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1 Introduction

In 1980 A. Kaplan [14] introduced the notion of Heisenberg-type Lie algebras and
Heisenberg-type groups as a natural generalization of the Lie algebra of the Heisenberg
group and the Heisenberg group itself. He introduced them to study the composition of two
positive definite quadratic forms and certain explicit solutions of sub-elliptic operators.
Later he discovered an intimate connection between Heisenberg type algebras and certain
representations of Clifford algebras. Kaplan continued by endowing the Heisenberg-type
groups with a left invariant metric and studied the Riemannian geometry of these spaces
such as curvature, geodesics and isometries. The Heisenberg group and the Heisenberg-type
groups can in a natural way be considered as sub-Riemannian manifolds and are considered
as core examples in the study of sub-Riemannian manifolds.

A. Lichnerowicz [18] showed in 1944 that in dimensions not greater then four, harmonic
spaces coincides with rank-one symmetric spaces. He also conjectured that this is true for
higher dimensions. Some years after Kaplan introduced the notion of Heisenberg-type
groups, E. Damek [§][7], considered the geometry and curvature of semi-direct extensions of
a Heisenberg-type group with a one-dimensional simply connected abelian group and
together with F.Ricci in [9], proved that these are harmonic but not always symmetric,
giving a counterexample to the so called Lichnerowicz conjecture. These spaces are known
as Damek-Ricci spaces.

Some years later P. Ciatti in [4] generalized Kaplans Heisenberg-type Lie algebras to allow
for non-degenerate quadratic forms, instead of only positive definite. He called these Lie
algebra as semi-H-type Lie algebra and showed their existence and classified them using
representations of Clifford algebra, that satisfies a compatibility condition. Analogous to
how Kaplan introduced the Heisenberg-type groups as Riemannian manifolds, we can
consider the simply connected two-step nilpotent Lie group attached to a semi-H-type Lie
algebra and equip it with a left invariant metric. These semi-Riemannian manifolds, were
called semi-H-type groups and were studied by L. Cordero and P. Parker in [5].

In this thesis we will study the geometry and curvature of semi-H-type groups, in particular
we are interested in finding the semi-Riemannian geodesics. Moreover we want to find
geodesics when we consider semi-H-type groups as a sub-semi-Riemannian manifolds. We
will also generalize the notion of a Damek-Ricci space, by instead considering the
semi-direct extension of a semi-H-type group with a one-dimensional simply connected
abelian group. We will denote these spaces as semi-Damek-Ricci spaces and study their
curvature and geodesics.

The structure of this thesis is the following:

e In Chapter 2 we will introduce the basic notions, definitions, conventions and results
that will be used in this thesis. We assume that reader is familiar with linear algebra and
the theory of smooth manifolds.

e In Chapter 3 we give the definition of a semi-H-type Lie algebra and group. We study
the curvature and the semi-Riemannian geodesics of a semi-H-type group. Moreover we find
the sub-semi-Riemannian geodesics of semi-H-type groups, when considering them as
sub-semi-Riemannian manifolds.



e In Chapter 4 we generalize the definition of a Damek-Ricci spaces and study their
curvature and geodesics.

e In chapter 5 we summarize the main results of this thesis. Moreover we present some
open questions about semi-H-type groups and semi-Damek-Ricci spaces and potential topics
for further research.



2 Prerequisites

This section will be devoted to the basic definitions, conventions and results that will be
used throughout this thesis. We start by going through the linear algebra theory and work
our way to semi-Riemannian manifolds and sub-semi-Riemannian manifolds.

2.1 Vector Spaces

We assume that the reader is familiar with the definition of a vector space and basic linear
algebra. In this thesis we will deal with finite dimensional vector space over R, unless said
otherwise. We will also use Einstein summation convention, when it is convenient.

2.1.1 Scalar product spaces

Definition 2.1. Let V be a n-dimensional vector space over R. A scalar product on V is a
nondegenerate symmetric bilinear form

g:VxV SR

The tuple (V, g) is called a scalar product space. Let x € V, define g(z,x) = ||z||* and call it
the square of the norm of x, we say that x is

spacelike if ||z|*> 0
null if ||lz|?>=0
timelike  if |lz|%*< 0.

We define |z|= |g(z, z)|2= |||z||%|2 and we have that
|z|%= ||z||? if x is spacelike
|z|2= 0 if 2 is null
lz|>= —||z||> if = is timelike

Notice that 0 € V is a null vector, since ||0]|?= ||z — z||?= 0. We say that two vectors
x,y € V are orthogonal to each other if g(x,y) = 0 and they are orthonormal if they are
orthogonal and ||z||?= £1 and ||y|*>= £1. We define the following three sets
Space(V,g) = {:E € V‘ x is spacelike}
Null(V,g) = {z € V| isnull}
Time(V,g9) = {z € V‘ z is timelike }
Definition 2.2. Let {e;}!" ; be a basis for V. Then {e;}" ; is said to be an orthonormal

basis if
lei|?= 41 and  g(ei,ej) =0 for i # j

Proposition 2.3. [22]
A scalar product space (V,g) has an orthonormal basis.

Let {e;}" ; be a basis for V such that z = 2%¢; and y = y’e;. Then g(x,y) = 2’y g(e;, ¢;) is
coordinate expression for the scalar product of x with y.



Definition 2.4. Let {e;}!" | be a basis for the scalar product space (V, g). We define
9ij = g(e€i, €;5)

and say that g;; are the components of g relative to the basis {e;}I" ;.

Proposition 2.5. [22]

Let (V, g) be a scalar product space and {e;}_, be an orthonormal basis for V. Then each
x € V has the unique expression

x = g(z,ei)giie;
The requirement that the symmetric bilinear form is nondegenerate is of great importance

and we would like to know when a symmetric bilinear form is nondegenerate.

Proposition 2.6. [22]
A symmetric bilinear form is nondegenerate if and only if its matriz relative to one basis is
1nvertible.

By proposition |2.6| we have that any scalar product has an invertible matrix associated with
it and in an orthonormal basis {e;}}; this matrix has the form

+1 0 0
0 +£1 ... 0
g = (gij) = ((51']‘6]‘) = . . . . where €5 = 3gj; = +1. (2.1.1)
0 0 ... =1
Definition 2.7. Let {e;}!" ; be an ordered orthonormal basis for (V,g) such that the
n-tuple (e1,...,€,) has r positive signs at the front and s negative signs at the end. Then

the tuple (3°;_; €,y i, —€) = (1, s) is called the signature of g.

In general the scalar product space (R", g), when ¢ has signature (7, s) will be denoted R™*.
The dot product from linear algebra is a scalar product and in this case two orthogonal
vectors are at right angles to each other. This is consistent with our intuition, but in a
general scalar product space this may not be true.

1 0 } and its signature is therefore (1,1). Let u = B],

Example 2.8. Let V =R?, g = {O 1

we have that ||u|?= 22 — y? and
Space(V,g) = { eVl]a?—y*>0}
Null(V,g) ={ eV|z?—y?=0}

Time(V,g) = { €V]a?—y* <0}

The two vectors v = B\] and w = [i\] are orthogonal to each other, since

vlgw =1 A [_AJ =0.



Definition 2.9. Let (V, g) be a scalar product space and W a subspace of V. We define the
set

Wt={zeV|g(zy =0 VyeW}.
Also W is said to be a nondegenerate if g|y is nondegenerate.

Proposition 2.10. [22]
Let (V, g) be a scalar product space and W a subspace of V.. The subspace W is
nondegenerate if and only if V is the direct sum of W and W+ i.e V=W @ W+,

2.1.2 Dual space

The dual space of a vector space will be important in this thesis so we give a short review.

Definition 2.11. Let V be a vector space. The dual space of V', denoted V* is the set of all
linear transformations from V to R i.e

V* = Hom(V,R).

The dual space of V is again a vector space and we call an element in the dual space a
covector. In fact it is of same dimension as V.

Definition 2.12. Let {e;}" ; be a basis for V. We define its dual basis as the set of
covectors given by

; i 1 fori=j
J(a.) — &) — )
a(vz)—éi—{o for i # 7.

Proposition 2.13. [26]
The covectors {a'}_; forms a basis for V*.

All finite dimensional vector space are isomorphic, but the scalar product gives us extra
structure to define a special isomorphism between a vector space and its dual.

Definition 2.14. (Musical isomorphisms)
Let (V, g) be a scalar product space and V* be the dual space of V. Let x € V and f € V*,
we define two maps called flat and sharp

b: V- V*
x—bxr =g(z,-)

f: VESV
f=tf
where §f is such that f(z) =g(if,z) VzeV.

These two maps are isomorphisms and in fact they are inverse of each other such that

ﬁob:IV
bOﬁ:Iv*



If + = 2’¢; and f = f;a' we have that

br = gija:iaj and f#f = gijfz-ej where (gij) is the inverse of (gi;).

Proposition 2.15. Let (V,g) be a scalar product space with basis {e;}1_; and let {a'}?_; be
its dual basis. If f: 1 — V* is curve in V* such that t — f;(t)a’, where the component
functions f; : I — R are differentiable, then

d df
“th =2 (2.1.2)

Proof. We compute both sides of ([2.1.2))
d d [ ;i i
260 = 5 |070] = 0

a

G

) =2 | fite]| =7 )

There is a natural way to make the dual space of any scalar product space into a scalar
product space.

Definition 2.16. We define a scalar product on V* induced by g, denoted g* as

g (f,h) = g(8f . tg)

and the matrix of this scalar product is simply ¢g* = (¢%/) = g~ 1.

2.1.3 Tensors

Tensors is a integral part of the machinery we will use in this thesis. We give basic
definitions and results.

Definition 2.17. Let V be a vector space and V* be its dual. A k-contravariant,
[-covariant tensor over V is a multilinear map

k l
VEx - xV*xVx---xVSR

and we say that it is a (’f) tensor. The set of all (’f) tensors is denoted le(V)

Remark 2.18. It is obvious that a covector V* > w: V = Ris a () tensor, but a vector
v € V can be viewed as a () tensor. By defining the action of v on w as w(v) i.e
v(w) = w(v). In this sense we have that V 3 v: V* =5 R.

We can make le(V) into a vector space by defining addition and scalar multiplication
pointwise.



Definition 2.19. Let {¢;}"; be a a basis for V and {a’}?_; be its dual basis. For
T € Tf(V) we define the numbers

74174k _ i1 ik ) .
Ui =T(a",...,a'"% ej,...,€j5)

and we call them the components of T.
We can define a multiplication on tensors, called tensor multiplication.

Definition 2.20. Let 7' € Tf(V) and S € T7(V). We define their tensor product as the

(];_tg ) tensor given by

(T ® S)(wh, ..., P ol . ot

_ 1 k.1 l k+1 k+ I+1 I+
=T(w,...,w" v, ., 0)SW WP T 0T,

1..Tp

‘i and S has components Selt , then T'® S has components
p 1 q p

If T has components T;lljl

T Ssilsy
Proposition 2.21. [17]
Let {e;}", be a a basis for V and {a'}, be its dual basis. Then

e, ® e, R @@l (2.1.3)
is a basis for TF(V). Hence dim T}F(V') = n**L.

By proposition [2.21] we have that any tensor can be written as a linear combination of
2.1.3). Therefore if T € T;*(V') has components T} ¥, then

Lot ?

T = T;ll;lke“ R Qe ® adl R ® all

. (i,
and we write T' = (T} /%)

There is one more algebraic operation we can do on tensors to get a new one, called
contraction.

Definition 2.22. Let T = (szll;lk) € TF(V). By setting one upper index and one lower

index as equal and then summing over them, we preform an operation called contraction.

Example 2.23. Let T' = (TJ’) € T}(V). Preforming contraction over the indices, we get
i=j

This analogous to the trace of a matrix and as we know is independent of a choice of basis.

Proposition 2.24. [19]
The contraction of a (’f) tensor is a (’;:11) tensor.

We can combine tensor multiplication and contraction, to get a new operation on tensors
called contracted multiplication.



Definition 2.25. Let 7 € T}(V) and S € T7(V). By first multiplying 7' and S and then

k+p—1

g1 ) tensor. This operation is

contracting over a upper and a lower index we get a new (

called contracted multiplication.
We give a few examples of tensors and various operation on them.

Example 2.26.

i) The scalar product g on a vector space V is a (9) tensor by definition. If {e;}?; is a
orthonormal basis for V and {a'}? ; its dual, then g = g;ja’ ® o/. Likewise g* is a (3)
tensor, g* = g’e; ® e;.

ii) If V > o = 2¢;, then z is () tensor. We can multiply = with g and we get
r®g=xlgje®a’®al whichis a (1) tensor. By contracting, we get a (?) tensor or a
covector, in coordinates the covector has the components g;jz’a?. In fact this is nothing
more than applying the isomorphism b to the vector z since if y = ¢/ ej then

b(2)(y) = b(x) (Y ej) = gija'y’ = gija'y" i = (9ija'a?) (Y er) = (gija'a’)(y).
A similar argument shows that #f for f = f;a’ € V* is nothing more than than the
contracted multiplication of ¢* with f i.e ff = g¥ fiej.

We now give the basic definitions, that allows us to use smooth differential forms later in
this thesis.

Definition 2.27. Let T be a contravariant or a covariant tensor of order at least 2.

e T is said to be symmetric in two of its arguments if transposing them leaves its value
unchanged.

e T is said to be anti-symmetric in two of its argument if transposing them changes the
sign of its value.

T e le(V) is said to be completely symmetric if it is symmetric in any two of its argument.
T e le(V) is called completely anti-symmetric if it is anti-symmetric in any two of its
arguments.

We will now consider all completely anti-symmetric [-covariant tensors.

Definition 2.28. Let A;(V') denote the set all completely anti-symmetric [-covariant
tensors i.e

A(V) = {T eT(V) | T is completely anti—symmetric}.

Under pointwise addition and scalar multiplication, 4;(V') is vector space. We can define a
product such that the product of two completely anti-symmetric tensor, is also a completely
anti-symmetric tensor.

10



Definition 2.29. Let S; denote the group of all permutations of the set {1,...,1}. Let
feTP(V), {v,...,u} be vectors in V and o € S, we define a new [-covariant tensor o f by

(@f) (1, 0) = fF(Vea), -+ Vo))
Let f € A)(V) and g € A,,,(V'), we define their wedge product as
1
fAg= Tl Z (sgno)o(f ®@g) € Aipm(V).
UESl+m
We list some basic properties of the wedge product

Proposition 2.30. [26]
Let f € Ai(V), g€ Apn(V) and h € A.(V). Then

i) frg=(=D)Mmgnf
i) (fAg)Nh=fA(gAh)
We said that A;(V) is a vector space, we now give a basis for 4;(V).

Proposition 2.31. [20]
Let {e;}"_, be a basis for V and {a'}_, be its dual basis. Then the set of all k-covariant
tensors on the form

QA ANQT (i < -e- <))
is a basis for Aj(V'). Hence we have that dim A;(V)) = (%) and if | > n then dim A;(V) = 0.

2.1.4 Algebras

Definition 2.32. Let V be a vector space. An algebra is a tuple (V,-) where - : V x V. =5 V
is a bilinear map. We define the dimension of (V,-) as the dimension of V. Moreover an
algebra is

Associative if z-(y-2)=(x-y)- 2

Unital if 31 eVsuchthatl-y=y=y-1,VyeV
Symmetric if z-y=y-x

Anti-symmetric if x-y=-y-x

Graded if V=@p,VFand :Vkx VS yitk

and V* is a subspace of V.
We give some examples.

Example 2.33.

i) All fields are algebras by definition.

ii) The set of all n x n matrices M, (R), with the usual matrix multiplication is an
associative and unital algebra. Where the identity element is 1 = I,,.

11



iii) The set of all continuous functions on [0, 1], with pointwise multiplication is an
associative, unital and symmetric algebra.

iv) The vector space T(V) == @52, T¢(V), with tensor multiplication is a graded algebra.
This algebra is called the tensor algebra.

Definition 2.34. Let (V,-) be an algebra and {e;}}" ; a basis for V. We define the structure
constants of (V,-) with respect to the basis {e;}I" ;, as the scalars i’; € R given by

€€ = fi];ek
Since the the product is bilinear, we have that the structure constants completely determines
the product of any two vectors in V. For x = z’¢; € V and y = y'e; € V we have that
Ty = miyjei cej = xiyjffjek.
Just as for vector spaces, we want to know when two algebras are equivalent.

Definition 2.35. Let (V,-) and (W, %) be two algebras and ¢ : V.= W be vector space
homomorphism. We say that ¢ is a an algebra homomorphism if

o(x-y)=0¢(x)*op(y) Va,yeV.

