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Abstract

In petroleum seismology, full waveform inversion (FWI) is known as a powerful method

taking into account all available in seismic data information with which one can determine

a high-resolution subsurface image. In time-lapse seismic, the use of FWI is even more

valuable since it makes it possible to monitor changes in model parameters. These changes

are often associated with changes in physical conditions in a hydrocarbon reservoir. In

high-contrast media, such as salt-affected regions for example, where petroleum traps are

often located beneath large salt bodies, the application of FWI methods encounters two

main problems: the absence of an accurate initial model to start an inversion workflow

and, the absence of ultra-low frequencies in real seismic data. These issues often cause

FWI algorithms to be ineffective. This thesis presents the Distorted Born Iterative T-

matrix (DBIT) nonlinear inversion method integrated with smoothing and self-adaptive

techniques to deal with these problems in the context of strongly scattering media models.

The proposed approach was applied to synthetic data, which were generated using the

T-matrix integral equation method.

The T-matrix integral equation method is a modelling technique used to model syn-

thetic data. Through a systematic comparison of this method with finite-difference mod-

elling, it was found that this technique can be considered to be exact. This makes it

attractive to DBIT, i.e. T-matrix modelling based inversion.

A lack of ultra-low frequencies (1-4 Hz), when experimenting with the modified

high-contrast EAGE/SEG salt models, caused the DBIT inversion algorithm to diverge.

However, the application of smoothing (multi-scale regularization) and self-adaptive (a

method for choosing the regularization parameter) techniques, solved this problem and

the DBIT-based FWI method successfully recovered the analyzed models. The time-

lapse application showed that for noisy data, only the high-contrast time-lapse velocity

anomaly (velocity difference of 600 m/s) could be restored. For the low-contrast veloc-

ity difference (velocity difference of 200 m/s), the time-lapse anomaly on the recovered

model failed to be resolved. A comparison of two different time-lapse strategies (parallel

difference and sequential) demonstrated that the sequential approach worked faster and

more accurate. The DBIT inversion method, in combination with the smoothing and

self-adaptive techniques, can be considered as an effective tool for strongly scattering

media model recoveries.
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Chapter 1

Introduction

The only source of knowledge is experience.

—Albert Einstein

Currently, despite the increased interest in alternative energy sources, hydrocarbons still

remain the most preferable because their extraction is relatively cheap (Ovcharenko et al.,

2018). The development of new techniques and technologies in petroleum exploration and

production has significantly enhanced oil and gas recoverability in conventional geological

reservoirs and opened access to hydrocarbon deposits hidden in more complex geological

settings (Leveille et al., 2011). High-contrast geological models presented by salt bodies

is one of the examples of such complex environments (Farooqui et al., 2009; Jackson and

Hudec, 2017). There are also plenty of cases where high-contrast structures consist of

massive volcanic formations (Farooqui et al., 2009). In both geological situations, hy-

drocarbons reservoirs are typically located beneath these high-contrast objects (Farooqui

et al., 2009; Jackson and Hudec, 2017).

Reservoir monitoring (as a part of enhanced oil recovery program) within hydrocarbon

production sites, has become a trivial routine (Speight, 2015). The need for reservoir

monitoring arises from two main reasons: economic benefit and environmental impact

(Bjørlykke and Jahren, 2015). In the first case, it is economically feasible to invest in

reservoir monitoring since the hydrocarbon production cost reduces through increased

production rate and increased recovery (Johnston, 1997). In the second case, reduction

of drilling holes and associated activities leads to reduced impact on the surrounding

environment (Patin, 2001).

1
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From a geophysical perspective, there are several methods to monitor reservoirs under

production. These methods typically include seismic, electromagnetic and gravimetric

surveys. Among them, seismic method is traditionally considered to be more accurate

and reliable geophysical monitoring approach (Landrø, 2015). Seismic monitoring method

is known as 4D or time-lapse seismics (Landrø, 2015).

In 4D seismics, a seismic survey is carried out over some given area or line repeatedly

(Nguyen et al., 2015). In this case, the fourth dimension denotes calendar time (Yil-

maz, 2001). In reservoir monitoring, calendar time is associated with different reservoir

production stages (Landrø, 2015). The first survey (baseline survey) relates to reservoir

imaging before production. The second and latest surveys (monitor survey) correspond

to the seismic investigations conducted after production started. The difference between

seismic wavefields obtained at the mentioned seismic monitoring surveys is known as

time-lapse seismic data (Nguyen et al., 2015). Time-lapse seismic data analysis mainly

concerns about wavefield changes in the reservoir zone. These changes are commonly

linked to reservoir alterations (its physical conditions) induced by hydrocarbons deple-

tion (Landrø, 2015). The analysis is typically accomplished in conjunction with available

reservoir rock information obtained from well-log data and core samples (porosity, per-

meability) to model fluid movements in the reservoir (flow simulation) and to estimate

reservoir production potential (Johnston, 1997). An example of time-lapse seismic data

obtained at Sleipner CO2 storage (a different kind of reservoir, but obeys the same seismic

monitoring rules) is given in figure 1.1.

In order to be valuable for reservoir characterization, 4D seismic data must be ap-

propriately acquired and processed (Landrø, 2015). Seismic differences corresponding to

seismic data collected at different times are not only sensitive to changes in reservoir

properties but also to differences in acquisition and processing technologies (Johnston,

1997). There exist several processing techniques that minimize inconsistencies between

seismic data collected at different times (Yilmaz, 2001; Nguyen et al., 2015). However,

this problem cannot still be avoided completely. For seismic data acquired within high-

contrast media models, all the issues mentioned become even more important. It is

common practice to consider subsurface imaging in the model (velocities) rather than

seismic (amplitudes and travel times) domains. Esser et al. (2016), explaining a typical

workflow to image subsalt structures (high-contrast models), put a particular emphasis

on its complexity. The authors conclude that successful high-contrast model recovery re-

lies heavily on the skills and experience of practitioners involved in the model restoration

process. It is therefore important to have good and precise processing method. A good
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Figure 1.1: Time-lapse seismic images of the Sleipner CO2 storage. Top panel- inline

perspective on the 3D time-lapse slices; bottom panel- plan perspective on the 3D time-

lapse slices (Chadwick et al., 2010).

candidate for this is Full Waveform Inversion (FWI).

FWI is a method that aims to reconstruct model parameters by considering all in-

formation in the recorded seismic wavefield (Queißer and Singh, 2013). An omportant

feature that this method does not require data prepocessing procedures. Or, put another

way, this model imaging approach excludes the need for manual interventions (Esser

et al., 2016). However, application of FWI to high-contrast media cases such as salt trap

models, where the main goal is to image the subsalt structure may be challenging. There

are several reasons for this. Firstly, there is high contrast between the salt body and sur-

rounded geological medium, which causes the subsalt structure to be poorly illuminated

(Ovcharenko et al., 2018). Secondly, there is the absence of an accurate initial model to

start the inversion workflow (Esser et al., 2016). Finally, real seismic data are typically

lacking ultra-low frequencies. This can cause the inversion algorithm to get stuck at one

of objective function local minima (Alkhalifah and Choi, 2012).

Thesis goal and objectives

The goal of this thesis is to study seismic time-lapse full waveform inversion in strongly

scattering media by using the distorted Born iterative T-matrix inversion approach and

different time-lapse inversion strategies.
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The cornerstone of this research work is the T-matrix concept (Taylor, 1972) on

which both the T-matrix integral equation modelling (Jakobsen, 2012) and distorted

Born iterative T-matrix inversion (Jakobsen and Ursin, 2015) techniques are based on.

Both techniques operate in the frequency domain. A choice of the T-matrix integral

equation method as a modelling method in this thesis is explained by its modelling

accuracy and ability to generate data for selected frequencies. For model recoveries

based on the frequency domain inversion approaches only few frequencies are required

(Sirgue and Pratt, 2004). This feature is very important if many sources in inversion

experiments are used (Jakobsen and Ursin, 2015). On the other hand, the use of the

same solver (T-matrix operator) when computing forward and inversion problems, may

result in biased results (Colton and Rainer, 1998). Therefore, the first objective of this

thesis is to systematically examine the T-matrix integral equation modelling approach

and to show that this method provides results comparable with an exact solution.

The DBIT inversion method solves the nonlinear inverse problem by solving a series

of related linear inverse problems (Jakobsen and Ursin, 2015). This linearization relies

on the modelling principle underlying the Distorted Born Approximation (DBA) method

(Jakobsen and Wu, 2018). To make sure that this approximation is reliable, it is necessary

to demonstrate the modelling accuracy of the DBA modelling method. This is the second

objective of this thesis.

The conventional DBIT-based inversion algorithm fails to recover models that include

strongly scattering elements when data lack ultra-low frequencies and an accurate initial

model. The third objective is to apply the DBIT inversion algorithm together with

smoothing and self-adaptive techniques to deal with these issues.

Results obtained by different time-lapse model recovery techniques differ in computa-

tion cost and accuracy. The fourth objective is to show the effectiveness of two time-lapse

inversion strategies when applied to strongly scattering media models.

For computational simplicity, in this thesis, both the modelling and the inversion

problems are considered in the acoustic approximation. All inversion experiments are

done using 2D synthetic data. Since the DBIT inversion is based on scattering theory, in

this thesis, the term ”high-contrast media” used in pair with the analyzed FWI method

is considered to be a synonym to the term ”strongly scattering media”.
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Thesis overview

This thesis contains 4 chapters. Each chapter is self-contained and focuses on a specific

topic. Chapter 1 gives an overview of seismic reservoir monitoring and explains difficulties

associated with the conventional processing when used for high-contrast media model

reconstructions. It also introduces the concept of FWI and specifies some issues that

could be encountered when one applies FWI to high-contrast models.

Chapter 2 focuses on the theory and practice of seismic modelling. First, it gives a

brief overview of different seismic modelling methods. Then, based on scattering theory, it

provides a derivation of the Lippmann-Schwinger integral equation and shows how it can

be reduced to first order approximation (the Born approximation), which is applicable for

modelling low-contrast media models. After discussing the discretization methodology

of the Lippmann-Schwinger equation, it introduces the T-matrix concept and provides a

derivation of the distorted Born approximation method. The chapter finishes with several

numerical tests which demonstrate the consistency of the Born approximation, T-matrix

modelling and distorted Born approximation approaches discussed in the theoretical part.

Chapter 3 discusses FWI theory and some applications of FWI. Firstly, some central

aspects of inversion theory, including explanations of ill-posed and well-posed problems,

regularization, linear and nonlinear inversion approaches and some elements of frequency

domain inversion techniques are explained. After discussing Born inversion, some simple

numerical experiments exemplifying the theory considered earlier are given. Further, it

introduces the nonlinear Distorted Born Iterative T-matrix (DBIT) inversion method. It

is shown that this method can be combined with smoothing and self-adaptive techniques

to deal with strongly scattering inverse problems. Finally, a comparison of two differ-

ent time-lapse strategies and their efficiency when applied to high-contrast models are

demonstrated.

Chapter 4 provides conclusions of both the modelling and inversion results obtained

previously. It also suggests some possible research directions in which the current study

could be extended.

Appendix A presents a derivation of the finite-difference time domain modelling

method and provides important points for its practical implementation.



Chapter 2

Seismic waveform modelling

It is the theory that decides what can be observed.

—Albert Einstein

2.1 Introduction

Seismic modelling is a technique that makes it possible to compute the propagation of

seismic waves in the Earth’s subsurface (Carcione et al., 2002). Historically, seismic

modelling methods have been developed by studying 1D models. Later, with the com-

puter power increase, 2D and 3D models have also been included in the consideration

(Sayers and Chopra, 2009). In practice, 3D seismic modelling is a costly procedure, and

even in the acoustic approximation (when the density is constant) the computations are

enormous. At the same time, the computational cost can be significantly reduced if the

modelling aim is clearly defined. In some cases, for example when the amplitude infor-

mation is not crucial, the use of approximate seismic modelling methods (in order to

estimate the optimal survey design, for instance) may be more desirable since they are

faster and provide results comparable to exact modelling solutions (Carcione et al., 2002).

The theory behind seismic modelling methods can be found in various sources (Ficht-

ner, 2011; Ikelle and Amundsen, 2005; Jakobsen, 2012). Carcione et al. (2002) categorize

seismic modelling approaches as follows: direct methods, integral-equation methods, and

ray-tracing methods.

6
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Direct methods are traditionally considered to be exact methods (Carcione et al.,

2002; Ikelle and Amundsen, 2005). In this case, seismic modelling involves performing

two main steps: firstly, a physical model is approximated by its discretized version which

contains a finite number of grid points; secondly, the seismic wavefield is computed using

the wave equation (Ikelle and Amundsen, 2005). The main advantage of such methods is

that there are no restrictions regarding the physical characteristics (composition contrast,

for example) of the model employed and the modelling accuracy depends directly on the

grid size. On the other hand, these methods are computationally expensive (Carcione

et al., 2002). The most popular modelling techniques in this group are finite-difference,

finite-element and pseudospectral methods (Schuster, 2017).

Integral-equation methods represent another group that is based on scattering theory

(Lo and Inderwiesen, 1994). In this case, the total wavefield is represented by a super-

position of the reference (background) and the perturbed (scattered) wavefields. The

wavefield decomposition is very convenient since it make it possible to work with the

included wavefields separately. On the other hand, model complexities in this type of

methods (Carcione et al., 2002) are directly proportional to modelling errors, which have

a tendency to accumulate from a scatterer to a scatterer. Therefore, these methods are

more restrictive in application than the direct methods. However, they still can give

accurate results when models are not very complex (Carcione et al., 2002). In recent

years, the potential of the scattering methods has essentially increased. Jakobsen (2012),

for example, presenting the T-matrix integral equation method, argues that this scatter-

ing theory-based modelling approach can provide modelling results comparable with the

direct methods.

The final group represents ray-tracing (asymptotic) methods. These methods are

based on the high-frequency (asymptotic) solution of the wave equation (Cerveny, 2001).

On one hand, these methods are approximate, as they assume that the frequencies are

high. On the other hand, they are the fastest methods which make them more useful,

especially in 3D seismic modelling cases (Cerveny, 2001; Carcione et al., 2002).

In this thesis, four modelling approaches are considered. The first three are the

scattering theory based methods, namely, the Born approximation, the T-matrix integral

equation and the distorted Born approximation methods. The fourth approach is the

finite-difference (exact) modelling technique.
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2.2 Theory

This section introduces three seismic modelling techniques based on the Lippmann-

Schwinger (LS) equation. They are the Born approximation, the T-matrix integral equa-

tion and the Distorted Born Approximation (DBA) methods.

2.2.1 General terms, equations and conditions

The wave equation, under the assumption that the density is constant, is defined as

(Auld, 1973) [
∇2 − 1

c2(x)

∂ 2

∂t2

]
Ψ(x, t) = −Fs(x, t), (2.1)

where ∇2 is the Laplace operator, Fs(x, t) is the source function, and Ψ(x, t) is the

seismic wavefield at position x and some time t propagating in the medium with the

velocity c(x). The Fourier transform of equation (2.1) gives us the wave equation in the

frequency domain (Helmholtz equation) written as (Jakobsen and Ursin, 2015)

L(x, ω)Ψ(x, ω) = −fs(x, ω), (2.2)

with the wave operator L(x, ω) explicitly given by

L(x) = ∇2 + k2(x), (2.3)

and Ψ(x, ω) and fs(x, ω) are the Fourier transforms of the wavefields Ψ(x, t) and Fs(x, t)

respectively. The variable k(x) depicts the wavenumber with the magnitude defined by

k(x) =
ω

c(x)
. (2.4)

For the Helmholtz equation (2.2) to have a unique solution, one needs to consider the so-

called Sommerfeld radiation conditions (Morse and Feshbach, 1953), which imply that the

seismic energy propagates only in the outward direction. Mathematically, the Sommerfeld

radiation conditions are given by

∂Ψ

∂ x
± iω

c(x)
, as x→ ±∞, (2.5)

where wavefield Ψ is bounded for all x (Bleistein et al., 2001).
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2.2.2 Greens functions and the Lippmann-Schwinger equation

A point-source solution to the Helmholtz equation

First, we consider the Helmholtz equation with a point-source. This means that the

source function fs on the right-hand side of equation (2.2) is a harmonic point pulse with

the oscillating angular frequency ω. If we define δ as the Dirac-delta function and x′ as

the position of some arbitrary point within the perturbed medium, then

fs(x) = δ(x− x′), (2.6)

In this case, there exists such a unique solution to equation (2.2), which is called the

Green function G(x,x′) (Morse and Feshbach, 1953; Lo and Inderwiesen, 1994; Bleistein

et al., 2001; Jakobsen and Ursin, 2015). The physical meaning of the Green function

is that gives the wavefield in a point source. Substituting equation (2.6) into (2.2), we

rewrite the Helmholtz equation in the following form:

L(x)G(x,x′) = −δ(x− x′). (2.7)

Following (Bleistein et al., 2001), we combine equations (2.2) and (2.7) and integrate the

result over some volume Ω:∫
Ω

[
G(x,x′)∇2Ψ(x)−Ψ(x)∇2G(x,x′)

]
dV. (2.8)

Using the divergence theorem, we rewrite the volume integral into a surface integral∫
∂Ω

[G(n̂ · ∇)Ψ−Ψ(n̂ · ∇)G] dS, (2.9)

where ∂Ω is the bounding surface, n̂ · ∇ is the derivative normal to ∂Ω, and n denotes

the outward directed normal vector. Combining equations (2.7) and (2.9), we can solve

for Ψ(x′)

Ψ(x′) =

∫
Ω

G(x,x′)fs(x) dV −
∫
∂Ω

[G(x,x′)∇Ψ(x)−Ψ(x)∇G(x,x′)] dS. (2.10)

Since we consider only outgoing waves, it follows from the Sommerfeld conditions (equa-

tion (2.5)) that the surface integral in equation (2.10) is equal to zero. Applying the

reciprocity principle (see Schuster (2017)), we end up with the point-source solution to

the Helmholtz equation (Jakobsen and Ursin, 2015):

Ψ(x) =

∫
G(x,x′)fs(x

′) dx′. (2.11)
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Green functions

The explicit forms of the Green functions for homogeneous unbounded media in one-,

two, and, three- dimensions can be found analytically (see, for example Bleistein et al.

