
Department of Informatics

Master Thesis

An Introduction to
Information-Theoretic Private

Information Retrieval (IT-PIR)

By: Tarald Riise
Supervisor: Øyvind Ytrehus

June 3, 2019

Preface

While there exists excellent, readily-available research on the field of Private Information
Retrieval, the threshold for understanding topics of technical nature through the reading
of academic papers tends to be quite high for the typical non-academic.

In order to accommodate interest from technical, but not necessarily academic, indi-
viduals, it seems an approachable, highly synthesized version of the most relevant research
of the field may prove a valuable resource to the curious. This thesis will attempt to pro-
vide such a synthesized and approachable experience in paper form.

By gradually introducing relevant terminology, and thoroughly explaining constructs
as we go along, it is my belief that this thesis may provide some useful insight to the
current state of Private Information Retrieval, as well as its potential applications.

Naturally, as the field of Private Information Retrieval is vast and has currently on-
going research, I cannot claim to be able to provide a complete overview of the field.
However, it is my aim that you, the reader, after having read this thesis, will feel that
you have some degree of insight to and understanding of the field.

i

Abstract

Private Information Retrieval (PIR) is a way of querying a database server for a record,
and getting that record back, without the server learning which record it returned, thus
protecting the privacy of the user retrieving the record. This thesis will attempt to
provide the reader with an introduction into the field of Information-Theoretic Private
Information Retrieval (IT-PIR) so that the reader may gain an understanding of IT-PIR
and its potential and hindrances as a privacy enhancing tool.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Outline . 4

2 Background 5

3 Terminology 6
3.1 Information-Theoretic Security . 6

3.1.1 Common misconceptions . 6
3.1.2 Randomness . 7

PsuedoRandom Number Generators (PRNGs) 7
Cryptographically Secure PRNGs (CSPRNGs) 8
True Random Events . 8

3.1.3 The One Time Pad (OTP) . 8
A Single-bit One Time Pad . 9
Multi-bit OTP . 10
The Impracticality of the OTP . 10

3.2 Computational Security . 11
3.2.1 The hardness assumption . 11
3.2.2 RSA and Integer Factorization . 11

4 Information Retrieval 13
4.1 Sequences . 13

4.1.1 Setup . 13
4.1.2 Query . 14
4.1.3 Respond . 14
4.1.4 Decode . 14

4.2 Properties . 14
4.2.1 Correctness . 15
4.2.2 Robustness . 15
4.2.3 Non-triviality . 16

i

5 The first PIR protocol 17
5.1 One-dimensional Non-private IR . 17
5.2 Additive Secret Sharing in GF(2) . 18
5.3 One-dimensional `-server IT-PIR . 19

5.3.1 Communication Costs . 20
5.3.2 Properties . 21

5.4 Vector-Matrix IR . 21
5.4.1 The Database as a matrix . 22
5.4.2 Querying the matrix . 22
5.4.3 Communication Costs . 23
5.4.4 The Extra Bits . 23

Symmetric PIR . 24
5.5 Introducing Privacy to Vector-Matrix IR 24

5.5.1 CPIR and Additively Homomorphic Encryption 24
5.5.2 IT-PIR and Secret Sharing . 24
5.5.3 Other variants . 25

5.6 2D 4-server IT-PIR . 25
5.6.1 2D Queries . 25
5.6.2 Secret sharing 2D queries . 26
5.6.3 Distributing secret shared 2D subqueries 26
5.6.4 Communication Costs of the 2D 4-server IT-PIR 28
5.6.5 Applying further symmetrization 28

5.7 ND 2N -server IT-PIR . 29

6 Robustness 30
6.1 BS’02 - (k, `)-correctness . 30

6.1.1 2-out-of-4-correct PIR . 30
6.1.2 2-out-of-` PIR . 31

6.2 Goldberg ’07 - k-out-of-` v-Byzantine Robustness 32
6.2.1 Shamir’s Secret Sharing . 32

2-out-of-` secret sharing . 32
4-out-of-` secret sharing . 33
Shamir’s (t+ 1, `)-secret sharing . 34

6.2.2 Detecting Bad Shares in Shamir’s Secret Sharing 35
6.2.3 Distributing Secret-Shared Queries 36
6.2.4 Summarizing Goldberg ’07 . 37

Sequences . 37
Properties . 38

6.2.5 Further improvements to Goldberg ’07 IT-PIR 38

7 Amortized PIR 39
7.1 Simple Multi-block Queries . 39
7.2 HHG ’13 - Multi-block IT-PIR . 40

7.2.1 Ramp Sharing Schemes . 40

ii

Coefficients as the secrets . 40
Evaluations as the secrets . 41

7.2.2 Column-wise Ramp-scheme Sharing 42
7.2.3 On v-Byzantine Robustness and Privacy 43
7.2.4 Summary . 43
7.2.5 Properties . 44
7.2.6 Cost Comparison with Goldberg’07 44

7.3 Batch Codes . 44
7.3.1 2-way Subcube code . 45
7.3.2 3-way Subcube code . 47
7.3.3 Recursive Subcube Codes . 48
7.3.4 The U-ary code . 49

Single-block Retrieval - Setup . 49
Single-block Retrieval . 50
Multi-block Retrieval . 51

8 Expressive Queries 53
8.1 PIR by keywords . 53
8.2 SQL-type Queries . 54
8.3 Distributed Point Functions . 54

8.3.1 Compact query in 2D using DPF 55
8.3.2 Compact query in 3D using DPF 58
8.3.3 DPF queries in ND . 60

What relevance has DPF-based queries for PIR-by-keywords? . . . 60
8.3.4 PIR for key-value stores via (log n)D DPF queries 60

9 Anonymous Information Retrieval 63
9.1 Properties . 63

9.1.1 Anonymity . 63
9.1.2 Confidentiality . 64

9.2 Tor - The Onion Router . 64
9.2.1 Tor game . 64
9.2.2 Chain Ignorance and Minimal Chain Length 66

9.3 Why the current Tor protocol does not scale 66
9.3.1 Scaling Tor with peer-to-peer architecture 67
9.3.2 Scaling Tor with PIR . 67

10 Conclusion 69
10.0.1 Meta . 71

iii

List of Figures

5.1 Showing how we may view an n-bit database as an m×m matrix. 22
5.2 Visualizing how secret shared row and column queries may be super-positioned

over the data before XORing the surviving bits and returning the result. . 27
5.3 Visualizing the database in three dimensions. 28

6.1 Visualizing a 2-out-of-3 Shamir’s secret sharing scheme 33
6.2 Visualizing a 4-out-of-5 Shamir’s secret sharing scheme 34
6.3 A bad share in a linear Shamir’s secret sharing scheme 36
6.4 A bad share in a quadratic Shamir’s secret sharing scheme. 36

7.1 Showing how shares may be generated from two secret points as evaluations
of their interpolated polynomial. 41

7.2 Partitioning the database into two buckets. 45
7.3 Partitioning the database into two buckets plus an additional bucket as the

XOR of the other buckets. 46
7.4 How we may partition the database to obtain lower storage and computa-

tional costs than we saw was the case for the 2-way subcube code. 47
7.5 Showing how we may apply the idea of a subcube-code recursively. 48
7.6 How we may view a single, large matrix as multiple, stacked matrices. . . . 49
7.7 How we may go from a vector of sub-matrices to a matrix of polynomials . 49
7.8 How each server’s bucket is created though column-wise ramp sharing of

the data. 50

8.1 A B+ tree allowing us to query by keyword. 53
8.2 A 3D representation of a cubic query matrix, prior to DPF secret sharing. 58
8.3 The query cube layer z = 2. Also the complete keys needed to represent

the position of the 1 -value in the original query cube. 59
8.4 Showing how we may view a N = log n-dimensional DPF query as a binary

tree, with each of the log n vectors having size 2. 61

9.1 A Tor request round trip with encryption and decryption steps. 65

iv

List of Tables

5.1 Communication costs of the 2D 4-server IT-PIR protocol. 28
5.2 Communication costs of the 3D 4-server IT-PIR protocol. 29
5.3 Upload and download costs when projecting the database as an N-dimensional

hypercube, pre-symmetrization. 29
5.4 Upload and download costs when projecting the database as an N-dimensional

hypercube, post-symmetrization. 29

7.1 Costs of the Henry et al. multi-block IT-PIR protocol, compared to Gold-
berg’07. 44

7.2 The cost of fetching two non-arbitrary blocks, before and after applying
the 2-way subcube code with two buckets. 46

7.3 The cost of fetching two arbitrary blocks, before and after applying the
2-way subcube code with two plus one buckets. 47

7.4 The costs associated with a k-level recursive subcube code. 48
7.5 The costs of fetching a single block, per server. Henry’16 u-ary codes

compared to Goldberg’07. 51
7.6 The costs of retrieval q block, per server. Comparing Henry’16 to Goldberg’07 52

8.1 Upload costs of performing DPF-based queries in k dimensions for a database
of size n . 60

1

Chapter 1

Introduction

1.1 Motivation

As the financial incentive for businesses to harvest and store data and meta-data per-
taining to our online activity has grown significantly in the past twenty years, so has
the privacy issue that this data poses. As commercial businesses arguably become the
proprietors of the information obtained by processing our online requests, attempts can
be made to extract intent and behavioural patterns relating to both our on- and offline
presence from this information. This information may then be used for any range of mo-
tivations, may it be for improving user experience, advertising, or for malicious reasons.
To better protect our online privacy, we may consider Privacy Enhancing Tools (PETs),
such as Private Information Retrieval (PIR). In the case of PIR, we may for the sake of
privacy want to utilize a method of obtaining information from a database server without
revealing to the server what information we obtained.

Consider the following scenario. Alice has an idea for a website and wishes to buy a
domain name to host her website on, for example www.alicesgreatpage.com. Alice visits
the website of a not-so-honest Domain Name Registrar, henceforth ShadyDNR, offering a
web-based form to let her check the availability of any domain name, as well as the price
of buying a domain name if it is available. Alice enters her preferred domain name into
the form, and clicks the submit button. The submit button triggers an HTTP-request
to a ShadyDNR server, with the request containing the domain name Alice is interested
in, namely www.alicesgreatpage.com. As this request is received at the ShadyDNR
server, ShadyDNR preemptively purchases the domain name for themselves at the price
of $5. The ShadyDNR server then responds to Alice’s request that the domain name is
not available, but that ShadyDNR happens to own this domain name, and that Alice may
purchase the domain name directly from ShadyDNR at the price of $50. ShadyDNR will
of course willfully omit that they themselves bought and artificially marked-up the price

2

of the domain name.

This example of the not-so-honest Domain Name Registrar should highlight one of
the reasons why we may sometimes wish to obtain information from a server without
revealing exactly what we are interested in. In this example we would like to request
information about a domain name without revealing to the server which domain name we
are interested in, but there exists a variety of problems where we would like to achieve
something similar. These problems are instances of a more general problem known as
Private Information Retrieval(PIR).

A perceptive reader may have already discovered a solution to the problem of PIR.
In the case of the not-so-honest Domain Name Registrar, if Alice were to request the
availability and price of all possible domain names, ShadyDNR could not in any way infer
which domain name Alice is actually interested in, and ShadyDNR would be economically
and practically deterred from applying their usual business practices. This is known as
the trivial solution to the Private Information Retrieval problem, namely retrieving the
entire database for the purpose of accessing only a subset of the records. While the trivial
solution may be useful for small databases, it is extremely inefficient and impractical for
larger databases, because of the overhead associated with downloading a multitude of
records, only to use a subset. A somewhat fitting analogy would be to borrow every
single book in a library to avoid the librarian knowing what book you truly wanted to
read. While the Trivial Solution solves the Private Information Retrieval problem, it
may be an extremely costly operation depending on the size of the server database, or
conversely, in our library analogy, the size of the library.

As you may suspect by now, the field of Private Information Retrieval attempts to solve
the problem of Private Information Retrieval in a manner more efficient than the trivial
solution. Numerous PIR variations and schemes have been proposed in the literature,
and some have been implemented[1][2][3].

1.2 Objectives

We will in this thesis attempt to provide the reader with an understanding of Information-
Theoretic Private Information Retrieval from both a theoretical and practical standpoint.
In regards to theory, this understanding will include the crypto-theoretic foundation
needed to understand a IT-PIR scheme. From the practical perspective, we will show
how PIR protocols may be used to solve a real world problem observed in the imple-
mentation of the onion routing protocol Tor. The thesis should be understandable to
readers with limited knowledge of cryptography, as well as informative to readers with
pre-existing knowledge of cryptography. We will in the conclusion reason around the
potential future of PIR, and discuss whether or not we believe PIR will become widely

3

adopted and deployed.

1.3 Outline

An outline of this thesis may be given as an overview of the chapters.

• Chapter 2 - My background for writing this thesis.

• Chapter 3 - Introducing terminology and concepts relevant for subsequent chapters.

• Chapter 4 - Properties of information retrieval protocols.

• Chapter 5 - Exploring the first published PIR protocol.

• Chapter 6 - Achieving robustness in PIR protocols.

• Chapter 7 - Fetching multiple records at a time using PIR.

• Chapter 8 - Querying Expressively in PIR.

• Chapter 9 - Introducing anonymous information retrieval and Tor. Exploring how
PIR may be used to scale Tor.

• Chapter 10 - Conclusion

4

Chapter 2

Background

Private Information Retrieval is a field of research which is rather popular at the moment.
This may be attributed to the fact that the technology is relatively new, with the first
paper being published as recently as in 1995[4]. One might also argue that the public is be-
coming increasingly privacy-aware, and if true, this may attribute to increased interest in
Private Information Retrieval research and other Privacy Enhancing Technologies(PETs).

With the popularity of the field, combined with my personal appreciation of PETs
and my background in cryptography and computer security, it seems fitting that I write
my master’s thesis on Private Information Retrieval with the purpose of accommodating
further interest.

This concludes my background for the thesis.

5

Chapter 3

Terminology

Before we will begin explaining properties, metrics, constructs and protocols, it may be
useful to establish some terminology that allows us to more easily discuss these subjects.
This chapter will therefore explain some terms often used when discussing cryptosystems.

3.1 Information-Theoretic Security

As we will primarily focus on information-theoretically secure PIR-protocols, it makes
sense that we delve a bit deeper into the meaning of information-theoretic security. In
Christof Paar’s Understanding Cryptography, a definition of unconditional security, also
known as information-theoretic security, is given as such:

Definition 3.1.1. Unconditional security: A cryptosystem is unconditionally or information-
theoretically secure if it cannot be broken even with infinite computational resources[5].

3.1.1 Common misconceptions

Some readers may be under the impression that all cryptosystems attempt to achieve the
information-theoretical security property as defined in definition 3.1.1, this is however
incorrect.

One could argue that breaking the encryption of an 256-bit AES-encrypted email us-
ing fifty state-of-the-art supercomputers may take longer than 3 ∗ 1051 years, exceeding
the current lifetime of this universe an unfathomable number of times. While this task,
for all practical reasons, is impossible today, this does not qualify AES as an information-

6

theoretically secure cryptosystem. If we truly had unlimited resources, as given in def-
inition 3.1.1, we could simply build an infinite number of supercomputers, making the
process instantaneous.

So if modern cryptosystems using adequately large keys does not yield information-
theoretical security, what does?

3.1.2 Randomness

Randomness lies at the core of much of cryptography, and we will later see how randomness
plays an integral part in creating a IT-PIR protocols. But what is randomness? If we look
at this problem from a mathematical or physical perspective, we may say that a random
event is an event that is non-deterministic. However, if we look at the problem from a
computer-scientific perspective, we will see that there may be multiple interpretations.