An algebra isomorphism is an injective and surjective algebra homomorphism.

Example 2.36. Let V = R? and let {e;}?_; be the standard basis. We define the product
on R? by the table

l-— e | e
(&) €1 €9

€2 €2 | €1

where the leftmost column is the first argument and the top row is the second argument in
the product. The structure constants are therefore

fFTig=1li=1j=2]i=2j=1]ij=2
k=1 1 0 0 -1
E=2 0 1 1 0

Let x = 2%¢;, y = y'e; € R?, then

x-y=a'y fhe, = (2'y" — 2°y)er + (2'y® + 2%y ")ea.

The vector space R? equipped with the product described above is isomorphic to C with the
usual complex multiplication, where the role of the imaginary unit is played by ey and the
real unit played by e;.

Definition 2.37. Let (V,-) be an algebra and U, W be two subsets of V. We introduce the
notation

U-W:span{:v-y ‘ xEUandyEW}.
We say that (U, ) is a subalgebra of (V,-) if U is a subspace of V' and

12



Uv-ucuU
We say that (U, ) is an ideal of (V,-) if U is a subspace of V and
U-vCU.
The center of an algebra, denoted Z(V,-) is the subalgebra given by
ZV,)={zeV]|z-y=0 VyeV}

There are two kinds of algebras that are of special interest for us, namely Lie algebras and
Clifford algebras.

Definition 2.38. Let (g,[-,-]) be an algebra. We say that (g, [-,-]) is a Lie algebra if
Y x,y,z € g we have that

o [z,y] = —[y,x] i.e [, ] is anti-symmetric
o [x,[y,z]] + [y, [z, x]] + [2, [x,y]] = 0 (Jacobi identity)
We call [, ], the Lie bracket of g.

Example 2.39.

i) Let (V,-) be an associative algebra. We can make (V,-) into a Lie algebra by defining
the Lie bracket as
[z,yl=z-y-y-x Va,yeV

ii) Let V be n-dimensional vector space and let End(V') be the space of all endomorphisms
on V. Under composition of maps, we have that End(V') is an associative algebra and
can therefore be made into a Lie algebra by defining the bracket as

[A,B]= Ao B — Bo A.

This Lie algebra will be denoted gl(V'). Since all finite dimensional vector spaces are
isomorphic, we will also denote it as gl(n, R).

Definition 2.40. Let g be a Lie algebra. We define its lower central series as the sequence
with elements given by

gi+1 = [9, 9i] where g1 = g.
and its upper central series as the sequence with elements given by

g™ = [g', g'] where g' =g.

The Lie algebra g is said to be nilpotent if its lower central series eventually is zero and
solvable if its upper central series eventually is zero. Moreover we say that g is k-step
nilpotent if g; = 0 when ¢ > k and k-step solvable if g = 0 when ¢ > k.

Notice that any nilpotent Lie algebra is also a solvable algebra.

13



Definition 2.41. A Lie algebra g is said to be abelian if its center is the whole of g i.e

[g9,09] = 0. A simple Lie algebra g is a Lie algebra which contains no proper ideals and is not
abelian. If a Lie algebra is the direct sum of simple Lie algebras, then it is called semisimple
and if it is a direct sum of simple and abelian Lie algebras it is called reductive.

We now give the basic notions and definitions of Clifford algebras needed in this thesis.

Definition 2.42. Let V be a vector space. A quadratic form on V is map ¢ : V — R such
that

i) q(az) = a?q(z) for all z € V and a € R.
ii) the symmetric form (z,y) — q(x +y) — q(z) — ¢(y) is bilinear

We say that the quadratic form is nondegenerate if (z,y) — q(z +vy) — q(x) — q(y) is
nondegenerate. The tuple (V, q) is called a quadratic space and when the quadratic form is
nondegenerate we call (V,q) a nondegenerate quadratic space.

Any scalar product space (V, g) can be made into a nondegenerate quadratic space by
simply setting ¢(x) = g(z,z). The associated bilinear form is nondegenerate, since

(z,y) — 2g(z,y). Hence any scalar product space can be made into a nondegenerate
quadratic space. A nondegenerate quadratic space can be made into a scalar product space
by setting g(z,y) = q(x + y) — q(z) — q(y). We will only consider quadratic spaces arising
from scalar product spaces, so let g(x) = g(x, z) unless said otherwise.

Definition 2.43. Let (V, g) be a scalar product space and T(V) = @y, T%(V) be the
tensor algebra of V. Let I(V') be the two sided ideal, generated by all elements of the form

xRz +q(x) for ze€V.
The Clifford algebra associated with (V, g), denoted CL(V, g) is defined to be

Cl(V,g9) =T(V)/I(V)
and multiplication will be written as a juxtaposition of elements.

Alternatively we can define the Clifford algebra associated with (V,g) as the real unital
associative algebra, containing isomorphic copies of R and V' as subspaces such that V and
{1} generates the algebra and

xx=—g(x)l forallzeV.

We list some properties of Clifford algebras.

Proposition 2.44. [23]
Let z,y € V. Then, in C1(V,g)

g(w,y) = —%(rcy +yx)

and in particular, x and y are orthogonal to each other if and only if xy = —yx.

14



Proposition 2.45. Let (V,g) be a scalar product space with signature (r,s) and {e;}'="°

be an orthonormal basis for (V,g). Then

oo — -1 for 1<i<r
e 1 for r<i<n

and

eie; = —eje; fori#j
Proof. By definition we have that e;e; = —g(e;)1 = —||e;||*1. Since e; is orthogonal to e;, we
can use proposition and we have that e;e; = —eje;. |

Proposition 2.46. [23]

Let (V,g) be a scalar product space of dimension n and signature (r,s). Then the Clifford
algebra associated with (V, g) is of dimension 2" or 2"~1. The 2"~ case corresponds to
when r — s+ 1 is divisible by 4.

Proposition 2.47. [15]
Let (V,g) be a scalar product space and let K : V — A be a linear map from V into a unital
associative algebra A, such that

K(x)K(z) = —q(x)1l  forallxz € V.
Then K can be extended uniquely into a algebra homomorphism K : CL(V,g) — A.
Furthermore Cl(V, g) is the unique associative algebra with this property.
2.1.5 Algebras Representations

For each element in a Lie algebra, we can associate an endomorphism over a vector space.
In this way we can think of elements of the algebra as actions over a vector space. This
leads us to the definition of representations.

Definition 2.48. Let g be a Lie algebra and U a vector space. A Lie algebra representation
of the Lie algebra g over U is a Lie algebra homomorphism

p:g— gl(U)

Where gl(U) is the Lie algebra of endomorphism of U. The vector space U is called the
representation space of g or a g-module and the representation over U is called faithful if p
is a Lie algebra isomorphism.

Among the representations of Lie algebras, there is one of special interest namely, the
adjoint representation.

Definition 2.49. Let g be a Lie algebra. The adjoint representation of g is the map

ad :g — gl(g)
z+— ad, = [z, ]

such that ad,(y) = [z,y] for all z,y € g.

15



The representation space of the adjoint representation is g considered as a vector space. The
kernel of the adjoint representation
Ker(ad) = {x € g | ad, =0}

is clearly the center of g and hence the adjoint representation is faithful if the Z(g) = 0.
Hence we have that the adjoint representation of any simple Lie algebra is faithful and that
the adjoint representation of any abelian Lie algebra is never faithful.

Just as for Lie algebras, if we have an associative algebra we can associate each element of
the algebra with an endomorphism over a vector space.

Definition 2.50. Let (V) be an associative algebra and U a vector space. A
representation of the algebra (V,-) over U is an algebra homomorphism
p:V — End(U)

Here we consider End(U) as an algebra under compositions of maps. The vector space U is
called the representation space of (V,-) or a (V,-)-module and the representation over U is
called faithful if p is algebra isomorphism.

Out of all associative algebras, the Clifford algebras are of spesial interest for us, as they are
intimately related with what is called semi-H-type algebras.

Proposition 2.51. Let (V,g) be a scalar product space, U a vector space and assume that
there exist a linear map K : V — End(U) such that

K(z)o K(z) = —||z|*Iy  for allz € V.
Then K can be extended to a representation of the Clifford algebra CY(V,g) over U.

Proof. Seeing as End(U) is a unital associative algebra, with unit Ij;, the results follows by
setting A = End(U) in proposition [2.47] [

Definition 2.52. Let (V, gv) and (U, gi7) be two scalar product spaces. Moreover let p be a
representation of Cl(V, g,) over U, we say that p is an admissible C1(V, gv') representation if
gu (p2v,w) = —gu(v, p,w) for all z €V and v,w € U.

We also say that (U, gr) is a an admissible C1(V, gy/) module.

Proposition 2.53. [/
Let (V, g) be a scalar product space. For all signatures of g there exist an admissible CL(V, g)
module.

2.2 Manifolds

This section is devoted to the theory of semi-Riemannian manifolds and
sub-semi-Riemannian manifolds . We will assume that the reader is familiar with the basic
theory of smooth manifolds and vector bundles.
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2.2.1 Tensor Fields

Let M be a smooth manifold and let X(M) denote the set of smooth vector fields on M and
X*(M) the set of smooth differential 1-forms. A module over a ring, has formally the same
definition as a vector space, the only difference being that the set of scalars belongs to a
ring. The set of smooth functions on a smooth manifold C*°(M) is a ring and the set of
smooth vector fields is a vector space over R and a module over C*°(M). The set of smooth
differential 1-forms X*(M) is the dual module of X(M). Analogous to a tensor over a vector
space, we can define a similar object over a module.

Definition 2.54. A (¥) tensor field is a tensor over the C°(M) module X(M) i.e a
multilinear C*°(M) function

k l
T:X"(M)x - x X*(M)xX(M) x -+ x X(M) = C®°(M)

The set of all (”lc ) tensor fields will be denoted as ‘Zf(M ). Just at for tensors over a vector
space, a (’lC ) tensor is said to be of type k-contravariant and [-covariant.

We can let vector fields act on 1-forms by letting X (6) := 6(X), in this sense we have that a
vector field X € X(M) is therefore a (}) tensor field and a 1-form 6 € X*(M) is ({) tensor
field. Intuitively a tensor field is a way to smoothly assign a (’f ) tensor over T, M for all

p € M. The tensor over T),M assigned at point p € M by a tensor field T' € ‘If(M ), is called
the value of T" at p and will be denoted as T),.

We define the tensor product of two tensor fields, symmetric and anti-symmetric tensor fields
as in section Therefore we have that if T € TF(M) and S € TH(M) then T ® S is a
(k+p ) tensor field, T' is completely symmetric if it is symmetric in any of its two arguments

I+q
and S is completely anti-symmetric if it is anti-symmetric in any of its two arguments.

Definition 2.55. Let T' be a (9) tensor field. Then T is said to be a nondegenerate if
T(X,Y) =0 for all Y, implies X = 0.

If a (9) tensor field is nondegenerate, then its values T}, are nondegenerate bilinear forms
over T, M.
Just as for tensors over vector spaces, we can define the components of a tensor field.

Definition 2.56. If (U,z',...,2") is a chart on M, then the components of T € Sf(M)
relative to (U,z', ..., x") are defined to be the C*°(M) functions

0 0
e
With the notion of tensor field components we can define contraction of tensor field and
contracted multiplication of two tensor fields as in section [2.1.3

01l i1 ik
Tik = T(dz", ..., dx

Proposition 2.57. [27]
Let (U,xt,...,2") be a chart on M. If T € T¥(M), then on U

Y S

R ® Rdr' ® - ® dzlt

Oz ik
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If T € TY(M) and (U,zt,...,2") is a chart on M. Then T can be written as a matrix with
C*°(U) functions as elements

Ty ... T,
(Tij) =+ .
To1 .. Tn

Moreover if T is nondegenerate, then matrix (7;;) will be invertible.

Proposition 2.58. [16]
Let
T : X5 (M)* x 2(M)" = x2(M) (2.2.1)

be a C®°(M) multilinear function and let 0,0, ... 0% € X*(M) and X',..., X' € X(M).
Then map given by

T(0,0%,...,6% X' ... XY =0(T0,...,0F X1 ... X1 (2.2.2)
is a (K1) tensor field.

Definition 2.59. Let T and T be as in propositionm Then T is said to be induced by T.

2.2.2 Connections

Let v:R DI — M be a smooth curve in (M, g), then its velocity at time ty € I is defined
to be tangent vector given by

. d
A(to) = Yato (52| ) € Toyto)M

%to

If we would like to compute acceleration of this curve we would have to take the difference
of two tangent vectors belonging to two different tangent spaces, which makes no sense. A
linear connection gives us canonical way to compute the acceleration of curves and in
general taking the derivatives of vector fields along vector fields.

Definition 2.60. A linear connection on a manifold M is a map
V:X(M)xX(M)— X(M) written (X,Y) — VxY such that

i) Vis C*°(M) linear in the first argument and R linear in the second argument.
i) Vx(fY) = (Xf)Y + fVxY
We say that VxY is the covariant derivative of Y along X.

Let U be an open subset of M and V be a linear connection on M. If {Ey,...,E,} is a
local frame on U and X = X'F; and Y = Y'E; then

VxY = X(Y)E; + X'YIV g, E; (2.2.3)

Moreover since Vg, Ej € X(U) we can write Vg, E; as linear combination of {E1,..., E,} i.e
Ve B = Fijk such that equation ([2.2.3]) becomes
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VxY = X(Y)E; + X'Y'T},E;

The n? smooth functions T'¥

i are called the Christoffel symbols of V with respect to the
local frame {E1,..., E,}.

We can use a linear connection on a manifold to define the acceleration of a smooth curve.
To do so, we need some definitions and results.

Definition 2.61. Let v : I — M be a smooth curve. A wvector field along - is a map
X : I — TM such that X (t) € T, M for all t € I. The set of all vector fields along ~, will
be denoted (7).

Proposition 2.62. [16]
Let V be a linear connection on M. For each curve v :I — M, V determines a unique
operator

Dy %(v) = %(v)
such that
i) Di(aX +bY) =aDy(X) +bDy(Y) fora,b e R
i) Di(fX) = fX + fDy(X) for f € C>(I)
ii) If X is extendible, then for any extension X of X, Dy(X) = V;YX
For any X € (v), DX is called the covariant derivative of X along -~.

Equipped with a linear connection, we can now define acceleration of smooth curves and
geodesics.

Definition 2.63. Let V be a linear connection on M and 7 be a smooth curve in M. We
define the acceleration of v as the covariant derivative of 4 along v i.e D;y. A geodesic with
respect to V is smooth curve v : I — M such that D;y = 0 i.e vanishing acceleration.

Proposition 2.64. Let (U, z',...,2") be a chart on M and V a linear connection on M.

Moreover let y(t) = (z',...,2") be a geodesic, then v satisfies

ik 4+ 23Tk =0

Proof. We compute D;¥. The velocity vector field is given by 4 = &' 8% and therefore we
have that

Proposition 2.65. [16]

Let M be a manifold equipped with a linear connection V. For anyp € M, any V € T,M,
and any tg € R, there exist an open interval I C R containing tg and a geodesic v : I — M
satisfying v(to) = p,3(to) = V. Any two such geodesics agree on their common domain.
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2.2.3 Semi-Riemannian Manifolds

Definition 2.66. A semi-Riemannian metric g on a smooth manifold M is a
nondegenerate symmetric () tensor field

g:X(M)* = (M)

such that (7,M, g,) is a scalar product space and the signature of g, is the same for all
p € M. A semi-Riemannian manifold is smooth manifold equipped with a semi-Riemannian
metric and will be denoted (M, g).

We can think of a metric on a smooth manifold as a scalar product on smooth vector fields,
but instead of assigning each pair of vector fields with a real number, we assign them a
C>° (M) function.

Definition 2.67. Let U be an open subset of M and {E;}? ; a frame on U. We say that
{E;}1, is an orthonormal frame if for all p € U we have that {E;(p)}]-, is an orthonormal
basis for T, M.

Definition 2.68. Let (M, gpr) and (N, gn) be two semi-Riemannian manifolds. An
isometry from M to N is diffeomorphism ¢ : M %, N such that

IN(04(X), 0:(Y)) = g (X, Y) for all X|Y € X(M).

If there exist an isometry between two semi-Riemannian manifolds they are said to be
isometric. A map ¢ : M — N is called a local isometry if for each p € M there exist an open
subset U of M, such that ¢|y is an isometry onto an open set of N. If there exist a local
isometry, we say that M and N are locally isometric.

Given a metric on M, we can use this metric to define an isomorphism between X(M) and
X*(M). This is analogous to the musical isomorphism on vector space.