(2001), Snieder (2004), Nowack (2010)). They are:

G1D(x,x′) =
i

2k
eik|x−x

′|, (2.12)

G2D(x,x′) =
i

4
H

(1)
0 (k|x− x′|), (2.13)

G3D(x,x′) =
1

4π

eik|x−x
′|

|x− x′|
. (2.14)

Here, H
(1)
0 in equation (2.13) corresponds to the zero-order Hankel function of the first

kind.

The Lippmann-Schwinger equation

The LS equation is a cornerstone in scattering theory (Ikelle and Amundsen, 2005). The

derivations of the LS equation can be found in many literature sources (see, for example,

Morse and Feshbach (1953), Lo and Inderwiesen (1994), Ikelle and Amundsen (2005),

Bleistein et al. (2001), Jakobsen (2012), Jakobsen and Ursin (2015). In this thesis, a

derivation of the LS equation is given mainly based on Lo and Inderwiesen (1994).

First, consider figure 2.1 which represents the scattering process schematically. Here,

we can recognize two different wavefields associated with the scattering problem. The

first one is the incident wavefield Ψ(0)(x) which was initiated by the source fs located at

some position x and propagates in the outward direction. The propagation velocity of

this wavefront we denote as c0(x). Note, there is not any scattering wave initiated by the

incident wave until it reaches the inhomogeneity. As soon as the incident field Ψ(0)(x)

arrives at the inhomogeneity, Huygen’s principle gives rise to the scattering wavefield

Ψ(1)(x). According to the Huygen’s principle, Ψ(1)(x) travels away from the point of

disturbance in all directions. Generally, this process is not restricted to only one scatter-

ing interaction: scattering from other inhomogeneities also occurs. Mathematically, the

superposition of the incident and scattered wavefields can be expressed in the following

way

Ψ(x) = Ψ(0)(x) + Ψ(1)(x). (2.15)
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Figure 2.1: A scheme of the seismic scattering process.

Now, we reformulate the squared wavenumber k2(x) in equation (2.2) such that it repre-

sents both the background and perturbed media in the following form

k2(x) = k2
0(x) +

[
k2(x)− k2

0(x)
]
, (2.16)

where the magnitude of k0(x) is given by

k0(x) =
ω

c0(x)
. (2.17)

Pulling out k2
0(x) from the brackets in equation (2.16), we can write

k2 (x) = k 2
0(x) + k2

0(x)

[
k2 (x)

k2
0(x)

− 1

]
, (2.18)

or, in terms of velocities

k2 (x) = k 2
0(x) + k 2

0(x)

[
c2

0 (x)

c2(x)
− 1

]
. (2.19)

If we define the bracketed term in equation (2.19) as the model function m(x) (Lo and

Inderwiesen, 1994) (also known as the non-normalized contrast function (Jakobsen and

Ursin, 2015)), then

m(x) =

[
c2

0 (x)

c2(x)
− 1

]
, (2.20)
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and so, equation (2.19) can be rewritten in more compact form

k2 (x) = k 2
0(x) + k 2

0m(x). (2.21)

Substituting equations (2.15) and (2.21) in the Helmholtz equation (equation 2.2), we

establish the relationship between the scattered field Ψ(1)(x) and the model function

m(x) [
∇2 + k2

0(x) + k2
0(x)m(x)

] [
Ψ(0)(x′) + Ψ(1)(x′)

]
= −fs(x). (2.22)

After some rearrangements in equation (2.22) and subtraction of the background field,

we arrive at [
∇2 + k2

0(x)
]

Ψ(1)(x′) = −k2
0(x)m(x)

[
Ψ(0)(x′) + Ψ(1)(x′)

]
. (2.23)

Note that the right-hand side term in equation (2.23) can be treated as a virtual source

(Jakobsen, 2012; Jakobsen and Ursin, 2015). Solving equation (2.23) for the perturbed

wavefield Ψ(1)(x) we get

Ψ(1)(x) = k2
0(x)

∫
Ω

G(0)(x,x′)m(x′)
[
Ψ(0)(x′) + Ψ(1)(x′)

]
dx′, (2.24)

with Ω denoting the domain where the scattering potential is non-zero. The solution for

the background wavefield can be easily obtained by referring to the Helmholtz equation

(2.2) again [
∇2 + k2

0(x)
]

Ψ(0)(x) = −fs(x). (2.25)

The Green function for the reference medium is assumed to be known. Therefore, after

applying the source representation integral (equation 2.11), the solution for the back-

ground wavefield can be written as

Ψ(0)(x) =

∫
G(0)(x,x′)fs(x

′) dx′. (2.26)

Finally, substituting equations (2.26) and (2.24) for the background and perturbed fields

in equation (2.15) for the total field, we end up with the well-known Lippmann-Schwinger

equation

Ψ(x) = Ψ(0)(x) + k2
(0)(x)

∫
Ω

G(0)(x,x′)m(x′)
[
Ψ(0)(x′) + Ψ(1)(x′)

]
dx′. (2.27)

Note that the integral equation defining the perturbed field (2.24) is nonlinear. This

nonlinearity arises from the product inside the integrand where the unknown perturbed

field Ψ(1)(x) depends on the model function m(x′). Being part of the LS equation, this

nonlinearity causes computational difficulties when one tries to solve it directly. One

of the ways to overcome these complications is to linearize the second term in equation
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(2.27). Such linearization of the LS equation is known as the Born approximation (Ikelle

and Amundsen, 2005).

In many modelling cases, linear approximations can be very useful. Saving compu-

tational time, they may provide results comparable to exact solutions. However, any

linearization is often valid only under some specific conditions. This is also true for the

Born approximation.

2.2.3 The Born series and the first Born approximation

Derivation

Motivated by Ikelle and Amundsen (2005), we first derive an expression for the so-called

Born series by rearranging equation (2.27) in the following operator form:

Ψ = Ψ(0) +G(0)δLΨ. (2.28)

Here, δL corresponds to the modified model function that incorporates the squared

wavenumber k 2
0(x), which is explicitly defined as

δL = δL(x) = k 2
0m(x). (2.29)

By expanding equation (2.28) as a Taylor series, we arrive at the Born (Neumann) scat-

tering series (Ikelle and Amundsen, 2005)

Ψ = Ψ(0) +G(0)δLΨ(0) +G(0)δLG(0)δLΨ(0) +G(0)δLG(0)δLG(0)G(0)δLΨ(0) + . . . (2.30)

Rewriting equation (2.30) in more compact form (Schuster, 2017), we have

Ψ =
∞∑
n=0

=
[
G(0)δL

]i
Ψ(0) = Ψ(0) + Ψ(1) + Ψ(2) . . . (2.31)

Here, the zeroth-order term Ψ(0) represents the direct wave propagating in the reference

medium. The first-order term Ψ(1) describes the wave propagating from a source located

in the reference medium to a scattering point, interacting with it, and then going to a

receiver. The second order term Ψ(2) is responsible for the first order multiple response

and so on (Schuster, 2017; Jabbari, 2016). Truncating the series in equation (2.31) to

its first two terms, under the assumption that the contribution of the higher terms are

negligibly small (Ikelle and Amundsen, 2005), we can write

Ψ(0)(x) + Ψ(1)(x) ≈ Ψ(0)(x), (2.32)
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where the scattered wavefield Ψ(1)(x) is assumed to be much weaker than the reference

wavefield Ψ(0)(x). Substituting equation (2.32) into (2.24), we can express the linearized

form of the perturbed wavefield Ψ(1)(x) as

Ψ(1)(x) = k2
0(x)

∫
Ω

G(0)(x,x′)m(x′)Ψ(0)(x′)dx′. (2.33)

Finally, the mathematical representation of the first Born approximation (or just Born

approximation), is now given by

Ψ(x) = Ψ(0)(x) + k2
0(x)

∫
Ω

G(0)(x,x′)m(x′)Ψ(0)(x′)dx′. (2.34)

Validity of the Born approximation

The Born approximation, if the Green’s function in the background medium is known,

can be very attractive in seismic modelling for the following reasons (Lo and Inderwiesen,

1994; Ikelle and Amundsen, 2005):

• first, the use of only first two terms of the Born series makes it possible to compute

primary waves only;

• secondly, the linear relationship between the data Ψ(x) and model function m(x)

significantly simplifies the inverse problem.

Despite these advantages, for the Born approximation to be accurate, the velocity

contrast between the background and perturbed media must be small, or, speaking math-

ematically, it must satisfy the following validity criterion (Bleistein et al., 2001; Schuster,

2017)

||k2
0(x)

∫
Ω

G(0)(x,x′)m(x′)dx′|| � 1. (2.35)

The Born approximation is also known as a weak-scattering approximation (Keller, 1969).

Ignoring of equation (2.35) can lead to inaccuracies in both travel times and amplitudes

(Ikelle and Amundsen, 2005). Ikelle and Amundsen (2005) tested the assumption behind

the criterion in equation (2.35) by conducting a simple 1D modelling experiment. In those

tests, the isotropic model included a homogeneous background medium with a single slab

embedded (perturbation). Repeatedly changing the thickness and the velocity in the slab,

the authors observed the accuracy of the Born modelling approach by comparing it with

the exact modelling (analytical) solution. After performing a series of tests, the authors

ended up with the following conclusions: when the contrast between the background
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medium and embedded layer was significant, or if the propagation time through the

slab was long enough, the arrival time from the bottom of the slab failed to display

accurate results (since the Born approximation assumes that the velocity of the slab is

equal to the velocity in the background medium). Also, if the contrast between the

background medium and embedded layer was relatively high, the reflection amplitudes

from the bottom of the slab displayed incorrectly.

2.2.4 Matrix representation of the Lippmann-Schwinger equa-

tion and T-matrix perspective

Discretization of any analytical equation is an important step toward practical solution.

Using the discretization scheme developed by Jakobsen (2012), in the following, I will

show how this can be implemented to solve the LS equation directly and with using the

T-matrix approach.

Inspired by Jakobsen (2012), Jakobsen and Ursin (2015) and Jakobsen and Wu (2016),

we start with rewriting the LS equation in the following form

Ψ(x) = Ψ(0)(x) +

∫
Ω

G(0)(x,x′) δL(x′)Ψ(0)(x′) dx′. (2.36)

From the equation above and equations (2.11)and (2.26), one can deduce that the Green

functions G(x,x′) and G(0)(x,x′) for the actual and the reference medium are related via

the following equation (Jakobsen and Ursin (2015))

G(x,x′) = G(0)(x,x′) +

∫
Ω

G(0)(x,x′′) δL(x′′)G(x′′,x′) dx′′. (2.37)

Using equation (2.37), we rewrite equations (2.29) and (2.36) as

Ψ(x) = Ψ(x) +

∫
Ω

∫
Ω

Ḡ(0)(x,x1) M̃(x1,x2) Ψ(x2) dx2dx1, (2.38)

and

Ḡ(0)(x,x′) = Ḡ(0)(x,x′) +

∫
Ω

∫
Ω

Ḡ(0)(x,x1) M̃(x1,x2) Ḡ(x2,x
′) dx2dx1, (2.39)

where

M̃(x1,x2) = m(x1) δ(x1 − x2), (2.40)

denotes the scattering potential of a non-normalized contrast function (equation (2.20))

compatible with the use of arbitrary heterogeneous media. Note, Ḡ(0)(x,x′) in equations

(2.38) and (2.39) represent the modified Green’s function

Ḡ(0)(x,x′) = ω2G(0)(x,x′). (2.41)
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Here, in equation (2.41), the angular frequency ω2 absorbed into the modified Green

function Ḡ(0)(x,x′) allows treating the remaining portion of the interaction (one now

depends only on the spatial variation (Kouri and Vijay, 2003)) in a way suitable for

inversion.

Discretization of the Lippmann-Schwinger equation

The discretization scheme developed by Jakobsen (2012) and Jakobsen and Ursin (2015)

is as follows: first, we define a set of receivers located at positions xr, where r = 1, ..., Nr.

The volume Ω, where the scattering potential δL is non-zero, is split up into a number

of equal N grid blocks with xp and δVp denoting the centers and volumes of these blocks

respectively, where p = 1, ..., N , is a sequential number of the grid blocks. To avoid

spatial aliasing, a size of the grid blocks should be chosen in conjunction with the spatial

Nyquist criterion (see, for example, Yilmaz (2001)). If we assume that n corresponds to

the index defining the field at a particular receiver position or inside a particular grid

block, then the discretized versions of equations (2.38) and (2.39) are

Ψn = Ψ(0)
n +

N∑
p=1

N∑
q=1

ḠnpMpqΨq (2.42)

and

Ḡmn = Ḡ(0)
mn + Ḡ(0)

mpMpqḠqn, (2.43)

where

Mpq = mpδvpδpq, (no sum over p). (2.44)

Here, δpq is the Kronecker delta, with δpq = 1 if p = q; δpq = 0 if p 6= q.

The Green function, in turn, can be discretized, for example, according to Levinson and

Markel (2016), implying

G(0)
pq = G(0)(xp,xq), p 6= q, (2.45)

and

δvpG
(0)
pp =

∫
Ωp

dxG(0)(xp,x). (2.46)

Here, Ωp in equation 2.46 indicates the domain corresponding to a single block centered

at position xp.

In the following, two groups of matrices corresponding to equations (2.42) and (2.43)

will be distinguished: source-dependent and source-independent. There are two reasons

for this division. Firstly, it will be convenient for the further computations, since the
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only source-independent Green functions need to be multiplied by the angular frequency

ω2. Secondly, it is also consistent with the T-matrix modelling approach (which will be

discussed later in this section).

For the source-independent group, we arrange the discretized fields (both reference

and perturbed) at the receiver (R) and volume (V) positions into the corresponding

vectors ΨR (Ψ
(0)
R ) and ΨV (Ψ

(0)
V ). From (2.42), we can write (Jakobsen and Ursin, 2015)

ΨR = Ψ
(0)
R + Ḡ

(0)
RV MΨR, (2.47)

ΨV = Ψ
(0)
V + Ḡ

(0)
V V MΨV , (2.48)

where, M is a diagonal N ×N matrix containing the scattering potential on its diagonal.

Similarly, from equation (2.43), we can deduce the relations for the Green functions GRV

(G
(0)
RV ) at the receiver-volume and GV V (G

(0)
V V ) and volume-volume domains (Jakobsen

and Ursin, 2015)

ḠRV = Ḡ
(0)
RV + Ḡ

(0)
RV MḠV V , (2.49)

ḠV V = Ḡ
(0)
V V + Ḡ

(0)
V V MḠV V . (2.50)

The source-dependent Greens functions for both the reference and perturbed media at

the source-receiver GRS (G
(0)
RS) and volume-source domains GV S (G

(0)
V S) are given by

(Jakobsen and Ursin, 2015)

GRS = G
(0)
RS + Ḡ

(0)
RV MGV S, (2.51)

GV S = G
(0)
V S + Ḡ

(0)
V SMGV S. (2.52)

Here, the components of the Nr × Ns – dimensional matrix G
(0)
RS in equation (2.51)

represents the source position xs (s = 1, . . . , Ns) and receiver position xr (r = 1, . . . , Nr).

