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Chapter 1

Introduction

Graphs are mathematical objects that represent binary relationships between
entities. In practice, graphs are used as a versatile data structure that can model
almost anything, from social networks and financial transactions to ecosystems
and molecular reactions. Efficient algoritms that work on graphs are therefore
highly valuable, as the problems encountered ”in the wild” often can be reduced
to one of a collection of highly understood problems in graph theory, and effi-
cient solutions to these problems can be applied to a variety of fields. To our
detriment, there are many problems that evade efficient solutions. Most people
are of the opinion that that the so-called NP-hard problems are impossible to
solve fast in every instance. Among these problems are several seemingly sim-
ple, like Subset Sum: Given a list of integers, does a subset of these integers
add to zero? The most näıve solution here would be to simply check the sum
of every subset, which takes exponential time in the number of integers. While
there certainly exist more clever algorithms to solve Subset Sum, no known
algorithm is faster in an essential way – they still demand exponential time to
give the exact answer in the worst case.

One of the most important tools to overcome the difficulties of NP-hard prob-
lems is parameterized algorithms. The runtime of parameterized algorithms is
dependent not only on the size of the input, but also on some parameter(s) that
somehow measures the difficulty of finding our desired output. Broadly speak-
ing, parameterized algorithms work by selecting a parameter that does one of
two things: constrain the input, or constrain the output.

Graph decompositions, the main algorithmic technique concerning this the-
sis, is a way of constraining input. Broadly speaking, a graph decomposition
is a way of dividing a graph into managable ”chunks” or subgraphs. A graph
algorithm that works on such a decomposition need not consider the graph as
a whole; it need only solve the problem on the subgraphs given by the decom-
position, and put together the solutions in a suitable way. The width parameter
associated with each decomposition should then ideally be a measure of how
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difficult it is to find the partial solutions and put them together.
Let us take tree decompositions, and their related parameter tree-width (perhaps
the most well-known graph width parameter) as an example: A tree decompo-
sition of a graph G is a tree T where every node represents a subset of the
vertices in G, with certain restrictions. The tree-width of T is then the size
of the biggest subset that is represented in T . The bigger the tree-width, the
longer the algorithm takes to find partial solutions.
In the case of MIM-width, the parameter most closely discussed in this thesis,
the decomposition of G is a so-called binary decomposition tree, a binary tree
where every leaf represents one vertex in G and every other node represents
the vertices in G represented by leaves in its subtree. For every S ⊆ VG that
is represented by some node in the decomposition tree, the MIM-width gauges
the complexity of the bipartite graph crossing the cut (S, S) as the maximum
induced matching number of this graph. The bigger the MIM-width, the longer
the algorithm takes to put together partial solutions. Width parameters thus
constrain the input in the way that many graphs have no decomposition with a
low value of the given parameter.

The decompositions and width parameters discussed here have algorithmic
applications: There are numerous results that give polynomial-time algorithms
for NP-complete problems when e.g. the MIM-width of the graph is bounded
(see e.g. [6], [17]). We can thus directly infer that for every useful parameter,
there exists some graph with a value of the parameter that is dependent on the
size of the graph, lest P = NP. That is, there is no single decomposition method
that works well on all graphs. That is part of the reason for the plethora of
width parameters that have been defined: Different parameters have low values
for different types of graphs. For example, tree-width model sparse graphs well,
while having big cliques makes the tree-width of that graph big. Other param-
eters such as clique-width or rank-width model dense graphs well, while also
being bounded on some sparse graphs. MIM-width has the interesting property
that it is bounded by a constant on several important graph classes, like interval
graphs and cirular-arc graphs, see [3].

In classical complexity, all the NP-complete problems are regarded as equally
hard to solve, since they can be reduced to one another in polynomial time (.
This is likely not the case when parameters are brought into scope; several com-
plexity classes have been defined that do not seem to collapse into one another.
The most important is FPT; that is, all problems that can be solved in time
O(f(k) · nc) for a parameter k, a computable function f and some constant c.
This means that if for example c = 1 for some problem, then there exists an
algorithm that for any fixed k solves the problem in linear time. k only decides
the size of the hidden constant (which may admittedly become huge as k grows).
Many problems are solvable in FPT time parameterized by the tree-width of
the input graph. In his famous theorem, Courcelle gives a characterization of
many problems that can be solved efficiently on tree decompositions; these are
the problems that can be stated in monadic second-order logic [7].
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The other important complexity class is XP, or ”slicewise” polynomially solv-
able problems. These are all problems solvable in time nO(f(k)) for a parameter
k and a computable function f . This means that for every fixed k, the problem
can be solved in polynomial time. This is a much weaker advantage though,
as one has less control over the exponent. E.g., for vertex subset problems, it
basically implies that there is (likely) no way of solving the problem that is
significantly faster than the näıve approach of trying all potential solutions of
size exactly k (which has runtime O(nk)).
The W-hierarchy is an infinite collection of complexity classes that seeks to ex-
plain what parameterized problems are unlikely to be reduced to one another.
A strict definition of this complexity hierarchy falls outside the scope of this
thesis (the textbook by Downey and Fellows [9], who invented the notion, gives
a thorough treatment of the subject), however, a short explanation of the term
is in place. W[0] is defined to be equal to FPT, and for every parameterized
problem Π in W[N], there exist problems in W[N+1] which cannot be reduced
to Π in such a way that the parameter only varies within a constant. There is
no hard evidence for the existence of the W -hierarchy, as its existence would
imply P 6= NP, but much of the work in parameterized complexity is built on
the assumption that it exists.

No algorithms for NP-complete problems parameterized by MIM-width have
been devised that run in FPT time. Rather, MIM-width has been utilized in
algorithms for W[1]-hard or W[2]-hard problems; these algorithms naturally run
in XP time, and subsequently run in polynomial time on graph classes with
bounded MIM-width.
Since MIM-width itself is built around the notion of finding a maximum in-
duced matching in bipartite subgraphs, a problem that is NP-complete and
W[1]-hard parameterized by the size of the matching, finding decompositions
with low MIM-width is also hard. Sæther & Vatshelle have shown [24] that
finding a binary decomposition of a graph G of optimal f -width is at least as
hard as computing f on G (given some desired qualities of the function f), thus
finding a decomposition of MIM-width (say) k must also be at least W[1]-hard
parameterized by k. Anyway, we do not know if it even is in XP. It is possible
that finding a decomposition of MIM-width k is actually NP-complete for some
k ≥ 1. At the time of writing, it is an open problem to even recognize graphs
with linear MIM-width 1 in polynomial time.

This thesis is split into two parts. The first part (sections 1-3) gives an
overview on linear MIM-width. This includes:

• a detailed definition of the parameter and its generalization MIM-width
in the context of binary decompositions and linear layouts

• the algorithmic use of graph decompositions parameterized by MIM-width

• a recount of some of the main results concerning the modelling power of
these parameters, and in what ways they differ from one another
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• Some notes on what is still unknown concerning MIM-width

The second part (sections 4-8) gives a new result (developed jointly with
Jan Arne Telle and Erlend Raa V̊agset in [14]): a polynomial-time algorithm
for computing the linear MIM-width of trees, as well as linear layouts of opti-
mal MIM-width. This is to our knowledge the first exact algorithm for linear
MIM-width on any graph class with unbounded linear MIM-width that runs in
polynomial time. We come to this result through the following steps:

• First, we give a characterization of all trees with linear MIM-width k + 1
for every k ≥ 1. This mirrors the characterization of trees with pathwidth
k + 1, as described by Ellis, Sudburough & Turner in [10]. A similar
characterization also holds for the linear rank-width and the linear clique-
width of trees, as shown by Adler and Kanté in [1].

• We then use the characterization to devise a DP algorithm to compute the
linear MIM-width of a tree T ; the algorithm works on a rooted version of T
by assigning a label to every rooted subtree. This algorithm is structurally
similar to the algorithm in [10] that computes the path-width of trees, and
runs in O(n · log(n)) time.

• Finally, we use the output from the algorithm mentioned above to produce
a linear layout of T with optimal MIM-width; this procedure also runs in
O(n · log(n)) time.

The above findings have been summarized in a paper [14]; at the time of
writing, this paper has been accepted to the 45th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2019), and a revised ver-
sion will appear in the proceedings from this conference. The interested reader
can find the paper as an appendix to this thesis.
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Chapter 2

Preliminaries

2.1 Basic defintions

What follows here is an overview of the basic concepts from graph theory that
are used in this thesis. The terminology is meant to follow the standard set by
[8] and thus be as easy as possible to follow for the reader. This is by no means
a comprehensive dictionary of graph theoretic concepts; for an introduction to
the subject the reader should consult [8].

A graph G is a pair of sets (VG, EG), where E is a family of 2-sets over VG.
VG is the vertex set of G, and EG is the edge set of G. The graphs discussed
in this thesis are undirected; this means that every edge is an unordered set,
i.e. the edge e = (v, u) is equal to e′ = (u, v) where u and v are vertices in G.
Graphs are often visualized as a set of dots (the vertices) with lines connecting
the dots (the edges).
Let v and u be two vertices in the graph G. If (v, u) is an edge in G, then u
is said to be the neighbor of v in G, and vice versa. Alternatively, v and u
are said to be adjacent in G. The neighborhood N(v) of a vertex v in G is
the set of all vertices in G that are neighbors of v, and the closed neighborhood
N [v] is defined as N(v) ∪ {v}. Similarly, given a subset of vertices S ⊆ VG, we
define N [S] as the union of N [v] for every v ∈ S, and N(S) as N [S]− S.
Let G be a graph. A subgraph H of G is a graph that has VH ⊆ VG and
EH ⊆ EG. The fact that H is a graph implies that EH is a family over VH .
Given a subset of vertices of G, A, the induced subgraph over A, denoted
G[A], is a subgraph H such that VH = A and every edge in EG with both
endpoints in A is also a edge in EH .
The complement of a graph G, denoted G is a graph having VG = VG, such
that for any pair of vertices u, v, (u, v) ∈ EG if and only if (u, v) 6∈ EG.
A path P between two vertices u and v in G is a sequence of vertices x1, . . . , xp
such that x1 = u and xp = v, and for every 1 ≤ i < p, (xi, xi+1) ∈ EG. Since G
is undirected, P can be traversed both ways. The length of P is p− 1.
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A graph G is connected iff there for every pair of vertices u, v in G exists a
path between u and v. A connected component in G is a maximal subgraph
of G that is connected.
The distance between vertices u and v in G, dist(u, v) is equal to the length of
the shortest path that connects u and v. dist(v, v) is always 0, and dist(u, v) = 1
if and only if they are adjacent. If u and v are in different connected compo-
nents of G, there exists no path between them and their distance is assumed
to be infinite. The distance between two edges uv and xy is the minimum of
(dist(u, x), dist(u, y), dist(v, x), dist(v, y)).
A cycle is a non-trivial path in G that goes from a node back to the same node.
If a graph contains no cycles, it is known as a forest, and if a forest is connected,
it is known as a tree. The vertices of a tree are commonly called nodes. In
this thesis, we usually use the letter T to denote trees.
A rooted tree Tr is a tree with one distinguished node r, called the root. For
every neighbor v of r in Tr, r is called the parent of v, while v is a child of r.
If a node v has parent u, then every node in N(v)\u is a child of v. Every node
in Tr except r has exactly one parent.
Given a rooted tree Tr and a node v, we define the descendants recursively
as all nodes in Tr that are either v itself, or a child of a descendant of v. The
ancestors of v are likewise defined as all nodes that are either v itself, or the
parent of an ancestor of v.
The set of all ancestors of v in Tr induce the path from v to r. The set of all
descendants of v in Tr induce the subtree rooted in v, written T [v].
A leaf in Tr is a node that has no children. In unrooted trees, a leaf is a node
with only one neighbor.
A binary tree is a rooted tree in which every node has at most two children.
In a full binary tree, every non-leaf (also called internal) node has exactly
two children.
Two subclasses of trees observed in this thesis are caterpillars and stars. A
caterpillar is a tree T that contains a path P such that every node in T either
is on P , or is adjacent to a node on P . A star is a caterpillar where P consists
of a single node. It applies to all caterpillars that every node in VT \P must be
a leaf.
A graph G whose vertices can be partitioned into two sets X,Y such that every
edge in G has one endpoint in X and one endpoint in Y , is called bipartite. X
and Y are then called the color classes of G. Given an arbitrary graph G and
two disjoint subsets of vertices in G, A,B, the induced bipartite subgraph of
G over A,B, denoted G[A,B], is a bipartite subgraph H of G with color classes
A and B, such that every edge in EG with one endpoint in A and one in B is
an edge in EH . In this thesis we mostly consider induced bipartite subgraphs
for which A ∪B = VG.

We use the following standard notation from set theory:
Given two sets A and B, A ∪ B denotes the union of A and B, and A ∩ B
denotes the intersection of A and B. A\B denotes the subtraction of B
from A.
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Given a set S subset of a universe U , A denotes the complement of A, that
is U\A. In a graph G, the complement of a vertex set S ⊆ VG is thus always
equal to VG\S.
Given a set S, 2S denotes the power set of S.

2.2 Big-O notation

In algorithmic complexity analysis, big-O notation is a useful tool to simplify
functions that we use to describe the time and space demands of an algorithm.
It omits the slow-growing components of a function and shows only the fast-
growing ones.
Given two functions f, g, f = O(g) if there exist real and positive constants c
and N such that for all n ≥ N , f(n) ≤ c · g(n). It thus embodies the sense
of ”function f grows at most proportionally as fast as function g”. f = Ω(g)
if there exist real and positive constants c and N such that for all n ≥ N ,
f(n) ≥ c · g(n). f = Θ(g) if f = O(g) and f = Ω(g).
We also have an alternative notation, big-O-star notation, that omits all poly-
nomial factors, this is useful when analyzing exponential algorithms:
Given two functions f, g, f = O∗(g) if there exist real and positive constants c
and N such that for all n ≥ N , f(n) ≤ nc · g(n).

2.3 Binary Decompositions, Linear Layouts, and
f-width

Binary decompositions is a general model for facilitating divide-and-conquer al-
gorithms for problems on graphs. A binary decomposition tree represents a way
of recursively partitioning the vertices of a graph, and an algorithm that works
on the decomposition tree will traverse it in a bottom-up fashion, for each node
finding partial solutions for the set of vertices in the graph corresponding to
that node. When it reaches the root, it thus finds a satisfactory solution for the
whole graph.

Definition 2.3.1 (Binary Decomposition). Given a graph G with n ver-
tices, a binary decomposition of G is a pair (T, δ) where T is a full binary
tree and δ is a bijection from VG to the leaves of T . We let L(T ) be the
leaves in T . For every node t of T , we then obtain a subset of vertices in
G: V Tt = {v ∈ VG : ∃v′ ∈ (VT [t] ∩ L(T ))[δ(v) = v′]}. If t ∈ L(T ), then
V Tt = {δ−1(t)}. V Tr , where r is the root of T , is equal to VG.

Every full binary tree with exactly n leaves (and by extension exactly n− 1
internal nodes) can be a binary decomposition of G if given a δ, but not every
decomposition is equally well-suited to run our algorithms on. We therefore
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introduce a function that somewhat captures the complexity of the binary de-
composition tree.
Given a complexity measuring function f : 2VG 7→ N, we define the f-width of
(T, δ) or fw(G, (T, δ)) as maxt∈T f(V Tt ). The f -width of G or fw(G) is then
taken to be the minimum f -width over all binary decompositions of G.