Definition 2.69. Let (M, g) be a semi-Riemannian metric, we define the maps

p:X(M) — X*(M) suchthat X — g(X,-)
f: X" (M) — X(M) such that 6 — £6
where #6 is such that g(86, X) = 6(X) for all X € X(M).

If (U, 2%, ...,2") is chart on (M, g), then we can write

g= gijdaci ® da?
Moreover if X = X* 8?:1' and 0 = 0;dz’, then bX = g;; X'dx? and 0 = gijﬂi%, where
(9) = (gi)" .

Definition 2.70. Let v : I — R be a smooth curve in (M, g) we define its arc length as

L) = [l

The arc length of a curve, could be zero or positive.
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Example 2.71. Let M = R? with chart (R?, z,y) and let g = dz ® dz — dy ® dy. Then we
have that

g 0 o 0 g 0
T 021 g, 2y =21 and g(—,—)=0
g(ax’ﬁx) g(ay’ay) A g(ax’ay)
Let v be a smooth curve such that ¢ — (¢, €t) for ¢t € [0,1] and € € [-1, 1]. Then its velocity
vector field is ¥ = a% + ea% and ||¥||?=1 — €. The arc length of ~ is therefore

L(7)2/01\/1—62dt:\/1—62

When e = +1 we have that the arc length of ~ is zero. This is because g(¥,7) = 0 i.e
(to) € Null(TW(tO)RQ,gv(to)) for all to € [0, 1].

Among all linear connections on (M, g) we choose a very special one called the Levi-Civita
connection.

Proposition 2.72. [27]
On a semi-Riemannian manifold there is a unique connection V such that

i) [X,Y]=VxY — VyX,
i) Xg(Y,2) =9(VxY,Z)+g(Y,VxZ),

for all X,Y,Z € X(M). This unique connection is called the Levi-Civita connection and is
characterized by the Koszul formula

29(VxY, Z)=Xg(Y,Z)+Yg(X,Z) — Zg(X,Y) (2.2.4)
—9(X,[Y, Z]) = g(Y, [X, Z]) + 9(Z, [ X, Y]).

From now on, if we talk about a linear connection on a semi-Riemannian manifold we will
always mean the Levi-Civita connection, unless said otherwise.

We are now ready to define a semi-Riemannian geodesic.

Definition 2.73. Let (M, g) be a semi-Riemannian manifold and let V be the Levi-Civita
connection. A smooth curve is a semi-Riemannian geodesic if it is a geodesic with respect to
the Levi-Civita connection.

We want to find properties of semi-Riemannian manifolds that are invariant under local
isometries, this leads us to define curvature.

Definition 2.74. Let (M, g) be a semi-Riemannian manifold. The map
R:X(M)> — X(M) given by
R(X,Y)Z =VxVyZ -VyVxZ -V xy|Z
is called the Riemann curvature endomorphism.

This map measures how much VxVyZ — VyVxZ and VixyZ fails to commute.
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Proposition 2.75. [16]
The Riemann curvature endomorphism induces a (3) tensor field on M.

Definition 2.76. Let (M, g) be a semi-Riemannian manifold and R the Riemann
endomorphism. The (}) tensor field induced by the Riemann endomorphism is called the
Riemann curvature tensor and will be denoted also by R.

Since the Riemann curvature tensor is (1) tensor field, we can lower the contravariant index
to get a 4-covariant tensor field. This tensor field will be denoted as Rm and its action on
vector fields are given by

Rm(W, XY, Z) =g(R(X,Y)Z, W)

Let (U,z!,...,2") be a chart on a semi-Riemannian manifold (M, g). Then the components
of the Riemannian curvature tensor R}kl relative to this chart are given by

o 0 .0 .0
— )= = Ry, —
(G:EJ ’ &Ek)@xl IR O
Proposition 2.77. [16][22]
Let (M, g) be a semi-Riemannian manifold. Then

1. RIX,)Y)Z =-R(Y,X)Z
2. Rm(W,X,Y,Z)=—-Rm(Z,X,Y,W)
3. RIX,)Y)Z+R(Y,Z) X+ R(Z,X)Y =0
4. Rm(W, XY, Z)=Rm(Y,Z,W, X)
For any smooth vector fields X, Y, Z, W € X(M).
Definition 2.78. We define two new tensor fields from the Riemann curvature tensor.
Ric = Rijdmi ®dz?  where R;; = RQU
S =R where R! = g R;;.
Ric is called the Ricci curvature tensor and S is called the Scalar curvature.
Proposition 2.79. Let U be an open subset of (M, g) and {E;}, be an orthonormal frame
on U. Then

Ric(X,Y) Zezg (E;, X)Y, E;)

and

S =Y Ric(E;, E)e;
i=1
where ¢; = g(E;, E;).
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Proof. Let {F'}™_; be the dual frame of {E;}* ;, X = X'E; and Y = Y'E;. Then
Rie(X,Y) = Rj;(F' @ FI)(X,Y) = Ry, XY/

Since

n
Ry XY = ZFk (Er, X)Y) and R(Eg, X)Y =Y emg(R(Ey, X)Y, Ep)Ep,

we have that

Ric(X,Y) ZF’“ [ > emg(R(Ey, X)Y, Em)Em] = e.9(R(Ey, X)Y, Ey).
k=1

m=1

Since {F;}! , is an orthonormal frame, we have that g;; = g = §;j¢; such that

S = ZZQ”RU = ZZ&L]Q ij = ZRZC (Ei, Ei)e

=1 j=1 =1 j=1
|

As we will see, the Riemann curvature tensor, Ricci curvature tensor and Scalar curvature
are invariant under local isometries. Another such invariant is sectional curvature.

Definition 2.80. Let (M, g) be a semi-Riemannian manifold and p € M. Moreover let
IT = span{z, y} be a nondegenerate two dimensional subspace of (T,M, gp), we define

gP(RP(xa y>y7 1')
9p(x, ) gp(y,y) — gp(x,y)?

K(IT) =

to be the sectional curvature of 11.

Proposition 2.81. [22]
Let (M, g) be a semi-Riemannian manifold and p € M. Moreover let I1 be a nondegenerate
subspace of (TyM, gp). Then the sectional curvature of II does not depend on choice of basis.

A nice interpretation of the scalar curvature is that, if {E;} is an orthonormal frame on U,
then

=2 Z K(I1;5) where II;; = span{E;(p), E;(p)} C T,M.
i<j
Proposition 2.82. [16]

The Riemann curvature endomorphism and the Riemann curvature tensors are local
isometry invariants. In other words, if ¢ : M — N is a local isometry then

¢*(Rmn) = Rmpy

and

Ry (64(X),0:(Y))<(Z) = ¢ (Ru(X,Y)2).

As a consequence of proposition [2.82] we have that the Ricci curvature tensor, scalar
curvature and sectional curvature are all local invariants of semi-Riemannian manifolds.

23



2.2.4 Semi-Riemannian submanifolds

Definition 2.83. A subset Mj of a smooth manifold M, is said to be a submanifold of M if

i) My is a topological subspace of M

ii) The inclusion map is smooth and an immersion i.e ¢, is injective.

Let p € My and since vy, : T, Mo — T, M is injective we can consider 1), My as a vector
subspace of T, M.

Definition 2.84. Let My be a submanifold of M and let g be a semi-Riemannian metric on
M. If the pullback of g is a metric tensor on My, then we say that (M, t*g) is a
semi-Riemannian submanifold of (M, g).

If we consider T,,My as a vector subspace of T),M, then ¢*g, is simply the restriction of g, to
T,My. Moreover since ¢*g is a metric tensor by definition, we have that T}, My is a
nondegenerate subspace of (T,M, gp).

If My is a semi-Riemannian submanifold of (M, g) we would like to compare their
Levi-Civita connection and Riemann curvature tensors. So from now, let VY, V be the
Levi-Civita connection of My and M respectively.

Definition 2.85. We define the ambient tangent bundle over My as

TM|my= [ T,M
pE€Mo

and is a smooth vector bundle over M.

Given any smooth vector field on M, we can restrict it to get a smooth section of the
ambient tangent bundle over M. Likewise given a smooth section of the ambient tangent
bundle over My, we can extended it to be a smooth vector field on M. At each point

p € My, we have that T,M = T,My @ (T,My)=, since (T, Mo, g,) is a nondegenerate
subspace of (T,M, gp).

Definition 2.86. We define the normal bundle over My as
NMy = [] (T,Mo)*
pEMo

and is a smooth vector bundle over My. We also define two projections from the ambient
tangent bundle;

7['T ZTM‘M0—> TM(),

7 TM|p,— N M.

We say that a smooth section X of the ambient tangent bundle is normal to My if for all
p € M we have that X, € TpM(f-. Likewise a smooth section Y of the ambient tangent
bundle is tangent to My if for all p € M we have that Y, € (T,My).
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These two projection maps smooth sections to smooth sections. We are now ready to define
the second fundamental form.

Definition 2.87. Let X,Y € X(Mp) and X,Y be extensions of X,Y to M. Then we define
the second fundamental form as
II(X,Y)=715(VzY)

Proposition 2.88. [16]
The second fundamental form is

1. Independent of extensions of X andY
2. Bilinear over C*°(My)

3. Symmetric in X and Y

Proposition 2.89. [16] o
Let X, Y € X(My) be extended arbitrary to vector fields X,Y on M, then the following
formula holds along My

VY =VkY +11(X,Y)

The second fundamental form also play a role when comparing the curvature tensors of M
and M.

Proposition 2.90. [16][22]

Let My be a semi-Riemannian submanifold of (M, g), with Rm® and Rm as their (9)
Riemann curvature tensor. Then for any smooth sections W, XY, Z of the ambient tangent
bundle, tangent to My we have

Rm®(W, XY, Z) = Rm(W, X,Y, Z) — g(II(X, W), I1(Y, Z)) + g(I1(X, Z), II(Y,W)).

There are some special submanifolds, that are of special interest, namely totally geodesic
submanifold.

Definition 2.91. A semi-Riemannian submanifold My of (M, g) is totally geodesic
provided its second fundamental form vanishes i.e I1 = 0.

Alternative we say that My is a totally geodesic submanifold of M, if for all p € My and for
all geodesics in M tangent to My, the geodesics are curves in Mj.

Proposition 2.92. [27]
If My is a semi-Riemannian submanifold of (M, g), then the following is equivalent

1. My is totally geodesic.
2. Every geodesic of My is also a geodesic of M.

Hence we can find geodesics in M, by finding them in the totally geodesic submanifold Mj.
Moreover since the second fundamental form vanishes we have that
Rm(W,X,Y,Z) = Rm°(W, X,Y, Z) for sections of the ambient tangent space tangent to Mj.
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Example 2.93. Let M = R? with chart (R3,z,y,2) and let My ={p € M | p = (z,y,0)}.
We choose the Euclidean on metric M, given by

g=dr®dr+dy®dy+dz®dz.

Since Mj is clearly a submanifold of M and the restriction of g to My is a metric tensor on
My, we have that My is semi-Riemannian submanifold of M. Moreover any geodesic in M is
just a straight line and any geodesic of M tangent to My is a straight line in M.
Conversely any geodesic in My is a straight line in My and therefore a geodesic in M. Hence
My is a totally geodesic submanifold of M.

2.2.5 Sub-semi-Riemannian manifolds

Roughly speaking a sub-semi-Riemannian manifold is a semi-Riemannian manifold with
some constraints such that the possible directions of motion are limited.

Definition 2.94. Let M be a smooth manifold and let D be a subbundle of the tangent
bundle TM. A sub-semi-Riemannian metric on M is a C°°(M) bilinear, symmetric and
nondegenerate map

g:T(D) x T(D) — C>(M)

such that (Dy, g,) is a scalar product space and the signature of g, is the same for all
p € M. A sub-semi-Riemannian manifold is the triple (M, D, g) and D is called the
distribution of (M, D, g).

The definition of a sub-semi-Riemannian metric mirrors the definitions of a tensor field and
semi-Riemannian metric. The key difference is that the fibers of the subbundle are vector
subspaces of T, M i.e D, C T, M and that the scalar product assigned to p € M is scalar
product on this vector subspace and not the whole of T},M.

Definition 2.95. Let X be a vector field on M. Then X is said to be horizontal if for all
p € M we have that X, € D). A piecewise smooth curve v : I — M is said to be horizontal
if its velocity + is be horizontal whenever it exist. We define the arc length of a smooth
horizontal curve as

Liy) = / K(Oldt, 4(t) € Dy,

Definition 2.96. A distribution D is called bracket generating if for any p € M there exist
an open neighborhood of p N(p) and a local frame E = {E;}7_; of D on N(p), such that

T,M =E,+[E,E],+E,[E,E]], + ...

Proposition 2.97. [2])
Let (M, D, g) be a sub-semi-Riemannian manifold, D be bracket generating and M
connected, then any two points of M can be joined by a piecewise smooth horizontal curve.

We wish to define sub-semi-Riemannian geodesics, to do so we need some more definitions
and results.
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Definition 2.98. Let M be a smooth manifold. A cometric on M is a symmetric
nondegenerate (3) tensor field on M denoted by g* such that (T M, gy) is a scalar product
space and the signature of gy is the same for all p € M.

Given a cometric we can define a map analogous to the f§ map defined in section [2.2.3
Definition 2.99. Let M be a smooth manifold with cometric g*. We define the map
51 X(M) — X(M)
such that w(5(0)) = g*(w, 8) for all w, € X*(M).
If (M, D, g) is a sub-semi-Riemannian manifold, then there exist a unique cometric such that
1. Tm(8) = T(D)
2. 9(X)=g(5(0),X) for all 0 € X*(M) and X € T'(D).

Definition 2.100. Let (M, D, g) be a sub-semi-Riemannian manifold with cometric ¢* as in
definition The Hamiltonian is given by

1
H(p,wp) = §g;(wp,wp) for p € M and w, € T; M.

If D is spanned by an orthonormal frame {Ey,..., E,} we can write the Hamiltonian easier.

Proposition 2.101. Let {Ey, ..., E.} be an orthonormal frame for the distribution D.
Then

H(pw) = = 3 w(B)%e; (2.2.5)

T .
Proof. Since Im(p) = I'(D), we have that S(w) = > a'E;. Hence the Hamiltonian is
i=1

1, 1 e~
H(paw) = ig (w,W) = 5 Zzala]g(EzﬁEj) =

i=1 j=1

1 ror o 1 T A

43S = 53
i=1 j=1 i=1

Moreover we have that

r T
W(Ez) = g(Eiyﬁ(W)) = Zajg(Ei,Ej) = Zajeij = aiei
J=1 j=1
or equivalently

ai = w(Ei)ei
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Choosing the coordinates (U, z',...,2™) on M, we have that any smooth one-form

6 € X*(U) can be written as 6§ = Y y;dz’, where y; are smooth functions on U. Having
chosen coordinates on M, it induces coordinates (T*U, z',..., 2™, y1,...,yn) on T*M, called
canonical coordinates, making the cotangent bundle into an even dimensional manifold. We
can make the cotangent bundle of any manifold into a symplectic manifold by defining the
symplectic form as the two-form

—df = zn: dz’ A dy;.
=1

Given a function f on the cotangent bundle, then there exists a unique vector field denoted
Xy such that

This vector field Xy is called the Hamiltonian vector field of f. Computing the integral
curves of this vector field gives us the following 2n ODE’s:

b Of
B yi
__of

Yi= " ou

(2.2.6)

Seeing as the Hamiltonian is a function on the cotangent bundle, we have that it also must
satisfy equations For more information on symplectic manifolds and Hamiltonian
functions see [I] [21]

Definition 2.102. The Hamiltonian H(p,w,) generates 2n equations, called the
sub-semi- Riemannian geodesic equations :

_OH
_8%"
. OH
YT g

The solutions of the equations (2.2.7) will be the integral curves of the Hamiltonian vector
field associated to the Hamiltonian.

.fi

(2.2.7)

Definition 2.103. Let v = (z(t),y(t)) be a solution to the geodesic equations and let
m:T*M — M be the projection down to the manifold. Then we define the
sub-semi-Riemannian geodesics on M as the projected integral curves of Xy i.e mo~.

2.3 Lie Theory

We will now introduce Lie groups, the Lie algebra of a Lie group and the Lie exponential
map.
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2.3.1 Lie groups
Definition 2.104. A Lie group is smooth manifold G together with two smooth maps

uw: GxG —G

(a,b) — p(a,b) =ab (2.3.1)

called multiplication

p: G =G
. o) =l (2.3.2)

called inversion, that satisfies the group axioms.

Any smooth manifold with these two maps, makes the manifold into a group. We will
denote the identity element of a Lie group by e.