The elements of the N ×Ns -dimensional matrix G
(0)
V S in equation (2.52) relate to source

position xs (s = 1, . . . , Ns) and one scattering grid block position xj (j = 1, . . . , N). The

solution of the LS equations can be obtained directly from equations (2.51) and (2.52) by

solving for the Green functions. But, the forward modelling problem, as will be shown in

the next subsection, can be solved more efficiently by applying the T-matrix approach,

where the inversion of two matrices corresponding to the Green functions in equations

(2.51) and (2.52) are replaced by inversion of that one corresponding to the T-matrix.

(Jakobsen, 2012; Jakobsen and Ursin, 2015).

Transition operator and the T-matrix approach

The T-matrix, or a transition operator T, is known from quantum mechanical scattering

theory (Jakobsen and Ursin, 2015). Mathematically, it is defined by (Jakobsen, 2012;
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Jakobsen and Ursin, 2015; Jakobsen and Wu, 2016, 2018)

MΨV = TΨ
(0)
V . (2.53)

Using the above equation in combination with equation (2.48), we can write

ΨV = Ψ
(0)
V + Ḡ

(0)
V V TΨ

(0)
V . (2.54)

Multiplying both sides of equation (2.54) by M and applying equation (2.53) again, we

get

TΨ
(0)
V = MΨ

(0)
V + MḠ

(0)
V V TΨ

(0)
V . (2.55)

Since Ψ
(0)
V is arbitrary, equation (2.55) can be reduced to the following form

T = M + MḠ
(0)
V V T. (2.56)

Here, equation (2.56), being also known as the LS equation for the T-matrix, represents

all nonlinear effects of multiple scattering. The explicit form for the T-matrix, can easily

be obtained from equation (2.56) as

T = (I−M Ḡ
(0)
V V )−1M. (2.57)

Note, the T-matrix itself, does not bring in any new information, however, being in-

dependent of the source-receiver configuration, it significantly simplifies a computation

process.

Now, using the identity (2.53) as a fundamental definition for the T-matrix, equations

(2.49-2.52) can be rewritten in the following forms:

ḠRV = Ḡ
(0)
RV + Ḡ

(0)
RV TḠ

(0)
V V , (2.58)

ḠV V = Ḡ
(0)
V V + Ḡ

(0)
V V TḠ

(0)
V V , (2.59)

GRS = G
(0)
RS + Ḡ

(0)
RV TG

(0)
V S, (2.60)

and

GV S = G
(0)
V S + Ḡ

(0)
V V TG

(0)
V S. (2.61)

Note, now, the use of equations (2.58-2.61) make it possible to solve for both the wavefields

and Green functions in any heterogeneous background media.

Moving forward, we extend the modelling theory to be compatible with the use of the

number of frequencies and sources. To do this, we start by considering equation (2.15)

for the total field. The components of this equation are just products of the source vector
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f̃s containing all information about sources distribution, and the corresponding Green

functions GRS and G
(0)
RS at the receiver-source domains (Jakobsen, 2012)

ΨRS = GRS f̃s, (2.62)

Ψ
(0)
RS = G

(0)
RS f̃s. (2.63)

If we define the perturbed wavefield as a vector d, representing the difference between

wavefields given in equations (2.62) and (2.63), then, we can write (Jakobsen and Wu,

2016; Eikrem et al., 2017; Jakobsen and Wu, 2018)

d = [GRS −G
(0)
RS ]̃fs. (2.64)

This equation in conjunction with equation (2.51), gives us

d = Ḡ
(0)
RV MGV S f̃s. (2.65)

Assuming a set of discrete frequencies defined by ωk (k = 1, . . . , Nω), equation (2.65) can

be rewritten exactly as (Jakobsen and Ursin, 2015)

d̃rn,sk =
N∑
n=1

Jrn,skmn, (2.66)

where

Jrn,sk = Ḡ(0)
rn (ωk)δMnGns(ωk)fs(ωk) (2.67)

and

mn = (cn)−2 − (c(0)
n )−2, (2.68)

with cn and c
(0)
n known wavespeeds in the background and perturbed media. From a

practical perspective, it is more convenient to replace indices s, r and k by a single index

α (s, r, k→ α), where α = 1, 2, 3, ..., Nd, with Nd = NsNrNw. If we do this, then, equation

(2.66) can be written as

dα =
N∑
n=1

Jαnmn, (2.69)

or, in matrix form as

d = Jm. (2.70)

Equation (2.70), being a system of linear equations, reflects a non-linear relation between

the data-vector d and the contrast function m via the matrix J. The physical meaning

of the matrix J can be interpreted as the sensitivity of the scattered field with respect to

a small perturbation of the wave-speed in the corresponding nth block of a volume for a

given source, receiver and frequency. Note, the form of equation (2.70) is typical way to

represent a modelling problem also suitable for inversion purposes (will be explained in

chapter 3).
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Discretization of the Born approximation

The integral equation for the perturbed wavefield associated with the Born approximation

(2.33) can be easily discretized by using the same discretization scheme introduced in the

previous subsection. Here, the similarities arise from the structure of equations (2.24)

and (2.33). Replacing GV S by G
(0)
V S in equation (2.65), we can define the data vector d

for the perturbed wavefield as

d = Ḡ
(0)
RV MG

(0)
V S f̃s (2.71)

Again, assuming the set of frequencies and sources, and repeating all the corresponding

steps described in the previous subsection, we end up with the matrix formulation of the

perturbed wavefield (see, for exmaple, Eikrem et al. (2016)) for the Born approximation

similar to equation (2.70). In this case, the sensitivity matrix J characterizes a linear

relationship between the data-vector d and the contrast function m.

The distorted Born approximation

The DBA is another seismic modelling method which provides almost exact linearized

solution of the LS equation (Chew and Wang, 1990; Jakobsen and Ursin, 2015; Eikrem

et al., 2017; Jakobsen and Wu, 2018). I start a derivation of the DBA method by decom-

posing the scattering potential as (Jakobsen and Ursin, 2015; Eikrem et al., 2017)

δM(b) = M−M(b). (2.72)

Here, δM(b) is a variation of the scattering potential M about the heterogeneous reference

medium with the scattering potential M(b). The last one leads to the variation in the

Green function G
(b)
RS, and given by

δG
(b)
RS = GRS −G

(b)
RS, (2.73)

or, defined in terms of seismic fields, by

δΨ
(b)
RS = ΨRS −Ψ

(b)
RS. (2.74)

If we consider δΨ
(b)
RS and Ψ

(b)
RS as the perturbed fields with respect to the actual ΨRS, we

can write

Ψ
(b)
RS = G

(b)
RV M(b)G

(b)
V S f̃s, (2.75)

and

δΨ
(b)
RS = G

(b)
RV δM

(b)G
(b)
V S f̃s. (2.76)
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Here, the unknown Green functions G
(b)
V S and G

(b)
RV (also known as the dynamic Greens

functions) for the background medium correspond to the different parts of the scattering-

path propagating from the source to the receiver via some volume. They are defined by

the following equations Jakobsen and Wu (2018):

G
(b)
V S = G

(0)
V S + G

(0)
V V T(b)G

(0)
V S, (2.77)

G
(b)
RV = G

(0)
RV + G

(0)
RV T(b)G

(0)
V V , (2.78)

where, T(b), is the T-matrix, defined by (Eikrem et al., 2017)

T(b) = (I + M(b) G
(0)
V V )−1M(b). (2.79)

Finally, the solution for the perturbed wavefield can be deduced from equation (2.74).

To be implemented for multiple sources and the number of frequencies, one can use the

implementation method discussed previously.

2.2.5 Seismic source

A formal definition of the seismic pulse in seismic modelling theory (Rabinovich et al.,

2018) is that it represents ”the solution of the corresponding nonlinear evolution equation

describing the stress-strain states of the propagation medium”. Due to the complexity of

real media, it is often difficult to represent a point source corresponding to a seismic pulse

mathematically. Despite this, there are still numerous of solutions offered (Rabinovich

et al., 2018). The most known are the Ricker wavelet, the Berlage wavelet, the Gelfand

wavelet (Rabinovich et al., 2018). In this thesis, for synthetic modelling, the Ricker

wavelet (Ricker, 1953) is chosen. This choice is based on a close similarity of the Ricker

wavelet to a real seismic pulse. Mathematically, the Ricker wavelet takes the following

form:

R(t) = 1− (t− 1

f0

)2f 2
0π

2e
−(t− 1

f0
)2π2f20 , (2.80)

where f0 is the central frequency and t is recording time.

The Ricker wavelet, with two dominant frequencies 7.5 Hz and 15 Hz (and their amplitude

spectra), is shown in figure 2.2.
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Figure 2.2: The Ricker wavelets with the dominant frequencies 7.5 Hz and 15 Hz ((a)

and (c) respectively); and, their corresponded amplitude spectra ((b) and (d)).

2.2.6 Error estimations and random noise

Relative error and root mean square error

Quantitative data comparison may be obtained using different statistical methods. In

this thesis, in order to compare data (in both modelling and inversion experiments),

two statistical techniques are utilized: a method for the relative error estimation and a

method for the root mean square error estimation.

The mathematical definition of the relative error is given by

εrel =
xest − xex

xex
100%. (2.81)

Here, xest and xex denote estimated and exact measurements respectively.

The root mean square error can be found from

εrms =

√∑n
t=0(x1,t − x2,t)2

n
, (2.82)
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where x1,t and x2,t are two datasets for comparison and n is the number of samples in

each dataset.

Mathematical definition of random noise

To simulate noisy data in the frequency domain, one can use a simple relation given by

Jakobsen and Ursin (2015), in which some random Gaussian noise are added to each

frequency component when modelling

dnoisy = d +
|d|

SNR

µ

|µ|
. (2.83)

Here d is the initial data-vector, µ is the vector with random numbers added (which has

the same length as the data-vector), and SNR is a value for the signal to noise ratio. The

last one is defined by

SNR = 10(SN/20), (2.84)

with SN denoting the value for a noise level given in dB.

2.3 Numerical results

The goal of this section is to demonstrate that the T-matrix integral equation method

provides modelling results comparable to those of the exact modelling solution. All tests

in the section are divided into two parts.

The first part intends to examine the accuracy of the Born approximation and T-

matrix integral equation methods by comparing them with one of the exact modelling

approaches. Starting from simple zero-offset experiments based on a single-slab model, I

first investigate how consistent the modelling results of the Born and T-matrix modelling

methods in response to variable thicknesses and contrasts of the embedded layer. After

that, the study presents the examinations of multichannel cases, in order to show how

accurate T-matrix modelling results at different offsets and times.

The second part focuses on time-lapse modelling experiments. Using simple geological

models, which represent different stages of reservoir production, synthetic seismograms

using the Born approximation, DBA and T-matrix techniques are computed. The seis-

mograms are compared in order to determine their accuracy in time-lapse modelling.
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The accuracy of the T-matrix integral equation method has already been studied be-

fore (Jakobsen and Ursin, 2015). Comparing the modelling results of the T-matrix and

finite-difference methods (qualitatively) using the simple 2D model, the authors discov-

ered that the difference between the generated wavefields was very small. This is useful,

but as a next step, it is relevant to compare the modelling results quantitatively to see

if the error is offset- and time-dependent. In this thesis, to perform such a quantita-

tive comparison, the finite-difference seismic modelling as a reference solution for data

comparison are used (similarly to Jakobsen and Ursin (2015)).

2.3.1 The finite-difference method and the methodology for data

comparison

The finite-difference method is one of the most successful modelling techniques for solving

the wave equation (Ikelle and Amundsen, 2005). In this method the fundamental differ-

ential equation (2.1) is discretized and implicitly solved. The technique is applicable in

both time and frequency domains. In this thesis, for the purpose of comparing synthetics,

the most popular and relatively simple time domain technique (Finite-Difference Time-

Domain or FDTD) is used. Appendix A provides a mathematical derivation of the FDTD

modelling method.

A direct comparison of the T-matrix (as well as Born and DBA) and FDTD mod-

elling results meets some pitfalls. Scattering theory implies that the background medium

of a model is infinite (Ikelle and Amundsen, 2005). This fact excludes any free-surface

related reflections when using the scattering theory modelling approaches. In the case of

the finite-difference method, on the contrary, these reflections take place. Therefore, for

data to be compared, some adjustments in the modelling techniques are needed. There

are two ways to adjust the analyzed modelling techniques. The first way involves ap-

plying absorbing boundary conditions to both modelling methods. When applied, the

absorbing boundary conditions prevent the seismic energy reached the model boundaries

from reflecting back to the model. The second way includes extending the free surface

when generating finite-difference data such that the associated reflections do not appear

within a given recording time. Even the first approach seems to be more attractive, the

application of absorbing boundary conditions does not always work well and results often

depend on the specifics of the boundary condition techniques employed (Ajo-Franklin,

2005). Therefore, in this thesis, the second approach is used when comparing the mod-

elling data.
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Finally, it should be mentioned that in the following data comparison, only the per-

turbed wavefields are analyzed. For the T-matrix method, this involves considering Ψ(1)

when modelling. For the FDTD method, however, the wavefield decomposition is im-

possible (the solution to equation (2.1) implies computing the total wavefield only). To

obtain the perturbed wavefield by the FDTD modelling method, the following is done.

First, the modelling problem is solved for the whole model. Then, the computations are

repeated for the background model. Finally, the background wavefield is subtracted from

the total wavefield.

2.3.2 Slab model

There two types of slab model are considered in the first set of tests. For the zero-offsets

experiments, a simple slab model includes one embedded layer. For the multichannel

experiments, additionally to the slab model, a ”layer-cake” model simulating a series of

horizontally aligned strata in the geological section is analyzed.

Zero-offset experiments

For the first zero-offset experiment, a single-slab model is 20 m in length and 800 m in

depth. The thickness of the top, embedded and bottom layers are 80 m, 140-300 m and

580-420 m respectively (variable thicknesses of the embedded and bottom layers mean

that they are subjects of change in the modelling tests). The velocities in the slab and

background medium are 3000 m/s and 2000 m/s respectively. The size of the grid blocks

is equal to 10 m in each direction. One source and one receiver, which are positioned

exactly in the middle of the model (at the surface), are used. Total recording time and

time sampling interval are 0.8 s and 0.004 s correspondingly. As a source function, the

Ricker wavelet function with a dominant frequency of 7.5 Hz defined by equation (2.83)

is used.

Discussion

Figure 2.3 shows two velocity models and the corresponding seismograms generated using

the FDTD, Born approximation and T-matrix methods. Note, the signals reflected from

the top of the slab are identical for all modelling methods. The reflections from the

bottom of the slab are similar for the FDTD and the T-matrix modelling methods and

quite different for the Born approximation.
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In order to see how the amplitudes and travel times of the reflected signals change as a

function of slab thicknesses, we gradually change the thickness in the interval from 140 m

to 300 m. Choosing a thickness, which increases with the step of 20 m, we generate eight

zero-offset seismograms for each modelling method. Some of the generated seismograms

are shown in figure 2.4. To estimate the differences in amplitudes and travel times, we

pick the first local minimum associated with the slab bottom in each modelled trace

(crosses in figure 2.4), define the difference in amplitude and travel times between the

first local minimum corresponding to the top of the slab and the picked values obtained

before, interpolate the obtained differences to 100 points using spline interpolation (to

make results more representative), and compute relative errors (assuming that the FDTD

data are the reference data). The errors are shown in figure 2.5. Note the differences in

error for the Born approximation (illustrations (a) and (b)) and the T-matrix modelling

methods.

In the next zero-offset experiment, we fix the thicknesses of the top, embedded (slab)

and bottom layers (80 m, 290 m and 430 m correspondingly) in the model. We vary

the velocity in the slab from 2200 m/s to 3000 m/s with an interval of 100 m/s. Figure

2.6 demonstrates two selected models with corresponding seismograms generated for this

test. It is worth noting that the T-matrix solution does not show any visual modelling

differences in comparison with the FDTD modelling data, while the Born modelling

results for the slab bottom are notably different.

Using the same strategy as in the previous test, we pick the first local minima (fig-

ure 2.7), estimate the difference in amplitudes and travel times between local minima

corresponding to the top and bottom of the slab, interpolate (using spline interpolation)

the picked results to 100 points and estimate relative errors. The computed modelling

errors for the Born and T-matrix modelling methods are shown in figure 2.8. Again, the

magnitudes of the estimated errors for the Born modelling method are much higher than

those of the T-matrix method.