Definition 2.3.2 (Linear layout). Given a graph G, |VG| = n, a linear
layout σ of G is an ordering of its vertices: σ is a bijective function from
VG to {1, . . . , n}. For every integer 1 ≤ i ≤ n, we obtain a subset of VG:
V iσ = {v ∈ VG : ∃j ∈ {1, . . . , i}[σ(v) = j]}.

In the same fashion as with binary decomposition trees, we define the f -
width of a linear layout σ or fw(G, σ) as maxni=1 f(V iσ). The linear f-width of
G or lfw(G) is thus the minimum f -width over all linear layouts of G.

It is worth to notice that every linear layout σ of G has an equivalent binary
tree decomposition, called a caterpillar decomposition. A caterpillar de-
composition is a binary tree decomposition (T, δ) where T is also a caterpillar.
It should be clear that, given a linear layout σG, for every 1 ≤ i < n, there are
two corresponding cuts in a corresponding caterpillar decomposition; the first is
equal to G[V iσ , V

i
σ ], and the other, G[{vi}, VG\vi], has always maximum induced

matching 1 (see Figure 2.1). Since a caterpillar decomposition is a binary de-
composition, it follows that the MIM-width of a graph G is no greater than the
linear MIM-width of G.

v1 v2 v3 v4 v5

v1

v2

v3

v4 v5

Figure 2.1: A linear layout of 5 vertices and a corresponding caterpillar decom-
position, with some cuts indicated

Much of the existing literature talks about linear f -width in terms of cater-
pillar decompositions. However, in this thesis we will exclusively talk in terms
of linear layouts when we introduce linear MIM-width and how to compute it
on trees, since they are somewhat easier to reason about.
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Chapter 3

MIM-width and linear
MIM-width: An Overview

3.1 Induced matchings, MIM-width and linear
MIM-width

A matching in a graph G is a collection M ⊆ EG such that no two edges in M
have a vertex in common; this can be seen as a pairing up of vertices in G. An
induced matching in G is a matching M ′ where no two edges in M ′ share an
edge between them; that is, if A is the set of all vertices in G that are endpoints
of edges in M ′, then E(G[A]) = M ′. mim(G) denotes the biggest number such
that there exists an induced matching in G of that size. It was shown in [25]
that finding an induced matching of maximum size is NP-complete, even in bi-
partite graphs. This contrasts with plain matchings; there is a famous algorithm
that given a bipartite graph finds a maximum matching in polynomial time [15].

Definition 3.1.1 (MIM-width). Given a graph G and a binary decompo-
sition (T, δ) of G, we define the MIM-width (Maximum Induced Matching-
width) of G, or mw(G), as the f -width of G where, for every A ⊆ VG, f(A) =
mim(G[A,A]).

MIM-width is one of three width parameters based on f -width first explored
in [27], the others being MM-width (Maximum Matching-width) and Boolean-
width. Of these three, MIM-width is the strongest in terms of modelling power,
and conversely the weakest in terms of analytical power.

Definition 3.1.2 (Linear MIM-width). Given a graph G, the linear MIM-
width of G, or lmw(G), is the linear f -width of G where, for every A ⊆ VG,
f(A) = mim(G[A,A]).
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The following illustrations show two layouts of a simple graph, one with
suboptimal linear MIM-width and one that is optimal.

a

b c

d e

Figure 3.1: The house graph H

a b c d e

Figure 3.2: This layout of H has MIM-width 2; the indicated cut induces the
matching 2K2

d c a b e

Figure 3.3: In this layout of H, all cuts induce a graph with MIM 1; ergo,
lmw(H) = 1
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3.2 Algorithmic use of MIM-width

(Linear) MIM-width has been utilized in algorithms to solve the general class of
locally checkable vertex subset problems, also called (σ, ρ)-domination problems.
The framework of (σ, ρ)-domination was introduced by Telle in [26] and includes
several interesting problems like Independent Set, Dominating Set, In-
duced Matching and Perfect Code. We do not explore (σ, ρ)-domination
beyond a simple definition in this thesis. However, [6] gives a detailed explana-
tion on how (σ, ρ)-problems can be solved given a decomposition with a bounded
number on so-called d-neighborhood equivalence classes. We will below sketch
out the connection between MIM-width and d-neighborhood equivalence.
Very briefly explained, a vertex subset problem is a (σ, ρ)-problem if every so-
lution S ⊆ VG meets some constraint on how many neighbors in S every vertex
in G may have, and there is a constant limit d on the number of neighbors
one need to check for. More formally, σ and ρ are finite or co-finite sets of
non-negative integers that indicate how many neighbors in S every vertex in S
and S is allowed to have, respectively. For example, S is an independent set if
and only if every vertex in S has exactly zero neighbors in S. Therefore, for
Independent Set, σ = {0}, ρ = N, and d = 1.

More recently, algorithms parameterized by MIM-width have been devised
for connectivity and acyclicity problems like Feedback Vertex Set [17], and
also (σ, ρ)-problems generalized by distance [16].
In [4], Bergougnoux and Kanté modifies the so-called rank-based approach by
Bodlaender et al. [5] to work on binary decompositions parameterized by MIM-
width or other parameters. This forms a powerful technique for solving con-
nected and/or acyclic versions of (σ, ρ)-problems.

Algorithms that are parameterized by MIM-width take advantage of the
notion of d-neighborhood equivalences.

Definition 3.2.1 (d-neighbor equivalence). Given a graph G and a subset
of vertices S, two sets of vertices A,B ⊆ S are d-neighbor equivalent (written
A ≡dS B) if and only if for every vertex v ∈ S, min(d,N(v)∩A) = min(d,N(v)∩
B).

An equivalent statement is that if A ≡dS B, then for every non-negative
integer c < d, every vertex v ∈ S that has c neighbors in A must also have
exactly c neighbors in B. It is not hard to see that A ≡1

S B if and only if they
have the same neighborhood in S.
≡dS is clearly an equivalence relation on subsets of S.

Definition 3.2.2 (necdS). Given G, S and ≡dS as above, necdS is defined as
the number of equivalence classes under ≡dS , that is, the maximum number of
subsets of S that are pairwise d-neighborhood non-equivalent.

The motivation behind defining d-neighbor equivalence should be clear: When
one solves e.g. a locally checkable vertex subset problem, where one for each
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vertex need only check if it has up until d neighbors in the solution, partial so-
lutions that are d-neighbor equivalent can be regarded as equivalent, and only
the best (minimum/maximum) of these solutions is needed. Assume that we
are given a binary decomposition (T, δ) of G such that for every m ∈ VT , necdV T

m

is polynomial in the size of G. A dynamic programming algorithm using (T, δ)
need only store a polynomial amount of partial solutions for each node in the
decomposition tree. The algorithm will then run in polynomial time in the size
of G.

We show how neighborhood equivalences relate to MIM-width through the
next lemma (taken from Belmonte & Vatshelle in [3]), which implies that if G
admits a binary decomposition (T, δ) of bounded MIM-width, then for every

V Tm , the number of neighborhoods in G[V Tm , V
T
m ] is polynomial in the size of G.

Lemma 3.2.3. [3] Given a graph G with n vertices and a subset of vertices A,
mim(G[A,A]) ≤ k if and only if for every S ⊆ A there exists R ⊆ S, |R| ≤ k
such that NG(R) ∩A = NG(S) ∩A.

Proof. We include the proof here for completeness.
Forward direction: We assume that there exists a set S′ ⊂ A, |S| > k such that
no proper subset of S′ shares its neighborhood in G[A,A]. This implies that for
every vertex s ∈ S′, NG(S′\s) ∩ A 6= NG(S′) ∩ A. But this means that every s
has a neighbor in A that is not a neighbor of any other vertices in S′. We call
this vertex s and the edge between them es. We then collect the set of edges
M = {es : s ∈ S′}. But M must be an induced matching, and |M | = |S′| > k.
This is a contradiction, therefore the forward statement is true.
Backward direction: We assume that there exists a matching M in G[A,A],
|M | > k. Consider the set of vertices S′ = V (G[M ]) ∩ A; |S′| = |M | > k. But
every vertex s in S′ has a neighbor in V (G[M ]) ∩ A that it clearly does not
share with any other vertex in S′, therefore NG(S′\s) ∩A 6= NG(S′) ∩A. This
is a contradiction, therefore the backward statement is true.

Since every S ⊂ A has a subset R of size at most k with identical neighbor-
hood in G[A,A], we can bound the number of neighborhoods, nec1A:

nec1A ≤
(|A|
k

)
≤
(
n

k

)
≤ nk

.
Belmonte & Vatshelle further generalize this result to d-neighborhoods in

[3]; this is proven by induction on d.

3.3 Structural Properties of Linear MIM-width

Now, we turn the focus towards the linear parameter. We regard linear MIM-
width as interesting for several reasons: A linear ordering of vertices is a simpler
structure than a binary decomposition tree and thus easier to reason about, and
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at the same time several interesting graph classes have bounded linear MIM-
width. The following results are also from [3]:

• Interval graphs, permutation graphs, and convex graphs have linear MIM-
width 1

• Circular arc graphs, circular permutation graphs, and trapezoid graphs
have linear MIM-width at most 2

• k-trapezoid graphs and k-Dilworth graphs have linear MIM-width at most
k

• Circular k-trapezoid graphs and k-polygon graphs have linear MIM-width
at most 2k.

We will repeat the proof that interval graphs have linear MIM-width 1. Most
of the other proofs follow the same tactic.

Firstly, we observe from Lemma 3.2.3 that a bipartite graph G[X,Y ] has
maximum induced matching number 1 if and only if there for every nonempty
set S ⊆ X exists one vertex s ∈ S such that N(s) = N(S). We call these graphs
bipartite chains:

Definition 3.3.1 (Bipartite chain). A bipartite chain is a bipartite graph
G[X,Y ] with nested neighborhoods; that is, assuming |X| = p we can find an
ordering of the vertices in X, (x1, . . . , xp), such that N(xi+1) ⊆ N(xi) for all
1 ≤ i < p.

From this, we see that a graph G has linear MIM-width 1 if and only if there
exists a linear layout of G such that every cut on the layout induces a bipartite
chain.

Lemma 3.3.2. [3] Given any interval graph G, one can in polynomial time find
a linear layout of G of MIM-width 1.

Proof. It is known that given an interval graph G, VG = {v1, . . . , vn}, one can
find an intersection model consisting of intervals I = {(s1, e1), . . . , (sn, en)}
in linear time (for example, the method given by [13] is applicable to both
recognizing and describing interval graphs in linear time). See [3] for a definition
of intersection models and interval graphs).
We sort the intervals by ascending start points; this forms the linear layout σ
of the vertices:

σ(vi) < σ(vj)⇔ si < sj

Note that this can be done in polynomial time.
Furthermore, we sort the intervals by descending end points:

ρ(vi) < ρ(vj)⇔ ei > ej

Now, consider some cut of the linear layout (V σi , V
σ
i ). Every vertex va in V σi

must have a crossing edge to every vertex vb in V σi obeying sb < ea. It is now
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clear that if ej > em for two vertices vj , vm ∈ V σi , that is, ρ(vj) < ρ(vm), then
vj must be adjacent to every vertex in V σi that vm is adjacent to. Therefore, ρ
shows a nesting of the neighborhoods in V σi ; G[V σi , V

σ
i ] must thus be a bipartite

chain. From this, we deduce that σ is a linear layout of VG with MIM-width
1.

Additionally, we show that the complement of a graph with MIM-width 1
also has MIM-width 1; that is, the class of all graphs of MIM-width 1 is self-
complementary. This result gives some more graph classes that have MIM-width
1.

Observation 3.3.3. Given a bipartite chain G with color classes X,Y , its
bipartite complement G[X,Y ] is also a bipartite chain.

Proof. By definition of bipartite chain, if we assume |X| = p, there is an ordering
of the vertices in X χ = (x1, . . . , xp) such that NG(xi+1) ⊆ NG(xi) for every
1 ≤ i < p. But for every x ∈ X, NG[X,Y ](x) = Y \NG(x). By this, it is clear

that NG[X,Y ](xi) ⊆ NG[X,Y ](xi+1), and the reverse of χ is thus an ordering of

X that satisfies the chain property of G[X,Y ].

From this, we derive the following two corollaries.

Corollary 3.3.4. Given a graph G and a binary decomposition (T, δ) of G with
MIM-width 1, (T, δ) is a binary decomposition of G which also has MIM-width
1.

Corollary 3.3.5. If a graph G has MIM-width 1, then G also has MIM-width
1. Specifically, co-interval graphs and co-convex graphs have linear MIM-width 1
(permutation graphs are self-complementary). Co-cycle-free graphs have MIM-
width 1.

An interesting aspect of MIM-width is how it is perfectly suited to repre-
sent the graphs on which (σ, ρ)-domination problems are solvable in polynomial
time. For specific graph classes, these results are not necessarily new; already
in 1995, it was shown that in interval graphs, ∃(σ, ρ)-domination problems are
solvable in polynomial time for all (σ, ρ) (where σ and ρ, as before, are assumed
to be finite or co-finite), while on chordal graphs, the generalized problem is
NP-complete [20]. The importance of MIM-width rests upon the fact that it
provides a framework around which we can reason and generalize these graphs.
There is a similar parameter SIM-width, short for subset induced matching-
width, that captures chordal graphs: all chordal graphs have SIM-width 1 ([18],
in this paper SIM-width is also introduced). While a decomposition of a graph
G of MIM-width k requires that every cut G[X,X] induced by the decomposi-
tion (T, δ) has the property mim(G[X,X]) ≤ k, SIM-width k requires that for
every such G[X,X], every induced matching in G contains at most k edges from
EG[X,X]. There are many problems that can be solved in polynomial time on

chordal graphs (see e.g. [11] or [19]); so far, no significant algorithmic results
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have been proven on graph decompositions of bounded SIM-width. It is pos-
sible that SIM-width is too strong a parameter to be useful as an algorithmic
tool. Moreover, to our knowledge no interesting parameter has been found that
captures all perfect graphs. On these graphs, there are still several problems
that are solvable in polynomial time, eg. Clique or Independent Set (see
e.g. Chapter 9 of [12]). This could be a potentially interesting line of research,
but since there is no unified way of decomposing perfect graphs, it could prove
hard to find.

We accordingly know that linear MIM-width is bounded on several graph
classes on which few other interesting parameters are bounded. This stems
mainly from how much complexity is allowed in the induced bipartite graphs
arising from cuts in the layout. Linear MIM-width k allows all cuts inducing
bipartite graphs whose neighborhoods are contained within subsets of size k.
This allows graph classes with a loose sense of linear structure to have bounded
linear MIM-width. Contrast this with the related parameter MM-width: The
bipartite graphs with maximum matching at most k are exactly the bipartite
graphs with no subgraph consisting of k + 1 disjoint stars. Linear MM-width 1
therefore implies a linear layout such that all cuts induce stars. This is clearly
much more restrictive than linear MIM-width 1.

Note that there are graph classes that have bounded MIM-width, but un-
bounded linear MIM-width. For example, [27] shows that the MIM-width of a
graph G is no greater than the tree-width of G. Forests, which have tree-width
1, consequently have MIM-width 1. On the contrary, it is known that trees
(or graphs with bounded tree-width) have unbounded linear MIM-width. In
fact, we show in Chapter 5 that trees have linear MIM-width at most log3(n)
and that we can construct trees with linear MIM-width Θ(log(n)). Loosely
stated, the graphs that seem to have bounded MIM-width but unbounded lin-
ear MIM-width, are graphs that branch nicely into disjoint subgraphs with
bounded MIM-width, but branch in more than two directions and thus cannot
be bounded within a linear layout. Trees are the simplest example of this. The
observation below gives a concrete formulation of this structure.