Example 2.105. Let M (n,R) be the set of all square matrices with real entries. Since
det : M(n,R) — R is a continuous map, we have that det™*(R — {0}) is a open subset of
R, This is in fact the set of all invertible matrices and under the usual matrix
multiplication, we have that it becomes a Lie group. This Lie group will be denoted by
GL(n,R). Also for any finite dimensional vector space V' of dimension n, we have that the
set of automorphism on V' is isomorphic to GL(n,R). To see this just choose a basis on V'
and then we can express any automorphism as invertible matrix. The set of all
automorphism of a vector space, will be denoted as GL(V).

Definition 2.106. Given two Lie groups GG and H, a map v : G — H such that

P(ab) = ¢(a)y(b)

and 1 smooth map, is called a Lie group homomorphism. If v is bijective and smooth i.e an
diffeomorphism, we call it a Lie group isomorphism.

Definition 2.107. Let G be a Lie group. A Lie subgroup of G is pair (H, ¢) such that
1. H is a Lie group
2. H is a submanifold of G
3. ¢: H— G is a Lie group homomorphism

Since H is a submanifold of G we know that the inclusion map ¢ : H — G is smooth and
that its differential is injective. We can now define Lie groups representations.

Definition 2.108. Given a Lie group G, a Lie group homomorphism p: G — GL(V) is
called a representation of G . It maps elements of G into linear invertible maps from V to
V,ieforallge G, g — p(g) : V — V. The map p(g) : V — V, is denoted py and V is
called the representation space.

Among the all representations of Lie groups, the adjoint representation is of special interest.

Definition 2.109. Let a : G x G — G be the map given by a(g,h) = ghg™" and let
ag : G — G be the map given by ay(h) = a(g, h) = ghg™!, for a fixed g € G. Then ay is
called an inner automorphism and it is a Lie group diffeomorphism.
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Definition 2.110. Let G be a Lie group and M be smooth manifold. A map
0:Gx M — M is called a left action of G on M if

0(gh,p) = 6(g,0(h,p)) and O(e,p) = p for all g,h € G and for all p € M.
For all g € G, let 6, : M — M denote the map given by p — 6(g,p).

Proposition 2.111. [27]
Let 0 : G x M — M be a left action of G on M. Let pg € M be a fized point of 04, i.e
0(g,p0) = 04(po) = po for all g € G. Then the map

¢:G— GL(Tp,M) given by

?(g) = (0g)+,po

s a linear representation of G.

Two important remarks are that the inner automorphism a, is a left action of G on G' and
that identity element of G is a fixed point of a.

Definition 2.112. Let G be Lie group. The Adjoint representation of G denoted Ad, is
given by

Ady = (ag)«e € GL(T.G).
Proposition [2.111] tells us that the Adjoint representation is in fact a Lie group
representation.
2.3.2 Lie Algebra of a Lie group

If G is a Lie group, then from the theory of smooth manifolds, we know that X(G) is a Lie
algebra. It turns out that any Lie group has Lie algebra, that is a subalgebra of X(G) and
isomorphic to the tangent space of the Lie group at the identity.

Definition 2.113. Let G be a Lie group and a € G. The diffeomorphism L, : G — G such
that Vg € G we have that L,(g) = u(a, g) = ag, is called left translation by a.

This map moves each element of g € G to ag € G, giving us a tool to move around in the
Lie group.

Definition 2.114. Let G be a Lie group. A left invariant vector field is a vector field such
that

(Lg)xp(Xp) = Xgp for all g,p € G.

Therefore we se that left translation on the Lie group just permutes the tangent vectors
constituting the left invariant vector field X. An important remark is that we did not
specify whether the left invariant vector field is smooth or not.

Proposition 2.115. [26][27] Any left invariant vector field is smooth.
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Since any left invariant vector field is smooth we have that the set of left invariant vector
fields is a vector subspace of X(G).

Proposition 2.116. [26][27]
Let X, Y be two left invariant vector filed on G, then so is [X,Y].

Hence the set of left invariant vector fields on a Lie group is subalgebra of X(M). We denote
the set of left invariant vector fields on a Lie group as g or Lie(G). In fact g is isomorphic to
T.G as vector spaces.

Proposition 2.117. [27]
The vector space g is isomorphic to T.G under the map

a: g —T.G

Y ox (2.3.3)
Hence dim(g) = dim(7.G).

Definition 2.118. Let G be a Lie group. We define the Lie algebra of G as g; the set of
left invariant vector field with the usual vector field bracket. Moreover we say that G is a
nilpotent Lie group if its Lie algebra is nilpotent and G is a solvable Lie group if its Lie
algebra is solvable.

In fact given any finite dimensional real Lie algebra g, then there exists a simply connected
Lie group with g as its Lie algebra. See [27].

Example 2.119. The Lie algebra of GL(V) is gl(V'). To see this, we use that
GL(V) = GL(n,R) and that gl(V) 2 gl(n,R). Since GL(n,R) is an open subset of R™, we
have that the tangent space at any point of GL(n,R) can be identified with R™. In
particular we have that

TiGL(n,R) = R
By identifying R™* with M (n,R), we have that gl(n,R) = TiGL(n,R) ~ g

Proposition 2.120. [27]
Let G and H be two Lie groups, with Lie algebras g and b respectively. If ¢ : G — H is a
Lie group homomorphism, then

¢*,e5g—>b

is a algebra homomorphism.

We can now give another description of the adjoint representation of a Lie group. We have
that

Ad: G — GL(g)
and moreover by proposition [2.120 we have that

Adi.:g— gl(g)

is an algebra homomorphism, hence Ad, . is actually a Lie algebra representation.
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Proposition 2.121. [27]
Let G be Lie group with Lie algebra g and let X € g, then

Adie(X) = [X, ]
Therefore we that Ad, . is actually the adjoint representation ad of g.

Proposition 2.122. Let G and H be Lie groups with Lie algebras g and b respectively. If G
1s simply connected and p : g — b is an algebra homomorphism, then there exists a unique
Lie group homomorphism ¢ : G — H such that ¢, = p.

2.3.3 The Lie exponential map

Definition 2.123. Let G be a Lie group. A Lie group homomorphism ¢ : R — G is called a

1-parameter subgroup of G, where R is considered to be a Lie group under addition. Hence

d(s+t) = o(s)p(t) for all s,t € R

Let G be a Lie group and g its Lie algebra. Since Lie(R) is the one dimensional Lie algebra
spanned by %, we have that any left invariant vector field can be written as s%, for s € R.
Now if X € g then the map

d
— X 2.34
sdt|—>s (2.3.4)

is algebra homomorphism from the Lie algebra of R to g. Hence by propostion [2.122] there
exist a unique 1-parameter group ¢ of G such that its differential at 0 is given by (12.3.4))

Definition 2.124. Let G be Lie group and g its Lie algebra. For all X € g we define the
maps

¢X : LIG(R) — 0

d
SEHSX

and

expy : R —= G such that (expy)«0 = ¢x

We define the Lie exponential map as the map given by

exp: g—G
X — expx(1)

When we want to be explicit we write exp for the exponential map of the Lie group G. We
list some properties of the Lie exponential map.

Proposition 2.125. [27]
Let X € g, where g is the Lie algebra of G. Then

1. exp(tX) = expx(t)

2. exp(t1 X +t2X) = exp(t1.X) exp(t2X)
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3. exp(—tX) = exp(tX)~!

4. exp is smooth and (exp). is the identity map on g. Hence exp is a diffeomorphism of
a neighbourhood about 0 € g to a neighbourhood about e € G.

Infact when a connected Lie group is nilpotent, we have that the Lie exponential map is
diffeomorphism from the Lie algebra onto the Lie group.

Proposition 2.126. [13]
Let G be a connected nilpotent Lie group and g be its Lie algebra. Then the Lie exponential
map 1s a diffeomorphism from g onto G.

Proposition 2.127. [27]

Let A be subgroup of the Lie group G and let a be a subspace of g. Let U be a neighborhood
of 0 € g diffeomorphic under the Lie exponential map with a neighborhood U of e € G.
Suppose that

exp(ANU)=GNV

Then A with the subspace topology is a Lie subgroup of G, a is an subalgebra of g and a is
the Lie algebra of A.

Proposition 2.128. [17]
For any X € gl(n,R), the series

converges to an element in GL(n,R) denoted expgr,(X). Moreover, the unique
one-parameter subgroup of GL(n,R) generated by X is expx(t) = expqr(tX).

Hence by defintion, we have that the Lie exponential map of GL(n,R) is given by matrix
exponentiating i.e exp(X) = expx (1) = expgp(X).

There is a formula called the Baker-Campbell-Hausdorff formula, that says that the product
of two exponentials can be written as the exponential of a series with terms in the Lie
algebra. If X|Y € g then

1 1 1
exp(X)exp(Y) =exp(X +Y + i[X’ Y]+ E[X, (X, Y]] + E[X, YL,Y]+...)
For more information and proof of this formula see [12] [13] [25] [27].
Proposition 2.129. [27]
Let ¢ be a Lie group homomorphism from G to H. Then

P(expa(X)) = expy(due(X)) for all X € g.

In other words, the following diagram commutes
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H

[ eXPH
b

expg

g _

Pue
Corollary 2.130. By applying proposition we have the following commutative
diagram

G Ad

GL(g)

€XPa €XPar

sl
g > al(g)

i.e
Adep.(x) = expgy(adx) for all X € g.

Corollary 2.131. By applying proposition we have a commutative diagram

Qg

G

G

expg expg

Ady,
i.e

gexpa(X)g™! = ay(expa(X)) = expe(Ady (X)) for all X € g and g € G.
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3 Semi-H-Type Groups

3.1 Semi-H-type Lie algebra
Let n be a finite 2-step nilpotent Lie algebra, endowed with a scalar product g. We denote
its center by 3 and its orthogonal complement by v = 3+, such that n = v @ 3. Hence we
have that

Mn]C3 and [n,3=0
Moreover we assume that the restriction of the scalar product to 3 is nondegenerate. We
define the linear map J : 3 — End(v), such that for any v, v2 € v and any z € 3 we have that

9(Jzv1,v2) = g(z, [v1,v2]) (3.1.1)
Definition 3.1. If the J-map satisfy the condition

J2v = —|]z|*v Vz€jzandVveEp (3.1.2)

we call (n,[-,-],9,J) a semi-H-type algebra.

By definition we have that for all z € 3, J, is skew symmetric with respect to the scalar
product 9, Le g(JZULUQ) = _g(vla szz)'

Proposition 3.2. If n is semi-H-type Lie algebra and z € 3 such that ||z||>= 1, then J, is a
isometry.

Proof. For J, to be an isometry we need to check that g(J,v1, J,v2) = g(v1,vy) for any

V1,02 € 0.

g(sz1, JZUQ) = g(z, [vlv JZUQ]) = _g(JZZUhU?) = ||z|’29(1)1,112) = g(UlaU2)

Proposition 3.3. The J map satisfy the identity
Joy oy + Jaydzy = —2g(21,22) Ly V21,22 €3 (3.1.3)

Proof. By associativity of composition and the distributive property of homomorphisms we
have that

ng-i-zg = ‘]2?1 + le JZ2 + JZQ JZI + J222
rearranging the terms and using (3.1.2)) we get that
T T+ Ty, = —||z1 + 2|2 Ly + || 21 |P Lo + || 22]|* Lo = —29g(21, 22) 1,
[
As a consequence of proposition (3.3)) we have the following identities
g(Jov1, Jovg) = ||2]|2g(v1, v2) (3.1.4)
9( 250, J20) = |0]Pg(21, 22) (3.1.5)
[v, Jv] = ||lv|*2 (3.1.6)
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Proposition 3.4. Let n = v @ 3 be semi-H-type Lie algebra. Then [v,0] = 3.

Proof. Let v € v, such that ||v]|?>= £1. We show that ad, : b —  is surjective. We have that

9(z1,ady(J5v)) = g(21, [v, J2,0]) = £g(21,22) forall 21,20 €3
and hence ad,(J,,v) = 29 by the nondegenerate property of the scalar product. |
Proposition 3.5. [J]
Let n = v @ 3 be semi-H-type Lie algebra. If g5 has signature (p, k) with p > 1, then gy is
neutral i.e its signature is (%, % ).
Now let 8 ={V1,..., Vi, Z1,...,Zn} be an ordered orthonormal basis for n such that

1 if 1<i<r
12 <i<
Vil {—1 if r<i<n

HZHQﬁ 1 if 1<a<y
G -1 if p<a<m

Then we have that the structure constants C7j of n with respect to 5 are given by

Vi, Vil = CiiZa
a=1

Definition 3.6. We define the Clifford constants with respect to 5, as the numbers Dy
given by

Jz.Vi=> DSV, (3.1.7)
j=1

Proposition 3.7. The structure constants and the J-map constants with respect to B are
related in the following way
Df‘j = C’f‘jeaej

Proof. The results follows from
g(Zom [V;’ ij]) = Ciajea
g(JZa‘/:ia VY]) = Dge]

Since (3, ;) is a scalar product space and we have that J2 = —||z||?I, by definition,
proposition tells us that J-map can be extended to a representation of the Clifford
algebra Cl(3, g;) over v. Moreover since the J-map is skew symmetric with respect to the
scalar product i.e

g(Jv1,v2) = —g(v1, J,v2)

we have that Clifford representation induced by the J-map is admissible i.e (v, gy) is an
admissible Cl(3, g;) module. Conversely if K : C1(V, g,) — End(U) is a representation of the
Clifford algebra C1(V, g,), we can restrict it to V and it will satisfy
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K()K((v) = —|z||*Ty for allv € V.

If we equip U with a scalar product g, and require that (U, g,,) is an admissible CL(V g,)
module i.e

gu(K (v)u1, u2) = —gu(ur, K(z)uz)
We can then construct a semi-H-type Lie algebra, by defining n = U & V with the the scalar
product g = g, + g, and defining the Lie bracket by

g(v, [ur, ug]) = g(K (v)u, uz)

Therefore we have that the semi-H-type Lie algebras are in one-to-one correspondence with
the admissible representation of Clifford algebras.

Proposition 3.8. [}/

Let (3,9;) be scalar product space and let v be a Cl(3,g;) module. Then n=1v® 3 can be
endowed with a semi-H-type Lie algebra structure if and only if there exist a scalar product
gv on v such that (v, gy) is an admissible Cl(3, g;) module.

For a complete classification of semi-H-type Lie algebras see [10] [I1].

3.2 Semi-H-Type Groups

From section [2.3.2) we know that any Lie algebra is associated with connected and simply
connected Lie group of the same dimension.

Definition 3.9. Let n be a semi-H-type algebra and NN the simply connected Lie group
associated with n. Then N is called a semi-H-type group.

By proposition [2.126| we have that the Lie exponential map of every, simply connected,
nilpotent group is a global diffeomorphism. Hence exp : n — N is a global diffeomorphism.
We can use the Lie exponential map and the basis 8 to define global coordinates on N as
follows:

n m
-1
exp ;
(i, . 0" 2t 2™ s E v'V; + g %7,
i=1 a=1

By use of the Baker-Campbell-Hausdorff formula we can also give the group law.
Proposition 3.10. Let N be semi-H-type group. If p = exp(x) and q = exp(y) with
x,y € n, then the group law is given by

pa = exple) exp(y) = explz +y + 3 [2, 1)) (32.1)

Proof. The proof follows immediately by applying Baker-Campbell-Hausdorff formula. |
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As consequence of the proposition above we see that

e =exp(0) = (0,...,0)
is the identity element of a semi-H-type group. If p = (v}, ..., 0", 2!, ..., 2™) and

q=(u',...,u™ t', ..., t™), then their product are given in coordinates by

1 n
pq:(v1+u1,...,vn+u”,zl+t1—|—2Z u]C'zlj,.. 2t = Z u]Cm) (3.2.2)

4,j=1 zg 1

Proposition 3.11. The left invariant vector fields on N are given by

Vi = W szﬂ ﬂa - (3.2.3)

jlal

R
0z®

Proof. To find all left invariant vector fields on N, we differentiate (3.2.2) with respect to ¢
to find (Lg)«., we get that

Zo = (3.2.4)

I, 0
e[ 4

where
> v'Ch e > v'C,
SIvcy .. S
Letting (Lg)+e act on the vectors {6‘2,» .} and {B%LB} we get that
AR Z Z jce 9 (3.2.5)
(91)’ J ripo] Tt 9z
0
Lo = — 2.
570 (3.2.6)
|

We can make N into a semi-Riemannian manifold, by defining a metric on N. We choose to
endow N with a left invariant metric and to do so, we use the scalar product on n and left
translations as follows

9p(Xp, Yp) = 9((Lp=1)spXp, (Lp=1)5pYp) for X, Y € X(N)

making N a Lie group endowed with a metric tensor.
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3.3 The Levi-Civita Connection

The Levi-Civita connection on a semi-H-type group, is completely determined by its values
on the left invariant vector fields in n.