Multichannel experiments

For the multichannel experiments, two models are employed: the slab model (similar

to the previous tests) and the ”layer-cake” model (containing several horizontal layers).

In the first case, velocities in the background and perturbed media are equal to 2400

m/s and 3000 m/s respectively (both models are shown in illustrations (a) (figures 2.9

and 2.10)). For the second case, velocities in the model vary from 2400 m/s to 3300
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m/s. Both models have a horizontal dimension of 1500 m and a vertical dimension of

750 m. They consist of 1891 grid blocks which have a size of 25 m x 25 m. The other

parameters required for the modelling are assumed to be the same for both models. A

survey design involves 61 equidistantly spaced receivers located at the surface, and one

source positioned exactly in the middle of the aperture (also at the surface). As a source

function, the Ricker wavelet function with a central frequency equal to 7.5 Hz (equation

2.80) is used. Total recording time is 1.6 s. A time sampling interval is 0.004 s.

Discussion

Figures 2.9 and 2.10 represent the synthetic seismograms generated by the FDTD and

T-matrix modelling methods (illustrations (b) and (c) respectively) and their differences

(illustrations (d)). Note, the seismograms (illustrations (b) and (c)) in figure 2.10 include

a strong reflection at times 0.55-0.65 s, which is absent in figure 2.9. This is an artificial

reflection from the model bottom boundary. It did not appear in figure 2.9, because

the velocity in the bottom layer is equal to the background velocity. Also, note that

the differences (illustrations (c)) at far offsets in both figures are slightly different than

compared to those at near offsets. To estimate modelling errors quantitatively, we do the

following: the whole traces in the seismogram we divide into small trace groups (each

trace group includes the equal number of traces) and, then, we compute RMS errors for

each of these groups (using the FDTD data as reference data). Illustration (a) in figure

2.11 shows such RMS errors for the ”layer-cake” model. Here, for the computations, the

seismogram was divided into ten trace groups. We note that the RMS errors at far offsets

are higher. However, as can be seen from the plot, the errors do not exceed 0.35.

Now, we investigate if the modelling differences are depth dependent. To do this, we

choose three traces at different offsets (at the zero offset, at the half an offset and at the

maximum offset), divide each of the chosen traces into equal time intervals and compute

RMS errors for each of these intervals. Illustration (b) in figure 2.11 demonstrates such

error estimations computed for the ”layer-cake” model. Here, three traces corresponding

to the offsets 0 m, 375 m and 750 m, and, ten time samples in each time group were used.

Note, that at far offsets and higher depths, the modelling errors are more evident than

for the near offsets.
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2.3.3 Fault trap model

A fault trap model is a relatively simple geological model that includes two varieties. The

first variety (the baseline model) corresponds to the first stage of the reservoir produc-

tion (reservoir rocks saturated in hydrocarbons). The second variety (the monitor model)

defines the second stage of the reservoir production (reservoir rocks depleted in hydro-

carbons). The difference between these two models is the time-lapse model. These two

models and their difference (time-lapse model) are shown in figure 2.12. The time-lapse

anomaly is represented by a relatively small velocity variation (100 m/s).

A possible lithological interpretation for the trap model is provided in table 2.1. The

size of the models (including model sampling), survey and recording parameters are

chosen the same as in multichannel experiments in subsection (2.3.2).

Discussion

Figure 2.13 shows the noiseless and noisy synthetic seismograms generated using the

baseline model (illustration (a) in figure 2.12) with the help of the T-matrix integral

equation method. Note, how clean the wavefield is. All the geological elements in the

wavefield can be identified. The seismograms in illustrations (b) and (c) look fuzzier

because of the random noise. On the seismogram with a SNR equals to 5 dB (which

corresponds to 56% noise), the reflections associated with the geological interfaces can

hardly be detected.

Figure 2.14 represents three synthetic seismograms corresponding to the baseline,

monitor and the time-lapse models in figure 2.12. All are generated using the FDTD

method. Here, the time-lapse event (illustration (c)) is well defined (located approx-

imately at 0.5-0.55 s). Figure 2.15 demonstrates a similar test, but for the Born ap-

proximation method. In this case, the time-lapse anomaly appears at times 0.6-0.55 s

(approximately). This difference in arrival times arises from the fact that the Born ap-

proximation solution propagates in the model with the velocity of the background medium

instead of the model velocities. Figure 2.16 shows the synthetic seismograms obtained

by the DBA method. The time-lapse anomaly is at the same times as for FDTD mod-

elling (illustration (c) in figure 2.14). For the T-matrix solution, as figure 2.17 shows, the

seismic event corresponding to the time-lapse anomaly also comes in at the same time as

in the FDTD modelling data. Figure 2.18 concludes the observations above showing the

differences between the time-lapse seismograms obtained by the FDTD method, the Born
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Table 2.1: Lithological interpretation of the fault trap model

Layers (from the top) Lithological specification Velocity [m/s]

Layer 1 Weekly consolidated deposits 2400

Layer 2 Sandy siltstones, mudstones 2600

Layer 3 Calcareous sandstones (reservoir rocks) 3000

Layer 4 Oil-saturated sandstones 2900

Layer 5 Limestones 3300

approximation (illustration (a)), DBA (illustration (b)) and T-matrix (illustration (c))

methods. For the Born approximation, the difference is quite large (illustration (a)). For

the DBA and T-matrix modelling approaches, the residuals are very small (illustrations

(b) and (c) correspondingly). Also, note that the DBA and T-matrix results are similar.

2.3.4 Concluding remarks

In this section, I briefly highlight some essential points of the results presented above.

First, the zero-offset experiments (figures 2.3-2.8) showed that the modelling errors (rela-

tive errors) in amplitudes and travel times associated with the T-matrix integral equation

method were minimal (around 1-2 %). Based on the multichannel tests (figures 2.9-2.11),

it can be concluded that the modelling errors associated with the T-matrix technique are

time- and depth depended. However, the errors (RMS errors) are small (do not exceed a

value of 1). The analysis of the time-lapse seismograms generated by the Born approx-

imation, DBA and the T-matrix modelling methods show that the DBA and T-matrix

techniques are characterized by extremely small differences when compared to the FDTD

results (figures 2.14, 2.16, 2.17 and 2.18 (illustration (b) and (c)), while the Born mod-

elling approach, on the contrary, demonstrates large errors (illustration (a) in figure 2.18).

It is also important to emphasize the close similarities between the DBA and T-matrix

time-lapse modelling results (illustrations (b) and (c) in figure 2.18). These conclusions,

in conjunction with the results provided by Jakobsen and Ursin (2015), I think, suggest

that the T-matrix method can be considered to be an exact modelling method.
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Figure 2.3: Zero-offset modelling experiment. (a) and (c) are the slab models with

different thicknesses; (b) and (d) are the corresponding synthetic seismograms obtained

using the FDTD, Born and T-matrix modelling methods.

Figure 2.4: Zero-offset synthetic traces with the picked first minima (different slab

thicknesses). The modelled traces obtained using the (a) Born approximation and the

FDTD method; (b) T-matrix and FDTD methods.
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Figure 2.5: Relative errors for the Born approximation and T-matrix modelling methods

in the slab models in figure 2.4. (a) and (c) correspond to the amplitude-related relative

errors (the Born and T-matrix methods respectively); (b) and (d) correspond to the travel

times-related relative errors (the Born and T-matrix methods respectively).
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Figure 2.6: Zero-offset modelling experiment. (a) and (c) are slab models with different

velocities; (b) and (d) are the corresponding synthetic seismograms obtained using the

FDTD, Born and T-matrix modelling methods.

Figure 2.7: Zero-offset synthetic traces with the picked first minima (different slab

velocities). The modelled traces obtained using the (a) Born approximation and FDTD

method; (b) T-matrix and FDTD methods.
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Figure 2.8: Relative errors for the Born approximation and T-matrix modelling methods

in the slab models in figure 2.7. (a) and (c) correspond to the amplitude-related relative

errors (the Born and T-matrix methods respectively); (b) and (d) correspond to the travel

times-related relative errors (the Born and T-matrix methods respectively).
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Figure 2.9: Multichannel modelling experiment. (a) the single-slab model; (b) the

seismogram generated using the FDTD modelling method; (c) the seismogram generated

using the T-matrix modelling method; (d) the difference between (b) and (c).
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Figure 2.10: Multichannel modelling experiment. (a) the ”layer-cake” model; (b) the

seismogram generated using the FDTD modelling method; (c) the seismogram generated

using the T-matrix modelling method; (d) the difference between (b) and (c).
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Figure 2.11: RMS errors associated with the ”layer-cake” model (based on the T-matrix

modelling method). (a) The offset-dependent RMS errors (each trace group includes six

traces); (b) the time-dependent RMS errors at different offsets (each time group includes

ten time samples).
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Figure 2.12: Fault trap model. (a) The baseline model; (b) the monitor model; (c) the

time-lapse model (the difference between (a) and (b)).
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Figure 2.13: Synthetic seismograms generated from the baseline trap model using the

T-matrix modelling method. (a) the clean seismogram (no noise added); (b) the noisy

seismogram with the SNR equal to 20 dB (corresponds to 31% noise); (c) the noisy

seismogram with the SNR equal to 5 dB (corresponds to 56 % noise).
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Figure 2.14: Synthetic seismograms generated from the models in figure 2.12 using the

FDTD modelling method. (a) The baseline model seismogram; (b) the monitor model

seismogram; (c) the seismogram difference (associated with the time-lapse model).
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Figure 2.15: Synthetic seismograms generated from the models in figure 2.12 using

the Born approximation. (a) The baseline model seismogram; (b) the monitor model

seismogram; (c) the seismogram difference (assocated with the time-lapse model).
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Figure 2.16: Synthetic seismograms generated from the models in figure 2.12 using the

DBA modelling method. (a) The baseline model seismogram; (b) the monitor model

seismogram; (c) the seismogram difference (associated with the time-lapse model).
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Figure 2.17: Synthetic seismograms generated from the models in figure 2.12 using the

T-matrix modelling method. (a) The baseline model seismogram; (b) the monitor model

seismogram; (c) the seismogram difference (associated with the time-lapse model).
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Figure 2.18: Differences between the time-lapse seismogram generated using the FDTD

method and (a) the Born approximation, (b) the DBA method, (c) the T-matrix mod-

elling method.



Chapter 3

Full waveform inversion

Everything should be made as simple as possible, but no simpler.

—Albert Einstein

3.1 Introduction

Seismic inversion is a process of converting seismic data into earth properties (Schuster,

2017). Several types of seismic inversion are recognized (Schuster, 2017). The phase

inversion of travel time tomography intends to invert the picked travel times in seismic

data for smoothly varying model velocities. This type of inversion is quite robust, but it

is only valid for high-frequency approximations (Schuster, 2017). Another type is AVO

(Amplitude Versus Offset) inversion. The combination of the AVO analysis (Castagna

and Backus, 1993) and linear or nonlinear inversion theories (see, for example, Menke

(2012), Aster et al. (2005)) makes it possible to detect fluid saturated zones and predict

lithology (Hansen, 1992). In this case, for seismic data to be inverted, some preprocessing

procedures are required (Asnaashari et al., 2015). One of the most well known types is

FWI inversion, which is the main focus of this thesis.

In petroleum seismology, FWI is a model-based technique that aims to invert full

seismic waveforms for the model parameters that produce these data (Ramı́rez and Lewis,

2010; Queißer and Singh, 2013). Model parameters estimation considers all the possible

propagation effects present in seismic data: reflections, interbed multiples, converted

waves, refractions, guided waves and others (Queißer and Singh, 2013).

44
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Ikelle and Amundsen (2005) highlight the following issues that can be encountered

when inverting for model parameters using FWI: (1) uniqueness problem (how one can

be sure that the estimated model is the only one that fits the seismic data); (2) instability

problem (in sense that small errors in data may result in considerable inconsistencies in

the model estimate); (3) algorithm convergence problem (this issue relates to iterative

inversion methods); (4) errors arising from inaccurate physical models; and, (5) the cost

of the forward modelling step.

Seismic FWI, in principle, is a highly non-linear process. However, for models in

which velocity contrast does not change significantly, the non-linear inversion problem

can be replaced by a linearized version (Born inversion). Such approximation significantly

simplifies the process of model parameters estimation.

In section 3.2, first, the main aspects of inversion theory are reviewed. Then, in

section 3.3, Born inversion (the FWI method that is applicable for solving low-contrast

perturbation problems) is introduced. Further, using a non-linear inversion approach,

I present the Distorted Born Iterative T-matrix (DBIT) FWI method and demonstrate

its application on time-lapse model examples (section 3.4). Finally, in section 3.5, the

DBIT-based FWI inversion algorithm integrated with the smoothing and self-adaptive

techniques as applied to high-contrast media models is discussed. As part of the study, I

compare the different time-lapse inversion approaches (parallel difference and sequential)

and analyze their effectiveness when applied to high-contrast media models.

3.2 Some aspects of inversion theory

3.2.1 Formulation of the inverse problem

The forward modelling problem in matrix (discretized) form is given as (Menke, 2012):

d = J(m), (3.1)

where d is the data-vector, J is the sensitivity matrix, and m is the model parameter.

Both d and m vectors have lengths N and M, respectively. J is a N x M in size matrix

(Menke, 2012). In the linear case, the forward modelling problem in equation (3.1) can

be written as (Schuster, 2017)

d = Jm. (3.2)
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In a real situation, data always contain some noise. A ”noisy” forward linear modelling

problem can be expressed in the following way (Menke, 2012):

d = Jm + µ, (3.3)

where µ is an N-dimensional vector representing noise.

The solution to the inverse problem involves finding model parameters m such that

equations (3.1), or (3.2), (3.3) is satisfied. Clearly, in these equations, an unique inverse

solutions may not exist (if data contain less measurements than required to define all

model parameters). In this situation, it is common to speak about the inverse solution

that provides the best approximate model parameters (an estimate of model parameters)

mest. One of the ways to obtain such approximate model parameters is by using the least

squares method.

3.2.2 Least squares solution to the inverse problem

The simplest methods to solve a linear inverse problem involves finding such mest that

minimizes the misfit (residual) measure (in the least squares manner) from differences

between the observed and predicted data, is defined by (Aster et al., 2005)

||dobs − Jmest||2 =

√√√√ N∑
i=1

(di − (Jmest)i)2. (3.4)

The overall error E, given as the squared Euclidean norm (L2 norm) of the residual vector

(Menke, 2012) is then

E = (dobs − Jmest)
T(dobs − Jmest). (3.5)

Finally, the model parameters m can be found from (see full derivation in Wang (2016),

for example)

mest = [JTJ]−1JTdobs, (3.6)

where, JT is the transpose of the sensitivity matrix J.

3.2.3 Well-posed and ill-posed inverse problems

In applied mathematics, two types of inversion problems are recognized: well-posed and

ill-posed (?). A well-posed inverse problem satisfies the following characteristics: it has a
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solution; this solution is unique; and, finally, the solution ”continuously” depends on data.

If it does not, an inversion problem is known as ill-posed (Bleistein et al., 2001). From the

above definition, all geophysical problems should be considered as ill-posed problems. Ill-

posed inversion problems are also classified into underdetermined, overdetermined and

mixed-determined subtypes (Menke, 2012). Mathematically, an undetermined inverse

problem in equation (3.2) satisfies the inequality M > N (more unknowns than data).

When there are more data than unknowns (M < N), the inverse problem is known as

overdetermined. The mixed-determined situation occurs when, for some reason, some

part of a model is overdetermined, and another is underdetermined (Menke, 2012). From

this formulation, full waveform seismic inversion is a typical case of the mixed-determined

problem: at shallow depths, the problem is usually overdetermined (there is more than

enough information); at larger depths, on the contrary, the problem is undetermined

(information deficiency).

3.2.4 Regularization

Prior information

In the case of purely undetermined inverse problem, there may exist several model esti-

mates for a given data set for which the predicted error E equals to zero. Among all these

solutions, only one corresponds to the true model. The estimation of this specific solution

is a key problem in inversion theory. One of the options for estimating such an unique

solution is to make the system of linear equations in (3.2) consistent, by adding some a

priori information (Menke, 2012). A priori information is the information that is based

on model-related logical expectations (Menke, 2012). At first sight, this formulation may

seem a bit vague: for what is meant by logical expectations? To clear this up, consider a

very simple example: suppose, after seismic data processing at some particular site the

travel times (t) and the P-velocities (V) in the time window 0-2.5 s are related via the

following cubic equation: t = 0.033V 3 + 0.075V 2 + 0.0375V + 0.0063. Assume, that one

wants to determine velocities somewhere within the given time interval. After organizing

travel times into the vector t, and defining the sensitivity matrix J, the inverse problem

can easily be solved. Now, imagine, there is a need to estimate the P-velocities at the

time interval 2.5-3 s. There are several guesses then could be made about the velocities

in this interval based on some logical expectations. Firstly, velocities must be positive

(this is obvious); secondly, they should probably increase with depths (this is true in

many practical cases); finally, they may satisfy some simple linearly-increasing depth de-
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pendence. These are the logical guesses about the probable velocity profile within the

extended time interval. Given a priori information, then, the variety of possible solutions

to the underdetermined inverse problem within the defined time interval (with the help

of the guesses above) is significantly reduced. This minimizes the chance for the inversion

algorithm to pick inappropriate mest.