Observation 3.3.6. The tree T3,3,3 has linear MIM-width 2.

Proof. We can easily see that the linear layout of T3,3,3 provided in the illustra-
tion has MIM-width 2, thus lmw(T3,3,3) ≤ 2. To prove that lmw(T3,3,3) = 2,
we then need to show that no layout of linear MIM-width 1 exists. Assume to
the contrary that there is a layout σT3,3,3 (from here simply denoted σ) with
MIM-width 1. Consider the edges y1z1, y2z2, y3z3. These three edges form an
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vx1 x2

x3

y1z1 y2 z2

y3

z3

Figure 3.4: The tree T3,3,3 with every node labelled

vx1 x2 x3y1 y2 y3z1 z2 z3

Figure 3.5: A linear layout of T3,3,3 with MIM-width 2

induced matching, and can therefore not overlap in σ. Therefore we WLOG
assume that σ(y2) < σ(z2) and that

y1 < y2, z1 < z2

z2 < y3, z2 < z3

There must then exist a subset of nodes V iσ such that y1, z1 and y2 are in V iσ
and z2, y3 and z3 are not. But the cut T3,3,3[V iσ , V

i
σ ] must also contain an edge

on the path from y1 to y3. Every edge on this path can be taken into an induced
matching together with y2z2, but this is a contradiction of the assumption that
σ has MIM-width 1. We then conclude that lmw(T3,3,3) = 2.

This observation naturally generalizes to trees of linear MIM-width k+1 for
any k ≥ 1; this is proven in Lemma 4.3.2 later in the thesis.

3.4 Hardness of Computing (Linear) MIM-width

It is important to note that for every graph class described by Belmonte &
Vatshelle in [3] whose linear MIM-width is not bounded by 1, but by some
other number, we do not know of any fast algorithm that finds an optimal
linear ordering in every instance. For example, in the paper they describe an
algorithm that, given a circular arc graph, finds a linear layout with MIM-width
at most 2, but there is no guarantee that this layout is optimal.
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LMIM-width k

LMIM-width kLMIM-width k

Figure 3.6: Generalization of the observation above: a tree with linear MIM-
width k + 1

It is currently unknown whether there exists an XP-time algorithm to decide
whether an arbitrary graph admits a linear ordering of MIM-width at most k. In
fact, we do not yet know whether we can recognize graphs of linear MIM-width
1 in polynomial time, or if this is an NP-complete problem. This is perhaps the
most interesting unsolved problem regarding MIM-width: Deciding whether a
given graph admits a binary decomposition or linear layout of MIM-width 1 in
polynomial time.
It has been shown that finding a single cut (S, S) with min(|S|, |S|) ≥ 2 such
that G[S, S] is a bipartite chain is NP-complete ([23], in the paper it is called
a 2K2-free decomposition). Knowing this, we can imagine that the possibility
of a polynomial-time algorithm for the problem of finding a linear layout such
that all cuts induce such graphs, is dimished. On the other hand, graphs of lin-
ear MIM-width are admittedly much more structured than graphs with a single
2K2-free decomposition; this structure may be used to an advantage.

The fastest exact algorithm currently known that computes MIM-width for
arbitrary graphs, is a fairly standard dynamic programming algorithm that finds
an optimal decomposition or layout for all subsets of vertices [22]. It runs in
O∗((2t)n) time, where n is the number of vertices in the graph, and t is the
smallest constant for which we can find a maximum induced matching in a
bipartite graph in O∗(tn) time. To our knowledge, this constant is currently
1.3752 [28]; ergo, the fastest exact algorithm runs in O∗(2.751n) time.

Theorem 3.4.1. Given a graph G, |VG| = n, we can compute the linear MIM-
width of G and a linear layout of optimal MIM-width in O∗(2.751n) time.

Proof. We give an algorithm for finding a linear layout of a graph G, |VG| = n
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that is optimal with regards to MIM-width (provided by Olav Røthe Bakken
[2]). For every S ⊆ VG, we define the number µ(S) as the minimum of

min
|S|
i=1(mim(G[V iσS

, V iσS
])) over every ordering σS of the vertices in S. We fur-

thermore define the vertex ω(S) as last vertex in the optimal layout σS giving
µ(S):

• Let V = (V0, V1, . . . , Vn) such that for every i, Vi is the set of all subsets
of VG of size exactly i. Clearly,

⋃n
i=0 Vi = 2VG .

• Set µ(∅) = 0 and µ(S) =∞ for all S 6= ∅.

• For every i from 1 to n, do:

• For every S ∈ Vi, do:

• For every v ∈ S, compute µ(S, v) = max(µ(S\{v}),mim(G[S, S])).
If µ(S, v) < µ(S), set µ(S) equal to µ(S, v) and set ω(S) equal
to v.

• lmw(G) = µ(VG)

• We find the linear layout in backwards order by picking the last vertex
from each relevant set:

vn = ω(VG)

vn−1 = ω(VG\{vn})
. . .

v1 = ω(VG\{v2, . . . , vn})

Assuming that mim(G[A,A]) takes O(tn) time to find for some t for every
A ⊆ VG, this algorithm clearly runs in O((2t)n · n2) time.
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Chapter 4

Characterization of Trees
with given Linear
MIM-width

The rest of this thesis, except Chapters 5 and 9, can be considered a reworking
of the paper written by Høgemo, Telle and V̊agset [14].

4.1 Some Comments on Trees

As we have seen, the linear MIM-width remains hard to find for arbitrary graphs.
To learn more about this parameter and what types of graphs on which it is
bounded, one possible strategy is to look at graphs with well-understood struc-
ture, and try to draw conclusions on the linear MIM-width of these graphs. To
this end trees are excellent candidates: Having a single path between any pair of
nodes means that we are able to control how many edges are crossing the given
cuts. At the same time, they have unbounded linear MIM-width, and optimal
linear layouts of trees are therefore not trivial to compute.
The downside of focusing on trees is obviously that the practical value of an al-
gorithm that computes linear MIM-width on trees is minimal. There are already
hundreds of fast algorithms that are specifically designed to solve problems on
trees. Additionally, trees have MIM-width 1, and there are no big advantages
in parameterizing by linear MIM-width rather than simply MIM-width – as far
as we know, the two parameters have basically the same algorithmic power.
Our results are thus most interesting from a theoretical point of view; we pro-
vide the first fast exact algorithm for computing linear MIM-width on any graph
class for which the parameter is unbounded. It is our hope that this result and
the classification of trees with a given linear MIM-width will shed new light on
and contribute to a deeper understanding of the properties of this parameter.
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4.2 Dangling Trees and Linear Layouts Derived
from Paths

Our first step towards an efficient algorithm for the linear MIM-width of trees,
is finding an invariant that holds for all trees with linear MIM-width k + 1, for
any k ≥ 1. This invariant states that lmw(T ) ≥ k + 1 if and only if there is a
node x in T with the property that there are three trees in the forest T\N [x]
with linear MIM-width ≥ k, each adjacent to a distinct neighbor of x in T . We
dedicate most of this section to prove that this characterization holds for every
tree, but to be able to talk about this property in simpler terms, we find the
following definition useful:

Definition 4.2.1 (Dangling tree). Let T be a tree containing the adjacent
nodes v and u. The dangling tree from v in u, T 〈v, u〉, is the component of
T \ (u, v) containing u.

v u

T 〈v, u〉

Figure 4.1: The dangling tree T 〈v, u〉

Given a node x ∈ VT with neighbors {v1, . . . , vd}, T\N [x] is a forest of dan-
gling trees {T 〈vi, ui,j〉} in T , where for every 1 ≤ j < |N(vi)|, ui,j 6= x is a
neighbor of vi. We can generalise this to a path P = (x1, . . . , xp) in place of x,
such that T\N [P ] = {T 〈vi,j , ui,j,m〉}, where vi,j ∈ N(P ) is a neighbor of xi and
ui,j,m 6∈ N [P ]. See top part of Figure 4.2. We uphold this naming convention
during the following sections.

The following lemma is important both to prove Theorem 4.3.4 and as a
subroutine to the layout-algorithm outlined in Chapter 8.
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Lemma 4.2.2 (Path Layout Lemma). Let T be a tree and P = (x1, . . . , xp)
a path in T . If every connected component of T\N [P ] has linear MIM-width
≤ k, then lmw(T ) ≤ k+ 1. Moreover, given the layouts for the components, we
can in linear time compute the layout for T .

Proof. Assuming that we are given optimal linear layouts of the connected com-
ponents of T\N [P ], we give the below algorithm LinOrd constructing a linear
layout σT on the nodes of T showing that lmwof T is ≤ k + 1. We construct
σT as a list of nodes; it starts out empty, and nodes are added to the list in the
order specified by the algorithm. This list clearly can represent a linear layout
by the property that σT (u) < σT (v) if and only if u sits to the left of v in the
list.

function LinOrd(T : tree, (x1, . . . , xp): path, {σT 〈vi,j ,ui,j,m〉}: lin-ords)
σT ← ∅ . The list starts out empty
for i← 1, p do . For all nodes on path (x1, . . . , xp)

σT ← σT ⊕ xi . Append path node
for j ← 1, |N(xi)\P | do . For all nbs of xi not on path: vi,j

for m← 1, |N(vi,j)\vi| do . For all dangling trees from vi,j
σT ← σT ⊕σT 〈vi,j ,ui,j,m〉 . Append given order of T 〈vi,j , ui,j,m〉

end for
σT ← σT ⊕ vi,j . Append vi,j

end for
end for
return σT

end function

To prove Lemma 4.2.2, we must show that σT as returned by the LinOrd
procedure is a linear layout of the nodes in T with MIM-width at most k + 1.

Firstly, from the algorithm it should be clear that each node of T is added
exactly once to σT , that it runs in linear time, and that there is no cut containing
two crossing edges from two separate dangling trees.
Now we must show that σT does not contain cuts with MIM larger than k + 1.
By assumption, the layout of each dangling tree has no cut with MIM larger
than k, and since these layouts can be found as subsequences of σT , then also
σT has no cut with more than k edges from a single dangling tree T 〈vi,j , ui,j,m〉.
Also, we know that edges from two separate dangling trees cannot both cross
the same cut. The only edges of T left to account for, i.e. not belonging to one
of the dangling trees, are those with both endpoints in N [N [P ]], the nodes at
distance at most 2 from a node in P .
For every cut of σT that contains more than a single crossing edge (xi, xi+1)
there is a unique xi ∈ P and a unique vi,j ∈ N(xi) such that every edge with
both endpoints in N [N [P ]] that crosses the cut is incident on either xi or vi,j ,
and since the edge connecting xi and vi,j also crosses the cut at most one of
these edges can be taken into an induced matching.
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T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1
v1,2

v1,3 v3,1 v3,2

u1,1,1
u2,1,1u1,1,2 u1,2,1

u3,1,1
u3,1,2

u3,2,1 u3,2,2

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1v1,2 v1,3 v3,1 v3,2

u1,1,1 u2,1,1u1,1,2 u1,2,1 u3,1,1 u3,1,2 u3,2,1 u3,2,2

Figure 4.2: A tree T with a path P and trees in T\N [P ], assume that ∀i :
lmw(Ti) ≤ k; the ordering of the nodes given by LinOrd shows that lmw(T ) ≤
k + 1

With these observations in mind, it is clear that lmw(T ) ≤ mw(T, σT ) ≤
k + 1.

4.3 Theorem of Characterization

To prove the main theorem of the section, we prove two helping lemmas,, roughly
equaling the ”if” and ”only if” directions of the theorem.
First, we give two definitions that help us talk about the structural properties
of trees we are interested in.

Definition 4.3.1 (k-neighbor and k-component index). Let x be a node
in the tree T and v a neighbor of x. If v has a neighbor u 6= x such that
lmw(T 〈v, u〉) ≥ k, then we call v a k-neighbor of x. The k-component
index of x is equal to the number of k-neighbors of x and is denoted DT (x, k),
or shortened to D(x, k) if T is obvious from context.

Lemma 4.3.2 (Sufficiency). Let T be a tree. If there is a node x in T such
that DT (x, k) ≥ 3 for some k ≥ 1, then lmw(T ) ≥ k + 1.

Proof. We prove this lemma by contradiction. Let T and x fulfill the property
given by Lemma 4.3.2 By assumption, x has three neighbors, v1, v2, v3, each
of which having a neighbor u1, u2, u3 6= x such that for 1 ≤ i ≤ 3, the tree
Ti = T 〈vi, ui〉 has linear MIM-width at least k. Since there exist subtrees in T

25



x

v1

v2

v3

v4

LMIM-width ≥ k

LMIM-width ≥ k

LMIM-width ≥ k

LMIM-width < k

LMIM-width < k

LMIM-width < k

LMIM-width < k

LMIM-width < k

Figure 4.3: The node x has two k-neighbors, v1 and v2

with linear MIM-width at least k, it follows that lmw(T ) ≥ k.

Assume that there exists a linear layout σT such that mw(T, σT ) = k.
We know that for each i ∈ {1, 2, 3} we have a cut Ci = V ciσ in σT with
mim(G[Ci, Ci]) = k and all k edges of this induced matching contained in
the tree Ti. WLOG we assume these three cuts come in the order C1, C2, C3,
that is, c1 < c2 < c3. Note that in σ all nodes of T1 must appear before C2 and
all nodes of T3 after C2, as otherwise, since T1 and T3 are connected and the
distance between T2 and the two trees is at least two, there would be an extra
edge crossing C2 that would otherwise increase MIM of this cut to k + 1.
It is also clear that v1 has to be placed before C2 and v3 has to be placed after
C2, for the same reason. But then the vertex x cannot be placed before C2

or after C2 without increasing MIM of this cut by adding at least one of the
edges v1x or v3x to the induced matching. By contradiction, we conclude that
D(x, k) ≥ 3 for a node x implies LMIM-width at least k + 1.

Lemma 4.3.3 (Necessity). Let T be a tree. If lmw(T ) ≥ k + 1 for some
k ≥ 1; then there exists a node x in T such that DT (x, k) ≥ 3; or there exists a
S ( T with lmw(S) ≥ k + 1.

Proof. We want to prove the contrapositive statement, namely that if for every
node x ∈ T , D(x, k) ≤ 2 and D(x, k + 1) = 0, then lmw(T ) ≤ k. The strategy
of this proof is to show that we can always find a path P in T such that all the
connected components in T\N [P ] have linear MIM-width ≤ k−1. We can then
infer by the Path Layout Lemma that lmw(T ) ≤ k.

Let T be a tree, for every x ∈ VT , D(x, k) ≤ 2 and D(x, k + 1) = 0. We
define two disjoint subsets of VT as follows:

X1 = {x ∈ VT | D(x, k) = 1}
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X2 = {x ∈ VT | D(x, k) = 2}
We need to prove the lemma for three distinct cases.

