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Abstract

Some aspects of the Ss-symmetric three-Higgs-doublet models are analysed. A CP conserving
potential with both real and complex vacuum configurations is considered. The Ss-symmetric
potential is presented in the irreducible representation, which the main part of the thesis is based
on, and in the Higgs basis. Hidden symmetries of the S3-symmetric 3HDM potential are analysed:
behaviour of the scalar potential under the subgroups of the U(3) group, which result in Goldstone
bosons, and the discrete Zs symmetry required for a stable dark matter candidate. Possible models
capable of accommodating the dark matter candidate are presented. Two vacuum configurations,
one real and one complex, which can possibly accommodate the dark matter candidate, are further
analysed. One of the vacuum configurations results in massless scalars and therefore the concept of
soft symmetry breaking is applied. A numerical check of two vacuum configurations is performed
based on the theoretical and experimental constraints.
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Abbreviations and Notations

2HDM - Two-Higgs-Doublet Model

3HDM - Three-Higgs-Doublet Model

CKM - Cabibbo-Kobayashi-Maskawa Matrix
CP - Charge-Parity

DM - Dark Matter

FCNC - Flavour-Changing Neutral Currents
IDM - Inert Doublet Model

NHDM - Multi-Higgs-Doublet Model
PMNS - Pontecorvo-Maki-Nakagawa—Sakata Matrix
SM - Standard Model

VEYV - Vacuum Expectation Value

The trigonometric functions are denoted by:

sp = sin (0),

cp = cos (0),

tg = tan (0).
Note:

Lagrangian = Lagrangian density
Natural units are used: h=c=1
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been extensively tested for a few decades. The
last missing piece, the Higgs boson, was discovered in 2012 with a combined mass of my = 125.09+
0.21(stat.) £ 0.11(syst.) GeV based on data from the ATLAS and CMS experiments [1-4]. This is
undoubtedly a fascinating discovery in the field of particle physics and might be the final missing
piece. Nevertheless, there is still no experimental verification that it is the only Higgs boson.
Acknowledging the fact that the SM is the theory which describes an approximate observable
world it is worth taking note of the fact that there might be physics beyond the SM. Some of the
phenomena, which the SM does not account for are: neutrino oscillations, asymmetry of matter-
antimatter, dark energy, gravity, etc. A particular physical phenomenon, which we are interested
in and does not fit the frame of the SM is the absence of any Dark Matter (DM) candidate. As a
consequence, the SM fails to describe nearly 85% of the matter. Extension of the Higgs sector could
resolve some of the issues and is a common practice when models beyond the SM are constructed.
Thus, we propose and are motivated that such extension could potentially solve several problems.

The SM uses the minimal Brout-Englert-Higgs mechanism [5-8], and a single complex SU(2)
doublet is considered. The simplest extension of the SM electroweak sector is the Two-Higgs-
Doublet Model (2HDM) [9-15], where the second SU(2) doublet is added to the SM-like SU(2)
doublet. Such extension predicts a rich scalar spectrum: two additional neutral states h(; ), or
three counting the SM-like Higgs boson hgyi, and a charged state h*. The second SU(2) doublet
can be further constrained to result in a viable DM candidate. These are the so-called Inert Doublet
Models (IDM) [15-19]. The 2HDM and IDM models have been extensively analysed and result
in some interesting properties. There is no direct restriction on the amount of additional SU(2)
doublets. Two SU(2) doublets can be combined with the SM-like one. Such extension results
in a Three-Higgs-Doublet Model (3HDM). This model incorporates a rich spectrum of additional
particles: the SM-like Higgs boson hgy along with other neutral scalars hy 4, and two additional
charged scalars hfz are present. Some of these particles can decouple from the visible matter,
either a charged and two neutral scalars or two charged and four neutral states, see Refs. [20-23]
for the current research on the 3HDM DM. The SM SU(2) doublet can also be extended by other
structures, e.g., a singlet can be added. The singlet extended model is also capable of describing the
DM [24-27]. Nevertheless, all these models are highly constrained by the p &~ 1 parameter [28,29],
which depends on the hypercharge of the Higgs structures.

Any model must specify interactions between the particles. In terms of the SM extended scalar
sector, of interest are interactions between scalars and fermions, and scalars and gauge bosons.
Of particular interest is the Yukawa Lagrangian. The extended scalar sector should be able to
incorporate the experimental results: masses of the fermions, the Cabibbo—Kobayashi-Maskawa
(CKM) matrix, and the Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix. Generic Yukawa
couplings might result in unacceptably large Flavour-Changing Neutral Currents (FCNC), which
are not observed. Properties of the recently observed scalar particle are in agreement with those
of the SM Higgs boson. Therefore, any non SM-like couplings involving the observed scalar are
strongly constrained. The discovery of the Higgs boson motivates to constrain the extended scalar
sector in a way that the SM-like Higgs boson couplings are in agreement.



2 Introduction

We are interested in the 3SHDM extension. Historically, the inspiration behind the 3HDM were
three generations of fermions. The most general 3HDM scalar potential results in 54 real free
parameters [30]. It is a tough task to analyse such models, especially since a lot of freedom is
introduced. Thus, some additional symmetries may be imposed. A possible classification of the
3HDM based on additional symmetries was presented in Ref. [31]. One of the possibilities is to
impose the discrete S3 symmetry [32,33]. The S3-symmetric scalar potential have been classified in
terms of the minimization conditions and vacuum configurations in Ref. [34]. The thesis is based
on the classification of the aforementioned article.

The thesis is organised as follows. In chapter 2 the general S3-symmetric potential is presented
and some of the properties of the potential are considered. In chapter 3 a specific complex vacuum
configuration C-IIl-c is discussed, however, this configuration results in unrealistic states and the
symmetry is softly broken. In the following chapter 4, one of the softly broken models C-III-c-1/?
is further on analysed with tree-level couplings and constraints presented. Chapter 5 is devoted
to yet another model, but this time the real vacuum configuration R-II-1a is considered. The two
aforementioned vacuum configuration are numerically analysed in chapter 6 to answer the question
if those contain possible DM candidates. Some technicalities are addressed in appendices: in
Appendix A the scalar potential in different notations is presented, in Appendix B first derivatives
of the scalar potential are considered, and in Appendix C some of the possible transformations
between the generic and the Higgs basis can be found.



Chapter 2

The S3-Symmetric Scalar Potential

In this chapter the basic building block, ¢.e. the Ss-symmetric scalar potential is presented. Mainly,
the irreducible representation framework is used. We analyse possible vacuum configurations and
try to verify consistency of vacuum configurations with those presented in Ref. [34]. In Ref. [34]
it was mentioned that there exists a special direction of the scalar potential, when the A\y = 0
constraint is applied, which results in a continuous SO(2) symmetry. We, however, considered the
mass-squared matrices of all of the possible vacuum configurations and found additional hidden
symmetries, see section 2.3. Other interesting properties of the scalar potential are also considered
in this chapter.

2.1 The Scalar Potential

S3 is a non-Abelian group and is the permutation group of three objects, in this case permutation
of the three Higgs doublets {¢1, ¢2, ¢3}, where

o -
o= , U fori=1,3, (2.1.1)
2 (pi +mi +ix5)

where gozr is a complex field, and 7; and ¥; are real fields, and, in general, the vacuum p; is a
complex value.

S5 has two 1D irreducible representations 1g and 14, and a 2D doublet irreducible representation
2. We chose the following D representation:

0. <h1>:<1 %(%—%) >’
ha 5 (914 ¢2 — 2¢3) (2.1.2)
1: hg = ! (1 + P2+ ¢3),

3

S

where S in hg indicates that it is an S3 singlet.
In the new basis, the h; fields are defined in the following way:

ht
hi: 1 Z~ .~ ’ 1=
7 (w; + 7 + iX:)

h hg
S = - D~ ’
% (ws +7s +iXs)

where the vacuum values w; and wg can be complex.
In both representations the Vacuum Expectation Values (VEV) should satisfy constraint:

1,2,
(2.1.3)

v:\/p%+p§+p§:\/w§+w§+wgz246 GeV. (2.1.4)
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Transformation from one basis (2.1.1) to another (2.1.3) is given by the following S3 3D repre-
sentation:

hy % *% 0 b1
=% % ~Z|le| (2.1.5)
i) \& & &) e

or equivalently:
wl=-% % ||| (2.1.6)
¢3 0 —% % hs

The most general renormalizable S3 ® U(1) scalar potential can be written as [32,35-37]:
V =Va + Vy,
Va =t (hiha + hha) + pdhhs,

Vi =1 (hih + h£h2)2 + o (ks - hghl)z + s [(h{hl - h;hg)Q + (hhs + h;hlﬂ
Yy (h*shl) (h}hz + h;hl) n (thz) (hJ{hl _ h%) N h'c'] (2.1.7)
26 [ (Whs) (Wi + hins) | + 26 [ (i) (mim) + (ihs) (Rino)]
-(hgmf + (hgh2)2 + h.c.] T (hghsy .

Couplings p and A are assumed to be real provided that one is interested in the case when the
Charge-Parity (C'P) symmetry is not broken explicitly. Another possible way of writing down the
scalar potential was presented by Derman [33,38], which is covered in Appendix A. We also present
the S5 scalar potential in matrix form in Appendix A.

+ A7

2.2 Two Possible Choices: Real and Complex Vacua

The unique characteristic of different models are the vacuum configurations; different configurations
result in different minimization conditions. Not all of the first derivatives of the potential result in a
unique set. We are interested in defining different vacuum configurations and thus a way around is
to consider derivatives with respect to VEVs, which are all independent. A more thorough guideline
can be found in Ref. [34] in sections 3 to 5. If a vacuum configuration to be analysed is known
and some of the VEVs vanish, the set of derivatives no longer spans the full set of minimization
conditions. This is true if the VEVs are substituted before differentiating the scalar potential with
respect to the fields. We take a look at all possible first derivatives of the potential with respect to
different fields and VEVs. Derivatives are written down in Appendix B.

2.2.1 Real Vacua

First of all, we review possible real vacuum configurations. Those do not violate C'P spontaneously.
For convenience, one can verify minimization conditions by considering the following derivatives:

ov ov ov

a9y 9y 2.2.1
aw]_ (v) 8’[1)2 (v) 3ws ( )

(v)

where (v) indicates that all of the fields are set to zero. The minimization conditions lead to the
following relations':

1
,U% = — (Al —+ )\3) (w% + w%) — 5’11}5 [6)\4'11)2 + ()\5 + A6 + 2)\7) wS} ) (222&)

"We consider that the minimization conditions are satisfied exactly and not in the limit.
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1
N% =—(A\1+N3) (w% + w%) — 5%;: [3/\4 (w% — w%) + (A5 + Xe +2X\7) wgwg] , (2.2.2b)
1
Mg = M [)\4 (—3111%’[1)2 + 'w%) —wg (()\5 + Xg + 2)\7) (w% + wg) + 2)\871)?5‘)] R (2.2.26)

It should be noted that additional conditions should be taken into account as eq. (2.2.2a) and
eq. (2.2.2b) are not consistent for all possible values. For self-consistency the following relation
should be satisfied:

Awg (wi — 3ws) = 0. (2.2.3)

As a result, possible solutions are Ay = 0 or w; = +v/3ws, or wg = 0. An interesting case is that
one of the solutions involves wg = 0. We take a closer look at what happens if we consider that
one or several VEVs can acquire zero value.

If one of the VEVs acquires a zero value, the corresponding derivative vanishes automatically.
For w; = 0, the self-consistency condition (2.2.3) is automatically satisfied as the u? coupling is
uniquely defined in this case. The choice of wo = 0 leads to additional minimization conditions
in terms of eq. (2.2.3) as derivative with respect to 72 does not vanish. In case of wg = 0, the
non-vanishing derivative is the one with respect to the field 7jg and results in:

Aws (3wi — w3) =0, (2.2.4)

although it might seem that wg = 0 is a viable solution for eq. (2.2.3). As a result, vacuum
configurations with wg = 0 should be supplemented by either Ay = 0, or wo = 0, or wy = ++/3w;.
The only non-trivial case when two of the VEVs acquire zero values is when w; = 0 and wg = 0.
In this case additional condition is given by:

Mw3 = 0. (2.2.5)

We expand the scalar potential with respect to different conditions. The different vacuum
configurations are presented in Table 2.1. We find that all of the real vacuum configurations
match those of Ref. [34]. It is worth mentioning that there is a special case of the R-III vacuum
configuration {w1, 0, wg}, which was not mentioned in the original paper.

2.2.2 Complex Vacua

We take a look at a possible case when the vacuum can acquire complex values. We work in the
following notation:

01 4
, Wae

{wr, w2, ws} — {wre w2 apgl, (2.2.6)

where the hatted w; value indicates the absolute value and o; stands for a phase. Because of the
U(1)y gauge invariance of the scalar potential it is always possible to rotate one of the phases away.
For convenience, we rotated the S3 singlet phase. We work with the following set of independent

derivatives:
ov

Oun

oV
w O

ov
<’U>’ 811}5’

o
(U>’ 80-1

o
(U>’ 80-2

. (2.2.7)
(v)

Full equations can be found in Appendix B.

We start by analysing the most general case, i.e., of the form of eq. (2.2.6). It leads to several
possible vacuum configurations. The self-consistency condition requires that p? values should
coincide. The p? coupling can be defined by taking a look at the derivative of the potential
with respect to either w; or wy. We can write down the self-consistency condition as:

—2(Ag + A3) 2 (@F — ©3) 8T, )
1
+ S [eoy (207 = Tihs) + (2, ) (W] — 2002)] (2.2.8)

— Arihotb% (C2gy — C204) = 0,
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Vacuum {w1, we, wg} Constraints
R-0 {0, 0, 0} None
R-I-1 {0, 0, wg} p3 = —Asw?
R-1-2a {w, 0, 0} i =— (A1 + A3) w?
R-1-2b {w, V3w, 0} 1 =—3 (M + A3) w3
R-I-2¢ {w, —V3w, 0} u3 = —4 3 (A1 +A3) w3
2= 10,22 L (g4 Ag + 207) wd — Aguw?

R-II-1a {0, w, wg} Ho = ghaus — 3 (s + e T wz ~ Asws,

1 =— (A1 4 A3) w3 + SN qwows — 1 (A5 + Xg + 2A7) w

3) w3
3
ug 4)\4% (/\r + X + 2/\7) w2 Agwé,
% —4 ()\1 + )\3) w2 — 3\ qwaws — = ()\5 + ¢ + 2)\7) w
ul —4)\&— As + A + 2X\7) w3 — Agw?Z,
R-1I-1¢ {w, w/V3, ws} - Ho = (s + 2 Tws ~ Asws
s = —4 (A1 + A3) w2 — 3\ wowg — 5 ()\5 + X6 +2A7)w

M1 = —()\1 +)\3)w27

R-IL-1b || {w, —w/V/3, ws}

R-11-2 {0, w, 0}
=0
T=—(\1+As) (w0} +w3),
R-T1-3 {wy, ws, 0} pE= = (Gt ) (uf + wd)
A =0
pd = =1 (A5 + X6 + 2X7) (w? +w3) — Aswd,
R-III {wl, wa, ’LUS} M% = — (/\1 + )\3) (w% + w%) — % ()\5 + /\6 + 2)\7) w?;,

A =0

Table 2.1: Possible real vacuum configurations. The classification is based on and adopts the
notation of Ref. [34]. R stands for real vacuum configuration. The Roman numeral shows the total
number of constraints. The last combination of numeral and letter is used to distinguish different
configurations in the same category.

where we used the following symbols to denote trigonometric functions: s¢ = sin¢, c¢¢ = cos& and
te = tand.

Additional constraints arise from derivatives with respect to o1 and o9 due to the fact that
those do not depend on the quadratic couplings ,ug and p2:

— (A2 4 A3) B35 (20, —205) — MUWTW2DSS (20, —0p) — MTWTWES2e, =0, (2.2.9a)
2. L . . 9 .
A2+ A3)w w%s(gol_zgz) + 5)\4w2w5 [w%s(gal_@) - (2w% - w%) Soy| — Arb3Es25, = 0. (2.2.9b)

By taking a look at all of the possible cases in Table 2.2 we verify that our solutions coincide
with the ones presented in Ref. [34], although some additional explanation is needed.

Vacuum {w1, we, wg} Constraints

C-I-a {1&1, j:izbl, O} /j,% =-2 ()\1 - )\2) ’Lbz

,u% = —% ()\5-‘1-/\6—2)\7) Agws,
C-III-a {0, TI)QGiUQ, QI}S} ,u% = — ()\1 + )\3) ﬁ}% -1 ()\5 + Xe — 27 — 8C(2,2)\7) @%7

deg, s
A4 - Wo >\
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#g = =5 (hs + X = 2X) B — Asid,
C-III-b {+iy, 0, Ws} P =— (A1 4+ A3) 0l — 3 (A5 + A6 — 2)7) 03,
A =0
pi == (A1 + X3) (@F + @3),
C-III-c {’(leeigl, 12126“’2, O} Ao+ A3 =0,
A =0
@2 —w2)? % —02) (02 —3w3
e = (a2 +A3) (07—0s)” _ (s 42{511;2 > 2))\4
—L (N5 + Xg) (0F +w3) — N2,
C-ITI-d {iiwh 'LD27 UA}S} ’ ( 1A A22)~2 °
1= = (= Ao) (@7 + @) — P N LA 4 ag) i,
W2 —i? @] 503
Ay = L0 (g 4 g) — B0
~2 ~2)2 ~2 ~2 ~2 ~2
/J% — ()\2 + )\3) (“’1;%"2) + (“’1_“212122(:;;_37“2) )\4
- A ) —%()\54—)\6) (UA)%‘FUAJ%) _)\81&%7
C-III-e {Fiy, 2, W} ) o | oy s (02—u2) 1 <9
pE == (O = do) (@F +3) + S A — 5 (s + do) 0,
A= E08) (3, 4 ) + (B1500) 5
wg Ao g
13 = =% (s 4+ X6 — 2X7) (@03 +03) — Asib?,
C-III-f { iy, i, s} 1 =— (M +A3) (07 +03) — 2 (A5 + A6 — 2\7) B2,
A =0
P = —1 (s + e — 2\7) (03 + 03) — Asti,
C-IlI-g { iy, —is, s} 1 =— (M +X3) (07 +03) — 2 (A5 + g — 2\7) B2,
A =0
pE = =2 (A5 + Ag — 2X7) B2 — Agd2,
C-IIIh || {V3iae™2, £ige’2, g} p3 = —4 (A + X3) 03 — L (A5 + A — 207 — 8c2_ A7) w2,
M= FEEE N
s 16(1-32)" N 6(1-2 ) (1-32,) | 48
Ho (1+9t§1)2 (A2 +As) W (1+9t§1)/ tos
: 2(1+3t2 N -
. o o1
C-III-i ‘ ' ) 4(1+3t";1) 5 (1*3@1) I 1 ~2
iwze—zarctan(?;tgl)’ ’lf}s} wi = _W ()\1 — )\2) wy F m)\ﬂﬂgws -3 ()\5 + )‘6) wyg,
o1 V o1
o — 4(173&1) A A {0 (573%1) Ay L2
7T= (1-‘1—9‘531) ( 2+ 3)11)§ :FQ\/Titgl 412775’
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It

—1 (s 4 Xo) @7 — g,
2 o 1 ,
j pd = — (A1 + A3) w7 — 3 (A5 + Xe) W3,
C-IV-a {wlewl7 0, ws} 1 1 3
A =0,
A7 =0
2
ph = O+ 20) LI — 3 04 00) (0 + ) — Mt
B =— (A —A2) (d)% + w2) % (As + Xe) 03,
C-IV-b {1y, Lihs, g}
A =0,
A7 *(wlwiwz) (A2 + A3)
S
Wi R -
Ho = 2¢5, (14¢3,) Qo+ s) g — (1+¢5,) (As + A6) @5 — Astd,
C'IV-C {mw27 /’l/% = — [2 (1 + C§.2) )\1 —_ (2 + 3(}3_2) )\2 — C(2;—2)\3:| N _% ()\5 + )\6) UA)%’7
et g} At = 24, (A2 + As) 22,
>‘7_C ()\2"‘)\3)@
13 = —% (s + ) (03 + @3) — Asi2,
2 ~2 ~2 1 ~2
. . i =— (A1 + A3) (03 +@3) — 1 (N5 + Xg) 03,
CIV-d || {ireie, et 1) 1 (@F +@3) — 3
A =0,
A7 =0
u3 = bz«,; 72) (Xy + A3) = wg -3 (1 _ z%z) (A5 + Ag) 02 — Agth2,
a1
(/e pi = (1 _ ) —Xo) @2 — L (A5 + Ag) @2,
C-IV-e 201
W2€'72 g} A =0,
— _52(03-09) w2
/\77 21 2(/\2—’—)‘3)“)72
Hg = (C(Gl 262)"2'33‘3101)0(62 o1) A\ Zji
_% (A5 + o) 02 — Agth2,
(FT T g St
C—IV—f Coy ’ Ny o . c:_14
wae'?, s} — e e B T N s — 5 (As + Ae) @3,
Ay = *2%7701 ()\2 -+ )\3) 192,
2
)\7 = 62 = ()\2 + A3)
13 =% (s + Ao) (@3 + 03) — Asi,
:u% = — ()\1 + )\3) (ﬁ)% -+ ﬁ)g) — % ()\5 + >\6) 11)%7
C-V {wleial7 ﬂA)QeiUzy UA)S} )\2 + )\3 = 0,
A =0,
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Table 2.2: Possible complex vacuum configurations. The classification is based on and adopts the notation
of Ref. [34]. C stands for complex vacuum configuration. The Roman numeral shows the total number of
constraints. The last combination of numeral and letter is used to distinguish different configurations in the
same category.

We note that not all of the possible vacuum configurations and constraints can be applied di-
rectly to minimize the scalar potential a priori. If we take into consideration vacuum configurations
with additional constraints in terms of A couplings, some caution is required. If one of the cou-
plings depends explicitly on another, e.g., in case of the C-III-a vacuum configuration one of the
minimization constraints is: .

Ay = Ky (2.2.10)
w3
such constraints cannot be applied to the potential before differentiating it. If one changed the
form of the scalar potential before differentiating it, that would potentially lead to additional terms.
These additional terms potentially change the scalar potential structure. This is not the case when
Ao+ A3 =0.

2.3 Identifying the Goldstone States

We proceed to a general check of hidden symmetries of vacuum configurations presented in Ta-
ble 2.1 and Table 2.2. We try to uncover hidden continuous symmetries of the scalar potential to
identify additional Goldstone bosons. These Goldstone bosons are distinct from the longitudinal
polarization components of the W and Z. The Goldstone bosons which are “eaten” by the three
gauge bosons are called the would-be Goldstone bosons. Therefore we identify additional massless
states as those which do not coincide with the would-be Goldstone bosons.

One way to determine if there is at least one additional massless state is to consider the de-
terminant of the mass-squared matrix after identifying the would-be Goldstone bosons. If the
determinant results in zero, this indicates that some of the scalar states are massless. We are,
however, interested in the total number of massless states, and, in principle, we are not interested
in fields expressed in terms of the mass-eigenstates and therefore adopt a more straightforward
scheme. We found that exact S3-symmetric models discussed in section 2.2 result in only neutral
massless states. The additional charged massless scalars would result in a decent amount of issues,
especially if additional charged massless scalars, not the would-be Goldstone bosons, coupled to
photons.

The most general neutral mass-squared matrix ngﬁ is of dim = 6. The determinant of ngG

is a product of all eigenvalues:
6

det (M) = [[mir» (2.3.1)

i=1
where m%li are the corresponding masses squared of the scalar fields. The determinant det (ng6)
obviously results in zero as there is at least one would-be Goldstone boson present. The determinant
can be used to find the eigenvalues of the mass-squared matrix by solving the characteristic equation:

det (Mg, — AZg) =0, (2.3.2)

where 7, is the identity matrix of dimension n. We are only interested in determining the total
number of massless states and are not interested in explicit analytic expressions. The way around
is to consider:
0 2 2 2
det (MGXG - )\1_6) = (mHl — )\) (mH2 — )\) (mHG — )\)

26: . (2.3.3)
(=1)" N,
=0
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where MY, ¢ is a diagonalized mass-squared matrix and ¢; are exponential Bell polynomials which
satisfy the Cayley-Hamiltonian theorem [39,40]:

— det (MGXG) (2.3.4a)

o1 = 1o | 1 (M) =10t (W) tr (W00)?) + 1501 (VM) tr (V0,0)%)

20t (ngﬁ)ztr ((ng6>3) 20t ((M%Xﬁ)z) fr ((ng6>3) (2.3.4b)
—30tr (M8X6> tr ((M6><6) ) + 24 tr ((Mﬁxﬁ) ) ] :

co = i [tr <M8><6>4 —6tr (ngﬁ) ((M6><6) ) +3tr <(M6><6) )2

(2.3.4c)

+8tr (ng(s) tr <<M6><6) ) —6tr ((Maxe) )] )
es = é [tr (Mﬁxﬁ) ~3tr (Mgm) tr ((Mgm)?) 2t ((ngﬁ)?’)] : (2.3.4d)
ca = ; [tr (Mgw)Q ((MGXG) )] , (2.3.4¢)
cp = tr (ngG) , (2.3.4f)
g = 1. (2.3.4g)

Of particular interest are coefficients c¢1 5 as the highest order polynomial among these, which
satisfies ¢; = 0, indicates that there are exactly j additional massless states. The coefficient cg is
zero due to the would-be Goldstone boson and cg is of no particular interest as it does not depend
on the mass-squared parameters. Therefore coefficients ¢ 5 are checked.

The mass eigenvalues ng6 are, in general, not known and therefore the following identity can
be used:

det (M5 — ATg) = det <M8X6 - )\IG> . (2.3.5)

If a specific vacuum configuration results in at least two massless states, i.e., ¢y = 0, the corre-
sponding model is further analysed. Vacuum configurations, with at least ¢; = 0, are presented in
Table 2.3.

The lowest non-vanishing ¢; # 0 can be factorized to determine the number of mass-degenerate
states. The power n, to which the Mgw elements of the ¢; polynomial are raised, indicates that
there are in total n mass-degenerate states. We are not interested in such states and therefore the
general result is only presented in Table 2.5 without further discussion.

An interesting observation is that there seems to be some sort of correlation between the number
of constraints in terms of A\; and additional massless states. Moreover every vacuum configuration
with at least one minimization condition given by \; = 0 results in massless states. One of the
possible explanations is to take a look at hidden symmetries of the potential after applying the
minimization conditions in terms of \; and relate those to the Goldstone theorem [41-43].

Consider that the hidden symmetry, at most, results in a U(3) transformation U. Assume

that the scalar potential transforms under the unitary transformation as V' Y v’ and the SU (2)
doublets transform as h; = U;jh; 2. The scalar potential couplings u? and \; are left intact after
performing the aforementioned transformation U. In other words, the transformation U should
leave the scalar potential invariant after changing back to the original basis h; — h;, so that
V! —V = 0. This is not a property of the most general transformation U of the S3-symmetric
potential V' (2.1.7).

An obvious question is which of the SU(2) doublet combinations are invariant under U and
if the most general form of the transformation matrix U can be simplified. The simplest way

2The S singlet transforms as hls = Us;h;.
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Additional
Vacuum || Vacuum configuration o A constraints
m” =0
R-11-2 {0, w, 0} 1 At =0
R-11-3 {11, waq, 0} 1 A=0
R-III {11, W2, wg} 1 A=0
C-III-b {Fiwy, 0, wg} 1 A=0
, . A2+ A3 =0,
C-IT1-¢ {16771, ez, 0} P 2
A=0
C-III-f {Fiy, iy, Ws} 1 A=0
C—III—g {:l:i’UAJl, —Z"UA)27 ’UA)5'} 1 )\4 =0
, A =0,
C-1V-a {171, 0, g} P *
A7 =0
C-IV-b {1, titq, ws} 1 A =0
1+ 2¢2 g, Ay =—2A(Xa + A3),
C-TV-c {V/1+2¢5,02 1 4 (A2 +)
UA)QGWQ, ’lf)s} )\7 = A2 ()\2 + )\3)
, , Ay =0,
C-IV-d || {irei, taigei®r, g} P *
Ar=0
{ —:2&12)26"’17
C-IV-e V. % 1 A=0
wWae'2, g}
V2 T et A= 24 (A + A
cvr | | o 1 ! (o +2),
Woe'?2, 12)5} A7 = A? (/\2 + )\3)
A2+ A3 =0,
C-V {12)167;61, 12)26i027 li)s} 3 )\4 = O’
Ar=0

Table 2.3: Vacuum configurations with additional neutral massless states m® = 0 not counting
the would-be Goldstone bosons. The coefficient A for the C-IV-c and C-IV-f cases is expressed in
eq. (2.3.17).

to determine the form of U is to consider transformation of the quadratic terms Vo of the scalar
potential:

U
pghkhs = g (hs) s = pghlhs + pd Y Gighlhy, (2.3.6a)
1,7={1,2,S}
(4, 5)#(S, S)
It (hihl + hghz) 5 (hllThll + h'zThlz) = <h{h1 + h§h2> +ii Y Gihlh;,  (23.6b)
ij={1,2,5}
(i, )#(1,1)
(i, 1)7(2,2)

where G;; are coefficients which arise due to the U transformation, e.g., Go1 = UjyU11 + UsyUsai.
The quadratic terms remain invariant under the U transformation provided that the off-diagonal
coefficients G;; vanish, and is only true for quadratic terms as those depend on h;-rhi. Consider
transformation of the S3 singlet hg under U (2.3.6a). It follows that the unitary matrix U should
not mix the S3 doublet and singlet. If there is no mixing present, eq. (2.3.6b) results in G;; = 0.
Thus, the U transformation, which is compatible with our primary assumption that it leaves the
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scalar potential invariant, is of the form:

hy Un Uiz O hy
Wl =|Un U 0 ||5]. (2.3.7)
Ry 0 0 Uss) \hs

and the coefficients U;; are such that U is unitary. In principle, this corresponds to the U(2) @ U(1)
transformation. The non-invariant terms under the U transformation are the ones which are multi-
plied by the following quartic couplings: {2, A3, A4, A7}. We note that although terms multiplied
by A2 and Az are not invariant under the U transformation, there is a direction Ay + A3 = 0 of the

scalar potential which is invariant under the U(2) transformation. After substituting A3 = — Ao,
the resulting term in the primed basis is:
/ ARY AN AN 1)
Vi =)o |4 (hl hz) (h2 h1> v (hl K, — hz) . (2.3.8)

It follows that a specific combination of the terms
{>\2 + )‘37 )\47 )‘7}a (239)

might result in a non identity transformation U (2.3.7). The scalar potential results in the following
dependence between the A; coupling of eq. (2.3.9), written in terms of the SU(2) singlets:

(A2 + A3) ~ {Blh1, hihg, Klno} + hec. | (2.3.10a)
Ay~ {hLhy, hbho, hihy, hlhg, Blho} + hec. | (2.3.10b)
A7 ~ {hLhy, BEho} + hec. . (2.3.10¢)

It can be seen that the SU(2) singlets multiplied by (A2 + A3) and A7 are contained within the
set (2.3.10b). Moreover, from Table 2.3 we see that there is a common feature of massless states
associated with the Ay = 0 constraint; this is true with the only exception of vacuum configurations
C-IV-c and C-IV-f. It turns out that if Ay = 0, the scalar potential is symmetric under SO(2):

094 894 0
U=|—sg, co 0]- (2.3.11)
0 0 1

In total, eight vacuum configurations fall into this category: {R-II-2, R-11-3, R-III, C-III-b, C-ITI-{,
C-11I-g, C-IV-b, C-IV-e}.
The constraints Ay = 0 and A7 = 0 result in an additional U(1) symmetry alongside the SO(2):

e 0
v=|o e o |, (2.3.12)
0 0 e

with either 67 = 0 or #7 = 0. Due to the U(1) invariance of the scalar potential, it makes little sense
to consider both non-zero phases of the S3 doublet and singlet. The case of Ay = 0 and A7 = 0
corresponds to vacuum configurations: {C-IV-a, C-IV-d}. The vacuum configuration C-IV-a is a
special case of C-IV-d for @y = 0. The choice of 8, = 0 leads to the fact that the o; phase of
the vacuum configuration C-IV-d {11e%1, +19e’°1, 105} can be rotated away by setting 6; = —o;.
Therefore both C-IV-a and C-IV-d become real.