Tikhonov regularization

The process of adding a priori information to the system of equations in (3.2) to make it

consistent, is known as regularization (Wang, 2016). One of the widely used and simple

techniques to deal with a discrete ill-posed problem is Tikhonov regularization (Aster

et al., 2005). This technique considers the minimization of an objective function by

solving the regularized least squares problem of the following form:

E(m) = ||dobs − Jm||22 + λ2||Lm||22. (3.7)

Here, the first part of the equation is the residual norm discussed in section 3.2.2 (L2

norm). The second part consist of a product of the squared regularization parameter λ

with the squared L2 norm of the penalty term Lm. The matrix L is a nth order derivative

operator which is responsible for choosing the desired model smoothness. A choice of the

zeroth order derivative operator (applied in this thesis) in equation (3.7) to minimize the

penalty term leads to a normal equation (Zhdanov, 2015; Menke, 2012; Schuster, 2017;

Wang, 2016) that is known as the regularized damped least squares solution

mest = [JTJ + λ2I]−1JTdobs, (3.8)

with I denoting the identity matrix.

Selecting the regularization parameter

One of the methods for choosing a value for the regularization parameter is the Morozov

discrepancy technique (Schuster, 2017). This technique involves assigning some value

for the regularization parameter, inverting for the estimated model mest using the mod-

elled data dobs and computing of the estimated data dest (from the obtained previously

estimated model). When we display λ2 against ||dest − dobs|| we can associate the regu-

larization parameter λ to the value ||dest−dobs||, which is equal to the estimated residual

norm in the actual data (Schuster, 2017). The more sophisticated version of the discrep-

ancy principle developed by Constable et al. (1987) makes it possible to solve linear and
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nonlinear inversion problems based on iterative methods. Integrated with the cooling

scheme introduced by Farquharson and Oldenburg (2004) or the self-adaptive technique

(both will be discussed later in sections 3.4.2 and 3.5.5 respectively) presented by Ciric

and Qin (1997), this principle works quite well for complex inverse problems.

Hansen (1992), suggested another approach for choosing the optimal λ, the so-called

L-curve method. This involves constructing a log-log plot of the lengths of the model

parameters versus the misfit vectors for different choices of the damping parameter. The

maximum curvature point in such plot corresponds to an optimal value of the regulariza-

tion parameter (Schuster, 2017).

3.2.5 Iterative methods

The need for iterative methods in the case of seismic FWI arises from the necessity to

solve large linear equations. The extended explanations of some iterative methods used in

FWI inversion algorithms can be found in Aster et al. (2005); Schuster (2017). The main

principle behind such methods can be explained as follows. Consider a linear system

Ax = b. The idea involves converting the linear system Ax = b into the equivalent

system in form x = Mx + v for some fixed matrix M and vector v. After the initial

vector x0 is being selected, a sequence of approximate solutions can be obtained by

solving xk+1 = Mxk + v for each k = 0, 1, 2, ... (Vrahatis et al., 2003). Suppose some

linear system comprised of hundreds or thousands of equations (as in case of FWI). In

that situation, a choice for iterative methods is preferable for two main reasons: it takes

less computation time and requires less computer memory. Additionally, if the accuracy

of the computations is not an issue, the acceptable solution can be gained by reducing

the number of iterations.

3.2.6 Nonlinear inversion

The discussion above has been mainly concerned about linear inverse problems. In FWI,

however, all inversion problems are typically nonlinear due to the structural complexity

of the Earth’s subsurface. Therefore, it is also important to consider an inversion problem

from a nonlinear perspective.

In practice, nonlinear inverse problem is often solved by approximating nonlinearity by
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a number of linear inverse problems. Therefore, the computational principle remains the

same. It is just sequentially applied to each linear problem involved. Iterative methods

mentioned above are often the most convenient way to solve the associated systems of

linear equations (Norton, 1988).

Any iterative scheme in the nonlinear inversion algorithm is designed to minimize the

mean-square difference between the observed and synthetic data at each iteration. To

start a new iteration, one requires information about the rate of change, or gradient, of

the data with respect to the model (to know in which ”direction” the inversion algorithm

should adjust generated and observed data). In the scattering-based inversion methods,

the gradient derivation follows from the assumption that the current Green function is

computed on the basis of the previous model estimate with very small difference between

them. At the next iteration, the previous model estimate becomes the background model,

and then the Green function and the associated gradient are recalculated according to

the new estimate. This iterative procedure is repeated until the mean-square error is

minimized (Norton, 1988).

A practical problem of nonlinear inversion-based iterative schemes is the existence

of local minima. If the appropriate initial model (a priori information) to launch the

iterative process is not available, or data from which the model needs to be recovered are

too noisy, the number of solutions satisfying the inversion problems increases. These false

solutions become the objective function local minima, at which the inversion algorithm

could stall causing to choose inappropriate model parameters (Mulder and Plessix, 2008).

There are different approaches to deal with this problem (see, for example, Bunks et al.

(1995), Chi et al. (2014)), and some of them are discussed later.

3.2.7 The inverse crime

Any new developed FWI algorithm requires thorough testing before being implemented

in practice. Colton and Rainer (1998), when discussing the development of new inver-

sion methods note that ”for the inverse problem it is crucial that the synthetic data be

obtained by a forward solver do not have any connection to the inverse solver”. If a

new inverse approach does not satisfy this simple requirement, the inverse solution is a

subject of the ”inverse crime”. And, as Colton and Rainer (1998) point out, ”not all

of the numerical reconstructions which have appeared in the literature meet with this

obvious requirement”. Put another way, any inconsistencies in synthetic data caused by
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modelling are compensated by the ”imperfectness” of the inverse algorithm. This com-

pensation is the inverse crime. One of the ways to minimize the inverse crime problem

is to show that the forward modelling technique used to generate data provides an exact

modelling solution.

3.2.8 Time vs frequency domain inversion

FWI inversion can be applied in both the time (Tarantola, 1986; Bunks et al., 1995;

Shipp and Singh, 2002) and frequency (Pratt, 1990; Sirgue and Pratt, 2004) domains.

When doing FWI in the frequency domain, it is important to note that not all frequency

components in a signal contribute to model recovery (the most seismic energy is typically

concentrated within the limited frequency interval located at the first tens of Hertz.

Motivated by this fact, several frequency domain inversion studies that used limited

frequencies have been performed (Pratt et al., 1996). The main question was the accuracy

of such techniques (Bansal and Sen, 2010). Freudenreich et al. (2001) speculated that

the frequency-limited approach required some specific strategy for selecting frequencies

when inverting. Moreover, the authors, after some research, concluded that the frequency

domain approach was not consistent with data acquired within limited offsets. Sirgue and

Pratt (2004) argued this point and introduced the technique that made it possible with

only a few frequencies (adequately selected) within limited offsets, to recover models

successfully. When offsets are not limited, the frequency domain inversion problem can

be reduced to the use of two main inversion techniques: simultaneous and sequential

(Sirgue and Pratt, 2004). In the first case, all selected frequencies are inverted at one

time. This approach gives more robust results when data are noisy. At the same time,

this technique is costly, more sensitive to the choice of the initial model and suffers from

the cycle-skipping problem (Jakobsen and Ursin, 2015). In the case of the sequential

approach (also known as the frequency-hopping approach), one starts from the lowest

frequency available in seismic data, then inverts for the next frequency and, so on, until

all the selected frequencies are processed. To increase consistency of the results, inversion

could be performed on frequency groups (Jakobsen and Ursin, 2015). Varying the number

of frequencies in the group, it is possible to compromise between computation time and

inversion stability.
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3.3 Born inversion and its application

Born inversion is a linear FWI method. As discussed in subsection 2.2.4, the linearized

modelling problem can be represented in the form of equation (3.2). Since a seismic FWI

problem is typically mix-determined (subsection 3.2.3), a regularized solution based on

Born inversion can be obtained from equation (3.8). Solving the Born inversion problem

iteratively (subsection 3.2.5) for each selected frequency using the sequential frequency

technique (subsection 3.2.8), we then obtain the required P-velocities by rearranging equa-

tion (2.20). All the computations involved are quite straightforward and follow directly

from the inversion theory introduced above. Since Born inversion can be considered as a

special case of nonlinear inversion, for now, I skip the Born implementation aspects (not

to be repeated in derivation) and will refer to them later (section 3.4) explaining how

they can be deduced from the DBIT inversion scheme.

From a practical point of view, the use of Born inversion is limited to weak per-

turbation models (Eikrem et al., 2016). Remember the criterion under which the Born

approximation has been considered to be valid (subsection 2.2.3). For Born inversion to

work, the data to which this linearized FWI method is applied, must be consistent with

this validity criterion as well. If it holds, the expected results should be close to those

obtained by nonlinear inversion methods, making Born inversion even more desirable due

to reduced computation cost.

The application of Born inversion could be valuable, for example, in the reservoir

monitoring. In this situation, the baseline velocity model is known. If so, the monitor

model with the small velocity variation in the reservoir (consistent with the validity

criterion mentioned) can be easily determined.

In what follows, a few examples illustrating the Born inversion method will be pre-

sented. To back up the inversion theory discussed above, firstly, the use of sequential

frequency approach is demonstrated. Then, an example of the ill-posed inversion problem

and ways to reduce ill-posedness are illustrated. Finally, several cases exemplifying model

recoveries from data with different noises are provided (including recovery improvements

when manipulating with the number of frequencies, receivers and shots).

All inversion examples, for simplicity reasons, are performed on a very simple model:

a homogeneous background medium with a single-box embedded (in different examples,

the heterogeneity is located at different depths). For this model, the velocity in the

background medium is equal to 2000 m/s; the velocity in the heterogeneity is equal to
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2050 m/s. The length of the model is 400 m; depth is 200 m. The size of the heterogeneity

(box) is 40 x 40 m. In the first case, the depth of the box is defined at 20 m from the surface

(illustration (a) in figure 3.1 (in the following will be named model 1)), and, in the second

case is at 140 m from the surface (illustration (b) in figure 3.1 (in the following will be

named model 2)). The model is discretized into 21 x 11 grid blocks which are 20 m by 20

m in size. A source function is the Ricker wavelet function (equation (2.80)) with a central

frequency of 7.5 Hz. A time sampling interval is 0.004 s with the total record length is

equal to 1 s. The numbers of shots, receivers and frequencies selected are specified in each

particular case. To model the observed data, I use the Born approximation modelling

method. To simulate noisy data, I refer to equation (2.83).

Figure 3.2 demonstrates the inversion results for both models in figure 3.1 obtained

with different sets of frequencies. Consider the reconstructions of model 1. With the help

of one frequency (2 Hz), only a general shape of this model was recovered (illustration

(a)). The application of the frequency set [2, 6, 10 Hz] resulted in much better model

reconstructions (illustration (b)). Finally, when frequencies [2, 6, 10, 14, 18, 22 Hz] were

used, it was possible to obtain the original model. This is how the sequential approach

based on frequency domain FWI works in practice. Now, compare the recovery evolutions

for both models in figure 3.1. Note how different the final results are (illustrations (d)

and (e)). The unsatisfactory model reconstructions for the heterogeneity positioned at

the bottom of the model is explained by its indeterminacy (subsection 3.2.3). In the

last case, information deficiency could be partially fixed if we increase the number of

receivers, shots or frequencies (increase the number of equations in the corresponding

linear system).

Figure 3.3 is the example illustrating changes in model recoveries with respect to

the different number of receivers used (the number of shots and frequencies were kept

constant). For model 1, the improvements are not very obvious (the heterogeneity is well

determined), but they are notable for model 2 (compare illustrations (b), (d), (f) and

(h)).

Figure 3.4 shows the enhancements in model restorations when the number of shots in

the experiment was varied (the number of frequencies and receivers were kept constant).

First, compare the reconstructions of model 1 in illustrations (a), (c), (e) and (g). Re-

covery improvements (even though they are not very distinct) can be identified. In the

second case, a quality of model restorations increases commensurately with the number

of receivers used (compare illustrations (b), (d), (f) and (h)).



3.3. BORN INVERSION AND ITS APPLICATION 54

Finally, figure 3.5 shows the model recoveries in relation to the different numbers of

frequencies used (the number of shots and receivers were kept constant). Note how the

recoveries of model 2 change (illustrations (b), (d), (f) and (h)).

In practice, observed data always contain noise. Figure 3.6 illustrates the inversion

results corresponding to model 1 for the data with different amounts of random noise

added. Note that the selected set of frequencies, the number of shots and receivers used

to model data did not allow us to restore models for the data with SNR 2 dB (80% noise),

4 dB (63.3% noise), 6 dB (50% noise), 12 dB (25% noise) (illustrations (a), (b), (c), (d)

and (e) respectively).

Figure 3.7 shows the case when variable combinations of modelling parameters (the

number of frequencies, receivers and shots) applied to the noisy data (SNR=10 dB) cor-

responding to model 1 were used. In illustration (a) (the initial model), the heterogeneity

cannot be identified. For this example, the data were generated with the help of 5 fre-

quencies [2, 8, 12, 16, 22 Hz], 11 equidistantly spaced receivers, and 3 equidistantly spaced

shots. Illustrations (b) and (c) corresponding to the frequency sets [2, 4, 8, 10, 12, 16,

22 Hz] and [2, 4, 6, 8, 12, 14, 16, 18, 22 Hz] (the number of shots and receivers were

kept constant). Note the improvements. An increase in the number of receivers (21 and

31) led to even more enhanced recovery results (illustrations (d) and (e)). Finally, an

increase in the number of shots (7 and 15) resulted in almost complete model recoveries

(illustrations (f) and (h)).

Note, in the examples considered, there was no need to invert for all frequencies

available in the frequency band in order to restore subsurface models. This observation is

entirely consistent with the theory discussed in subsection 3.2.8. Now, suppose a seismic

survey involves employing many shots. Clearly, in such situation, the frequency-limited

approach demonstrated above has a significant advantage over the time domain FWI.
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Figure 3.1: Box model. (a) Model 1 (the heterogeneity located at the top of the model);

(b) Model 2 (the heterogeneity located at the bottom of the model).

Figure 3.2: The sequential inversion approach. Models 1 (illustration (a) and 2 (illus-

tration (b) recovered with a single frequency 2 Hz; (c) and (d) with a frequency set [2,

6, 10 Hz]; (e) and (f) with a frequency set [2, 6, 10, 14, 18, 22] Hz. For the recoveries 21

equidistantly spaced receivers and 1 shot (located at the centre of the acquisition system)

were used.
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Figure 3.3: Reconstructions of model 1 and 2 with the help of different number of

equidistantly spaced receivers. (a) and (b) 11 receivers; (c) and (d) 21 receivers; (e) and

(f) 31 receivers; (g) and (h) 41 receivers. For the recoveries 3 equidistantly spaced shots

and 6 frequencies [2, 6, 10, 14, 18, 22 Hz] were used.
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Figure 3.4: Reconstructions of model 1 and 2 with the help of different number of

equidistantly spaced shots. (a) and (b) 1 shot (located at the centre of the acquisition

system); (c) and (d) 3 shots; (e) and (f) 5 shots; (g) and (h) 7 shots. For the recoveries

21 equidistantly spaced receivers and 3 frequencies [2, 6, 10 Hz] were used.
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Figure 3.5: Reconstructions of model 1 and 2 with the help of different number of

frequencies. (a) and (b) 3 frequencies [2,10,18 Hz]; (c) and (d) 6 frequencies [2, 6, 10,

14, 18, 20, 22 Hz]; (e) and (f) 11 frequencies (each even frequency in the interval 2-22

Hz); (g) and (h) 21 frequencies (each integer frequency in the interval 2-22 Hz). For the

recoveries 3 equidistantly spaced shots and 21 equidistantly spaced receivers were used.
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Figure 3.6: Reconstructions of model 1 from the data set with different noise levels

(a) SNR=2 dB (correspond to 80% noise); (b) SNR=4 dB (corresponds to 63.3% noise);

(c) SNR=6 dB (corresponds to 50% noise); (d) SNR=10 dB (corresponds to 32% noise);

(e) SNR=12 dB (corresponds to 25% noise); (f) SNR=14 dB (corresponds to 20% noise);

(g) SNR=16 dB (corresponds to 15.8% noise); (h) SNR=20 dB (corresponds to 10%

noise). For the recoveries, 21 equidistantly located receivers; 6 frequencies [2, 6, 10, 14,

18, 22 Hz]; and, 3 equidistantly spaced shots were used.
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Figure 3.7: Reconstructions of model 1 from the data set with the SNR= 10 dB (cor-

responds to 32% noise). The reconstructions obtained with the help of (a) 5 frequencies

([2, 8, 12, 16, 22 Hz], 11 receivers, and 3 shots; (b) 7 frequencies [2, 4, 8, 10, 12, 16,

22 Hz], 11 receivers, and 3 shots; (c) 9 frequencies [2, 4, 6, 8, 12, 14, 16, 18, 22 Hz], 11

receivers, and 3 shots; (d) 9 frequencies (as previous), 21 receivers, and 3 shots; (e) the

9 frequencies (as previous), 31 receivers, and 3 shots; (f) 9 frequencies (as previous), 31

receivers, and 7 shots; (g) 9 frequencies (as previous), 31 receivers, and 15 shots.
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3.4 Distorted Born iterative T-matrix inversion method

3.4.1 General principle

The DBIT method is a nonlinear FWI technique introduced by (Jakobsen and Ursin,

2015). The technique is based on the T-matrix principle integrated into the classic Dis-

torted Born Iterative (DBI) method previously developed by (Chew and Wang, 1990).

