt.solve(sub, warmstart = True)



checkFeasibility(sub, result, sub.name)

self.EFI[s,t] = pyo.value(sub.EFI)

self.revenues[s,t] = pyo.value(sub.p*sub.Y)

self.objs[s,t] = pyo.value(sub.obj)

subObj = pyo.value(sub.obj) - pyo.value(sub.EFI)

objective += subObj

if t == T-1: objective += pyo.value(sub.EFI)

self.Z[s,t] = vecVal(sub.Z)

self.V[s,t] = vecVal(sub.V)

self.Q[s,t] = vecVal(sub.Q)

self.B[s,t] = vecVal(sub.B)

self.O[s,t] = vecVal(sub.O)

self.gamma[s,t] = vecVal(sub.gamma)

obj_lst.append(objective)

lower = 1/S * sum(obj_lst)

this = 0

for obj in obj_lst:

this += (lower - obj)**2

std = math.sqrt(1/(S**2) * this)

#Updating lower bound

self.std.append(std)

self.Lower.append(lower)

print('Standard deviation of Monte Carlo run: ', std)

#And saving trajectories to plot

self.history.append(np.copy(1/self.S*self.Q.sum(axis = (0,2))))

self.check.append(np.copy(self.Z))

self.dist.append(obj_lst)



A.V Main algorithm

This is the main algorithm implemented in this thesis, in order to solve the Bergsdalen HPP. Here we have
excluded functionality for logging and plotting, which is present in the actual implementation.

In [ ]: #Initialize

#

data = Problem(

S, # Number of scenarios to simulate in the forward simulation

T, # Number of weekly time-stages

pricedata, # A deterministic price series

inflowModel, # An instance of the inflow model

params, # Hydro system parameters

opt, # The chosen solver instance, from pyomo.opt.SolverFactory

times, # Activation times for the approximated environmental

# constraints

q_ymean # Inflow amount for activation environmental restriction (i).

) # Only for plotting.

maxIter = 30

e = 1 #Just higher than tol

tol = 0

i = 1

while e > tol or tol > 1:

# Perform backwards recursion

data.backPass()

#Perform forward simulation

data.forwardPass()

#Update convergence criterion values

tol = 1.96*data.std[-1]

e = abs(data.Upper[-1] - data.Lower[-1])

#Check iteration number

if i == maxIter:

log.write('\nDid not converge after '+str(i)+ ' iterations')

break

i += 1
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