Proposition 3.12. Let N be a semi-H-type group. Then the Levi-Civita connection is given
by

1 1 1
V(U1+Z1)(1)2 + 22) = 5[’01,’02] — §J31U2 — §J32U1 (331)

for all vi,ve € v and z1, 22 € 3.

Proof. For any left invariant metric g on a Lie group, the Koszul formula reads

29(VxY, Z) = g([X, Y], 2) + g([Z, X1, V) + 9([, Y], X) (332)
Let vi,v9 € 0, 21,29 € 3 and let w € n. Using we have that
29(Vy, 21, w) = —g(Joo1,w) = V2 = —31,0
29(Vyv1,w) = —g(Jy v, w) = Vv = —%levl
29(Vyva,w) = g([v1,v9],w) = Vv = %[vl, V9]
29(Vy22,w) =0 = V,;20=0

3.4 Riemann Curvature Tensor

Having computed the Levi-Cevita connection, we can now compute the Riemann curvature
endomorphism.

Proposition 3.13. Let N be a semi-H-type group. Then the Riemann curvature
endomorphism is given by

1 1 1
R(vl + 21,02 + ZQ)(U?) + 23) = _7J[v2,v3]v1 + ZJ[m,vs}vQ + §J[v1,v2]v3

4
L vay Tovs] = Sor, Jyvs] + S T
_ I v _
4 V2, J2, U3 4 U1, J2,U3 4 z21Y422U3
1 1 1
—1J22J21’U3 - Z[Ulv J23U2] + Z[U27 Jngl]

1 1
+1J21 JZSUQ — ZJZ2JZSU1

for all vi,vo,v3 € 0 and z1, 22, 23 € 3.

Proof. Since the Riemann curvature endomorphism is linear we have that

R(v1 + z1,v2 + 22)(va + 23) = R(v1,v2)vs + R(z1,v2)vs + R(v1, 22)vs + R(z1, 22)v3
+R(vi,v2)23 + R(z1,v2)23 + R(v1, 22)23 + R(z1, 22)23
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and we compute each term by using proposition [3.12

R(Zl, 22)2’3 =0

1
R(vy, 21)20 = _ijl J21

1 1
R(vi,v2)z1 = —1[01, Jz v2) + Z[UQ’ J.v1]
R(v1, z1)v2 = —Z[Uh J 2 2]

1 1
R(Z]_,ZQ)’Ul = Z‘]ZIJZQ/UI — ZJzzjzlvl

1 1 1
R(v1,v2)v3 = _ZJ[’UQ,U:;]UI + ZJ[ULU;;}U? + 5‘][1)1,1)2]1)3
The rest are given by R(X,Y)Z = —R(Y,X)Z . [ |

3.5 The Ricci Tensor and Scalar Curvature

Proposition 3.14. Let N be a semi-H-type group. Then the Ricci tensor is given by

) m n
Ric(vy + 21,09 + 29) = —59(01,02) + Zg(ZI,ZQ)
for all vi,vo € n and z1, 20 € 3.

Proof. We compute the Ricci tensor using the ordered orthonormal basis 3 and by
proposition [2.79| we have that

Ric(x,y) Zg (Vi,x)y, Vi)ei + Zg (Zay X)Y, Zo)€a (3.5.1)

There are three different cases:

Case I: z,y € v
We have that

1 1 1

3 ol Vil [, Vi)

4
and
1 1
9(R(Za, )y, Za) = g(—R(=, Zoz)ya Zy) = 1([557 JZay], Za) = ZQ(JZQII% Jz,Y)-
Hence (3.5.1)) becomes
, 3 1
Ric(z,y) = =7 > _g(f. Vil.ly. Vilei + 7 Y 9(Jz,, Jz,y)ea (3.5.2)
i=1 a=1
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The first sum in (3.5.2)) can be written as

n

> eig(z, Vil [y Vi) = ) eiag(g([w, Vi, Za) Zas [y, Vi) =
i=1 i«
> €ag(Zaly, Y €ig(Jz, 2, Vi)Vi]) =
a i
Zeag(JZay, Jz,x).
Here we used that [z, V;] = )", g([z, Vi], Za) Za€q and that Jz x =", g(Jz, x, Vi) Vie;.
Therefore we have that becomes

1 1 m

Ric(w,y) = =5 Y _€ag(Jz,2, Jz,4) = =5 D _ €acag(@,y) = =5 9(x,y). (3.5.3)

« «

Case II: z,y € ;3
We have that

1 1
g(R(Vi,2)y, Vi) = —Eg(JszVi,%) = —¢g(z,y)

4
and
9(B(Za, 2)y, Za) = 0.
Hence ([3.5.1)) becomes
. n
Ric(z,y) = 3 D cieig(w,y) = 79(2,9). (3.5.4)
i=1

Case IIl: x €3and y € v
We have that

1

and
1 1
R(Za,2,y) = ZJZ“JI‘U - XJxJZay SHY
Since g(R(Vi,z,v), Zo) = 0 and g(R(Za, x,Yy), Za) = 0, we get that equation ([3.5.1)) becomes

Ric(z,y) =0 (3.5.5)

The Ricci tensor is therefore

. m n
Ric(vy + 2z1,v9 + 22) = —59(01, v2) + 19(2’1, 22)

Proposition 3.15. Let N be a semi-H-type group. Then the scalar curvature is given by



Proof. By proposition and proposition we have that

m

i=1 a=1 i=1 a=1

3.6 Sectional Curvature

Proposition 3.16. Let N be semi-H-Type group. The sectional curvature of the coordinate
planes are given by

3 .
KRV ®RV;) = LIV VillPeves for i # )

K(RZ,®RZ)\) =0 fora#A

1
KRV; ®RZa) = ;

Hence any semi-H-type group has nonconstant sectional curvature.

Proof. We compute the sectional curvatures according to the definition and proposition

( ( J) J ) — ZQ(J[W,V]-]VJ"%)er =

K(RV; & RV;) = £
i€j

3
~2IVe VillPese

g(R(Zaa Z/\)Z)\a Zoz)

€Ea€)

K(RZ,®RZ)) = =g(0,Zy)€eqer =0

—_

9(R(Vi, Za)Za, Vi)

€i€q

1
KRV, ®RZ,) = = —ig(b@avi, Vi)eiea = —€res = —

Zf

3.7 Semi-Riemannian Geodesics

Theorem 3.17. The semi-Riemannian geodesics in the semi-H-type group N, passing
through the identity at time t = 0 with velocity (0) = Vo + Zy, are given by

o If Zy is spacelike:

1 .
v = 7P [(1 — cos(|Zo|t)) Iz, Vo + | Zo| Sln(\Zoft)Vo]
1 WOH2< Sin(\Zo!t))}
z=|t+ = t— Z
[ 2 2o 1Z0| ’
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o If Zy is null:

1
v=tVy+ §t2JZOVb

1 3 2
=(t+ =t Z
2 = (t+ V%) 2o

o If Zy is timelike:

1
v = 7 [(cosh(]Zg\t) — 1)Jz,Vo + | Zo| sinh(| Zp|t) Vi
1 Vo2 (Sinh(\Zo!t) )}
z=|t+ = —t)|Z
[ 2 |Zo/? | Zo| °

Proof. Let v: R — N be a curve such that v(0) = e, then velocity of the curve is given by

"0 - 0
=2 V5t 2 g
=1

a=1
Using equations (3.2.3) and (3.2.4)) we have that
{CEDMLIED I KR B W] 2
i=1 a=1

i=1 j=1

We define two vectors in n, given by

n m
v = E v'V; and 2z = E 2%Z,,.
i=1 a=1

By using these two vectors we can express the velocity of the curve ~ as

A(t) :®+2+%[1},v]

If the curve v is to be a geodesic we require that Dy = 0. Hence we must find the
acceleration vector field along v and therefore compute

1 1
Dt(’U +z+ §[U, 'U]) =D+ Dz + §Dt[U, ’U]

By using proposition |3.12| we have that

|
Dt/U =V — §J(z+%[v’v])

)
1
Dz =7%— §J2®
) . 1 .
De([o,0]) = [0, 0] = 5 Jji00

43



and hence we have that the acceleration vector field is given by

Dy =4 — J.Jr%[@’v}v%—z%— g[v,v].

z

The semi-Riemannian geodesic equations for N, are therefore

U= Jey 10 =0 (3.7.1)
A
2+ 5[1},1}] = 0. (3.7.2)
Since 4[0,v] = [#,], equation (3.7.2) tells us that
c, 1
4+ 0,0 =K

2
and if we assume that v(0) = e and that 4(0) = Vj + Zy we have that

K = 2(0) + 3 [6(0), o(0)] = Zo + 5[V6,0] = Zg
and therefore
A S
z= 5[2}, 0 + Zo (3.7.3)
Equation becomes
Jz,0 =10

Using the fact that the solution of the IVP problem & = Az, x(0) = xg where A is any
constant n X n matrix, is r = expgy, (tA)xo, we get that

0 = expqr(tJz,)Vo (3.7.4)

By using the matrix exponential, we have that

- (t‘]Zo)k - (tJZO)Qk - (tJZO)Qk-H
t p— pu— —— ————
expar(tz) kzo Kl kzo 2k)! kzo 2k + 1)
0 tzk(JZO)% 0 t2k+1(JZO)2k:JZO
> (0] +> k)] (3.7.5)
k=0 k=0

where Jz, to the power of zero is identity i.e J%O =1.

We need to consider three cases:
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CASE I: Zg is spacelike

In the case that Z is spacelike we have that || Zy||>> 0 and |Zy|?= || Zo||?. Using that
J%O = —||Zo|]*T = —|Zo|*I, equation ([3.7.5) reads

o t2k(_1)k|ZO|2kI 1 e t2k+1(_1)k|ZO|2k+1JZO B
! | o
24T (2K)! 2] &~ (2h)!
1
cos(|Zo|t)I + 7 sin(|Zo|t)J z, (3.7.6)
0

Inserting equation (3.7.6)) into equation ((3.7.4)

1
V= COS(|Z0‘t)‘/0 + @ Sin(|Z0‘t)JZOVO

and then integrating, we get that

_ 1
| Zo|?

We compute the Lie bracket of © and v:

v {(1—cos(|Zo\t))JZOVO+|Zosin(|Zolt)V0]

o Vel
V,0| =

and by inserting (3.7.7) into equation (3.7.3]) we have that

[1 - cos(|ZO\t)} Z (3.7.7)

i = [1 + % ”'2'”22 (1 - cos(\Zolt))} Zo. (3.7.8)

We find z by integrating equation (3.7.8) and get that

1[|Vo| ( Sin(\Zoft)ﬂ
z=|t+= t—————=11%.
{ 2| Z? | 0

CASE II: Zg is null
In the case that Zy is null we have that || Z||>= 0 and equation (3.7.5) reads

eXpGL(tJZO) =1 + tJZO
and equation (3.7.4) becomes

1
v=Vo+tIz,Vo = v=1tVp+ itQJZOVO.

Equation ({3.7.3]) therefore becomes

. 1 1
d= 1+ V)20 = 2=+ HIVl%) 2
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CASE III: Z is timelike

In the case that Z is timelike we have that || Zy||>< 0 and |Zy|?= —|| Zo||?>. Using that

J%O = —|1Zo||*I = |Zo|?1, equation (3.7.5) reads

io: t2k|ZO|2kI 1 o t2k+1|Z0|2k+lJZO _

2Tzl & (2h)

cosh(|Zy|t)] + sinh(|Zo|t)J z,

\Z |
Inserting equation (3.7.9)) into equation ([3.7.4)

v = COSh(|Z0‘t)‘/0 + Sinh(|Z0’t)JZ0‘/0

1
| Zo|
and then integrating, we get that

1
2z
We compute the Lie bracket of © and v:

o Vel N
[v,0] = Zo[? cosh(|Zp|t) — 1| Zy

and by inserting (3.7.10)) into equation (3.7.3]) we have that

1|[Voll?
1+ = h(|Z, —1]|Zp.
[ + 2 22 cosh(|Zy|t) 0

We find z by integrating equation (3.7.11) and get that

1[|Vo? <Slnh(\Zot) )]
t+ — t)|Zo.
[ 2 | Zo|? | Zo| 0

By theorem we see that we can divide the geodesics into more cases.

CASE Ia) Z is spacelike and Vj is spacelike

1
v = 1Zo]2 [(1 — cos(|Zo|t)) Iz, Vo + | Zo| sin(| Zo|t) Vo
L, )
t - t— Z
[ 22|12 | Zo| ‘
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CASE Ib) Z is spacelike and Vj is null

1 .
v = W (1 —cos(|Zo|t))Jz, Vo + | Zo| sin(| Zo|t) Vo
z :tZO

CASE Ic) Z is spacelike and Vj is timelike

_ 1
| Zo?

1|Vp[? < Sin(’%ﬁ)ﬂ
z=|t— = t— Z
[ 21202 20| 0

CASE Ila) Zg is null and Vj is spacelike

v {(1—cos(|Zo\t))JZOVO+|Zosin(\Zolt)Vo

1
v=tVy+ 5szJZOVO
z=(t+ i753|V0|2)ZO

12
CASE IIb) Zg is null and Vj is null

1
v =1tV + 5t2JZ0v0

Z:tZ()

CASE Ilc) Zg is null and Vy is timelike

1
v =tVy+ 5tzJZOVO

1
= (t— EtSWO\Q)ZO
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CASE Illa) Z is timelike and Vj is spacelike

1
V= [(cosh(]Zo\t) —1)Jz,Vo + | Zo| sinh(| Zo|t) Vo

2 .
L [t+ 1|V (Slﬂh(!Zolt) —tﬂZo
| Zo|

CASE IIIb) Zj is timelike and Vj is null

1 .
v = ’ZTP [(cosh(|Z0|t) — 1)Jz,Vo + | Zo| sinh(| Zo|t) Vi

Z:tZO

CASE Illc) Zg is timelike and Vj is timelike

1 .
v= 7 [(cosh(|Zo|t) —1)Jz,Vo + | Zo| sinh(| Zo|t) Vi

1 |Vb]2 (sinh(]Z0|t) )}
z2=|t— = —t )| Z
[ 2 |Zy|? | Zo| 0

Definition 3.18. Let v: R — N be the geodesic in N such that y(0) = e and ¥ = V + Zp.
We define

ng = RVy @ RJz, Vo ® RZy

Theorem 3.19. The semi-Riemannian geodesics v : R — N, such that v(0) = e and
4(0) = Vo + Zo, lies in the submanifold Ny = exp(ng). If Vo and Zy are not null vectors,
then Ny is a three dimensional semi-Riemannian totally geodesically submanifold and a
semi-H-type group.

Proof. We start by proving that ng is a subalgebra of n. This is seen by noticing that

Vo, Iz Vol = IVoll?Z0 Vo, Zo) =0 [Jz, Vo, Zo] =0

and hence ng is a subalgebra of n. Since

exp(r) exp(y) = exp(z +y + %[ﬂf’ yl)

we have that Ny = exp(ng) is a subgroup of N and by proposition [2.127| we have that Ny is
a Lie subgroup of N with ng as its Lie algebra. Hence Ny is a submanifold of N and by
theorem we have that any semi-Riemannian geodesic lies in Nj.
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Assume that Vy and Zj are not null vectors. We want to show that ny with the inherited
scalar product, Lie bracket and J-map is a semi-H-type Lie algebra. Let

v =RV @RIz Vp and 30 =RZ,.

By hypothesis we have that the scalar product on ng and 3¢ is nondegenerate and therefore
we have that ng is subalgebra of n, with center 3¢ and orthogonal complement vg. Moreover
we have that

Tz Vo=—12ol*Vo 5,92V = ~11 20> T2,V

and hence by linearity we have that J2 = —||z||%I,, for all z € 3,. We conclude therefore that
ng is a semi-H-type Lie algebra and the associated simply connected Lie group is a
semi-H-type group. By defining the metric on Ny in the same way we did in section [3.2] we
have that Ny is semi-Riemannian submanifold of V.