The inversion scheme behind the DBI method is similar to other scattering theory-based

nonlinear approaches. Firstly, a nonlinear inverse problem is replaced by a series of the

associated linear problems. Secondly, each of the linear problems is iteratively solved for

both the perturbed and background media by updating the corresponding Green func-

tions. The updating process is carried on until all the selected frequencies are processed

(Chew and Wang, 1990). The main problem of this scheme is computation cost: the

Green functions updates (at each new iteration) involve inverting large matrices. The T-

matrix principle, as discussed before (subsection 2.2.4), changes this problem. Inversion

of several matrices corresponding to Green functions is replaced by inversion of only one

matrix corresponding to the transition operator T.

In the following derivation of the DBIT inversion method, I assume that the reader

is familiar with the the T-matrix and DBA modelling methods discussed in subsection

2.2.4. Not to be repeated, the details relevant to the modelling part will be omitted (they

can be found in the subsection mentioned).

The mathematical representation of the DBIT inversion method we start from solving

the forward problem for a variation in the scattering potential δM(i+1) = M(i+1) −M(i)

using the DBA method (Jakobsen and Ursin, 2015)

δd(i) ≡ (GRS −G
(i)
RS )̃f = Ḡ

(i)
RV δM

(i+1)G
(i)
V S f̃s (3.9)

Here, δd(i) represents the linearized solution of the forward model around the inversion

result gained after the ith iteration. Given an observation of the scattered field δd(i). We

can estimate the perturbation δM(i+1) via a regularized least-squares inversion solution

and replace the initial model by the inverted one (Jakobsen and Wu, 2018). After that, we

update all Green functions which are responsible ”for the various parts of the propagation

path from the source to the receiver” (Jakobsen and Ursin, 2015)

Ḡ
(i+1)
RV = Ḡ

(i)
RV + Ḡ

(i)
RV δT

(i+1)Ḡ
(i)
V V , (3.10)
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Ḡ
(i+1)
V V = Ḡ

(i)
V V + Ḡ

(i)
V V δT

(i+1)Ḡ
(i)
V V , (3.11)

and

G
(i+1)
RS = G

(i)
RS + Ḡ

(i)
RV δT

(i+1)G
(i)
V S, (3.12)

G
(i+1)
V S = G

(i)
V S + Ḡ

(i)
V V δT

(i+1)G
(i)
V S, (3.13)

where δT(i+1) is the variation in the T-matrix between iteration i and i + 1 explicitly

defined by (Jakobsen and Ursin, 2015)

δT(i+1) = (I− δM(i+1)Ḡ
(i)
V V )−1δM(i+1). (3.14)

Equations (3.10-3.14) can also be written in the following form

Ḡ
(i+1)
RV = Ḡ

(0)
RV + Ḡ

(0)
RV T(i+1)Ḡ

(0)
V V , (3.15)

Ḡ
(i+1)
V V = Ḡ

(0)
V V + Ḡ

(0)
V V T(i+1)Ḡ

(0)
V V , (3.16)

G
(i+1)
RS = G

(0)
RS + Ḡ

(0)
RV T(i+1)G

(0)
V S, (3.17)

G
(i+1)
V S = G

(0)
V S + Ḡ

(0)
V V T(i+1)G

(0)
V S, (3.18)

with T(i+1) given by (Jakobsen and Ursin, 2015)

T(i+1) = (I−M(i+1)Ḡ
(0)
V V )−1M(i+1). (3.19)

3.4.2 Implementation

Assuming a number of sources f̃s and a set of frequencies ωk (k = 1, . . . , Nω) with the

following application of the discretization scheme provided in subsection 2.2.4, equation

(3.9) can be rewritten in component form exactly as (Jakobsen and Ursin, 2015)

d̃
(i)
r,sk =

N∑
n=1

J
(i)
rn,skδm

(i+1)
n , (3.20)

where

d̃
(i)
r,sk = d̃(i)

r,s(ωk), (3.21)

and

J
(i)
rn,sk = J (i)

rn,s(ωk), (3.22)

with

J (i)
rn,s(ω) =

[
Ḡ(i)
rn(ω)δMnG

(i)
ns(ω)

]
fs. (3.23)
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Replacing three indices s, r and k by a single index α, we rewrite equation (3.20) as

δd(i)
α =

N∑
n=1

J (i)
αnδm

(i+1)
n , (3.24)

or, in matrix form as

δd(i) = J(i)δm(i+1). (3.25)

Equation (3.25) shows that a nonlinear problem has been reduced to a series of linear

problems. Clearly, the solutions of each of the linear problem may be highly ill-posed,

that may give unstable results. To manage this issue, we use the Tikhonov regularization

method (subsection 3.2.4) and minimize the objective function at each inversion step as

(Jakobsen and Ursin, 2015)

E(δm(i+1)) = ||δd(i) − J(i)δm(i+1)||2 + (λ(i))2||δm(i+1)||2. (3.26)

A closed-form solution (Virieux and Operto, 2009) for the model parameters mi+1 of the

DBIT inversion method then given by (Jakobsen and Ursin, 2015)

m(i+1) = m(i) + (H(i) + (λ(i))2I)−1V(i), (3.27)

where H(i) denotes the Hessian matrix at the ith iteration, explicitly defined by

H(i) = <
[
(J(i))†(J(i))

]
, (3.28)

and V(i) represents the gradient vector at the ith iteration, given by

V(i) = <
[
(J(i))†δd(i)

]
. (3.29)

The data residuals vector δd(i) at the ith iteration in equations (3.29) yields (Jakobsen

and Ursin, 2015)

δd(i) = δd
(i)
obs − J(0)m(i), (3.30)

where, δd
(i)
obs characterizes the scattered wavefield relative to the initial model (i=0). From

equation (3.30), one can note that if the initial model is close to the real model, then

the data residual vector δd(i) converges toward 0, and consequently, the estimated model

parameters in equation (3.27) converges toward the true model parameters (Jakobsen

and Ursin, 2015).

The DBIT inversion scheme introduced above involves choosing a value for the reg-

ularization parameter at each iteration. This can be done by using different methods
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mentioned earlier (see subsection 3.2.4). In this thesis, I focus only on the discrepancy

principle developed by Constable et al. (1987). Two options for extending the discrepancy

principle of Constable et al. (1987) will be considered. The first option assumes that the

discrepancy principle is combined with the cooling scheme introduced by Farquharson and

Oldenburg (2004). Another option suggests integrating the discrepancy principle with the

self-adaptive technique presented by Ciric and Qin (1997). Both the cooling scheme and

the self-adaptive technique can be used in combination with the DBIT method discussed

above. However, experimenting with DBIT-based FWI in strongly scattering media, the

author found that the self-adaptive technique was remarkably efficient in those cases.

Thus, even both techniques perform the same function, I decided to give a description

of the cooling scheme in this section (as a part of the general DBIT method presented

above) and to discuss the use of the self-adaptive technique in subsection 3.5.5, when

considering nonlinear inversion based on high-contrast media models.

The cooling technique used in this thesis is provided by the simplified version of the

original scheme introduced by Farquharson and Oldenburg (2004). In this technique,

a key point is to properly select a value for the initial regularization parameter (varies

in diapason between 0 and 1) which is gradually decreased at each successive iteration

ensuring algorithm convergence. Farquharson and Oldenburg (2004) explaining the im-

portance of an initial choice note that if the starting regularization parameter is too small

at early iterations, then the estimated model can accumulate artefacts to compensate for

model errors associated with our lack of information about the model structure. To get

rid of these artefacts later, one may require to perform lots of additional iterations. As a

consequence, this leads to the higher cost. Therefore, as the authors advise, it is more ef-

ficient ”if the starting value of the regularization parameter is fairly large and restrictions

are placed on its greatest allowed decrease, thus enforcing a slow but steady introduction

of structure into the model”. There are not any specific rules to define this starting value.

In each case, a proper choice mainly depends on the size of the model and data noise

level. For this reason, it is useful to perform several tests in order to find an acceptable

value, exploring the provided interval between 0 and 1.

Mathematically, the simplified cooling scheme, if we assume that λ(i) is the value of

the regularization parameter at ith iteration, can be written as

λ(i) = λ(0)a(i−1), (3.31)

where a varies between 0.1 and 0.9. Performing the whole routine in repeated manner

for all iterations and frequencies, we end up with the final DBIT solution. The DBIT

algorithm is shown in figure 3.8.
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Figure 3.8: DBIT inversion algorithm.
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The presented above DBIT inversion algorithm can be easily modified into the Born

inversion routine used in section 3.3. The modifications imply only removing Green

functions updates from the DBIT inversion method discussed (equations 3.10-3.19).

3.5 Time-lapse distorted Born iterative T-matrix full

waveform inversion in strongly scattering media

3.5.1 Time-lapse inversion strategies

Time-lapse FWI is a high-resolution technique that allows quantitatively imaging varia-

tions in physical parameters within reservoir zones from seismic data acquired at different

calendar times (Asnaashari et al., 2011).

The concept of time-lapse FWI involves two main steps (?). First, the recovery

of the baseline model corresponding to the reservoir preproduction stage, second, the

reconstruction of the monitor model correlating with the reservoir production stage. The

time-lapse reconstruction is the differences between these two restored models. Since

time-lapse changes in the reservoir are mainly related to the variations in the target

area, the second step does not always require inverting for the whole model, reducing the

inversion process to the reservoir zone only (Huang et al., 2018).

Generally, three main strategies for the time-lapse model reconstructions are recog-

nized (Asnaashari et al., 2015). The first one is the parallel difference strategy that

considers independent inversion of data sets corresponding to the baseline and monitor

seismic surveys. Another one is the sequential strategy that implies using the baseline

recovery as the starting model to invert for monitor model. The last one is the differen-

tial (double-difference) strategy that involves inverting only the difference between the

baseline and monitor data (Asnaashari et al., 2015). In this thesis, only two time-lapse

approaches are considered: the parallel difference strategy and the sequential strategy.

3.5.2 Hydrocarbon deposits in strongly scattering media

Unconventional hydrocarbon traps originated in high-contrast media are known in differ-

ent geological settings (Dolson, 2016). One of the most known settings is usually associ-
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ated with salt domes. The evolution of the salt dome-related hydrocarbon traps usually

includes the following stages: at the start, salt masses, being mechanical weak, under

applied stress (lithostatic pressure or some tectonic activity, for example) are pushed up

through the overlapped hydrocarbon-saturated strata to the earth surface and form dome-

like in shape geological structures. When such salt masses cross reservoir rocks, they block

hydrocarbons migration pathways capturing them beneath the salt bodies (Jackson and

Hudec, 2017). Another geological setting relates to massive, ”mushroom-like” in shape,

subvolcanic bodies known as laccoliths. Formations of the associated hydrocarbon traps

occur in a way very similar to the previous type: liquid masses of volcanic rocks, due

to internal magmatic pressure, breaking through the overlapped hydrocarbon-saturated

rocks. When the balance between magmatic and lithostatic pressures is reached (often

somewhere near the subsurface), a hot volcanic substance starts solidifying and forms

laccoliths. Being cut off by these intrusions, hydrocarbons are become captured beneath

them (Farooqui et al., 2009).

In both geological cases described above, the velocity contrast between the intruding

and the surrounding rocks is incredibly high (Jackson and Hudec, 2017; Schutter, 2003).

This fact leads to the following issue: most of the seismic energy is reflected back from

the top of such bodies resulting in insufficient illumination beneath them (Ovcharenko

et al., 2018).

In the following, when discussing high-contrast media, I will mainly address the salt-

dome type models (since this one is more popular in petroleum seismology practice) but

the reader should keep in mind that all the numerical experiments are also relevant for

the subvolcanic type.

3.5.3 Seismic inversion in strongly scattering media

Subsalt imaging is traditionally considered as the most challenging problem in petroleum

seismology. The illumination problem mentioned previously, requires applying advanced

seismic techniques at all stages: from data collecting to seismic interpretation. Data col-

lecting implies using the appropriate multi-azimuth long-offset acquisition system with a

broadband signal to illuminate the salt-affected target properly. Processing often includes

high-quality noise suppression (in order to get rid of all except primary P-wave reflections)

and several depth migrations (to define the proper position of subsalt geological struc-

tures). Interpretation is usually performed manually and, therefore, highly reliant on the
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skills and expertise of practitioners involved (?). At both, the processing and interpreta-

tion stages, some difficulties may occur. FWI, with its ability to obtain high-resolution

velocity models, can significantly reduce the cost of the subsalt imaging by replacing the

conventional workflow with the automatized model recovery (?). However, the use of

FWI on high-contrast models may be challenging. The possible challenges are a lack of

an accurate starting model and the absence of ultra-low frequencies (ULF) in real seismic

data (Alkhalifah and Choi, 2012). Note, in seismic the ULF interval does not have any

defined boundaries: this one varies depending on the model size. Off course, the FWI

challenges mentioned, are applied to all kind of velocity models, but for high-contrast

cases, these issues are much more significant.

In the first case (the absence of an accurate initial model), if the difference between

estimated and observed data such that mismatches in travel times are more than half of

period, then the so-called cycle-skipping problem takes place (Alkhalifah and Choi, 2012;

Ovcharenko et al., 2018). In the model domain, when performing inversion, the presence

of this problem is characterized by repeated contrast velocity anomalies (Virieux and

Operto, 2009; Ovcharenko et al., 2018).

Several researchers have considered the importance of ULF in FWI. Bunks et al.

(1995) applying the multiscale approach, have illustrated the difference in FWI results

reconstructed with the help of different scales. Baeten et al. (2013) have demonstrated

the significance of ULF comparing the model restorations obtained from real seismic

data where the lowest frequencies in a frequency band were 1.5 Hz and 2 Hz. Even the

difference between the lowest frequencies was very small (0.5 Hz), in the second case,

some structural elements in the recovered model were lost (Baeten et al., 2013).

In a more general sense, both the issues discussed are interrelated. The absence of ULF

in data, for example, can be compensated by the accurate initial model. The opposite is

also true. In most cases, the developed techniques try to deal with the first issue. This

is explained by the fact that the accurate initial model (especially in the case of high-

contrast media models) is often not available (Chi et al., 2014; Ovcharenko et al., 2018).

Ovcharenko et al. (2018) have divided all these techniques into two main approaches.

The first approach considers modifying the data misfit functional (objective function

smoothing techniques). The second approach includes methods employing ”image or

gradient manipulations with single iteration updates of FWI (processed gradients can

lead to shorter paths toward the global minimum)”.

In the light of the problems discussed above, for the DBIT inversion technique to
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be applied to strongly scattering media models, some adjustments are required. In this

thesis, I consider two techniques that make it possible to adapt the DBIT inversion algo-

rithm to strongly scattering models. The first one is the smoothing (or spatial smoothing)

technique developed by Jakobsen and Wu (2018). This technique has been designed to

obtain an equivalent of the low-wavelength model estimate by repeatedly applying the

moving average in order to smooth a data-vector and the corresponding rows of sensitiv-

ity matrix Jakobsen and Wu (2018). The second technique is the self-adaptive technique

for selecting the regularization parameter. The self-adaptive technique cannot be referred

to any approaches mentioned earlier since it has nothing to do with objective functions

smoothing or gradient manipulations. However, due to the ability to select the regular-

ization parameter at each successive iteration in a ”wise way” (Ciric and Qin, 1997), it

provides more stable results when applied to complex FWI problems (including strongly

scattering cases).