Finally, when the minimization conditions Ay = 0, and A2 + A3 = 0, and A7 = 0 are applied, the
scalar potential acquires an additional SU(2) symmetry:

ePicy €25y 0
U= |—e2s5 e 1cy 0] . (2.3.13)
0 0 1
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The only vacuum configuration which falls under this category is C-V. It follows that due to the
SU(2) transformation, the o; phases can be rotated away. As a result, C-V becomes real.

So far we have assumed that there is a unitary transformation U (2.3.7) that leaves the scalar
potential invariant. This implies that the VEVs were considered to be independent as the whole
SU(2) doublets were transformed. To be more precise, the Goldstone theorem examines a contin-
uous symmetry which is spontaneously broken by the ground state. The aforementioned transfor-
mations still hold true as the minimization conditions in terms of A; are characteristics of a specific
model. The only models with additional Goldstone bosons which were not considered are: {C-IIl-c,
C-IV-¢c, C-IV-f }.

Before we proceed, we need to define which parameters contribute to the mass-squared matrices.
The mass-squared matrix parameters arise from either bilinear terms or quartic terms of the scalar
potential:

Mg, o< V2 (§¢;) (2.3.14a)
Mg, o Vi (i €¢) (2.3.14b)

where & are the gauge fields of eq. (2.1.3). Of particular interest are the A terms (2.3.14b) as the
self-consistency conditions result in some of them set to zero, see eq. (2.2.3) for the real case and
eq. (2.2.8) for the complex case. Consider the R-I-1 model. Vacuum configuration is given by:
{0, 0, ws}. From eq. (2.3.14) it follows that the mass-squared terms can be written as:

8
M = g MG+ NME. (2.3.15)

1=5

The R-I-1 does not result in any minimization conditions in terms of A; and therefore there are
no additional Goldstone bosons. On the other hand, the R-II-2 vacuum configuration is given by
{0, w, 0}, and the model is constrained by Ay = 0. The general mass-squared matrix is given by:

7
M = MG+ M, (2.3.16)

=1

and if not for the A4 = 0 constraint, there would have been an additional contribution in terms of
the A4 coupling. However, the A\y = 0 constraint results in an additional SO(2) symmetry and this
leads to the Goldstone boson.

For the C-III-¢ vacuum configuration we get a continuous SO(2) symmetry due to the min-
imization condition Ay = 0. This explains why there is one massless state. A closer inspection
reveals that there are two massless states and not just one, see Table 2.3. Therefore another group
of dimension dim = 1 should be broken for the Goldstone theorem to hold. The VEV of the S3
singlet is given by (hg) = 0. This leads to the fact that although A\; = 0 is inconsistent with the
C-ITI-c model, it is the VEV of the S singlet which results in an additional U(1) symmetry, with
U(1) given by eq. (2.3.12) with 67 = 0. To distinguish this symmetry from the one which holds for
the SU(2) doublets transformations, we denote it U(1),,.

In section 3.2 we discuss a possible solution to promote massless scalars to massive ones with
soft symmetry breaking. Models with soft symmetry breaking parameters, which are discussed in
section 3.2, “eat” the minimization condition Ay + A3 = 0 and thus the corresponding massless
states are promoted to massive ones.

Other interesting cases are the vacuum configurations C-IV-¢ and C-IV-f. The minimization
conditions in terms of quartic couplings Ay = —2A (A2 + A3) and A\; = A% (A3 + \3) are more
involved but both of these minimization conditions depend on the sum of couplings (A2 + A3) and
a proportionality coefficient:

A= G2 (2.3.17)

Co WS
The C-IV-c vacuum configuration is contained within the C-IV-f model in the limit o; = 0. There-
fore, we consider a single coefficient A for both cases. The minimization conditions can be expressed
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in a slightly different way:

1
A3 = —A2 — Ay,
LA (2.3.18)
)\7 - —5)\4

This way the Vi, of eq. (2.3.8) is visible, which is U(2) invariant. The terms which are not U(2) ®
U(1) invariant are multiplied by the A4 coupling. After analysing the expanded scalar potential in
terms of the gauge fields and VEVs, it becomes obvious that the vacuum acquires an additional
U(1), symmetry. This is quite an involved statement but becomes more apparent when three facts
are taken into consideration. First of all, both members of the S3 doublets depend on a single .
Secondly, the minimization conditions (2.3.18) depend on Z)’; Finally, there are two constraint
in terms of the \; couplings which result in a specific direction of the scalar potential. A more
convincing statement is that models C-III-d/e?, and C-III-h do not result in additional massless
states as not all of the aforementioned conditions are satisfied. The minimization conditions for
the C-III-d and C-III-e models can be expressed as A3 = —Ao + terms with Ay and A7. Consider
the C-III-d model. There is a direction:

(A2 + A3) (u“;% - 111%) + Mg = 0, not satisfied, (2.3.19)

which results in an additional massless state. Although there exists such direction, it is not fixed
by the minimization conditions. The other case is the C-III-h model. This time, an additional
massless state would be present if the following constraint would have been satisfied:

4 (A2 + A3) 03,2127% - 4/\7(33212)% =0, not satisfied. (2.3.20)

Therefore this explains why C-III-d, and C-III-e, and C-III-h share some of the properties with
C-IV-c and C-IV-f, but only the last two vacuum configurations result in additional massless states.
On the other hand, the C-IV-e model resembles the C-IV-f model. However, the C-IV-e model is
supplemented by Ay = 0 and results in an additional SO(2) symmetry.

The Goldstone theorem should be applicable to all of the discussed cases in this section. We
take a look at which symmetries are broken and if the number of massless states is in agreement
with the number of broken generators in Table 2.4.

2.4 Dark Matter Candidates

We are interested in a possible scalar DM candidate and thus take a look at which vacuum config-
urations might result in a plausible explanation. For the DM study we may®* impose an additional

Zo symmetry:
h v . hz
e ) — diag (1, —1) : (2.4.1)
hinert hj

under which at least one of the SU(2) scalar doublets is even, and such doublets are called active,
while the other doublets are odd, and those are inert doublets, and would accommodate the DM.
The Zo symmetry prevents couplings between the SM particles and a single inert particle at tree-
level. As a consequence, the lightest Zs-odd particle is stable and is a possible DM candidate.

All of the SU(2) scalar doublets in the S3 scalar potential come in pairs except for the SU(2)
doublets that are multiplied by A4. This is the only coupling which breaks the Zs symmetry for ho
and hg. Provided that the DM candidate resides in ho or hg it is a must to impose the constraint
Aq = 0, but if the inert SU(2) doublet corresponds to hi, then the Ay = 0 constraint is not necessary.

Not all of the vacuum configurations with zero VEV components result in a possible DM
candidate. The Zs can be broken, based on the Ay = 0 constraint. Also we take a look at

3These two vacuum configurations can be analysed together as those differ only by the sign of (hz).
41t should be noted that, in principle, the Zo symmetry might be a smaller symmetry and thus a subgroup of a
larger symmetry under which the scalar potential is invariant.
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Number of Additional
Vacuum Broken symmetries A constraints
broken generators | m° =0
Ae=—2A (X2 + A3),
C-TV-¢, C-IV-f U(1) 1 1 ! (ot 23)
A7 = A? (/\2 + )\3)
R-11-2, R-11-3, R-III,
C-III-b, C-III-f, C-1II-g, SO(2) 1 1 A=0
C-IV-b, C-IV-e
Ay =0,
C-III-c SO(2) @ U(1)y, 1+1 2
)\2 + )\3 = 0
Ay =0,
C-IV-a, C-1V-d SO2)®U(1) 1+1 2
Ar=0
)\4 = 07
C-v SU(2) 3 3 A2+ A3 =0,
A7 =0

Table 2.4: Comparison of the number of broken generators with the number of additional massless
states. The U(1),, group indicates that additional symmetry is reached through the vacuum. The
other cases result in a symmetry of the SU(2) doublets.

the mass-squared matrices to determine if there is mixing present between the inert and active
SU(2) doublets. This is a trivial task and is based on determining if the mass-squared matrix is
block-diagonal in the basis of the fields which correspond to the active-inert SU(2) doublets. For
simplicity, we write down all of the possible vacuum configurations and specify their properties.
Results are presented in Table 2.5. It should be noted that only a basic check was performed and
thus the mentioned DM candidates are possible but may not result in a viable model.

The only two vacuum configurations with a single inert doublet hy are R-II-1a and C-IIT-a. An
interesting observation is that although vacua R-I-2b, and R-I-2¢, and C-I-a involve zero VEVs,
there is mixing present in the mass-squared matrices and therefore these models fail to describe
DM. Cases R-11-2, and C-III-b, and C-IV-a result in one neutral inert massless scalar state. Another
interesting observation is that if the hy or hg SU(2) doublets are the DM candidates, this results
in a requirement that Ay = 0, and therefore at least one massless scalar state is present provided
that the scalar potential is exactly S3-symmetric.

Vacuum Additional | Mass-degenerate Possible DM
Vacuum Symmetries
Configuration m® =0 states candidate

R-I-1 {0, 0, ws} 1H* and 2H° /%

R-1-2a {w, 0, 0} y/%

R-I-2b {w, V3w, 0}

R-1-2¢ {w, —/3w, 0}

R-II-1a {0, w, wg} hy
R-1I-1b {w, —w/V3, ws}

R-1I-1¢ {w, w/V3, ws}

R-11-2 {0, w, 0} 1 SO(2) hi, hs
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R-I1-3 {wr, wa, 0} 1 50(2) hs
R-III {wy, we, wg} 1 SO(2)

C-l-a (a0, iy, 0} 2H0

C-11I-a {0, wqet2, g} hy
C-I1-b {4y, 0, g} 1 50(2) ho
C-IIL-c {16, pei2, 0} 2 SO2) @ U(1),, hs
C-I11d {Lithy, By, s}

C-Ill-e {Lithy, —bo, Ws)

C-IILf (it itda, s} 1 S0(2)

C-llLg {Lithy, —ity, Ws) 1 50(2)

C-TIT-h | {V/31ee?72, H1ipe’™2, g}

31462 ) . .
Wy
C-ITL-i 19t

iw2€7i arctan(Stdl) , ﬁ)S}

C-IV-a (@€, 0, g} 2 SO(2) @ U(1) ha
C-IV-b (i, tit, bs) 1 S0(2)

14 2c2 s,
C-IV-c ¢ 2 1 U(1)w

Woe'2 | g}

C-IV-d | {tbyei, Hadgei®r, tig) 2 S0(2) ® U(1)

{ —?&uﬁgei"l,
C-IV-e Ve 1 SO(2)

Wee'2 Wg}

{ 24+ C(“l*ZUz)wQeial’
C-1V-f v 1 U(1)y

Woe'?, g}

-V {i1e1 | g’ g} 3 SU(2)

Table 2.5: Properties of different vacuum configurations. In the third column, the number of additional
massless states is presented. In the fourth column, the number of mass-degenerate states is shown, e.g.,
2HY indicates that there are in total two massive mass-degenerate pairs, values of which are not the same,
i.e., mg, = mpy, # 0, and mg, = myg, # 0, and mpy, # mpy,. Same notation applies to the charged
mass-degenerate states denoted by 1H*. In the fifth column, additional symmetries of the potential, after
applying the minimization conditions in terms of \;, are presented, and %3 indicates that the Zs symmetry
is broken. In the last column, inert SU(2) doublets are written down. These doublets do not violate the Zsy
symmetry and the mass-squared matrices do not mix with active SU(2) doublets.

2.5 The Higgs Basis Transformation

Physical quantities are basis invariant and therefore a convenient choice would be to work in the
so-called Higgs basis. In case of the 2HDM, the Higgs basis [44,45] is defined as a basis in which
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one of the VEVs has a zero value. A more general definition of the Higgs basis, applicable to the
multi-Higgs-doublet model, is that it is a basis in which only one VEV acquires a non-zero value:

(Hy) = ﬁ’ (H;) =0, (2.5.1)

where (H;) indicates the vacuum of the specific SU(2) doublet, the H; SU(2) doublets indicate
that those are in the Higgs basis, and the VEV of the H; doublet is real. Another property of the
Higgs basis is that the would-be Goldstone bosons are isolated in the H; doublet.

Assume that the Higgs basis rotation from the generic basis h; to the Higgs basis H; is given
by the following transformation:

H, = Rijhj, (2.5.2)

or equivalently:
h; = Rj;Hj, (2.5.3)

where the rotation matrix R is unitary. In the Higgs basis the S3 symmetry is not explicit anymore

and therefore we define the SU(2) doublets as: {H;, Ha, H3}.

The scalar potential under eq. (2.5.3) transforms as®:

(hghi) =RaRj; (HJ Hj) ) (2.5.4a)

(h%h;) (h,%h;) - %Cijm [RigR;ij,;R;}+ Rk;R;}Ri,—CR;Z—} (HZT Hj) (H;Hl) , (2.5.4D)
where additional terms of the quadratic transformation arise due to
(el ) (ern) = (mfn) (H)H; ) (2.5.5)

and c;;p; is a symmetry factor:

1, ifi=kandj=1
Gigkl = {2, otherwise . (2:5.6)
The scalar potential in the Higgs basis in the SU(2)-covariant form is given by [13,46]:

VB v (B ;) + Zig (B H;) (HLH), (2.5.7)

where due to hermiticity the following relations hold:
Yij =Y, (2.5.8a)
Zijkl = Zjiks Zijki = Zkiij- (2.5.8b)

The quadratic coupling in the Higgs basis are®:
Vi = (R, +he) + 18R gR + it (RS + RaRS, ) -
+ 2 (Rim;fi - RZ@R;Q> + %Mg (Rﬁn;g + h.c.) n %Mi (RQR;@ + h.c.) , -

SWe are not using the summation convention. The barred indices are not contracted with the un-barred.
SFor completeness, we assume that soft symmetry breaking terms are added, see section 3.2.
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and the quartic couplings are:
Zijkl =MCijkl (RiTR;i + RiﬁR;Q> (Rt Rt + RiaRis)
+ AoCiji (RﬁRjg - RiiR;i) (RkiRjz — RyaRj)
+ Nacijur [Rg (RiiRai + RisRia) Rif — (Rii Ry — RisRyt) Rip)
+ R (RaRy1 + RiaRaa) Ris — (RgRyt — RitRa) Riy) ]
+ AaCijl [73;1( (RizRia + RiaRys) Ryt + (RisRit + RiaRiz) Ris
+ (RaRi1 + RitRiz) Ri3)
+Ri5 (RgRat + RitRus) Ryt — (RisRua + RiaRas) Ris (2.5.10)
+ (RaRii — RiaRiz) Ri3)
+ R (RiaRyx + RaRz) Rig + (RiiRyi — RiaRya) Ris) ]

Cijki
2
Cijki

: )
+ Arein |RiaRa (R Ry + RiyRiy ) + RisRis (RiRyg + RigRyg)]

#2508 [RgR3y (RiaRyy + RigRpy) + RaaRyy (RuRjy + RigR )|

+ A6 [&-37373 (RMR;T + RkQR;§> +Ry3Rj5 (RiuRjt + RiaRi }

Consider the most general vacuum configuration:
{411, bae™2, g} (2.5.11)

Such vacuum configuration is first rotated into an intermediate basis, where VEVs are expressed
only in terms of the absolute value w;:

R h
By | =diag (e77', e72, 1) | hy | - (2.5.12)
Wy hs

The next step is to rotate the modulus of VEVs. The most trivial approach would be to consider
the Euler rotation matrices. In total, three components w; need to be rotated into a single v
(2.1.4). Such rotation can be performed in terms of just two angles. This indicates that at least
one of the R components of eq. (2.5.2) will become zero. Based on a choice of the Euler rotation
matrix, appropriate changes of the couplings given by eqgs. (2.5.9, 2.5.10) are expected as there is
a migrating zero. It follows that the Higgs basis is not unique and results in a spectrum of Higgs
bases. Moreover, the Higgs basis is not well-defined as there is a freedom to redefine the SU(2)
doublets with vanishing VEVs, see Refs. [12,13,47]. In our case it is possible to rotate the Hy and
Hj doublets by an additional U(2) transformation. Such transformation could potentially simplify
some of the couplings.

As stressed, the Higgs basis is not uniquely defined. One of the possibilities is to consider that
we first rotate (hg) into (ha) so it becomes (hf) and then (h}) into (h1). The Higgs basis rotation
in this case is given by:

H, cg, s;p O\ 1 0 0O e 0 0\ (M
Hy|=1]-s3 c5 0 0 cg g 0 ez 0 ha
Hj 0 0 1 0 —s ¢ 0 0 1 hg
| | e T (2.5.13)
e""7cg, € '7?83,C8, 8B, Sp, hy
= 7€—i01861 6_i02cﬂ1cﬁz €158, ha |,

0 —e o255, CB, hs
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The rotation of the SU(2) doublets from the generic basis (2.1.3,2.1.7) to the Higgs basis is there-
fore:

h1 = eiol (chﬁl - HQSﬂl) ) (2.5.14&)
hy = ' (H1C52851 + Hacg, cg, — Hgsgz) , (2.5.14b)
hg = (Hlsgl + HQCﬁl) Sy HgCBQ. (2.5.14C)

The choice of the Euler rotation matrix results in R3; = 0 and therefore h; does not contribute to
Hs.

The Higgs basis rotation depends on whether one of the VEVs is zero. When gy # 0, the ;
angles are given by:

co = (2.5.15a)
wWg

tg, = 2.5.15b

62 w27 ( 5 5 )

we
tg, = 2.5.1
By = g (2.5.16b)
If both w; and Wy vanish, i.e., the R-I-1 model case, then the 5; angles are fixed:
T
Pr=F5= 73, (2.5.17)

so that such rotation results in a translation of the hg doublet into h;.

Relations between the Higgs basis and the generic basis are presented in Appendix C.1. An
interesting observation is that not all of the Z couplings depend on the A9 coupling. This is due to
the basis transformation of eq. (2.5.14) R3; = 0. The Z;jj,; couplings, which do not depend on the
Ao coupling are: {Z1133, Z2233, Z3333, Z1233, 21333, Zo333}. The latter three couplings are complex.
Another interesting consequence of the choice of transformation (2.5.14) is that the couplings Zj233
and Zi332 become real.

For completeness, we take a look at a more general transformation, 7.e., when Hy and Hg
doublets are transformed by U(2). The most general U(2) transformation is as follows:

i¢ eid)ng 6i¢289
U=e> <—ei¢259 ity ) (2.5.18)

Promoting this to the Higgs basis transformation results in:

H, Uin Uz U hy
Hy | = | Uy Uza Usz ho |, (2.5.19)
Hy Uz Uz Uss hs
where
Uy = e “leg,, (2.5.20a)
Uiz = e %cg,sp,, (2.5.20Db)
Z/{13 = 5815825 (2.5.20C)
Upy = —ezi(7201464200) o0 ) (2.5.20d)
Uyo = e%i(¢—2ag) <6i¢105105269 — 6i¢285289) , (2.5.20e)
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Uz = e <6i¢203289 + ei¢105109552> , (2.5.20f)
Usy = 351896%1'(@572(01+¢2)), (2.5.20g)
Usy = —e2'(9—2o2td1462)) <ei¢105105239 + €i¢269852> , (2.5.20h)
Uz3 = e% (eiid)lc&c{; — efid)%ﬂls@.se) . (2.5.201)

The resulting rotation from the generic basis to the Higgs basis is given by eq. (2.5.3) with
Rji = Uji. From the definition of the U;; components (2.5.20) it follows that in this case all
of the generic doublets h; transform into all of the Higgs doublets Hj.

To emphasize the migrating zero feature of the Higgs basis transformation, when an additional
U(2) transformation of the Hy and H3 is not regarded, consider that (ha) is rotated into (h;) and
(hs) into (). In this case, the Higgs basis transformation is:

Hy cg, 0 sg, cg  sg O e~io1 0 0 hi
Hy|=1 0 1 0 —sg, ¢z O 0 e 0| h
Hj —sg, 0 cg 0 0 1 0 0 1 hs
’ R (2.5.21)
e"7lcg, cpy e '7283,Cp, S, hy
= —e‘wlsgl 6_i02C51 0 hy |,
—eT Cp1582 —e 72 561882 CB2 hs
and the transformation from the generic basis to the Higgs basis is given by:
h1 = —ei (*chBICQQ + Hasg, + H3C51852)7 (2.5.22a)
hy = €'72 (Hysp,cp, + Hac, — H3sp,58,) s (2.5.22b)
hs = Hisg, + Hzcpg,. (2.5.22¢)

The zero element is Ro3 and thus hg does not depend on Hy. This transformation is equivalent to
the Higgs basis transformation suggested in Ref. [48]:

H, }% }(’% W\ (e 0 0\ (M
Hy|=|% & O 0 e'2 ha |, (2.5.23)
D D X
Hj 2 B £ 0 0 1/ \hs
where
N =0 4 @ + wk = v, (2.5.24a)
N§ =0 + 03 = w?, (2.5.24b)
N3 = 0?4 wd + X2, (2.5.24c)
with
2
x=-"2 (2.5.25)
ws

Inverting eq. (2.5.23) results in transformation from the generic basis to the Higgs basis:

eto1

hi = ——(NyN3w1 H N1 N3wo H. Ni{Nywi H. 2.5.2
1 N1N2N3( oN3wi Hy + N1 N3waHy + Ny Nowi Hs), ( 6a)
eiag
= ———(NoN3woH{ — N1 Nyw1 H N1 Noywo H 2.5.2
ha N1N2N3( 2 N3wo Hy 1N3w1 Hg + N1 Nowg Hs), (2.5.26b)
1
hg = —— (N33 H; — Nyw’Hy). 2.5.26
s NlNng( swgH — Nyw”Hj) ( c)

Relations between the Higgs basis and the generic basis are presented in Appendix C.2.
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2.5.1 Choice of the Higgs Basis

For completeness, we discuss general properties of a specific Higgs basis choice. Consider the
following Euler rotation matrices:

1 0 0
Rx = 0 CB, S8, 5 (2527&)
0 —sg, cg,
cg, 0 sg,
Ry = 0 1 0|, (2.5.27Db)
—sg, 0 cp,
Cs.  SB.
Rz = —Sp, Cp, 0f1. (2.5.27C)
0 0
The Higgs basis transformation is thus:
H, N A
Hy | =RgRs | 0 e 0 ]|h]- (2.5.28)
H; 0 0 1 hs

We consider different combinations of Rg, R, and in what specific direction of the scalar potential
those result. Note that both Hs and H3 can further be mixed by a U(2) transformation, but we
do not consider this additional transformation.

Rp,Rp, results in a rotation element R3; = 0. This is the case of eq. (2.5.13). The Zijkl
couplings then satisfy the following relations:

m (Z1112) = —Im (Z1222) , (2.5.29a)
m (Z1123) = — Im (Z1231) (2.5.29b)
m (Z1223) = Im (Z1322) , (2.5.29¢)
m (Z1233) = Im (Z1332) = 0. (2.5.29d)

Rp, R, results in a rotation element Ri3 = 0. The Z;;; couplings then satisfy the following
relations:

Z1233 = Z1332, (2.5.30a)
Z1223 = Z1322, (2.5.30b)
Im (Z1123) = —Im (Z1231) - (2.5.30c)

Rps,Rp. results in a rotation element Rp3 = 0. This is the case of eq. (2.5.21). The Z;jx
couplings then satisfy the following relations:

Zn123 = Zi2315 (2.5.31a)
Z1933 = Z1332, (2.5.31b)
Im (Z1223) = —Im (Z1322) . (2.5.31c)

Rp.Rp, results in a rotation element Rz = 0. The Z;jx; couplings then satisfy the following
relations:

m (Z1233) = Im (Z1332) , (2.5.32a)

I
Im (Z1123) = —Im (Z1231) , (2.5.32b)
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Im (21223) =Im <Z1322) . (25320)

Rp,Rp, results in a rotation element Ry = 0. The Z;j;; couplings then satisfy the following
relations:

Im (Z1223) = Im (Z1322) = 0, (2.5.33a)
Im (Z1233) = Im (Z1332) , (2.5.33b)
Im (Z1123) = — Im (Z1231) , (2.5.33¢)
Im (Zi113) = — Im (Z1333) - (2.5.33d)

Rp,Rp, results in a rotation element Riz = 0. The Z;j;; couplings then satisfy the following
relations:

Im (21123) = — Im (Z1231) y (2.5.34&)
Im (Z1233) =Im <Z1332) y (2534b)
Im (21223) =Im <Z1322) . (25340)

The total number of free parameters can be counted:
YR 42yC 4 28 1220 =34+ 2%x34+9+2x18 =54, (2.5.35)

where YR, ZR® indicate real couplings Yj;, and Zj;;, and Z;;j5, and YC, Z€ stand for complex
couplings. Assume that the Higgs basis transformation is given by eq. (2.5.13). Constraints (2.5.29)
result in:

YELyC 4+ 2B 4 2 =343+ 11+16 =33, (2.5.36)

counting the complex couplings as a single free parameter, e.g., Zi113 and Z7;;5. This coincides
with the number of free parameters (33) for the general renormalizable C-invariant potential in
Ref. [30]:

1
Ne = al (N? + 5N +2), (2.5.37)

where A is the total number of free parameters and N indicates how many SU(2) doublets are
considered.

The number of free parameters in the Higgs basis by far surpasses the number of couplings
in the generic basis. The exact S3-symmetric scalar potential results in 2 quadratic and 8 quartic
couplings, assuming that those are real. The soft breaking terms add another 4 quadratic couplings.
All in all, there are (10+4) real parameters needed to specify the scalar potential. Some of the
couplings in the generic basis could be promoted to complex ones: {12, u%, p2, Mgy A7}, At most,
this results in 12 parameters for the exact S3 potential with complex couplings and 19 with softly
broken ones. In both cases it is nowhere near the 54 free parameters. Therefore, a great amount
of parameters in the Higgs basis are interdependent.

2.5.2 The Mass-Squared Matrices
We consider that the SU(2) doublets in the Higgs basis are given by:

Gt
Hy = o : (2.5.38a)
5 (v+ 7 +14GY)

(o)
R (2.5.38b)
(712 +iX2)

( hs > (2.5.38¢)
55 (3 +ixs) ) -

Hy

Si-

Hj
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The minimization conditions in the Higgs basis are drastically simplified due to a single VEV:

Vi1 = —v*Zi1, (2.5.39a)
Yip = —%11221112, (2.5.39b)
Yy = —%UQZIHQ, (2.5.39¢)
Yiz = _%'UQZHIS, (2.5.39d)
Yi5 = —%UQZTH?, (2.5.39¢)

The charged mass-squared matrix without the would-be Goldstone boson is:

Yoo + $v°Z Yy + 502 2%
Mprgea = | 0 2 0 w2l S (2.5.40)
Yo3 + 5v°Z1123 Y33+ 50 21133
with eigenvalues:
1
mzli =3 [2Yas + 2Y33 4+ v (Z1122 + Z1133) — A] (2.5.41a)
1
m12t[2i =1 [2Y22 + 2Y33 + v? (Z1122 + Z1133) + Al, (2.5.41b)
where
A? =4Y5 + AV + 8Ya3 (2Y5h + v° 21 193) — 4Y22 [2V33 — v (Z1122 — Z1133))] ( :
2.5.42
+ 0% |8Y53 21123 + 0 (4|Z1123|2 + (Z1122 — Z1133)2) —4Y33 (Z1122 — 21133)} .
The neutral mass-squared matrix without the would-be Goldstone boson in the basis
{227 237 ﬁla ﬁ27 773} (2543)
is as follows:
(M), (MP), (MP), 0 (MP)
2 2
(M?) 1y (M?)gy (MP)gy (MP)y, (M)
Miira = | (M), (M), (Mg (M), (M), | (25)
2 2
0 (MP)y M)y (MP)y (Mg
(M?) 15 (MP)ys (MP)gs (M) 5 (MP)5
where
1
(M?),, =Yar + 502 (Z1122 — 2Z1212 + Z1221) (2.5.45a)
1
(M2)12 = Re (Y23> + 51)2 [Z1231 + Re (Z1123) — Re (21213)] s (2545b)
(M?) 5 = =" Im (Z1112) , (2.5.45¢)
1
(M?),, =Im (Yas) + 5112 Im (Z1123 — Z1213) , (2.5.45d)
1
(M?),y = Va3 + 51}2 [Z1133 + Z1331 — 2Re (Z1313)] (2.5.45¢)
(M2)23 = —v’Im (Z1113) (2.5.45f)
1
(M2)24 = —Im (Y23) — 5712 Im (Z1123 + Z1213) , (2.5.45g)
(M2)25 = —v?Im (Z1313) , (2.5.45h)
(M2)33 = 2U2Z1111, (25451)
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(M?)4, = v* Re (Zu1a), (2.5.45))
(M?),. =v*Re(Z1113) (2.5.45k)
(M?) 4y = Yoz + ;U (Zu122 +2Z1212 + Z1221) (2.5.451)
(M?) 45 = Re (Vi) + 50 [Z1as + Re (Zu123) + Re (Zios)], (2.5.45m)
(M2)55 = Y33+ ;U [Z1133 + Z1331 + 2Re (Z1313)] - (2.5.45n)

It follows that the neutral mass-squared matrix is block-diagonal in the real basis:
MQNeutral = diag (Mrgp M?}) . (2546)
The neutral mass-squared matrix for the 7 sector is:

20%Z1111 v2Z1112 v2Z1113
MZ=| v®Ziiiz Yoo + 20% (Zi1og + 271912 + Z1291) Yoz + 202 (Z1123 + Z1o13 + Z1231)
V2 Z11s Yag + 302 (Zinas + Ziz1z + Zi2s1)  Yaz + 502 (Zi1ss + 221313 + Z1331)

(2.5.47)
The neutral mass-squared matrix for the y sector is:
M2 (Y2 507 (Z1122 — 2Z1912 + Z19m1)  Yaz + 50% (Z1123 — Ziniz + Z131) (2.5.48)
Yas + 50% (Z1123 — Zimis + Z1as1)  Yas + 50% (Zuiss — Zasis + Ziss1) )

In both of these cases the mass-squared parameters are too involved to be analytically expressed.