PsuedoRandom Number Generators (PRNGs)

Most computer scientists have in their computer programs used a PsuedoRandom Number
Generator (PRNG), and some programmers may believe that these generators are non-
deterministic. However, upon closer inspection, we may notice that PRNGs are in fact
deterministic, thus providing the ”Pseudo” of the PseudoRandom Number Generators.
To observe this, we may look at the internals of any PRNG. There, we will see that all
PRNGs take a seed -argument, which sets the generator to a deterministic state. Upon
instantiating a PRNG with a seed s0 and calling the PRNG’s generate function, the
PRNG will generate a seemingly random value x. However, by creating a new instance
of the same generator with the same seed s0, and again calling the generate function, we
will again be returned the very same value x. This is obviously deterministic behaviour.

If we put this into the context of the definition of information theoretic security (3.1.1),
an adversary with unlimited computational resources may brute-force the seed parameter
to obtain a copy of our PRNG, given that some output of our PRNG is somehow deter-
minable to the adversary1. Any additional ”randomness” generated by our PRNG may
then be trivially obtained by the adversary, simply by calling the generate function.

1If no output of a PRNG is determinable to the adversary, the adversary has no way to determine
whether the correct seed is found, even given unlimited computational resources.

7

Cryptographically Secure PRNGs (CSPRNGs)

Some readers may also have used a Cryptographically Secure PsuedoRandom Number
Generator (CSPRNG), and may have been comforted by the ”Cryptographically Secure”
part of the nomenclature. However, the cryptographical security of the CSPRNG does not
refer to the generator being non-deterministic. On the contrary, an adversary obtaining
the initial seed-parameter of a CSPRNG will break the supposed randomness of the
system, equivalent to any PRNG, and the adversary may look into the future of our
generator, simply by calling the generate function. What makes these generators suitable
for cryptography is a property known as unpredictability. The unpredictability property
may be explained in the following manner:

Given n output bits of the CSPRNG, there exists no polynomial time algorithm
that can predict the next bit sn+1 with better than 50% chance of success [5].

Note that the quote gives a polynomial time algorithm as a bound, which is not a
limitation for information-theoretic security. CSPRNGs can therefore be used in compu-
tationally secure cryptosystems, but as they are dependent upon the initial seed, they may
never yield information theoretically secure cryptosystems if some output of the CSPRNG
is determinable to the adversary.

True Random Events

True random events are non-deterministic, stochastic events, and may be observed in
nature as thermal noise, radioactive decay, other miscellaneous quantum effects and events
such as the flipping of a fair coin. Such events can not be described by any reliably
measurable variables, and can therefore be used as a source of true randomness. In
computer science, such events are usually reduced to a single bit-state b, such that b ∈
{0, 1} with probability 50%. Hardware solutions using such true random events as a
source of randomness exist[6] and are commercially available.

Since it is impossible to guess any true random event with a probability greater than
50%, and as all such events are independent, unlimited computational resources does not
help an adversary in guessing the next outcome of a true random event.

3.1.3 The One Time Pad (OTP)

Now that we have a grasp of how we can achieve different types of randomness, we can
look at applications of randomness in cryptography, and how we may use true randomness

8

to create an information-theoretically secure cryptosystem.

A Single-bit One Time Pad

Suppose I were to flip a fair coin and tell you the outcome in a secret meeting. If neither
of us were to share the outcome with any third party, no-one but you and me would know
the outcome, and the outcome may be referred to as our shared secret key s0 ∈ {0, 1}.
No matter how much computational power a potential adversary may have, the adversary
can do nothing but guess, giving the chance of being correct or incorrect as simply 50%.

To make the example more exiting, we may hypothesize that I will at some point
have access to inside information about a big company, and this information may prove
profitable on the stock market. However, I can not act on this information myself, and
I will need you to either buy or sell some stocks in the company at some time in the
future. We obviously do not wish to leave any kind of evidence, as this practice is illegal,
so I would like to be able to somehow securely communicate which of the two actions you
should perform. To achieve this, we may use our shared secret key s0.

To signal that you should buy or sell on any given day, I will raise a flag in my
back yard, either the green flag, or the red flag. To make sure no one could learn which
flag represents which action, I will use our shared secret key to encrypt the action. For
example, if the result of the coin-toss was heads, the green flag signals the buy action and
the red flag signals the sell action. Conversely, if the result of the coin-toss was tails,
the green flag signals the sell action and red flag signals the buy action. These actions
of buying and selling on any given day i may be expressed in binary as xi ∈ {0, 1}, and
which flag I raise on that particular day may be referred to as the encrypted output
y = E(buy|sell, key)2 and may be expressed in binary as yi ∈ {0, 1}.

The encrypted output for day i = 0 may be formally expressed as

y0 = x0 ⊕ s0 (3.1)

Equation (3.1) shows a secure single-bit one time pad where ⊕ is the bit-wise XOR
operation.

As it is impossible for an adversary to know the outcome of the coin-flip s0, it is also
impossible for the adversary to determine x0 with any other probability than 50%, even
given the output y0 and unlimited computational resources. This example demonstrates
a single-bit One Time Pad that is information-theoretically secure.

2The E-function is standard notation in cryptography for a function encrypting some plain-text x by
a key k s.t. E(x, k) = y, where y is the encrypted output. In this case, the E-function simply performs
the bit-wise XOR operation of x and k, and returns the result as the output.

9

Multi-bit OTP

Given that our scheme proved successful, we may wish to repeat this hypothetical. How-
ever, an adversary could have looked at my flag at day 0, and correlated that to the stock
market movement on day 1, effectively learning the secret for day 0, s0. If we were to
encrypt the action for day 1 using the same key s0, it is trivial for the adversary to learn
the new secret y1.

i = 1

y0 = x0 ⊕ s0
y1 = x1 ⊕ s0

(3.2)

Equation (3.2) shows a reuse of a one time pad key, which deems it insecure.

As using the same key s0 for future communication makes the scheme insecure, we
obviously need to change our key. So if we were to flip n coins in our secret meeting, we
could use one key each day for n days without key reuse. Following the logic given by
equation 3.1, we can rest assured that no adversary may learn what we are communicating.

y0 = x0 ⊕ s0
y1 = x1 ⊕ s1

...

(3.3)

Equation (3.3) shows a provably secure, information-theoretic cryptosystem.

This means that if we want to be able to communicate for five different days, we would
need to meet to share the results of five different coin tosses, or another true random event
equivalent. Each true random event (key) may be used only once, which gives name to
the One Time Pad, an information-theoretically secure cryptosystem.

One might think that by somehow cleverly combining used keys, we can arrive at
new keys, but any such method is vulnerable to reverse engineering by an adversary with
unlimited computational resources.

The Impracticality of the OTP

While the idea of having an unconditionally secure cryptosystem is a rather nice one,
there are some serious practical limitations to the OTP.

To encrypt n bits, we need a key consisting of n bits. This means that to securely
encrypt a 1GB file, we need 1GB of keys. Additionally, because key reuse is insecure,

10

we need to refill keys before we run out, or we risk being unable to communicate se-
curely. Sending keys over a non-information-theoretically secure communications channel
will deem the resulting OTP as information-theoretically insecure due to the transitive
property. This means keys may have to be physically moved from one location to an-
other. These impracticalities are the reasons we do not use One Time Pads for ordinary
every-day secure communications.

3.2 Computational Security

Unlike information-theoretical security, in computational security, we model our adversary
to have bounded computational resources. This relaxation allows us to create cryptosys-
tems that are not provably information-theoretically secure. Instead, computationally
secure cryptosystems must generally prove that an adversary must solve a hard problem
in order to break the security of the system. The idea that some problems are hard to
solve, is known as the hardness assumption.

3.2.1 The hardness assumption

The hardness assumption is the hypothesis that some problems cannot be solved by a
computer in polynomial time. While this hypothesis remains exactly that, a hypothesis,
researchers have put in decades of work without revealing polynomial time solutions to
hard problems. Cryptanalysis has uncovered weaknesses in existing computationally se-
cure protocols3, though this is strictly related to implementations, and not to solving the
underlying hard problems4. This allows us to take an optimistic view on the subject and
conjecture that the hardness assumption holds. The hardness assumption can be looked
at as closely tied to the P 6= NP problem.

3.2.2 RSA and Integer Factorization

We will not explain the workings of RSA in this paper, but it is worth to briefly mention
integer factorization as the hard problem at the core of RSA. It turns out that factoring

3As soon as a serious vulnerability is found in a cryptosystem, and subsequently disclosed, developers
will replace the system with one without known, serious vulnerabilities. This effectively removes the
system from the pool of acceptable systems. See the current phase-out of 3DES[7] as an example.

4As there is no proof that polynomial time solutions to hard problems do not exist, we can not exclude
the possibility that such solutions are known, but being kept secret.

11

large numbers is a very hard problem for classical5 computers, and RSA, simply put,
takes advantage of this fact. If we were to find a way to efficiently factor large numbers,
we could easily break the security of RSA. However, as no such procedure is currently
known, we operate under the assumption that RSA is secure.

5Quantum computers can factor more efficiently than classical computers using Shor’s Algorithm[8].
Currently, quantum computer are not big enough to tackle numbers at the size of those used in RSA.

12

Chapter 4

Information Retrieval

Before we start exploring the subject of Private Information Retrieval, it seems reasonable
to give a definition of what an ordinary Information Retrieval protocol may look like. We
will therefore in this chapter give a formal definition of an ordinary Information Retrieval
protocol. Please note that someone defining information retrieval outside the context of
PIR may end up with a definition quite different from what we will end up with. The
reason for this, is that the definitions given in this chapter are meant to easily transform
over to those of private information retrieval, as we will see in the next chapter.

The goal of an information retrieval protocol is, unsurprisingly, to retrieve information.
While this is a very general goal, we will particularly look at retrieving information from
a database stored at some remote server.

4.1 Sequences

An Information Retrieval protocol can be said to consist of four sequences, namely Setup,
Query, Respond, and Decode. The Setup is performed once to initialize the system, and
the other sequences are performed on every subsequent query.

4.1.1 Setup

The setup sequence is executed once in order to initialize the information retrieval system.
As input, the setup sequence takes the number of servers ` ≥ 1 and the database X. The
setup will output (Γ;X(1), ..., X(`)), where Γ is the system parameters, and each X(i) is an
internal state, often referred to as a bucket. These buckets will often contain the same data,

13

namely X = X(1) = X(2) = ... = X(`). Γ will be used to describe how the system is set up,
and will appear as an implicit input to the other sequences. Γ may contain the number
of servers `, IP-addresses of said servers, and may contain cryptographic parameters such
as Common Reference Strings. Once the setup is completed, the Information Retrieval
system will be ready to receive requests in the form of queries.

4.1.2 Query

The query sequence takes as input a security parameter λ1 and one or more record identi-
fiers J1. The query sequence will output a sequence of query strings q = (q1, ..., q`) where
each query string qi becomes the query for server i, and some private auxiliary informa-
tion δ. Record identifiers will usually specify positions within X where the data we are
interested in is located. The private auxiliary information λ may for example contain an
ephemeral private decryption key for an established public key crypto-system.

4.1.3 Respond

The respond sequence will be executed for every i-th server, and takes as input its internal
state X(i) and its part of the query component qi ∈ {q1, . . . , q`}. Every i-th server will
output a response string ri to be returned to the client.

4.1.4 Decode

The decode sequence takes as input the clients auxiliary information ∆ and the ` response
strings r1, . . . , r`. The decode sequence outputs the record(s) requested by the client.

4.2 Properties

Below I will list some properties of information retrieval protocols. These properties are
not necessarily found in all information retrieval protocols, but all are worth mentioning
as they will give some context as we transition from regular information retrieval protocols
to private information retrieval protocols.

1Note that this is one of the cases were our definition of an IR protocol is shaped to easily transform
to that of a PIR protocol. A normal IR protocol may support searches, while this definition assumes the
querier is already aware of the record identifier (index) of the record in which he is interested.

14

4.2.1 Correctness

Correctness, also refereed to as completeness, is a property that states that when a client
requests records from a server which is not malfunctioning nor malicious, the server cor-
rectly returns these records to the client without error. In other words, when the client
queries in the expected way, and the server responds in the expected way, the client will
receive the correct response for his query.

Formally

Pr

[
X ← DECODE (∆; r1, . . . , r`)

∣∣∣∣ (∆; q1, . . . , q`)← QUERY (1λ; J)
∧(Λ`

j=1rj ← RESPOND(X(j); qj))

]
≥ 1− ε(λ) (4.1)

Equation (4.1) showing the correctness property, where X(j) is the bucket(s) containing
requested record(s), and J is the requested record identifier(s).

4.2.2 Robustness

We can image a scenario in where some of the ` servers may produce an incorrect response,
or no response at all, either by failure, or by malicious intent, resulting in the failure of
the decoding sequence. Robustness is a property that allows some servers to respond
incorrectly, or not at all, while still preserving the correctness property. An Information
Retrieval protocol can therefore be said to be robust if a client can successfully retrieve
records even though some servers respond incorrectly or not at all.

Formally

Pr

X ← DECODE (∆; r1, . . . , r`)

∣∣∣∣∣∣
(∆; q1, . . . , q`)← QUERY (1λ; J)
∧(Λ`

j=1rj ← RESPOND(X(j); qj))
∧{rj|j ∈ C} ←− A(C; {qj}j∈C)

 ≥ 1− ε(λ)

(4.2)
Equation (4.2) showing the robustness property, where X is the requested record(s), J

is the requested record identifier(s) and A is an algorithm which chooses a subset of the
servers and their responses to pass to the decoder.

We will in this paper refer to protocols that allow k out of ` servers to not respond,
while still being able to decode correctly as (k, `)-correct. We will refer to protocols that
allow v out of ` servers to respond incorrectly, while still being able to decode correctly as
v-byzantine-robust. A protocol that allows some servers to not respond, and some servers
to respond incorrectly, may be classified as a v-Byzantine-robust k-out-of-` information
retrieval protocol.

15

4.2.3 Non-triviality

As mentioned earlier, a trivial Information Retrieval protocol is not very interesting be-
cause of the overhead associated with downloading entire databases to only access a subset
of the records. We will therefore be exclusively looking at non-trivial Private Information
Retrieval protocols.

We may define an information retrieval protocol to be non-trivial if

∀n ∈ N, (Γ;X(1), ..., X(`))← SETUP (X; 1, ..., `)

s.t.

|Γ|+ Expected[|Q|+ |R|] ∈ o(|X|)
(4.3)

Equation (4.3) showing a definition of non-triviality, where Γ is the public parameters,
Q are the query strings, R are the response strings, X(i) are the buckets and |X| is the
size of the database.

To explain further, equation (4.3) simply states that the total bandwidth used to fetch
an element from the database should scale with little o of the size of the database, ensuring
that we do not reach triviality.

Note that there are many different ways to define the non-triviality property. Some
papers will measure communication costs using the average-case, while some will use the
worst-case. Some definitions will account for bidirectional communication, while some
will only consider download costs. Equation (4.3) encapsulates a rather reasonable way
to define the non-triviality property. In addition, this definition should be applicable to
most known private information retrieval protocols.