Case 1 : X2 6= ∅
If xi and xj are in X2, then every vertex on the path P (xi, . . . , xj) connecting
xi and xj must be elements of X2, as every node on this path clearly has a dan-
gling tree with linear MIM-width k in the direction of xi and in the direction of
xj . The fact that every pair of vertices in X2 are connected by a path contained
within T [X2] implies that X2 induces a connected subtree of T .
Furthermore, this subtree must be a path, otherwise there would exist three dis-
joint dangling trees T 〈v1, u1〉, T 〈v2, u2〉, T 〈v3, u3〉, each with linear MIM-width
k, and each hanging from a separate node. But then there is some vertex w
such that T 〈v1, u1〉, T 〈v2, u2〉 and T 〈v3, u3〉 are subtrees of dangling trees from
different neighbors of w. This implies that D(w, k) ≥ 3, which we assumed were
not the case, thus this leads to a contradiction. We therefore conclude that all
nodes in X2 must lie on some path P = (x1, . . . , xp).
The final part of the argument lies in showing that we can apply the Path
Layout Lemma. For some xi ∈ P, i ∈ {2, . . . , p − 1}, its k-neighbors are xi−1
and xi+1. For x1, these neighbors are x2 and some x0 6∈ X2. For xp, these
neighbors are xp−1 and some xp+1 6∈ X2. x0 and xp+1 may only have one k-
neighbor – x1 and xp respectively – or else they would be in X2. If we make
P ′ = (x0, . . . , xp+1), we then see that every connected component in T\N [P ′]
must have linear MIM-width ≤ k−1. By the Path Layout Lemma, lmw(T ) ≤ k.

Case 2: X2 = ∅, X1 6= ∅
We construct the path P in a greedy manner as follows. We start with P =
(x1, x2), where x1 is some arbitrary node in X1, and x2 its only k-neighbor.
Then, if the highest-numbered node in P , call it xq, has a k-neighbor x′ 6∈ P ,
then we assign xq+1 to x′, and repeat this process exhaustively.
Considering only finite graphs, we will eventually reach some node xp such that
either xp 6∈ X1 or xp’s k-neighbor is xp−1. We now have P = (x1, . . . , xp). This
is a path in T , since every node xi+1 ∈ P is a neighbor of xi and for xi we only
assign maximally one such xi+1.
Also, every connected component of T\N [P ] must have linear MIM-width ≤
k− 1. If not, some node xi ∈ P would have a k-neighbor x′ 6∈ P , but under the
assumption X2 = ∅ this is impossible. Otherwise, either i < p and xi has two k-
neighbors x′ and xi+1, or else i = p and xp ∈ X1 and xi has the two k-neighbors
x′ and xi−1 (in case i = p and xp 6∈ X1, then by definition of X1 the node xi
could not have a k-neighbor x′). By the Path Layout Lemma, lmw(T ) ≤ k.

Case 3: X = ∅, Y = ∅
Take P = (x) for some arbitrary x ∈ VT . It holds trivially that every connected
component of T\N [P ] has linear MIM-width ≤ k − 1. By the Path Layout
Lemma, lmw(T ) ≤ k.
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Theorem 4.3.4. Let T be a tree. lmw(T ) ≥ k+ 1 if and only if there is a node
x ∈ VT such that D(x, k) ≥ 3.

Proof. The backward direction of this statement follows directly from Lemma
4.3.2.
We prove the forward direction by contradiction. Let T be a tree, lmw(T ) ≥
k + 1 for some k ≥ 1, and assume that for all x ∈ VT , DT (x, k) ≤ 2. By
Lemma 4.3.3, we have that there must exist a proper subtree S ( T with
lmw(S) ≥ k + 1. But since we work on finite graphs, we know that there must
exist a tree S0 ⊆ S with linear MIM-width k + 1, with no proper subtree of
linear MIM-width ≥ k+1. By Lemma 4.3.3, there must be a node x0 ∈ S0 with
DS0

(x0, k) ≥ 3. But every dangling tree S0〈v, u〉 must be a subtree of T 〈v, u〉,
and therefore DT (x0, k) ≥ 3. By this, the theorem must be true.
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Chapter 5

Limits on the Linear
MIM-width of Trees

5.1 Trees of Minimum Cardinality with a given
Linear MIM-width

From Theorem 4.3.4 alone, we can already say much about the linear MIM-width
of trees. We know that every tree with linear MIM-width at least 2 contains a
node such that the removal of its neighborhood induces a forest containing at
least three trees with linear MIM-width at most one lower. This implies that
every tree with linear MIM-width (say) k + 1 is at least three times as big as
some tree with linear MIM-width k. We can thus derive the following remark.

Remark 5.1.1. For any tree T , |VT | = Ω(3lmw(T )), and conversely, lmw(T ) =
O(log(|VT |).

Looking at Theorem 4.3.4, we can furthermore devise a method of explicitly
constructing a tree of minimum cardinality with a given linear MIM-width.
We define for every k ≥ 1 the class Tmin(k) as a set consisting of every tree T
that has the following property: lmw(T ) = k, and every tree T ′, |VT ′ | < |VT |
has linear MIM-width strictly less than k. The only tree in Tmin(1) obviously
is K2 (the pair), the smallest graph that contains an edge. The only tree in
Tmin(2) is T3,3,3.
For every k, we can construct a tree in Tmin(k+1) by taking three trees T1, T2, T3,
Ti ∈ Tmin(k), gluing one extra node vi onto one node in Ti and connect v1, v2
and v3 to a central node x. It is not hard to see that the resulting tree must
be in Tmin(k + 1). Given a tree T ∈ Tmin(k), we can thereby calculate the size
minlmw(k) = |T | by means of the following two equivalent formulas:

k = 1⇒ minlmw(k) = 2; k > 1⇒ minlmw(k) = 3 ·minlmw(k − 1) + 4

minlmw(k) = 4 · 3k−1 − 2
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k minlmw(k)
1 2
2 10
3 34
4 106
5 322
6 970
· · · · · ·

Table 5.1: The minimum number of nodes in a tree of linear MIM-width k

5.2 Relation between Linear MIM-width and Path-
width

In [10], Ellis et al. show a similar characterization of trees with a given path-
width as the one we have given for linear MIM-width, only simpler to explain:
A tree T has path-width ≥ k + 1 for some k ≥ 1 if and only if there is some
node x ∈ VT such that there are three trees in T\{x} with path-width ≥ k. We
observe the following:

Lemma 5.2.1. For any tree T , lmw(T ) ≤ pw(T ) ≤ 2 · lmw(T ). This bound is
tight.

Proof. First we prove lmw(T ) ≤ pw(T ); we do this by induction over the path-
width of T . For the base case, it is trivial to see that if a tree has path-width 1,
then it also must have linear MIM-width 1. For the induction step, we assume
that the claim holds for every 1 ≤ j ≤ k, and show that it holds for k + 1. Let
T be a tree with path-width k + 1. Then for every node x ∈ VT there are at
most two trees in T\{x} with pathwidth strictly larger than k. But then x can
have maximally two k + 1-neighbors, and lmw(T ) ≤ k + 1.
Next we prove pw(T ) ≤ 2 · lmw(T ); this is also proven by induction over the
path-width of T . For the base case, it is trivial to see that if pw(T ) is equal
to 1 or 2, then the lmw(T ) is at least 1. For the induction step, assume that
the claim holds for every 1 ≤ j ≤ 2k, and show that it holds for 2k + 2. let T
be a tree with path-width 2k + 2. Then there exists a node x ∈ VT such that
there are three trees T1, T2, T3 in T\{x} with path-width k, which again implies
that there exist nodes in these three trees such that in the forests obtained by
removing these nodes, three trees have pathwidth 2k. But in every Ti, at least
one of these trees must be a subtree of some dangling tree (that is a subtree of
Ti) with linear MIM-width at least k. Ergo, x has at least 3 k-neighbors, and
lmw(T ) ≥ k.
For the tightness, it is sufficient to show the two trees pictured below.

The following corollary follows from [1]:
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Corollary 5.2.2. For any tree T , lmw(T ) ≤ lrw(T ) ≤ 2 · lmw(T ), where
lrw(T ) denotes the linear rank-width of T .
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Chapter 6

Rooted Trees, k-critical
Nodes and Labelling

6.1 Specifics on the Linear MIM-width of Rooted
Trees

Until now we have only looked at unrooted trees. However, in our algorithm we
will work on rooted trees. In this section we introduce the bookkeeping devices
of k-critical nodes and labelling of subtrees (both are adaptations of definitions
in [10]). These will be vital both in our computation of the linear MIM-width
of trees, and in the computation of a linear layout of optimal MIM-width.

Definition 6.1.1 (k-critical node). Let Tr be a tree that has lmw(T ) = k,
and x a node in Tr. x is k-critical if it has exactly two children, v1 and v2, that
each has at least one child, u1 and u2 respectively, such that lmw(Tr[u1]) =
lmw(Tr[u2]) = k. In other words, x is k-critical in Tr if and only if lmw(T ) = k
and DTr[x](x, k) = 2.

Remark 6.1.2. Let Tr be a rooted tree with lmw(T ) = k, then there can be
at most one k-critical node in Tr.

Proof. We prove this by contradiction. Let x and x′ be two k-critical nodes
in Tr. This means that there are four nodes, vl, vr, v

′
l, v
′
r, the children of x

and x′ respectively that are k-neighbors, which implies that there exist trees
T 〈vl, ul〉, T 〈vr, ur〉, T 〈v′l, u′l〉, T 〈v′r, u′r〉 that all have linear MIM-width k. If x
and x′ have a descendant/ancestor relationship in Tr, we can WLOG assume
that x′ is a ldescendant of vl. Now, T 〈vr, ur〉, T 〈v′l, u′l〉 and T 〈v′r, u′r〉 are disjoint
trees in different neighbors of x′, thus DT (x′, k) = 3.
If x and x′ do not have a relationship in Tr, all the dangling trees are disjoint,
thus DT (x, k) = DT (x′, k) = 3.
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Figure 6.1: Assuming that lmw(Tr) = k, the node x is k-critical in Tr. Note
that the illustrated tree might be a subtree of Tr[x]

In both of these cases, at least one of x, x′ have 3 k-neighbors, and so by Theorem
4.3.4 T should have linearMIM − width k + 1. By contradiction, the above
remark is true.

Definition 6.1.3 (label). Let Tr be a rooted tree having lmw(Tr) = k. Then
label(Tr) consists of a list of decreasing numbers, (a1, . . . , ap), where a1 = k,
appended with a string called last type, which tells us where in the tree an
ap-critical node lies, if it exists at all. If p = 1, label(Tr) is a simple label,
otherwise it is a complex label. We define five types of trees that all have
distinct labels; Type 0 is a base case for singletons and stars, while Type 4 is
the only one defining a complex label.

• Type 0: r is a leaf, i.e. Tr is a singleton, then label(Tr) = (0, t.0);
or all children of r are leaves, i.e. Tr is a star, then label(Tr) = (1, t.0)

• Type 1: There is no k-critical node in Tr, then label(Tr) = (k, t.1)

• Type 2: r is the k-critical node in Tr, then label(Tr) = (k, t.2)

• Type 3: A child of r is k-critical in Tr, then label(Tr) = (k, t.3)

• Type 4: There is a k-critical node uk in Tr that is neither r nor a child of
r. Let w be the parent of uk. Then label(Tr) = k ⊕ label(Tr\Tr[w])

Regarding Type 4 trees, we note that lmw(Tr\Tr[w]) < k since otherwise
uk would have three k-neighbors (two children in the tree and also its parent
w) and by Theorem 4.3.4 we would then have lmw(Tr) = k + 1. Therefore, all
numbers in label(Tr\Tr[w]) are smaller than k and a complex label is a list of
decreasing numbers followed by last type ∈ {t.0, t.1, t.2, t.3}.
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(0, ”t.0”)

(1, ”t.0”)

(1, ”t.1”)

(1, ”t.2”)

(1, ”t.2”)

(1, ”t.2”)

(1, ”t.3”)

(1, 0, ”t.0”)

(1, ”t.3”)
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(0, ”t.0”)

(0, ”t.0”) (0, ”t.0”) (0, ”t.0”)

(1, ”t.0”) (1, ”t.0”) (1, ”t.0”) (1, ”t.0”) (1, ”t.0”)

(1, ”t.0”)

(1, ”t.0”) (1, ”t.0”)

(1, ”t.1”)

(1, ”t.1”)(1, ”t.1”)

(1, ”t.1”)(1, ”t.1”) (1, ”t.1”)(1, ”t.1”)(1, ”t.1”)

(1, ”t.0”)

Figure 6.2: An overview of every way of rooting the tree T3,3,3, not counting
isomorphisms. To every node is a label attached, denoting the label of the
subtree rooted in that node. Note that the first number in the label of the root
is 2, since lmw(T3,3,3) = 2

Why do we need such a complicated structure to keep track of the linear
MIM-width of decreasing subtrees of Tr? When we want to find the linear
MIM-width of a tree, we want to find the highest number k for which there
exists a node x with D(x, k) ≥ 3. But in a rooted tree, one of x’s k-neighbors
might be its parent (call it w), and the dangling tree with linear MIM-width k
might be T\Tr[w]. We will show in later sections that using a structure which
encodes exactly this information in a recursive manner – i.e. labels – we can
devise an efficient algorithm that computes both the linear MIM-width of a tree
and a linear layout of its nodes that is optimal with respect to linear MIM-width
.

6.2 Deducing Linear MIM-width from Labels of
Subtrees

We now give a Proposition that for any node x in Tr can be used to compute
label(Tr[x]) based on the labels of the subtrees rooted at the children and grand-
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children of x. This proposition takes the form of a procedure that will be called
as a subroutine to the algorithm in Section 7.2, see also the decision tree in
Figure 6.3.

Proposition 6.2.1. Let x be a node of Tr and let Child(x) be the set of children
of x in Tr, and assume we are given label(Tr[v]) for all v ∈ Child(x). We define
(and compute)

k = maxv∈Child(x) {lmw(Tr[v])}
and

Nk = {v ∈ Child(x) | lmw(T [v]) = k}
and denote by Nk = {v1, . . . , vq} and by li = label(Tr[vi]).
Define (compute) tk = DTr[x](x, k) by noting that

tk = |{vi ∈ Nk | vi has child uj with lmw(Tr[uj ]) = k}|

Given this information, we find label(Tr[x]) as follows:

• Case 0: if |Child(x)| = 0 then label(Tr[x]) = (0, t.0);
else if k = 0 then label(Tr[x]) = (1, t.0)

• Case 1: Every label in Nk is simple and has last type equal to t.1 or t.0,
and tk ≤ 1. Then, label(Tr[x]) = (k, t.1)

• Case 2: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk = 2. Then, label(Tr[x]) = (k, t.2)

• Case 3: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk ≥ 3. Then, label(Tr[x]) = (k + 1, t.1)

• Case 4: |Nk| ≥ 2 and for some vi ∈ Nk, either li is a complex label, or
li has last type equal to either t.2 or t.3. Then, label(Tr[x]) = (k+ 1, t.1)

• Case 5: |Nk| = 1, l1 is a simple label and l1 has last type equal to t.2.
Then, label(Tr[x]) = (k, t.3)

• Case 6: |Nk| = 1, l1 is either complex or has last type equal to t.3,
and k 6∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in
Tr[v1]. Then, label(Tr[x]) = k ⊕ label(Tr[x]\Tr[w])

• Case 7: |Nk| = 1, l1 is either complex or has last type equal to t.3,
and k ∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in
Tr[v1]. Then, label(Tr[x]) = (k + 1, t.1)

Proof. We show that exactly one case applies to every rooted tree, and in each
case we assign the label according to Definition 6.1.3. First the base case: either
x is a leaf or all its children are leaves, and we are in Case 0 and the label is
assigned according to Def. 6.1.3. Otherwise, observe the decision tree in Figure
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DTr[x](x, k)?