By inspecting the mass-squared matrices (2.5.40, 2.5.44) an interesting conclusion can be drawn:
although the scalar potential can be expressed in terms of 33 parameters, the mass-squared matrices
depend only on 12 Z;j; and 3 Yj; couplings. The VEV of only the first doublet is non-zero (2.5.1)
and thus the mass-squared parameters depend on the following combinations:

Ziis Zwijs Zvg, Zuj1, Yij, for {i,j} =1,3. (2.5.49)



Chapter 3

The C-I1I-c Model

In this chapter we consider the C-III-¢ vacuum configuration, given by:
{i1e™", woe™?, 0} . (3.0.1)

First of all, we analyse the mass-squared matrices of the exact S3 symmetry and find that this
case is unappealing due to two massless states as presented in Table 2.5. We apply the concept
of soft symmetry breaking to promote massless scalars to massive ones. Of particular interest
are the possible DM models and thus only properties of such models are taken into account: the
mass-squared matrices and if the models are C'P violating.

3.1 Model With Exact S3 Symmetry

We consider that the gauge-eigenstates are given by eq. (2.1.3). The gauge-eigenstates are not
uniquely defined and the SU(2) doublets can be expressed in other ways.
The exact C-III-¢ vacuum configuration is given by eq. (3.0.1) alongside with the constraints:

12 =— (A — \)v?, (3.1.1a)
Ao+ A3 =0, (3.1.1b)
Ay =0, (3.1.1c)

where we made use of eq. (2.1.4). From now on we will be using @} + %35 = v? to simplify the look
of the VEVs whenever it is possible.

3.1.1 Freedom of the Basis Redefinition

The Higgs basis rotation for the C-III-c vacuum configuration is given by:

H; ] w; wy 0 el 0 0 h1
Ho :; —wy wi O 0 e72 ho
Hs 0 0 w 0 0 1 hg
. e by e 2y 0 hy
= ; —6_i01w2 6_i0212)1 0 ho (312)
0 0 v hg
hy h1
Rup-2 0
= ( he | =Rus | ha
0 1
hs hg

Let us discuss what was done here. First of all, the phases of the VEVs were rotated away so that
VEVs depend only on the absolute value w;; note that when going into the Higgs basis, the full



26 The C-III-c Model

SU(2) doublets are rotated and not only the VEVs. Next, as in the Higgs basis only one VEV
acquires a non-zero value, we performed a rotation of the absolute values w; so that (Hy) = v as
given by eq. (2.5.1). The rotation of the absolute values can be expressed in terms of the well-known
tg parameter:

cg sg 0
Rg=1|-sg cg 0| = diag(Rga.2, 1), (3.1.3)
0 0 1

where the rotation angle 3 is determined by:

Wo Sgv
tg=—=—. 1.
g Wy cgu (3.1.4)
There is a freedom to rotate the VEVs (3.0.1) of the C-III-c model. We can parametrize the
fields, for instance, in the following way:

Jr
hy = ellei=e1) . i
5 (Wie™ +17; + iXi)
—Z’O’i +
—en eh o (3.1.5)
5 (Wi + e +ie ")

+
= ¢l s
5 (Wi + i + iX3)

where in the last equality we abused the mathematical notation not to introduce additional ab-
breviations for the fields. We, however, will make a note and relate both cases so that the fields
are expressed in terms of eq. (2.1.3) if a non-trivial re-definition of the fields is performed. After
changing the basis, the SU(2) doublets are no longer consistent with eq. (2.1.3).

Due to the U(1) invariance of the scalar potential, it is possible to rotate all of the doublets by
the same phase:

h} h1
Wy | =e"2T5 | hy |, (3.1.6)
s hs
so that VEVs are now:
{wle"@l*"?), o, o} = {1y €™, 1y, 0} . (3.1.7)

In this case, the Higgs basis rotation Ryp is given by:

H, cg sz 0\ [e™@ 0 0\ [R]
Hy | =]-s3 ¢cg 0 0 1 0 ’2 . (3.1.8)
Hy o o 1)\ o o 1)\n

3.1.2 The Mass-Squared Matrices

Of particular interest are mass-eigenstates and therefore we need to find rotation matrices R of
gauge-eigenstates, which would result in diagonal mass-squared matrices:

M? = RM?RT, (3.1.9)

where the hatted mass-squared matrix M? indicates that it is a diagonal matrix.

Before we evaluate the mass-squared matrices we want to show that those are block diagonal
for the C-III-c model and thus there is no mixing between the S3 doublet and S5 singlet parts as
we are interested in the inert S5 singlet. The only couplings, apart from A4 as in C-Ill-c it is set
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to zero, which could result in a mixing of the S3 doublet and singlet are A5, or Ag, or A7. In terms
of the doublets h;, the dependence is either ~ hih% or ~ h3h%. If we take into consideration the
vacuum configuration, especially that wg = 0, it becomes obvious that there is no mixing: the only
case when the terms are non-zero is when h? — w2, for i = 1,2, and therefore from eq. (2.3.14) it

follows that the S35 singlet fields acquire mass terms M%fié)-(fs)- from:

VQ((g,f)*gf) and w(wiwj(g,f)*gls), fori=1,2, (3.1.10)

where ¢% = {h?, Ns, Xs}- Thus we can treat the S3 singlet mass terms separately. On the other
hand, if we did not have the Ay = 0 constraint, this would obviously lead to mixing. This is
governed by the fact that there would be terms proportional to h%hghs and hghg, i.e., even in the
limit of wg = 0, mixing would arise between the S3 doublet and singlet gauge fields. Since Ay =0
we get no mixing.

We consider that the SU(2) doublets are parameterized by (3.1.6) and the overall phase o is
extracted afterwards as in eq. (3.1.5):

hi — h1€"®, hy — ha, hg — hg, (3.1.11)
and the VEVs are given by (3.1.7). Therefore, only a single overall phase o = 01 — 0y is present. All

further calculations are performed assuming that the SU(2) doublets in terms of the gauge fields
are given by:

—ioy p+ +
hy = eilo1=02) c Alolhl ) P g
75 (01 + e iy +ieT ) 5 (W1 + 71+ iX1)
—ioop+ +
hy = ¢i(02=02) €hy 2 : (3.1.12)
75 (W2 + €720 +ie” 2 %) 75 (W2 + 72 + iX2)

hg = '(72792) . e_i@h; , = h:;
% (e7"2ijg + ie 72y ) % (s +iXs) -

After performing the rotation Rs of eq. (3.1.3), the charged mass-squared matrix is already
block-diagonal:

M%harged = R,B M2Charged R/gl' (3.1.13)
We get the following masses of the charged scalars:
2 2
M+ = 2X0%, (3.1.14a)
1
mie = pg + §A5v2. (3.1.14b)

In order to get the charged physical fields and to identify the would-be Goldstone boson, one
needs to apply the rotation matrix to the gauge fields. In terms of the charged sector, the mass-
eigenstates are given by:

hi G+ G- (GH'
Re|ni|=HY|, |[E-|=]|@EY]. (3.1.15)
h} S+ S~ ()

We write down explicitly the charged fields:
G* = cphf +ssh7, (3.1.16a)

H* = —sght + cghi, (3.1.16b)
S* = hi. (3.1.16¢)
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Next, we consider the neutral scalar sector. As discussed before, there is no mixing between the
S3 doublet and singlet, i.e., in the basis (hi, hg) - hg. Consider the gauge fields of the S3 doublet.
The R g rotation results in the following fields:

Hj M
H! N
2l =raa | | (3.1.17)
G X1
H; X2
where
Rpa =1L @ Rp.a. (3.1.18)

We identify the neutral would-be Goldstone boson as G° = cgX1 + sgX2, governed by the same
logic as when identifying the charged would-be Goldstone boson G in eq. (3.1.15).

After identifying the state corresponding to the would-be Goldstone boson, we take a look at
the neutral sector mass-squared matrix:

82‘/ (M?l)ll 0 0
MZNeutra,]712 = ﬂ == O 0 O 5 (3119)
where
12 ={H], Hy, H}}. (3.1.20)

An interesting feature of the C-IIl-c vacuum configuration can be seen. It is obvious that there
are two massless scalars as there is only one non-zero element present in the matrix M12\Ieutra1712‘
This was explained in section 2.3. Due to the structure of MQNeutral_u, as it is already diagonal,
we identify the physical states:

H, = C/gﬁl + SﬁﬁQ, (3121&)
Hy =— Sﬂf]l + C@ﬁg, (3.1.21b)
H; =— 8,3)21 + Cﬁ)zg. (3.1.21C)

Out of all these states only one is massive:

mi;, =2 (A — o) v?, (3.1.22a)
miy, =0, (3.1.22b)
mi, = 0. (3.1.22¢)

In order to get massive scalar states Hy and Hs one needs to softly break the S3-symmetric potential.
This case is taken into consideration in section 3.2.
The only part we are left with is to determine the mass-squared matrix of the S3 singlet:

(M), <M%>m) 3.1.23
(v) ((Mg)m (Mg)QZ , ( )

0’V
2
MNeutral—S = W

where
¢7 = {fis, Xs}- (3.1.24)

The elements of the mass-squared matrix are:

1
(M1 = 1§ + 5 (A + A6) v* + A7 (a0t +103) (3.1.25a)
(M§)12 = Agsaoid?, (3.1.25b)
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1
(M7)az = g + 5 (A5 + ) v? — A7 (Cop] + 03) . (3.1.25¢)

The mass-squared matrix MZNeutral—S is diagonalizable by performing the following rotation:

MQNeutral—S = R’YMIQ\Teutral—SR’;l’ (3126)

R, = < o SV) . (3.1.27)
—Sry Cry

In this case the rotation angle ~ is not trivial anymore. Calculations yield that the rotation angle
~ is determined by!:

where the rotation matrix is:

£, = 200t (3.1.28)
T cpptd? 12 + /BT + 20550202 + i) -
We get the following masses of the S3 singlet scalars:
1
my, = pd + 5 (X5 + ) v? — A7\/w;1 + 2copWF03 + 10, (3.1.29a)
1
m, = pd + 3 s +2) v? + A7\/w;1 + 2copWF03 + 105 (3.1.29b)
The corresponding neutral fields are:
S1 = ¢yils +8,X8) (3.1.30a)
Sy = — 8475 + ¢y Xs- (3.1.30b)
The SU(2) doublets in terms of the mass-eigenstates in the basis of eq. (3.1.12) are:
cgGT —sgH™
hy =¢e* , 3.1.31a
! % (1171 + Cng — SgHQ +1 (C/jGO — SgH3) ) ( )
SgGJr + Cﬁf[Jr
ha=1{, (. e , (3.1.31b)
73 wo + Sng + CgHQ +1 (SﬁG + C5H3)
St
hs = . , (3.1.31c)
% (6” (Sl + 'LSQ) )
The SU(2) doublets, denoted as H;, in the Higgs basis are trivially simplified to:
G+
H, = 3.1.32a
' NG <v + o1+ iG0> ( )
H*
Hy= | | _ : (3.1.32b)
NARL: + 13
St
Hy = (3.1.32¢)

% <€i7 (Sl + iSz) >

where we used ¢; for the neutral fields to distinguish those from the SU(2) doublets as it is common
to use the H; notation for the SU(2) doublets in the Higgs basis. The neutral fields ¢; are the
same as the H; fields of eq. (3.1.21) discussed in this section.

'Tt should be noted that this solution is not unique.
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3.1.3 The Mass-Squared Matrices in Different Bases

So far we have considered that the C-III-c vacuum is: {ufqei", Wo, O}. For completeness, we would
like to briefly mention the other possible choices and what they result in.

The generic vacuum configuration {w1e'!, 2?2, 0} results in a hermitian charged mass-
squared matrix:

Mip Mz 0
M%harged = MTQ M22 0 y (3133)
0 0 Mass

and a symmetric neutral mass-squared matrices:

Mg Mz Miz My 0 0
Mizg Moz Moz Moy 0 0
Miz Moz Mszz Mz 0 0
MIQ\Teutral = ; (3134)
Mg Moy Mszy My 0 0
0 0 0 0 Mss Msg
0 0 0 0 Mss Meg
in the basis:
{ﬁlv 7727 Xla >~<27 77/5" XS} (3135)
The following M3, .. of this section are evaluated in this basis. Although this is the most

trivial choice of the SU(2) doublets, it results in a fact that the charged mass-squared matrix is
diagonalizable by a complex matrix while the neutral states are potentially combinations of the
gauge-eigenstates 7; - X;.

If the o; phases are extracted from the SU(2) doublets h; — €ih; as in eq. (3.1.5), this results

in:
Miyp Mz 0
M%harged = M12 M22 0 ’ (3136&)
0 0 M3z
Mg Mz 00 0 0
Mis Moy 0 0 0 0
0 0 0 0 0 0
MRiouteal = 3.1.36b
Neutral O 0 00 0 0 ( )
0 0 0 0 Mz Msg
0 0 0 0 Ms Mg

The charged mass-eigenstates no longer depend on a phase and the neutral mass-eigenstates do not
mix the 7; and y; fields.
In Ref. [48] it was shown that the C-III-c vacuum configuration can be written in a basis in
which VEVs are given by:
{ae? ae™ 0. (3.1.37)

This specific choice of the basis results in tg = 1 of eq. (3.1.4). It can be proven that eq. (3.1.37)
is a special basis of the C-III-c model by considering additional symmetries of section 2.3. The
A4 = 0 constraint results in a continuous SO(2) symmetry. This fact can be used to rotate the
active doublets:

co S e~ lo2 0 wy et W1CHCs + WSy + 1W1CeSy |
—Sg Cp 0 e"io2 Qf)gewz —W1CySy + WaCy — 1W189Sy

I
N
S &
R
~

w

=

w

o

S~—
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The complex VEVs w; can be written as:

0, = iy 20, (3.1.39)

(2

The modulus or the phases? of the complex values w, can be related as there is a free § parameter.
Provided that the absolute values are equal

~92 ~2
Wy — Wy

tog = ———, 3.1.40

20 2101 WoCy ( )

this results in the vacuum configuration: {ae®®', ae??, 0}, with

a = y/wicis2 + (Wicgey + Wasg) 2. (3.1.41)
Due to the U(1) invariance of the potential, an overall rotation by e~ 3(01+82) g possible. This
results in the vacuum configuration: {aei‘s,ae*i‘;,O}. The 6 phases can be extracted as follows:

hi — €hy and hg — e ®hy. In this case, the mass-squared matrices are:

My =My 0

M%harged = _Mll Mll 0 ) (3142&)
0 0  Mss

Miyi Mqiy;p 00 0 0

Miyp My 0 0 0 0

0 0 00 0 0
Mol = 3.1.42b
Neutral O 0 00 0 0 ( )

0 0 00 Ms; O

0 0 00 0 Mg

Benefits of this basis are a fixed 8 = w/4 parameter as well as the diagonalized S5 singlet states.

It can be seen that in different bases the mass-eigenstates can be expressed differently. The mass
squared parameters are physical quantities and therefore are basis independent. Although there
is no preferred basis, it should be noted that based on what one is interested in, a re-definition
of the SU(2) doublets is valid as long as it is unitary and results in a special direction of the
mass-eigenstates.

3.2 Soft Symmetry Breaking

We next consider the possibility to promote massless states of the C-III-c model to massive ones.
One of the possible solutions is the soft symmetry breaking concept. The idea behind this method
is to introduce additional bilinear terms Vj and therefore softly break the S3 symmetry:

V=Vo+ V5 + Vi, (3.2.1)

The most general form of these terms is [49]:

1 1 1
Vg = 5 (h{hQ + h.c.) + 2 (h{hl - h;hQ) + 54 (hghl + h.c.) + 5 (hghz + h.c.) . (3.2.2)
Due to the fact that there are new terms present in the scalar potential, this leads to altered
minimization conditions. We assume that the C-III-c model VEVs are consistent with eq. (3.0.1):
{wlewl, Woe'o?, 0} if not specified otherwise. The SU(2) doublets are expanded in terms of VEVs

2There is no meaningful solutions when trying to solve for 6 in terms of arg(w) = arg(ws).
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before differentiating the potential and regardless can be fixed if those are a subject of the mini-
mization conditions. To distinguish the softly broken models from the exact S3-symmetric C-III-c
model we denote these models as C-IIl-c-X, where X is a string of the softly broken parameters.

The most general model is C-TTT-c-v/2-pi2-p3-p5. This model results in the following constraints
after minimizing the scalar potential:

V2 = —4 (g + A\3) Coy o112, (3.2.3a)
P =— (A — ) v (3.2.3b)
3 =— (A2 + A3) (0f —03) , (3.2.3¢)
115 = —2X\4C( 5, —gry) 102, (3.2.3d)
i = —Ag (07 — 03) . (3.2.3¢)

In this case, we no longer get the \y = 0 constraint and thus there arises additional mixing
between the S3 doublet and singlet. It is clear that the soft breaking terms u3 and pj are the
ones responsible for the non-zero coupling value of A\4. To be more precise, the aforementioned soft
breaking terms are proportional to hghi and are not consistent with the constraint Ay = 0. From
another point of view, it should be noted that both u2 and pu? couplings break the Zy symmetry.

In principle, one could solve for minimization conditions not in terms of ,u% and ,ui, but in terms
of )\41

N%mel + /1’421(:027“2}2

Ay = —— — . 3.2.4
- (6201—02 + 2C02) w%wQ + CJQMS ( )

Assume that p3 depends on 3 so that:

2 9 Coy W1
My = —H3

P (3.2.5)
Although it might seem that such dependence leads to the constraint Ay = 0, this is not entirely
correct. The A4 minimization condition of eq. (3.2.4) is not sufficient to minimize the scalar potential
as before two equations (3.2.3d, 3.2.3e) were solved and not a single one. The other derivative results
in:
22002 0 — g, (3.2.6)
o2
A trivial p3 = 0 is consistent with A4 = 0, but in this case both 3 and u3 vanish.
Another possible solution would be to consider oo = o1. The derivatives with respect to o;
vanish and therefore the total number of independent minimization conditions is reduced to three:

_I/2 +4 (/\1 + )\3) wﬂf)gv

2
— 3.2.7
i Loy : (8:2.7a)
1 ,w? — w2
2 2 Wi 2
= L2 3.2.7b
() . .
p3 = ~ (13 + Aa (3] — w3)] . (3.2.7¢)

This case does not result in the A4 = 0 constraint.

For completeness, we once again consider the minimization condition in terms of eq. (3.2.4),
but this time relax the (3.2.5) condition as it was artificially introduced. The scalar potential is
minimized provided that an additional constraint is satisfied:

(3 (0F — 03) — 2pic, —gy1a = 0. (3.2.8)
Assume that we express y2 in terms of ,u%. Full minimization of the potential results in the u% ~ A
dependence. Provided that Ay = 0, both p% and ;2 vanish.
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We are interested in a possible DM candidate and therefore the soft breaking terms of interest
are reduced:

1
Vg = 5 (nlha + hini) + w3 (hln — hihs). (3.2.9)
The quadratic part of the potential with respect to VEVs is therefore:

Vil = % [V Co—aptirtda + i3 (W7 — 03] - (3.2.10)

For simplicity, we do not identify the fields in terms of the mass-eigenstates and therefore the
most general mass-squared matrices are considered, i.e., without defining the Goldstone bosons.
All of the calculations are performed in the basis of eq. (2.1.3) unless specified otherwise.

We show that models with soft breaking parameters, which are consistent with the Ay = 0
constraint, result in the same eigenvalues for the charged sector and the S3 singlet as for the exact
C-III-c model by taking appropriate substitutions of the vacuum configuration if needed?. The only
significant change remains for the S3 doublet neutral eigenvalues. After all, the main idea behind
why we consider soft symmetry breaking is to give masses to otherwise massless states.

3.2.1 The C-III-c-v2 Model

In the C-III-c-v? model, the additional bilinear term is:
Loy 1
Vs = v (nlho + nim). (3.2.11)

In principle, we do not assume that the numerical value of the term v? is bounded by the ,u% and
u% terms.
Due to the soft symmetry breaking term v? derivatives get modified as follows:

881‘7;/1 o 3;/1 (v) i %V%QC(“HW (3.2.12a)
gﬁ‘; - gfz‘b/z @ %Vzwlc@’l—@)’ (3.2.12b)
SZ o :;):1 W %V%l@s@fl—@)’ (3.2.12¢)
g; W 32 » + %’/%@ﬁ(m—ag)- (3.2.12d)

The soft breaking term v? can be defined by taking a look at the derivatives with respect to
phases eq. (3.2.12¢) and eq. (3.2.12d):

| ()\2 + )\3) wleC(Ul_@). (3.2.13)

In case of the exact S3-symmetric potential we found that one of the minimization condition (3.1.1b)
required Ay + A3 = 0. The soft symmetry breaking term 12 “eats” the Ao + A3 = 0 constraint and
this results in a massive state. The constraint Ay = 0 survives as there are no additional terms
coming from the derivative with respect to wg (3.2.10). A direct inspection of the derivatives
eq. (3.2.12a) and eq. (3.2.12b) leads to the constraint w; = w,.

Taking everything into consideration we end up with the following vacuum configuration:

{ire", w1e™2, 0}, (3.2.14)

3We consider two models, i.e., C-III-c-v? and C-III-c-p%, which after solving for the minimization conditions
constrain the vacuum configuration. In the C-III-c-»? model absolute values w; are further limited while in the
C-III-c-p3 model the overall phases o; are fixed.



34

The C-III-c Model

with constraints:

where

=0,

— ()\1 — )\2) ’U2
V2 =_9 ()\2 + )\3) C(al_a2)v2,

i

This model is analysed more thoroughly in chapter 4.

3.2.2 The C-III-c-pu2 Model

Another possible soft breaking term is p3:

Vi = 12 (h{hl - h;hg) .

In this case derivatives get modified:

oV

ov

— HaW2.

iy |y~ Db |
o v
O]y Otz

This results in the following minimization conditions:

alongside with

Ay =0,
1

pi= 5 (20 -

5 =— (A2 + A3) sz, g, (0F —

W3)

+ ,U,%UAH,

A2+ Az + (A2 + A3) C2(01—02)) v

()\2 + )\3) 82(01702)1@112}2 =0.

(3.2.15a)
(3.2.15D)
(3.2.15¢)

(3.2.16)

(3.2.17)

(3.2.18a)

(3.2.18b)

(3.2.19a)
(3.2.19D)
(3.2.19¢)

(3.2.20)

Provided that 3 # 0, either phases should be constrained or one of the VEVs should vanish. This
leads to several possibilities.

As a first case, we consider the limit o7 =

reduced to:

— (A1 = A2)
)\2 + )\3

The charged mass-squared matrix is given by:

with eigenstates:

2 _
MCharged -

2003 2idgty
—2idgtiny  2Xo1?
0 0

%71 and o9 =

U )

) (@7

m%,i = 2)\21)2,

mge = pg +

“ 02
g oY

)

0
0

M% + %)\5’1}2

—01, the minimization conditions are

(3.2.21a)
(3.2.21b)
(3.2.21c)

(3.2.22)

(3.2.23a)
(3.2.23b)
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The charged scalar masses are identical to the ones of the exact C-III-c model (3.1.14). Note that
the mass-squared matrix M%harged is diagonalizable by a complex rotation matrix R.
The S3 doublet neutral-mass squared matrix in the basis

{7, 712, X1, X2} (3.2.24)
is of the following form:
(M2 (MZ)y, (ME)yy (ME),,
MReutral 12 = Eﬁg;m Eﬁg;” Eﬁ‘z;”’ Eﬁ‘z;?‘* , (3.2.25)
a/13 a/23 aj/11 a)34
(M2) 1y M3y (MB)yy (MB)y
where
(M2)1; = (1 + 23) @F + (A2 + A3) 03, (3.2.26a)
(M2) 1, =\ >\2) wz, (3.2.26b)
(M2) 15 = M+ A3) @F — (N2 + Ag) @3, (3.2.26¢)
(M2)y, =~ (N~ 3A2 — 2X3) Dy ada, (3.2.26d)
(M2)5y = (o + Ag) T + (A1 + Ag) 3, (3.2.26¢)
(M2) 5 = (M — By — 2)X3) w1y, (3.2.26f)
(M2) gy = (o 4+ Xs) 07 — (A1 + ) 03, (3.2.26g)
(M2)34 = — (A1 = Ao) wrda. (3.2.26h)

The neutral scalars of the S3 doublet acquire the following masses:

mi, = 20% (A2 + A3), (3.2.27a)
mi, = v® (A1 + A3) — A, (3.2.27b)
mi, = v® (A1 + A3) + A, (3.2.27¢)
where
A% = vt (AL + A3)7 — 16 (A — o) (A2 + \3) w23 (3.2.28)

The mass-eigenstates are a combination of all gauge-eigenstates, which potentially leads to CP-
indefinite states.
The mass-squared matrix of the S3 singlet is:

2+ % (A5 + Ag) v? A7 (@1 - w%)

MZgura— — s 3.2.29
e < A (@2 = 08) Bk (4 A2 ) (3.2.29)

with eigenvalues:

1
mg, = pp+ 5 5 (X + Xe) v — A7 (0f — 03) , (3.2.30a)

1
me, = g+ = (>\5 + X6) v® + A7 (@F — 03) . (3.2.30b)

This coincides with masses of the exact C-III-c model (3.1.29) by substituting values of the o;
phases.

Another possibility to satisfy eq. (3.2.20) is to consider that either w; or we vanishes. If we
substitute w; = 0 directly into the vacuum configuration, this no longer results in the C-I1I-c model.
To be more precise, such change results in a special case of either R-I-1 or R-1I-2. Both of these
cases are of no particular interest. Therefore, we conclude that the C-I1I-c-u3 vacuum configuration
is given by:

{i1e"T, e, 0}. (3.2.31)
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3.2.3 The C-III-c-v2-pu2 Model

The aforementioned soft symmetry breaking terms v? and p3 can be combined together resulting
in the following additional bilinear terms:

1
V= <h{h2 n hghl) + ol (h}hl - h;h2> : (3.2.32)

In this case constraints are:

Ay =0, (3.2.33a)
1 =— (A1 — X)) 0%, (3.2.33b)
u% — (X2 + Ag) (@F — 03), (3.2.33¢)
=—4 ()\2 + )\3) Coy—opy W1W2. (3233(1)
The charged mass-squared matrix is given by:
2\o103 —2¢7U1792) \ g2y iy 0
MQCharged = _261'(01—02))\211}112]2 2)\2121% 0 5 (3234)
0 0 1 + 3 x50
with eigenvalues:
mye = 20%\g, (3.2.35a)
1
mEe = ug + §u2A5. (3.2.35b)

The charged scalar masses are identical to the ones of the exact C-III-c model (3.1.14).
The neutral-mass squared matrix of the Ss doublet in the basis (3.2.24) is of the following form:

(M2 (M), (MB)yy (ME),,
Moutral—12 = (M:) 12 (M‘%)m (M?L)??) (MCQL)M , (3.2.36)

(MZ); (M3)yy (ME)yy (ME)y,

(M2 (MZ)gy (MB)y, (ME)y

where

(M2) 1 =2 (M1 + Ag) dick, +2 (Ao + A3) @3cd,, (3.2.37a)
(M2) 19 = 2(A1 = Ag) racs, Coy, (3.2.37b)
(M2) 13 = (A1 +2A3) 259, + (Mo + A3) W3524,, (3.2.37¢)
(M2) 4 = 2d1s [(M — 209 = A3) Coy 50, + (A2 + A3) oy 504 (3.2.37d)
(Mczz)Qz 2 ()‘2 + A3) w%c2 +2 ()\1 + /\3) w260'27 (3.2.376)
(M2),5 = 201102 [(M — 2X2 — A3) €y S0y + (A2 + A3) oy 500 ] 4 (3.2.37)
(MZ)M (A2 + A3) w152a'1 (A1 + A3) 03890y, (3.2.37g)
(MZ)gg =2(A+A3) wls +2(A2 4+ A3) w23027 (3.2.37h)
(M§)34 =2 (A1 — A2) W1W2S4, Soy 5 (3.2.37i)
(M2) 10 =22+ A3) 0755, +2 (A1 + Az) s, (3.2.37j)

This results in the following mass-squared terms:

mi;, = 20" (A2 + A3)., (3.2.38a)
mi, = v® (A1 + A3) — A, (3.2.38b)
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my, =v2 (A1 +X3) + A (3.2.38c¢)
where
A? =0t (A + A3)7 — 16 (M — Aa) (o + Ag) 82, wdids. (3.2.39)

The only difference from the C-1I1-c-13 model is how the A parameter is defined. The A parameter

for the C-ITT-c-u2 model was defined in (3.2.28). In the C-III-c-v2-u3 model the o; phases are no

longer fixed and thus this results in additional dependence of the A parameter on 81271702.
The S5 singlet mass-squared matrix is:

2 2
MIZ\Teutral—S = <(Mb)11 (Mb)12> ) (3240)

where
1 ~ ~
(Mg)n = :“g + 5”2 (A5 +X6) + A7 (C2Ulw% + CQggwg) , (3.2.41a)
(M3) 15 = A7 (320,07 + 820,03) | (3.2.41b)
1 ~ A
(Mz)m = 1“(2J + 5”2 (A5 + A6) — A7 (020110% + CZO'QU)%) . (3.2.41c¢)

The mass-eigenstates of the Ss singlet are:

1 R o - A

mg, = pg + 51)2 (A5 + Xe) — A?\/w% + 2Co(g, o) W03 + W, (3.2.42a)
1

mf% = ud + 51)2 (A5 + X6) + /\7\/121‘11 + 2Co () — ) W03 + W3, (3.2.42b)

which coincide with the terms for the exact C-III-c model (3.1.29).