16

Chapter 5

The first PIR protocol

We will in this chapter explore the first ever PIR protocol, published by Chor et al. in
1995[4]. The protocol regards a database X as an n-bit binary string, and a record as a
single bit contained in this string. We will show how the protocol achieves private infor-
mation retrieval, and reason about how the protocol is information-theoretically secure,
as well as discuss the communication costs. We will also explain step-wise improvements
from a non-private, inefficient protocol to a private, efficient protocol.

5.1 One-dimensional Non-private IR

We will begin by look at an example of a non-private information retrieval protocol,
where the querier wishes to retrieve a single bit from a database consisting of n bits. The
example will differ in appearance from any ordinary information retrieval protocol. The
reasons for this is so that we can add privacy at a later point, having the underlying
protocol still recognizable. For a very approachable example, we will use a database
consisting of n = 4 bits. If say, the user was interested in retrieving bit b2, the user could
send a query consisting of a standard basis vector of size n, containing a 1 in the position
of b2. The server can simply calculate the dot product of the standard basis vector and
the database, yielding the singular bit that the user wanted.

〈 0 0 1 0 〉 · 〈 b0 b1 b2 b3 〉 = b2 (5.1)

Equation (5.1) showing how a singly bit may be retrieved from the database by computing
the dot product of a standard basis vector and the database.

As previously stated, this query is non-private, and the reason for this should be
obvious. By sending the query string to the server, the server can immediately interpret

17

that we are looking for b2. In order to make this query private, we are going to replicate
the database to ` > 1 servers1 and secret share the query using Additive Secret Sharing
in GF(2).

5.2 Additive Secret Sharing in GF(2)

Additive secret sharing in GF(2) is rooted in the understanding of finite fields. However,
we may for simplicity explain it as shortly as to say that GF(2) is a field with two
elements {0, 1}, and the additive operation for elements within this field is simply the
XOR operation.

Now, suppose we have some secret S that we wish to share with a group consisting of,
for example, ` = 5 members. We wish to have it so that each member has one share of
the secret, and no entity may know the secret unless all shares are obtained. To achieve
this, we view our secret as a member of the field GF (2), i.e. S ∈ {0, 1}.2 We generate
shares for each of the members as follows:

We assign r1 to r4 as random values in F, and compute r5 to be the value so that the
sum of all shares becomes S.

S ∈ F

r1 ∈R F
+ r2 ∈R F
+ r3 ∈R F
+ r4 ∈R F
+ r5 := S − r1 − r2 − r3 − r4 ∈R F

= S

(5.2)

Equation (5.2) showing how additive secret sharing in GF(2) may be achieved, with five
resulting shares.

We now have five shares resulting from this operation. Suppose we distribute the five
shares to five shareholders, such that each shareholder holds one of the shares. It should
be quite obvious to see that even if the four shareholders holding r1, r2, r3 and r4 should
choose to collude, they cannot determine S, as they all just hold random values. In fact,
any four shareholders could choose to collude, but they will still only hold random values
without the last share. It is only when someone holds all 5 shares that the secret S may
be recovered.

1It is possible to achieve PIR using a single server setup. However, such a setup must be based on
computational security and thus falls into the category of CPIR protocols. We will for the time being
look exclusively at IT-PIR protocols, which require ` > 1 servers.

2The secret can be any length n by repeating the construction n times, or by generating n-length
bit-strings for each share.

18

We pointed out earlier that we may use CSPRNGs as a source of randomness to achieve
information-theoretic security, given that the output of the CSPRNG is not determinable
to the adversary, even given unbounded computational resources. If we use a CSPRNG
as the source of randomness for the secret sharing, the output of the CSPRNG is only
determinable to an adversary if he can obtain all shares, and by that point, any privacy
resulting from secret sharing is already void. Thus, we are able to claim that this construct
allows information-theoretic security within our privacy threshold, which in this case is
`− 1 = 4.

Now that we have a way to share a secret, we will see how can we use secret sharing
to make the query in section 5.1 private.

5.3 One-dimensional `-server IT-PIR

To make our non-private query in section 5.1 private, we will use equation (5.2) to con-
struct secret shares of our query vector ~q. We will again be using a database consisting
of four bits for our example, and we will for clarity build on the example previously
established, where we are interested in bit b2, and construct our standard basis vector
accordingly.

~q = 〈 0 0 1 0 〉, X = 〈����〉 (5.3)

Equation (5.3) showing a standard basis vector and a database with placeholder values.

Applying equation (5.2) we can generate ` − 1 random vectors of length |X|, and
a pseudorandom `-th vector, also of length |X|, which together with the ` − 1 random
vectors sum to ~q. These ` shares of the original query vector ~q may be referred to as
query-components or query shares.

~q1 ∈R GF (2)n

~q2 ∈R GF (2)n

...
~q`−1 ∈R GF (2)n

~q` := (~q − ~q1 − · · · − ~q`−1)

(5.4)

Equation (5.4) showing additive secret sharing of the query vector ~q to obtain ` query-
components.

If we follow the reasoning in section 5.2 on additive secret sharing and distribute the
query-components to the ` servers as ~q1 −→ S1, ~q2 −→ S2, . . . , ~q` −→ S`, no server may

19

learn our original query ~q without all servers colluding. We may refer to the assumption
that servers are not colluding, as the non-collusion assumption. We will explore how to
account for some degree of collusion in chapter 6 on robustness.

When a server Si receives a query-component ~qi, the server will compute the dot
product of the query-component ~qi and its replica of the database X, and return the
computed value, which is a single bit. Once every server has responded, the client will
XOR the returned values to obtain the value of the bit specified by the original query
vector ~q.

(~q1 ·X)⊕ · · · ⊕ (~q` ·X) = bj (5.5)

Equation (5.5) showing how XORing the results of each query-components dot product
with the database yields the bit we were looking for.

Great! We have achieved private information retrieval, but there are some immediate
issues with this protocol, first and foremost, the communication costs.

5.3.1 Communication Costs

If we consider the communication costs of the protocol so far, we note that each server
only responds with a single bit. This gives us a total download cost of ` bits, which is
optimally efficient. However, for each query-component we send to the server, we upload
|X| bits. This means the total upload cost is ` · |X|.

One could safely argue that downloading the entire database once, will almost always
be better than uploading queries the same size as the database, many ` times. Because
the total communication costs of this protocol exceeds the total communication cost of
a trivial protocol, the non-triviality property is not satisfied. The protocol does however
nicely explain the underlying concept of how a PIR-protocol could work, and it contains
some, but not all of the properties we are looking for in a PIR protocol.

20

5.3.2 Properties

Satisfied properties:

• `-correct
The protocol will return the correct result if all ` servers respond as expected.

• (`− 1) private
Privacy is preserved via secret sharing for up to `− 1 colluding servers.

Unsatisfied properties:

• `-private
If all ` servers collude, our query is no longer private.

• (`− 1)-correct
If a single server does not respond, we cannot decode to the requested record.

• 0-byzantine robust
If more than zero servers responds incorrectly, we cannot decode to the requested
record.

• Non-triviality
Upload + download costs exceed the size of the database.

5.4 Vector-Matrix IR

In order to achieve a non-trivial PIR protocol, Chor et al. symmetrized the `-server IT-
PIR protocol in section 5.3. By symmetrizing, we mean lowering the total upload and
download costs by utilizing some symmetrical structure3. This symmetrical structure may
be obtained by introducing a new dimension to the database.

To explain how we may perform such a symmetrization of the protocol in 5.3, we will
first look at a non-private example of such a construct. In order to obtain this sym-
metrical structure, we are going to go from thinking of the database as a one dimensional
bit-string to start thinking about the database as a m×m matrix4.

3Symmetrization may also be interpreted as equalizing some related metrics, such as upload and
download costs.

4In the literature, the dimensions of the matrix is often written as r×s, but we will for the time being
stay with m×m.

21

5.4.1 The Database as a matrix

If we begin with our database as a n-bit binary string, we may split the string into chunks
of m ≈

√
n bits, and consider these chunks as columns in a m×m matrix.

m = 5

|X| ≈ m2 ≈ 25

X = 〈�����|�����|�����|�����|�����〉

⇓

X =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 5.1: Showing how we may view an n-bit database as an m×m matrix.

5.4.2 Querying the matrix

To query the matrix X for a record j, we can construct an m-bit query vector ~ej that
queries each column of the matrix for the (j mod m)-th bit, effectively returning the
entire j-th row of X as the response.

~ej ·X = ~r

〈 0 0 0 1 0 〉 ·

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

 = 〈 � � � � � 〉
(5.6)

Equation (5.6) showing how we may extract a m-bit row from the database, using a
vector of size m.

22

If we transpose the matrix, the operation becomes visually more intuitive.

〈 0 0 0 1 0 〉 ·XT = 〈 0 0 0 1 0 〉 ·

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

 = 〈 � � � � � 〉 (5.7)

Equation (5.7) showing how we may view the database as transposed to more intuitively
see how the response is computed.

We see that the product of our query vector and the database yields the entire j-th
row of the database. In the retrieved row, only one bit is the bit we were looking for,
while the m− 1 other bits are useless bits we can discard.

Another way to view this construct is that it allows us to fetch a complete database
row, which may at first seem very useful, as traditional databases typically use rows to
represent complete records. However, to achieve optimal communication costs, we must
insist that each row/record and column has an equal length r = s =

√
|X| [9]. Thus, this

construct may deter us from supporting variable-length content such as media, as this
would require padding to ensure all records are of equal length (the length of the biggest
record), adding overhead. Additionally, this implication makes it non-optimal to add or
remove rows to an established database of size |X|, as optimal costs are dependent upon
the size of the records being the same size as the number of rows, given by r · s = |X|.

5.4.3 Communication Costs

As we we are uploading a standard basis vector of size m, and downloading a row of
size m, upload and download costs are now symmetrical. Note that this is a non-private
single-server example.

Upload = Download = m =
√
|X|

Total Cost = 2m = 2
√
|X|

5.4.4 The Extra Bits

It is important to note that queries in this symmetrized construct returns data that the
user did not ask for, namely the m− 1 extra bits. We are currently operating under the
assumption that the entire database is publicly accessible. However, if this is not the case,
any private protocol based on this non-private protocol may reveal information that the
querier is not meant to learn.

23

Symmetric PIR

On the note of revealing information that the querier is not meant to learn, this seems
like a fitting point to introduce the concept of Symmetric PIR (SPIR), also known as
oblivious transfer.

An oblivious transfer protocol is a protocol that has privacy-guarantees for both the
querier and the server. This means that the privacy for the querier must be preserved, as
is the case in PIR, and additionally that the privacy of the server must be preserved. In
practice, this means that the server must never reveal information that is not a subset of
the information the querier should be able to learn.

This paper will not discuss SPIR protocols further than stating that they do exist[10].

5.5 Introducing Privacy to Vector-Matrix IR

Now that we have a more cost-efficient, although non-private protocol, we would like to
introduce privacy. Like in section 5.3, we can take our query vector ~ej and somehow
securely share it between servers. We have a few different options on how to do this, and
the options yield different branches of PIR, security-wise.

5.5.1 CPIR and Additively Homomorphic Encryption

If we were to encrypt ~ej component-wise using some IND-CPA secure, additively homo-
morphic encryption scheme, the security of our query would rely on the computational
hardness assumption. See the section on Computational Security in 3.2. This yields what
we refer to as CPIR, namely Computationally Private Information Retrieval.

While CPIR is a reasonable approach, we will in this thesis look exclusively at IT-PIR
protocols. This is partly because IT-PIR protocols are orders of magnitude faster than
any known CPIR protocol[11][12], and partly to limit the scope of this thesis.

5.5.2 IT-PIR and Secret Sharing

As in section 5.3, we can choose to secret share our query and distribute the queries
across the ` servers, thus protecting the privacy of our query. As we construct our query
components as ` seemingly random unit vectors, there is no way to positively ascertain

24

our original query, even given unlimited computing resources, unless privacy is already
broken by means of collusion. This yields Information-Theoretic security, as described in
3.1.

5.5.3 Other variants

There exists other PIR-variants in the literature, such as Hybrid-Security PIR[13] and
Trusted-Hardware based PIR[14]. However, most PIR-schemes in the literature use either
IT-PIR or CPIR[15].

5.6 2D 4-server IT-PIR

We will now look at an example of a functional vector-matrix IT-PIR protocol using
secret sharing to distribute the query components. In addition to simply explaining the
protocol, we will look at how we may reduce the costs even further than what we saw was
possible in 5.4.3.

5.6.1 2D Queries

Let us again view the database as a square matrix, such that the length and width of the
matrix is m =

√
|X|.

Recall that a standard basis vector of length m will return a single row of the database.
If we were to consider that row as another database, we could query for a column element
contained in the row using another unit vector, also of length m. Unsurprisingly, any 2D
matrix element may be uniquely indexed by an index pair (j1, j2) ∈ [1..m]2, where j1 is
the row index, and j2 is the column index, and furthermore, any such element (j1, j2) may
be queried using two standard basis vectors of length m, namely the row query ~ej1 and
the column query ~ej2 .

Note however, that any server learning ~ej1 may know the row of the element we
are retrieving, and any server learning ~ej2 may know the column of the element we are
retrieving. Any server learning both ~ej1 and ~ej2 will be able to learn the identity of the
exact element (j1, j2) we were looking for, breaking privacy.

As stated in 5.5, we are going to focus exclusively on IT-PIR and thus securely dis-
tribute ~ej1 and ~ej2 using secret sharing.

25

5.6.2 Secret sharing 2D queries

Suppose we want to construct a private query for a single matrix element (j1, j2), repre-
sented by row query ~ej1 and column query ~ej2 . To achieve this, we generate one random

row query share5 ~q0
(0), and construct another row query share ~q0

(1) such that the XOR
of the two row query shares is the original row query ~ej1 . We repeat this for the column

query, yielding two column query shares ~q1
(0) and ~q1

(1).

Formally

Choose ~q0
(0), ~q1

(0) ∈ GF (2)m

Set ~q0
(1) := ~q0

(0) ⊕ ~ej1

Set ~q1
(1) := ~q1

(0) ⊕ ~ej2

(5.8)

Equation (5.8) showing how we may secret share two a 2D query using additive secret
sharing.

5.6.3 Distributing secret shared 2D subqueries

We will in this example show how we can securely distribute the four query shares ~q0
(0),

~q0
(1), ~q1

(0) and ~q1
(1). This example uses four servers, but we will later see how we may use

more servers.

Let us first label the four servers involved in the protocol as 00, 01, 10 and 11. The
query shares are distributed to the servers, so that servers 00 and 01 are both getting
the same first share of the row request, namely ~q0

(0), represented by the first digit in the
server’s labels. The other two servers, 10 and 11, are getting the other share of the row
request, namely ~q0

(1). The same practice also applies to the column query shares, where
here the second digit of the server label refers to the share of the column query the servers
receive. Generally, the first digit of the server labels corresponds to the row query, and
which of the row query share that server should receive. The second digit corresponds to
the column query, and which of the column query shares that server should receive.

To learn which element the querier was looking for, one would need to obtain both

shares of the row query
(
~q0

(0), ~q0
(1)
)

, and both shares of the column query
(
~q1

(0), ~q1
(1)
)

.

As long as we do not send both shares of either the column or the row query to a single
server, no information may be learnt without multiple servers colluding.

5These random query shares will be constructed such that each bit has a value of 0 or 1 with probability
50%.

26

We will look at a graphical example of distributing and decoding such a private query.
Suppose we are looking for an element in row four, column three. Queries that capture
this element may be generated as the following equation set.