To show that Ny is a totally geodesic semi-Riemannian submanifold we calculate the second
fundamental form. Let v1,vs € vy and z1, 29 € 39, then

1 1
Vvlvg = 5[’01,’02] Vvlzl = _ilevl = Vzlvl Vzlzz =0

Hence we have that the second fundamental form vanishes and by we have that Ny is a
totally geodesic semi-Riemannian submanifold of N.
[ |

Proposition 3.20. Let Ny = exp(ng) such that Vo and Zy are not null vectors. Then

3
K(R% @RJZOVO) = _Z

1
K(RV) & RZp) =

1
K(RJ20% @ RZ()) — 1
Proof. Since the second fundamental form vanishes, we have that the Levi-Civita connection
of Ny is given by proposition [3.12] and hence the Riemann curvature endomorphism is the

same as for Ny

g(R(VZLJZo‘/O)JZO‘/O’%) 39(“%“2J%0%7%) 3
K(RVy & RJy V) = =1 T4
(RVo @ RJz, Vo) TARE 4 Voll*l|Zol|? 4

9(R(Vo, Zo) Zo, Vo) 19(JZ,V0, Vo) 1
O e PAE VAT TTlETZE ~

9(R(J2,Vo, Z0) Z0, J2o Vo) 19(J3,J2,Vo, J2,Vo) 1
K(RJ; Vo ®dRZy) = [ 0 —
Rz Vo & RZ0) IVolI2(| Zol|* AR 1
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Geodesics when ||Z O||2= 1

2 _
IV,lI? =1
N 2 _
IVoll* =0
10 2 _
VoIl =1
5

Figure 1: Plot showing the semi-Riemannian geodesics of a semi-H-type group, when
| Zo||>=1 and ||Vo||? takes the values 1,0, —1.

Geodesics when ||Z O||2= 0

2 _
— IV lIP =1
N 2 _
IV II? =0
20 2 _
IVII? =1
10
o 0
N
-10
-20
15
10 5
5 0
JZ V0 0 5 VO
0

Figure 2: Plot showing the semi-Riemannian geodesics of a semi-H-type group, when
| Zo||>= 0 and ||Vo||? takes the values 1,0, —1.



Geodesics when ||Z 0||2: -1

2
——IV,lI? =1

2
— IV, lI? =0

15 V12 =1

10

-10

-15
30

20 40

20

J, VY, 0 .40 V
Figure 3: Plot showing the semi-Riemannian geodesics of a semi-H-type group, when
| Zo||>= —1 and ||V ||? takes the values 1,0, —1.

3.8 Sub-Semi-H-Type Groups

Definition 3.21. Let n be a semi-H-type Lie algebra and let IV be the semi-H-type group
associated with n. We define the distributions

V(p) = Lpx(v) and  Z(p) = Ly«(3)

and a left invariant metric on V given by

9p(Xp,Y,) = gn((Lpfl)*,po, (qu)*’pY;;) for any X,Y € V.
Then the tripple (N, V, g) is called a sub-semi-H-type group.

The distribution V is bracket generating since n = v @ [b, v] and hence we have that by
proposition [2.97] we have that any two points of N can be joined by a horizontal piecewise
smooth curve.

Proposition 3.22. The hamiltonian of (N,V,g) is given by
CIPEE) DUIEED 3 3 WARCIARED ol b ) o
i=1 i=1 j=1a=1 i=1 L j=1a=1

Proof. We wish now to compute the Hamiltonian associated with V. By using that
{V1,...,V,,} is an orthonormal frame for V and proposition [2.101| we have that

H(p,w) = 5 > w(Vi)e



Let w= Z nidv’ + Z adz™ be a one-form on N. Using equation (|3 in proposition

a=1

3.11] we get that

1 n m )
V) =1+ 50> naCiv?

j=1la=1

and therefore

n m 2
Vil =1 1)) maCii? + {ZZMQC‘-’W] :

j=la=1 j=la=1
We get that the Hamiltonian is

0=y et =3 Ykt 3 S a5 3 [ 33w

=1 i=1 j=1a=1 i=1 ~j=1a=1
|
Proposition 3.23. The sub-semi-Riemannian geodesic equations for (N,D,g) are
1 n m
o = myer + 3 SN naCh e
j=1a=1
1 n m 1 n n m m
=32 et 3532 mcied| | 3 i
i=1 a=1 i=1 Lj=1a=1 a=1
1 n m 1 n n m n
P DML TESD i b 9 9ot Bl Dat S
i=1 j=1 i=1 Lj=1a=1 j=1
fix =0
Proof. Since the sub-semi-Riemannian equations are given by
“k __ OH - _ _OH
Ui T o, TR T T g0k 381
A O g _OH (3.8.1)
 Oux HXx = ~ 3%
we need only compute the partial derivatives of the Hamiltonian. |

Definition 3.24. Let 8* = {A',..., A", T'},..., ™} be the dual basis of 5. We define the
vectors v and z in v and 3 respectively, given by

n m
v = E v'V; and z= E 2%Z,
i=1 a=1

and 7 and p be the covectors in v* and 3* respectively, given by

n ] m
n= Z nA* and  p= Z pal®.
i=1

a=1
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Moreover we define

m n

ri=fu = Z €attaZa u = fn = €1 Vi.

a=1 =1

Following the definition from above we have that

(Jxv)i = Z Z Mavjoﬁfi

j=la=1
) n m
(Jzu)z = Z Z ///anjcj('liﬁjfi
j=1a=1
n n )
[o,u]* =)0 " wineCy
i=1 j=1
and
n n ) )
[0, Jo0]* = > 0l (L)' C;
i=1 j=1

We can now rewrite the sub-semi-Riemannian geodesic equations as

1
P = uk 4 E(Jxv)k

1 1
M = §(Jmu)kek- + Z(ng)kek

fix =0
By using proposition [2.15| we have that the sub-semi-Riemannian geodesic equation are
given by

U=1u-+ %Jwv (3.8.2)

) 1 1

U= §Jx(u + inv) (3.8.3)

s= Lt L (3.8.4)
2t 27

i=0 (3.8.5)

Theorem 3.25. The geodesics y(t) of the sub-semi-H-type groups (N,V,g), passing through
the identity at time t = 0 with initial velocity v(0) = Vi and initial covector pgy are given by
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o If [|zo]|*>> 0:

1
|20

1(|Vo)? ( sin(\xorwﬂ
z=|z t— T
[2 |02 o] :

v [(1 — cos(|xo|t)) Iz, Vo + |xo| sin(|zo|t) Vo

o If ||z0]|?>= 0:
Lo
v =tV + 5 Vo
IVol? 3
S LU
z 12 o
o If lzo*< 0:
v = e [(cosh(]xg\t) — 1) Jy Vo + |xo| sinh(|zo|t) Vo
L[|[Vol? (Sinh(\wolt) )}
[2 o2\ ol "

where xo = fug-

Proof. Equation (3.8.5)) implies that

z = 2(0) = §(u(0)) = #(u°) = 0
and hence 4 (.J,v) = J,0. Now if we combine (3.8:2) and (3.8.3) we get

1
= ijxl}. (3.8.6)
Taking the derivative of (3.8.2) and using (3.8.6]), we have that
U= Jgv
Inserting (3.8.2)) into (3.8.4]) gives us
1
z= 5[1}, 7]
Hence we must solve
b= Jpy (3.8.7)
1
5= S, 9] (3.8.8)



Using the fact that the solution of the IVP problem y = Ay, z(0) = yo where A is any
constant n X n matrix, is = expqy (tA)yo, we get that equation (3.8.7) gives us

0 = expar (tJze) Vo (3.8.9)
where

eXPaL (tJlUO) - Z k!

| |
— — (2k)! — (2k + 1)!
o 2k 2% OO 42k+1 2k
=5 (. t J. J.
(2k)! (2k)!
k=0 k=0
CASEI: |xo|®>>0
In the case that xg is spacelike we have that ||zo]|?> 0 and |zg|?= ||zo|?. Using that
J2 = —||@o||*I = —|xo|*I, equation ([3.8.10) reads
e t2k(_1)k’$0|2k1 L o t2k+1(—1)k]:n0|2k+1Jx0 B
= (2k)! | o] — (2k)!
1
cos(|zo|t)] + Tzl sin(|xo|t) Sz, (3.8.11)
)
Inserting equation (3.8.11]) into equation (|3.8.9))
1
0 = cos(|xo|t) Vo + Tzl sin(|xo|t)Jz, Vo
and then integrating, we get that
1 .
v = T (1 = cos(|zo|t)) Juo Vo + |xo| sin(|zo|t) Vo
We compute the Lie bracket of v and o :
A 2
[v,0] = H| 0||2 [1 — cos(|x0\t)} xo (3.8.12)
zo
and by inserting (3.8.12)) into equation (3.8.8]) we have that
LIVol* [ ]
- ”’mz:L 1 cos(folt)| o (3.8.13)

We find z by integrating equation (3.8.13|) and get that

_ 1[|Vol® -t _sin(|xol?) |
2 |xol? | |0
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CASE II: |[xo|?=0

In the case that x¢ is null we have that ||z¢||?= 0 and equation (3.7.5) reads

expar (tdey) = I + tJy,
and equation (3.8.9) becomes

1
b =Vo+tJ Vo = v =1tV + §t2JIOVO_
We compute the Lie bracket of v and o :

1
[v, 9] = St [[Vo[*xo (3.8.14)
Equation (3.8.8)) therefore becomes

1 1
i = 1Vl = == el P

CASE IIL: |jxo|2 <0

In the case that g is timelike we have that ||xo||?< 0 and |xg|?>= —||z0||?>. Using that
J2 = —||@o||*I = |zo|*1, equation (B.7.5) reads

o0 t2k’x0|2k1 1 0 t2k+1’x0|2k+ljxo B

(2Kk)! |zo| (2k)!

k=0 k=0

1
cosh(|zo|t)] + —— sinh(|zg|t) Iz, (3.8.15)

|0l

Inserting equation (3.8.15)) into equation (3.8.9))

1
0 = cosh(|zo|t) Vo + Tzl sinh(|zo|t) Jz, Vo
0

and then integrating, we get that

1 .
v = W [(cosh(|x0|t) — 1)J Vo + |20 smh(|x0|t)V0]

We compute the Lie bracket of v and o :

o IVl B
[v,0] = PRE cosh(|zolt) — 1| o (3.8.16)
Zo
and by inserting (3.8.16)) into equation (3.8.8]) we have that
. _ 1Vl
= — h t)—1 3.8.17
z 9 ‘.%'0’2 Co8 (’$0| ) o ( )

We find z by integrating equation (3.8.17]) and get that
1||Vol? ( sinh(|aolt
L [II oll (Sln (lzolt) _t>]x0'

2 |zol? |20
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Geodesics when ||x 0||2= 1

— IV lIP =1
—— IV lI? =0
3 2 _
IVII? =-1
2
1
o 0
x
—_\
-1
-2 <

Figure 4: Plot showing the sub-semi-Riemannian geodesics of a semi-H-type group, when
lzo|>=1 and ||Vo||? takes the values 1,0, —1.

Geodesics when ||x O||2= 0

2 _
— IV 7 =1
—_— 2 _
IV,lI2 =0
15 2 _
IVgll? =1
10
5
o O
<
-5
-10 -
-15
15
10 5
5 0
J vV 0o -
XO 0 5 VO

Figure 5: Plot showing the sub-semi-Riemannian geodesics of a semi-H-type group, when
lzo/|>= 0 and ||Vo||? takes the values 1,0, —1.



Geodesics when ||x 0||2: -1

2
——IV,lI? =1

2
— IV, lI? =0

15 IV lI? =1

10

-10

-15 4
30

20 40

20

Figure 6: Plot showing the sub-semi-Riemannian geodesics of a semi-H-type group, when
lzo|>= —1 and ||V;||? takes the values 1,0, —1.
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4 Semi-Damek-Ricci Spaces

4.1 Semi-Damek-Ricci Lie algebras

Definition 4.1. Let n be a semi-H-type Lie algebra and a be a one dimensional Lie algebra
endowed with a inner product g, such that if a = RH we have that g,(H, H) = 1. We define
the Lie algebra s = n @ a of dimension n + m + 1 with the relations

[Hﬂ)]:%v and [H, 2] = » (4.1.1)

for all v € v and z € 3 and call s a semi-Damek-Ricci Lie algebra.

From the definition above we have that s is endowed with the scalar product g; = gn + ¢4
and that any vector x € s can be written uniquely as
r=v+z+sH with some v € v,z € 3 and s € R, (4.1.2)

and hence Z = {V1,...,V,, Z1,...,Zn, H} is a orthonormal basis for s. Moreover we have
that s is solvable since

[575] =n [n7n] =3 [575] =0.

4.2 Semi-Damek-Ricci spaces

Definition 4.2. Let s = n ® a be a semi-Damek-Ricci Lie algebra. The simply connected
Lie group associated with a will be denoted A and the simply connected Lie group
associated with s will be denoted S. We call S a Semi-Damek-Ricci space.

Since any one dimensional Lie algebra is abelian and hence a 1-step nilpotent Lie algebra,
we have by proposition [2.126| that exp, : a = A is a diffeomorphism. Hence we can
introduce coordinates on A as follows

—1
(s) =2 sH for s e R

and by the Baker-Campbell-Hausdorff formula we have that

expq(sH) expy(rH) = exp,((r + h)H).

Therefore we have that the group law on A is given by addition i.e if p = (s) and ¢ = (r)
then

pg=(s+r).

The Lie group S is in fact the semi-direct product of N and A i.e S = N x A, i.e any
element of S can be written uniquely as a product of an element of NV and an element of A,
see [2] [8] [24]. Let exp, and exp, denoted the Lie exponential map of s and n respectively.

Proposition 4.3. [2]
The maps exp, : § — S and exp, X exp, : * + sH — exp,(z) exp,(sH) are diffeomorphisms
from s to S.
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Proposition 4.4. [2]
The Lie exponential map exp, is given by

exp,(V + Z) exp,(0) ifs=0
exp,(V+2Z+sH) = .
expy(2(e2 — 1)V + L(ef —1)Z) expy(sH) if s #0
From the above proposition we have that exp,|n= exp, and that exp,|,= exp,.

We wish to give the group law on S, but to do so we need this next lemma.

Lemma 4.5. For any s € R, V € v and Z € 3 we have that

expy(sH) exp, (V + Z) expg(sH) ™! = exp,(e2V 4 €°Z).

Proof. By corollary [2.130] and [2.131] we have that

eXps(SH) eXps(V + Z) exps(sH)_l = exps(Adexps(sH)(V + Z)) =
exps(expg(s) Sadu (V + Z))
where expg ) is the matrix exponential. By the commutators we have that

i, 0 0
adH = 0 Im 0
0 0 0

and taking the matrix exponential we get

expgrs) sadg = | 0 eIy, 0

Hence we get
exps(expar(s) sadm(V + Z)) = expy(e2V + €°Z)

By use of lemma we can now give the group law on S.
Proposition 4.6. Let

p=expy(V + Z) exp,(sH)
and

q=exp, (V' + Z') exp,(s'H)

then their product is given by

s

pa = expy(V + €3V + Z + €72/ + [V, V') expy((s + ) H)
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Proof. The result follows from lemma [£.5] and that

pq = expy(V + Z) expy(sH) expy (V' + Z') expy(s'H) =

exp,(V + Z) expy(sH ) exp, (V' + Z) expﬁ(sH)_1 exp, (sH) exp,(s'H)
[ |

As seen we have two diffeomorphism we can use to give coordinates on S, we choose to use
exp, X exp,. Therefore we define the coordinates on S as follows

m

(h, . o 2t M) e (XD X XPa)” ZU V+ZZO‘Z +sH

m

If p=(v',..., 0" 24, ..., 2™ s) and ¢ = (ul,...,u™ y',...,y™, 7), then the group law

(4.2.1) in coordinates is given by

pg = <vl+e§u1 W ezu”™, 2 e’ Yy —|— Z vl C w"' , 2 —i—esym—i— Z Rre; Cii,s )
7.] 1 ,j 1
(4.2.2)

Proposition 4.7. The left invariant vector fields on S are given by

" 0s

Proof. We wish now to find all the left invariant vector fields on S, to do so we differentiate
(4.2.2)) with respect to g to find (Lg)«., we get that

0 0 1
where
Z?:l vicill s Z?:l viciln
Z?:l v i e Z? 1 UZCm

Letting (L,)s. act on the vectors {-2;] 1, {%’e} and {%‘6} we get the wanted result. W

ot le
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We can make S into a semi-Riemannian manifold, by defining a metric on S. We choose to
endow S with a left invariant metric and to do so, we use the scalar product on s and left
translations as follows

9p(Xp, Yp) = g((Lp-1)spXp, (Lp-1)xpYp) for X, Y € X(5)

making S a Lie group endowed with a metric tensor.

4.3 The Levi-Civita Connection

The Levi-Civita connection on a semi-Damek-Ricci space, is completely determined by its
values on the left invariant vector fields in s.