3.3 CP Violation in the Scalar Sector of the C-I1II-c Models

Our primarily assumption was that the couplings of the scalar potential are real. Although the
scalar potential does not violate C'P explicitly, C'P can still be violated spontaneously. The concept
of spontaneous C'P violation makes sense only if the scalar Lagrangian conserves C'P explicitly.
Spontaneous C'P violation in the context of the 2HDM was proposed in Ref. [50]. A method to check
if there is spontaneous C'P violation in the Multi-Higgs-Doublet Model (NHDM) was presented in
Ref. [51]. The main idea behind the method is to check if there exists a symmetry U that leaves
the scalar Lagrangian invariant, and the vacuum satisfies:

U: Uy (hy)* = (hy) . (3.3.1)

If this is true, then there is no spontaneous C'P violation. This relation follows from the general
CP transformation of the SU(2) doublets:
hi <5 Uln. (3.3.2)
If the aforementioned mapping is possible, the C'P is explicitly conserved. In general, the trans-
formation matrix U, in terms of the 3HDM it is U;; € U(3), is not a symmetry of the scalar
Lagrangian. Provided that this symmetry leaves the scalar Lagrangian intact, eq. (3.3.1) is au-
tomatically satisfied. Nevertheless, C'P violation can still be achieved through the Yukawa La-
grangian.
In the context of the C-III-c vacuum configuration, only the S3 doublet should be checked. In
Ref. [34] it was shown that the C-III-c vacuum configuration does not result in spontaneous C'P
violation. In Ref. [48] it was proposed that C'P violation is easier to analyse in the Higgs basis*. We,

4 After the Higgs basis transformation only a single real VEV is left. The complex couplings in the Higgs basis
result in C'P violation provided those cannot be rotated into the real ones.
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governed by this assumption, however, use a slightly different method and check if the couplings
in the Higgs basis are real. Provided that such reverse engineering results in a possible direction in
the Higgs basis, the SU(2) doublets in the generic basis can be re-constructed and checked if the
result is in agreement with Refs. [34,48]. The Higgs basis transformations are quite involved. The
general approach can be found in section 2.5.

We consider the C-11I-c and C-III-¢c-X (3.2.2) models consistent with the Ay = 0 constraint. The
generic SU(2) doublets (2.1.3) are rotated into the Higgs basis so that C'P is explicitly conserved
in the generic basis. The Higgs basis transformation is given by eq. (3.1.2). The Euler rotation
matrices for the C-III-c model in the basis of eq. (2.5.14) are:

w2
te = 3.3.3
B1 ) ( a)
B2 = 0. (3.3.3b)
The coeflicients of the potential are:
Y11 = Yoo = pif, (3.3.4a)
Y33 = 5, (3.3.4b)
and
Zii = Zazze = M1 — Mg, (3.3.5a)
Zi22 =2 (A1 + A2), (3.3.5b)
Z1133 = Z2233 = A5, (3.3.5¢)
Zi9o1 = —4 g, (3.3.5d)
Zig13 = A7 (e7270ch, + e 27287 ) (3.3.5€)
Z1323 = A1828, (—6_2"’1 + e‘2ia2) , (3.3.5f)
Z1331 = Z2332 = A6, (3.3.5g)
Zaszas = A7 (e7H71sh, + 7223 (3.3.5h)
Z3333 = As. (3.3.51)

At first, it might seem that the scalar potential in the Higgs basis is C'P violating. In the Higgs
basis there is a freedom to rotate the SU(2) doublets with zero VEVs by a U(2) transformation,
see eq. (2.5.19). As a consequence, there is a direction in the Higgs basis where all of the couplings
become real. The choice of the Higgs basis transformation

H, 1 e~ e 0 h1
Hy | = 7 —ie” el 0 ha | . (3.3.6)
Hs 0 0 v2i) \hg

alongside the vacuum configuration {we'”, we™'?, 0} results in:

Z1313 = —Z2323 = —C25 7, (3.3.7a)
Zi323 = — 2820 A7, (3.3.7b)

and the other couplings are the same as in egs. (3.3.4, 3.3.5). Therefore, the vacuum configuration
of eq. (3.1.37) is CP conserving. We verify the claim of Refs. [34, 48] that the exact C-III-c
vacuum configuration does not result in spontaneous C'P violation®. It should be noted that the
aforementioned Higgs basis rotation is not uniquely defined, e.g., transformation

1 —i 1 i
m) (B e 0
| = _éefw %?10 ﬁ hs (3.3.8)
Hs %e—w _%610 ﬁ hg

5Tt was shown that this specific vacuum configuration does not lead to explicit CP violation and there exists a
unitary matrix which satisfies eq. (3.3.1).
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with VEVs {we, e~ 0} results in real couplings, but this time there are no vanishing couplings
Zijia # 0.

An interesting consequence is that although the exact C-III-c vacuum configuration is C'P
conserving, the soft symmetry breaking terms may result in C'P violation. The corresponding case
in the 2HDM was studied in Ref. [52]. When soft symmetry breaking terms are added, for the
Higgs basis transformation (3.1.2), the quadratic terms result in:

Y1 = —%zﬂs%lcal,@ + 13+ cop, 13, (3.3.9a)
Yiz = %2 (C281+01—03 + C281—o1+05 — 208010y ) + 525, 113, (3.3.9b)
Yis = %e*i"lcglug - %e*i”smui, (3.3.9¢)
Yoo = %VQSQ/JHCCU—UQ + i — Copy 113, (3.3.9d)
Yo3 = %e_i"lsglug + %e_wzcﬂl,ui, (3.3.9¢)
Ya3 = 3. (3.3.91)

The Higgs basis transformation of eq. (3.3.6) results in complex quadratic couplings Yj;:

1 .
Yio = —51/2520 + w%, (3.3.10a)
Yis = ——— [e 7 u2 + e u?] 3.3.10b
13 2\5[ H3 H4] ( )
1 . 4
Yoz = —— [—e 2 + €9 2] . 3.3.10c
23 2\/5[ H3 H4} ( )

Of particular interest is only the Yis coupling as the u% and p3 couplings are inconsistent with
Ay = 0. From eq. (3.3.10a) it follows that the C-III-c-v? vacuum configuration does not violate
C P spontaneously. The C-III-c-u3 vacuum configuration {wei%, we 7, 0} can be rotated into:
{we®, b, 0}, see eq. (3.1.38). Provided that the overall phase value is fixed at o = 7/2, the
couplings in the Higgs basis become real. The C-III-c-v?-u3 model does not result in a real basis
due to the dependence Y ~ p3 + iv?s,. In terms of the generic vacuum configuration (3.0.1),
the C-III-c-v2-p2 model results in real couplings in the Higgs basis provided that the vacuum
configuration is given by {we’, wqe®, 0}. This configuration becomes real and is inconsistent
with the C-III-c model.
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Chapter 4

The C-III-c-v2 Model

In this chapter we revisit the C-III-c-v? model presented in section 3.2.1. This model is of particular
interest as it provides the simplest extension of the S3 scalar potential and results in massive scalars
as desired. Moreover, it does not result in spontaneous C'P violation as claimed in section 3.3. This
model is analysed by taking a look at tree-level couplings involving scalars. Theoretical constraints
of the C-III-c-v? model are also considered.

4.1 The Mass-Squared Matrices

If we expanded the scalar potential in terms of the generic SU(2) doublet of eq. (2.1.3), the charged
mass-squared matrix would be hermitian and the neutral mass-squared matrices would depend on
trigonometric functions of both o1 and oo. In both cases, eigenvalues of the mass-squared matrices
depend on a single combination of angles oy — 0. The minimization condition in terms /2 is also
a function of a single trigonometric function c,, ., see eq. (3.2.15¢). It is possible to rotate one
of the phases away. In this case the vacuum configuration of eq. (3.2.14) changes to the following

form:
{we™, w, 0}, (4.1.1)

where 1 = 17 and 0 = 01 — 09. The constraint 12 of eq. (3.2.15¢) gets modified:
V2 = =2 (g + A\3) cov?. (4.1.2)

We expand the scalar potential in terms of the following SU(2) doublets:
+ +
hy = e~"02 . i = ¢l o
75 (We't + i1 + ix1) 5 @+ +ixa)
L h3 h3
ho = €772 <l(wei02+~ i )>E<1(A+~ tiv)) (4.1.3)
NG 12 T X2 /2 \W T2 X2

+ +
hS — e—iag hS = hS ’
75 (7ls +iXs) 75 (s + iXs)

which is equivalent to the transformation (3.1.12). This time, however, the SU(2) doublets were
simultaneously rotated by e~%2 due to the U(1) invariance (3.1.6) without extracting the phases
as in eq. (3.1.5).

The modulus of the VEVs is fixed, w; = w9, the rotation angle is also defined, § = w/4.
Therefore the rotation matrix Ry in this specific model is given by:

Rg=-—=|-11 0 [. (4.1.4)
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Taking everything into consideration we get the following Higgs basis rotation:

) e 1 0
R — _— | _,—to 1 0 . 4.1.5
HB = 5 | e (4.1.5)
0 0 V2

After we determined the modified vacuum configuration and constraints of the C-III-c-v? vac-
uum, we are ready to consider the mass-squared matrices. We start by investigating the charged
scalar sector. It is diagonalizable by performing the rotation Rg. The charged would-be Goldstone
boson and the charged physical scalar fields are:

G* = ﬁ (hf +h3), (4.1.6a)
1

H* = 7 (=hi +h3), (4.1.6b)

S* = hg. (4.1.6¢c)

The masses of the charged scalar bosons are:
mie = 2\, (4.1.72)
1
mEe = ug + 5)\5112. (4.1.7b)
We note that the masses qui and m%i are the same as those of eq. (3.1.14) for the exact C-III-c
model.

Next, we consider the neutral scalar sector. After performing the Rg rotation one can identify
the would-be Goldstone boson:

1
G'= = (1 +X2)- 4.1.8
NG (X1 + X2) ( )
Afterwards we take a look at the neutral sector mass-squared matrix:
2 2
92V (Ma)ll 0 (M“) 13

MIQ\Teu ral—-12 = 12712 = 0 Mg 0 s (419)
t 8{1-126%12 ) (M2) ( 0)22 (M2)
a/13 a)33

where C}Q is identical to the one of eq. (3.1.20). The non-zero elements of the mass-squared matrix
2 .
MNeutra1—12 are:

(M) =2 [A1 — dasy + AscZ] o7, (4.1.10a)
(M2)13 = (A2 + A3) sa00?, (4.1.10b)
(M2)a2 = 2 (A2 + A3) 0%, (4.1.10c)
(M32)33 =2 (A + A3) s (4.1.10d)

Note that elements (M?2)13, and (M?2)g2, and (M?2)33 vanish in the limit of Aa + A3 = 0. An
additional rotation in terms of an angle « is needed for the complete diagonalization procedure:

Ca 0 84
Ra = 0o 1 01. (4.1.11)
—sa 0 cq

After performing the rotation in terms of a we get the following eigenvalues:

mEy, =2 [Mck = Ao (¢ — cay) + Asci_,] 0%, (4.1.12a)
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m%b =2 (/\2 + )\3) 1)2,

m%];,, =2 [>\1Si + Ao (CzY — Ci—a) + )\382_0] v2.

These eigenvalues can further be simplified by identifying the rotation angle a:

_ (A2 + A3) 25
Al — Ao+ ()\2 + )\3) Coo ’

t2a

and thus

m12’{1 = (A1 + A3 —A) v2,
m%b =2 ()\2 + )\3) 1)2,
mi, = (M + Az + A) o2,

where for simplification we introduced an additional abbreviation
A% = (A1 —X2) + A2+ 23)% +2 (A1 — A2) (A2 + A3) cz0

It follows that we can fix 0 <o <7/2and 0 < a < 7/2.

(4.1.12b)
(4.1.12¢)

(4.1.13)

(4.1.14a)
(4.1.14D)
(4.1.14c)

(4.1.15)

From dependence of masses on A couplings it follows that masses are strictly ordered as
mpg, < mg, < mp,. Therefore mg, is the lightest scalar and we associate it with the SM-like

Higgs boson.
The neutral S3 doublet mass-eigenstates are:

H—l[c (T + 72) + sa (—X1 + X2)]
1—\/§a771 12 o {—X1 T X2)]>
H—l(—~+~)

Hy — ;5 (=S (71 + 72) + Ca (=51 + %2)].

(4.1.16a)
(4.1.16b)

(4.1.16¢)

Based on couplings ZH;H; in section 4.2, we note that both H; and H3 are C'P-even states and

Hs is the C' P-odd state.

Relation between the gauge-eigenstates and the mass-eigenstates is given by the following ro-

tation matrix:

Hy | —iz % 0 0 s
G° 0 0 5 5 el

We finally consider the S3 singlet. The mass-squared matrix is given by:

M2 B (u% + % (A5 + X6) v% + A7c2o? %/\78201)2
Neutral—S —

%)\78251)2 /L% + % (A5 + X6) v? — )\7(3?,112

(4.1.17)

(4.1.18)

It is possible to diagonalize the M? _q mass-squared matrix by the following rotation matrix:
g Neutral—S

Cy S
(2 9)

Sy Gy
The off-diagonal elements are zero provided that:

S(Q’y_o—) = 0, or 820727 = 527.

Therefore we take the value of v = /2.

(4.1.19)

(4.1.20)
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We find the following neutral scalar masses of the S3 singlet:

1
mg, = g + B (A5 + Xg) 2 = Ageov, (4.1.21a)

1
mgz = M% + 5 ()‘5 + >‘6) U2 + )\7001)27 (4.1.21b)

and as expected those coincide with the exact C-III-c model (3.1.29) by making appropriate changes.
The S3 singlet neutral physical fields are:

S1 = cyNs+5,Xs, (4.1.22a)
Sy = —s, 75 + ¢y Xs- (4.1.22b)

Although it it known that both states S and S are of opposite C'P parities, due to the interaction
751852, as presented in section 4.2, it is impossible to assign which of them is C'P-even and which
is C P-odd.

Taking everything into consideration, the SU(2) doublets in terms of the mass-eigenstates are
given by:

hi=¢e"— | A ey o) | (4.1.23a)
2 7 v+ Hie " — Hy — Hyie " +iG
1 G"r + H+
ho=—=1 , . » 0 (4.1.23b)
2 Gl v+ Hie"™ + Hy + Hgie'™ +iG
g+
hs = 4 . 4.1.23c
S % (Sle” + SQZEW) ( )
In the Higgs basis, the SU(2) doublets in terms of the mass-eigenstates are as follows:
gg g
G+
H = ) , (4.1.24a)
% (v + P1Co — P38q + ’LGO>
Ht
Hy=| , (. , (4.1.24b)
75| 1 (150 + ¢3ca) + @2
St
Hs = (4.1.24c¢)

S

L <Sle” + Sgiem>
where p; = H; of eq. (4.1.17).

4.1.1 Quartic Couplings in Terms of Masses

We invert equations eq. (4.1.7a), eq. (4.1.14) and eq. (4.1.21) containing the mass-squared param-
eters and get equations for couplings as functions of masses. The most straightforward way is to
determine relations for Ay and A5. This can be done by taking a look at m%li and mgi:

L s

)\2 :27’027’)1}[:&, (4125&)
2

Ao =3 (mge — 1) - (4.1.25D)
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Afterwards, one can determine relation for the coupling Az from m%b:

1
Az = 27)2 (ml%fz - m%{i)

Next, we take a look at the two combinations m%,l + m%,g and find that:

1 2 2 2 2
A1 :2—’02 (’rTLH1 —my, —I—mH3 +mHi) R
1 2 2
A :W (—mHl + mHS) .
From the A parameter we can determine the value of o:
2 2
2mH1mH3

C2021— .
2 2 2 2
myy, (mHl — my, + mH3>

(4.1.26)

(4.1.27a)

(4.1.27b)

(4.1.28)

From here, an interesting conclusion can be drawn. Although o is an overall phase between the
two S3 doublets, it turns out that it can be expressed in terms of physical quantities and thus an

arbitrary phase is promoted to a physical parameter.
From the combination m%l + m%Q it follows that:

1
)\6 :ﬁ (—2171%:& + m%l + m§2) s

A7 = (fm?gl + m?%) .

2¢,v2

(4.1.29)

The only undetermined couplings are p3 and Ag, which are left as free parameters of the model.
For convenience, we collect all of the relations together. In case of the C-III-c-v? model we get

the following relations:

1
2 _ 2 2 2
m=-z (mir, — mip, +mi,)
2 2
m2, m
0"
vE= iy, |1 2 2 1 23 2 )’
My, (mH1 —my, + mH3>
1
_ 2 2 2 2
A= 202 (mHl — M, + M, +mHi>’
1
_ 2
>\2_2v2mHi7
s = gz (s, — mie)
3_2,02 mH2 mHi ’
Ay =0,

A =3 (mes — mg)

1

)‘6 = ﬁ (—Qm%i + m%l + m%z) 5
1 2 2
A= g (oms, +mi,)
2m2, m?2
Cop =1 H Hs

4.2 Scalar-Gauge Boson Interactions

The kinetic part of the Lagrangian is given by:

Li =Y (D"h)' (Duhi) + (D'hs)T (Duhs),
i=1,2

(4.1.30a)

(4.1.30b)

(4.1.30c)
(4.1.30d)

(4.1.30¢)
(4.1.30f)

(4.1.30g)
(4.1.30h)

(4.1.301)

(4.1.30)

(4.2.1)
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where D, is the covariant derivative:
Dy = 0, +igriW), +ig Y By, (4.2.2)

where ¢’ and g are the U(1) and SU(2) coupling constants, WfL (¢ =1,3) and By, are gauge fields,
7; are the generators of the SU(2) group and Y is the hypercharge. The fields W and B, are in
the gauge basis. These fields are to be diagonalized to correspond to the physical observable states
W“i, Z, and A,.

The interaction Lagrangian of the gauge bosons with scalars can be expressed as:

EK = EV—mass + ﬁV—S» (423)

where the Ly _nass part is responsible for generation of the mass terms of the gauge bosons and
Ly _g is responsible for interactions of the scalar and gauge bosons fields.
Expansion of the covariant derivative with respect to the SU(2) generators yields:

1 w3 Wi —iw?2 B, 0
DH:(?“—i-ig( ’ w ! “)—i—z’g’Y(O“ >

2\ wl+iw? -3 B
" : . g (4.2.4)
P gWi+g'2YB, g(W;—iW?)
P2\ gWhriaw?) —gW3+g2vB, )’
We define the physical fields in the following way:
1
+ 1 172
Wy = 7 (W, FiW,), (4.2.5a)
1
Z, = ———u (gW3 - ¢'B,), (4.2.5b)
I 92 +g/2 ( 1 /"‘)
1
Ay = —F——r (g'WS + gB#) , (4.2.5¢)

where we assigned the value Y = % to the hypercharge of the scalar doublets. The specific choice
of the hypercharge decouples Z, from A,. This is done as we are interested in massless photon
states.

We extract masses of the gauge bosons by evaluating interactions at vacuum:

1 _
Ly —mass = Z gw? [gQ(W,f)2 + gz(WM )+ (6% + ¢7) Zﬁ +0 x AZ]
=12 (4.2.6)

1
= m%VWJW“ + imQZZHZ“.

The mass terms of the gauge bosons can be evaluated using the above mass Lagrangian:

mw = S, (4.2.7a)
2 12
my = Y9 ;g v, (4.2.7b)
my = 0. (4.2.7¢)
We list some of the useful relations:
e=gsw =4 Cu, (4.2.8a)
g
Cpy = ——— (4.2.8b)
w 92 +gl2
/
S — (4.2.8¢)
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g
ty = =, 4.2.8d
v ( )
LTS (4.2.8¢)
mz

It is straightforward to rewrite the covariant derivative D,, in terms of the physical gauge bosons
fields. The only part which requires some calculation is the upper-left component of eq. (4.2.4):

i 3 ig 3
g Wi+ 9" 2YBu) = 5 = [suBu + cuWy]
-9 [Sw (=SwZy + cwApu) + cw (cwZu + swAu)]
2¢cy
- (4.2.9)
= 9 (2 = 52) Zy + 20wy
2¢y
zg 2w —Z, +ieA,
2 cy
Acting with the covariant derivative on the SU(2) scalar doublet yields:
NG [0, + 222, +zeA}h++f}th0 g 210
oo )= (e ) a=quas) (210
0 WG + (00— 52 2] 18

Before substituting eq. (4.2.10) into eq. (4.2.1), for convenience the Ly_g of eq. (4.2.3) can be split
into several parts based on interaction properties:

Ly_s=Lyug+Lyvva +Lyvin. (4.2.11)

For the general result we present the interaction Lagrangian Ly _g in the gauge basis of the scalars:

h} h}
ha=11.1=1 1 R (4.2.12)
ﬁha 2 (Wa + Tla + Xa)

The resulting interaction Lagrangian parts are:

g o]
Loy = 2,7V WiEwe
vvi |:2(3me pat T gmw iy, }"a (4.2.13a)

+ {[emWA”’W+ — ngS2 Z“W+] ho + h.c.} ,

>
Lyvum=— 4—2“(110) Ouhl — { Wihy 8“h0} [zeA“ + Zzg el Zﬂ} hiouhs,  (4.2.13b)

Cw Cw
+ 0\x7.0 €g + 92 ng S I
Lyvae = 8 82 Z zr 49 W WH=| (ho)*hy, + —A“WM — E—Z“Wu h,h} + h.c.

2
[eA A“—i—egC?—wA Z“+i02“’Z 049 W Wﬂ+]h ht.

’LU

(4.2.13¢)

In order to extract interactions of physical states from the kinetic Lagrangian one needs to work
with the mass-eigenstates of eq. (4.1.23). The resulting parts of the interaction Lagrangian Ly _g
are:

[ e
Lvvir = |5 —mzZuZ" + gmwWIW"™ | (caHly = soH) (4.2.14a)

+ {[emWA“WJ - gmzsiZ“WJ] G +hec.},
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g - < 0 VES < 0 -
Lvgg = — —Z# —SaﬂlaMHQ + CaﬂlauG + CaH28MH3 — SaHgauG + Sl@MSQ

2

g{zW+ (CaG OMHy — s G~ 8“H3 +1G™ 8”G0 415 H™ 8“H1
(4.2.14Db)

<> nd . < . <~

+H O"Hy +ico, H O*Hs + ST 0" S + ie”S‘@“Sg> + h.c.}

Zg C2w

+ [zeA” + =
Cw

<~ 4 4
“}<G+@x?-+H+QJ{+S+@¢¥),
2 2
Lvvun = [ 5 Zu 2" + inW“‘] (Hf + H + Hj + (G")* + 57 + 53)

w

+ { [?AP‘WJ 92 “’Z“W*] (isaH\H™ + HoH™ +icoHsH™ + coH1G™

ﬂdﬁarmd@—+awﬁ—+wW$$j+ho}

2 .2 2
+[&AWM+4w@wAMW+ﬁZquMW+ﬁ;w;ww+(HH++GG++SSU.
Cw cz,
(4.2.14c)

From the interaction terms ZZH; and ZZHj it follows that the states H; and Hs act as
CP-even. From the terms Zp;p; the following information can be extracted: Hs and G are
CP-odd, states S7 and So have opposite C'P numbers. The two photon state A, A" couples to a
pair of the same species charged particles gozigpi , and thus the state ¢; cij is C’P even.

The Feynman rules for the interactions of the scalars ¢; and the gauge bosons V; are:

@iViVie =18 g (0iViVi) g,
A d
©i0¢piVi =S g (pivjVk) (pj — pi)*, for all momenta ingoing, (4.2.15)
i ViV =15 g (pip; ViVi) g,
where S is the symmetry factor: S = II;n;!, for the ¢ identical particles of species n, g (v;V;Vi),

4
9 (pi0¢;Vi), and g (pip;ViV)) are the corresponding scalar-gauge bosons coefficients of vertices
obtained directly from egs. (4.2.14a-4.2.14c), and p; are the incoming four-momenta.

4.3 Scalar-Fermion Interactions

The general Yukawa Lagrangian is as follows:
Ly = L& + L% + L% + L% (4.3.1)

We work in the massless neutrino limit and thus the £j. term vanishes. Since the scalar potential
is S3-symmetric, we consider that the Yukawa Lagrangian is also Ss-symmetric. We assume the
following S3 structure (2+ 1), ® 2+ 1)r ® (24 1)p:

Q d h
Ss doublets: <Q1> , <U1> ) < 1) ) < 1) ;

Q, . us ) , ds n ha (4.3.2)
S,?) SingletS: @3[,7 U3R, d3R7 hS ;

where indices 1, 3 label quark families.

The Yukawa Lagrangian must be in the invariant singlet. Singlets of S3 can be obtained from
multiplication of two singlets or two doublets, where one factor could arise from the product of two
doublets:

1 ® any = any,

yon , (4.3.3)
2=101a2.
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Consider possible Yukawa terms. As an example, if we want to couple the scalar singlet hg to
fermions, we should couple it to a fermion singlet. Yukawa couplings of d-quarks that are singlets un-
der S3 can thus be constructed in 5 different ways, with independent coefficients {y¢, ..., y¢} [35,53]:

vl : Qiphsdip + Qsphsdsg, (4.3.4a)
ys: (Qiphs + Qah1)dig + (Qiph — Q3pha)dsg, (4.3.4b)
v§: Qsphsdip, (4.3.4c)
i o (QiLha + Qspha)dSg, (4.3.4d)
y§: Qg (hidip + hadgy), (4.3.4e)

where the Yukawa couplings yzd are assumed to be real. The quark sector of the Yukawa Lagrangian
is:

LY =LY + LY +he, (4.3.5)
where
—ﬁgl/ :yil [Q{)thd?R -+ QSthdzoR] =+ y‘gi [(QloLhQ + QQOLh1>d10R + (Qloth - QZDLh2)d§R]
+ y4Q3LhsdSr + y§ [(Qf k1 + QIpha)dSy] + yiQSy (hid g + haddp),
(4.3.6a)
—Ly =y [Q{)LESU{)R + QzOLiLSUQOR} +y5 [(Qlofjm + QzOLiLl)UPR + (QPLﬁl - QZOLiL?)UQOR}

+ Qi hsu + v [(Qfh + Qiuha)udk) + 4 QS (hnufr + houfp).

(4.3.6b)
As a result, the most general fermion mass matrix is of the following form:
yiwl + yyws Yo wi yiw
M, = E yywi yiwg — ysws  yjws |, (4.3.7a)
yswi ysw; ygws
yiws + ygws y§wi yjw:
Mg = NG ysw ylws — ydws  yfws | - (4.3.7b)
ygwl yg w2 ygws
Decomposition of the mass matrices into interactions with different scalar doublets yields:
0 y2
Mi=ly 0 0], (4.3.82)
Ys 0 0
v 0 0
My = —Y2 Y4 | (4.3.8b)
ys 0
yi 0 0
Mg~ |0 3y 0]. (4.3.8¢)
0 0 wys

It is straightforward to consider which of the vacuum configurations lead to unrealistic cases, e.g.,
models with a single active SU(2) doublet result in unrealistic eigenvalues. For h; (R-I-2a), the
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first generation becomes massless, and for he (R-1I-2), one of the eigenvalues is negative, and for
hs (R-I-1), two states are mass-degenerate.

Of particular interest are mass-eigenstates of fermion states. Rotation from the weak basis into
the mass basis is performed by the following unitary transformations:

0 0
uy, = Vyur, up = Uyug,

4.3.9
dY = Vydy, dp = Uqdg. ( )

In the mass-eigenstates basis we expect to get definite fermion masses. The diagonal entries should

therefore correspond to:
diag (my, me, my) = M, = VJMuUu,

. t (4.3.10)
diag (mgq, ms, my) = Mg =V, MgUy.
We also define hermitian mass-squared matrices:
; NP (4.3.11)
Hag=Mg(Mg)' = VagM3V],
or equivalently: A
H, = (M) M, = U, MU,
(4.3.12)

Hy = (Mg)f My = Ug MU,

The left-handed diagonalization matrix of eq. (4.3.9) is defined by solving eq. (4.3.11) and the
right-handed diagonalization matrix from:

U=M1VM. (4.3.13)

We define hermitian mass-squared matrix invariants:

A(u,d) = tl“('H(md)), (4.3.14a)
Blu,dgy = —(Heuwa)) 1y Hewd)) go = Hwd)) oy Hud) 33 — Heuwd))ss(Hewd))qy (4.3.14D)
+ (Hwa) 1o (Hiwd) oy T (Hiuwd)) gz (Hiuwa) 5o + (M) 51 (Hiway) ;5
C(u,d) = det(H(%d)). (43140)
C'P violation can be inspected by inspecting the determinant [54-56]:
J =Det (HqHy — HuHa) - (4.3.15)

The C-III-c-v? vacuum configuration is given by {ew\%, %, 0}. Substituting the vacuum
configuration into eq. (4.3.7) results in the quark mass matrices:

vs ey ey
v .
M, = 3 T -y Yy , (4.3.16a)
e—iay%t yg:)l, 0
vi  €ys ey
N
My = 5 ewyg _yél yil , (4.3.16b)
ezayg yg 0
and hermitian mass-squared matrices are:
W2+ 3> ise (03)2 + 3¢ (W) covsul
Hu= 50" | —iso (u8)° + 3¢ (4)> (48)° + 3 () 0 |, (4.3.17a)

Coly YL 0 (y¥)?
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(98)?+3 () ?  —iso (48) % + 3¢ (1) coysys
Ha= 50 | iso (48) * + 3¢ () (v9) %2+ 5 () o |- (4.3.17D)
CoV3Ys 0 Tk

Hermitian mass-squared matrix invariants are:

Ay = %U2 (v8) % + %112 [2(y5) %+ (v$)?] (4.3.18a)
Aa = %“2 () + %“2 2 () 2+ (v4)?]. (4.3.18b)
and
Bu=— 50" fear ()7 — ()7 — (58)%) () + ()43 ()7 + () ) ()% + 2 () ()]
(4.3.19a)
By = —%U‘l e2o (59) 2 = (49) 2 — (59) %) (62) 2+ (49) 1 +3 ((u) 2 + (49) 2) () 2 + 2 (u2) 2 (u9) 2] .
(4.3.19D)
and
Cu = 508 (5 Beas) (48 () 42, (4.3.200)
Ca = 3%”6 (5 — 3ez0) <y§> ? (yff) 2 (ys‘f) 2 (4.3.20b)

o (7 = 1) 022 [ () 2 W) 2 + (8 — o) (v8 + ) D)7

[(yg (vivdus + (u8) 2 — (vd) 2u8) — ™8 (ausus + vl )2 — v (1)2) )

(—t () *3%) )

— %7 (2yg ()2 — o 2 ) + W) ) + (2 (v8) 2+ (1) 2 -2 (8) ?) yé‘yﬁ-f)2] :
(4:3.21)

Both H(,,q) are hermitian. By using the complex number identities in polar coordinates it is
possible to rotate away complex phases. Consider H, of eq. (4.3.17a). Redefinition yields:

1 . .
iSU (y2) 2 + ie_w (y4) 2 = 7“167’(’01,
(4.3.22)

. 1, .
8o (Y2) 2 4 56 ‘7 (ys) 2 = el

and thus hermitian mass-squared matrices become:

(y2) 2+ 5 (va)® et ColY2Ys

MMt = %19 e )2 +iw)? o0 |, (4.3.23a)
Col2ys 0 (y5) 2
(y2) 2 + 5 (v5)° roe” 2 Coy2y4

MM = %vQ ro€'?? (¥2)*+35(s)2 0 | (4.3.23b)
Col2y4 0 (y4) 2

After performing rotations 73191./\/1./\/1T72%71 and RZDzMTMRm, where

R = diag (1, eF¥02, 1), (4.3.24)

#(1,2)
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hermitian mass-squared matrices become symmetric:

Hyy Hyp His
H~ H12 HH 0 . (4325)
Hiz3 0 Hsg

Full diagonalization of hermitian matrices is performed in terms of 4 parameters, three angles
of the SO(3) rotation and the phase rotation of eq. (4.3.24). Due to complexity of analytical
expressions we perform a numerical fit. We note that it is impossible to get a physically meaningful
solution when trying to reduce the number of Yukawa couplings, i.e., setting some of the y; = 0.