~q0
(0) = 〈1 1 0 0 0〉 ~q1

(0) = 〈0 1 1 0 1〉
~q0

(1) = 〈1 1 0 1 0〉 ~q1
(1) = 〈0 1 0 0 1〉

(5.9)

Equation (5.9) showing shares of row and column queries describing the position of an
element in a matrix.

To each server, we may now send the two shares corresponding to the label of that
server. Upon receiving the shares, the server can disregard all elements in either a zero-
row or a zero-column, according to the shares it received. In figure 5.2, we see these
elements as grayed out. To compute the result, each server may XOR the ”surviving”
bits. Each server will return that single-bit result to the querier.

0 1 1 0 1

1 � � � � �
1 � � � � �
0 � � � � �
0 � � � � �
0 � � � � �

00

0 1 0 0 1

1 � � � � �
1 � � � � �
0 � � � � �
0 � � � � �
0 � � � � �

01

0 1 1 0 1

1 � � � � �
1 � � � � �
0 � � � � �
1 � � � � �
0 � � � � �

10

0 1 0 0 1

1 � � � � �
1 � � � � �
0 � � � � �
1 � � � � �
0 � � � � �

11

(5.10)

Figure 5.2: Visualizing how secret shared row and column queries may be super-positioned
over the data before XORing the surviving bits and returning the result.

Visually XORing the matrices in figure 5.2 will yield a single surviving bit in row four,
column three. Thus, upon receiving all four response-bits (representing the result of each
servers XOR operation of the two shares with the database), the user can simply XOR
these four bits to obtain the value of the element in row four, column three, similarly as
to the application of equation (5.5).

27

5.6.4 Communication Costs of the 2D 4-server IT-PIR

As we are uploading two shares of size m =
√
|X| per server, and downloading a single

bit per server, we may express the cost of this 2D 4-server protocol by the following table.

Total Upload: 4 · 2
√
|X| = 8

√
|X| bits

Total Download: 4 · 1 = 4 bits

Table 5.1: Communication costs of the 2D 4-server IT-PIR protocol.

5.6.5 Applying further symmetrization

We may notice that the upload and download costs in table (5.1) resembles that of the
protocol in section 5.3 prior to symmetrization. In fact, we may apply symmetrization
to this construct as well, following the logic given in 5.4 by introducing a new, third
dimension.

Let us again consider the database as a n-bit binary string, where n is now a cube
number with a base m. We split the database into chunks of m2 bits, and split those
chunks again into m bit subchunks. This allows us to consider our database as a three-
dimensional, cubic matrix.

m = 3

|X| = m3 = 27

X = 〈���������������������������〉

� � �

� � �

� � �
� � �

� � �

� � �
� � �

� � �

� � �

Figure 5.3: Visualizing the database in three dimensions.

28

Using the equivalent logic from section 5.4.2, we may now query the database using
two unit vectors of size 3

√
|X|, which would return a vector of size 3

√
|X|

Formally, this yields the costs for an ` = 4 setup as given by the following table.

Total Upload: 4 · 2 3
√
|X| = 8 3

√
|X| bits

Total Download: = 4 3
√
|X| bits

Table 5.2: Communication costs of the 3D 4-server IT-PIR protocol.

Now that we have applied the symmetrization trick twice, and both times reduced
costs, we may wonder what is to stop us from applying the same trick again. We will
now look at a generalization of this practice, where we can keep reducing costs by adding
more dimensions and servers.

5.7 ND 2N-server IT-PIR

By viewing our database as an increasingly higher-dimensional hypercube, we can continue
to decrease our costs, as long as we have enough servers[15].

Because of the way the distribution of the subqueries works, (explained in section
5.6.3), we need the number of servers ` to be a power of two. Thus, in order to project
the database into a N -dimensional hypercube, we would need ` = 2N servers.

Projecting the database into a N -dimensional hypercube across 2N servers yields the
costs, pre-symmetrization, as given by the following table.

Total upload: 2N ·N · N
√
|X| bits Upload per server: N · N

√
|X| bits

Total download: 2N bits Download per server: 1 bits

Table 5.3: Upload and download costs when projecting the database as an N-dimensional
hypercube, pre-symmetrization.

Applying the symmetrization trick yet again, we can obtain costs of fetching a record
of size

√
|X| as given by the following table.

Total upload: 2N · (N − 1) · N
√
|X| bits Upload per server: (N − 1) · N

√
|X| bits

Total download: 2N · N
√
|X| bits Download per server: N

√
|X| bits

Table 5.4: Upload and download costs when projecting the database as an N-dimensional
hypercube, post-symmetrization.

29

Chapter 6

Robustness

As we saw in chapter 5, Chor’s 1995 protocol satisfies neither the (k, `)-correctness prop-
erty nor the v-byzantine robustness property. This means that if one or more of the `
servers were to not respond, or respond incorrectly, we can not decode to a correct result.
This is a problem that needs to be addressed before we can consider PIR for deploy-
ment in any practical environment. We will in this chapter look at two solutions to this
problem. One of the solutions will provide the k-out-of-` correctness property, and the
other solution will provide both the k-out-of-` correctness property and the v-byzantine
robustness property.

6.1 BS’02 - (k, `)-correctness

Beimel and Stahl released in 2002 their paper demonstrating a method of introducing
the (k, `)-correctness property, such that only k-out-of-` servers are needed to respond in
order to decode to the correct result[16]. We will now look at how to achieve the (k, `)-
correctness property, and we will begin by a single case of such a construct, namely the
2-out-of-4 case.

6.1.1 2-out-of-4-correct PIR

Suppose we have ` = 4 servers, labeled 00, 01, 10 and 11. We would like to have a
2-out-of-4 PIR protocol, such that only two of these four servers need to respond in order
to successfully return the record the user requested.

In order to accomplish this, we are going to run the query generation algorithm twice

30

for the same record j, creating two different, but equivalent, queries q1, q2.

Formally (
(q

(1)
0 , q

(1)
1), (q

(2)
0 , q

(2)
1)
)
←− QUERY (1λ; j)×QUERY (1λ; j) (6.1)

Equation (6.1) showing redundant query generation for a 2-out-of-4 correct PIR query.

Each of these queries will be secret-shared to two shares each, such that we now hold
four shares (q

(1)
0 , q

(1)
1) and (q

(2)
0 , q

(2)
1). To server 00, we send the first share of both queries.

To server 01, we send the first share of the first query and the second share of the second
query, etc. As in the previous chapter, we see that each server’s label refers to which two
shares of the two queries the server is sent.

As we only need the responses to a complete set of shares, e.g. (q
(1)
0 , q

(1)
1) or (q

(2)
0 , q

(2)
1),

in order to successfully decode to a correct answer, any two servers responding will always
yield at least one such complete query q1 or q2. By extension, this also means that the
privacy-threshold of this scheme may be given as t = 2, meaning that as soon at two
servers collude, we no longer have privacy.

If the communication costs of performing a 4-out-of-4 PIR query is given by X, we
see that the cost of performing an equivalent 2-out-of-4 query may be given as 2X.

6.1.2 2-out-of-` PIR

Of course, being limited to exactly four servers is not ideal. Fortunately, we can use
the generalization of the 2-out-of-4 case to make any multi-server PIR protocol into a
2-out-of-` protocol. To do this, we create log2 ` query share sets.(

(q
(1)
0 , q

(1)
1), . . . , (q

(log2 `)
0 , q

(log2 `)
1)

)
←− QUERY (1λ; j)× · · · ×QUERY (1λ; j) (6.2)

Equation (6.2) showing redundant query generation for a 2-out-of-` correct PIR query.

For each server, we express the server as a binary string i = b
(1)
i b

(2)
i . . . b

(log2 `)
i , and send

the shares as q
(1)
bi
, q

(2)
bi
, . . . , q

(log2 `)
bi

. The shares are distributed in the equivalent manner as
in the 2-out-of-4 case, and given that any two servers respond, we can always successfully
decode to the correct answer.

Additionally, given that the cost of perform a single query is given by X, it follows
that the cost of performing any 2-out-of-` query is X · dlog2 `e

31

6.2 Goldberg ’07 - k-out-of-` v-Byzantine Robustness

Ian Goldberg released In 2007 a paper titled ”Improving the robustness of private in-
formation retrieval”[17]. The goal of this improved robustness was to allow for both
servers not responding at all, and servers responding incorrectly, while still maintaining
the ability to decode to the correct answer. Such robustness may also be referred to as
k-out-of-` v-byzantine robustness, where v refers to the number of incorrect responses we
can tolerate while still being able to decode to the correct answer.

Let us consider the database as an r× s matrix over F, where a record is a single row.
A non-private query may be constructed as vector-matrix product of a standard basis
vector and the database.

〈0 0 . . . 1 . . . 0〉 ·X = ~Xj (6.3)

Equation (6.3) showing how we may retrieve a record/row from a two-dimensional
database by using a standard basis vector as our query.

In order to make queries such as the one in equation (6.3) private and robust, we are
going to secret share the query using Shamir’s secret sharing.

6.2.1 Shamir’s Secret Sharing

In 1979, Shamir proposed a way of sharing a secret between multiple parties in such a
way that a subset of the parties working collaboratively may recover the secret[18].

We will begin by looking at a single case of such a construct, namely the 2-out-of-3
case. We will then look at expanding this case to facilitate a greater number of shares
required in order to recover the secret. We will then look at the general case, which may
be applied to any setup of shareholders and privacy thresholds.

2-out-of-` secret sharing

Suppose we want to generate a secret consisting of 3 shares, such that 2 shares is sufficient
in order to recover the secret, i.e. a 2-out-of-3 secret sharing scheme. To achieve such a
construct, we can generate a random slope on a graph and sample 3 random points on
this slope, (x1, y1),(x2, y2) and (x3, y3). Recall that any 2 distinct points on a continuous
slope may identify the slope’s function as f(x) = ax+ b using interpolation. If we define
the secret as the function’s evaluation at x = 0, namely the y-intercept y = f(0), any

32

two valid shares are now sufficient in order to recover this secret by interpolation to the
function, and evaluation the function at f(0).

1 2 3 4 5

1

2

3

4

5

× (x1, y1)
(x2, y2)

(x3, y3)

Figure 6.1: Visualizing a 2-out-of-3 Shamir’s secret sharing scheme, with the secret equal-
ing 2.

We may also secret share an existing secret S by placing the the secret on the graph as
a point at (0, S), adding a new random point x0, and interpolating between these points,
yielding a secret function we can now use to generate shares.

Note that a single shareholder may not learn the secret without another share, as
attempting to interpolate from a single point to a linear function yields infinite possible
functions and infinite possible results for evaluating those functions at f(0). This retains
the information-theoretical security-property using the same argument as in section 5.2
on additive secret sharing.

Note also that in order to share this secret with more than three shareholders, we
can just measure new points on the slope, and send the new points as shares to the new
shareholders. We can repeat this process to share this secret with privacy-threshold t = 2
to any number of shareholders `.

If we wish to share a secret with a privacy-threshold greater than two, we can simply
increase the degree of the polynomial.

4-out-of-` secret sharing

In order to achieve a scheme where four out of some variable number of shareholders
need to collaborate in order to recover the secret, we can simply adjust the degree of

33

the polynomial from what we saw in the previous example. In order to accommodate
for 4 shares being required, we will need a cubic polynomial. A general rule is that a
polynomial of degree t can be used to share a secret such that the privacy-threshold is
t+ 1.

We again sample ` points, in this example, ` = 5, and distribute these to the share-
holders.

1 2 3 4 5

1

2

3

4

5

×

(x1, y1)
(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Figure 6.2: A 4-out-of-5 Shamir’s secret sharing scheme, with the secret equaling 0.

Using interpolation, any four shareholders may now recover the function f by inter-
polation, and subsequently may recover the secret by evaluating the function at f(0). To
increase the number of shareholders, we can again simply measure and distribute new
points.

Shamir’s (t+ 1, `)-secret sharing

In general, we can describe Shamir’s (t+ 1, `)-secret sharing as a way to share a secret S
among ` shareholders, such that any subset of k ≥ t+ 1 shareholders can recover S, and
no subset of k ≤ t shareholders can learn anything about S.

To achieve this, we choose a random function f ∈ F, such that f(0) = S and the degree
of f ≤ t. Each shareholder i receives the share (xi, f(xi))

1. Any k ≤ t + 1 shareholders

1Shareholder i may be given the share of any point on the function, not necessarily the point with
x-coordinate i.

34

may now compute f(0) from polynomial interpolation.

f(0) =
k∑
i=1

f(xi) ·
k∏

j=1,j 6=i

xj/(xj − xi)−1 (6.4)

Equation (6.4) shows how f(0) may be computed from the application of Lagrange inter-
polation, given at least t shares.

In addition to this, we make the observation that all operations involved in Shamir’s
secret sharing are linear.

f(0) = a

h(0) = b

(f + h)(0) = a+ b

(6.5)

Equation (6.5) shows the linear, homomorphic property under the additive operation.

g(0) = a⇒ c · g(0) = c · a (6.6)

Equation (6.6) shows the linear, homomorphic property under scalar multiplication.

As the operations involved in Shamir’s secret sharing are all linear, and the vector-
matrix products involved in PIR are also linear, we may use secret sharing to share PIR
queries. Additionally, because of this linearity, we can interpolate through each server’s
result of the vector-matrix product of its secret share and the database, and evaluate to
x = 0 to obtain the record we were looking for.

6.2.2 Detecting Bad Shares in Shamir’s Secret Sharing

Before applying Shamir’s secret to the context of PIR, we first need to consider bad shares.
A shareholder supplying a bad share may do so maliciously as a denial-of-service attack.
If we thoughtlessly applied Shamir’s secret sharing to PIR, we may still be susceptible to
malicious servers, and we will miss out on our desired v-byzantine robustness property. In
short, to obtain the v-byzantine robustness property, we have to be able to differentiate
legitimate shares from illegitimate ones.

On a linear polynomial, given that we have more shares than we need, and most of the
shares are legitimate, we can immediately tell by intuition which shares are bad. Below
are examples of a 2-out-of-` scheme with a bad share, and a 4-out-of-` scheme with a
bad share. We can imagine, as the number of bad shares increase, and the degree of the
polynomial increases, that it becomes more difficult to differentiate the legitimate shares
from the illegitimate shares.

35

1 2 3 4 5

1

2

3

4

5

×

Bad share

Figure 6.3: Showing the placement of a
bad share on a linear polynomial.

1 2 3 4 5

1

2

3

4

5

×

Bad share

Figure 6.4: Showing the placement of a
bad share on a quadratic polynomial.

Fortunately, efficient algorithms to tackle this problem exists[15]. I will not explain any
such algorithms in depth, but I will say that they allow us to efficiently determine what
shares, if any, are bad. Using such algorithms, we can detect illegitimate shares as long
as we have enough legitimate shares. Given a sufficient amount of remaining legitimate
shares, we will still be able to decode to the correct result. One such notable algorithm
originates from Reed and Solomon’s work on finite fields, which was originally designed
for Reed-Solomon Error-correcting codes and published in 1960[19]. Other algorithms
include Verifiable Secret Sharing algorithms, introduced by Chor et al. in 1985[20].

The fact that we may distinguish bad shares from good shares allows us to disregard
the bad shares, and given that enough good shares remain, we may interpolate and arrive
at the correct answer. This ability provides us with the v-byzantine robustness property.