3.5.4 Smoothing technique

The principle of the smoothing technique is quite simple. Consider data sets where ULF

are absent. Application of the moving average to both the data residual and the sensitivity

matrix for all sources available is ”equivalent to the extraction of low-wavelength data

component that can replace the missing ULF” (Jakobsen and Wu, 2018).

The mathematical foundation of the smoothing technique is explained as follows.

Consider equation (3.25). It is a system of linear equations. Any mathematical operations

applied to both sides of this system of equations do not change the balance if these

operations are identical. Say, we multiply the residual data vector δd(i) and each row j(i)

of a sensitivity matrix J(i) by the same constant. By doing this, not any change in the

model vector δm(i+1) is expected. Now, if we assume that d
(i)
p is the P -point residual

data-vector at ith iteration, with p = 0, 1...(P − 1), and Nd is the number of data points

in the moving average operating on d
(i)
p , then the smoothed data are given by

d̃(i)
p =

1

Nd

p+Nd−1∑
j=p

d(i)
p . (3.32)

Similarly, for each smoothed row j
(i)
p of the sensitivity matrix J

(i)
p , we can write

j̃(i)
p =

1

Nd

p+Nd−1∑
j=p

j(i)
p . (3.33)



3.5. TIME-LAPSE DISTORTED BORN ITERATIVE T-MATRIX FULL
WAVEFORM INVERSION IN STRONGLY SCATTERING MEDIA 70

Now, the modified DBIT inversion algorithm (combined with the smoothing technique)

that handles the absence of ULF in seismic data can be obtained by rewriting equations

(3.26) and (3.27) in the following form:

E(δm(i+1)) = ||δd̃(i) − J̃(i)δm(i+1)||2 + (λ(i))2||δm(i+1)||2, (3.34)

and

m(i+1) = m(i) + (H̃(i) + (λ(i))2I)−1Ṽ(i), (3.35)

where

H̃(i) = <
[
(J̃(i))†(J̃(i))

]
, (3.36)

and

Ṽ(i) = <
[
(J̃(i))†δd̃(i)

]
. (3.37)

Here, all the components have the same physical meanings as in equations (3.26-3.29)

3.5.5 Self-adaptive technique

The self-adaptive technique is a method for automatically selecting a value for the regu-

larization parameter (Ciric and Qin, 1997). The selection is based on the error behaviour

computed between real and estimated data at each successive iteration. The idea is very

straightforward: apply a multiplier smaller than 1 to the regularization parameter from

previous iteration if the error decreases, and large than 1 if that one increases.

The discrepancy principle with the cooling scheme integrated into the DBIT algorithm

has shown very good results. In that case, a starting value λ0 for the regularization

parameter is selected arbitrarily in the defined interval (subsection 3.4.2). Being chosen,

this one is multiplied by a factor, usually ranges from 0.1 to 0.9 at each successive

iteration. By doing this, we assume that the error between the real and estimated data

after each iteration decreases. What, if for some reason, the error unexpectedly starts

increasing? In a worse case, the FWI algorithm diverges. Another option, the divergence

process is stopped by the iteration threshold. In this case, at the next frequency, the

algorithm probably tries to compensate for artefacts accumulated previously. However,

even if this happens, the model reconstruction may still not be acceptable (since some

structural elements corresponding to lower frequencies have been irretrievably lost).

The self-adaptive technique suggests choosing a value for the regularization parameter

in a ”wise way” (Ciric and Qin, 1997). An initial value for the regularization parameter in

this technique is based on the statistical approach developed by Franklin (1970), which,
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mathematically, can be formulated as (see for the full derivation Franklin (1970) or Ciric

and Qin (1997), for example):

λ0 = tr(H(0)/N), (3.38)

where H(0) is the Hessian matrix in equation (3.28) at iteration 0, N is the number of diag-

onal elements of the Hessian matrix. After computing the first model estimate (equation

(3.38)), we multiply the initial regularization parameter by a factor of 0.5 and calculate

the error between the real and estimated data using ||d(i) − Jm(i)||/||d(i)||. Then, we re-

peat the same procedure for the second iteration and compare the corresponding errors.

If the error difference decreases, the model estimate is accepted, and the regularization

parameter is multiplied by a factor of 0.5 again. Otherwise, the model estimate is kept

equal to that computed previously, and the regularization parameter is multiplied by a

factor of 1.5. In the second case, multiplication by a factor of 1.5 will be repeated until

the decrease in the error difference is achieved (Ciric and Qin, 1997).

3.6 Numerical results

The inversion tests are performed on two models. The first model is a relatively simple

low-contrast fault model intending to show the application and general features of the

time-lapse Born and DBIT-based FWI algorithms using the parallel difference approach,

exemplify the inverse crime problem (subsection 3.2.7), and, demonstrate time-lapse in-

version results for data with different noises added.

For the second series of experiments, the resampled SEG/EAGE salt (high-contrast)

model is used. On these experiments, I show how consistent DBIT inversion results

(integrated with smoothing and self-adaptive techniques) when applied to data lacking

ULF and demonstrate which of the time-lapse strategies (section 3.5.1) is more efficient

for time-lapse model reconstructions.

3.6.1 Fault trap model

The fault trap model has already been considered before (subsection 2.3.3). To generate

data, the same modelling parameters as in subsection 2.3.3 are used. But now, modelling

are performed using only selected frequencies defined for inversion.

To perform Born and DBIT inversion experiments, the frequency-hopping approach is
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applied (see subsection 3.2.8) which, in this case, involves using nine frequencies starting

from 2 to 20 Hz with a sample rate of 2 Hz. The initial regularization parameter λ0 is

defined to be 10−4 that, according to the cooling scheme-based discrepancy principle, is

sequentially reduced by a factor of 0.5 at each successive iteration. The noise level and

iteration threshold are defined to be 10−3 and 30 respectively. The initial velocity model

(in order to start the iterative inversion process) is chosen to be a constant model with a

speed equal to 2400 m/s.

In all tests, the time-lapse models are computed based on the parallel difference ap-

proach (subsection 3.5.1) which considers using the same initial model to restore the

baseline and monitor models. The time-lapse anomaly reconstruction is computed as the

difference between the baseline and monitor models.

Discussion

Figure 3.10 shows the inversion results for the baseline, monitor and time-lapse models in

the case where data were generated by the Born approximation method and inverted with

the help of the Born inversion technique. Note, how well the shapes of these models were

restored (compare with illustrations (a) and (b) in figure 3.10). Figure 3.11 exemplifies the

case where data modelled by the T-matrix method, were inverted using Born inversion.

The models failed to be reconstructed. This is exactly what should be expected in

such cases. Due to relatively high-contrast (in a sense that it does not correspond to the

validity criterion given in equation (2.35)), the tectonic model cannot be restored by Born

inversion. The successful restoration in figure 3.10 is a visual example of the inverse crime

problem (subsection 3.2.7): the error generated at the modelling stage were compensated

by the inversion algorithm because both the forward and inverse solutions rely on the same

solver. Figure 3.12 displays another example where the model restorations were performed

using the DBIT inversion method. In this case, the seismic data were computed using

the T-matrix integral equation method. Now, all the models were recovered. In a more

general sense, these reconstructions are also subjects of the inverse crime problem: both

the T-matrix modelling method and DBIT-based FWI use the same T-matrix operator

when computing. However, as demonstrated in subsection 2.3.4, the modelling errors

associated with the T-matrix integral equation method are very small. Therefore, the

inverse crime problem can be neglected.

Figures 3.13 and 3.14 display the DBIT inversion results obtained from the noisy

data with the SNR equal to 20 dB (corresponds with 31 % noise) and 5 dB (corresponds
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with noise 56 %). Note, in both cases, the main shapes of the tectonic trap models

were satisfactorily restored (illustrations (a), (b) in figures 3.13 and 3.14). For the less

noisy data (the SNR=20 dB) in figure 3.13 (illustration (c)), the time-lapse model was

recovered with good quality and the anomaly can be easily spotted. For the noisier case

(SNR=5 dB) in figure 3.14 (illustration (c)), the time-lapse anomaly cannot be clearly

resolved.
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Figure 3.9: Fault trap model. (a) The baseline model; (b) the monitor model; (c) the

time-lapse model
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Figure 3.10: Recovered fault trap model (data: the Born approximation; reconstruc-

tions: Born inversion). (a) The baseline model; (b) the monitor model; (c) the time-lapse

model. The frequency set used [2, 4, 6, 8, 10, 12, 14, 16, 18, 20 Hz]. The time-lapse

model obtained using the parallel difference strategy
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Figure 3.11: Recovered fault trap model (data: the T-matrix modelling method; re-

constructions: Born inversion). (a) The baseline model; (b) the monitor model; (c) the

time-lapse model. The rest parameters are the same as in figure 3.10.
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Figure 3.12: Recovered fault trap models (data: the T-matrix modelling method; re-

constructions: DBIT inversion). (a) The baseline model; (b) the monitor model; (c) the

time-lapse model. The rest parameters are the same as in figure 3.10.
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Figure 3.13: Recovered fault trap models (data: the T-matrix modelling method; re-

constructions: DBIT inversion). (a) The baseline model; (b) the monitor model; (c) the

time-lapse model. SNR=20 dB. The rest parameters are the same as in figure 3.10.
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Figure 3.14: Recovered fault trap models (data: the T-matrix modelling method; re-

constructions: DBIT inversion). (a) The baseline model; (b) the monitor model; (c) the

time-lapse model. SNR=5 dB. The rest parameters are the same as in figure 3.10.
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3.6.2 EAGE/SEG salt trap model

High-contrast models are the most challenging for any nonlinear inversion techniques. To

test how reliable the DBIT inversion method for time-lapse imaging in strongly scattering

media, the well-known EAGE/SEG salt model is considered. In the current study, to

speed up the computational process, the original EAGE/SEG salt model is resampled

such that the modified version consists of 116 x 24 grid blocks (2784 blocks in total).

The size of each grid block is defined to be 24 m in each direction. The total length and

depth of the modified EAGE/SEG salt model are 2760 m and 552 m (respectively) with

the velocity variation from 1530 m/s to 4500 m/s.

Simulating the imaginary hydrocarbon reservoir, I slightly change the resampled

EAGE/SEG salt model following the assumption that the hydrocarbon trap is located

just beneath the salt body. In the following, I will assume two different cases of reser-

voir saturation (different baseline models). In the first case, reservoir rocks are mainly

saturated with oil with the P-wave velocity equals to 2400 m/s. In the second situation,

I propose that reservoir rocks are filled with a mixture of oil and gas with the P-velocity

equals to 1600 m/s. The P-wave velocities in the monitor model (for both cases) I define

to be equal 2200 m/s. Therefore, we have two different time-lapse models for the following

experiments. The first one (will be named the low-contrast time-lapse velocity model) is

the model with the P-wave velocity difference equals to 200 m/s. The second one (will

be named the high-contrast time-lapse model) is the model with the P-wave velocity dif-

ference of 600 m/s. The low-contrast variation between the baseline and monitor models

(first situation) is considered to be an extra challenge for the DBIT inversion method.

All the models mentioned are provided in figures 3.15 (illustrations (a-e)). ULF, in the

following experiments, denotes the frequency interval 1-4 Hz.

To synthesize observed data corresponded to the baseline and monitor models in figure

3.15, the T-matrix integral equation method (subsection 2.2.4) is used. The survey design

in all experiments implies using 116 and 48 equidistantly spaced receivers and sources

(respectively) located at the surface. As a source function, to initiate the seismic field,

the Ricker wavelet function (equation (2.80)) with a dominant frequency of 7.5 Hz is

employed. Total recording time and the time sampling rate are chosen to be 1 s and

0.004 s correspondingly. To experiment with inversion on noisy data, I refer to equation

(2.81).

A set of frequencies required for the frequency-hopping approach to perform the DBIT

inversion are defined in each specific case. In the experiments where the self-adaptive
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technique is not used, the initial regularization parameter is equal to 10−3. Otherwise, this

one is defined according to equation (3.31). For the smoothing technique, the smoothing

vector is chosen as follows: Nd= [32 16 8 4 1 1 1 1] (each of the vector components

corresponds to the number of points used in the moving average for the specific frequency).

For all tests, the number of iterations allowed is equal to 30. For the initial model (to

start inversion), I choose a linearly-increasing model in which velocity varies from 2000

m/s to 3500 m/s.

Reconstructions of the time-lapse models are performed using two different strategies:

parallel difference and sequential (subsection 3.5.1). The baseline model reconstructions

(illustrations (a) in figures 3.20-3.31) for all time-lapse experiments are computed based

on the linearly-increasing initial model (illustrations (f) in figure 3.15). The monitor

models, in turn, are obtained in the following ways: for the parallel difference strategy,

in a way similar to the baseline model (starting from the linearly-increasing velocity

model); for the sequential strategy, using the baseline reconstructions computed earlier.

Note, the proposed self-adaptive and smoothing techniques (and their combination) are

used only for the parallel difference time-lapse approach. For the sequential strategy, I use

the traditional DBIT algorithm (based on the discrepancy principle with the integrated

cooling scheme). Time-lapse models (for both time-lapse techniques) are computed as the

difference between the baseline (illustrations (a) in figures 3.20-3.31) and corresponded

monitor (illustrations (b) and (c) in figures 3.20-3.31) models.

Discussion

Firstly, before starting any experiments regarding time-lapse model reconstructions, it is

important to see how ULF contribute to the inversion process in general. Secondly, when

considering the implementation of the smoothing and self-adaptive techniques with the

DBIT inversion method (data lacking ULF), it may be useful to observe how accurate

and fast such the combined algorithms work.

Figure 3.16 demonstrates the reconstructions of the baseline model with the selected

set of frequencies [1, 3, 5, 7, 15, 17 Hz]. Note that ULF are mainly responsible for

recovering the general shapes of the model while the higher frequencies are building up

smaller structural elements.

Figure 3.17 (illustration (a) and (b) exemplifies two cases: the baseline model recovery

for the data with ULF [1, 3, 5, 7, 15, 17 Hz] and without ULF. Note, in the second case
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the model failed to be recovered (illustration (b)). The plots (illustrations (c), (d), (e)

and (f)) illustrate the performance of the DBIT algorithm for each of these cases. The

absence of ULF, as seen from illustration (c), is characterized by the larger initial model

error. In this case, the algorithm could not even finish the inversion process at frequency

5 Hz.

Figure 3.18 presents another example where the models were restored using the

smoothing and self-adaptive techniques (illustrations (a) and (b) respectively) from the

data lacking ULF. The DBIT algorithm for both methods has worked slightly different

(illustrations (c)-(f)), but the results are comparable. An estimation of overall error often

tends to average the discrepancies corresponded to small structural details. Therefore, it

makes sense to compare the inversion results obtained with the help of these techniques at

some specific locations within the reconstructed model (model estimate profiles). Figure

3.19 provides such a comparison (based on the baseline model) obtained at three different

locations: 240 m, 1392 m and 2520 m. Visually, the difference in reconstruction can be

hardly noted (compare illustrations (b)-(d) and (e)-(g)). The corresponded RMS errors

(estimated for each profile) are 0.0185, 0.0929, and 0.0145 for the smoothing technique;

and, 0.0221, 0.0998, and 0.0185 for the self-adaptive technique. Note, both techniques

are characterized by less accurate reconstructions at the location beneath the salt body

(illustrations (c) and (f)).

Now, we analyze different time-lapse strategies mentioned. Figure 3.20 shows the

time-lapse model recoveries obtained from the data sets containing each odd frequency

in the interval from 1 Hz to 17 Hz. The time-lapse model corresponding to the parallel

difference strategy (illustration (e)) contains more artefacts comparing to that obtained

by the sequential strategy (illustration (d)). Such the recovery difference arises from

the initial models used to obtain the monitor models (illustrations (b) and (c)): for

the sequential approach, the initial model only differs in the area corresponding to the

time-lapse anomaly (therefore the monitor model is computed faster and with minimum

artefacts); for the parallel difference approach, inversion requires repeating the whole

iterative process from the linearly-increasing model (which is more costly).