≤ 1 = 2 ≥ 3

YES

Is there a child-tree, Tr[vi], of xNO YES

lmw(Tr[x]) = k + 1 and

lmw(Tr[x]) = k and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 2 tree

Tr[x] is a type 1 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 3 tree

Is the lmw of the tree

lmw(Tr[x]) = k and

Tr[x] is a type 4 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

NO

YES NO

What is the value of

Is it the root v1 ∈ Tr[v1]

that is the k-critical node?

Tr[x]\Tr[w] equal to k?

Are there other child-trees

that contains a k-critical node? than Tr[vi] that has lmw k?

Case 6

Case 2

Case 4

Case 1

Case 5

Case 3 Case 7

NO YES

Figure 6.3: The information outlined in Proposition 6.2.1, in the form of a
flowchart

6.3. It follows from Def. 6.1.3, and of k, Nk and tk that cases 1 up to 7 of
Prop. 6.2.1 corresponds to cases 1 up to 7 in the decision tree - we explain
this correspondence case for case below - and this proves that exactly one case
applies to every rooted tree.
The following facts simplify the case analysis:
lmw(Tr[x]) must be equal to either k or k+ 1, and since no subtree rooted in a
child of x has LMIM-width k + 1, there cannot be any (k + 1)-critical node in
Tr[x], therefore if lmw(Tr[x]) = k + 1, Tr[x] is always a type 1 tree. Also, by
Theorem 4.3.4 it must contain a node v such that DTr[x](v, k) >= 3. This node
must either be a k-critical node in a rooted subtree of Tr[x], or x itself. We go
through the cases 1 to 7 in order.
(Note that in Cases 1, 2, and 3 the condition ’Every label in Nk is simple and
has last type equal to t.1 or t.0’ means there are no k-critical nodes in any
subtree of Tr[x], because every Tr[v] for v ∈ Child(x) is either of type 1 or has
linear MIM-width < k:)
Case 1: By definition of tk, DTr[x](x, k) ≤ 1. Therefore, lmw(Tr[x]) = k, and
Tr[x] is a type 1 tree.
Case 2: By definition of tk, DTr[x](x, k) = 2, and no other nodes are k-critical,
therefore lmw(Tr[x]) = k. But now x is k-critical in Tr[x] so Tr[x] is a type 2
tree.
Case 3: By definition of tk, DTr[x](x, k) = 3 and lmw(Tr[x]) = k + 1.
For the remaining Cases 4, 5, 6 and 7, some Tr[v] for v ∈ Child(x) has linear
MIM-width k and is of type 2, 3 or 4, so at least one k-critical node exists in
some subtree of Tr[x]:
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Case 4: There is a k-critical node uk in some Tr[vi] (not of type 1), and some
other vj has lmw(Tr[vj ]) = k (because |Nk| ≥ 2). Now observe w the parent
of uk. The dangling tree Tr[x]\Tr[w] is a supertree of Tr[vj ] and thus has lin-
ear MIM-width ≥ k. Therefore w is a k-neighbor of uk and by Theorem 4.3.4
lmw(Tr[x]) = k + 1.
Case 5: x has only one child v with lmw(Tr[v]) = k, and v is itself k-critical
(Tr[v] is type 2). x cannot be a k-neighbor of v in the unrooted Tr[x], because
every dangling tree from x is some Tr[vi], vi 6= v of x, which we know has linear
MIM-width < k. Since no other node in T is k-critical, lmw(Tr[x]) = k, and
since v, a child of x, is k-critical in Tr[x], Tr[x] is a type 3 tree.
Case 6: x has only one child v with lmw(Tr[v]) = k, and there is a k-critical
node uk with parent w – neither of which are equal to x – in Tr[v] (Tr[v] is a type
3 or type 4 tree). Moreover, no tree rooted in another child of w, apart from uk,
can have linear MIM-width ≥ k, since this would imply DTr[v](uk, k) = 3 and
thus lmw(Tr[v]) > k; nor can Tr[x]\Tr[w] have linear MIM-width = k, since
then we would have k in label(Tr[x]\Tr[w]) disagreeing with the condition of
Case 6. Therefore DTr[x](u, k) = 2, and lmw(Tr[x]) = k. Tr[x] is thus a type 4
tree and the label is assigned according to the definition.
Case 7: Tr[v], uk and w are as described in Case 6. But here, lmw(Tr[x]\Tr[w]) =
k (since the condition says that k is in its label), and thus w is a k-neighbor of
its child uk and by Theorem 4.3.4 lmw(Tr[x]) = k + 1.
We conclude that label(Tr[x]) has been assigned the correct value in all possible
cases.

It should be clear that when Proposition 6.2.1 is run as a subroutine, it runs
in linear time in the combined size of the labels provided, as it only needs to
recognize and count how many labels of each type have a maximum number in
them, and eventually concatenate two labels. This is an important consideration
towards the runtime of the algorithm we come up with in the next section.
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Chapter 7

Efficient Computation of
the Linear MIM-width of
Trees

7.1 Subtrees with Respect to Labels

We have shown in Prop. 6.2.1 that in a rooted tree Tr, one can, for each node
x ∈ VTr

, compute a label that implies the LMIM-width of Tr[x] based on the
labels of subtrees rooted in its descendants. This strongly calls for a recursive
or bottom-up algorithm that starts out at the leaves and works its way up to
the root, computing labels of bigger and bigger subtrees. However, in two cases
(Cases 6 and 7) we need the label of Tr[x]\Tr[w], which is not a rooted subtree
of any node of Tr. This complicates the algorithm somewhat; fortunately, labels
are defined in such a way that this value is easily computable, as this informa-
tion is stored as a suffix in complex labels. This is also what justifies the need
for a complicated data structure like the label.

From the definition of labels it is clear that only type 4 trees lead to a com-
plex label. In that case we have a tree Tr[x] of LMIM-width k and a k-critical
node uk that is neither x nor a child of x, and the recursive definition gives
label(Tr[x]) = k ⊕ label(Tr[x]\Tr[w]) for w the parent of uk. Unravelling this
recursive definition, this means that if label(Tr[x]) = (a1, . . . , ap, last type), we
can define a list of nodes (w1, . . . , wp−1) where wi is the parent of an ai-critical
node in Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wi−1]). We expand this list with wp = x, such
that there is one node in Tr[x] corresponding to each number in label(Tr[x]),
and Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wp]) = ∅.

When analyzing how our algorithm is going to work, we need some new
infrastructure on which we are able to talk about on exactly what subtrees

38



the linear MIM-width is measured in complex labels. We give the following
definitions:

Definition 7.1.1. Let x be a node in Tr, label(Tr[x]) = (a1, a2, . . . , ap, last type)
and the corresponding list of vertices (w1, . . . , wp) is as we describe in the above
text. For any non-negative integer s, the tree Tr[x, s] is the subtree of Tr[x]
obtained by removing all trees Tr[wi] from Tr[x], where ai ≥ s. In other words,
for every s there exists a 0 ≤ q ≤ p such that aq ≥ s > aq+1, and

Tr[x, s] = Tr[x]\(Tr[w1] ∪ Tr[w2] ∪ . . . ∪ Tr[wq])

Remark 7.1.2. Some important properties of Tr[x, s] are the following. Let
Tr[x, s], label(Tr[x, s]), (w1, . . . , wp) and q as in the definition. Then

1. if s > a1, then Tr[x, s] = Tr[x]

2. label(Tr[x, s]) = (aq+1, . . . , ap, last type)

3. lmw(Tr[x, s]) = aq+1 < s

4. lmw(Tr[x, s+ 1]) = s if and only if s ∈ label(Tr[x])

5. Tr[x, s+ 1] 6= Tr[x, s] if and only if s ∈ label(Tr[x])

Proof. These remarks follow from the definitions, but the last one a proof:
Backward direction: Let s = aq for some 1 ≤ q ≤ p. Then Tr[x, s + 1] =
Tr[x]\(Tr[w1]∪ . . .∪Tr[wq−1]) and Tr[x, s] = Tr[x]\(Tr[w1]∪ . . .∪Tr[wq]). These
two trees are clearly different.
Forward direction: Let Tr[x, s] = Tr[x]\(Tr[w1]∪ . . .∪Tr[wq]) and Tr[x, s+ 1] =
Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wq′ ]) with q′ < q and aq′ > aq (because numbers in a
label are strictly descending). aq < s+ 1 and aq ≥ s, ergo aq = s.

From these definitions, the idea behind the algorithm we want is clear: It
works its way bottom up on the rooted tree Tr, and for every node x ∈ VTr

we iterate over every integer from 1 lmw(Tr[x]), incrementally constructing
label(Tr[x]) in the process. To this end, we would like that after the s’th step
we had obtained label(Tr[x, s+ 1]), but unfortunately this is not possible, since
we do not yet know label(Tr[x]). What we instead show is that after the s’th
step we obtain the label of a tree we call Tunion[x, s+1], which has the property
that if lmw(Tr[x]) = k, then Tunion[x, k] = Tr[x]. We are then still able to use
Proposition 6.2.1 to compute the linear MIM-width of T .

Definition 7.1.3. Let x be a node in Tr with children v1, . . . , vd. Tunion[x, s]
is then equal to the tree induced by x and the union of all Tr[vi, s] for 1 ≤ i ≤
d. More technically, Tunion[x, s] = Tr[V

′] where V ′ = x ∪ V (Tr[v1, s]) ∪ . . . ∪
V (Tr[vd, s]).
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7.2 An Algorithm for Computing Linear MIM-
width of Trees

We are now ready to state the algorithm. Given a tree T , we find its linear
MIM-width by rooting it in an arbitrary node r, and computing labels by pro-
cessing Tr bottom-up. The answer is given by the first element of label(Tr),
which by definition is equal to lmw(T ). At a leaf x of Tr we initialize by
label(Tr[x])← (0, t.0), and at a node x for which all children are leaves we ini-
tialize by label(Tr[x]) ← (1, t.0), according to Definition 6.1.3. When reaching
a higher node x we compute label of Tr[x] by calling the procedure MakeLa-
bel(Tr, x).

function MakeLabel(Tr, x) . finds cur label = label(Tr[x])
cur label← (0, t.0) . This is label(Tunion[x, 0])
{v1, . . . , vd} = children of x
if 0 ∈ label(Tr[vi]) for some i then

cur label← (1, t.0) . This is then label(Tunion[x, 1])
end if
for s← 1,maxdi=1{first element of label(Tr[vi])} do
{l′1, . . . , l′d} = {label(Tr[vi, s+ 1]) | 1 ≤ i ≤ d}
Ns = {vi | 1 ≤ i ≤ d, s ∈ l′i}
ts = |{vi | vi ∈ Ns, vi has child uj s.t. s ∈ label(Tr[uj , s+ 1])}|
if |Ns| > 0 then

case ← the case from Prop. 6.2.1 applying to s, {l′1, . . . , l′d}, Ns
and ts

cur label ← as given by case in Prop. 6.2.1 (s ⊕ cur label if Case
6)

end if
end for

end function

Lemma 7.2.1. Given labels at descendants of node x in Tr, MakeLabel(Tr, x)
computes label(Tr[x]) as the value of cur label.

Proof. Assume that x has the children v1, . . . , vd, and denote their set of labels
as L = {l1, . . . , ld}. MakeLabel keeps a variable cur label that is updated
maximally k times in a for loop, where k is the biggest number in any label
of children of x. The following claim will suffice to prove the lemma, since for
s > lmw(Tr[x]), we have Tunion[x, s] = Tr[x]..

Claim: At the end of the s’th iteration of the for loop the value of cur label
is equal to label(Tunion[x, s+ 1]).
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Figure 7.1: The flowchart from Figure 6.3, but adapted to the notation used in
MakeLabel

Base case: We have to show that before the first iteration of the loop we
have cur label = label(Tunion[x, 1]). If some label li ∈ L has 0 as an element
then Tunion[x, 1] is isomorphic to a star with x as the center and vi as a leaf. By
Prop. 6.2.1, in this case label(Tunion[x, 1]) = (1, t.0) and this is what cur label
is initialized to. If no li ∈ L has 0 as an element, then by Remark 7.1.2.5
Tunion[x, 1] = Tunion[x, 0] which by definition is the singleton node x and by
Prop. 6.2.1 the label of this tree is (0, t.0) and this is what cur label is initialized
to.

Induction step: We assume cur label = label(Tunion[x, s]) at the start of
the s’th iteration of the for loop and show that at the end of the iteration,
cur label = label(Tunion[x, s+ 1]).
The first thing done in the for loop is the computation of {l′i | 1 ≤ i ≤ d, l′i =
label(Tr[vi, s + 1])}. By Remark 7.1.2.2, label(Tr[vi, s + 1]) ⊆ label(Tr[vi]) for
all i, therefore l′1, . . . , l

′
d are trivial to compute. The second thing done is to set

Ns as the set of all children of x whose labels contain s, and ts as the number of
nodes in Ns that themselves have children whose labels contain s. Let us first
look at what happens when |Ns| = 0:
By Remark 7.1.2.5, for every child vi of x, Tr[vi, s + 1] = Tr[vi, s] if s 6∈
label(Tr[vi]). Therefore, if |Ns| = 0, then Tunion[x, s + 1] = Tunion[x, s], and
from the induction assumption, label(Tunion[x, s + 1]) = cur label, and indeed
when |Ns| = 0 then iteration s of the loop does not alter cur label.

Otherwise, we have |Ns| > 0 and make a call to the subroutine given by Prop.
6.2.1, see the decision tree in Figure 7.1, to compute label(Tunion[x, s+ 1]) and
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Proposition 6.2.1 for loop iteration s Explanation
Tr[x], k Tunion[x, s+ 1], s Tree needing label, max lmw of children
Tr[v1], ..., Tr[vd] Tr[vi, s], ..., Tr[vd, s] Subtrees of children
l1, ..., ld, Nk, tk l′1, ..., l

′
d, Ns, ts Child labels, those with max, root comp. index

label(Tr[x]\Tr[w]) cur label This is also label(Tunion[x, s+ 1]\Tr[w, s+ 1])

argue first that the variables used in that call correspond to the variables used
in Prop. 6.2.1 to compute label(Tr[x]). The correspondence is given in Table
7.2.

Most of these are just observations: Tunion[x, s+ 1] corresponds to Tr[x] in
Prop. 6.2.1, and Tr[v1, s+ 1], . . . , Tr[vd, s+ 1] corresponds to Tr[v1], . . . , Tr[vd].
{l′i | 1 ≤ i ≤ d, l′i = label(Tr[vi, s+1])} correspond to {label(Tr[v]) | v ∈ Child}
in Prop. 6.2.1. Ns is defined in the algorithm so that it corresponds to Nk in
Prop. 6.2.1. Since |Ns| > 0, some vi has s in its label l′i. By Remark 7.1.2.3 and
7.1.2.4, we can infer that s is the maximum linear MIM-width of all Tr[vi, s+1],
therefore s corresponds to k in Proposition 6.2.1.