6.2.3 Distributing Secret-Shared Queries

Now that we have a way of secret-sharing queries with robustness, we will look at
an example of how we may apply this in practice. To reiterate, the idea is to take
our query vector ~ei and share it component-wise (per section 6.2.1) to obtain shares
(Shamir1(~ei), Shamir2(~ei), . . . , Shamir`(~ei)).

We pass one shares to each server, and each server computes the vector-matrix product
of its share and the database, and returns the result. Upon receiving enough legitimate

36

responses, we may perform the interpolation and decode to the correct result.

Xi =
∑

Shamir(~ei) ·
∏

xj/(Xj −Xk)
−1 (6.7)

Equation (6.7) showing the interpolation from the response shares to the record.

6.2.4 Summarizing Goldberg ’07

Now that we have a basic understanding of Goldberg’s robust IT-PIR, we may attempt
to formalize according to the template given in chapter 4 on general information retrieval.

Sequences

SETUP (X; 1, . . . , `) −→ ((r, s,F);X, . . . , X) (6.8)

Equation (6.8) showing the setup sequence with corresponding output, where r is the
number of rows, s is the number of columns and the buckets are simply copies of the
database X.

QUERY (1λ; j) −→ (∆ = ⊥, (~q1, ~q2, . . . , ~q`)) (6.9)

Equation (6.8) shows the query sequence, where λ gives the security threshold, and there
is no auxiliary information. The components are the result of (λ + 1, `) component-wise
secret sharing of ~e over F.

RESPOND(X(i); ~qj) −→ (~ri := ~qj ·X(i)) (6.10)

Equation (6.10) shows the respond sequence, where each server returns the matrix-vector
product of the database and their share of the query-vector.

DECODE(∆;~r1, . . . , ~r`) −→

(
~Xj =

∑̀
i=1

~ri ·
∏̀

k=1,k 6=i

k/(k − 1)−1

)
(6.11)

Equation (6.11) shows the decoding of responses by interpolation to obtain the correct
result.

37

Properties

If we set ` > 1 and choose a threshold t ∈ [0 . . . `−1], the Goldberg ’07 scheme is k-correct
for any k > t and perfectly (t + 1)-private. Additionally, if r + s ∈ o(rs), then it is
non-trivial[17]. Moreover, the scheme is optimally v-robust for any v < k −

√
kt, using

Guruswami-Sadams algorithm[21].

6.2.5 Further improvements to Goldberg ’07 IT-PIR

Goldberg’s robustness is provably optimal, in the regard that it is impossible to decode a
single round of query-responses if there are more bad results than given by v < k −

√
kt.

However, Devet, Goldberg and Heninger showed in 2012 that we may indeed improve
this metric by repeating failed queries to gain information as to which servers are acting
maliciously[22]. As repeated queries fail, we gain more and more information as to which
servers are the culprits. Devet et al. showed that we may eventually decode any result,
given that there are enough points on the correct polynomial, that is, t + 1 points. This
holds even if every other participating server is malicious. This method uses unique
decoding multi-polynomial codes[22].

This gives the improved byzantine robustness as:

v < k − t− 1 (6.12)

Equation (6.12) showing optimal robustness using unique decoding multi-polynomial
codes.

38

Chapter 7

Amortized PIR

From previous chapters, we have looked at retrieving either a single bit or a single s-length
row from the database. In this chapter, we will look at how Amortized PIR allows us
to construct queries that may return multiple rows more efficiently than repeated single-
block queries. We will explore two general methods of achieving this, multi-block queries,
and batch codes. We will in this chapter use the term block interchangeably with the term
row.

7.1 Simple Multi-block Queries

Recall that by sending the server a standard basis vector, and having the server calculate
the matrix-vector product of the standard basis vector and the database, this will return
a row. If we wanted to fetch multiple rows, we could repeat this process y times to fetch y
different rows. However, there is a simple, more efficient way to achieve the same result.

If instead of sending y standard basis vectors, we were to send a matrix Q of standard
basis vectors, we may think of each row of the matrix as its own query. The server
can then perform a matrix-matrix multiplication and retrieve multiple rows. It turns
out that performing the Q · X matrix multiplication is faster than performing y vector-
matrix multiplications[23], using efficient algorithms such as Strassen’s algorithm or other
equivalents.

While this simple construct provides a significant speedup over repeated single-block
queries, there are even more efficient methods for performing multi-block queries available.

39

7.2 HHG ’13 - Multi-block IT-PIR

Henry, Huang and Goldberg released in 2013 a paper on efficient Multi-block queries[9]
using Ramp Sharing Schemes. To understand how this may be achieved, we first need to
understand ramp sharing schemes. Note that the HHG’13 method is applicable only to
PIR protocols using secret sharing.

7.2.1 Ramp Sharing Schemes

Ramp Sharing Schemes began as a field of study after the discovery of Shamir’s Secret
Sharing. The operating assumption of ramp sharing schemes is that while Shamir’s secret
sharing scheme may not reveal any information about the secret unless the privacy thresh-
old t is met, a ramp sharing scheme may reveal some partial information if a coalition of
t ≤ k < t + q servers collude. In return, we may encode more secret bits per share using
ramp sharing schemes, namely q bits.

Ramp secret gives absolute privacy if k ≤ t shares are obtained, no privacy if k > t+q
shares are obtained, and something in between if t ≤ k < t + q shares are obtained[15].
We will in section 7.2.3 on v-Byzantine robustness look at an approach to dealing with
the t ≤ k < t+ 1 case.

We will look at two different options of how we may use ramp sharing schemes for
encoding additional bits. Both options will encode q secrets in a polynomial of degree
(t+ q − 1).

Coefficients as the secrets

If we recall Shamir’s secret sharing scheme, we remember that we may define the secret
as the constant of a polynomial function.

f(x) = ax2 + bx+ c (7.1)

Equation (7.1) shows an exponential function that may be used for Shamir’s secret
sharing, with the secret equaling f(0) = c.

If we want to attempt to use coefficients as the secrets, we can try to introduce another
secret to the function in equation (7.1) as b. However, we should first recall that Shamir’s
secret sharing has the property of being homomorphic with respect to both addition and
multiplication(fully homomorphic). With this in mind, we will observe that if we were to

40

perform some operation where we multiply two shares resulting from the function in (7.1),
the constant term c behaves nicely, but the linear term b does not multiply appropriately.

(ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd (7.2)

Equation (7.2) showing the non-homomorphic property with regards to multiplication
and the linear term b.

This non-homomorphism with regards to multiplication suggests we may run into
difficulties when calculating products of shares. As this is something we need to be able
to do in order to interpolate and recover secrets, we will rather consider another option.

Evaluations as the secrets

This other option is using function evaluations at the secrets. In short, we want the
evaluation of f(0) to be the first secret, and the evaluation of f(1) to be the second
secret, etc. To achieve this, we can randomly generate a point s0 = (x0, y0) to get our
first point, and s1 = (x1, y1) to get our second point. Once we have our q = 2 points, we
can simply interpolate to a polynomial of degree d = t+ q− 1 capturing these points. We
can then proceed to generate shares by sampling new points on this polynomial.

1 2 3 4 5

1

2

3

4

5

×

×

secret0

secret1

share share

share

share

share

Figure 7.1: Showing how shares may be generated from q = 2 secret points as evaluations
of their interpolated polynomial of degree 4, yielding a the privacy-threshold as t = 3

We observe that this method shows the homomorphic property with regards to mul-
tiplication. I.e., when we multiply two polynomials together, every point multiplies as
well.

41

∀i, (f · g)(i) = f(i) · g(i) (7.3)

Equation (7.3) showing the homomorphic property with regards to multiplication.

This property allows us to use evaluations-as-the-secrets ramp secret sharing for PIR.

7.2.2 Column-wise Ramp-scheme Sharing

Now that we have a way to encode more secret bits in our shares by using ramp secret
sharing, we will see how we may use this to achieve efficient multi-block IT-PIR requests.

To construct such an efficient query, let us first consider the q number of query vectors
as a matrix.

Q =

~ej1
~ej2
...
~ejq

 =

0 1 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 (7.4)

Equation (7.4) showing a vector of queries as a matrix.

Contrary to the theme of chapter 5, instead of component-wise secret sharing the
queries, we are going to ramp-scheme share the matrix column-wise.

Q =

~ej1
~ej2
...
~ejq

 =

0 1 0 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

~F (x) = 〈 f1(x), f2(x), f3(x), f4(x), . . . , fr(x) 〉

(7.5)

Equation set (7.5) shows the column-wise ramp-scheme sharing of the query matrix.

To ramp-scheme share the matrix column-wise, we take each column of the matrix,
and compute a ramp scheme that encodes that column, yielding a polynomial. Doing this
for every column yields a vector ~F (x) of polynomials. Note that |~F (x)| =

√
|X|.

Now, for every server i, we evaluate the vector component-wise at some x-coordinate

xi
1, yielding a vector of shares ~F (xi) for each server. Each vector ~F (xi) is sent to its in-

tended server i, upon which, server i calculates the vector-matrix product of the database

1Server i does not necessarily compute the evaluation for x-coordinate i.

42

and the vector, and returns the result. The client, upon receiving the responses, may
interpolate to 0 to retrieve the first block, at 1 to retrieve the second block, etc. In this
fashion, we may fetch q blocks at a time. Note that the since the size of a multi-block query
and a single-block query are the same, and both queries appear random to the servers,
the servers can not differentiate between single-block queries and multi-block queries.

7.2.3 On v-Byzantine Robustness and Privacy

Given the t ≤ k < t + q case, we will not have the same level of privacy as we had in
Goldberg’s ’07 IT-PIR protocol, given the same security parameters. In other words, to
achieve these efficient multi-block queries while without changing security parameters,
we must sacrifice some v-byzantine robustness[15]. However, Henry et al. writes in their
2013 paper[9] about the possibility of using a game-theoretic approach to assist in keeping
malicious servers out of the server pool. The idea goes something like this:

If we issue multi-block queries, we are vulnerable to byzantine servers. However,
if we issue single-block queries, the queries have optimal robustness. Servers cannot
differentiate between single-block and multi-block queries. If we usually issue multi-block
queries, and occasionally issue single-block queries, the single-block queries may act as
checks to see that the servers are behaving honestly. If a single-block query with optimal
robustness fails, we will be able to identify the servers responsible, and kick them out of
the server pool if we deem them malicious. Given that the byzantine servers have some
incentive to be part of the pool, they must act like all requests are single-block, optimally
robust queries.

7.2.4 Summary

((r, s,F);X, . . . , X)←− SETUP (X; 1, . . . , `)

Equation (7.2.4) shows the setup sequence with corresponding output, where r is the
number of blocks, s is the number of columns and the buckets are simply copies of X.

(∆ = ⊥, (~q1, ~q2, . . . , ~q`))←− QUERY (1λ; j1, . . . , jq) (7.6)

Equation (7.6) shows the query sequence, where λ gives the privacy threshold, and there
is no auxiliary information. The query shares are the result of (λ + 1, q, `)-ramp secret
sharing of ~e over F.

(~rj := ~qi ·X(i))←− RESPOND(X(i), ~qi) (7.7)

43

Equation (7.7) shows the respond sequence, where each server responds with the matrix-
vector product of the database and the query vector.

~Xjh =
∑̀
i=1

~ri ·
∏̀

k=1,k 6=i

(k − h+ 1)/(k − 1)−1 ←− DECODE(∆;~r1, . . . , ~r`) (7.8)

Equation (7.8) shows the decoding of responses by interpolation to obtain multiple q
records.

7.2.5 Properties

Given ` > 1 and t, q ∈ [0, . . . , `−1], the scheme is k-correct for any k > t+q and perfectly
(t+ 1)-private.

Additionally, given that r + s ∈ o(rs), it is also non-trivial. Moreover, it is v-robust
for any v ≤ k − t− q + 1.

7.2.6 Cost Comparison with Goldberg’07

We may compare the costs of this protocol with the Goldberg’07 protocol. We will look
at the costs of fetching q blocks. The costs are given per server as the following table.

Goldberg ’07 HHG ’13
Upload: q · r r F elements

Download: q · s s F elements
Computation: 2 · q · r · s 2 · r · s F elements

Storage: r · s r · s F elements

Table 7.1: Costs of the Henry et al. multi-block IT-PIR protocol, compared to Gold-
berg’07.

7.3 Batch Codes

Ishai, Kushilevitz, Ostrvsky and Sahai introduced batch codes in their 2004 paper titled
”Batch Codes and Their Application”[24]. Batch codes encode the database into buckets,
and will allow us to fetch records from multiple buckets with some higher performing

44

metric than performing the repeated vector-matrix product. While the HHG’13 protocol
is applicable only to secret sharing based PIR protocols, batch codes are generic constructs
that may be applied to any PIR-protocol.

Definition 7.3.1. A (n, N, q, m, t)-batch code over F encodes a database X ∈ Fr×s into
an m-tuple of buckets in Fdr/me×s in such a way that a client can obtain any subset of q
blocks from X by querying each bucket at most t times.[15]

One of the batch codes introduced by the 2004 paper is what we refer to as a Subcube
Code. We will in this section look at applying a 2-way subcube code, a 3-way subcube
code and a recursive subcube code.

7.3.1 2-way Subcube code

Consider that we have a database X of size |X| = 60 field elements, represented as a
matrix. We split the database into two partitions, A and B.

X =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

⇒
A =

� � � � �
� � � � �
� � � � �

B =

� � � � �
� � � � �
� � � � �

Figure 7.2: Partitioning the database into two buckets.

Suppose we wanted to request block ~x2 and ~x6 from X. If we were to send a query as
~q = 〈010001〉, the query would be the same size as a single-record query, but the server can
now return two blocks by splitting the query and super-positioning it over the partitions.

~q = 〈010001〉 ·X ⇒
~q0 = 〈010〉 · A = ~x2

~q1 = 〈001〉 ·B = ~x6
(7.9)

Equation (7.9) showing how an m-bit query may be interpreted as two separate queries.
Also showing how two blocks can be returned, given that they reside in different buckets.

We see that by splitting the database into two partitions, or buckets, we may retrieve
two blocks by sending a single query, given that the blocks being requested reside in
different buckets. This simple example nicely explains the concept behind subcube codes.

45

The costs of fetching two blocks, before and after introducing the 2-way subcube code,
may be given by the following table.

Upload: 2× 6 = 12 F elements ⇒ Upload: 2× 3 = 6 F elements
Comp.: 2× 60 = 120 F elements ⇒ Comp.: 2× 30 = 60 F elements
Download: 2× 5 = 10 F elements ⇒ Download: 2× 5 = 10 F elements

Table 7.2: The cost of fetching two non-arbitrary blocks, before and after applying the
2-way subcube code with two buckets.

Notice from table 7.2 how the upload and computational costs are reduced by a factor
of two. While we have achieved a nice performance increase, this approach does not work
for all pairs of records, as there is no way to fetch two records from bucket A, or two
records from bucket B. To support arbitrary two-block queries, we can introduce a third
bucket, being the XOR of the two other buckets.

X =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

⇒
A =

� � � � �
� � � � �
� � � � �

B =

� � � � �
� � � � �
� � � � �

A⊕B =

� � � � �
� � � � �
� � � � �

Figure 7.3: Partitioning the database into two buckets plus an additional bucket as the
XOR of the other buckets.

Now, if we want to fetch two records from bucket A, for example ~x1 and ~x2, we may
construct the query-vector as:

~q0 = 〈100〉 · A = ~x1

~q1 = (〈010〉 ·B)⊕ (〈010〉 · A⊕B) = ~x2

~q = (~q0, ~q1)

(7.10)

Equation (7.10) showing how we may construct a query which can retrieve two arbitrary
records.