In total, we need to fit 7 different parameters of which 6 are Yukawa couplings, counting both
up and down Yukawa couplings separately, and also the overall phase ¢ of hy. In the C-III-c model
there are only three non-zero Yukawa couplings and this is the minimal number of couplings needed
to fit mass values of the three fermion generations. Since o is a free parameter, we found that the
best fit for masses is achieved by considering the following exponential polynomial:

yi = om0 e (4.3.26)

where A; are real numbers and in some cases are equal to zero. In principle, we need to fit 3
different Yukawa couplings and thus it makes sense to take a look at different orderings of the
Yukawa couplings. For simplicity, we use the following notation:

Yijk = vi > yj > Yk (4.3.27)

One of the constraints on the Yukawa couplings comes from the CKM matrix. The absolute
value of the CKM matrix

Vorum = Vi Vy (4.3.28)

is a well-known quantity. The PDG presents the following CKM matrix [29]:

0.9742 0.2243 0.00394
Vekm = | 0218  0.997  0.0422 | . (4.3.29)
0.0081 0.0394  1.019

As stated earlier, we consider that o is a free parameter and therefore it can be used to fit the
value of the CKM matrix. If there was at least one additional free parameter there would arise a
possibility to cancel the net effect of the o value. Therefore the o phase needs to be fixed so that
both experimental and theoretical values of the CKM matrix are in agreement. We found that in
most cases diagonal elements of the CKM matrix are close to unity when o = 0. It should be noted
that based on results of the spectrum generator of section 6.2, the minimum value of ¢ is close to
0.167.

Consider different Yukawa couplings orderings (4.3.27). Both orderings Y245 and Yas4 result in
unnaturally low second family masses and thus are not considered. Best fit is achieved in the limit
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o =0.16m:
0.999 0.032 0.001

Va. Y |Vexum| = | 0.028 0.876 0.482 |,
0.016 0.481 0.876

0.876 0.028 0.482
VY, + [Vexu| = | 0032 0999 0.001 |,

0.481 0.016 0.876
(4.3.30)
0.624 0.782 0.011

Y, Y, o [Vekum| = | 0782 0.624 0.005 |,
0.011 0.005 1

0.877 0.481 0.001
VY, o [Vexum| = | 0.481 0.877 0.001
0.001 0.001 1

The only meaningful model is Y24, Ys},. Another interesting case is to consider non-identical order-
ings of the up-/down-quarks. For o = 0.36m we get something even closer to the PDG value:

0.975 0.224 0.001
Vi, Yd, o |Vexum| = | 0224 0975 0.001 |,

0.001 0.001 1
(4.3.31)
0.975 0.223 0.005

Y4, Y4, o [Vexm| = | 0.223 0.975 0.005
0.005 0.005 1

We assume that the only sensible orderings are Y4V, and Y,Y:%,. Since o is a free parameter
and neither result is in perfect agreement with the experimental CKM value, we consider the
following acceptable range:

o = [0.34m, 0.387] . (4.3.32)

In this range we get the following CKM matrix values:

0.966 - 0.982 0.257 - 0.191 0.002 - 0.001

Vi Yy o |Voxm| = | 0.257-0.191 0.966 - 0.982 0.001 ,
0.002 - 0.001 0.002 - 0.001 1
(4.3.33)
0.967 - 0.982  0.256 - 0.19  0.006 - 0.004
VoVt |[Vokm| = | 0.256-0.19 0.967 - 0.982 0.006 - 0.004
0.006 - 0.004 0.005 - 0.004 1

The nearly identity form of the CKM matrix |Vexm| = Z+ O(1072) is achieved for both cases when
o > 0.4937. This choice of o results in nearly mass degenerate states mg, = msg,.

Now, as we have two viable models, we move to the scalar-fermion interactions. The scalar-
fermion interactions can be extracted from the Yukawa Lagrangian:

g(&ifife) = (V;MinthPR + U} (M) VfPL)jk : (4.3.34)

where the interaction matrices M are equivalent to the ones of eq. (4.3.7) with substitution
of w; — &;, where & are fields of interest multiplied by appropriate coefficients. For simplicity,
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consider the u-quark sector:

| e—iayg %ei(a—o)yg o
./\/1111{157 5 ei(a—a)yg _e—iayg e—iayzli , (4.3.35&)
ei(a—a)yu e—z‘ayg 0
. vy —eyy —e iy
MIII{‘I;’ 5 7e—iayg 7y’121 ny , (4335b)
_efiayS y’su 0
[ e ety ey
M}I}; =3 jeila— U)y’éL Z'y’éLe—iOt _ie—iay}f , (4.3.35¢)
jellam oyl _jeTioyu 0

where « is the C'P-even sector diagonalization angle given by eq. (4.1.13).
We denote
“int /T A 4int
G = VM Uy (4.3.36)

and thereforel

9(&ff) = M Pr+ (M(ff))TPL. (4.3.37)

The resulting diagonal interactions of the form &;f; f; are:
Mijvs + Re(Mjj) (1= 75) (4.3.38)

and the FCNC .fzfjfk are of the form:

5 (S i) 435 (W56 — i) (4.3.39)

where M jk are the elements of /\;li(?tf). It follows that there are FCNC present if and only if the
off-diagonal elements of the M‘(n ) matrix are non-zero.

Consider the C-III-c-v? vacuum configuration {e“’\”[ et 0}. The left-handed and right-
handed matrices V' and U diagonalize the fermion mass matrices. Therefore it follows that any sort
of combination A{e?, 1, 0}, where A is either complex or real, results in a diagonal interaction
form. Provided that coefficients next to the fields do not obey the aforementioned condition, the
resulting off-diagonal elements of the ./\;l‘(rzltf) are non-zero and thus result in FCNC.

Due to the fact that the fermion sector diagonalization is performed numerically, it is not
obvious how the elements of interaction matrices look like. We consider Yukawa models Y%,Y:4,
and Y%, Y%,. Of particular interest are interactions involving the SM-like Higgs boson Hj. In case

of the vanishing a = 0 we achieve the SM limit:

g (HiFf) = % (4.3.40)

For a # 0, the diagonal elements can be expressed systematically as:

Qii = diag((R + H75)11, (R + ]I’}/5)22, Rgg), (4.3.41)

We do not consider the charged scalar interactions here. The charged flavour currents result in the CKM matrix.
The Yukawa Lagrangian should be changed appropriately:

(Mi(?,tu))charged - Ml(?fu) VokwMm 5

(Mi(rilfd))Charged = VCKMMI(I;,td) .
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where R is a real number, I is an imaginary number. The off-diagonal elements are of the following
form:
gij = (R+1);; + (R +1T)j; 75, (4.3.42)

and are hermitian, g;; = gjl One of the disastrous consequences of the model are FCNC, see

eqs. (6.2.1, 6.2.2). We found that in most cases the off-diagonal elements dominate over the
diagonal ones. There is no way to control such processes as the model is numerically fixed, there
are no free parameters.

In both Yukawa models, with an increasing value of o, the value of the diagonal third family
coupling ¢33 tends to zero. This indicates that there should exist an upper boundary condition for
the angle « so that the coupling of the third family to the SM-like Higgs boson is meaningful. We
assume that the SM-like limit is achieved by ¢, = 0.9. Another interesting property is that with an
increasing « value, values of the diagonal elements g;; decrease while of the off-diagonal elements
gij increase. For a = 0.14r, the third family quarks couple with a strength g3z ~ 0.972.

Interactions involving the Hy scalar do not depend on the angle «. Elements of the interaction
matrix are of the same form as given by eqgs. (4.3.41, 4.3.42). One would assume that each following
fermion generation would couple stronger to the scalar then the previous one. This is not the case
for the coupling gs3. In principle, both g1; and g2 couple to Hy as C' P-indefinite, while the third
family as C'P-odd. However, the value of gs3 is only one magnitude different from g¢i1, e.g., for
Y5“24Y5‘f12 and o = 0.367 the diagonal elements for the up-quarks are:

g~ —1.4x107° 422 x 10703,
g%~ —2.4x 107 =22 x 1073 i s, (4.3.43)
g4~ 1.6 x 1075 i 7s.

For the down-quarks: g45 = O(1078). The same is true for the Y%4,V, model: g% = 0 and
g% = O0(107%). From the element g% it follows that for o in the range (4.3.32) there is no
interaction Hott.

Fermion-scalar interactions involving Hs once again depend on the angle «. The diagonal
elements are of the same form as for H; (4.3.41). The off-diagonal elements are of the same form
as in eq. (4.3.42). In contrast to Hy ff, with an increasing a value, values of the diagonal elements
gii increase while the off-diagonal elements g;; decrease. This is a totally expected behavior and
arises from the fact that both states H; and Hs were diagonalized by the same angle a.

So far we considered only the quark sector. We assume that there are no right-handed neutrinos
vr and therefore neglect neutrino masses and the PMNS matrix. The PMNS matrix is not fixed
in terms of the left- /right-handed diagonalization matrices and therefore this results in a freedom
of the Yukawa couplings ordering. Governed by the quarks sector result, we scanned the range
o =[0.34m, 0.387] and a = [0, 0.147]. We found no significant deviations from the general condi-
tions for the quark sector. The only interesting observation involves interactions of the Ho scalar
with the third family:

Yios = Yoy = O (107°),

4.3.44
Y4€52 = Y5e42 =0 (10_10) : ( )

It seems unnatural that the scalar Ho would “not bother” about the third family and thus we
consider models with higher g3 value. We conclude that models Y24, Vi,V and Y4, Y4,V are
of interest and thus those are considered for numerical evaluation in section 6.2.

All in all, the Yukawa sector does not behave as desired: unrealistic CKM matrix, FCNC
contribution is too significant, the Hy field interacts with a really low strength with the third
family. The scalar potential is softly broken and therefore additional singlets could be introduced
to the Yukawa sector. Additional Yukawa singlets may fix some of the issues. We propose that the
following singlets? could be added to (4.3.4):

v Qfphidsp, (4.3.45a)

2In case of w1 = 0 and wy = 0, to generate realistic fermion masses the ys coupling could be added.
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vi: Qphadig, (4.3.45b)
vs : Q3phsdig, (4.3.45¢)

so that the decomposition (4.3.8) results in:

0 y2 w4

Mix|y 0 0], (4.3.468)
ys 0 e
v 0 0

Mo~ 10 —Y2 Y4 | > (4346b)

Ys Yr

Y1 0 0

MS ~ 0 Y1 + Ys 01. (4.3.46C)
0 0 Y3

Even a single additional Yukawa coupling, y7 = yg, should result in a more realistic CKM matrix.
This is due to the fact that now there is an additional free parameter yg, but the CKM matrix
depends on both yg and yg. Additional parameters may also enable control over the FCNC. A full
analysis of the broken Yukawa sector is beyond the scope of the thesis.

4.4 Scalar-Scalar Interactions

The Feynman rules are obtained by expanding the Ss-symmetric scalar potential with respect to
the mass-eigenstates and multiplying the relevant terms by —iS, where S is the symmetry factor
defined in the same way as in section 4.2. We consider that the SU(2) doublets in terms of the
mass-eigenstates are given by eq. (4.1.23).
For simplicity, we express the rotation angle of the S3 singlet in terms of the overall phase
~v = 0 /2, which we got from the diagonalization procedure of the S5 singlet neutral sector (4.1.20).
We note that the scalar-scalar couplings are written down in a slightly different way. The couplings
g(H;H;Hy) and g (H;HjH H;) are presented with the symmetry factor S. Therefore, the Feynman
rules are defined as:
H;HjH H, = —ig (H;H;Hi,Hy) . (4.4.1)

The trilinear couplings involving the same species are:

g (HlHlHl) = 3v [(2)\1 — Xy + )\3) Co + ()\2 + )\3) Cga_go] , (4.4.2&)
g (H3H3H3) = —3v [(2)\1 — Ao+ )\3) Sa — ()\2 + )\3) S3a,20] . (4.4.2b)

The trilinear couplings involving only the neutral fields of the S3 doublet are:

g (H1H1H3> = —0 [(2)\1 — Ao+ )\3) Sa +3 (AQ + /\3) S3a_20] , (4.4.3&)
g (H1HaHs) = v [(2\1 + A2 + 3A3) ca — (A2 + A3) Ca—20] » (4.4.3b)
g (H1H3H3) =0 [(2)\1 - )\2 + )\3) Coq — 3 ()\2 + )\3) Cga_gg] y (4.4.3C)
g (HaHoH3) = —v [(2A1 + A2 4+ 3X3) S0 — (A2 + A3) Sa—25] - (4.4.3d)

The trilinear couplings involving both neutral fields of the S5 doublet and singlet are:

g ( ) =v[(As + X6) Ca + 2A7Ca—0s] (4.4.4a
g (H15252) = v [(A5 + Ag) ca — 2A7Ca—s] (4.4.4b
g ( ) = —20A78,, (4.4.4c
g ( ) = —v[(As + X6) Sa + 2A7S0—0s) , (4.4.4d

~— ~— ~— ~—
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g (HgSQSQ) = —v [()\5 + A6) Sa — 2)\7Sa_g] . (4.4.46)

The trilinear couplings involving the charged fields are:

g (HiHFHT) = v[(2\ + A2 — A3) ca — (A2 + A3) Ca—20) , (4.4.5a)
g (H15%5F) = vAsca, (4.4.5b)
g (HsH*H7F) = —v[(2M\1 + A2 — A3) 8a — (A2 + A3) Sa—20] , (4.4.5¢)
g (HgSiSjF) = —VUA55q, (4.4.5d)
g (SLH*ST) = Fiet T vArs,, (4.4.5¢)
(SgHiSqE) —e 7’1))\780. (4.4.5f)

The quartic couplings involving the same species are:

g(H\H\H\Hy) = g (H3H3H3H3) = 3[2A\1 — A2 + A3 + (A2 + A3) Caa—20) (4.4.6a)
g (HoHoHoHy) = 6 (A1 — Xosz + Asc2) (4.4.6b)
g (51S15151) =4 (SQSQSQSQ) = 6/\8, (4.4.6(3)
g (H*HTH*HT) =4 (A1 — Xos2 + Asc2), (4.4.6d)
g (SESTSEST) = 4)s. (4.4.6¢)
The quartic couplings involving only the neutral fields of the S3 doublet are:
g (H1H1H1H3) -3 ()\2 + )\3) Sda—20 5 (4.4.7&)
g (HlHlHQHQ) = [)\1 + A3 — ()\2 + )\3) SQa_o—So—] , (4.4.7b)
g (HiH1H3H3) = 2M1 — A2 + A3 — 3 (A2 + A3) Ca0—20, (4.4.7c)
g (HlHQHgHg) = -2 ()\2 -+ )\3) C2a—0So s (447d)
g (H1H3H3H3) = 3 (A2 + A3) S4a—20, (4.4.7¢)
g (H2H2H3H3) =2 [)\1 + A3+ ()\2 + )\3) Soq— USU] . (4.4.7f)
The quartic couplings involving only the neutral fields of the S35 singlet are:
g (51515252) = 2)g. (4.4.8)
The quartic couplings involving both neutral fields of the S5 doublet and singlet are:
g (H1H15151) = g (H3H35252) = A5 + A6 + 2A7¢C20—0, (4.4.9a)
g (HlHlSQSQ) q (HgHgSlsl) = A5 + A — 2A7Co0—0s (449b)
g (H1H25152) = 2>\7Sa—m (4.4.9(3)
g (H1H35151) = —2A7820—0, (4.4.9d)
g (H1H35252) = 278200, (4.4.9¢)
g (H2H2S5151) = As + X6 + 2A7¢q, (4.4.9¢)
g (HaH25252) = A5 + A6 — 2A7¢,, (4.4.9g)
g (HQHgSlSQ) 2/\7Ca o (4.4 9h)

The quartic couplings involving either the neutral fields of the S3 doublet or singlet along with
either charged fields of the S5 doublet or singlet are:

g (HLHIH=HT) = 2)\1 4+ (A2 — A3) caa — (A2 + A3) 2 (a—0) (4.4.10a)
g (HiH,S%S%) = g (HyH,S*S¥) = g (H3H3S%ST) = Xs, (4.4.10b)

g (HIHsHEHT) = — (A2 — A3) 520 + (A2 + A3) S9(0—0) (4.4.10c)
g (HoHoH¥HT) =2 (A — Xos2 + Asc2) (4.4.10d)
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g (HsHsH=HT) = 2)\; — (A2 — A3) caa + (A2 + A3) C2(a—0)

(5151H H:F) =g (SQSQH:EH:F) = )\5,
9 (S1515F5F) = g (52925 5F) = 2)s.

(4.4.10¢)
(4.4.10f)
(4.4.10g)

The quartic couplings involving both neutral fields of the S3 doublet and singlet along with a pair

of the charged fields of the S3 doublet and singlet are:

g (HlSlHiSjF) = $%e 7 (A6Sa — 2A78a—0 ) 5
g (H1S2HEST) = % =5 (A6Sa + 2N 1Sa0) |
g (HaS H*S¥) = %ei%" (A6 + 2A7¢,)

g (H2So HEST) = i%ei%’ (A6 — 2A7¢o)

g (H3S  H*ST) = ;%ei% (ACa — 2A1Ca—s) ,
g (H3S:H*S¥) = %ei%’ (A6Ca + 2A7Ca—0) -

The quartic couplings involving only the charged fields are:

g (H*HTSEST) = X5 + Ag,
g (HEHESTST) = 4e™7 Mc,.

(4.4.11a)
(4.4.11D)
(4.4.11c)
(4.4.11d)
(4.4.11¢)

(4.4.11f)

(4.4.12a)
(4.4.12b)

The trilinear couplings involving only the neutral fields and the would-be Goldstone boson are:

9 (G G Hy) = v (A2 + A3) ca—20 + (2A1 — A2+ A3) cal
9 (G°G H3) = —v[(A2 4+ A3) Sa—20 + (2A1 — A2 + A3) 8a] ,
g (G H1Hs) =2 (X2 + A3) v¢sSa—o,
g (GOHQHg) =2 (A2 + A3) v¢pCa—0g,

g (Gosng) = 2A\70¢C,.

The trilinear couplings involving the charged fields and the would-be Goldstone boson are:

(H\GFTH®) = £iv [(A2 + A3) Sa—20 + (A2 — A3) 8a] ,

(HsGFHF) = Liv [(A2 + A3) ca—20 + (A2 — A3) ca],

=v[(A2 + A3) ca—20 + (2A\1 — A2 + A3) cal

)
)
)
(HgG:FGi) = —v [()\2 + )\3) Sa—20 + (2)\1 — )\2 + /\3) Sa] R
)
)
)

The quartic couplings involving neutral states with at least one would-be Goldstone boson are:

9 (G°G°G°G°
9 (G°G°G°H.

g(G° GOH1H1
9 (G°G H, Hy

-3 ()\2 + )\3) S20s

\/\/\/\/
I

2 (A2 + A3) 86C20—0,

3[2M1 — Ao+ A3+ (A2 + A3) e20]

2 [Al + A3 + ()\2 + )\3) SUS2a—J] )
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99

20 — X+ A3 —3 ()\2 + /\3) Co2c,
2[A1 + A3 — (A2 + A3) 868200
=2(A2 + A3) coS20—0,
2
3

()\2 + A3) CoC20—0)
(A2 + A3) s20,

= 2\7Cq—0s
= 2>\7SO'7

(4.4.15¢)
(4.4.15¢f)
(4.4.15g)
(4.4.15h)
(4.4.151
(4.4.15]
(4.4.15k
(4.4.151
(4.4.15m
(4.4.15n
(4.4.150

)
)
)
)
)
)
)
(4.4.15p)

The quartic couplings involving the charged fields and the neutral fields along with the would-be

Goldstone boson are:

Q@
2
-
Q
H
T
H,
Il

and

)

) =3

) =AreT 2 s,
)

)

ieT5 (\g — 2\rc,)

eF% (Mg + 2Mrc,)

= g (Ha$1GTS) = +irgeT s,
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g (H1$1GFS*) = %ejF?U (A6Ca + 2M7Ca—0) (4.4.17f)
g (HlSQCﬁSi) = :F%iejF% (A6Ca — 2M7Ca—0) (4.4.17¢g)
g (HgSlGjFSi) = —%ejF% (X6Sa + 2M78a—0) , (4.4.17h)
g (H38,GFS%) = i%iejF% (A6Sa — 2\ 7Sa—s) - (4.4.171)

The quartic couplings involving only the charged fields and the would-be Goldstone boson are:

g (GFGFGTGF) =220 — A + A3 + (A2 + A3) c20) (4.4.18a)
9 (GFGFGTHF) = 72i (A2 + )\3)520, (4.4.18b)
g (GTHEGTHF) =4 (Mo + X3) c2 (4.4.18¢)
9 (GFSEGTSE) = 4\eT¢,, (4.4.18d)
9 (GFGFHTGF) = £2i (A2 + A3) 820, (4.4.18¢)
g (GFGFHTHE) =2\ + A3 — (A2 + A3) c20) (4.4.18f)
g (GTHEHTHF) = £2i (A2 + A3) 520, (4.4.18g)
g (GFSTHTSF) = £di7e™s,, (4.4.18h)
g (GFGESTSE) = A5 + 6. (4.4.18i)

From the trilinear couplings involving the same species states it follows that the states H; and
Hj3 are C'P-even. From the neutral trilinear couplings we conclude that the Hy state is C'P-odd
and the states S7 and So have an opposite C P quantum numbers. This is in agreement with the
extracted information from the scalar-gauge bosons couplings, see section 4.2.

4.5 Constraints

4.5.1 Constraints From the Scalar Masses

We consider constraints from the scalar masses. First of all, we assume that all of the scalars
masses squared are positive and non-zero. Secondly, we assume that the H; field corresponds to
the recently discovered Higgs boson with mpy = 125 GeV.

Taking into consideration the first assumption, from the charged sector we get that:

Ao > 0, (4.5.1a)
2
A > — K0, (4.5.1b)
v
From the neutral sector of the S3 doublet it follows that:

Az > — min ()\1, )\2) , (4.5.2a)
A1+ A3 > Al (4.5.2b)

The determinant of the mass-squared matrix M%_ ;.10 Of €q. (4.1.9) should be positive definite:

det (Meutral—12) = 8 (A1 — A2) (A2 + A3)* s20° > 0. (4.5.3)
Therefore it follows that:
A1 > Ao (4.5.4)
Taking into consideration the neutral masses of the Ss singlet we get the following constraints:
2
,U,O + A5 4+ X > 0,

2 (4.5.5)

2u
74‘)\54—)\6— |>\7C20| > 0.
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4.5.2 The Standard Model Limit

In the SM, the Higgs boson and gauge boson Feynman rules are given by [57]:

hWEWT = igmw gy, (4.5.6a)
hZ,Zy = iLmygu, (4.5.6b)
Cw
i
hhWi W, = §gzgw,, (4.5.6¢)
7 92
thMZV == 579uy, (456d)
C'UJ

and the Higgs boson and fermion Feynman rules are:

m

hff = —i (4.5.7)

Assuming that the SM-like Higgs boson is Hi, in the SM limit we find that ¢, = 1 and therefore
a = 0. The rotation angle o was defined in eq. (4.1.13). It follows that alongside o = 0 another
condition should be satisfied:

()\2 + )\3) Sos = 0, (4.5.8)

where Ay + A3 = 0 leads to the exact C-III-c? case as in this limit we get ©> = 0. The other option
leads to 0 =0 or o = %71 The o = 0 constraint results in a real vacuum configuration. Moreover,
solving for the minimization conditions we get that v? = 0 and this is exactly the R-II-3 vacuum
configuration. In the case of o = %77 we get that v? = 0. Therefore we conclude that there is no
exact SM limit for the C-III-c-v? vacuum configuration. Nevertheless, we assume that the SM limit
is achieved by c, > 0.9.

In the SM, the Higgs-Higgs boson H trilinear and quartic Feynman rules are:

2

HHH = —3i"k
7;12 (4.5.9)
HHHH = —3i—.
v

The C-III-c-v? model results in g (HiH1Hy) (4.4.2a) and g (HyH1H1H;) (4.4.6a). In principle,
there is some freedom and we do not compare these terms against the SM couplings. For an insight
of the non 3HDM see Refs. [58-60].

4.5.3 Potential Stability

The scalar potential needs to be stable, see Refs. [16,61]. This implies that the scalar potential of
eq. (2.1.7) should be positive in all space directions for asymptotically large values of fields, i.e.,
for |hi1|, and |ha|, and |hg| approaching infinity. This is the most basic constraint as it forces the
existence of a stable minimum.

Necessary potential stability conditions were presented in Ref. [37]:

AL >0, (4.5.10a)

Ag > 0, (4.5.10D)

AL+ Az > 0, (4.5.10c)

201 + (A3 — A2) > | A2 + A3, (4.5.10d)

As + 2/ A8 (A1 + Az) > 0, (4.5.10¢)
A5+ X6 + 2v/ A8 (A1 + A3) > 2|7, (4.5.10f)

AL+ A3+ A5 + A6 + 207 + Ag > 2|y (4.5.10g)

3We remind that the exact C-III-c vacuum configurations results in only one massive neutral scalar.
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In Ref. [34], following the approach of Refs. [62,63], it was shown that although for the most general
scalar potential stability conditions are quite involved, for vacuum configurations with the \y =0
constraint there exists an explicit direction in the space of the scalar potential. Another method,
in terms of bilinears, was discussed in Ref. [64].
We present the general formulation of Ref. [34]. The SU(2) doublets can be re-expressed as
follows:
hi = ||hillhs, fori={1, 2, S}, (4.5.11)

where ||h;|| is the norm of the spinor, and h; is a unit spinor. Assuming that the two different
systems have the same origin, the norms can be parameterized in terms of relations between the
Cartesian and spherical coordinates:

[[ha]] = reysy, (4.5.12a)
l|hal| = rsyso, (4.5.12b)
\|hs|| = re, (4.5.12¢)

where 7 € [0,00), v € [0,7/2], 8 € [0,7/2]. The SU(2) invariant products are:

hihy = pse’®s, (4.5.13a)
hhy = prei®, (4.5.13b)
hihg = pae'®, (4.5.13¢)
hih; = (h}ﬁi)*, (4.5.13d)

where 6; € [0,27) and p; € [0, 1] due to the fact that solutions lie within a unit sphere.

For asymptotically large field values the main contribution comes from the quartic terms Vj of
the scalar potential. Thus we consider only the relevant quartic couplings. In this case the potential
stability condition is given by:

8
Vi=r'> XA =0, V{pi, 0,7, 6}, (4.5.14)
i=1
where

Ay =, (4.5.15a)

Ay = — 355,555 (4.5.15b)

Az = (C%v + pgcgssgw) sy, (4.5.15¢)

Ay =2 (plcglcgy + 2p2p3092093c§) svc(;sg, (4.5.15d)
1

As = nge, (4.5.15¢)
1

Ag = 1 (p%sg/ + pgci) 29, (4.5.15f)
1

A7 = 3 (pfc%ls% + 030292(33) S20, (4.5.15g)

Ag = cj. (4.5.15h)

Necessary and sufficient conditions, provided that the Ay = 0 constraint is applied, are [49]:

A1 > 0, (4.5.16a)

Ag > 0, (4.5.16b)

AL — X2 >0, (4.5.16¢)

AL+ A3 >0, (4.5.16d)

As +min [0, A\g — 2|A7]] > —21/A1)s, (4.5.16¢)
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A5 + min [0, A6 — 2’)\7” > —24/ (/\1 — )\2) g, (4.5.16f)
A5 -+ min [O, g — 2’)\7‘] > —2v/ (/\1 + )\3) Ag. (4.5.16g)
In the C-III-c-v? model eqs. (4.5.16a, 4.5.16c, 4.5.16d) are by default satisfied due to the mass-
squared parameters. Eq. (4.5.16b) puts a lower bound on the free coupling Ag of the model. The
left side of terms (4.5.16e-4.5.16g) is equivalent and thus only the lowest value of the square root

should be considered as it results in the most severe constraint. It turns out that only eq. (4.5.16f)
can be considered. For simplicity, it can be split into:

/\5 > —24/ ()\1 — /\2) A , (4.5.17&)

As + Ag — 2‘)\7‘ > —2 ()\1 — )\2) Ag. (4.5.17b)

4.5.4 Perturbativity

The soft perturbativity limit is given by directly imposing constraints on the quartic couplings:
[Ail < Amax- (4.5.18)

The most conservative choice is to set Apax = 47w. A smaller value Apnax = 27 was adopted in
Ref. [65]. We adopt a more widely used convention of Apax = 4.