Proposition 4.8. Let S be a semi-H-type group. Then the Levi-Civita connection is given
by

1
7']211)1

1 1
Voitaits b (V2 + 22 + s2H) = Sg(vr, v2) H + Slog, 0] = 5

1 1
—552v1 — §J21712 + g(z1, 22)H — 5221

for all vi,vy €0, 21,29 € 3 and s1,52 € R.
Proof. For any left invariant metric g on a Lie group, the Koszul formula reads

29(VxY, Z) = g([X,Y], Z2) + 9([Z, X],Y) + 9([2, Y], X) (4.3.1)
Using (4.3.1)) we have that

29(VpX,Y)=—g(X,adgY)+g(Y,adg X) =0

since (X,Y) — ¢g(X,ady Y) is symmetric in X and Y. Hence we have that Vg = 0. Now
let Let vi,v2 € 0, 21,22 € 3, and let w € 5. We have that

29(Vu,21,w) = —g(Joyvi,w) = V21 = —3J,01
29(V v, w) = —g(J, v, w) = Vv = —%levl
29(Vy,v2,w) = g([v1,v2],w) = Vyva = 1g(vi,v2)H + [v1,v9]
29(Vz z2,w) = 2g(g(21, 220)H,w) = V20 =g9(21,20)H
29V, H,w) =2g9(—2z,w) = V., H=-—
29(Vo H,w) = g(—v1,w) = V, H=-3%u
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4.4 Riemann Curvature Tensor

Proposition 4.9. Let S be a semi-Damek-Ricci space. Then the Riemann curvature
endomorphism is given by

1 1
R(vi 4+ 21 + s1H,v2 + 22 + 52 H)(v3 + 23 + s3H) = —19(027 v3)v1 — 1 lo2.03]V1

1 1 1 1 1 1 1
79001, 03)v2 Ty g 02+ 5 T 0)V3 5901, Jeyva) H = 2 for, Jgva] + L va, Jryon] + g ssfor, v

1 1 1 1 1 1
+§g(v2,v3)zg — 19(037 Jzov1)H — Z[Ul, J 23] — ZJZQJZ?,Ul - 59(22, z3)v1 + ZS?,JZQUl
1 1 1 1 1 1
+1829(017v3)H + 182[1}1,@3] - 552J23U1 — 4 5253V1 — 59(112, v3)21 + 19(037 I v2)H
1 1 1 1 1
+Z[U27 le’U3] + 1J21J2302 + 59(21, 2’3)1)2 — 183J31’U2 + 1J31J32’U3
1 1
_XJZQJZ”B — g(22,23)21 + g(21, 23) 22 — 532J21'U3 + s29(21, 23)H — s321
1 1 1 1
—1819(02, v3)H — 181[1)2,1)3] + §S1stv2 + 7 s183v2 + 581ngv3 — 519(22,23)H + s15322

for all vi,vo,v3 €0, 21, 29,23 € 3 and s1, S2, S3 € R.

Proof. Let w € s . Then

R(H,H)w = [Vg,Vglw— Vg gmw=0
R(H, z)w = [V, Vylw — Vg w= -V w
1
R(H,v2)w = [V, Vi, |Jw — Vg yw = fivww
R(Z].) ZQ)'UJ = [vzluvm]w - v[zl,zz}w = [vzl’ VZQ]w
R(Zlall)Q)w = [VZ17 vvz]w - V[zl,vg]w = [vzl7vv2]w

R(v1,v2)w = [vvuvvz]w - v[m,w}w
The rest can be found by anti-symmetry, see table

We compute R(v1 + 21 + s1H, vy + 22 + soH)(vs + 23 + s3H), by using linearity and
proposition [4.8

Case I : w =3 .
R(H, 22)?}3 = §J221)3

1
R(H,v2)vg = —Zg(vz,vg)H — —[v2, v3]
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R(X,Y)w ) 29 H
\%

(%} [vm ) v’uz]w - v[vl ,vg}w _[vzzv vvl]w % vlw
21 V2, Vi, |Jw [V, Vi Jw Vi w
H — IV w —V_,w 0

Table 1: Table of the Riemann curvature endomorphism, when X, Y runs through vi,vs € v,
21,22 € 3 and w is a arbitrary vector in s.

1 1
R(Zl,ZQ)’Ug = ZJ21J22U3 — 1J22J21U3

1 1
R(z1,v2)v3 = —59(02703)21 + 19(1}3, S vo)H

1
+Z["U2, J31’U3]

1 1 1
R(v1,v2)v3 = —19(02, v3)v1 — ZJ[Ug,vg}m + 19(01, v3)V2

1 1
* Z J[vl ,v3] v2 + 5 J[vl ;v2] U3

Case II: w = z3
R(H, z2)z3 = —g(22, 23)H

1
R(H, U2)Z3 = §J2302

R(z1,22)23 = —g(22, 23)21 + g(21, 23) 22

1 1
R(z1,v2)23 = ZJZI J2yU2 + 59(21, 23)U2

1 1 1
R(/U17/U2)Z3 - 59(1}17 JZ;;”Q)H - 1[017 JZ3U2] + 1[1}27 JZ;g/Ul]

Case III: w=H
R(H, ZQ)H = 29

1
R(H, ’UQ)H = Z’U2

R(z1,20)H =0
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1
R(Zl, 'Z)Q)H = —ijlvg

1
R(’Ul, 'U2)H = 5[111, UQ]

4.5 Ricci Tensor and Scalar Curvature

Proposition 4.10. Let S be a semi-Damek-Ricci space. Then the Ricci tensor is given by

2 m)g(a,y)

RiC(l’, y) = _(4

Proof. From proposition we have that
Ric(x,y) Zg (Vi,2)y,V; 61+Zg (Za, X))y, Zo)ea + g(R(H, x)y, H)

We compute this sum using proposition and we consider six different cases:

Case I: z,y € v
We have that

9(R(Viy2)y, V) = — 009 + 0w, 9(Vio ) Vi) = ol Vil [y, Vi)

4
1 1
9(R(Za,2)y, Zo) = —§g(w,y)6a + Zg(fv, Y)€a

G(R(H, )y, H) = 9z )

Hence
Ric(z,y) = — g(w,y) + ~9(0,y) — g(@,y) — Dgle.y) + Tg(w,y) — 2g(w,y) =
1C\T,Y) = 49 z,y 49 z,y 4916,1/ 29 z,y 493373/ 493373/ =
n n
—9(@:y) —mg(z,y) = —(7 +m)g(z,y)
Here we used that
i=1
and that
Zezg z, V ya Zeag JZayijax) = Zg(xay>
i=1 a=1 a=1

Case II: z,y €3
We have that
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1

1
g(R(Vi, 2)y, Vi) = Zg(:c,y)q — 59(9:, y)e;

Q(R(Zon a:)y, Za) = —g(, y)ea + g(l‘, 9<Zaa y)Za)

g(R(Hv x)%H) = —g(x,y)

Hence we have that

Ric(x,y) = gg(w, y) — gg(fa y) —mg(x,y) +g(z,y) — g(x,y) =

_%g(x, y) —mg(z,y) = —(% +m)g(x,y)

Here we used that
g(ZL‘, Z Q(Zon y)EaZa) = g(ﬂﬁ y)
a=1

Case IIl: z,y € a
Let x = s1H and y = s9H for s1,s9 € R. We have that

1
9(R(Vi, s1H)s2H, Vi) = = s182€;
9(R(Zy,s1H)s1H, Z,) = —s152€q

g(R(H,s1H)ss, H) =0

Hence

) n n n
Ric(z,y) = —15182 — MmS182 = _(Z +m)sisy = _(Z +m)g(z,y).

Here we used that

9(96,?/) = 81829(H7 H) = S8152.

Case IV:x cvand y €3
We have that

9(R(Vi,z)y,Vi) =0 g(R(Za,2)y, Za) =0  g(R(H,z)y,H) =0
since
1 1 1
1 1
R(Zomf)y = ZJZaJny' + 59(20“ y):c ¢ 3
1
R(H,z)y = §Jyac ¢a
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Hence Ric(z,y) = 0.

Case Vizevandy€a
Let y = s1H. Then

g(R(Vi,x)y, Vi) =0  g(R(Za, )y, Zoa) =0  g(R(H,z)y,H) =0

since

1
R(Vi,a)y = gsilVi,a] ¢ v
1
R(Zy,x)y = —ZleZa:v ¢3

1
R(H,z)y = 1517 ¢a

Hence Ric(z,y) = 0.

Case VIl z€c3and y € a
Let y = s1H. Then

g(R(Vi,x)y, Vi) =0 g(R(Za,2)y,Za) =0  g(R(H,z)y,H) =0

since

1
R(Vi,z)y = ZSIJxVi and g¢(J,Vi,Vi) =0
R(Zy,x)y=0

R(H,z)y =s1x ¢ a
Hence Ric(z,y) = 0.

Corollary 4.11. Every semi-Damek-Ricci space is a Einstein manifold i.e

Ricx g

Proposition 4.12. Let S be a semi-Damek-Ricci space. Then the Scalar curvature is given

by

Sz—(%%—m)(m%—n%—l)

Proof. By proposition [2.79 we have that

S=> " Ric(V;,Vi)ei + Y Ric(Za, Zo)ea + Ric(H, H)
=1 a=1

and by using proposition [4.10] we get

S:—(Z—Fm)[;e?—F;GiJrl] z—(%+m)(n+m+1)
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4.6 Sectional Curvature

Proposition 4.13. Let S be semi-Damek-Ricci space. The sectional curvature of coordinate
planes are given by

1 3 .,
KRV & RV}) = =1 = Vi VillPee; Jori # ]

K(RZy,®RZy)=—-1 fora#A

K@%@Rzgz—i

1
K(RV; ®RH) = —

K(RZy ®RH) = —1

Hence any semi-Damek-Ricci space has nonconstant sectional curvature.

Proof.
g(R(Vi, Vj)V;, Vi 1 3
K (span{V;,V;}) = (B Efj') ;- Vi) = —Zg(ﬁjVi,Vi)Gz‘fj + ZQ(JM,Vj]VjaVi) =
i€j
13 )
1 ZH[‘[HV?]”
inoz Zou i 1 1 1
K(Span{%, Za}) = g(R(V ) V) = *g(ﬁaVé, V;)fzfa - 79(€avia Vi)ezfa = —=
€i€a 4 2 4
Zoy L)) Zxy Lo
K(span{Z,, Z)\}) = g(R( 2 ) = —g(exZa, Za)eatr = —1
€€\
R(V;,,H)H,V; 1 1
K(span{ Vi, 1)) = SOV DT 2y vy = 2
€; 4 4
R(Z., H)H, Z,
K@mMZhHD:g(( ) = 9(Za, Zo)ea = —1
Ca

4.7 Semi-Riemannian Geodesics

The goal of this section is to find the semi-Riemannian geodesic in a semi-Damek-Ricci
space. We start by finding the geodesic equations.

Theorem 4.14. Let S be a semi-Damek-Ricci space and v : R — S be the geodesic such
that v(0) = e and ¥(0) = Vo + Zo + soH. Then 7y can be found by solving the system:
U= (81p + €°Jz,)0,
2= 3v, 0] + €% Zy,
§ = —5e*|VollP—e*| Zo|1*.

Where v =" v'V; and 2 = > 0| 2%Z,.

a=1
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Proof. We can describe the geodesic using the diffeomorphism exp, X exp, and a curve in s.
Since s is the direct sum of 3, v and a, we can write

V(1) = (expy X expq) (v(t) + 2(t) + s(t) H)

where v : R — v and z : R — 3 are vector valued curves and s : R — R is a real valued curve.
The velocity of the curve is then given by

n.i m D) (9
=2 gt 2 g g

Using proposition we have that

Y(t) = Zv[e zv+—zzuﬂca ] Sizaza+sﬂz

i=1 j=1la=1 «

s 1
e 20+e (2 + 5[1’),1}]) + $H.

We introduce new variables, let

Lo,o))

u=e"30 and :U:e_s(z'—|—2

such that the velocity becomes () = u + x + $H.

For ~(¢) to be a geodesic we need that the acceleration of the curve is zero, i.e Di(t) = 0.
Hence we will need the covariant derivative of the basis vector fields along 4, so we compute
them now.

1 1 1

1
ViZay = —§Jzau +9(x,Zo)H

1
ViH = U=

We are ready to compute the acceleration.

=Y Dy(u'V;) = @'V +u'VyVi =
i =1

1 1 1 1
ZUV—F’UJ( [u, Vi] + g(u Vi) — 2Jx%>:u—|—2g(u,u)H—2Jzu
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Di(z) =Y Dy(a™Vo) = Y 3 Za + 2V Z0 =
a=1

a=1

- 1 1
Z TYZo + xa< — §Jzau + g(z, Z@H) =1 — inu +g(x,x)H
a=1

1
Dy(sH) = 5H + 5sVyH = 5H — 8(§u +x)
By linearity of D; we have that the acceleration is given by

1 1
Di(¥) =u— isu —Jyu+ 13— sx+ §g(u,u)H +g(z,x)H + §H

and the geodesic equations are

U — %su = Jyu (4.7.1)
&= $x (4.7.2)
. 1
§= —§g(u,u) —g(x, z). (4.7.3)
From equation we have that
T=sr = x=¢€2 (4.7.4)

since z(0) = Zy. Also from (4.7.1)) we have that

d )
gg(u,u) =2g(t,u) = 2g9(Jyu + gu,u) = s5g(u,u)

and therefore g(u,u) = e[|V}

|? and equation ({.7.3)) reads

3 1 s s
5= — e Vol =) 20| (47.5)

Substituting for u and x, gives the wanted result. |

So to find the geodesics we need to solve the equation:

b= (81 + €% Jz )0

and to do so, we need a proposition.
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Proposition 4.15. [20] [3]
Let A(t),U(t) € M(n,R) such that
U=AU,  U(_0)=I,.

Then, if certain unspecified conditions of convergence are satisfied, U(t) can be written in
the form

U(t) = expar, (1)) (4.7.6)

where
t 1 [2E )
Q—/ A(tl)dt1+2/ / [A(tl),A(tQ)]dthtl—i- (4.7.7)
0 0 JO

1 [t 2 rts
6/0 /0 /0 [A(t1), [A(t2), A(t3)]] + [A(ts), [A(t2), A(t1)]]dtsdtadty + . ..

The series 2 is called the Magnus expansion of A.

Before we continue with finding the geodesic, some remarks about the proposition above.
Consider the initial value problem

y=At)y,  y(0)=wo. (4.7.8)

If U(t) is the so called matrizant of y i.e y(t) = U(t)yo, then U(t) will satisfy the initial
value problem

U=AMU U(@)=1I,
and by proposition we have that

y(t) = expgr(2)yo.
Also notice that if [A(t1), A(t2)] = 0 for all ¢;, t, then we have that

U() = expar( | Alt)dn)

and hence

y(t) = expen /0 A(tr)dt)yo.

Proposition 4.16. Let v: R — S be a geodesic, passing through the identity at time zero
and with initial velocity ¥(0) = Vo + Zo + soH. Then

e if || Zo]|>> 0: .
68
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o if || Zo*= 0:
o= OV + W f(t).J 2, Vo
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e if || Zo*< 0:
s(t)

. s e
v = e*® cosh(|Zo|f (1)) Vo |Z |

sinh(|Zo|f(t))Jz,Vo

where f(t) = f(f est)dt .
Proof. Let A(t) = I, + e®Jz,. We have that [A(t1), A(t2)] = 0 for all ¢1,t2 € R, so that the
Magnus expansion of A(t) becomes
t t
Q :/ A(ty)dt, = s(t) ] +/ e dty .y,
0 0
and since [s(t) 1y, f(t)Jz,] = 0 we have that

expar,(Q) = expar(s(t) o) expa (f(8)J2,) = € expay (F(1)2,).