We see that by splitting the database into two buckets A and B, and by creating a
third bucket as the XOR of A and B, we may now retrieve any two arbitrary records by

46

sending a single query. The costs of fetching two blocks, before an after introducing the
subcube-code with two plus one buckets, may be given by the following table.

Upload: 2× 6 = 12 F elements ⇒ Upload: 3× 3 = 9 F elements
Comp.: 2× 60 = 120 F elements ⇒ Comp.: 3× 30 = 90 F elements
Download: 2× 5 = 10 F elements ⇒ Download: 6× 5 = 30 F elements

Table 7.3: The cost of fetching two arbitrary blocks, before and after applying the 2-way
subcube code with two plus one buckets.

As we see from table (7.3), we can reliably fetch two records with one query at a lower
upload and computational cost than performing two single-block queries. However, the
download cost has tripled. If the upload or computational cost is the bottleneck of a PIR
scheme, this method might prove useful at the expense of higher download costs.

7.3.2 3-way Subcube code

If we build on the previous example, and now construct a subcube code with three buckets
plus an additional bucket being the XOR of the three buckets, we may again fetch an
arbitrary block pair. This construct lowers our storage and computational costs, at the
expense of an increased download cost.

X =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

⇒
A =

[
� � � � �
� � � � �

]
B =

[
� � � � �
� � � � �

]
C =

[
� � � � �
� � � � �

]
A⊕B ⊕ C =

[
� � � � �
� � � � �

]

Figure 7.4: How we may partition the database to obtain lower storage and computational
costs than we saw was the case for the 2-way subcube code.

We note that the download cost for three blocks has increased by a factor of 4 compared
to two single-block queries, while the computational and upload-costs have only increased
by a factor of 4

3
. If fact, we can continue to create more and more fragmented n-way

subcube codes, and this relationship will continue linearly.

47

However, there exists a way to obtain better metrics by applying the idea of subcube
codes recursively.

7.3.3 Recursive Subcube Codes

To achieve a recursive subcube code, we merely repeat the process we performed for the
original database X, to each of the buckets A, B and A⊕B resulting from that subcube
code.

X =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

⇒

A =

� � � � �
� � � � �
� � � � �
� � � � �

⇒

B =

� � � � �
� � � � �
� � � � �
� � � � �

 . . .

A⊕B =

� � � � �
� � � � �
� � � � �
� � � � �

 . . .

AA =

[
� � � � �
� � � � �

]
AB =

[
� � � � �
� � � � �

]
AA ⊕ AB =

[
� � � � �
� � � � �

]

Figure 7.5: Showing how we may apply the idea of a subcube-code recursively.

By creating a recursive subcube code of recursion level k, we may fetch 2k+1 blocks
per query, and the cost the query may be expressed by the following table.

Download: 3k+1s F elements
Upload: 1.5r F elements
Comp.: 1.5k+1rs F operations
Storage: 1.5k+1rs F operations

Table 7.4: The costs associated with a k-level recursive subcube code.

Note that all servers must hold all buckets for subcube codes to be function.

48

7.3.4 The U-ary code

While schemes involving subcube codes require all servers to hold copies of all buckets, the
U-ary code, proposed by Ryan Henry in 2016[25], introduces batch-codes where servers
hold one unique bucket each. We will first look at how to setup in order to be able to
retrieve a single block, then we will move on to see how we may fetch multiple blocks.

Single-block Retrieval - Setup

In order to set up for the U-ary code, we are going to begin by relabeling the database.
We will go from considering the database as a matrix consisting of r rows and s columns
to thinking of it as dr/ue sub-matrices, each of which consisting of u rows and s columns.

� � � � . . . �
� � � � . . . �
� � � � . . . �
...

...
...

...
. . .

...

� � � � . . . �

⇒

X0 ∈ Fu×s

X1 ∈ Fu×s
...

...
...

...
. . .

...

Xdr/ue−1 ∈ Fu×s

Figure 7.6: How we may view a single, large matrix as multiple, stacked matrices.

We will encode these stacked matrices using a ramp sharing scheme with a privacy
threshold of zero. To do this, we encode each of the sub-matrices Xi column-wise,
using interpolation to find the unique length-s vector of degree (u − 1) polynomials
~di = 〈di0(x), di1(x), . . . , di(s−1)(x)〉 such that dik(h) is equal to the component in posi-
tion (h, k) of Xi for every k = 0, . . . , s− 1 and every h = 0, . . . , u− 1.[25]

X0 ∈ Fu×s

X1 ∈ Fu×s
...

...
...

...
. . .

...

Xdr/ue−1 ∈ Fu×s

⇒

~F0(x) ∈ F[x]s

~F1(x) ∈ F[x]s

...
...

...
...

. . .
...

~Fdr/ue−1(x) ∈ F[x]s

Figure 7.7: How we may go from a vector of sub-matrices to a matrix of polynomials

Evaluating the first polynomial of sub-matrix ~F0 at 0, we will obtain the record in the

49

first column, first row of the sub-matrix X0. Evaluating the same polynomial at 1, yields
the record in the first column, second row of the sub-matrix X0, up to an evaluation of
u − 1, where the first column, last row of the sub-matrix may be retrieved. Evaluating
the second polynomial of sub-matrix ~F0 at 0, yields the second column, first row of the
sub-matrix, etc.

In order to distribute the buckets to the servers, we may now evaluate the matrix
component-wise at different values x ∈ [0, . . . , `− 1], and give the results to the ` servers
as their bucket.

~F0(x0)
~F1(x0)

...
~Fr/u−1(x0)

 ∈ Fdr/ue×s,

~F0(x1)
~F1(x1)

...
~Fr/u−1(x1)

 ∈ Fdr/ue×s, . . . ,

~F0(x`−1)
~F1(x`−1)

...
~Fr/u−1(x`−1)

 ∈ Fdr/ue×s

Figure 7.8: How each server’s bucket is created though column-wise ramp sharing of the
data.

Single-block Retrieval

In order to query servers holding such a bucket for a record i, we first need to rewrite
the index i. We use the division algorithm to find the quotient and the remainder from
dividing i by u. The quotient is going to tell us which row of the polynomial matrix
encodes the record we are looking for, and the remainder will tell us which polynomial of
that row we must evaluate to retrieve the record we are looking for.

i = u · iq + ir (0 ≤ ir < 0) (7.11)

Equation (7.11) showing how we may rewrite the index to be able to query the buckets.

Once we know in what row and what column the polynomial representing our record
resides, we will secret share the standard basis vector having the 1 in the quotient position,
and encode it, rather than at x = 0 as we typically do, at x = ir.

SecretShare(~eiq ∈ F1×dr/ue) at x = ir (7.12)

Equation (7.12) showing how we construct the query to obtain a record from the dis-
tributed buckets.

We send one share of the query to each server. After we are returned the dot-product
of each query share and bucket, we may interpolate the response to ir, yielding the record
we were looking for[25].

50

The cost of fetching a single record, per server, may be expressed as the following
table:

Goldberg’07 Henry’16
Upload: r dr/ue F elements
Download: s s F elements
Comp: 2 · r · s 2 · dr/ue · s F operations
Storage: r · s dr/ue · s F operations

Table 7.5: The costs of fetching a single block, per server. Henry’16 u-ary codes compared
to Goldberg’07.

We see that by using the u-ary code, we may reduce costs by a factor of u. However,
this code may currently not be viewed as a batch code, as we are not fetching multiple
records. To fetch multiple records, we will not look at the multi-block retrieval version of
this construct.

Multi-block Retrieval

To arrive at how we may fetch multiple records, let us first remember how we fetched the
j-th block from the k-th layer, where k is the x-coordinate we evaluated to. We recall
that this was done by computing the standard basis vector at x = k. If we wish to also
fetch the j′-th block from the k-th layer, we are unable to do so, as we cannot encode two
different standard basis vectors, e.g. sbv(j) and sbv(j′) at the same x-coordinate. On the
other hand, if we want to query from a different layer, we can achieve this. If we evaluate
the polynomial at k′, we get another standard basis vector. We may use this observation
to recover both blocks. However, we note that a single query may fetch at most one block
from each layer, which is the same position we were in when we first started looking at
subcube codes.

In order to fetch multiple, arbitrary blocks, regardless of layer, we can simply put
every block in its own layer. Rather than encoding the x-coordinate, if we want the first
row of the database, we may encode at x = 0, and the second row at x = 1, etc. Now,
instead of dividing i by u to find the row in the polynomial matrix we want, we may
encode at the x-coordinate corresponding to the actual row-index.

There is however a downside to this technique – The field we need to be able to
construct polynomials of sufficient degrees must be larger than what we are used to.
Usually, when we do Shamir’s secret sharing-based PIR, we operate in rather small fields,
for example GF (28), as small fields provide fast computations. Now, depending upon the
size of the database, we will need a bigger field.

|F| ≥ r + ` (7.13)

51

Equation (7.13) showing the required field size in order to encode every block in its own
layer[15].

Now that we have a way of fetching q arbitrary blocks at a time, we may compare the
costs per server to that of Goldberg’07.

Goldberg’07 Henry’16
Upload: q · r dr/ue F elements
Download: q · s s F elements
Comp: 2 · q · r · s 2 · dr/ue · s F operations
Storage: r · s dr/ue · s F operations

Table 7.6: The costs of retrieval q block, per server. Comparing Henry’16 to Goldberg’07

We see from table (7.6) that by using Henry’s u-ary multi-block retrieval, we may
reduce our costs by a factor of u.

However, we will with this u-ary code meet the same implications to v-Byzantine
robustness as we did with the HHG 13-paper[9]. Fortunately, we may also apply the
game-theoretic perspective from section 7.2.3, which states that it may be feasible to
achieve equivalent robustness to that achieved in section 6.2 from applying the game-
theoretic strategy of sending single-block queries as honesty-checks.

52

Chapter 8

Expressive Queries

All the PIR-protocols we have gone through so far assumes that the querier somehow
knows the index i of the record he wants to retrieve. However, if we think about how we
normally access digital information, we may notice a sharp contrast to this assumption.
For example, we rarely open our bookmark-folder in our web-browser and look for the
bookmark at position i = 42. Rather, we are used to searching for a resource. For PIR
to be useful in such scenarios, it seems like we need some way to perform more expressive
and realistic queries. We will in this chapter look at some different methods for achieving
expressive queries.

8.1 PIR by keywords

One way to achieve PIR by keywords is given by the Chor et al. 1997 paper titled
”Private information retrieval by keywords”[26]. The paper shows how we may use a
B+ tree, allowing the querier to recursively query the tree using PIR for the purpose of
arriving at either the relevant data, or the index of the relevant data.

a-o o-z

a-i i-o

a-c c-e e-g g-i i-k k-m m-n n-o

o-t t-z

o-q q-t ∅ ∅ t-w w-z ∅ ∅

Figure 8.1: A B+ tree allowing us to query by keyword.

53

For example, let us say a querier is looking to query by the keyword ”p” and the
queryable structure is given by the B+ tree in figure 8.1. In order to perform a query by

keyword over this tree, the querier will first download the root-node a-o | o-z . Trivial

PIR may be used to download the root node, as we are querying by level, and this level
only has one root, so there is no secret to protect yet. Upon having downloaded the root
node, we can tell by the contents of the root node that in order to find the keyword ”p”, we
must query the next level of the tree for the index contained in the right option of the root

node, the o-z -index. We may now query the second level of the tree with PIR using this

index to obtain the contents of the o-t | t-z node. Upon having downloaded the contents

of the o-t | t-z node, we can now tell that to find the next relevant child, we may query

the next level of the tree using the index contained in the left option of the o-t | t-z node,

the o-t -index. This yields the o-q | q-t | ∅ | ∅ leaf node. The o-q | q-t | ∅ | ∅ node,

being a leaf node, may in the o-q option either contain the data we were looking for, or
indices to where we may find that data. Note that by constructing a larger tree, we may
express more detailed keywords than simply ”p”.

If we look at the cost of performing a query-by-keyword of a B+ tree structure, we
can start by observing that the cost of querying the bottom layer is the same as for a
normal PIR query of the whole keyword database. We may give this cost of querying the
complete keyword database as C. Now, if all but the bottom layer are structured as a
binary tree, the size of the j − 1-th layer is generally half the size of the j-th layer. Thus
we may write the sum of costs of a complete query traversal as the following equation.

C +
1

2
C +

1

4
C +

1

8
C +

1

16
C + · · · ≈ 2C (8.1)

Equation (8.1) giving the cost of a complete query traversal as 2C.

8.2 SQL-type Queries

We will not explore any papers on SQL-type queries, but it is worth mentioning that
such systems do exist[27][28], some of them using the PIR-by-keywords primitive given in
8.1[15].

8.3 Distributed Point Functions

Distributed Point Functions were introduced in 2014 by Gilboa and Ishai[29], and among
other things, allow us to achieve a very compact additive secret sharing of a query vector

54

~ej ∈ Fn. We will in this section look at both how DPF can be used to achieve compact
shared query vectors, and how DPF may be used to query by keyword.

Informally speaking, a DPF is a representation of a point function Px,y by
two keys k0 and k1. Each key individually hides x, y, but there is an efficient
algorithm Eval such that Eval(k0, x

′) ⊕ Eval(k1, x′) = Px,y(x
′) for every x′.

Letting Fk denote the function Eval(k, ·), the functions Fk0 and Fk1 can be
viewed as an additive secret sharing of Px,y[29].

8.3.1 Compact query in 2D using DPF

To understand how DPFs may be used for expressive queries, we will first look at how we
may use a Distributed Point function to create a compact 2D query representation.

I will now show how we can represent the query vector as more compact, using a 2D
distributed point function. To begin, we will first go from viewing our query vector ~ej as
a bit-string of length n, to a square matrix Q of size x× y, such that xy = n.

~ej = 〈 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 〉 (8.2)

Equation (8.2) showing how we may split the query vector into a square matrix.

To explain how we will form a more compact representation of Q using a DPF, I will
first present the equation as equation (8.3). We will then step through the equation, and
end up with an algorithm which outputs two compact shares of the original query-matrix.

Q =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 =

G(s0)
G(s1)
G(s2)
G(s3)
G(s4)

+

b0
b1
b2
b3
b4

 · ~v
⊕

G(s0)
G(s1)
G(s2)
G(ŝ3)
G(s4)

+

b0
b1
b2

1− b3
b4

 · ~v
 (8.3)

Equation (8.3) showing the use of distributed point functions to form two shares of a
query-matrix querying for the element in row four, column two.

We will start by generating x + 1 random, short seeds s0, s1, s2, s3, ŝ3, s4. For each
seed si, we will use the seed as the input to a PRNG to generate a random bit-string of
length y, presented in equation (8.3) as the G(si)-function. For every row of the query-
matrix having only zeroes, we will provide the two shares with equal evaluations of the
G()-function, namely G(s0), G(s1), G(s2), G(s4). However, for the row of the query matrix
containing the 1, i.e. row 4, we will provide the shares with PRNG-evaluations of two
different seeds G(s3) and G(ŝ3).

55

G(s0)
G(s1)
G(s2)
G(s3)
G(s4)

 . . .
⊕

G(s0)
G(s1)
G(s2)
G(ŝ3)
G(s4)

 . . .