For the C-IIT-c-v2, the number of checks of (4.5.18) can be reduced. We discuss relations between
the couplings and masses in section 4.1.1. We suppose that the heaviest states are mg = 1 TeV.
First of all, from |\g| < 47 it follows that mpy+ < 1234.36 GeV. Next, the |\5| < 47 is fixed by p3:

g € [—2mv® + miy, 2m0® + mie] . (4.5.19)

The constraint [A3] < 47 can also be neglected as it requires mass splitting of order 1200 GeV,
which in our case makes little sense. From |A;| < 47 it follows that:

m¥e < | —my, +mi, +mis] < (1228.01 GeV)?, (4.5.20)

and the lower boundary follows from the fact that mg, < mp,. From |\¢| < 47 one can derive:

2 2 2 2 2 2
mgs € MaX[Re \/ Amo” + 7;51 s, ,100], Min[Re \/4m * TT;Sl s, ,1000] :
(4.5.21)
in GeV units.
The only constraint to be checked is |\7| < 47, which turns out to be way too involved to be
analytically checked.
We also take into consideration a more severe perturbativity limit in terms of limiting the overall

strength of the quartic scalar-scalar interactions®:

|9 (ipiprpr) | < 4, (4.5.22)

where the quartic couplings were presented in section 4.4. One of the most obvious limits comes from
the coupling g (51515151) = 67 (4.4.6¢) by directly considering the perturbativity limit (4.5.22),
Ag < %71 Some of the couplings depend on a single M5, e.g., g (HiHSTST) = \5 (4.4.10b), and
such checks simplify to (4.5.18). The other simple relation is g (HT¥HTSTST) = A5 + \g (4.4.12a).
Most of the quartic scalar-scalar couplings depend on trigonometric functions and thus should be
numerically checked if those satisfy the perturbativity condition (4.5.22).

“Interactions involving the would-be Goldstone bosons are not considered.
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4.5.5 Tree-Level Unitarity

The two-body scattering processes involving longitudinal bosons and the Higgs boson in the SM
were pioneered by Lee, Quigg and Thacker [66] and further on analysed in Refs. [67,68]. The uni-
tarity constraints of the 2HDM are well-known and different methods can be found in Refs. [69,70].
The general idea behind the unitarity bound is that the Born amplitude for elastic longitudinal
vector-boson scattering may not result in a higher than unity amplitude.

The process of finding the unitarity limit is straightforward due to the Goldstone equivalence
theorem, which relates the longitudinally polarized vector boson and the Goldstone bosons in the
high-energy limit [71,72]. It is sufficient to take a look at the 2 — 2 scattering processes of the
gauge-eigenstates. The number of 2-body states is given by a binomial:

n+1 1
m= < 0 ) = in(l—i—n), (4.5.23)

where n is the number of scalar degrees of freedom. The most general case results in a matrix of
dimension dim(m).

Due to computational complexity of the eigenvalues of the most general scattering matrix it
is worth a try to find a basis in which the scattering matrix S is block-diagonal. This approach
makes sense as not all of the 2-body scattering processes are possible as those are restricted by the
Ss-symmetric potential and by discrete symmetries like CP or Zs.

The eigenvalues of the block-diagonal matrix .S is a list of eigenvalues of each sub-block diagonal
matrix:

det (S — AZ) = det (S; — AT) x -+ x det (Sp — \T). (4.5.24)

The electric charge should be conserved in the scattering processes and thus it is straightforward
to split the scattering matrix .S based on the total charge. The neutral scattering matrix is denoted
by S°, and the singly charged scattering matrix is denoted by ST, and the doubly charged scattering
matrix is given by ST+. Therefore the form of the scattering matrix including the channels based
on the electrical charge is as follows:

S = diag (S%, ST, STH). (4.5.25)
We start with the neutral channel. The neutral scattering matrix can be expressed as:
S° = diag (57, S9, 53, SY, S9). (4.5.26)

Each of the matrices S is obtained by taking a look at the states (¥'|U}'), where the two-particles
states W' are given by:

U = {|hhy ), |hThS), i), [RaXe) s [TRe) , [72X1) (4.5.27a
U9 = {|hfhg), [hyhE), linds) , [X1Xs) s [iXs) s lisx)} (4.5.27b
WS = {linxa), [ixe), [sXs)} (4.5.27c¢
U = {|nghg), |hyhl), IMails), [X2Xs) s |Tl2Xs) s [sXa)} (4.5.27d

_ _ _ | 1
0= {]hfhﬁ, hyhg ), |hghl), 7 [T71) S 7 |T1272) 5

)
)
)
)

(4.5.2;(3)

where the factor of % is due to the Bose-Einstein statistics. States are organized so that each of
the separate sets (U]'|W") is a block-diagonal component. The elements of the neutral scattering
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matrix are:
2 (/\1 - )\2) 4 ()\2 + )\3) 23 2)3 —2i)g 2i Mo
4 ()\2 + )\3) 2 ()\1 — )\2) 23 23 23\ —2i)g
g0 23 23 2(M + )\3) 2 (A2 + A3) 0 0
! 23 23 2(Ma+A3) 2(A1+ As) 0 0 ’
2iMg —2iAo 0 0 2 ()\1 —2Xg — )\3) 2 ()\2 + )\3)
—2i\o 21 \g 0 0 2 ()\2 + )\3) 2 ()\1 —2Xg — )\3)
(4.5.28a)
As + Ag 47 % (/\6 + 2/\7) % (/\6 + 2)\7) % ()\6 — 2/\7) —L ()\6 - 2)\7)
47 As + Ag % ()\6 + 2)\7) % ()\6 + 2)\7) —§ ()\6 — 2/\7) % (X6 — 2M7)
50— 1M +2X7)  F(A6+2X\) A5+ A6+ 27 27 0 0
2 TO6+20) L +2xn) 2\7 A5 + Ag + 2X7 0 0 ’
-+ X6 —2X7)  E(X6¢—2X7) 0 0 As + A6 — 27 2X7
L6 —2X7)  —% (X6 —2\7) 0 0 2\7 s + X6 — 2)7
(4.5.28b)
2 ()\1 + )\3) 2 ()\2 + )\3) 27
SY=12\2+X3) 2(A1+X3) 2\ |, (4.5.28¢)
Ny 2\ g
S9 =89, (4.5.28d)
S92 S9
SO 511 512 (4.5.286)
o (SglgT S522’>
where
4 +A3) 20 —=X2)  As+As V2(A1+A3) V2(M = As)
2(A01 —A2) 4+ A3) As+Ae V2(A =) \ﬁ(h + A3)
S9 = A5 + Ao s + g 4)g % % , (4.5.29a)
VZOu+23) V2Ou-2s) S5 3+ ) AL+ Az
V20— 23) V2(a+ ) AL+ A3 3(A1+As)
2 VZ(A+2A3)  VZ(A— ) %
% V20— 23)  V2(A1+ ) %
S5, = V2s 25 X Vs , (4.5.29b)
% (/\5 + g + 2/\7) A+ A3 A — 2X9 — A3 % ()\5 + e — 2)\7)
% ()\5 + g + 2)\7) A1 —2X3 — A3 A1+ A3 L ()\r 4+ e — 2)\7)
3)\s L s+ X6 —2X7) 3 (A5 + X6 —2)7) As
0 % (A5 + X6 — 2A7) 3(A1+ A3) A1+ A3 % (A5 + X6 + 2A7)
Se, = |2 2 . (4.5.29¢)
5 (As + X6 —2A7) A1+ A3 3 (A1 +Az) 5 (As + X6 +2A7)
As LA+ A6 +2X7) 2 (As+ A6+ 2)\7) 3As
The singly charged scattering matrix is:
St = diag (Sy, Sy, S5, Sf) . (4.5.30)
The singly charged two-particles states are:
U = {|hfm), [h3 i) [hgis), [ x1) s [hsX2), [h§Xs)} (4.5.31a)
‘I’+ = {‘h 772> 2771>> 1>Z2> 2921>} (4.5.31b)
Ui = {|hfas), [ném) . [hixs), [REx)} (4.5.31c)
vy = {[hds), |hgi) [h3Xs) s [h5Re)} - (4.5.31d)
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The sub-matrices of the singly charged scattering matrix are:

2 ()\1 + )\3) 23 % (/\6 + 2)\7) 0 —2i\o % ()\6 - 2)\7)
223 2(M+X3) 5 (N6 +2)) —2i)g 0 2 (A6 — 2X7)
o+ _ 3 (N6 +2Xx7) 3 (A6 +2\) 2)g L6 —2M7) (A6 —2X7) 0
! 0 2 —i (A6 —2\)  2(A1+A3) 2X3 L (X +2)7)
2i)s 0 —% (X6 — 2A7) 223 2(M+A3) 3 (A6 +2\)
—L (X6 —2X) —L(X6—2)\7) 0 T(A6+2X7) 3 (N6 +2X7) 2)g
(4.5.32a)
2(A\1 — \3) 2)3 0 2i\s
22 2(A1 — A 24\ 0
Sf = 3 (A1 =) 2 , (4.5.32b)
0 —2ixy 2(A1 — A3) 223
—2i)g 0 223 2(A1 — A3)
)\5 % ()\6 + 2)\7) 0 —% ()\6 — 2)\7)
L (X6 +2) A —L(Xg—2X 0
sp = | 2P+ o 2 (Ao = 2A7) ) , (4.5.32¢)
0 5 ()\6 — 2)\7) A5 5 ()\6 + 2)\7)
(N6 — 2X7) 0 3 (X6 +2X7) s
St— S5, (4.5.32d)

The doubly-charged two-particle states are given by:

1 1 1
o+ = {ﬁ ntht) . s hng) . s \hgf@} . (4.5.33)
The doubly-charged scattering matrix is:

2 ()\1 + )\3) 2 ()\2 + )\3) 27
STt =1[20+X3) 2(M\+X3) 2\ | . (4.5.34)
27 27 2)g

After solving for eigenvalues of the scattering matrix S we find that in total there are 18
particular eigenvalues:

A1 =2 ()\1 + )\2) s (4535&)
Ag = A5 + A, (4.5.35b)
A3 = )\5 + 2)\7, (45350)
Ay =2\ £ X3 —2)3), (4.5.35d)
As =2 ()\1 + Ao + 4)\3) R (45356)
Ag =2(A\1 — BAg — 2)3), (4.5.35f)
A7 = X5 + 2Xg =67, (4.5.35g)
Ag =X — Ao +2X\3+ g+ \/2)\% + ()\1 — Ao+ 2A3 — )\8)2, (4535h)
Ag = A1+ do + 23 + g + \/8A$ + (A 4 A2 + 223 — Ag)?, (4.5.351)
A1g = BA1 — A + 2A3 + 3Xg + \/2 (25 + A6)2 + (BA1 — A2 + 2X3 — 3xg)% (4.5.35))

We confirm that the eigenvalues we got are in perfect agreement with those of Ref. [37] in the limit
of )\4 — 0.
In the high-energy limit, the partial wave amplitude takes the simple form:

laj] < 1. (4.5.36)
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In Ref. [67] it was suggested that a stronger constraint may be applied based on the reality of the
partial-wave amplitude and the Cauchy—Schwarz inequality:

1
| Re(aj)| < 7 (4.5.37)
In principle, for the NHDM models, the unitarity constraint simplifies to a check:

|A;] < 167, (4.5.38)

where the factor of 167 comes from the Jacob-Wick expansion [73]. The |A;| < 87 corresponds to
eq. (4.5.37).

The number of checks (4.5.38) can be reduced considering the soft perturbativity limit (4.5.18),
|[Amax| = 4m. It follows that if a specific A; of eq. (4.5.35) depends on less than four \;, such
eigenvalues can be neglected, namely eqs. (4.5.35a - 4.5.35¢).

4.5.6 Electroweak Oblique Parameters

The electroweak oblique parameters are parametrised by the self-energy functions S, and 7', and
U [74,75]. These parameters are defined in a way that they vanish in the SM. In terms of the
extended scalar models these parameters limit how far the electroweak sector can be extended from
the SM reference point.

Experimental constraints for the reference values Mhgygret = 125 GeV and my ror = 172.5 GeV
were presented by the Gfitter group [76,77]:

S= 0.0440.11, (4.5.39a)
T = 0.09=+0.14, (4.5.39D)
U=-0.02+0.11. (4.5.39¢)

The guideline on how to derive the electroweak-oblique parameters for the NHDM was presented
in [78,79]. The SU(2) doublets in the Higgs basis are given by:

Gt
Hy = L (4.5.40a)
% <’U + % (M + 72) + ZGO)
Ht
Hy = o (4.5.40b)
% (‘P2 + 5+ X2)>
St
m=(, " ) (4.5.40¢)
75 (s +1Xs)
The V and U rotation matrices of Ref. [78] correspond to®:
Go
75 (71 + 712) + iGo 7
j - - Y2
P2+ =(—x1t+tXxe) [ =V : (4.5.41)
a0 .
ns s S
Sa
and
Gt Gt
g+ =vlmt]. (4.5.42)
St St

®Note that the ¢; = H; in the generic basis, see eq. (4.1.24).
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Therefore U is an identity matrix U = Z3 and V is:
i Cq 0 —so O 0
V=10 dsq 1 idcea 0 0 |, (4.5.43)
0 0 0 0 €7 ge™
see eq. (4.1.17).
Calculations result in the following values:
miysy, 212 2 2 2 22 2 2 2
S= 24202 (1 - 2Sw) G (mHi’mHi»mz) + (1 - QSw) G (mgiamsi,mz)
+ 2@ (m%l,m%{wm%) + G (m%lz,m%{y m2Z) +d (m?gl,m?gZ,mZZ)
—21n (mlzqi) —2In (mgi) +1n (mZHQ) +1In (m%lg) +1n (m%l) +1n (mé)

-5 (G () = G () |

(4.5.44a)

1
~ 16an02 [SiF (M, miy,) + F (mipe, miy,) + o F (mipe,mfy, ) + F (mge, m3,)
+ F (m&e,mg,) — s3F (m3y,,miy,) — c2F (my,,my,) — F (m& ,mg,)  (4.5.44D)

+353 (F (m%/[/am%il) _F(mévm%ﬁ) +F(m2Z7m%{3) _F(m%/l/vm%ig)):|)

2 2
m#,s

wSw | 2 2 2 2 2 2 2 2 2 2 2
U= By [SaG (mHi,mHl,mW) + G (mHi,mHQ,mW) +c,G (mHi,mHS,mW)

+G (méi,mgl,m%v) +G (mgi,mgz,m%v) — (1 — 25120)2 G (méi,mzi,m%)
— (1 — 25121,)2 G (mgi,mgi,m%) —s2G (m%h,m%b,mzz) - c2a (m%b,m%h, mQZ)

G (md,, ¥, my) + 52 (G (miy,,m3) = G (mby, mby) )
4—5(2)Z <G( %B,m%/v) -G (m%[S,mQ)) } .
(4.5.44c)

The functions, which appear in the expressions above, are given by the well-known function [80]:

I+J _ 1y, L
F(I,J) = {3 =y L IAT (4.5.45)
0 I=1J
and [78,79]:
16 5(I+J) 2(I—J)?
3[12+J? 1P-J* (I-J3), I r
+a { -7 0 + 302 ]lnj—l-ng(t,r), (4.5.46Db)
" _ I—J I+J\, I f(tr)
G(I,Q) =G(I,Q,Q) +12G(1,Q, Q), (4.5.46d)
where
Viin| >0
flt,r) =10 =0, (4.5.47)
2/—r arctan (\/tjr) 7 <0
where
t=I1+J-Q, (4.5.48a)

r=Q*—2Q(I+J)+ (I —J)>~ (4.5.48b)



Chapter 5

The R-II-1a Model

In this chapter we consider the R-II-1a model. The vacuum configuration is given by':

{0, w, ws}, (5.0.1)
and the minimization conditions are:
1 301
,u% = */\4& — = (A5 +Xs+2\7) w% - )\Swg*v (5.0.2a)
2 "wg 2
3 1
1y =— (A + A3) w3 + 5)\4w2ws -5 (A5 + X6 + 2A7) w. (5.0.2b)

An interesting property of this model, as mentioned in section 2.4, is that the Zs symmetry is

preserved for:
h1 — —hl, hg — hg, hS — hg. (5.0.3)

Thus the DM candidate resides in the inert SU(2) doublet hy, (h1) = 0. This model is, by default,
CP conserving.

5.1 The Mass-Squared Matrices

The charged mass-squared matrix is given by:

(M%h)ll 0 0
M%harged = 0 (M%h)QQ (M%h)Q?, ) (5.1.1)
0 (M%h)% (MCh)33
where
2 _ 2., 9 1 9
(Mn)ur = —2A3w3 + S Adqwaws — o (e + 2A7)wsg, (5.1.2a)
1
(My)22 = Sws [Mawz — (A + 2A7)ws], (5.1.2b)
1
(Mp)2s = —5w2 [Awz — (A + 2A7)ws], (5.1.2¢)
2y LW
(M&n)ss = 5 ws [Mw2 — (A6 + 2A7)ws] - (5.1.2d)

The lower-right components of the mass-squared matrix are diagonalizable by a rotation matrix:

Rpg = (CB Sﬂ) ; (5.1.3)
—Sg Cp

"We note that R-II-1a is a real vacuum configuration and thus VEVs are given by the absolute values. The hatted
VEVs w; are no longer used.
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where the rotation angle is:
SV
tg= =2 = B2, (5.1.4)
wy  Cgu

By convention 0 < 8 < . This rotation can be identified as the Higgs basis rotation. The charged
scalar states can be expressed as:

h* = hi, (5.1.5a)
G* = cghiy +sphi, (5.1.5b)
H* = —sghf + c/ghg?, (5.1.5¢)
with masses:
5 1

m%i = —2)\3w% + 5)\410211)5 — 5()\6 + 2)\7)11)%, (5.1.6&)

2

v
mzi = % [)\4w2 — ()\6 + 2/\7) wg] . (5.1.6b)

The neutral components of the inert doublet h; are already diagonalized. Masses of the two
neutral states are given by:

9
m% = 5)\4w2w5, (5.1.7a)
m% = -2 )\2 + )\3 U)2 + §A4w2ws — 2)\711}2. 517b

The doublets hy and hg acquire a non-zero VEV and thus are active. The neutral mass-squared
matrix is block-diagonal in the basis:

{ﬁ27 77/5) >~(2) XS} (518)
Therefore the mass-squared matrix can be split into:
MzNeutral—QS = diag (M%a M%) . (519)

The mass-squared matrix of the C'P-odd sector is:

M = ((Mim (M;@m) | (5.1.10)

oANM) e (M2)
where
1

(Mi)n = §ws (Awz — 4\wg) , (5.1.11a)

1
(M2 = —5Ww2 (Aqwe — 4A7wg) (5.1.11Db)

2 w%
(M3)22 = o (Aqwy — 4XAqwg) . (5.1.11c)

It is diagonalizable by performing a rotation Rg of eq. (5.1.3). The two C'P-odd states are:

G° = cpXa + 55X, (5.1.12a)
A= —ng(g + Cﬁ)zs, (5.1.12b)
where
U2
m% = s (Mawa — Dqws) . (5.1.13)
wg

The C'P-even mass-squared matrix is:

- (EM%)M <M§>u> | _
n
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where
1
(M = w2 [4 (A1 + As) wz — 3Aqws], (5.1.15a)
1
(M%)H = g2 [BAgwz — 2 (A5 + A6 + 2A7) wg], (5.1.15b)
1
(M3)22 = S (Aws + 4xsw?) . (5.1.15¢)

It is diagonalizable by a rotation matrix:
¢ S
Ra = ( “ ‘“) , (5.1.16)
—Sa  Ca

—2wowg(3Agwa — 2 (A5 + A6 + 2A7) wg)

where the rotation angle is:

= . 5.1.17
2 4(A1 + A3)wiwg — Ay (w% + 3w2w%) — 4)\811% ( )
The C P-even states are thus:
h = caf2 + safls, (5.1.18a)
H = —saijs + Caiis, (5.1.18b)
with masses:
mi = el [4 (A1 + A3) wiwd + Mwrwg (w% - 3'UJ§1) + dgwh — wsA], (5.1.19a)
S
1
my = el [4 (A1 + A3) wiw? + Mwrwg (w% - 3w§) + dgw + wsA], (5.1.19b)
S
where
A% = — 8 (A + A3) Mwdwg + 2 [8 (M + As)? + 21A?J wiw?
—8A 3 (A1 + A3 +2(A5 + X +207)) — Ag] wisw? (5.1.20)

+ [9A§ +16 (()\5 6+ 20)2 — 2 (M1 + ) Asﬂ wwl
+ )\4wg + 24)\4)\8102102 + 16)\§wg.

We identify the lighter h state as the SM-like Higgs boson.
On the other hand, governed by the fact that both the charged MQCharged and the C'P-odd Mi

mass-squared matrices are diagonalizable by going into the Higgs basis?, i.e., by the R rotation,
we could assume that the SU(2) doublets are rotated into a new basis:

5\ _ ha
(5)-x. (%) o

- M M?
ReMERE = M2 = W g)” W 3)12 : (5.1.22)
M)z (M:)a2
where
~ 2
(M%)n = ﬁ [(/\1 + )\3) w% — 2/\411)%11)5 + ()\5 + Xg + 2)\7) w%w% + )xgwé] , (5.1.23&)

2To be more precise, due to the SU(2) doublet h; we could determine the rotation matrix as Rg.3 = diag (1, Rg).
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~ w
(M%)lg = 722 )\471)2 (3w§ — w%) — (2/\1 -+ 2)\3 — )\5 — /\6 — 2)\7) wgws
(5.1.23b)
— ()\5 + Xg + 2A7 — 2)\8) wg ,
~ w
(M%)QQ = ﬁ [)\4 (ngw% — 3w45 + w%) +4 ()\1 + A3 — A5 — Ag — 2A7 + /\8) wgwf’q] . (5.1.23(})

The mass-squared matrix ./\;1727 is diagonalizable by R,/ of eq. (5.1.16). Due to the Ry rotation,
o is defined by

N 4wowg [2 (A1 + A3) wiws + Mg (wg’ — 3w2w§) + A (wg — w%wg) — 2)\8w3§]
200y (A1 + A3) (w%wf’g - w%ws) + M (14w:2)’w% — 3w2w§ + wg) — 8w%)\awg + 4)g (w%wg - wg) ’

(5.1.24)
where
Ao = A5 + Ag + 2A7. (5.1.25)
The C'P-even states are now expressed as:
h = Ca’'4 8 7 + Sa/+ 3 1S, (5126&)
H = —Sa/+3 N2 + Ca/+ Ns. (5126b)

Masses of the above states coincide with eq. (5.1.19), as expected. The relation between the angles
is trivial:

B+a =a. (5.1.27)

Doublets in terms of the mass-eigenstates are:

h:l:
hy = R (5.1.28a)
<¢1§ (77 + zx))
G:I: _ H:t
hy = < ) e ) , (5.1.28b)
7 (c/m; 4+ coh —soH +1 (056’ - sﬁA))
hg = < X 3G +C5Hi . ) . (5.1.28¢)
75 (880 + sah + caH +1i (s5G° + cgA))

It is not very appealing to deal with VEVs as input parameters and therefore both we and wg
can be traded for tg and v. In this case, the mass-squared parameters are as follows:

1 5
mii = 51)2 |:_4)\30% + 5)\4825 — ()\6 + 2)\7) S%] ,
1 1
mips = 5o’ <A4t — X6 - 2A7) :
B
m% = sz)\4825,
m2 = }1}2 —4 ()\2 + )\3) c? + §A4SQ - 4)\782
X~ 9 BTy B B> (5.1.29)
1 1
my = 502 <)\4t - 4)\7> ;

1.1
m,% = 1}2 |:()\1 + )\3) C% + 1)\4@ (C% — 38%) + )‘SS%:| — :TBA’
2 2 o 1 1 5 9 9 v?
mg ="v ()\1 + )\3) CB + ZA4£ (Cﬁ — 38/3) + )\88/3 + QA’
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where
A? = — 8 (A1 + A3) Aachss + 2 [8 (A1 + Ag) 2+ 21A3] cis

+ [9M] 416 (A5 + As + 2X7) 2 — 2(A1 + Ag) As)| c3ss
— M [B(AL+ A3 +2(As + As +2X7)) — Ag] s34
+ Ajcd + 24N hses) + 16A3s].

(5.1.30)

5.1.1 Quartic Couplings in Terms of Masses

The mass-squared parameters cannot be inverted in a simple way, as they were in section 4.1.1,
to result in \; expressed in terms of the mass-squared parameters. This procedure is not trivial
due to the more complicative mass-squared parameters. Therefore, we present the result without
specifying how we derived it. The A couplings in terms of the mass-squared parameters are:

2 2 2,02 | 2,2 2 2 2
v [9 (m24 +sZmi +cZm )—mﬁ} — 93 w

A= 5.1.31
: 180%w?2 ) (5.1.31a)
(mii - m%) 02+ (m% —mi.) wi
Az = 20702 : (5.1.31D)
<4m% — 9mii> v? +9m? L wg
As = 180202 : (5.1.31c)
2
o 5.1.31d
Juwrws’ (5.1.31d)
2m? wam?2 — 2soqwg(m?2, — m?2
P T B 50‘ § il h), (5.1.31e)
v wowg
m? —2m?, m2
Ao == " oR 5.1.31f
‘ v? * Qw% ( )
2 2
1 m Im
M=150r — 2 5.1.31
! 18(wg 2 ) (5.1.31g)
Iw? (Em? + s2m?) — wim?
o = DRl sumy) iy, (5.1.31h)
18w§
or in terms of the 8 parameter:
M= 18022 (9mis — 9sfmiys — mi + 9s5mj, + 9cimiy) (5.1.32a)
1
Az = 2073 [s5(m% — mipe) + mie = m3] (5.1.32b)
TR (—9miys +9s5mips +4m3) (5.1.32¢)
m2
M= g 5.1.32d
4 9v2s95 ( )
A :L 18m? —|—m2i+9827a(m2_m2) (5.1.32¢)
° T 902 H* 52 sg T MH) | 1.
%= gz | 183 2+ om? (5.1.32f)
67 92 \ mHi+mﬁS%+mA : 1

1 2 1 2
)\7 = 1802 (mﬁs% — 9mA> s (5132g)
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1 2 1 2.2 2 2
g = m <_mﬁt% + 9mics + Imyss | - (5.1.32h)

5.2 R-II-1a in the Higgs Basis

The Higgs basis transformation is given by:

H, 1 0 0 hy
H2 =10 Cp Sa hg . (5.2.1)
Hj 0 —sg cp hg

The SU(2) doublets in terms of the mass-eigenstates (5.1.28) are:

h:l:
Hy = R I (5.2.2a)
<¢1§ (77 + zx))
G:t

Hy = ( . g, ) , (5.2.2b)

7 (U + Ca_ﬁh —Sq—pgH + iG )

Hi

Hy= |, R (5.2.2¢)

7z (Sa_gh + CQ_BH + ZA)

In the basis of eq. (2.5.14), the Euler angles are:

T
pr=73, (5.2.3a)
wg
tg, = —. 5.2.3b
B2 s ( )

Although w; = 0, we rotate the SU(2) doublets in a such way that (H;) = v. This results in the
following quadratic couplings:

Yii = c%Q;ﬁ + 5%2;%, (5.2.4a)
1 1
Yiz = _58252M% + 552,32/‘%’ (5.2.4b)
Yoo = 413, (5.2.4¢)
Y33 = Ch, g + S5, 17, (5.2.4d)
and the quartic couplings are:
Zii11 = Mich, + Asch, — 24 L Nss2s 4 TA62s, + SArsZs, + Ags 5.2.5
1111 = A1Cg, + A3Cg, — 2A4CR, 55, + 1 5523, + 1 6523, + B 7828, T A853,s (5.2.5a)
Zh113 = Aich, 85, — 2A3¢ A (1-2 2 4 1y Iy ) 2)\8C5, 55
1113 = A€, 88, 3C3,88, + A4 ( Cap,) C3, + 1755462 T A6S4B, T 5ATSAB, T 2ASCH, S,
(5.2.5b)
Z1122 = 2X\1C5, — 2X3C, + Aas2g, + A5Sh,, (5.2.5¢)
1 1 1 1 1 1
le33 = iAIS%BZ + 5)\35%52 + 5)\48452 + 1)\5 (C4g2 + 3) — 5)\68362 — A7S§BQ + §A8$%B2, (525d)
1
Z1912 = Aoch, + Asch, + SMs2, + A7s%,, (5.2.5e)
Zign = —2>\2€%2 + 2>\3c%2 + A4s28, + )\68%2, (5.2.5f)
1
Z1223 = AaS28, — A3828, + A4C28, + §>\68252, (5.2.5g

)
Z1232 = — 2528, — A3528, + A4Cap, + A7S23,, (5.2.5h)
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1 1 1 1 1 1 )

21313 = 1)\18352 + 1)\38%52 + Z)\4S462 — 1)\5S%52 — 1)\68352 + )\7 (C%2 + 8%2) + Z)\SS%’&’ (5.2.51)

1 .

Z1392 = )\18252 + /\38252 + )\40252 + 5/\58252, (5.2.53)
1 9 1 9 1 1 9 1 9 1 9

Zig31 = 5/\18252 + 5)\38252 + 5)\48452 — §A5s252 + 1/\6 (Capy +3) — A7s3s, + 5)\85252, (5.2.5k)

1 1 1
71333 = —2)\1C528%2 — 2)\3C528%2 — M\ (20252 + 1) S%Q — 1)\58452 — 1)\684/52 — 5)\7S4ﬁ2 + 2)\86228&,

(5.2.51)
Zag22 = A1+ A, (5.2.5m)
Za233 = 2X\183, — 2X38%, — Aasag, + As5Ch,, (5.2.5n)
Z2323 = Aosh, + Assh, — %MS% + A7C3, (5.2.50)
Za33z = —2Xa8%, + 2X38%, — A1s2g, + A6Ch,., (5.2.5p)
Z3333 = M18j, + Ass, + 2X\4cp,85, + i)gsg& + i)\ﬁsg& + %Msg& + AsCB, - (5.2.5q)

5.3 Scalar-Gauge Boson Interactions

After substituting the SU(2) doublets in terms of the mass-eigenstates (5.1.28) into the kinetic
Lagrangian of eq. (4.2.14), the resulting terms are:

g _
=|"—mgzZ, I H a—gh—sq4_pH
LvvH |:2Cw mzgsy + ngWM w (C 8 Sa—8 ) (5,3.1&)

+ {[erm/VA“T/V;r — ngsiZ“Wj] G~ + h.c.} ,

g " ~<—> B <~ 0 <~ PN 0 o
Lvug = — EZ T]@MX + Ca_lghauG -+ Sa_ghauA — Sa_gﬂauG + Ca_,(gHauA
g, e RSN c A e e

-3 iW, (b= "X + h™ 0"+ iGT "GP + oG~ O"h + 50 gH 0"

R R o (5.3.1b)
—Sa_gG_auH—i-Ca_gH_ﬁuH—i—iH_a“A) —I—h.C.}

p Zg Cow P LE LE LE
eAt + = hto,h~ +G70,GT +HTO,H™ |,

Cw

Lvvan = [SCQ Zu2" + W+W" ] (7% + X2+ h? + H? + (G°)% + A?)