Hence we have that

0 = e expar(f(t)Jz,)Vo-
‘We must consider three cases:

CASE I: Zg is spacelike

In the case that Zj is spacelike we have that || Zo|>> 0 and |Zy|*= || Zo||?. Using that
J%O = —||Zo|I?I, = —|Zo|?I,, we have that

f ) ‘Z()Pkfn 1 o f(t)2k+1(—1)k‘Z0|2k+1JZO B
expar(f(t)Jz,) Z + Zo] 2 2k + 1) =
cos(|Zol F() T + W sin(|Zo| £ (1)) 2. (4.7.9)
Hence

es(®)

0 = 5t cos(|Zol f())Vo + == 0]

sin(|Zo|f(t))J 2z, Vo-

CASE II: Zg is null

In the case that Zj is null we have that || Zy||?= 0 and J%O = 0. Therefore we have that

exper(f(t)Jzy) = Lo + [ (1) Iz,

Hence

b =Vo+ f(t)Jz, .
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CASE III: Z is timelike

In the case that Zj is timelike we have that || Zg||?< 0 and |Zg|?= —|| Zo||>. Using that
J%O = —||Zo|]*T = |Zo|*I,, we have that

. J Z f 2k|ZO|2kIU 1 0 f(t)2k’+l|ZO|2k’+1JZ0 _
par(f(t)Jz) |Z0] & (2k +1)!

cosh(|Zo|f(t)) 1y + sinh(|Zo|f (t))Jz,- (4.7.10)

1
| Zo|
Hence

5(t)

i = *® cosh(| Zo| F(£))Vo + — sinh(| Zo| £(£)) Tz Vo

| Zo|
|
We can now find some geodesics for some particular values of ||Vp]|?, | Zo||* and so.
Proposition 4.17. Let v: R — S be a geodesic such that v(0) = e and
Y(0) = Vo + Zo + soH, where Vi, Zy are null vectors. Then the geodesics are given by
For so #0:
L ot L osot t
=— — Vo + = (%59 — 2e*°" + 1) Iz, W
v So(e )0+2s%(€ e +1)Jz, Vo
z = L(e%ot —1)Zy
280
s = sot
For so=0:
1
v = t% + §t2JZ0‘/O
Z =tz
s=0

Proof. From theorem we have that

§=0 = s = sgt.
CASE I:50=0
We have that f(t) = f(f dt1 =t and by proposition we have that

1
D=V +tJz, Vo = v=1tVp+ 5t2JZOV0. (4.7.11)

Since Vj is a null vector, we have that [Vp, Jz, Vo] = 0 and hence
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z =4y = z= Zpt.
CASE II: 59 # 0
We have that f(t) = fg esolidty = %(650lt — 1) and by proposition we have that

1 1 1
B = €V (0 = g Vo = = (e = DV + g (7 = 267 1) T3 o
0

Again since Vj is a null vector, we have that [v,9] = 0 and

1
F=e207) — 2= 2—(6280'5 —1)%. (4.7.12)
50
[ |
Sp = —1
Sy — —%
So = 0
30 =3
Sp — ].
20
10
NO 0
-10
-20

Figure 7: Plot showing the projection of the geodesics of a semi-Damek-Ricci space, down on

ng. Vo, Zgy are null vectors and sy takes the values —1, —%, 0, %, 1.
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so=—1
Sy —

[
1

151

o= O |

05 1

05 T

-15F g

Figure 8: Plot of s(t), when Vj, Zy are null vectors and sg takes the values —1, —%, 0, %, 1.
To find the rest of the geodesics we need to solve the initial value problem
1
§= —§e81|%y|2—e2sy|zo||2 5(0) = 0, 5(0) = s (4.7.13)

when Vy and Zj are not both zero, but no solution was found. But just as for semi-H-type
groups, there exist totally geodesic submanifolds of semi-Damek-Ricci spaces and the hope
is that the geodesic equations will be easier to either solve analytically or numerically.

Definition 4.18. Let v : R — S be the geodesic in S such that v(0) = e and
v =Vo+ Zo+ soH. We define

S0 ="ngDa.

Theorem 4.19. The geodesic v : R — S in S such that v(0) = e and ¥ = Vo + Zo + soH,
where Vy, Zy and soH are not null vectors, lies in the totally geodesically four dimensional
semi-Riemannian submanifold Sy = exp,4(s0). Moreover Sy is a semi-Damek-Ricci space.

Proof. We start the proof by showing that 5o with inherited scalar product, Lie bracket and
J-map is a semi-Damek-Ricci Lie algebra. From theorem |3.19| we have that ng is a
semi-H-type Lie algebra. Hence we need only to check that sg is closed under the Lie
brackets.

Since

1 1
[Ha ‘/0] = 5‘/0 [Ha JZoVb] — iJZ()% [H; ZO] = ZO
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we have that sg is a subalgebra of s, and a semi-Damek-Ricci Lie algebra. Therefore we
have that the simply connected Lie group associated with s¢ is a semi-Damek-Ricci space.

By proposition we have that exp,(sp) is a subgroup of S and since exp, is a
diffeomorphism we have by proposition that Sy is a Lie subgroup of S with sq as its
Lie algebra. By defining the metric on Sy in the same way we did in section we have
that Sy is a semi-Riemannian submanifold of S.

To show that Sy is a totally geodesic semi-Riemannian submanifold we calculate the second
fundamental form. Let vi,vs € vg, 21,22 € 30 and s1, so € R, then

1 1 1
Vo, 02 = ig(vl,vz)H + 5[01,02] Vo 21 = —ilem =V 1 V.20 = g(z1,22)H

1
Vul (SlH) = —5511}1 Vzl (SlH) = —S81%21 VH() =0

Hence we have that the second fundamental form vanishes and by proposition [2.92] we have

that Sp is a totally geodesic semi-Riemannian submanifold of S.
|

The theorem tells us that we can find geodesics in .S, by finding them in Sy, as long as none
of Vi, Zy and sgH are null vectors. If at least one of V, Zy and sy are zero, we have that the
metric on Sy is degenerate and Sy is not a semi-Riemannian manifold. We conclude
therefore that, there are geodesics in .5, that cannot be found in the totally geodesic
submanifold Sy. There are seven cases of geodesics that cannot be found in Sy, namely
when the initial velocities are

Vo 20 soH
null not null | not null
null not null | null
null null not null
null null null
not null | not null | null
not null | null not null
not null | null null

Table 2: Cases of initial velocities of semi-Riemannian geodesics in S, that can not be found
in So.

To visualize this we can plot the two dimensional surface ||Vp||?+||Zo||*+s2 = 0 in R3, see
figure[9] The seven cases in table [2] is the represented by all points on the three planes,
given by ||[Vo||?= 0, || Zo||>*= 0 and sp = 0. Any point on ||Vp||?+||Zo||*+s2 = 0 will represent
null initial velocity, any point on the outside of the surface will represent spacelike initial
velocity and any point on the inside of the surface will represent timelike initial velocity.
The geodesics we found in proposition [£.17] have initial velocity lying on the intersection of
the two planes ||Vp||?= 0 and || Zy]|?>= 0.
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-5 2
5 1Z,

2
IV,

Figure 9: Plot of ||Vp||>+|Zo|/?>+s3 = 0. Points on the surface represent geodesics with
15(0)[*= 0.

Since every geodesic v(t) in S, such that y(0) = e and §(0) = Vi + Zo + soH, where Vj, Zy
and soH are not null vectors, lies in the totally geodesic submanifold Sy = exp,(s,), we wish
to find the geodesic equations in Sy. We introduce coordinates on Sy as follows

2 ) (exp, X exp,) 1

(ut,u? 2, s ulVo+u2JZOVo+zZo+sH

and since Sy is a semi-Damek-Ricci space, we have by proposition that left-invariant
vector fields are given by

Vo =e2 ail - %HVOHW%, (4.7.14)
Ty Vo = eéa‘; + %HVOHQ@H%, (4.7.15)
Zy = 65%, (4.7.16)

H = % (4.7.17)



Proposition 4.20. Let v : R — Sy be the geodesic in Sy, such that v(0) = e and
4(0) = Vo + Zo + soH. The geodesic equations in Sy are

ul _ %Ul o HZOHQeSuZ
i? = 50 + e*u'

5= %HVOHQ(IHUQ _ u1u2) + 28

§ = —g3e°|Vol*—e*|| Zo|1*.
Proof. Let the velocity of the geodesic be

A(t) = a0 - a0 + 29 - 39
Oul Ou? 0z 0s

By using (4.7.14), (4.7.16) , (4.7.15) and (4.7.17), we can write the velocity as

S S 1
Y(t) =dte Vo +ite 2Tz Vo + e (2 + S VolP (0 u® — itut)) Zo + sH

If the ~(t) is to be the geodesic through the identity, with 4(¢) = Vy + Zy + soH we need
that 4!(0) = 1, %%(0) = 0, 2(0) = 1 and $(0) = sp. We wish now to calculate the acceleration
of v(t) and to make calculations easier, let

A=qle 2
B =23
1
X=e"(:Z+ 5”%\\2(@111} —a?ub))

such that 4(t) = A(t)Vo + B(t)Jz,Vo + X (t)Zo + $H. Hence we need to compute D;(%) and
by linearity we can compute term by term.

. A? AB AX
D(AVp) = AV + 7HVoHQH — THVoH?Zo - TJzoVo

; AB B? BXx
Di(BU») = BJz,Vo + —-IVoll*Zo + - [IVol*| 2ol H + =~ 1| Zo]*Vo

AX

. BX
Dy(XZy) = XZy — — JzVot THZonVo — X% Z|*H

: . A B
D.($H) = §H — 8(5% + ngng +XZy)
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Hence the geodesic equations are

A— 2,4 = —BX| Z|? (4.7.18)

B gB = AX (4.7.19)

X =sx (4.7.20)
A AR AT (1.7.21)

From equation (4.7.20)) we see that X = e®. By using equations (4.7.18]) and (4.7.19)) we
have that

d ./42 2 62 2 2 . A2 2 BQ 2 2
& (&l i1zl = 5( 5 i+ S iRzl

hence

A? 5, B 2 2 1 2

DR - 7 _ - s

Vol + - IVl ZolP= 5 [Vol%e
Inserting this into equation (4.7.21), we get that

1
§= 2" Vol 20| (47.22)

Also since X = e® we have that

1 1
e = 678(2" 4 iHVOHQ(uIUQ _ iLZUI)) — 3= 5”%”2(71/1@2 . 1),1U2) + 623

By substituting for A, B and X’ in equations (4.7.18)) and (4.7.19)), we get the wanted result.
|

By comparing theorem and proposition we see that we must still solve the initial
value problem , which we are not able to do. Hence we will solve the geodesic
equations from proposition numerically, to produce plots of the geodesics. See figure
[10] and figure [I1] This is done by using discretization and the forward Euler method, to
iteratively compute the unknown functions u', u?, z and s for given values of ||Vo||?, || Zo|?

and sg.
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Figure 10: Plot showing the projection of geodesics of a semi-Damek-Ricci space, down on
ng, when found numerically. ||Vo||?, ]| Z0||? takes on the values —0.3,0.3 and sq takes on the
values —0.1,0.1.

Figure 11: Plot of s(t), when found numerically. ||Vo||?, || Zo||* takes on the values —0.3,0.3
and sg takes on the values —0.1,0.1.
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Even though we could not find all the geodesics, we know what they are when Vp, Zy, soH
are spacelike and we have that ||%(0)]|?= 1.

Proposition 4.21. [Z] [4]
Let v : R — S be a geodesic with v(0) = e and ¥(0) = Vo + Zo + soH, such that Vy, Zy, soH
are spacelike vectors and ||%(0)||?= 1. Then

20(1 — 500 262 20 1— 62
wvo + 7JZQVE) + ;Zo + In(

)

v = (exp, X exp,)(
with
o(t) — tanh(%) and x = (1 — s06)? + || Zo||26°.

The key statement in the proposition above is that Vj and Zy are space like vectors, since in
this case we have that the metric on Sy is a Riemannian metric and we are in the classical
Riemannian case.

Let D be the open unit disc in C? i.e

D:{26C2’|z|<1}

and let i
S = {(21,22) € C* | Re(z) > % .
Now let V = % and Z = é—g‘ We define a bijection ® : Sg — & given by

N N N 1
d <(expn x expy)(aV +bJ,V +cZ + sH)) — (a+1ib,e® + Z(GQ + b?) + ic)

with inverse

. A A 1
<I>_1(zl7 z2) = (exp, X expy)(Re(z1)V + Im(z1)J,V + Im(22)Z + In(Re(z2) — Z|Zl|2)H)'

Now we define a map from C' : D — & given by

2 1-—
(o1, 20) = < z1 22>‘

14297 14 29
Then C': D — & is biholomorphic i.e C' is bijective, holomorphic and its inverse
_ 21 1—2
C 1 ) - b
(21, 22) <1_'_22 1+22>

is also holomorphic. Now we equip the open unit disk D with the metric given by

1—|2*)dz - dz — zdz - zdz
(1 —12*)?
called the Bergman metric and we equip & with the Riemannian metric such that C' is an

isometry. Then D and & are two models of two-dimensional complex hyperbolic space,
namely the unit disk model and the Siegel domain model respectively.

ds® = 4(
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Now let a: R — D be a geodesic in unit disk model parametrized by arc length and
a(0) = 0, then the geodesic is on the form

a(t) =0(t)z z € 0D.

Since C' is an isometry, we have that the image of o under C' will be a geodesic in the Siegel
domain model, hence

B=Coa:R—6

is a geodesic parametrized by arc length and passing through (0,1) at time ¢ = 0. Since ® is
also an isometry, see [2][6], we have that

y=®topB:R— S

is a geodesic in Sy parametrized by arc length and such that v(0) = e. Now let

a(t) = (210, 200) such that |z |*+|z|*= 1. (4.7.23)
We have that

(4.7.24)

B(t) = (B(0), (1)) = ( 26 1- 229).

14 290" 1+ 290

and

Y 9 5 1
Y(t) = (exp, x expy) (Re(BHV + Im(8Y)J,V + Im(5?)Z + In(Re(B%) — 1|61|2)). (4.7.25)
If we require that 4(0) = Vo + Zo + soH, we have that
Vol=5'(0) = s0 + i Zo|= B*(0) = — 2.

By substituting for z; and zo in equations (4.7.24)),(4.7.25) and then simplifying we get the
wanted result.
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— Il =3, llZlF=3 s=y
— IWlP* = 0.1, [|Z]]* = 0.5, 5o = 0.4

[IVoll* = 0.2, || Z]]* =02, s = v0.6

=

8
6
4
o
N
2
0

Figure 12: Plot showing the projection of geodesics of a semi-Damek-Ricci space, down on
ng. Vp and Zjy are space like vectors.

—WlP=3 lZlF=3 s=y
—— ||Val|? = 0.1, || Zo||?> = 0.5, sp = V0.4 T
[[Vol]* = 0.2, [|Z|]* = 0.2, s = /0.6

0

Figure 13: Plot of s(t). ||Vo||* and || Zp||? are space like vectors.

83



5 Summary and Further Research

In chapter 3, we gave a complete description of the semi-Riemannian geodesics v : R — N,
passing trough the identity and with initial velocity 4(0) = Vi + Zp. We proved that every
semi-Riemannian geodesic lies in the submanifold Ny = exp,(ng) and that Ny is totally
geodesic, when V, and Zj are not null vectors. We also computed the Levi-Civita
connection and various curvatures of N. Moreover we gave a complete description of the
sub-semi-Riemannian geodesics in sub-semi-H-type groups.

In chapter 4, we introduced the notion of a semi-Damek-Ricci space and gave a partial
description of the semi-Riemannian geodesics v : R — S, passing trough the identity and
with initial velocity ¥(0) = Vo + Zp + soH. We proved that every semi-Riemannian geodesic
such that v(0) = e and 4(0) = Vo + Zy + soH, such that Vy, Zy and sgH are not null vectors,
lies in the totally geodesic semi-Riemannian submanifold Sy = exp,(sp). We also computed
the Levi-Civita connection and various curvatures.

We now list possible topics for further research concerning semi-H-type groups and
semi-Damek-Ricci spaces:

e We found all the semi-Riemannian geodesic passing through the identity in semi-H-type
groups, given an initial velocity. The natural next step is to consider the boundary value
problem: Find the semi-Riemannian geodesics passing through the identity and a given
point p € N. A similar consideration can be made for semi-Damek-Ricci spaces.

e A complete description of the semi-Riemannian geodesics in semi-Damek-Ricci spaces.
Seeing as we could not solve the second order autonomous given by

, 1
§ = —5e*lVol*—e*| 20| (5.0.1)
for any values of ||Vp||? and ||Z||?, we could not give a complete description of the

semi-Riemannian geodesics.

e Study the sub-semi-Riemannian manifold (S, D, g), where D(p) = Ly (v @ a) and g is
the left invariant metric defined on D by

9p(Xp, Yp) = Gowa((Lp-1)spXp, (Lp-1)spYp) for any X, Y € D.

In particular the sub-semi-Riemannian geodesic going through the identity, with initial
velocity Vg + soH € v & a and initial covector pg € 3*.

e Finding the Isometry group of semi-H-type groups, that is finding all diffeomorphisms
¢ : N — N, such that ¢ preserves the left invariant metric on N. A similar problem can be
considered for semi-Damek-Ricci spaces.

e Study the Jacobi vector fields and Killing vector fields of semi-H-type groups and
semi-Damek-Ricci spaces.

e  C(Classify semi-H-type groups and semi-Damek-Ricci spaces, according to when they are
symmetric, natural reductive, weakly symmetric, commutative, geodesically orbital and
harmonic. A similar classification was made in [2], in the Riemannian case.
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