So far we may note that every row of the two query-shares are identical, except for
the 4th row, where G(s3) and G(ŝ3) appear to be two completely random, unrelated
bit-strings. This means that by taking the XOR of these two query-shares will yield
something along the lines of the following matrix.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
? ? ? ? ?
0 0 0 0 0

As we want to end up with our original query-matrix Q, it becomes apparent that we
now need some way to ensure that the XOR of the two shares ends up with a 1 in the
same position as in our original query-matrix, i.e. row four, column two.

To be able to do this, we will first generate and add one random bit per row as
b0, b1, . . . , b4. Both servers will be given the same bits, except for the bit corresponding to
the row of the query vector containing the 1 -value, where we will give the servers opposite
values, namely b3 and 1− b3.

G(s0)
G(s1)
G(s2)
G(s3)
G(s4)

+

b0
b1
b2
b3
b4

 . . .
⊕

G(s0)
G(s1)
G(s2)
G(ŝ3)
G(s4)

+

b0
b1
b2

1− b3
b4

 . . .

Now that the two rows both have randomness, plus an opposite bit-value in the row
corresponding to the row we are interested in, we may compute a vector to vector-matrix
multiply with each of the shares. The vector will cancel out on every row, except for the
row with the differing bit-value, where one share will perform the vector-matrix multi-
plication, and the other will not. If we construct the vector correctly, we will be able to
recover the content of the bit we were interested in.

To achieve this, we will construct the vector ~v as given by the following equation.

~v := G(s3)⊕G(ŝ3)⊕ 〈 0 1 0 0 0 〉 (8.4)

56

Note that because of the one bit we introduced as opposites between the shares, b3 and
1− b3, one share is going to perform the vector-matrix multiplication with the vector ~v at
row four, and the other is not. If we consider the share that did perform the vector-matrix
multiplication, we note that by having XORed this share with both G(s3) and G(ŝ3), the
original randomness, being either G(s3) or G(ŝ3), is cancelled out, and additionally, we
now introduced randomness that is exactly the same randomness as in the other share.
If we then consider that we XOR these shares together, we will be left with the original
content of the original query-matrix Q. All we need to do now, is to retrieve the bit
by XORing the result with a standard basis vector containing a 1 in the position of the
column. We may include this basis vector as an XOR in ~v, as this the standard basis
vector calculation will only be performed for one of the shares. This will yield the original
query matrix Q.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Voila! We now have a way of querying that is more compact than the standard basis

vectors of length n, given that the sum of seeds, random bits and the vector is smaller
than the original query vector of size n. We may note take note of what data we needed
to compute each share, which translates to what we must upload to each of the servers
to perform a query.

k1 = { (s0, b0)
(s1, b1)
(s2, b2)
(s3, b3)
(s4, b4), ~v}

k2 = { (s0, b0)
(s1, b1)
(s2, b2)
(ŝ3, 1− b3)
(s4, b4), ~v}

(8.5)

Equation (8.5) showing how we may express two shares of a query vector.

This means that the cost of performing such a query is proportional to
√
n, as we

have one PRNG-seed for every row x, plus a vector that is proportional to the number of
columns in a row y, and both of these are approximately given as

√
n.

Formally, the upload cost can be given bt the following equation.

≈
√
n(log|F|+ |s|+ 1) bits (8.6)

Equation (8.6) showing the upload cost of a compact 2D query using a PDF.

Additionally, we can apply this idea in higher dimensions.

57

8.3.2 Compact query in 3D using DPF

In order to achieve a three-dimensional query using DPF, we will begin by viewing our
n-bit query as a cubic matrix with dimensions x = y = z = 3

√
n.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

z

y

x

Figure 8.2: A 3D representation of a cubic query matrix, prior to DPF secret sharing.

The goal is to start with a query cube, and end up with a more compact, shared
representation of the query cube. We will refer to the dimensions of the cube as rows,
columns and layers. Similarly to the 2D DPF-query, we are going to begin by generating
PRNG-seeds. However, the generated PRNG-seeds will themselves be used to generate
a new generation of PRNG-seeds. The new generation of PRNG-seeds will be used to
generate two identical psuedorandom shares of our query-cube, except for the layers cor-
responding to the 1-position of the original query-cube, where the seeds, and thus the
evaluation of the seeds, and thus the values, will differ.

We will also generate a random bit for each layer of the original query cube, except for
the layer corresponding to the 1-position of the query cube, where we generate two bits
as bi and 1 − bi, and provide these values to the corresponding layers of the two shares.
As so, all layers of the two shares will be equal, except for one layer corresponding to the
1 in the original query cube, where the values appear random. Similarly to the 2D DPF
construct, when we XOR the two query-shares together, we will end up with zeroes in
every layer but the layer corresponding to the 1 in the original query cube, where all the
values of that layer will appear random. Also similarly to the 2D DPF construct, we will
now need to construct vectors to allow us to retrieve the exact part of the layer we are
interested in. We must construct two vectors, as we need to recover a single value from a
two-dimensional matrix.

58

For the following example, we are recovering the value in the third layer, second column
and fourth row, i.e. z = 3, y = 2, x = 4. As we have already recover layer z = 2 from
the stated generation of seeds and random bits, we may proceed to construct the row and
column vectors ~v0 and ~v1.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

k1 = { (s0, b0)

(s1, b1)
(s2, b2)
(s3, b3)
(s4, b4),
~v0, ~v1 }

k2 = { (s0, b0)
(s1, b1)
(ŝ2, 1− b2)
(s3, b3)
(s4, b4),
~v0, ~v1}

Figure 8.3: The query cube layer z = 2. Also the complete keys needed to represent the
position of the 1 -value in the original query cube.

The first vector ~v0 must be constructed to recover some representation of the fourth
row, given by the following equation.

~v0 := G(s2)⊕G(ŝ2)⊕ 〈0 0 0 G(ŝ2)[3] 0〉 (8.7)

Equation (8.7) showing how we construct a vector to recover a representation of the
fourth row.

The second vector ~v1 must be constructed to recover some representation of the second
column of the fourth row, given by the following equation.

~v1 := G(G(s2)[3])⊕G(G(ŝ2)[3])⊕ 〈0 1 0 0 0〉 (8.8)

Equation (8.8) showing how we construct a vector to recover a representation of the
appropriate column.

Having given these values, we may indeed recover the original query cub from the
two shares constructed, and we may therefore also recover the value in the database
corresponding to the 1 -position in the cubic query matrix. Also note that we are able to
more compactly represent our original query cube by two keys, k1 and k2, given that the
size of a key is smaller than n.

Formally, the upload cost may be given by the following equation.

≈ 3
√
n(2 log|F|+ |s|+ 1) bits (8.9)

Equation 8.9 showing the upload cost of a performing a query in a three dimensional
database of size xyz = n, using a 3D DPF shared Query.

59

8.3.3 DPF queries in ND

Now that we have applied this construct in both two and three dimensions, we may apply
equivalent logic to obtain DPF-constructs of higher dimensions.

By applying this structure in N dimensions, the upload costs may be given by the
following table[15].

N dimensions Upload Cost
3 ≈ (2 log|F|+ |s|+ 1) 3

√
n bits

4 ≈ (3 log|F|+ |s|+ 1) 4
√
n bits

...
...

k ≈ ((k − 1) log|F|+ |s|+ 1) k
√
n bits

...
...

log n ≈ ((log n− 1) log|F|+ |s|+ 1)2 bits

Table 8.1: Upload costs of performing DPF-based queries in k dimensions for a database
of size n

What relevance has DPF-based queries for PIR-by-keywords?

While we now have a way to represent our standard basis vector very compactly, recall
that our goal is to perform efficient PIR-by-keyword queries. To achieve this, we will look
at specifically the N = log n case of the DPS-based query.

8.3.4 PIR for key-value stores via (log n)D DPF queries

If we apply the method for constructing compact, private queries for the maximum pos-
sible dimension N = log n, we will observe that this construct may be viewed as a binary

60

tree.

(s0, b0, ~v0) • (ŝ0, 1− b0, ~v0)

~v1 • • ~v1

... ...
...

. . .
...

~vlogn • . . . • ~vlogn

Figure 8.4: Showing how we may view a N = log n-dimensional DPF query as a binary
tree, with each of the log n vectors having size 2.

Now that we can represent queries for records using logarithmic space, we may consider
the tree to have an exponential set of leafs, such that each leaf corresponds to a possible
keyword. Querying such an exponential space using a logarithmic traversal technique will
yield polynomial time[15].

Using this idea, the querier may construct the query with vectors such that the query
will end up with a 1 -value in the position of a particular keyword, and zero for everything
else.

To do this, we will relabel the query vector ~e as:

~ej = 〈�� . . . 1 . . .�〉 ⇒

DPF (k1; keyword1)⊕DPF (k2, keyword1)
DPF (k1; keyword2)⊕DPF (k2, keyword2)

. . .
DPF (k1; keywordj)⊕DPF (k2, keywordj)

. . .
DPF (k1; keywordn)⊕DPF (k2, keywordn)

T

(8.10)

Equation (8.10) showing the relabelling of the query vector using DPF to search for
keywords.

The servers will evaluate all representations of keywords in the query-vector, and so
we may search for multiple keywords. Each server will respond with a share of a vector
containing a 1 -value in every row-index a keyword was found. After the querier decodes
this vector, the querier can then use the indices of the 1 -values to perform standard PIR
queries, and obtain the records.

61

DPF (k1; key1)⊕DPF (k2, key1)
DPF (k1; key2)⊕DPF (k2, key2)

. . .
DPF (k1; keyj)⊕DPF (k2, keyj)

. . .
DPF (k1; keyn)⊕DPF (k2, keyn)

T

·

key1 X11 X12 . . . X1s

key2 X21 X22 . . . X2s
...

...
...

. . .
...

keyn Xn1 Xn2 . . . Xn2

 (8.11)

Equation (8.11) showing querying by keywords. The query will return standard basis
vectors describing in which positions the keywords were found.

We can use this construct to search quite efficiently. The upload cost of a search query
may also be given by table 8.1.

62

Chapter 9

Anonymous Information Retrieval

As we now have some degree of understanding as to how private information retrieval
may function, it would be interesting to give a practical example of a case where PIR may
solve an existing problem in a practical, deployed environment. To give such a case, we
will first give a short introduction into the field of anonymous information retrieval and
Tor. Then we will look at how PIR may be used to solve a problem in the current Tor
protocol.

9.1 Properties

9.1.1 Anonymity

Anonymity is the notion of hiding one’s identity. However, in the online world, this is
easier said than done. Commercial actors stand to profit from knowing who you are and
for example what ads they should serve you. Such actors may attempt to track your
activity as you browse the internet, effectively removing your online anonymity.

In addition to this, internet routers are dependent upon knowing the sender and
receiver-addresses of IP-packets for successfully routing traffic, and this information is
not encrypted. Even if we encrypt the contents of our messages, an eavesdropper may
deduce valuable information from simply looking the recipient of the messages and tying
that to our identity. What we would like, is a way to obtain perfect anonymity. Perfect
anonymity, in the context of Anonymous Information Retrieval, is the notion that a
request sent from a client C, to a server S, over a network N , should never compromise
the identity of C, even if an eavesdropper E is able to capture the request within N . Of
course, perfect anonymity can only account for interactions within N . Device security,

63

such as client and server security, falls well outside the scope of Anonymous Information
Retrieval.

9.1.2 Confidentiality

Anonymity is usually coupled with confidentiality, meaning that if an eavesdropper
were to capture a message in transit through a network, the eavesdropper could not make
sense of the contents, i.e., messages are encrypted.

On the internet, we have come to expect TLS to provide confidentiality where needed.
If we were to authenticate securely to a server using TLS, our username and password
would be encrypted. But as previously stated, our anonymity is not guaranteed using only
TLS. In one solution to the anonymous information retrieval problem, we will see how
we may obtain both anonymity and confidentiality by using nested layers of encrypted
messages over a network of relays, known to most as Tor.

9.2 Tor - The Onion Router

One way to obtain both anonymity and confidentiality on a network can be through a
technique called Onion Routing. Tor, an acronym of The Onion Router, is a popular
implementation of the onion routing protocol.

9.2.1 Tor game

Below is an example of a simplified Tor request and response game.

A client C wants to send a request R to a server S, and wishes to do so anonymously.
If C were to send the request directly to S, an eavesdropper E listening on the connection
could see that C is sending a request to S. This is an obvious problem if C wishes to
protect his anonymity when communicating with S.

To solve this issue, Tor establishes a network of nodes willing to relay and encrypt/decrypt
messages, these nodes are often referred to as relays. Messages are encrypted and de-
crypted layer-wise, with each relay in the chain only having the key to encrypt/decrypt
a single layer. Messages are also constructed so that a single relay may only see the
IP-address of the previous and next relay in the chain, but no other relays.

64

Let’s look at a Tor example with a chain consisting of three relays, as visualized in
figure (9.1).

Client CR = ”GET https://www.simula-uib.com”
Client ER = E(E(E(CR, K3), K2), K1)
N1 M1 = D(ER, K1) = E(E(CR, K3), K2)
N2 M2 = D(M1, K2) = E(CR, K3)
N3 CR = D(M2, K3) = ”GET https://www.simula-uib.com”

Server SR = ”HTTP/1.1 200 OK...”

N3 R3 = E(SR, K3)
N2 R2 = E(R3, K2) = E(E(SR, K3), K2)
N1 R1 = E(R2, K1) = E(E(E(SR, K3), K2), K1)
Client SR = D(D(D(R1, K3), K2), K1) = ”HTTP/1.1 200 OK...”

Figure 9.1: Showing an example of a Tor-request round trip with encryption and decryp-
tion steps.

Client C chooses three relays participating in the network, N1, N2 and N3. C computes
shared cryptographic keys with each of N1, N2 and N3 using a key exchange protocol such
as Diffie Hellman, yielding keys K1, K2 and K3.

A message containing the client request CR is constructed as layers of encryption over
the original message. In Tor, the symmetric encryption scheme AES is used with a secret
key for each layer.

As we can see from M1, by C having encrypted the outer layer of CR with K1, only
N1 and C with their shared key K1 may remove the outer layer of encryption from the
message. Once N1 has removed the outer layer, N1 cannot remove another layer as N1

lacks the key K2, which only N2 and C have, and so forth.

The message is sent along the chain and decrypted with each node’s key until the
message is no longer encrypted, and the node currently holding the message, referred to
as an exit-node, executes the request CR and obtains the server response SR from S.

As we can see from the Response return route, a reverse procedure of applying layers
of encryption as the response traverses back trough the network is performed until the
message with all 3 layers of encryption arrives at C. C, knowing K1, K2 and K3, may
now decrypt all layers of the message and read the response SR.

65

9.2.2 Chain Ignorance and Minimal Chain Length

Not explicitly shown in the Tor game is that all messages passed through the network
contain only the IP-address of the next and previous relay, but no other relays. Decrypting
a layer reveals the next set of IP-addresses. This mitigates the problem of revealing the
sender and recipient of a request or response to a potential eavesdropper. Because each
layer of the message contains the address of the previous and next relay, messages can be
step-wise passed along using the Internet Protocol with TLS, to be decrypted/encrypted
with the shared keys, and passed along again, and so forth.

By using more than one intermediary node, no node may obtain the IP-address of
both C and R without breaking the encryption or colluding with the other relays in the
chain. This ignorance is what preserves the privacy of C. Note that due to the ease of
correlating traffic between only 2 intermediary nodes using traffic correlation, Tor uses 3
nodes by default.

9.3 Why the current Tor protocol does not scale

If we look back to our game-based Tor example in figure (9.1), we started by selecting
three relays N1, N2 and N3 to allow us to anonymously execute our request. However, we
did not discuss how we were able to select these relays.