2
i { [enguW: 92 — wa] (7h™ +ixh™ +iG°G™ + ca—ghG™ +so-ghH "~

—Sq—gHG™ +copgHH™ + z'AH_) + h.c.}

2 .2 2
+ [eQAuA“ +egtA,Z + 2y, 7 ~"2W,;Wﬂ+] (h~h* + H H' +G~G*).
w w
(5.3.1c)

From the interaction terms ZZh and ZZ H it follows that the states h and H are C' P-even and
therefore the state A should be CP-odd.

Provided that the h scalar is associated with the SM-like Higgs boson, from the interactions
hZZ and hWW*WT it follows that the SM limit is reached for Ca—p = L.

5.4 Scalar-Fermion Interactions

Formulation of the S3-symmetric Yukawa sector was presented in section 4.3. The general result is
considered. The R-II-1a vacuum configuration is given by {0, cgv, sgv}. The inert SU(2) doublet
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is hy and therefore from eq. (4.3.8) it follows that the fermion mass matrices are block-diagonal:

; Yi'sg + yscg 0 0
My = 2 0 yi'ss — yscs  yics | (5.4.1a)
0 yscs y3ss
; yils[j + ngB 0 0
Md R~ 0 yils/g - ngB yff(:g 5 (5.4.1b)
\/§ d d
0 Yscp Y3Ss
and hermitian mass-squared matrices are:
o (s + yyeg)? 0 0
Ho=+ 0 (yisp — ybep)” + ()2 o (il + yl) sg — ysyes] | »
0 cs [(yive + yiul) s — ysyscs] (v4)%s% + (y8)°c3
(5.4.2a)
2
2 (yiss +yscs) 0 0
2
Ha=5 0 (yiss —wics)” + (Wi)*ck  ca[(ylvd +ysyd) sp — ydyses]
0 cp [(vyd + y§ud) 55 — y8vdcs) (v$)%s% + (v8)*c3
(5.4.2b)
Hermitian mass-squared matrix invariants are (4.3.14):
1 1
Ay = 50" (cays +spy1) * + 507 [=sosyiys + ¢ ((65) ™ + () *) + 55 (1) 7]
+ 507 [ef (43) + 55 (43) ],
1 1
Ag= 0% (cpus +vss) 2+ 507 | —saawitvd + 3 ((v8) 2+ (v4) 2) + 55 (o) ?]
1 (5.4.3b)
+30" [ ()7 55 () ).
and
1
By = —7v' {26%85 [((w1)* + (w8)°) vt + wsvivs] v
1
+ 586 [=20ysyins +2(2)° () * = 1) (2(w5)* — (1) — (5) *)] (5.4.4a)
+5 ()7 + W) ?) (85) 2+ W) ) + 55 () * (1) 2 +2(43) ?) } :
1
By = —7v* [QC‘ESﬂ [((yff) + (y ) )y +y3y4y5] Y5
1,
L [ttt +2(8) 8)* - ()2 ()2 (0)*~ ())] e
+eb ((u8)+ (ud) )((y) # (1)) + =1 () ()42 () )|
and
1
Cu= v v (cays + saut)  leap (105 + viys) +sopysys — yivs +uiys)?, (5.4.5a)
1
Ca= 350" (Cﬂyz + Sﬁy1> [cw (yilyél + yffyél) + 5250393 — yiYs + yjfyg’} 2 (5.4.5b)

The C'P check of eq. (4.3.15) results in an expected value J = 0.
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Hermitian mass-squared matrices are diagonalizable by the left-handed rotation matrix:

1 0 0
V£u7d) —10 C@gu’d) Se(Lu’d) , (546)

0 —Sagu,d) Ce(Lu,d)

where

u,d) (u,d u,d) (u,d u,d) (u,d
2cp [Cﬁyé ys? s (y§ it + gy ))]

bagfd) = o ¢ 2 { <y§u,d)> 2 <y£u,d)) 2 _ <y§u,d)) 2} 3 { <y£u,d)) 2 _ <y§u,d)) 2} '
5.

4.7)
By the look of the left-handed diagonalization matrix we determine the CKM matrix (4.3.28):

1 0 0
Vekm = | 0 Cod —gu  Sgd _gu | - (5.4.8)

0 =Sog—0y  Coy-oy

Such parameterization can be fitted up to the order O(10~!) and results in unrealistic Vg

From eq. (5.4.1) it follows that there are five different non-zero Yukawa couplings present.
In order to determine masses, three of those are sufficient. This leaves us with two numerically
unconstrained Yukawa couplings. Due to this, there will be a net effect which will contribute to
FCNC. By taking a look at the fermion mass matrices eq. (5.4.1) one can notice that those become
purely diagonal if we impose an additional Zy symmetry on the Yukawa couplings®:

{ygu’d), ys?, y;(»,“’d)} — {yiu’d) L ys?, yé“’d)} :

(5.4.9)
d ,d d .d
{yiu TS )} — - {yf;“ L )}.
In this limit, the Yukawa couplings in terms of masses are given by:
(u,d) (u,d)
D (ml M )
! V2vsg
(u,d) (u,d)
S (ml — M ) (5.4.10)
2 \/51)05 )
V2 (u,d)
(ud) _ V2my
Ys =
USp
where mgu’d) stands for a mass of a specific fermion generation. We consider the following ordering
of the fermion masses:
SN G A (5.4.11)
The fermion diagonalization matrices are simplified to Vy = Uy = Z3. The interaction ma-
trix (4.3.36) of the SM-like Higgs boson with fermions is therefore:
(mfsawﬂnésaw)
oS 0 0
28
~ ! f
e B R P
mfsa
0 0 U?’SB

3We consider this limit due to the fact that the CKM matrix is unrealistic and not to introduce additional variables
so that FCNC are controlled.
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The scalar-fermion couplings are given by eq. (4.3.37) and can be easily extracted from the
Yukawa Lagrangian:

f1 2 2 fo1 f 3
_ . m1C(h/H) + mQC(h/H) mIC(h/H) + m2C(h/H) m3C .
g ((rh/H)fif:) = diag ( >7 ( >, (hm |

U823 v 823 vsg
(5.4.13a)
‘ f ! ; foof
_ Y5 <m1C25 + m2> Y5 (ml +m; (;25) . f
g (Afif:) = diag | (=1)%  (— 1) (1) D55
US2p VS28 vig
(5.4.13Db)
where

C;L = {SOL+,37 Sa7ﬁ7 Sa}7 (5414&)
Clr = {Catp: Caps ca}, (5.4.14b)

and d,, ¢ is the Kronecker delta introduced due to the Yukawa Lagrangian term ul (h?)* u%.

The SM limit for A is in agreement with the one in section 5.3, c,—g = 1, however, additional
constraints in terms of the 8 angle should be considered. We assume that the SM-like limit is
reachable for c¢,_g > 0.9.

5.5 Scalar-Scalar Interactions

We provide general trilinear and quartic scalar-scalar couplings. The Feynman rules are given by
eq. (4.4.1). The symmetry factors are accounted for, see section 4.4 for a discussion. For simplicity,
we define:

A5 + Ag + 27 = Ag, (5.5.1&)
A5+ g — 207 = Ap. (5.5.1b)

The trilinear scalar-scalar couplings involving the same species are:

g (hhh) = 3v [c2 (2(A1 + A3) cp — Aasg) + c28q ()\ S5 — 3A1cg) + AaCaCpst + 2Agsosg] . (5.5.2a)
g(HHH) = —3v [SZ (A1 + A3)cg — Ausg) + cas (3Aacs — Aasp) + A2 2CB5a — 2)\80 Sg]

(5.5.2b)
The trilinear couplings involving the neutral fields are:
g (MMh) = v [sa (Aasp + 3Aacs) + o (2 (A1 + A3) cg + 3Aasp)] (5.5.3a)
g (MH) = vca (Aesg + 3Aacg) —Sq (2 (A1 + A3) cg + 3A\asp)] (5.5.3b)
g (Xxh) = v[sa (Mesg + Ascg) + ca (2 (M — 2X2 — A3) cg + Aasg)] , (5.5.3c)
g (XXH) = v[ca (Mg + A1cg) —sa (2 (A1 — 22 — A3) ¢z + Aasg)], (5.5.3d)
g (MYA) = v [Acog — (A2 + Az — A7) sag] (5.5.3¢)
g (hhH) = —0 |:C (3)\4C5 - Sﬂ) + C aSa ((_2)\(1 + 6)\1 + 6)\3) Cg — 3)\485)
(5.5.3f)
+ A CﬁS — 2cas (3Aacs + (BAg — 2A7) s8) + (A5 + X6) SaS2455 | »
g(hHH) =v [si (AasSp — 3M1cs) + casa (=2 + 6M1 + 6X3) cp — 3M\4sp)
(5.5.3g)

+ Aac g + 2¢2s4 (3hacs — (Aa — 3X8) s5) |,
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g(AAR) =wv {ca ()\bc% + 2)\4(:%85 — )\48% + (A1 + A3 —2)\7) SBSQB)

1
+ 8058 (/\bS% +2(As —2X\7) C% — 2A4Sgg> ] ,

g(AAH) = —v [)\bc%sa - s% (ApCa + AdSqa) + 20%5/3 ((2A7 — Ag) Co + A48q)

+ ¢85 (Maca + 2 (A1 + A3 — 2A7) 84) ] .
The trilinear couplings involving the charged fields are:
1
g (Ah*H¥) = 7V [Phacas + (=45 + Xs + 2)7) s3],

. 1.
g (XhinE) = F i (4X2 + A6 — 2X7) s,

g (hH¥H*) = —v [ca (=As¢h — 2Xachss + (—2A1 — 2X3 + X6 + 2A7) ¢85 + Aus))

1
+ SaSg <()\6 +2)\7 — 2)) C% + 5)\4825 — )\58%) :| ,

g (HH:FHi) = [/\50:%5& + C%Sg (()\6 + 2A7 — 2)\8) Ca + 2)\4Sa)

+ Cﬁs% ()\4Ca + (2)\1 +2X3 — Ag — 2)\7) Sa) — S% ()\5Ca + )\4Sa) :| ,

g (hh™hT) = vea (2 (M — A3) cg + Aasg) + Sa (Aacg + Assg)]
g (HhEhT) = v =84 (2(\ — A3) g + Masg) + ca (Aacg + Assg)] .
The quartic couplings involving the same species are:
g (M777) = g (XXXX) = 6 (A1 + As) ,
g (hhhh) = _4
1

g(HHHH)=6 f)\as%a + )\gci + 2)\4casi + (A1 + A3) Si:| ,

|4

1
g (AAAA) =6 | ~Aas3s + Asch + 2Xacpsh + (A1 + As) sg} .

|4

The quartic couplings involving only the neutral fields are:

g (MXX) =2 (M + A3)

g (MMAA) = Xy C/B +2(A1 — 2X2 — A3) 85 — Aasog,

g (XXAA) = A CB +2 (A1 + A3) Sg 34828,

9 (7hR) = Aas? + 2 (A1 + As) &2 + 3AaSoa,

g (mhH) = % (Aa — 2A1 — 2A3) 20 + 3A4C24,
g (ATHH) = Acl + 2 (A1 + A3) 85 — 3A\aS2q,

g (XXhR) = Xps2 + 2 (A1 — 2X2 — A3) €2 + A\4S2a,
g(XXhH) = (Ap — 2A1 + 4X2 + 2)3) CaSa + AiC2q,
9 (XXHH) = N +2 (M — 2X2 — A3) 55 — Aasaa,

g (XhA) = —ca [2 (A2 + A3) 85 — Aacg] — sa (Aasp — 2A7¢p)
g(MXHA) =542 (A2 + A3) 85 — Aacg] — ca (Masg — 2A7¢g) ,

)

g (hhhH

1
)\QSQQ (M + /\3) c, — 2)\4(: Sq + Agsa] ,

- _3Ca [)\4C3a + Sa (()\1 + )\3 - )\a + )\8) Coq + )\1 + )\3 - )\8)] )

(5.5.3h)

(5.5.3i)

(5.5.4a)

(5.5.4D)

(5.5.4¢)

(5.5.4d)

(5.5.4e)
(5.5.4f)
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1

g(hhHH) = 1 [Aa + 31 4+ 3A3 + 3Ag + 6A4840 — 3 (A1 + A3 — Mg + Ag) Caal (5.5.6m)
3
g(hHHH) = _isa [()\a + A+ A3 —=3X3)ca — (A1 + A3 — Ay + Ag) 30 + 2)\4S3a] , (5.5.6n)
g (AARR) = c2 [Aoch + 2 (A1 + A3) 55 + Aasag] + 55 (Aesh + 2A8¢3) — s2a55 (Aasg + 4A7cp)

(5.5.60)

1

AARH) = —s90 [— A1 — A Ag — A A FA3— g+ A

g( ) 552 [—A1 — A3 4+ Ag — Aasag + (A1 + A3 — Xy + Ag) cag] (5.5.6p)

+ Sisﬁ (4)\7C5 + )\4813) — Cisﬁ ()\485 + 4)\70,3) ,
g(AAHH) = c2 ()\bs% + 2/\80%) + 52 [Abc% +2 (A1 + A3) s% + )\4825] + 82458 (Aasg + 4A7cg) .

(5.5.6q)
The quartic couplings involving both neutral and charged fields are:
g (Ah*hT) = g (XXhFRT) =2 (M + A3), (5.5.7a)
g (MHTHE) = =2 (A3 — M) 85 — Aasap + Asc3, (5.5.7b)
g (RXHTHT) = =2(A3 — A1) 85 — Aasos + )\505, (5.5.7¢)
g (TRhTHF) = —cq (20385 — \acg) — AasaSp + = (Aﬁ + 2)\7) SaCs, (5.5.7d)
g (MHRTH®) = s, (2X385 — Aacg) — Macasg + 3 ()\6 + 2X7) cacg, (5.5.7e)
1
g (XhhTH*) = +i {2A2casﬂ +5 (A6 — 2A7) sacﬂ] , (5.5.7f)
1
g ()ZthEHi) = 44 { 228088 + = 5 (A6 — 2A7) cacﬁ] , (5.5.7g)
g (hhh*hT) = A3) €2 + MaSoa + Ass2, (5.5.7h)
g (hHhiiﬁ) = ( A3 — 2)\5) S2a + A4C2qs (5.5.71)
g (HHRhT) = —2(X3 — A1) s2 — MaSoq + Asc2, (5.5.7j)
g (AARTRT) = —2(X3 — A1) s — Masop + Asc3, (5.5.7k)
1
g (ﬁAhiHﬂ +i [ 2)\255 + = 5 (A6 — 2A\7) C%:| , (5.5.71)
g (VARTHT) = 2X383 — Masop + = ()\6 +2X7) ¢, (5.5.7m)
g (hhHTH®) = ¢ [Asch +2 (M + A3) sﬁ + Aasog]
5 o (5.5.7n)
— /\4sgas5 + )\5sas5 — 5)\682a82/3 — A7820823 + 2A8C385,
1
RHHTH®) = Zsoa [(M + A3 — A5 + A — A= A3+ Ag— A
g( ) 552 [(A1 4+ A3 — A5 4+ Ag) cag — A1 — Az + Ag — Ausag) (5.5.70)
+ 5285 [Masg + (A6 + 2/\7) gl — s [Masp + (N6 + 2M7) cs)
(HHH¢Hi) = c ()\586 + 2)\80/3) + s [ (A + A3) S% + A4s95 + )\50%] (5.5.7p)
+ 52453 [)\485 + ()\6 + 2)\7) Cg] R
1
g (AAHTH*) =2 [(Al + A3) s + 24085 + ZA@sgﬁ + Ascg} : (5.5.7q)
The quartic couplings involving only the charged fields are:
g (WERTRERT) =4 (M + N3), (5.5.8a)
1
g(HFHTHTHF) = 4 [(Al + A3) sy + 2Macpsh + 4 Aass + Agcé} : (5.5.8b)

1
g (hihif—f?H?) =4 |:()\2 + )\3) S% — 5)\4S25 + )\7C%:| , (5.5.8C)



5.5 Scalar-Scalar Interactions 81

g (WhTHTHF) = 2(A\ — \2) s — 2\as0p + (A5 + Xe) €3 (5.5.8d)

The trilinear couplings involving only the neutral fields and the would-be Goldstone boson are:

1
g (IXG°) = 2v [(Az +A3)ch + §>\4825 + >\7S%] : (5.5.9a)
3
g (G°G°R) = v [sa (AaChss — Aach + 2Xs83) + cacs ()\as% +2(A 4 Ag)ch — 2/\4525>] , (5.5.9b)

g (GOGOH) = —v [ — Cq ()\ac%sﬁ — )\4(:% + 2/\88%)

(5.5.9¢)
+ Sa (2 (A1 + A3) C% — 3)\4C%85 + (A5 + X6) C/BS% + )\78/382/3) :| ,
9 (G°AR) = —v|ca (Mach + (2A1 + 2X3 — A5 — Ag) Csg — 2hacgs) + 2A7s})
- ] (5.5.9d)
— 8aCB <2>\4825 + 2)\7C% — (A5 + A6 — 2Xg) S%) :| ,
g (GOAH) = —v| — 84 ()\4c?ﬁ’ + (2M1 + 23 — A5 — Xg) c%s/g + \4sgsas — 2)\75%)
i (5.5.9¢)

1
— CaCg <2)\4825 + 2)\7C% — ()\5 + g — 2)\8) S?g) :| .
The trilinear couplings involving the charged fields and the would-be Goldstone boson are:
1
g (IK*=GT) = 3" [4X3¢3 + 24525 + (A6 + 2A7) s3], (5.5.10a)

1
g (Xh*GF) = +iv [%cg — 5 (A6 = 2X7) sg} , (5.5.10b)

3
g (hGFGF) =0 [sa (AaChss — Aach + 2Xs83) + cacs (Aasg +2(A1+ A3)ch — 2>\4S25>] ,

(5.5.10¢)
1
g (hG:FHi) = _ZU |:Ca ()\4C/5 + 3M4c35 + 283 ((2A1 4+ 223 — \o) Cop + 2 (M +X3) — A5))
(5.5.10d)
— QCBSQ (()\a — 2)\8) Co8 — A5 + 2Xs + )\4825) :| ,
g (HGFG*) =v {ca ()\QC%SB — )\46% + 2/\85%)
(5.5.10e)

— Su (2 (A1 + A3) c?ﬁ’ — 3)\4c%385 + (A5 + Xg) CBS% + )\78682,3) } ,
1
g (HG:FH:‘:) = ZU |:20aC5 (Mg —2A8) cap — A5 +2Xg + )\482/3)

+ Sa ()\4(3,3 + 3A4c35 + (2A1 4+ 2X3 — A5 + A6 + 2X7) sg + (2A1 + 23 — Aa) Sg@):| ,
(5.5.10f)
1
g (AGTH*) = Foiv(Ae — 2M7). (5.5.10g)

The quartic couplings involving the neutral states with at least one neutral would-be Goldstone
boson are:

1
9 (GOGUGG?) =6 | (M + Ns) ¢ — 2hachss +  Nass + Ass | (5.5.11a)

g (GOGOGOA) = -3¢ [)\4(335 +sg (M +A3—=As+ (A1 + A3 — Ao+ Ag) CQB)] , (5.5.11b)
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1
9 (G°GAA) = 7 [BA+3X5+ 3 + 62asaz + Ao — 3 (A1 + A3 = Ao+ As) cag], (5.5.11c)

3
(GOAAA) = —585 [2)\4835 + (Aa + A1+ A3 —3Xs) cg — (A 4+ A3 — Ag + Ag) ng] , (5.5.11d)
(GOGOhh) =c2 [ (A1 + A3) cﬁ 482 + )\bs%] +s2 [)\bc% + 2/\85%] — CgS2a [Macg — 4A7sg],

(5.5.11e)
1
GOGOhH) = —=sq [A + X3 — Masog — As + (A + A3 — Ay + A
g( ) 55 A1+ A3 — Agsa — Ag + (A1 + A3 — Ay + Ag) 23] (5.5.116)
+ C,gs ()\4C5 - 4)\7S5) - C aCB ()\40[3 — 4)\78[3)
g (GOGOHH) = —Sq [4)\7Ca82g + saSs (2)\4Cg — )\b85) — 2C5 ()\4Ca + (A1 + A3) Sa)] (5.5.11g)
+ ci (/\bc% + 2)\85%) , e
1
g (G°Ahh) = —5 [825 (A1 4+ A3 — Ag — A2 + (A1 + A3 — Ap + Ag) c24)
(5.5.11h)
+ 2cqCap (Aacq — 4A784) |,
1
g (GoAhH) = Z [2)\482(a+5) + 8)\7CQQC25 + 2 ()\1 + A3 — A\ + Ag) SQQSQQ] , (5.5.111)

1
g(G°AHH) = 5 [ — 2X\48a8a428 — 4A7Co8820 — 828 (A1 + A3 — Ag — (A1 + A3 — Ay + Ag) c2q) |,

(5.5.113)
g9 (MG G®) =2 (A1 — 2X3 — A3) €5 + Aasag + Aesp, (5.5.11k)
L

g (G A) = 5 —2X1 +4X2 4+ 2X3 + Ap) s2 + Aacag, (5.5.111)
g9 (XXG°G") =2 Al + A3) ¢ + 3Aas25 + AasH, (5.5.11m)
g9 (\XG A) = —= 2A1 +2X3 — Aa) 523 + 3A4cop, (5.5.11n)
9 (IXhG®) = ca [2 (A2 + A3) ¢g + Aasg] + 5a (Aacp + 2)7sp) (5.5.110)
9 (IXHG?) = =sa [2 (A2 + A3) ¢g + Aasp] + ca (Aacg + 2A785) . (5.5.11p)

The quartic couplings involving the charged fields and the neutral fields along with the would-be
Goldstone boson are:

g (7 GJFGi) 2 (A1 — A3) ¢ + Aasag + Assh, (5.5.12a)
g (AGTH®) = M\jcag + % (—2A1 + 23 4 As) s2g, (5.5.12b)

g (WXGTGF) =2(A\1 — A3) ¢f + Aaszs + Ass, (5.5.12¢)

9 (XXGTHF) = Ao + ; (=21 + 2X3 + As5) s23, (5.5.12d)
g (nhhﬂFGi) % [2cq (2A3¢8 + Aasg) + 5 (2Aacg + (N6 + 2A7) s5)] (5.5.12e)
g (R"HhTG*) = % [2A4¢5 + (A6 + 2X7) s8] — s (2A3¢3 + Aasp) , (5.5.12f)
g (Xhh¥G*) = i [—zAgcacﬁ + % (A6 — 2)\7) sasﬂ} : (5.5.12g)
g (XHhTGF) = £i [mcﬁsa + % (X6 — 2)7) casﬁ] : (5.5.12h)
9 (G°G°h*h¥) =2 (A1 — A3) ¢ + \as2s + Ass3, (5.5.12i)
9 (GPARERT) = Acop + é (—2X1 4 2X3 + As) s25, (5.5.12j)
g (G7h*GTF) = +i [—2@% + % (A6 — 2A7) sg] : (5.5.12k)
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1
g (G°Ih*=HT) = g (ARh*G*) = 1 (4ha + Ao — 2M7) sa, (5.5.121)
1
9 (G'%h*=G*F) = 5 [Ahach + 2A4S26 + (X6 + 2X7) s3], (5.5.12m)
g (G'Yh*H*) = g (Axh*G™F) = [4)\4025 + (—4X3 + X6 + 2M7) s05] (5.5.12n)
L1
9 (G GJFHi) =g (AHGTH?) = 2 i (X6 — 2)7) Sa—g, (5.5.120)
g(G°HGTH?) = g (AhGTHT) = ifi (X6 — 2X7) Cap) (5.5.12p)
g (hhGFGF) = [ (A1 + Ag) e — Amﬁ + As83] — cgsaa (Aacg — (A6 + 2)7) 85) (5.5.120)
$2 (A5 + 22s53) , o
1
g (thjFHi) =5 2caC28 (Aaca — (A6 +2A7) 84)
(5.5.12r)
— 528 (A1 + A3 — Ags2q — A + (A1 + A3 — A5 + Ag) c2a) |,
1
RHGTGF) = —Zspa [A + A3 — Agsag — As + (A1 + A3 — A5 + A
g( ) 282 A1+ A3 — Aasog — Ag + (A1 4+ A3 — A5 + Ag) cop] (5.5.125)

+ CgS [)\4C5 — ()\6 + 2)\7) Sﬂ] — C aCB [)\405 — ()\6 + 2)\7) Sg}

g (hHG:FHi) — Z [2)\452(a+,3) +2 ()\6 + 2)\7) C2aC2p3 + 2 ()\1 + A3 — A5 + )\8) SQQSQB] , (5.5.12t)

1
g (HHG:FGi) = —A452825 + )\5838?3 — 5/\682a82ﬁ — )\782a825

(5.5.12u)
+c2 ()\5c% + 2)\88%) + 2626504 [(A1 4+ A3) Sa + Aacq],
1 1
g (HHGTHT) = —= (A5 — 2Xs) ¢2525 — =S2a [MaS2s + (A6 + 2A7) c24]
2 2
1 (5.5.12v)
— Si /\4C25 + 5 (2 ()\1 + )\3) — )\5) S231
and
g (GOGOG:FGi) =2[(\ + A3) C% - 2)\40%55 + )\ac%s% + )\gs%] , (5.5.13a)
g (GOGOG:FH:E) = —cg [)\4035 +sg ()\1 + A3 — Ag + ()\1 + A3 — Mg + )\8) CQﬁ)] , (5.5.13b)
1
g (G0G0H¥Hi) = Z [)\1 + A3+ 3X5 — Ag — 2A7 + Ag + 2)\4S45 — ()\1 + A3 — Ao + >\8) 045] ,
(5.5.13c)
9 (GPAGTG*) = —cg[M1 + X3 — As + Macgg + 55 (M + Az — Ao + As) e25)] (5.5.13d)
1
g (GPAGTH*) = i A1+ A3 — A5+ A6+ 2X7 + As + 20usas — (M1 + Az — Ao + As) cagl

(5.5.13e)

1
g (GOAH:FH:E) = —585 24838 + (Aa + A1 + A3 —3Xg) cg — (A1 + A3 — A\g + Ag) 3], (5.5.13f)

1
g (AAG:FGi) =1 A1+ A3+ 2M4848 + 3A5 — Ag — 2A7 + Ag — (A1 + A3 — Ag + Ag) cug),

(5.5.13g)

1
g (AAH:FGi) = _isﬁ [2)\4835 + ()\a + A1+ A3 — 3)\8) cg — (Al + A3 — Ao + )\8) ng] . (5.5.13h)

The quartic couplings involving only the charged fields and the would-be Goldstone boson are:

9 (GTGTG*GF) =4 [(A1 + A3) ¢ — 2\achsg + AaChss + Ass] (5.5.14a)
g (G¥G$GiHi) = —cg [2)\4035 + 2sg (M + A3 = A+ (A1 + A3 — Ay + Ag) ng)] , (5.5.14b)

1
g (G:FG:FHiHi) = B [)\1 + A3 — A5 — Ag + 67 + Ag + 24845 — (M + A3 — g+ Ag) 645] ,
(5.5.14c)
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g (GFHTGFH*) = >\1 + A3 4+ A 4 20845 + A — (A1 + A3 — Ao + Ag) cag) (5.5.14d)
g (GFHTH*H*) = —s5[2\as35 + (A + M + A3 — 3Xs) cg — (M1 + A3 — Ao + As) cap),  (5.5.14e)
g (Wh=GTGT) =4 | (A2 + Ag) i + Amﬂ + Mrs3| (5.5.14f)

g (Wh*GTHT) = 4% —2 (A2 + A3 — A7) 828, (5.5.14g)

g (WERFGEGT) = — A2) ¢G4 24808 + (A5 + Ag) S5, (5.5.14h)

g (WERTHEGT) = 2\cop + ; (=2X1 + 202 + A5 + Xg) s25- (5.5.14i)

From the trilinear couplings involving the same species particles it follows that the states h and
H are C'P-even. From the trilinear couplings involving only the neutral states we get that A is
CP-odd. Although the states 77 and x do not mix, it is impossible to determine their C'P properties
from the couplings.

5.6 Constraints

Necessary? stability constraints of Ref. [37] are considered, see eq. (4.5.10). Alongside, if the
necessary stability conditions are satisfied, we perform an additional numerical minimization of the
potential using the Mathematica function NMinimize.