It takes a bit more effort to show that ts computed in iteration s of the
for loop corresponds to tk = DTr[x](x, k) in Prop. 6.2.1 – meaning we need
to show that ts = DTunion[x,s+1](x, s). Consider vi, a child of x. In accor-
dance with MakeLabel we say that vi contributes to ts if vi ∈ Ns and vi
has a child uj with s in its label. We thus need to show that vi contributes
to ts if and only if vi is an s-neighbor of x in Tunion[x, s + 1]. Observe that
by Remark 7.1.2.4, lmw(Tr[vi, s + 1]) = lmw(Tr[uj , s + 1]) = s if and only if
s is in the labels of both Tr[vi] and Tr[uj ]. If s 6∈ label(Tr[uj , s + 1]), then
lmw(Tr[uj , s + 1]) < s, and if this is true for all children of vi, then vi is
not an s-neighbor of x in Tunion[x, s + 1]. If s 6∈ label(Tr[vi, s + 1]), then
lmw(Tr[vi, s+ 1]) < s and no subtree of Tr[vi, s+ 1] can have linear MIM-width
s. However, if s ∈ label(Tr[uj , s+ 1]) and s ∈ label(Tr[vi, s+ 1]) (this is when vi
contributes to ts), then Tr[vi, s+ 1] ∩ Tr[uj ] must be equal to Tr[uj , s+ 1] and
Tr[uj , s+ 1] ⊆ Tunion[x, s+ 1], and we conclude that vi is an s-neighbor of x in
Tunion[x, s+ 1] if and only if vi contributes to ts, so ts = DTunion[x,s+1](x, s).
Lastly, we show that if Tunion[x, s + 1] is a Case 6 or Case 7 tree – that is,
|Ns| = 1, and Tr[v1, s+ 1] is a type 3 or type 4 tree, with w being the parent of
an s-critical node – then the algorithm has label(Tunion[x, s + 1]\Tr[w, s + 1])
available for computation, indeed that this is the value of cur label. We know, by
definition of label and Remark 7.1.2.5 that Tr[vi, s+ 1]\Tr[vi, s] = Tr[w, s+ 1].
But since |Ns| = 1, for every j 6= i, Tr[vj , s + 1]\Tr[vj , s] = ∅. Therefore
Tunion[x, s + 1]\Tunion[x, s] = Tr[w, s + 1] and Tunion[x, s + 1]\Tr[w, s + 1] =
Tunion[x, s]. But by the induction assumption, cur label = label(Tunion[x, s]).
Thus cur label corresponds to label(Tr[x]\Tr[w]) in Prop. 6.2.1.

We have now argued for all the correspondences in Table 7.2. By that, we
conclude from Prop. 6.2.1 and Definition 7.1.3 and the inductive assumption
that cur label = label(Tunion[x, s + 1]) at the end of the s’th iteration of the
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for loop in MakeLabel. It runs for k iterations, where k is equal to the
biggest number in any label of the children of x, and cur label is then equal to
label(Tunion[x, k+1]). Since k ≥ lmw(Tr[vi]) for all i, by definition Tr[vi, k+1] =
Tr[vi] for all i, and thus Tunion[x, k+ 1] = Tr[x]. Therefore, when MakeLabel
finishes, cur label = label(Tr[x]).

Theorem 7.2.2. Given any tree T , lmw(T ) can be computed in O(n log(n))-
time.

Proof. We find lmw(T ) by bottom-up processing of Tr and returning the first
element of label(Tr). After correctly initializating at leaves and nodes whose
children are all leaves, we make a call to MakeLabel for each of the remaining
nodes. Correctness follows by Lemma 7.2.1 and induction on the structure of
the rooted tree. For the timing we show that each call runs in O(log n) time.
For every integer s from 1 to m, the biggest number in any label of children of
x, which is O(log n) by Remark 5.1.1, the algorithm checks how many labels of
children of x contain s (to compute Ns), and how many labels of grandchildren
of x contain s (to compute ts). The labels are sorted in descending order,
therefore the whole loop goes only once through each of these labels, each of
length O(log n). Other than this, MakeLabel only does a constant amount of
work. Therefore, MakeLabel(Tr, x), if x has a children and b grandchildren,
takes time proportional to O(log n)(a+b). As the sum of the number of children
and grandchildren over all nodes of Tr is O(n) we conclude that the total runtime
to compute lmw(T ) is O(n · log n).
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Chapter 8

Computing Optimal Linear
Layouts of Trees

To compute an optimal layout with regards to the linear MIM-width of the tree
T , we first mention a useful remark which is effectively the reverse implication
of the Path Layout Lemma:

Remark 8.0.1 (Path Existence). If lmw(T ) = k; then there exists a path
P ⊆ T such that every connected component in T\N [P ] has linear MIM-width
at most k − 1.

Proof. If lmw(T ) = k, then by Theorem 4.3.4, D(v, k) < 3 for every node
v ∈ VT . If this is true, then we show in the proof of Lemma 4.3.3 that there
always exists such a path.

Knowing that this is true, we have an obvious route towards finding an op-
timal layout: We employ a procedure to find a path P in the tree T such that
all connected components of T\N [P ] have linear MIM-width strictly less than
lmw(T ). We can thereby find optimal layouts for each of these components
by applying the procedure recursively and finally call LinOrd (outlined in the
proof of Lemma 4.2.2) on the resulting structures to obtain an optimal layout
for T .

In the pseudocode below, the rooted tree given as input is denoted Tx, in
contrast to earlier Tr. This is done to highlight that Tx is not necessarily the
whole tree, but rather a rooted subtree that is given as input in a recursive call
to the procedure.

How is chosen depends on what type type of tree Tx is. We choose a path
in Tx using the following strategy; it takes advantage of the fact that every tree
of Type n has one (or two) subtree(s) of Type (n− 1) hidden within it.

Type 1 trees: Choose P to start at the root x, and as long as the last node
in P has a child v that is a k-neighbor, v is appended to P .
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function LayoutFromPath(Tx: rooted tree, L: {label(Tx[v]) | v ∈ VTx)
l = (a1, . . . , ap, last type)← label(Tx)
k ← a1
if last type = t.0 and k = 0 then . Tx = singleton

return (x)
else if last type = ”t.0” and k = 1 then . Tx = star

v1, . . . , vd ← children of x
return (x, v1, . . . , vd)

else . Main case
P ← a path found according to the type of Tx
C ← {connected components in Tx\N [P ]}
S ← ∅ . Collection of layouts
for C ∈ C do

x′ ← root in C according to orientation in Tx
L′ ← {label(Cx′ [v]) | v ∈ Cx′}
S ← S ∪ LayoutFromPath(Cx′ ,L′)

end for
return LinOrd(Tx,P ,S)

end if
end function

Type 2 trees: Let v1 and v2 be the two k-neighbors of x that we know exist by
definition of Type 2 trees. Choose paths P1, P2 in Tx[v1] and Tx[v2] respectively
by the strategy for Type 1 trees, then glue together the paths in x.
Type 3 trees: Let v be the child of x that is k-critical. Choose a path P in Tx[v]
by the strategy for Type 2 trees.
Type 4 trees: Let w be the parent of the k-critical node in Tx. Choose a path
P that is satisfying in Tx[w] as described above.

. . .

. . .

. . .

. . . . . .
. . .

. . . . . .

Type 1: Type 3: Type 4:
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k

Type 1 Type 1
Type 3

. . .

< k

Figure 8.1: The desired path P is shown in green for all types of trees

Lemma 8.0.2. This algorithm, given a tree T , computes a linear ordering of the
nodes in T that is optimal with regards to linear MIM-width, in time O(n·log n).

Proof. We will begin with proving correctness of the algorithm.
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We show that, given a tree T with lmw(T ) = k as input, LayoutFromPath
calculates an actual path P in T , that no connected components in T\N [P ] can
have linear MIM-width equal to k, and finally, that the final ordering always is
optimal.

In the two first cases, it is obvious that the resulting layout is optimal – in
fact, no suboptimal layout of a singleton (k = 0) or a star (k = 1) exists.

In the more interesting case, we need to show that the path we have found
in each case satisfies the property of Remark 8.0.1, and that labels are easily
found. This is not hard to show, but takes some space.

Type 1: These trees contain no k-critical nodes, which by definition means
that for any node v in Tx, at most one of its children is a k-neighbor of v.
The resulting P is obviously a path in Tx. No node in P can possibly have a
k-neighbor outside of P , therefore all connected components of T\N [P ] have
LMIM-width ≤ k − 1. Furthermore, every component of T −N [P ] is a rooted
sub-tree in some node of Tx, and so the labels are already known when compil-
ing L′.
Type 2: In these trees the root x is k-critical. We look at the trees rooted in
the two k-neighbors of x, Tx[v1] and Tx[v2]. By Remark 6.1.2 these must both
be Type 1 trees, and so we find paths P1, P2 in Tx[v1] and Tx[v2] respectively,
as described above. Gluing these paths together at x we get a satisfying path
for Tx, and we still have correct labels for the components in T\N [P ].
Type 3: In these trees, x has exactly one child v such that Tx[v] is of type 2
and none of its other children have LMIM-width k. x is not a k-neighbor of v,
since else DT (v, k) = 3. Every other node in P has all their neighbors in Tx[v].
Again, every tree in T\N [P ] is a rooted subtree, thus every label is known when
compiling L′.
Type 4: In these trees, Tx contains precisely one node w 6= r such that w is
the parent of a k-critical node, v. This w is easy to find using the labels, and
clearly the tree Tx[w] is a type 3 tree with LMIM-width k. w is still not a
k-neighbor of v, therefore P is a satisfying path in Tx. In this case, we have one
connected component of Tx\N [P ] that is not a rooted subtree in any node of
Tx, namely Tx\Tx[w]. Thus for every ancestor y of w (the blue path in Figure
8.1), Tx[y]\Tx[w] is not a full rooted sub-tree either, and we need to update
the labels of these trees. However, Tx[y]\Tx[w] is by definition equal to Tx[y, k],
whose label is equal to label(Tx[y]) with the first integer omitted. Thus we
quickly find the correct labels to deliver to the recursive call.

We have already proven in Lemma 4.2.2 that the algorithm LinOrd, given
a path P in T and layouts of the connected components of T\N [P ] with lin-
ear MIM-width < k, computes a layout of T with linear MIM-width = k in
linear time. For any tree S ⊆ T\N [P ], lmw(S) < lmw(T ); every branch of
computation will therefore eventually come down to one of the base cases: S0

is a singleton, or S0 is a star. From this, we conclude that LayoutFromPath
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computes an optimal layout.

For the time bound, observe that all operations done by LayoutFromPath
can be done in at most linear time: find type of tree, find k-critical node, find
path (in the worst case, check all nodes on the path for linear MIM-width until
you hit a leaf), extract connected components and labels of these, and execute
LinOrd. It is clear that no two connected components with linear MIM-width
(say) s can overlap. The sum of all calls of LayoutFromPath on subtrees with
linear MIM-width s will therefore take time ω proportional to the size of T . All
subtrees of T that LayoutFromPath is called upon, can be partitioned into
at most k+1 classes where all trees in the same class have the same linear MIM-
width , and every class forms a forest of subtrees within T . Then it is clear that
the total runtime of every call to LayoutFromPath, Ω, is equal to the sum of
the runtime of each class, which is at most (k + 1) · ω = O(k · n). By Remark
5.1.1, we know that k = O(log n), thus the runtime of LayoutFromPath is
O(n · log n).
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Chapter 9

Conclusion

We have shown that the linear MIM-width of a tree of size n can be computed in
O(n·log(n)) time, as well as a linear layout of the tree with optimal MIM-width.
This result is significant in two ways:

First and foremost, we show the first polynomial-time exact algorithm for
either MIM-width or linear MIM-width on any graph class on which either of
these parameters is not bounded.

Additionally, we have shown that when restricting our scope to trees, lin-
ear MIM-width behaves in much the same way as other linear parameters, like
pathwidth [10] or linear rank-width [1]. That is, as the case is with the other
parameters, there is a single structure discriminating between trees of linear
MIM-width k and k+ 1, namely the existence of a node with three k-neighbors.
We ask this question: Is the same true for every parameter with a linear ver-
sion? Will linear graph width parameters always have a single discriminating
structure on trees, stemming from the fact that a tree can branch out in more
than two directions? This is not always the case, e.g. band-width is a linear
parameter that is NP-complete to calculate on trees [21]. This structure might
still be useful to have in mind for anyone who wants to explore how other linear
parameters behave on trees.

As we have stated several times in this thesis, apart from the nice results on
specific graph classes in [3], not much is understood regarding MIM-width and
linear MIM-width, and how to compute them. The results shown in this thesis
could provide a small stepping stone towards a deeper understanding of the
parameters. For example, it is clear that T3,3,3 is a forbidden structure (i.e. as
an induced subgraph) in graphs with linear MIM-width 1. It could be interesting
to investigate other forbidden structures in graphs with low linear MIM-width.
Is it possible to recognize graphs with linear MIM-width 1 in polynomial time
through showing that no such structure exists in the graph? If not the problem
turns out to be NP-complete, this may be a fruitful strategy.
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Abstract. We provide an O(n logn) algorithm computing the linear
maximum induced matching width of a tree and an optimal layout.

1 Introduction

The study of structural graph width parameters like tree-width, clique-width and
rank-width has been ongoing for a long time, and their algorithmic use has been
steadily increasing [11, 17]. The maximum induced matching width, denoted
MIM-width, and the linear variant LMIM-width, are graph parameters having
very strong modelling power introduced by Vatshelle in 2012 [20]. The LMIM-
width parameter asks for a linear layout of vertices such that the bipartite graph
induced by edges crossing any vertex cut has a maximum induced matching
of bounded size. Belmonte and Vatshelle [2] showed that interval graphs, bi-
interval graphs, convex graphs and permutation graphs, where clique-width
can be proportional to the square root of the number of vertices [10], all have
LMIM-width 1 and an optimal layout can be found in polynomial time.

Since many well-known classes of graphs have bounded MIM-width or LMIM-
width, algorithms that run in XP time in these parameters will yield polynomial-
time algorithms on several interesting graph classes at once. Such algorithms
have been developed for many problems: by Bui-Xuan et al [4] for the class of
LCVS-VP - Locally Checkable Vertex Subset and Vertex Partitioning - problems,
by Jaffke et al for non-local problems like Feedback Vertex Set [14, 13] and
also for Generalized Distance Domination [12], by Golovach et al [9] for
output-polynomial Enumeration of Minimal Dominating sets, by Bergoug-
noux and Kanté [3] for several Connectivity problems and by Galby et al for
Semitotal Domination [8]. These results give a common explanation for many
classical results in the field of algorithms on special graph classes and extends
them to the field of parameterized complexity.

Note that very low MIM-width or LMIM-width still allows quite complex cuts
compared to similarly defined graph parameters. For example, carving-width 1
allows just a single edge, maximum matching-width 1 a star graph, and rank-
width 1 a complete bipartite graph. In contrast, LMIM-width 1 allows any cut
where the neighborhoods of the vertices in a color class can be ordered linearly
w.r.t. inclusion. In fact, it is an open problem whether the class of graphs having
LMIM-width 1 can be recognized in polynomial-time or if this is NP-complete.

? Long version with extra figures and full proofs is in the Appendix, and later on arxiv
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Sæther et al [18] showed that computing the exact MIM-width and LMIM-width
of general graphs is W-hard and not in APX unless NP=ZPP, while Yamazaki
[21] shows that under the small set expansion hypothesis it is not in APX unless
P=NP. The only graph classes where we know an exact polynomial-time algo-
rithm computing LMIM-width are the above-mentioned classes interval, bi-
interval, convex and permutation that all have structured neighborhoods
implying LMIM-width 1 [2]. Belmonte and Vatshelle also gave polynomial-time
algorithms showing that circular arc and circular permutation graphs
have LMIM-width at most 2, while Dilworth k and k-trapezoid have LMIM-
width at most k [2]. Recently, Fomin et al [7] showed that LMIM-width for
the very general class of H-graphs is bounded by 2|E(H)|, and that a lay-
out can be found in polynomial time if given an H-representation of the input
graph. However, none of these results compute the exact LMIM-width. On the
negative side, Mengel [15] has shown that strongly chordal split graphs,
co-comparability graphs and circle graphs all can have MIM-width, and
LMIM-width, linear in the number of vertices.