The information describing what relays are available is currently1 being served by
directory authorities, i.e. servers holding information on all the relays participating in the
Tor network[30], often referred to as the global map or the global view.

An initial thought is that we may ask an authority directory to supply us with three
relays from this map. However, this leaves us vulnerable if the authority directory turns
out not to be trustworthy, as the directory may provide us with a subset designed to
compromise our identity2.

To obtain information on the relays without risking a malicious subset, the client
downloads the complete map from a directory authority. This may correctly remind us
of trivial private information retrieval. We may recall that trivial private information
becomes impractical if the database becomes to big.

We may remark that as relays enter and exit the network, the information in the
directory authorities must be updated. For clients to have a somewhat recent version of the

1The current stable version of the Tor directory protocol was at the time of writing version 2.
2Supplying a malicious subset makes it easy to compromise anonymity through route fingerprinting

attacks[31].

66

map, the map must be updated and subsequently re-downloaded quite often. Additionally,
as the number of relays grows larger, so does the size of the map. Moreover, as the number
of clients increase, so does the number of map downloads. From these facts, we may deduce
that as the size of the network grows larger, so does the bandwidth required to distribute
the global map. Interestingly, McLachan et al. showed that in the case of Tor, if the
number of relays and number of active users continues to grow, the bandwidth required
to maintain and distribute the map will in the near future end up becoming greater than
the bandwidth used to communicate privately within the network[32]. With this in mind,
we may look at alternative strategies for distributing the map, other than trivial private
information retrieval.

9.3.1 Scaling Tor with peer-to-peer architecture

Some approaches to scaling Tor suggest a peer-to-peer architecture. Whilst peer-to-peer
distribution of the global view would be able to scale to millions of relays[12], this approach
may introduce new attack vectors into the system; The security community have in fact
been widely successful in breaking privacy in proposed, modern peer-to-peer anonymity
systems[33][34][35]. Thus, we may be sceptical of taking a peer-to-peer approach for
scaling Tor.

Luckily, we have just learnt of another technology that will allow us to privately retrieve
information from the map, with lower communication costs than the trivial approach.

9.3.2 Scaling Tor with PIR

Mittal et al. suggested in 2012[12] an alternative architecture of Tor that allows clients
to query for subsets of the global map, using PIR as the protocol.

The paper proposes two PIR protocols as candidates for this purpose, namely the
Goldberg’07 IT-PIR scheme introduced in section 6.2 and a lattice-based CPIR scheme
proposed by Agular-Melchor and Gaborit[36].

Mittal et al. found that by using lattice-based CPIR, one could reduce the cost of
fetching a single circuit, i.e. three relays, by an order of magnitude compared to trivial
PIR. For IT-PIR, this improvement was determined to be two orders of magnitude.

In cases where the client wishes to establish multiple circuits, Mittal et al. determined
that the CPIR variety quickly approached the costs of a trivial download. For IT-PIR
however, the communication overhead was determined to be an order of magnitude smaller
than that of a trivial download.

67

Mittal et al. concluded that a PIR-based architecture could easily sustain a 10-fold
increase in both relays and clients[12]3.

3Tor has since the release of the Mittal et al. paper been optimized to serve the map more compactly.
This means that the Mittal et al. estimate may now serve as a rough approximation.

68

Chapter 10

Conclusion

I have in this thesis attempted to provide insight into the field of private information
retrieval. This has included:

• Defining ordinary information retrieval protocols and private information retrieval
protocols.

• Exploring the 1995 Chor et al. paper introducing PIR and IT-PIR.

• Achieving robust IT-PIR using Beimel and Stahl’s 2002 paper.

• Achieving improved robust IT-PIR using Goldberg’s 2007 paper.

• Exploring varieties of amortized PIR.

• Exploring methods of achieving expressive queries in PIR.

While we have seen how we may technically achieve and utilize PIR, we have not
discussed whether we believe it probable to see widespread adoption of PIR protocols ”in
the wild”, so to speak. As our introductory objective states, we will in this conclusion
reason about to what degree we can expect to see widespread adoption of PIR protocols.
To assist in this goal, I will present some observations and thoughts I had on this subject
while writing this thesis, in addition to naming some domains I deem more likely to adopt
PIR than others.

Optimal PIR database dimensions are impractical for most cases. One consid-
eration we noticed as we explored PIR protocols, was the assumption that our database
was sized according to some relationship r ≈ s ≈

√
|X|. While such database structures

69

are achievable, they do however limit flexibility compared to most conventional databases.
This limited flexibility may act as a deterrent for commercial actors and developers consid-
ering PIR for a project. However, if bandwidth and computational resources are plentiful,
this consideration may be disregarded.

The non-collusion assumption is void for proprietary data. When operating
with IT-PIR protocols, we must assume that no coalition exceeding the privacy-threshold
will collude. However, if we consider that some commercial actor, for example Google,
were to implement IT-PIR for some proprietary database, we will in many cases assume
that they are not willing to publicly release such a database for other actors to co-host.
In such cases, given that a single actor controls all servers, we may argue that IT-PIR
gives no added privacy.

A size-wise lower bound may be given for a database to be reasonably served
through PIR. For a PIR-implementation to make sense, we assume that the database
is large enough for a trivial download to become less practical than adopting PIR. This
gives a lower bound on database size for any practical applications of PIR. Additionally,
one may argue that for commercial projects, the investment required to implement a PIR
scheme may drive one to surpass this lower bound without ever implementing PIR. If
we also consider that bandwidth is generally increasing, we can argue that this lower
threshold on the database size will continue to move higher as time progresses and as
more data may practically be retrieved privately by trivial download.

There exists a PIR-disincentive for information-dependent commercial actors.
Actors such as Google, Facebook and Amazon all have large monetary incentives for
knowing who you are, and what you are doing on their platforms. I would go as far as
to deem it näıve to expect these actors to willingly use technologies designed to decrease
their information flow, and thus their profits, for no benefit except the privacy of their
users. As an experiment, you may download the Tor Browser, and attempt to search
a term on google.com. My result of this experiment was at time of writing an error
message from Google stating: ”[...]To protect our users, we can’t process your request
right now.[...]”. This may be interpreted as indicative of Google’s current views on profits
versus privacy. It is on the other hand worth mentioning that Google has, at the time of
writing, researchers employed researching PIR. However, whether this is for the sake of
providing better privacy for their users, or simply for appearances and goodwill, remains
to be seen.

Government and police as adopters of PIR. In the talk from Ryan Henry at ACM
2017, which I have cited extensively, Henry talks about being approached by, at the

70

time, the head of IARPA1. This person supposedly told Henry a hypothetical, where a
government agency was trying to locate a terrorist. The agency suspected the terrorist
of staying at a hotel in New York, and wanted to find out if this was true. The agency
may have proceeded in two ways, either by visiting the hotel and asking the receptionist
if the name of the terrorist was in their records (information retrieval), or by compelling
the hotel to hand over their records (trivial private information retrieval). Naturally, as
the agency would not be inclined to reveal the name of the terrorist, they would perform
the trivial private information retrieval by compelling the records. However, this would
pose a privacy issue for the innocent guests of the hotel, and by extension, possibly every
other hotel in New York. It could be possible for such hypothetical and non-hypothetical
use-cases that PIR may improve the privacy of the innocent guests, simply by allowing the
government agency to query privately. Henry also talked about the possibility of creating
a PIR-scheme with public key infrastructure, such that only a digital warrant, signed
with the private key of a judge, may perform a PIR-query from an otherwise restricted
database.

I suspect there may be other such practical use-cases for PIR situated in the domain
of government and policing.

Already Privacy-oriented projects as adopters of PIR. As we saw in the chapter
on anonymous information retrieval, Tor is a potential candidate for the adoption of PIR.
I think it is reasonable to assume that projects that are inherently privacy-related may
be more likely to adopt PIR than projects which are not inherently privacy-related.

Summarizing my views on PIR. While PIR is exciting, and progress in the field
continues to be made, I cannot help but to feel that the conditions for truly widespread
adoption of the technology is not yet met – at least not commercially. And is often the
case, commercial adoption can be the deciding catalyst for truly accelerating a technology.

However, in an another time, when a privacy-centric mindset is the default for all,
PIR might play a larger role in securing our privacy.

10.0.1 Meta

I would like to thank my supervisor, Øyvind Ytrehus, for his guidance and patience during
my time as his student. I would also like to thank Ryan Henry of Indiana University, whose
talk at ACM CCS in 2017[15] laid the foundation for many of this thesis’ examples.

1The Intelligence Advanced Research Projects Activity (IARPA) is an organization within the Office
of the Director of National Intelligence responsible for leading research to overcome difficult challenges
relevant to the United States Intelligence Community.

71

Given more time to improve and expand this thesis, I would write out a section on
SQL-type Queries in the chapter on Expressive Queries. I would also include a chapter
on a single-server CPIR protocol, and a chapter on an SPIR protocol.

72

Bibliography

[1] PIR in C++. url: http://percy.sourceforge.net/ (visited on 05/26/2019).

[2] Carlos Aguilar-Melchor, Joris Barrier, and Marc-Olivier Killijian. XPIR. url: https:
//github.com/XPIR-team/XPIR (visited on 05/26/2019).

[3] Daniel Demmler, Amir Herzberg, and Thomas Schneider. RAID-PIR. url: https:
//github.com/encryptogroup/RAID-PIR (visited on 05/26/2019).

[4] Benny Chor et al. “Private Information Retrieval.” In: Proc. of 36th IEEE Con-
ference on the Foundations of Computer SCIENCE (FOCS). Vol. 36. IEEE, 1995,
pp. 41–50.

[5] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students
and Practitioners. 1st. Springer Publishing Company, Incorporated, 2009. isbn:
9783642041006.

[6] Berk Sunar, William J Martin, and Douglas R Stinson. “A provably secure true ran-
dom number generator with built-in tolerance to active attacks.” In: IEEE Trans-
actions on computers 56.1 (2007), pp. 109–119.

[7] NIST. Update to Current Use and Deprecation of TDEA. July 2017. url: https:
//csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-

tdea (visited on 05/24/2018).

[8] Peter W Shor. “Algorithms for quantum computation: Discrete logarithms and fac-
toring.” In: Proceedings 35th annual symposium on foundations of computer science.
Ieee. 1994, pp. 124–134.

[9] Ryan Henry, Yizhou Huang, and Ian Goldberg. “One (Block) Size Fits All: PIR
and SPIR with Variable-Length Records via Multi-Block Queries.” In: NDSS. 2013.

[10] Felipe Saint-Jean. Java implementation of a single-database computationally sym-
metric private information retrieval (cSPIR) protocol. Tech. rep. YALE UNIV NEW
HAVEN CT DEPT OF COMPUTER SCIENCE, 2005.

[11] Femi Olumofin and Ian Goldberg. “Revisiting the computational practicality of pri-
vate information retrieval.” In: International Conference on Financial Cryptography
and Data Security. Springer. 2011, pp. 158–172.

73

[12] Prateek Mittal et al. “PIR-Tor: Scalable Anonymous Communication Using Pri-
vate Information Retrieval.” In: Proc. of the 20th USENIX conference on Security.
USENIX Association Berkeley, 2011, pp. 31–31.

[13] Casey Devet and Ian Goldberg. “The best of both worlds: Combining information-
theoretic and computational PIR for communication efficiency.” In: International
Symposium on Privacy Enhancing Technologies Symposium. Springer. 2014, pp. 63–
82.

[14] Yanjiang Yang et al. “An efficient PIR construction using trusted hardware.” In:
International Conference on Information Security. Springer. 2008, pp. 64–79.

[15] Ryan Henry. ACM CCS 2017 - Private Information Retrieval - Ryan Henry. Youtube.
Nov. 2017. url: https://www.youtube.com/watch?v=XEYwMPwPxNI (visited on
05/24/2018).

[16] Amos Beimel and Yoav Stahl. “Robust Information-Theoretic Private Information
Retrieval.” In: Journal of Cryptology 20 (2002), pp. 295–321.

[17] Ian Goldberg. “Improving the robustness of private information retrieval.” In: 2007
IEEE Symposium on Security and Privacy (SP’07). IEEE. 2007, pp. 131–148.

[18] Adi Shamir. “How to share a secret.” In: Communications of the ACM 22.11 (1979),
pp. 612–613.

[19] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields.”
In: Journal of the society for industrial and applied mathematics 8.2 (1960), pp. 300–
304.

[20] Benny Chor et al. “Verifiable secret sharing and achieving simultaneity in the pres-
ence of faults.” In: 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985). IEEE. 1985, pp. 383–395.

[21] Venkatesan Guruswami and Madhu Sudan. “Improved decoding of Reed-Solomon
and algebraic-geometric codes.” In: Proceedings 39th Annual Symposium on Foun-
dations of Computer Science (Cat. No. 98CB36280). IEEE. 1998, pp. 28–37.

[22] Casey Devet, Ian Goldberg, and Nadia Heninger. “Optimally robust private infor-
mation retrieval.” In: Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12). 2012, pp. 269–283.

[23] Wouter Lueks and Ian Goldberg. “Sublinear scaling for multi-client private informa-
tion retrieval.” In: International Conference on Financial Cryptography and Data
Security. Springer. 2015, pp. 168–186.

[24] Yuval Ishai et al. “Batch codes and their applications.” In: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing. ACM. 2004, pp. 262–271.

[25] Ryan Henry. “Polynomial batch codes for efficient IT-PIR.” In: Proceedings on
Privacy Enhancing Technologies 2016.4 (2016), pp. 202–218.

[26] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords.
Citeseer, 1997.

74

[27] Femi Olumofin and Ian Goldberg. “Privacy-preserving queries over relational databases.”
In: International Symposium on Privacy Enhancing Technologies Symposium. Springer.
2010, pp. 75–92.

[28] Frank Wang et al. “Splinter: Practical private queries on public data.” In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
2017, pp. 299–313.

[29] Niv Gilboa and Yuval Ishai. “Distributed point functions and their applications.” In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2014, pp. 640–658.

[30] The Tor Project. Tor directory protocol, version 3. (Visited on 05/26/2018).

[31] G. Danezis and R. Clayton. “Route fingerprinting in anonymous communications.”
In: Proc. of International Conference on Peer-to-Peer Computing (P2P 2006). IEEE
Computer Society, 2006, pp. 69–72.

[32] J. McLachlan et al. “Scalable onion routing with Torsk.” In: Proc. of 16th ACM
Conference on Cumputer and Communications Security. Ed. by S. Jha and A. D.
Keromytis. ACM, 2009, pp. 590–599.

[33] Nikita Borisov et al. “Denial of service or denial of security?” In: Proceedings of
the 14th ACM conference on Computer and communications security. ACM. 2007,
pp. 92–102.

[34] George Danezis and Paul Syverson. “Bridging and fingerprinting: Epistemic attacks
on route selection.” In: International Symposium on Privacy Enhancing Technolo-
gies Symposium. Springer. 2008, pp. 151–166.

[35] George Danezis and Richard Clayton. “Route fingerprinting in anonymous com-
munications.” In: Sixth IEEE International Conference on Peer-to-Peer Computing
(P2P’06). IEEE. 2006, pp. 69–72.

[36] Carlos Aguilar-Melchor and Philippe Gaborit. “A lattice-based computationally-
efficient private information retrieval protocol.” In: Cryptol. ePrint Arch., Report
446 (2007).

75