Figure 3.21 shows the examples of the model recoveries when the observed data sets are

lacking ULF. In this case, the absence of low-wavelength data component forced the DBIT

algorithm to diverge when inverting for the baseline and monitor (the parallel difference

approach) models (illustrations (a) and (b)). With the absence of the appropriate starting

model for the sequential strategy (illustration (a)), the corresponding monitor (illustration

(c) and time-lapse models (illustration (e)) failed to be restored as well.
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Figure 3.22 shows the model inversion results for the data sets where the absence of

ULF was compensated by applying the smoothing technique. All the related models were

restored quite well. Compare the time-lapse reconstructions (illustrations (d) and (e))

computed by the different time-lapse approaches. The recoveries corresponding to the

sequential approach are obviously better. The application of the self-adaptive technique

integrated into the DBIT inversion algorithm (figure 3.23) provides results comparable

to figure 3.22.

Figures 3.24 and 3.25 show the experiments for the smoothing and the self-adaptive

techniques but applied to the data in which the frequency interval 1-6 Hz was absent.

Note, the integrated techniques did not succeed in model recoveries. The next step is to

combine both techniques together to see if it gives any recovery improvements.

Figure 3.26 shows the inversion results of the combined scheme applied to the data

from the previous example. Note, the application of both techniques together allowed us

to restore the baseline and monitor models (illustration (a) and (b)). See, how different

the time-lapse reconstructions obtained by the different strategies (illustration (d) and

(e)): in the first case, the time-lapse anomaly is surrounded by some artefacts and can be

hardly identified if the exact location of the anomaly is not known; the sequential strategy,

on the contrary, demonstrates the reconstruction allowing to spot the anomaly without

any doubts. Even this experiment is far from practice, since the absence of frequencies in

the interval 1- 6 Hz is not common, the fact that the combined scheme made possible to

reconstruct the models leads to a conclusion that this combination provides more stable

inversion results. Now, we go back and experiment on the data lacking ULF again, but

now, using the combined approach. Here, we expect to see some recovery improvements

compared to the situations where the techniques were used separately. Indeed, if we

compare the model restorations in figure 3.27 with those in figure 3.22 and 3.23, we can

note some positive changes. Inspired by these improvements, we finally investigate how

this technique combination deals with noisy data.

Figures 3.28 and 3.29 exemplify the cases where the modified DBIT inversion algo-

rithm (with the smoothing and self-adaptive techniques integrated) were applied to the

data sets (lacking the ULF) with SNR=20 dB and SNR=5 dB correspondingly. Note,

even in both cases the baseline and monitor models were restored (illustrations (a), (b)

and (c)), the time-lapse models were not resolved (illustrations (d) and (e)). One of

the possible explanations for such time-lapse recovery failure could be a small velocity

contrast of the time-lapse anomaly (200 m/s). Therefore, in the following, to test this

assumption, we will repeat the DBIT inversion experiments, but now, noisy data will be
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generated from the models corresponding to the high-contrast time-lapse anomaly (600

m/s) given in figure 3.15 (illustration (b), (c) and (e)).

Figure 3.30 shows the inversion results for the time-lapse anomaly recovered from

data with the SNR equals to 20 dB. Note, in this case, the time-lapse anomaly recon-

structions corresponding to both the parallel difference and sequential strategies can be

easily identified (illustrations (d) and (e)). The experiment with the high-contrast time-

lapse anomaly, but on noisier data (the SNR equals to 5 dB) also provided acceptable

results (illustrations (d) and (e) in figure 3.31). Both time-lapse results in figures 3.30

and 3.31 can be additionally improved if we assume that the P-wave velocities in dry and

saturated reservoir rocks are known (from laboratory or sonic log measurements). Figure

3.32 shows the time-lapse results from figures 3.30 and 3.31 where the velocity differences

outside the interval 300-900 m/s were removed. Note, now, the time-lapse anomalies can

be identified even better.

3.6.3 Concluding remarks

Resuming the analysis of the time-lapse DBIT FWI method, I highlight the most re-

markable discussion points. For simple reservoirs, as a fault trap model (figure 3.9)

for example, the DBIT technique works very efficiently and makes it possible to recon-

struct low-contrast time-lapse anomalies even from very noisy data (figures 3.13 and

3.14). When applied to high-contrast models, the model restorations encounter some

challenges. First, the absence of ULF in data sets does not allow solving the inversion

problem in principle (illustration (b) in figure 3.17). The solution, however, can still

be obtained with the help of the smoothing or self-adaptive techniques (figure 3.18). In

general, the performance of both techniques are comparable (figures 3.18 and 3.19). In

terms of accuracy, the use of the smoothing and self-adaptive techniques together pro-

vides even more attractive results (figures 3.27, 3.22 and 3.23). For noisy cases (SNR

equal to 20 dB and 5 dB), the low-contrast time-lapse anomaly (the velocity difference

about 200 m/s) may not be resolved (figures 3.28 and 3.29). Applied to the high-contrast

time-lapse models (the velocity difference about 600 m/s), the anomalies can be resolved

(illustrations (d) and (e) in figures 3.30-3.31). The application of the different time-lapse

approaches showed that the sequential technique was less costly and recovered time-lapse

models with better quality. The additional benefit of the sequential strategy (?) is that

this approach does not require being extra accurate in survey design when performing the

monitor survey. On the other hand, the sequential time-lapse strategy does not take into
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account the probable effect of reservoir rocks compaction (Landrø, 2015): hydrocarbon

depletion in reservoirs leads to a pore-pressure decrease and forces the reservoir rocks to

compact. Even the effect of this geomechanical problem is usually very small, some types

of reservoirs may be sensitive to this issue (Landrø, 2015).

The potential of the DBIT inversion applied to high-contrast media is very promis-

ing. Still, the analysis cannot be full without mentioning the artificial reflections produced

from the model boundaries which contribute to the model recovery process when invert-

ing. Artificial boundaries in the scattering theory-based methods are the boundaries that

separate the model environment from a homogeneous background medium. At the mod-

elling stage, when boundary conditions are not applied, the T-matrix modelling method

considers these boundaries as real geological interfaces, generating artificial reflections.

The DBIT-based FWI, in turn, when restoring a velocity model from such data, treats

these artificial reflections as true ones, and use their help in model recovery. Now, con-

sider the salt models in figures 3.15 (illustrations (a), (b) and (c)). Due to high contrast,

most of the primary seismic energy reflected from the top of the salt body, which causes

the subsalt illumination problem. Here, refractions and internal multiples, in most cases,

are the only sources of information about the subsalt structure. And, the contribution of

internal multiples is probably more significant. Malcolm et al. (2009), for example, pro-

posed the algorithm that made it possible to illuminate the structures under high-contrast

geological bodies using internal multiples only. Therefore, not to be biased in conclusions

regarding the efficiency of the DBIT scheme proposed, one can treat the bottom model

boundary as a real geological interface, for example.
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Figure 3.15: Salt trap model.(a) The baseline model (low-contrast anomaly); (b) the

baseline model (high-contrast anomaly); (c) the monitor model; (d) the low-contrast

time-lapse model (200 m/s); (e) the high-contrast time-lapse model; (f) (600 m/s); the

linearly-increasing model.
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Figure 3.16: Reconstructions of the baseline model using the DBIT inversion method

with the help of 5 selected frequencies. (a), (b), (c), (d) and (e) illustrations correspond

to 1, 3, 5, 15 and 17 Hz, respectively.
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Figure 3.17: Performance of the DBIT inversion algorithm (based on the baseline

model) for the data (a) with ULF; (b) without ULF; (c) the overall inversion error εm

at ith iteration defined by ||m(true)–m(i)||/||m(true)||; (d) the relative data residual error

defined by ||d(i) − Jm(i)||/||d(i)||; (e) regularization parameter λ at ith iteration defined

in equation (3.31); (f) frequencies.
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Figure 3.18: Similar to figure 3.17, but with the smoothing and self-adaptive techniques

applied (data lacking ULF).
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Figure 3.19: Model recoveries at different locations (profiles) within the baseline model

obtained using the DBIT inversion algorithm combined with the smoothing (b, c and d)

and self-adaptive (e, f and g) techniques.
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Figure 3.20: Model reconstructions obtained using the DBIT inversion algorithm. (a)

The baseline model (based on the linearly increasing initial model); (b) the monitor

model (based on the linearly increasing initial model); (c) the monitor model (based on

the baseline model (illustration(a)); (d) the time-lapse model (obtained by the parallel

difference strategy); (e) the time-lapse model (obtained by the sequential strategy). The

frequencies used [1, 3, 5, 7, 9, 13, 15, 17 Hz]. The number of sources and receivers is

48 and 116 respectively. The time-lapse model corresponds to the low-contrast anomaly

(200 m/s).
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Figure 3.21: Similar to figure 3.20, but without ULF in the data.
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Figure 3.22: Similar to figure 3.20, but, without ULF in the data; and, with the

smoothing technique applied.
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Figure 3.23: Similar to figure 3.20, but, without ULF in the data; and, with the self-

adaptive technique applied.
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Figure 3.24: Similar to figure 3.20, but, without frequencies 1-6 Hz in the data; and,

with the smoothing technique applied.
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Figure 3.25: Similar to figure 3.20, but, without frequencies 1-6 Hz in the data; and,

with the self-adaptive technique applied.
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Figure 3.26: Similar to figure 3.20, but, without frequencies 1-6 Hz in the data; and

with both the smoothing and self-adaptive techniques applied.



3.6. NUMERICAL RESULTS 98

Figure 3.27: Similar to figure 3.20, but, without ULF in the data; and, with both the

smoothing and self-adaptive techniques applied.
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Figure 3.28: Similar to figure 3.20, but, without ULF in the data; with the smoothing

and self-adaptive technique applied (the SNR equals to 20 dB).
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Figure 3.29: Similar to figure 3.20, but, without ULF in the data; with the smoothing

and self-adaptive technique applied (the SNR equals to 5 dB).
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Figure 3.30: Similar to figure 3.20, but for high-contrast velocity anomaly (600 m/s)

using the data with the SNR equals to 20 dB.
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Figure 3.31: Similar to figure 3.20, but for high-contrast velocity anomaly (600 m/s)

using the data with the SNR equals to 5 dB.
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Figure 3.32: The time-lapse reconstructions from the noisy data in figures 3.30 and

3.31, but with the velocity differences outside the interval 300-900 m/s were removed.

(a) and (c) obtained with parallel difference strategy (the SNR equal to 20 dB and 5 dB

respectively); (b) and (d) obtained with parallel difference strategy (the SNR equal to 20

dB and 5 dB respectively).



Chapter 4

Conclusions and future work

Anyone who has never made a mistake has never tried anything new.

—Albert Einstein

4.1 Final summary

The main goal of this thesis was to investigate the application of time-lapse based DBIT

FWI in strongly scattering media with different time-lapse strategeis. And this goal, as

the author thinks, has been achieved.

In the modelling part of this research, using different 1D and 2D modelling examples,

it was shown that the T-matrix integral equation method could be used as an exact

modelling method. To check the accuracy of this modelling method, I compared data

generated by the T-matrix approach with those obtained with the help of the finite-

differnce time domain modelling technqie. The subsequent conclusion is consistent with

the observations provided by Jakobsen and Ursin (2015).

A comparison between the time-lapse modelling data obtained by the T-matrix and

those by DBA modelling method, showed the results were almost the same.

By experimenting with the conventional DBIT algorithm applied to strongly scatter-

ing media models (the resampled and modified SEG/EAGE salt model), it was demon-

strated that this method did not work if the data were lacking ultra-low frequencies (1-4

104
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Hz). The problem was solved when the traditional DBIT method was used together with

smoothing and self-adaptive techniques. It was also shown that both techniques worked

better in combination rather than separately.

Time-lapse model reconstructions corresponded with two different time-lapse scenarios

(low-contrast and high-contrast) were analyzed and the following was discovered: when

noiseless data were considered, the low-contrast model (velocity difference equals 200

m/s) was effectively recovered. In the case of noisy data, the low-contrast time-lapse

anomaly from the reconstructed images was not identified. However, when noisy data

were used to image high-contrast time-lapse model (velocity difference equals 600 m/s),

the anomaly was successfully resolved. Therefore, to improve the low-contrast time-lapse

model recovery, one could probably try to increase the number of receivers, shots or

frequencies (or, even better, all of them together).

When I compared the parallel difference and sequential time-lapse inversion strategies,

I found that the sequential approach worked faster and provided more accurate results.

The general conclusion is that, integrated with the smoothing and self-adaptive tech-

niques, the DBIT inversion method can be considered as a powerful tool in solving time-

lapse problems associated with strongly scattering media models.

4.2 Suggestions for future work

The DBIT-based time-lapse inversion method, when applied to the high-contrast model,

shows very promising results. However, there is still plenty of room for further develop-

ment.

One of the possible directions could be addressed to the model boundary problem. It

would be interesting to see the inversion results obtained from data with applied bound-

ary conditions when modelling. It would exclude any bias related to extra illumination of

structures under high-contrast bodies with internal multiples. After implementing bound-

ary conditions, one can try to reconstruct the time-lapse models with three time-lapse

strategies: parallel difference, sequential and differential.

Another research direction of DBIT inversion could be, for example, the use of mod-

elling data generated by the finite-difference frequency domain method (see, for example,

Ajo-Franklin (2005). After applying appropriate boundary conditions, one could try to
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generate data with only selected frequencies and, then, invert for model parameters. This

would also solve the inverse crime problem providing additional test of the DBIT inversion

method.

Additionally, the time-lapse DBIT-based FWI could be extended for the application

to more realistic elastic cases with the aim to invert for both P- and S-velocity models.

Finally, since originally geological media are three-dimensional, it would be interesting

to adjust the DBIT inversion algorithm to 3D inversion cases. One could also try to

experiment with real seismic data.

Finally, considering the scattering problem in general, one could try to solve the

Lippmann-Schwinger equation more efficiently using iterative methods. One of the ap-

proaches in this direction is to use the modified Born series that guarantees the con-

vergence independently of the model size and the strength of the velocity perturbation

(Osnabrugge et al., 2016).



Appendix A

The finite-difference method

A.1 Derivation of the time domain finite-difference

method for the acoustic wave equation

A derivation of the time domain finite-difference method is based on Schuster (2017).

The following derivation considers a two-dimension case. The 2D acoustic wave equation

can be written in the following form:

∂ 2(x, t′)

∂ x2
− ∂ 2p (x, t′)

∂z2
− 1

c(x, z)2

∂ 2(x, t′)

∂ t′ 2
= f(x, t′), (A.1)

where c(x, z) denotes the velocity of the modelled medium, p (x, t′) the pressure field,

and f(x, t′) the source function. Discretization of equation (A.1) in both time and space

coordinates can be performed according to the following scheme:

(x, z, t)↔ (i∆x, j∆z, t∆t). (A.2)

Assuming i, j, and t in equation (A.2) are integers, the components of equation (A.1)

can be expressed in discretized form as

p (x, z, t)↔ ptij, (A.3)

f (x, z, t)↔ f tij, (A.4)

and

c (x, z)↔ cij. (A.5)

For simplicity, we assume the sample interval in x and z directions are equal (∆x = ∆z).
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The second order central FD approximation scheme is given by

d 2f(x)

dx2
≈ [f(x+ ∆x)− 2f(x) + f(x−∆x)]

∆x2
. (A.6)

Applying (A.6) to equations (A.3), (A.4) and (A.5), we have

∂ 2p

∂ t2
≈

[pt+1
ij − 2ptij + pt−1

ij ]

∆t2
, (A.7)

∂ 2p

∂ x2
≈

[pti+1j − 2ptij + pti−1j]

∆x2
(A.8)

and
∂ 2p

∂ z2
≈

[ptij+1 − 2ptij + ptij−1]

∆x2
. (A.9)

Assuming that initial conditions satisfy p(x, t′ = 0) and ∂p(x, t′ = 0)/∂t′ for all (x, z),

such that the source wavefield is defined by the source function f tij, the solution for the

pressure field in dicretized form can be written as

pt+1
ij = 2ptij + pti−1j +

(
cij ∆t

∆x

)2

[pti+1j − 2ptij + pti−1j]

+

(
cij ∆t

∆x

)2

[ptij+1 − 2ptij + ptij−1]− (cij∆t∆x)2f tij.

(A.10)

Note, for the second-order finite-difference approximation to be accurate as a minimum

of ten grid points per wavelength should be defined (Virieux, 1986). Additionally, the

stable discretized solution requires for the time sampling interval to satisfy the following

inequality (Ikelle and Amundsen, 2005):

∆t < 0.606
∆x

Vmax
, (A.11)

where ∆t is the time interval, ∆t is the space interval, and Vmax is the maximum velocity

in the model.
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