Just as LMIM-width can be seen as the linear variant of MIM-width, path-
width can be seen as the linear variant of tree-width. Linear variants of other
well-known parameters like clique-width and rank-width have also been studied.
Arguably, the linear variant of MIM-width commands a more noteworthy posi-
tion, since in contrast to these other linear parameters, for almost all well-known
graph classes where the original parameter (MIM-width) is bounded then also
the linear variant (LMIM-width) is bounded.

In this paper we give an O(n log n) algorithm computing the LMIM-width of
an n-node tree. This is the first graph class of LMIM-width larger than 1 having
a polynomial-time algorithm computing LMIM-width and thus constitutes an
important step towards a better understanding of this parameter. The path-
width of trees was first studied in the early 1990s by Möhring [16], with Ellis et
al [6] giving an O(n log n) algorithm computing an optimal path-decomposition,
and Skodinis [19] anO(n) algorithm. In 2013 Adler and Kanté [1] gave linear-time
algorithms computing the linear rank-width of trees and also the linear clique-
width of trees, by reduction to the path-width algorithm. Even though LMIM-
width is very different from path-width, the basic framework of our algorithm is
similar to the path-width algorithm in [6].

In Section 2 we give some standard definitions and prove the Path Layout
Lemma, that if a tree T has a path P such that all components of T \N [P ] have
LMIM-width at most k then T itself has a linear layout with LMIM-width at
most k+1. We use this to prove a classification theorem stating that a tree T has
LMIM-width at least k+1 if and only if there is a node v such that after rooting
T in v, at least three children of v themselves have at least one child whose rooted
subtree has LMIM-width at least k. From this it follows that the LMIM-width
of an n-node tree is no more than log n. Our O(n log n) algorithm computing
LMIM-width of a tree T picks an arbitrary root r and proceeds bottom-up on
the rooted tree Tr. In Section 3 we show how to assign labels to the rooted
subtrees encountered in this process giving their LMIM-width. However, as with
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the algorithm computing pathwidth of a tree, the label is sometimes complex,
consisting of LMIM-width of a sequence of subgraphs, of decreasing LMIM-
width, that are not themselves full rooted subtrees. Proposition 1 is an 8-way
case analysis giving a subroutine used to update the label at a node given the
labels at all children. In Section 4 we give our bottom-up algorithm, which will
make calls to the subroutine underlying Proposition 1 in order to compute the
complex labels and the LMIM-width. Finally, we use all the computed labels to
lay out the tree in an optimal manner.

2 Classifying LMIM-width of Trees

We use standard graph theoretic notation, see e.g. [5]. For a graph G = (V,E)
and subset of its nodes S ⊆ V we denote by N(S) the set of neighbors of nodes
in S, by N [S] = S ∪ N(S) its closed neighborhood, and by G[S] the graph
induced by S. For a bipartite graph G we denote by MIM(G), or simply MIM if
the graph is understood, the size of its Maximum Induced Matching, the largest
number of edges whose endpoints induce a matching. Let σ be the linear order
corresponding to the enumeration v1, . . . , vn of the nodes of G, this will also
be called a linear layout of G. For any index 1 ≤ i < n we have a cut of σ
that defines the bipartite graph on edges ’crossing the cut’ i.e. edges with one
endpoint in {v1, . . . , vi} and the other endpoint in {vi+1, . . . , vn}. The maximum
induced matching of G under layout σ is denoted mim(σ,G), and is defined as
the maximum, over all cuts of σ, of the value attained by the MIM of the cut, i.e.
of the bipartite graph defined by the cut. The linear induced matching width -
LMIM-width - of G is denoted lmw(G), and is the minimum value of mim(σ,G)
over all possible linear orderings σ of the vertices of G.

We start by showing that if we have a path P in a tree T then the LMIM-
width of T is no larger than the largest LMIM-width of any component of T \
N [P ], plus 1 . To define these components the following notion is useful.

Definition 1 (Dangling tree). Let T be a tree containing the adjacent nodes
v and u. The dangling tree from v in u, T 〈v, u〉, is the component of T \ (u, v)
containing u.

Given a node x ∈ T with neighbours {v1, . . . , vd}, the forest obtained by re-
moving N [x] from T is a collection of dangling trees {T 〈vi, ui,j〉}, where ui,j 6= x
is some neighbour of vi. We can generalise this to a path P = (x1, . . . , xp) in
place of x, such that T\N [P ] = {T 〈vi,j , ui,j,m〉}, where vi,j ∈ N(P ) is a neigh-
bour of xi and ui,j,m 6∈ N [P ]. See top part of Figure 1. This naming convention
will be used in the following.

Lemma 1 (Path Layout Lemma). Let T be a tree. If there exists a path
P = (x1, . . . , xp) in T such that every connected component of T\N [P ] has
LMIM-width ≤ k then lmw(T ) ≤ k + 1. Moreover, given the layouts for the
components we can in linear time compute the layout for T .
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Proof. Using the optimal linear orderings of the connected components of T\N [P ],
we give the below algorithm LinOrd constructing a linear order σT on the nodes
of T showing that LMIM-width of T is ≤ k + 1. The ordering σT starts out
empty and the algorithm has an outer loop going through vertices in the path
P = (x1, . . . , xp). When arriving at xi it uses the concatenation operator ⊕ to
add the path node xi before looping over all neighbors vi,j of xi adding the linear
orders of each dangling tree from vi,j and then vi,j itself. See Figure 1 for an
illustration.

function LinOrd(T : tree, (x1, . . . , xp): path, {σT 〈vi,j ,ui,j,m〉}: lin-ords)
σT ← ∅ . The list starts out empty
for i← 1, p do . For all nodes on path (x1, . . . , xp)

σT ← σT ⊕ xi . Append path node
for j ← 1, |N(xi)\P | do . For all nbs of xi not on path: vi,j

for m← 1, |N(vi,j)\vi| do . For all dangling trees from vi,j
σT ← σT ⊕ σT 〈vi,j ,ui,j,m〉 . Append given order of T 〈vi,j , ui,j,m〉

σT ← σT ⊕ vi,j . Append vi,j

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1
v1,2

v1,3 v3,1 v3,2

u1,1,1
u2,1,1u1,1,2 u1,2,1

u3,1,1
u3,1,2

u3,2,1 u3,2,2

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1v1,2 v1,3 v3,1 v3,2

u1,1,1 u2,1,1u1,1,2 u1,2,1 u3,1,1 u3,1,2 u3,2,1 u3,2,2

Fig. 1. A tree with a path P = (x1, x2, x3, x4), with nodes in N [N [P ]] and dangling
trees featured, and below it the order given by the Path Layout Lemma

Firstly, from the algorithm it should be clear that each node of T is added
exactly once to σT , that it runs in linear time, and that there is no cut containing
two crossing edges from two separate dangling trees. Now we must show that σT
does not contain cuts with MIM larger than k+ 1. By assumption the layout of
each dangling tree has no cut with MIM larger than k, and since these layouts
can be found as subsequences of σT then also σT has no cut with more than k
edges from a single dangling tree T 〈vi,j , ui,j,m〉. Also, we know that edges from
two separate dangling trees cannot both cross the same cut. The only edges of
T left to account for, i.e. not belonging to one of the dangling trees, are those
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with both endpoints in N [N [P ]], the nodes at distance at most 2 from a node in
P . For every cut of σT that contains more than a single crossing edge (xi, xi+1)
there is a unique xi ∈ P and a unique vi,j ∈ N(xi) such that every edge with
both endpoints in N [N [P ]] that crosses the cut is incident on either xi or vi,j ,
and since the edge connecting xi and vi,j also crosses the cut at most one of
these edges can be taken into an induced matching. With these observations in
mind, it is clear that lmw(T ) ≤ mim(σT , T ) ≤ k + 1.

Definition 2 (k-neighbour and k-component index). Let x be a node in
the tree T and v a neighbour of x. If v has a neighbour u 6= x such that
lmw(T 〈v, u〉) ≥ k, then we call v a k-neighbour of x. The k-component in-
dex of x is equal to the number of k-neighbours of x and is denoted DT (x, k),
or shortened to D(x, k).

Theorem 1 (Classification of LMIM-width of Trees). For T a tree and
k ≥ 1 we have lmw(T ) ≥ k + 1 if and only if D(x, k) ≥ 3 for some node x.

Proof. We first prove the backward direction by contradiction. Thus we assume
D(x, k) ≥ 3 for a node x and there is a linear order σ such that mim(σ, T ) ≤ k.

Let v1, v2, v3 be the three k-neighbors of x and T1, T2, T3 the three trees of
T \N [x] each of LMIM-width k, with vi connected to a node of Ti for i = 1, 2, 3,
that we know must exist by the definition of D(x, k). We know that for each
i = 1, 2, 3 we have a cut Ci in σ with MIM=k and all k edges of this induced
matching coming from the tree Ti. Wlog we assume these three cuts come in the
order C1, C2, C3, i.e. with the cut having an induced matching of k edges of T2 in
the middle. Note that in σ all nodes of T1 must appear before C2 and all nodes
of T3 after C2, as otherwise, since T is connected and the distance between T2
and the two trees T1 and T3 is at least two, there would be an extra edge crossing
C2 that would increase MIM of this cut to k + 1. It is also clear that v1 has to
be placed before C2 and v3 has to be placed after C2, for the same reason, e.g.
the edge between v1 and a node of T1 cannot cross C2 without increasing MIM.
But then we are left with the vertex x that cannot be placed neither before C2

nor after C2 without increasing MIM of this cut by adding at least one of (v1, x)
or (v3, x) to the induced matching. We conclude that D(x, k) ≥ 3 for a node x
implies LMIM-width at least k + 1.

For the full proof of the forward direction, please see the Appendix, here we
give a brief sketch. We assume that every node in T has D(x, k) < 3 and show
that then lmw(T ) ≤ k. We define the following X = {x|x ∈ V (T ) and D(x, k) =
2} and Y = {y|y ∈ V (T ) and D(y, k) = 1} and by a case analysis show that
there is always a path P in T such that all the connected components in T\N [P ]
have LMIM-width ≤ k − 1, and proceed to use the Path Layout Lemma, to get
that lmw(T ) ≤ k.

By Theorem 1, every tree with LMIM-width k ≥ 2 must be at least 3 times
bigger than the smallest tree with LMIM-width k−1, which implies the following.

Remark 1. The LMIM-width of an n-node tree is O(log n).
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3 Rooted trees, k-critical nodes and labels

Our algorithm computing LMIM-width will work on a rooted tree, processing it
bottom-up. We will choose an arbitrary node r of the tree T and denote by Tr the
tree rooted in r. For any node x we denote by Tr[x] the standard complete subtree
of Tr rooted in x. During the bottom-up processing of Tr we will compute a label
for various subtrees. The notion of a k-critical node is crucial for the definition
of labels.

Definition 3 (k-critical node). Let Tr be a rooted tree with lmw(Tr) = k. We
call a node x in Tr k-critical if it has exactly two children v1 and v2 that each has
at least one child, u1 and u2 respectively, such that lmw(Tr[u1]) = lmw(Tr[u2]) =
k. Thus x is k-critical if and only if lmw(T ) = k and DTr[x](x, k) = 2.

If lmw(Tr) = k then Tr cannot have two k-critical nodes as it would then by
Theorem 1 Tr have LMIM−width k+1. For a detailed proof see the Appendix.

Remark 2. If Tr has LMIM-width k it has at most one k-critical node.

Definition 4 (label). Let rooted tree Tr have lmw(Tr) = k. Then label(Tr)
consists of a list of decreasing numbers, (a1, . . . , ap), where a1 = k, appended
with a string called last type, which tells us where in the tree an ap-critical node
lies, if it exists at all. If p = 1 then the label is simple, otherwise it is complex.
The label(Tr) is defined recursively, with type 0 being a base case for singletons
and for stars, and with type 4 being the only one defining a complex label.

– Type 0: r is a leaf, i.e. Tr is a singleton, then label(Tr) = (0, t.0);
or all children of r are leaves, then label(Tr) = (1, t.0)

– Type 1: No k-critical node in Tr, then label(Tr) = (k, t.1)
– Type 2: r is the k-critical node in Tr, then label(Tr) = (k, t.2)
– Type 3: A child of r is k-critical in Tr, then label(Tr) = (k, t.3)
– Type 4: There is a k-critical node uk in Tr that is neither r nor a child of r.

Let w be the parent of uk. Then label(Tr) = k ⊕ label(Tr\Tr[w])

See the Appendix for a Figure giving an example of a big tree and its labels.
In type 4 we note that lmw(Tr\Tr[w]) < k since otherwise uk would have three
k-neighbors (two children in the tree and also its parent) and by Theorem 1 we
would then have lmw(Tr) = k + 1. Therefore, all numbers in label(Tr\Tr[w])
are smaller than k and a complex label is a list of decreasing numbers followed
by last type ∈ {t.0, t.1, t.2, t.3}. We now give a Proposition that for any node x
in Tr will be used to compute label(Tr[x]) based on the labels of the subtrees
rooted at the children and grand-children of x. The subroutine underlying this
Proposition, se the decision tree in Figure 2, will be used when reaching node x
in the bottom-up processing of Tr.

Proposition 1. Let x be a node of Tr with children Child(x), and given label(Tr[v])
for all v ∈ Child(x). Let k = maxv∈Child(x) {lmw(Tr[v])} and Nk = {v ∈
Child(x) | lmw(T [v]) = k} and denote by Nk = {v1, . . . , vq} and by li =
label(Tr[vi]). Let tk = DTr[x](x, k) by noting that tk = |{vi ∈ Nk | vi has child uj with lmw(Tr[uj ]) =
k}|. Given this, we find label(Tr[x]) as follows:
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– Case 0: if |Child(x)| = 0 then label(Tr[x]) = (0, t.0);
else if k = 0 then label(Tr[x]) = (1, t.0)

– Case 1: Every label in Nk is simple and has last type equal to t.1 or t.0,
and tk ≤ 1. Then, label(Tr[x]) = (k, t.1)

– Case 2: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk = 2. Then, label(Tr[x]) = (k, t.2)

– Case 3: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk ≥ 3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 4: |Nk| ≥ 2 and for some vi ∈ Nk, either li is a complex label, or li
has last type equal to either t.2 or t.3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 5: |Nk| = 1, l1 is a simple label and l1 has last type equal to t.2.
Then, label(Tr[x]) = (k, t.3)

– Case 6: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k 6∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = k ⊕ label(Tr[x]\Tr[w])

– Case 7: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k ∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = (k + 1, t.1)

Proof. For a full proof see the Appendix, here we only give a sketch. Observe
the decision tree in Figure 2 which takes care of all cases, 1 up to 7, apart from
the base cases. It follows from the definition of labels, k, Nk and tk that cases 1
up to 7 of Prop. 1 corresponds to cases 1 up to 7 in the decision tree, and this
shows that exactly one case applies to every possible rooted tree. To prove that
labels are assigned correctly a case analysis is made based on Definition 4 and
position of k-critical nodes. We argue for the two most complicated cases only.
Case 6: x has only one child v with lmw(Tr[v]) = k, and there is a k-critical
node uk with parent w – neither of which are equal to x – in Tr[v] (Tr[v] is a
type 3 or type 4 tree). Moreover, no tree rooted in another child of w, apart
from uk, can have LMIM-width ≥ k, since this would imply DTr[v](uk, k) = 3
and thus lmw(Tr[v]) > k; nor can Tr[x]\Tr[w] have LMIM-width = k, since then
we would have k in label(Tr[x]\Tr[w]) disagreeing with the condition of Case 6.
Therefore DTr[x](u, k) = 2, and lmw(Tr[x]) = k. Tr[x] is thus a type 4 tree and
the label is assigned according to the definition.
Case 7: Tr[v], uk and w are as described in Case 6. But here, lmw(Tr[x]\Tr[w]) =
k (since the condition says that k is in its label), and thus w is a k-neighbour of
its child uk and by Theorem 1 lmw(Tr[x]) = k + 1 and Tr[x] is a type 1 tree.

4 Computing LMIM-width of Trees and Finding a Layout

The subroutine underlying Prop. 1 will be used in a bottom-up algorithm that
starts out at the leaves and works its way up to the root, computing labels
of subtrees Tr[x]. However, in two cases (Case 6 and 7) we need the label of
Tr[x]\Tr[w], which is not a complete subtree rooted in any node of Tr. Note that
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DTr[x](x, k)?

≤ 1 = 2 ≥ 3

YES

Is there a child vi of x such thatNO YES

lmw(Tr[x]) = k + 1 and

lmw(Tr[x]) = k and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 2 tree

Tr[x] is a type 1 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 3 tree

Is lmw(Tr[x]\Tr[w]) = k for

lmw(Tr[x]) = k and

Tr[x] is a type 4 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

NO

YES NO

What is the value of

Is it the root vi ∈ Tr[vi]

that is the k-critical node?

w parent of k-critical node?

Are there children vj 6= vi

Tr[vi]contains a k-critical node? of x where lmw(Tr[vj ]) = k?

Case 6

Case 2

Case 4

Case 1

Case 5

Case 3 Case 7

NO YES

Fig. 2. A decision tree corresponding to the case analysis of Proposition 1

the label of Tr[x]\Tr[w] is again given by a (recursive) call to Prop. 1 and is then
stored as a suffix of the complex label of Tr[x]. We will compute these labels
by iteratively calling Prop. 1 (substituting the recursion by iteration). We first
need to carefully define the subtrees involved when dealing with complex labels.

From the definition of labels it is clear that only type 4 trees lead to a
complex label. In that case we have a tree Tr[x] of LMIM-width k and a k-
critical node uk that is neither x nor a child of x, and the recursive definition
gives label(Tr[x]) = k⊕label(Tr[x]\Tr[w]) for w the parent of uk. Unravelling this
recursive definition, this means that if label(Tr[x]) = (a1, . . . , ap, last type), we
can define a list of nodes (w1, . . . , wp−1) where wi is the parent of an ai-critical
node in Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wi−1]). We expand this list with wp = x, such
that there is one node in Tr[x] corresponding to each number in label(Tr[x]),
and Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wp]) = ∅.

Now, in the first level of a recursive call to Prop. 1 the role of Tr[x] is taken
by Tr[x]\Tr[w1], and in the next level it is taken by (Tr[x]\Tr[w1])\Tr[w2] etc.
The following definition gives a shorthand for denoting these trees.

Definition 5. Let x be a node in Tr, label(Tr[x]) = (a1, a2, . . . , ap, last type)
and the corresponding list of vertices (w1, . . . , wp) is as we describe in the above
text. For any non-negative integer s, the tree Tr[x, s] is the subtree of Tr[x]
obtained by removing all trees Tr[wi] from Tr[x], where ai ≥ s. In other words, if
q is such that aq ≥ s > aq+1, then Tr[x, s] = Tr[x]\(Tr[w1]∪Tr[w2]∪ . . .∪Tr[wq])

Remark 3. Some important properties of Tr[x, s] are the following. Let Tr[x, s],
label(Tr[x, s]), (w1, . . . , wp) and q as in the definition. Then

1. if s > a1, then Tr[x, s] = Tr[x]
2. label(Tr[x, s]) = (aq+1, . . . , ap, last type)
3. lmw(Tr[x, s]) = aq+1 < s
4. lmw(Tr[x, s+ 1]) = s if and only if s ∈ label(Tr[x])
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5. Tr[x, s+ 1] 6= Tr[x, s] if and only if s ∈ label(Tr[x])

The above Remarks follow from the definitions, for a proof see Appendix.
Note that for any s the tree Tr[x, s] is defined only after we know label(Tr[x]).
In the algorithm, we compute label(Tr[x]) by iterating over increasing values
of s (until s > lmw(Tr[x]) since by Remark 3.1 we then have Tr[x, s] = Tr[x])
and we could hope for a loop invariant saying that we have correctly computed
label(Tr[x, s]). However, Tr[x, s] is only known once we are done. Instead, each
iteration of the loop will correctly compute the label of the following subtree
called Tunion[x, s], which is not always equal to Tr[x], but importantly for s >
lmw(Tr[x]), we will have Tunion[x, s] = Tr[x, s] = Tr[x].

Definition 6. Let x be a node in Tr with children v1, . . . , vd. Tunion[x, s] is then
equal to the tree induced by x and the union of all Tr[vi, s] for 1 ≤ i ≤ d. More
technically, Tunion[x, s] = Tr[V ′] where V ′ = x∪ V (Tr[v1, s])∪ . . .∪ V (Tr[vd, s]).

Given a tree T , we find its LMIM-width by rooting it in an arbitrary node
r, and computing labels by processing Tr bottom-up. The answer is given by
the first element of label(Tr), which by definition is equal to lmw(T ). At a
leaf x of Tr we initialize by label(Tr[x])← (0, t.0), and at a node x for which all
children are leaves we initialize by label(Tr[x])← (1, t.0), according to Definition
4. When reaching a higher node x we compute label of Tr[x] by calling function
MakeLabel(Tr, x).

function MakeLabel(Tr, x) . finds cur label = label(Tr[x])
cur label← (0, t.0) . This is label(Tunion[x, 0])
{v1, . . . , vd} = children of x
if 0 ∈ label(Tr[vi]) for some i then

cur label← (1, t.0) . This is then label(Tunion[x, 1])

for s← 1,maxd
i=1{first element of label(Tr[vi])} do

{l′1, . . . , l′d} = {label(Tr[vi, s+ 1]) | 1 ≤ i ≤ d}
Ns = {vi | 1 ≤ i ≤ d, s ∈ l′i}
ts = |{vi | vi ∈ Ns, vi has child uj s.t. s ∈ label(Tr[uj , s+ 1])}|
if |Ns| > 0 then

case← the case from Prop. 1 applying to s, {l′1, . . . , l′d}, Ns and ts
cur label← as given by case in Prop. 1 (s⊕ cur label if Case 6)

Lemma 2. Given labels at descendants of node x in Tr, MakeLabel(Tr, x)
computes label(Tr[x]) as the value of cur label.

Proof. See the Appendix for a full proof, here we give only a sketch. The crucial
issue is to prove the loop invariant: ”At the end of the s’th iteration of the for
loop the value of cur label is equal to label(Tunion[x, s+1]).” which suffices since
for s > lmw(Tr[x]), we have Tunion[x, s] = Tr[x]. We first argue for the corre-
spondence given by the below Table, between parameters used in Proposition 1
and parameters used in the for loop of MakeLabel.

Let us here give only the most complicated of these arguments, showing that
ts computed in iteration s of the for loop corresponds to tk = DTr[x](x, k) in
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Proposition 1 for loop iteration s Explanation

Tr[x], k Tunion[x, s + 1], s Tree needing label, max lmw of children
Tr[v1], ..., Tr[vd] Tr[vi, s], ..., Tr[vd, s] Subtrees of children
l1, ..., ld, Nk, tk l′1, ..., l

′
d, Ns, ts Child labels, those with max, root comp. index

label(Tr[x]\Tr[w]) cur label This is also label(Tunion[x, s + 1]\Tr[w, s + 1])

Prop. 1 – meaning we need to show that ts = DTunion[x,s+1](x, s). Consider vi,
a child of x. In accordance with MakeLabel we say that vi contributes to ts
if vi ∈ Ns and vi has a child uj with s in its label. We thus need to show that
vi contributes to ts if and only if vi is an s-neighbour of x in Tunion[x, s + 1].
Observe that by Remark 3.4, lmw(Tr[vi, s+ 1]) = lmw(Tr[uj , s+ 1]) = s if and
only if s is in the labels of both Tr[vi] and Tr[uj ]. If s 6∈ label(Tr[uj , s + 1]),
then lmw(Tr[uj , s + 1]) < s, and if this is true for all children of vi, then vi
is not an s-neighbour of x in Tunion[x, s + 1]. If s 6∈ label(Tr[vi, s + 1]), then
lmw(Tr[vi, s + 1]) < s and no subtree of Tr[vi, s + 1] can have LMIM-width s.
However, if s ∈ label(Tr[uj , s + 1]) and s ∈ label(Tr[vi, s + 1]) (this is when vi
contributes to ts), then Tr[vi, s + 1] ∩ Tr[uj ] must be equal to Tr[uj , s + 1] and
Tr[uj , s + 1] ⊆ Tunion[x, s + 1], and we conclude that vi is an s-neighbour of x
in Tunion[x, s+ 1] if and only if vi contributes to ts, so ts = DTunion[x,s+1](x, s).
Lastly, we show that if Tunion[x, s + 1] is a Case 6 or Case 7 tree – that is,
|Ns| = 1, and Tr[v1, s + 1] is a type 3 or type 4 tree, with w being the parent
of an s-critical node – then the algorithm has label(Tunion[x, s+ 1]\Tr[w, s+ 1])
available for computation, indeed that this is the value of cur label. We know, by
definition of label and Remark 3.5 that Tr[vi, s+ 1]\Tr[vi, s] = Tr[w, s+ 1]. But
since |Ns| = 1, for every j 6= i, Tr[vj , s+ 1]\Tr[vj , s] = ∅. Therefore Tunion[x, s+
1]\Tunion[x, s] = Tr[w, s + 1] and Tunion[x, s + 1]\Tr[w, s + 1] = Tunion[x, s].
But by the induction assumption, cur label = label(Tunion[x, s]). Thus cur label
corresponds to label(Tr[x]\Tr[w]) in Prop. 1.
By the correspondences in Table 4, we conclude from Prop. 1 and Definition 6
and the inductive assumption that cur label = label(Tunion[x, s+ 1]) at the end
of the s’th iteration of the for loop in MakeLabel. It runs for k iterations, with
k the biggest number in any label of the children of x, and cur label is then
equal to label(Tunion[x, k + 1]). Since k ≥ lmw(Tr[vi]) for all i, by definition
Tr[vi, k+ 1] = Tr[vi] for all i, and thus Tunion[x, k+ 1] = Tr[x]. Therefore, when
MakeLabel finishes, cur label = label(Tr[x]).

Theorem 2. Given any tree T , lmw(T ) can be computed in O(n log(n))-time.

Proof. We find lmw(T ) by bottom-up processing of Tr and returning the first
element of label(Tr). After correctly initializating at leaves and nodes whose
children are all leaves, we make a call to MakeLabel for each of the remaining
nodes. Correctness follows by Lemma 2 and induction on the structure of the
rooted tree. For the timing we show that each call runs in O(log n) time. For
every integer s from 1 to m, the biggest number in any label of children of x,
which is O(log n) by Remark 1, the algorithm checks how many labels of chil-
dren of x contain s (to compute Ns), and how many labels of grandchildren of
x contain s (to compute ts). The labels are sorted in descending order, there-
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fore the whole loop goes only once through each of these labels, each of length
O(log n). Other than this, MakeLabel only does a constant amount of work.
Therefore, MakeLabel(Tr, x), if x has a children and b grandchildren, takes
time proportional to O(log n)(a+ b). As the sum of the number of children and
grandchildren over all nodes of Tr is O(n) we conclude that the total runtime to
compute lmw(T ) is O(n · log n).

Theorem 3. A layout of LMIM-width lmw(T ) of a tree T can be found in
O(n · log n)-time.

Proof. For a detailed proof see Appendix. Given T we first run the algorithm
computing lmw(T ) finding the label of every full rooted subtree in Tr. We give
a recursive layout-algorithm that uses these labels in tandem with LinOrd pre-
sented in the Path Layout Lemma. We call it on a rooted tree where labels of
all subtrees are known. For simplicity we call this rooted tree Tr even though in
recursive calls this is not the original root r and tree T :
1) Let lmw(Tr) = k and find a path P in Tr such that all trees in Tr\N [P ] have
LMIM-width < k. The path depends on the type of Tr as explained below.
2) Call this layout-algorithm recursively on every rooted tree in Tr\N [P ] to ob-
tain linear layouts; for this, we need the correct labels for these trees.
3) Call LinOrd on Tr, P and the layouts provided in step 2.
Type 0 trees: Choose P = (r).
Type 1 trees: Choose P to start at the root r, and as long as the last node in P
has a k-neighbour v 6∈ P , v is appended to P .
Type 2 trees: We look at the trees rooted in the two k-neighbours of r, Tr[v1]
and Tr[v2]. These are Type 1 trees. Choose paths P1, P2 for Tr[v1] and Tr[v2] as
described above. Gluing these paths together at r we get the path for Tr.
Type 3 trees: r has exactly one child v such that Tr[v] is of type 2. Choose P as
described above for Tr[v].
Type 4 trees: In these trees, Tr contains precisely one node w 6= r such that w is
the parent of a k-critical node, x. Tr[w] is a type 3 tree. Choose P for Tr[w] as
described above which will be the path for Tr.
For all paths chosen above, the trees in T\N [P ] have LMIM-width strictly less
than k since no node in P has a k-neighbour that is not in P . For the recursive
calls we need labels for all subtrees in T\N [P ]. In every case except Type 4 trees,
all these subtrees are full rooted subtrees of Tr, and the label is clearly known.
In Type 4 trees, the subtree Tr\Tr[w], where w the parent of a k-critical node, is
not a full rooted subtree. In this case we must update the label of every ancestor
y of w but this is simple, since label(Tr[y]\Tr[w]) = label(Tr[y, k]) which we get
by removing the first element from label(Tr[y]).
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[16] Rolf H Möhring. Graph problems related to gate matrix layout and pla folding.
In Computational graph theory, pages 17–51. Springer, 1990.

[17] Sang-il Oum. Rank-width: Algorithmic and structural results. Discrete Applied
Mathematics, 231:15–24, 2017.

[18] Sigve Hortemo Sæther and Martin Vatshelle. Hardness of computing width pa-
rameters based on branch decompositions over the vertex set. Theor. Comput.
Sci., 615:120–125, 2016.

[19] Konstantin Skodinis. Construction of linear tree-layouts which are optimal with
respect to vertex separation in linear time. J. Algorithms, 47(1):40–59, 2003.

[20] Martin Vatshelle. New width parameters of graphs. PhD thesis, University of
Bergen, Norway, 2012.

[21] Koichi Yamazaki. Inapproximability of rank, clique, boolean, and maximum
induced matching-widths under small set expansion hypothesis. Algorithms,
11(11):173, 2018.