In section 4.5.5 we verified that the unitarity constraints for A4 = 0 are in agreement with those
of Ref. [37]. We also verify that we get the same eigenvalues of the S matrix when Ay # 0. For
convenience, we present the eigenvalues of Ref. [37]:

s + A As + X6\ 2 A5 + A
a1</\1 A2 + 52 6>i\/<)\1—)\2+ 52 6) —4{()\1—)\2)< 52 6>—)\421},

(5.6.1a)

aét = A1+ X2 +2X3+ Xg) £ \/()\1 + A2+ 2A3 + /\8)2 —14 {/\8 ()\1 + Aoy + 2)\3) — 2/\%}, (5.6.1b)

)\2
= ()\1 — Ao+ 2A3 + >\8) + \/(/\1 — Ao+ 2)3 + )\8)2 —4 {>\8 ()\1 — Ao+ 2)\3) — 26}, (5.6.1C)

A A 2 A
a4—<A1+>\2+25+A7) \/<A1+A2+25+>\7> —4{(A1+A2)<25+A7) AZ},

(5.6.1d)

a = (5A1 — g + 23 + 3)g)

) 1 ) (5.6.1e)
+ (5)\1 — Ao+ 2X3 + 3)\8) — 443X (5A1 — X+ 2)\3) — 5 (2)\5 + )\6) R

A5
a6 = (/\1+)\2+4)\3+2+)\6+3)\7)

A 2 A
:I:\/<)\1+)\2+4)\3+25+)\6+3)\7> —4{()\1+)\2+4)\3) (25+)\6+3)\7> —9AZ},

(5.6.1f)
by = As + 2\g — 67, (5.6.1g)
by = As — 2)7, (5.6.1h)
by = 2 (A1 — 5Aa — 2X3), (5.6.1i)

bas =2 (A1 £ A2 —2)3), (5.6.1j)

4The stability conditions are necessary and not sufficient as A4 # 0, see Ref. [34].
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be = A5 — Ag- (5.6.1k)
The unitarity constraint is thus:
laf| <167, |bi| < 167. (5.6.2)

The soft perturbativity condition (4.5.18) along with a more severe perturbativity condition in
terms of the quartic couplings eq. (4.5.22) are considered. Most of the quartic couplings depend on
trigonometric functions and therefore it is not a trivial task to extract limits in terms of A; from
such terms. By inspecting the coupling g (7777) (5.5.5a) the following relation can be extracted:
A1+ 3| < 2

The \; couplings can be constrained by the mass-squared parameters. From m% > 0 we get
that Ay > 0. We consider that m% < m%( and thus:

A2+ Az + Aatg + At < 0. (5.6.3)
From the m?4 mass-squared parameter it follows that:
Ay —4X7tg > 0. (5.6.4)

The inert scalar sector is bounded by the necessary stability conditions, mainly that the terms

/- (4.5.10) should be positive definite:
9tg (micl, + miss) > ma, (5.6.5a)
mist 4+ mick + mis% - 2m%1+s% > §m,27 + m% (5.6.5b)
We use these constraints to numerically bound the mass terms mg and my from above.

5.6.1 Electroweak Oblique Parameters

The SU(2) doublets in the Higgs basis were presented in eq. (5.2.2). The rotation matrix for the
charged sector is:

G* G*
H*| =U|H* |, (5.6.6)
h* h*
and thus U is simply an identity matrix Z3. For the neutral sector we get:
GO
] A
(h Ch—a + Hsg_q+ ZGO) b
(—h SG—a T HCB—a + ZA) =V ol (5.6.7)
(7 +iX) _
Ui
X
where
t 0 cg_a Sg—a 0 O
V = 0 = _Sﬂ—a Cﬁ—a 0 0. (568)
0 0 0 0 1 4
The expressions for the S, T, U parameters are as follows:
2
g
T = m [F (mii,m%) + F (mii,m?‘z) + S%_QF (m%i,m%) + C%_QF (m?{i,m%})
w
4 (e m) = F (. m2) = 53, (mdm) — & F (my m3)

+3s%_a (F (m%,vi,m%) - F (mQZ,m%) + F (mQZ,qu) —F (m%,vi,m%[))] ,

(5.6.9a)
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2.2
§ = L5 (3, (G (e e ) +G (e, iy, m3)) + G (i m, )

+ S%,QG (m%, m%, mQZ) + c%,aG (m%{, m?, m2 ) -2 ln(mzi) — 2ln(m§{i)

+1n(m3) +In(m) +n(m) +In(md) + 53, (G (mk,m) - G (mi,m3))].
(5.6.9b)

2.2
U = T30 (G (i i) + G (i) + 550G (e, i i)

+ B (M, mip, miys) + G (e migmys ) — ¢, G (e, mye, my)

G (e e m) — G (mmm) 3G (md A m3)

— BoG (i A, m) + 3o (G (mf,m) — G (mf,mie))

550 (G (M miys) = G (mig,m3))]
(5.6.9¢)

see section 4.5.6 for the functions. The electroweak oblique parameters of the R-II-1a model re-
semble the case of the 2HDM model [81].



Chapter 6

Numerical Analysis

6.1 General Approach

After expressing interactions via physical scalar states in previous chapters, we proceed with nu-
merical evaluation of the C-III-c-v? and the R-II-1a models. We use Mathematica for the spectrum
generator. The main input is specified in terms of the physical scalar masses and additional pa-
rameters based on the considered model. For the C-III-c-v? model the following input is used:

{mHi’ mgx,MHy, MHy, TSy, MGy, ,UJ(2)7 )\8}7 (611)
and for the R-II-1a model we use:
{mpg=, mp=, mu, ma, mg, mg, B, a}. (6.1.2)

Both cases result in an R® surface. We do not treat the SM-like Higgs boson mass as a free
parameter, it is fixed at the value mpg, = m; = 125.09 GeV. The mass parameters are assumed to
be in the range m¢ = [0.1, 1] TeV.

The spectrum generator outputs data of the scalar and fermion sectors based on several checks:

o Stability of the scalar potential;
o Tree-level unitarity;

e Soft perturbativity and the more severe perturbativity conditions based on the quartic scalar-
scalar interactions;

e The electroweak oblique parameters;
e Limitations from the CKM matrix;

The C-III-c-v? model constraints were discussed in section 4.5 and the R-II-1a model constraints
in section 5.6. For the electroweak oblique parameters we apply direct constraints from the Gfitter
group (4.5.39) without the correlation coefficients. Although the absolute value of Voxy is a well-
known quantity, neither the C-III-c-»? nor the R-II-1a models result in realistic cases. Since we
are solely interested in a possible DM candidate, and not a truly realistic fermionic sector, the
off-diagonal couplings should not play a significant role. For the charged scalar decays we assume
that the CKM matrix is approximated by the identity matrix, Voxym = Zs, and for the decays
involving W¥ the standard Vg [29] is used. The general approach is presented in Figure 6.1.
For the relic density evaluation we use micrOMEGAs [82-84]. The freeze-out scenario is consid-
ered, the three-body final states are computed for annihilation processes only, VW /VZdecay = 1,
the effective vertices ;g9 and @;yy are not considered. We do not focus on the details of the
decays involving the DM. In order to use micrOMEGAs, all of the vertices should be specified.
This is not a trivial task. We use SARAH [85,86] to produce CalcHEP [87] model files that can
be subsequently used by micrOMEGAs. The relic density is compared against the Planck [88] re-
sults Qcpmh? = 0.120 £ 0.001. The PDG [29] provides a value Qcpmh? = 0.1186 + 0.0020 based
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Figure 6.1: The general algorithm of the spectrum generator and additional checks. The “(0/1)”
of the spectrum generator indicates the fail/pass switch.

on Planck TT+lowP-+lensing and Qcpyh? = 0.1184 4 0.0012 based on Planck TT-+lowP+lens-
ing-+ext. Earlier observations from WMAP [89] resulted in Qcpymh? = 0.1147+0.0051. We consider
a broader acceptable relic density range, Qcpavh? = 0.12 £ 0.01.

We compare our models against some of the available Higgs boson experimental results. The
micrOMEGAs code enables additional comparison against experimental constraints using the
HiggsBounds [90-92] code.

The following versions of the codes are used:

o SARAH 4.14.1%;
¢ micrtOMEGAs 5.0.8;

o HiggsBounds 5.3.2;

We note that as of the current version there is a bug in the function CalcHepVertex of the file
Package / Outputs/ calchep.m when dealing with fields with complex phases and exporting a model using the MakeCHep
function.
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The full analysis of the results is beyond the scope of the thesis and therefore preliminary results
are presented in Figures 6.2 to 6.8. The data should be further constrained.

6.2 The C-III-c-v2 Model
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Figure 6.2: General output of the spectrum generator for the C-III-c-v? model. Scatter plots of
different parameters are presented: a) masses of the neutral states Hy - Hz, b) masses of the neutral
states Sj -9, ¢) masses of the charged states H* - ST, d) angles o - . The boxplot with whiskers
indicates where 1/4 - 3/4 of the data points are situated along with the medians.

We present the general output of the spectrum generator in Figure 6.2. From the spectrum
generator we can extract the following information on masses:

max (my,) = 688 GeV,

max (my,) = 697 GeV,

max (my+) = 758 GeV,
max ({msg,, ms,, mg=}) = 1000 GeV,

and the angles in radians lie in:

0.1597 <o < 0.498,
0 <a < 0.496.
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The quartic couplings lie in the following ranges:

0.067 <A1/m < 1.596,
0.026 <Xo/m < 1.510,
—0.744 <X3/m < 1.011,
—1.271 <Xs/m < 4,
—3.715 <Xg/m < 4,
0 <A7/m < 1.918,

0 <Ag/m < 3
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Figure 6.3: Output of the spectrum generator for the C-III-c-»? model based on the SM-like limit
and the Voky absolute value. Scatter plots of different parameters are presented: a) masses of
the neutral states Ha- H3, b) masses of the neutral states Sj-Sa, ¢) masses of the charged states
H¥*-S8% d) angles o-a. The boxplot with whiskers indicates where 1/4 - 3/1 of the data points are
situated along with the medians.

Not all of the points of Figure 6.2 are within an acceptable range. The « angle is fixed by the
SM-like limit, see section 4.5.2, and the overall phase o by Voxm (4.3.32). After fixing the angles
in the following range: ¢, > 0.9 and o = [0.34m, 0.387], the mp, - mp, distribution is changed
drastically, see Figure 6.3.

We assume that the DM candidate is the scalar S;. After scanning for an acceptable range
of the relic density Qcpyh? with micrOMEGAs, we found that the annihilation channels are too
efficient and neither of the Yukawa models resulted in an acceptable Qcpah? value. Moreover, the
numerical value of the relic density is several orders of magnitudes lower than the acceptable one,
(Qcpmh?) cqrrer? < 1073, As mentioned in section 4.3, the FCNC are also way too high. The
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branching ratios of the SM-like Higgs boson H; and of the off-diagonal fermion interactions are:

Vs Vi, © Br(Hy — fifj) =~ 1073,

o rd _ 9 (6.2.1)
Y54oY504 + Br(Hi — fif;) = 1077,
and the leading decay channels of the other neutral active scalars are’:
U d . u d .
V524500 Y540Y504 -
Hy — (db, cc, ut) Hy — (sb, uc, ut) (6.2.2)
Hz — (HE*WT, HyZ, ct) Hs — (HT*WT, HyZ, ut)
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Figure 6.4: Output of the spectrum generator for the C-III-c-v? model based on the SM-like limit
and the Vogwm absolute value when the masses of the inert doublet hg are allowed to be lower
than 100 GeV. Scatter plots of different parameters are presented: a) masses of the neutral states
Hs, - Hs, b) masses of the neutral states S; -5, ¢) masses of the charged states H*- 8%, d) angles
o - a. The boxplot with whiskers indicates where 1/4 - 3/4 of the data points are situated along with
the medians.

We performed an additional scan of the data presented in Figure 6.2, when the angles a and
are not fixed. This did not result in a positive result from micrOMEGAs. Therefore, an additional
scan of the area mg, = [10, 100] GeV was performed, the corresponding masses of the inert doublet
hs were also allowed in the sub-100 GeV region. The scanned area can be seen in Figure 6.4. This
resulted in an acceptable Qcpah? value. Nevertheless, this brings another issue: in many cases
the primary decay channel of the SM-like Higgs boson H; is Br(H; — S151) ~ (8 —10) x 1071,

2The mass parameters of the scalars should be considered as not all of the decay channels are on-shell at a given
scalar mass. The “bars” of the fermions f; are dropped. Branching ratios are within one order of magnitude.
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This area corresponds to the region mg, = [10, 60) of Figure 6.5b. Only the right-side blob of
Figure 6.5b may result in more acceptable SM-like Higgs boson decays.

We were not able to discriminate the scanned area based on different Yukawa models, i.e.,
models Y%,Y4,Y5. and Vi, V.V, and therefore both models are incorporated in a single
scatter plot of Figure 6.5. The HiggsBounds result is not considered as the model did not result in
acceptable decay channels. Several possible DM candidates are presented in Table 6.1.
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Figure 6.5: Constrained benchmark points of Figure 6.4 based on the acceptable Qcpah? parameter
range after performing a scan with micrOMEGAs. Yukawa models Y%,Yd, V5. and Y4, Y4,Y5,
are considered. Scatter plots of different parameters are presented: a) masses of the neutral states
Hs- H3, b) masses of the neutral states S; - So, ¢) masses of the charged states H*-S*, d) angles
o -a. The boxplot with whiskers indicates where 1/4 - 3/1 of the data points are situated along with
the medians.
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Benchmark
] Qh? mp, MH, mp+ | mg, ms, mg+ o o
point
Ay 0.1207 || 168.39 | 218.56 | 270.10 | 82.30 | 121.49 | 179.26 || 1.0493 | 0.4336
Ay 0.1202 || 149.42 | 427.74 | 376.22 | 90.82 | 180.14 | 265.60 || 1.0214 | 0.0190
As 0.1199 || 153.51 | 320.50 | 186.42 | 73.61 | 132.40 | 181.51 || 1.0126 | 0.1228
B, 0.1208 || 149.42 | 427.74 | 376.22 | 90.82 | 180.44 | 265.60 || 1.0214 | 0.0596
B, 0.1198 || 139.18 | 493.33 | 135.22 | 86.46 | 230.50 | 270.44 || 1.1331 | 0.0327
Bs 0.1999 || 160.47 | 213.48 | 291.10 | 79.80 | 131.95 | 100.43 || 1.0835 | 0.3962
Bzhzk D) | D) | Ty | T | TS | T(sH)
Ay 3.2x1073 [ 3.23x 1073 | 1.18 x 10° | 6.43 x 107! | 6.80 x 107> | 1.45 x 107!
A, 3.35 x 1073 | 3.00 x 1073 | 2.40 x 10" | 8.55 x 10" | 8.22 x 1073 | 2.87 x 10°
Az 3.36 x 1073 | 313 x 1073 | 1.13 x 10 | 1.86 x 107* | 4.83 x 107* | 3.00 x 107!
B, 3.52x 1073 | 3.00 x 1073 | 2.40 x 10* | 8.55 x 10° | 8.22 x 1073 | 2.87 x 10°
B, 3.04 x 1073 | 222 x 1073 | 9.54 x 10 | 7.59 x 1075 | 1.07 x 10° | 3.27 x 10°
Bs 3.05 x 1073 | 2.87x 1073 | 9.70 x 1071 | 1.75 x 10 | 3.33 x 10~* | 3.55 x 106

Table 6.1: Some benchmark points. The mass parameters m¢ and the total decay width I'(§)

are given in GeV. The ¢ and « are given in radians.

The benchmark points A; indicate the

Y&, Y4,V Yukawa model and B;- Y4,Y4,V%,. In the SM, the Higgs boson total width is
[ (mpg,) = 4.2 x 1072 GeV. The SM-like Higgs boson particle is the scalar Hj.

Relative annihilation channel contributions to the relic density Qcpwh? in per cents are:

Ay

51% 5181 = WT W~
30% Sy S1 — bb

22% S1 51 — bd

6% S151 > 27

6% S151 = tc

2% 8181 =171

Ao
48% S151 - WHT W~
29% S1 51 — bb

15% 8151 —= 27
4% 8151 = te

3% S1S1 — cc

2% 5181 =171

As:
80% 5151 — Wt W~
12% S$1 81 =27
7% 5151 — bb

B1:

BQ:

48% 8181 — WH W~
29% Sl S1 —>l;b

16% S151 = 27

4% 8151 = te

3% S181 — ¢cc

2% S181 =171

67% S151 = WT W~
23% S1 51 — bb

% S181 —~ 22

2% S151 — cc

1% S151 — 77

63% S191 = WTW~
21% 81581 — bb
10% S1 8] — bd
2% 8181 = ZZ

1%5151%7’7’
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6.3 The R-II-1a Model
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Figure 6.6: General output of the spectrum generator for the R-II-1a model.

0.2
B

Scatter plots of

different input parameters are presented: a) masses of the neutral states 77- Y, b) masses of the
neutral states H-A, c) masses of the charged states h*- H*, d) angles 3-a. The boxplot with
whiskers indicates where 1/4 - 3/4 of the data points are situated along with the medians.

We present the general output of the spectrum generator in Figure 6.6. From the spectrum
generator we can extract the following information on masses:

and the angles in radians lie in:

max (mp) = 652 GeV,
max (m4) = 687 GeV,
max (my+) = 704 GeV,
max (mg) = 526 GeV,
max (my) = 790 GeV,
max (mp+) = 792 GeV,

0.0547 < < 0.411m,
0<a<m.
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Figure 6.7: Output of the spectrum generator for the R-II-1a model based on additional criteria
from the Qcpuh? parameter and the SM-like limit. Scatter plots of different input parameters are
presented: a) masses of the neutral states 77- Y, b) masses of the neutral states H - A, ¢) masses of
the charged states h* - H*, d) angles §-a. The boxplot with whiskers indicates where 1/ - 3/4 of
the data points are situated along with the medians.

The quartic couplings lie in the following ranges:

0 <Ap/m < 2.254,
—1.082 <Xg/m < 1.875,
—1.859 <A3/m < 0.623,

0 <A\g/m < 0.685,
—1.651 <As/m < 4,
—3.850 <Xg/m < 2.326,
—1.159 <\7/m < 0.328,

0 <Xg/m < 1.911.

We assume that the DM candidate is the scalar 7. The relic density Qcpyh? of the benchmark
points represented in Figure 6.6 was evaluated using micrOMEGAs. Only a specific range of points
resulted in acceptable values of Qcpamh?. Based on the result from micrOMEGAs and the SM-limit,
the spectrum generator was tweaked appropriately. The new benchmark points are presented in
Figure 6.7. Those were further studied using the micrOMEGAs and HiggsBounds codes. As it
turned out, the R-II-1a model with an additional Zs symmetry of the Yukawa couplings resulted
in a higher total width of the SM-like Higgs boson. The SM predicts the total width of the Higgs
boson I'(mpg,,) = 4.2 x 1073 GeV, while the typical value of R-II-1a model in the SM-like limit is
['(mp,) ~ 6 x 1073 GeV. We did not manage to find a single point consistent with the HiggsBounds
check. Therefore, we present the result based on just the relic density Qcpayh? scan in Figure 6.8.
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Several benchmark points are presented in Table 6.2.

Benchmark
) Qh? myg ma Mp+ msy myg M+ «
point
Ay 0.1200 | 389.74 | 344.11 | 299.77 | 104.02 | 348.97 | 376.15 | 1.0169 | 1.0370
A, 0.1202 | 427.46 | 371.65 | 372.9 | 106.433 | 344.80 | 370.03 | 0.9862 | 0.9940
As 0.1192 | 389.91 | 347.39 | 196.66 | 100.97 | 312.66 | 469.88 | 0.9152 | 1.0350
Ay 0.1205 | 407.49 | 515.36 | 510.42 | 115.45 | 363.19 | 408.44 | 0.9511 | 1.0793
As 0.1200 | 445.71 | 266.09 | 349.77 | 115.03 | 376.74 | 432.53 | 0.9312 | 1.0130
Penchmark = pgy | pny | ry | Tt | @ | T
point
Aq 6.27 x 1073 | 1.92 x 10! | 9.05 x 1073 | 3.02 x 10° | 8.19 x 10° | 1.19 x 10!
A, 6.68 x 1073 | 2.44 x 10! | 3.51 x 10° | 5.94 x 10° | 7.63 x 10° | 1.10 x 10!
As 6.71 x 1073 | 3.04 x 10 | 6.41 x 10° | 3.49 x 10~ | 3.70 x 10 | 7.09 x 10"
Ay 6.49 x 1073 | 2.33 x 10* | 2.04 x 10" | 1.31 x 10" | 8.97 x 10° | 1.54 x 10*
As 6.46 x 1073 | 3.45 x 10! | 1.46 x 1072 | 6.60 x 10° | 1.06 x 10" | 1.93 x 10!

Table 6.2: Some benchmark points. The mass parameters m¢ and the total decay width I'(§) are

given in GeV. The § and « are given in radians.

Relative annihilation channel contributions to the relic density Qcpah? in per cents are:

A12

51% i — W+ W~

17% nn — cc
15% nn — uu
15% 77 — 2 Z

52% 77 — W W~

19% 77 — 2 7
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14% nn — au

72% fi — W W™

10% nn — cc
% nn— 27
8% nn — uu
1% 717 — bb

Ay

A5:

43% 77— WHW-

9%5% 7 — Z Z
11% nn —cc
1% 77 — hh
9% nn — au

43% 75— WHW-

25% i — Z Z
12% 77 — hh
10% 77 — cc

10% 77 — @u
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Figure 6.8: Constrained benchmark points of Figure 6.7 based on the acceptable Qcpah? parameter
range after performing a scan with micrOMEGAs. Scatter plots of different input parameters are
presented: a) masses of the neutral states 77-y, b) masses of the neutral states H - A, ¢) masses of
the charged states h* - H*, d) angles $-a. The boxplot with whiskers indicates where 1/1 - 3/4 of
the data points are situated along with the medians.
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Chapter 7

Summary and Conclusions

7.1 Results

The motivation for this work was to gain a better understanding of the Ss-symmetric SHDM
and test if a scalar DM is possible within the framework of the model. The results obtained are
summarized as follows:

e The hidden symmetries of the S3-symmetric scalar potential were analysed. We were able to
identify the massless states using the Goldstone theorem. Also, based on the Zy symmetry
and the mass-squared matrices mixing, the vacuum configurations, which could accommodate
DM, were identified.

e One of the models, C-III-c, with massless states was studied. The principle of soft symmetry
breaking was applied to promote the massless states to massive ones. The softly broken
model C-III-c-v? was further analysed; tree-level interactions and constraints considered. It
was shown that the C-III-c-v? model is CP conserving. The S3-symmetric Yukawa sector
resulted in unrealistic Voky values, the FCNC are way too high. Therefore, the S3-symmetric
Yukawa sector should be further broken. Numerical evaluation of the model resulted in
realistic relic density Qcpah? values, but the experimental constraints of the SM-like Higgs
boson are violated.

e The real vacuum configuration R-II-1a has been analysed. This is the only real vacuum
configuration with the Zy symmetry preserved by default. The Ss-symmetric Yukawa sector
resulted in unrealistic Voxum and thus the Yukawa couplings were further constrained by an
additional Zs symmetry. Such model resulted in no FCNC, but the decays of the SM-like
Higgs boson are violated. Nevertheless, the model resulted in possible relic density Qcpah?
values.

7.2 Future Research

As this work has shown, the S3-symmetric SHDMs have several interesting properties, which have
to be addressed further. A number of interesting problems were considered and some possible
solutions provided. Nevertheless, only a tiny amount was covered and many questions are still
open. Governed by this fact, we mention proposal for future research:

e It should be checked what happens with the additional massless states after renormalization.
Of particular interest is how they act in the high-energy limit.

e Some of the models with the zero VEV components do not result in a possible DM candidate.
The R-I-2b, and R-I-2¢, and C-I-a models involve zero VEV components but there is mixing
present between the states. It should be checked more thoroughly if there is a possible
direction of the potential, which would result in inert SU(2) doublets. There are two models
R-I-1 and C-I-a, which result in mass-degenerate states. The degenerate states should be
further analysed to see what that implies.
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e The general conditions for C'P violation in the Higgs basis should be derived. This might

result in several possible solutions based on the R R, orderings and if an additional U(2)
transformation is considered.

The C-III-c-v? and R-II-1a models resulted in unrealistic Voxy. Minimal conditions for
realistic values should be further considered. Also, it was assumed that neutrinos are massless.
Those should be promoted to massive particles. Moreover, the other vacuum configurations
should be checked in terms of the Yukawa sector.

Although, as shown, both the C-III-c-v? and R-II-1a models are capable of producing realistic
relic density Qcpmh? values and thus are viable candidates, the decay rates of the scalars
were not realistic. The total width of the SM-like scalars could be enhanced when loops
are considered and the effective vertices of scalars-gluons ¢;gg and scalars-photons ;v are
introduced. The DM decays should be analysed at the further leading orders.



Appendix A

Different Forms of the Scalar
Potential

A.1 The Derman Potential

The scalar potential in terms of the Ss-reducible-triplet fields was derived by Derman [33,38]. He
showed that the most general SU(2) ® U(1) ® S3 Higgs triplet scalar potential can be written as:

V= Z [—A (ele:) + 4 (@Tqﬁiﬂ

+ {57 (dlos +ne) + 0 (olos) (sfos) + € (o) (o1er) + 50| (¢16) " + e

i<j

155 (1) () 0]

v}

+ > {;Ez [(s105) (dfs) +ne] + 2 Bs [ (616:) (¢los +hc)]
i#jERFL <k

v [ (o165 (6166) +hc] }
(A1)

where all of the couplings are assumed to be real. As noted, spontaneous symmetry breaking
happens provided that A > 0.

It is also worth mentioning that Derman analysed vacua of the form

1 O'ieiai .
\ihmin = V2 <p-ez’9i> =he (A.1.2)

where all of the parameters are real. It was noted that the scalar potential has a local minimum
at 1 — 0y = 0 — 03 = 0, provided that the couplings v, C' + D, D, E; are all negative and thus
T-invariance is obtained. Charge conservation is also ensured by choosing couplings in this way.

The Derman potential is related to the potential of eq. (2.1.7) by the following transformations:

1 (-2 2 A
=3 (_2 _1> <7> ’ (A.1.3a)
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A 4 4 1 1 -4 2 1
Ao 0 0 -3 3 0O 3 0 -3
A3 2 1 P 2 —2 -1 2 -1
A 1 4vV2 —2v2 —2v2 —2v2 —v2 V2 V2 V2
|12 8 8 4 4 4 -4 2 —4
Ao 8 4 8 4 4 2 —4 —4
Ar 4 —2 2 2 —2 —2 1
Ag 4 4 4 4 8 4 4 4

(A.1.3b)

Taking into consideration the previously mentioned conditions by Derman, one can get the

following constraints in terms of u? and \;:

(16— 117) <

<2)\1 + 8\ —4fA4 — s + Ag +2>\7+2>\8) <0,

(A1+3A2+4A3—2\/A4—A5—A6+4A7+A8) <0,

_ <4)\1 AN+ V2h — A5 — Ag — 2X7 — 2)\8> <0,

(2)\1 46Xy — 4h3 4 2V2Ms — 2As + Ag — ANy + 2)\8) <0,

<—4)\1 + 83 + 2\/5)\4 4+ A5 — 26 — 4A7 + 2)\8) <0,

<)\1_3)\2_2)\3+\/§)\4_)\5_)\6+)\7+)\8> < 0.

A.2 Matrix Form

One of the possibilities is to write down the scalar potential in a matrix form, from which elements
for the SU(2)-covariant form of the potential (2.5.7) can be easily extracted. By directly inspecting

different combinations of the SU(2) singlets, h;; = hl-thj, we can write down the S3-symmetric scalar

potential as:
V =HoM + HyAH],

where the basis vectors are given by:

Hy = (h11 ho2 hss hiz his ho1 has hsi hso
Ho = {(Ha); 11 € [1,3]}.

),

The matrices of eq. (A.2.1) can then be expressed in terms of the couplings as:

M = diag (13, 13, 15) ,

A +A3 A=Az X5 0 0 0 3\
A —As A1+ A3 X5 0 0 0 —I\
s s As 0 0 0 0
0 0 0 Ao+ Ag %)\4 —Xg + A3 0
A=1| 0 0 0 CLYRNP VRN DV 0
0 0 0 —Xdo + A3 %)\4 Ao+ A3 0
A =30 0 0 0 A7
0 0 0 2R DY DV 0
SRR D VIR 0 0 0 X6

0

1
M

N[

(A.2.1)

(A.2.2a)
(A.2.2b)

(A.2.3)



Appendix B

Derivatives of the Potential With
Respect to the Fields

B.1 The First Derivatives

In order to identify minimization conditions we consider first derivatives of the potential with
respect to different fields at vacuum. One should always be careful as the set of all derivatives is not
independent, but all of the derivatives must vanish simultaneously after applying the minimization

conditions. We consider the following vacuum configuration:
{UJl, w2, wS}a

where, in general, w; are complex values. The derivatives are as follows:

ov ov

- — =0,
O 1wy O 1)
o),
Ohi iy Ohgley
dui = 5#%“& + 5/\1?111 (Jwi* + [wa]?) + 5)\2 (w1w2 — wl\w2\2>
1 1
+ 5)\3 (wiwi|* + wiws?) + 5)\4 (wwiws + wiwews + wjwiwg)
1 1
+ 1 (A5 + X¢) wﬂwSP + 5)\7w1w§2 =0,
ov 1 L, 1 . 1 .
g . = 5#%“’2 + 5)\1w2 (Jw1* + [wa]?) + 5)\2 (wiws — wi [Pws)
1 * * 1 * * *
+ 5)\3 (wi?ws + wh|ws|?) + 1/\4 2w (Jui]? — [wal?) + ws (wi? — w3?)]
1 1
+ 7 (s + Ao) wi|ws|* + S Aqwawy’ =0,
B o = 5,“(2)105 + Z)\4 (2\w1|2w2 — w2|w2|2 + w12w2) 4+ 1 ()\5 + >\6) (|w1|2 + ’w2‘2) wh
1 *2 *2 1 * 2
+ 5)\7 (wl + w,y ) wg + §A8w5\w5| =0,
oV 1 1 1 .
ot . = 5#%“’1 + 5/\1101 (|wl|2 + |w2|2) + 5/\2 (wlwg — w1|w2|2)

1 1
+ 5)\310? (w% + w%) + 5)\4 (wiwawg + wiwsws + Wiwawyg)

1 1
+3 (s + Xe) wi|ws|? + §A7w1<wg =0,

(B.1.1)

(B.1.2a)

(B.1.2b)

(B.1.3a)

(B.1.3b)

(B.1.3¢c)

(B.1.3d)
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vl L 2wy 1 Eavws (Jw1]? + |wa)?) + Ly (wiws — |wi[*ws)
ows |, 2" 2 2 1
1 * 1 *
+ 5)\3102 (w? 4 w3) + 1)\4 2 (Jw1]? = Jwal?) ws + (wi — w3) w§] (B.1.3¢)
1 1
+1 (A5 + Ag) wa|ws|* + 5)\7w§w% =0,
v 1 1 . 1
B — §,ugws + Z)\4 [2\w1\2w2 + wy (w% — w%)] + Z ()\5 + )\6) wg (]w1]2 + ”U)Q‘Q)
S 1(w) : (B.1.3f)
1
+ 5)\7’11); (w% + w%) + 5)\8”U)S|2'LUS = O,
oV 1, . 1 .
AN = 5#?(% twi) + 5A [(lwi]? + [wal?) (w} +w)]
1 *
+ 2)\2 [wiws?® + wiws — |wa|* (wi + wy)]
1
5% 3 [wilwi|? + wiws? + wi(wi + w3)] (B.1.4a)
1
§>\4 (wwrwy + wjwewy + wjwaws + Wiwaws + Wiwaws + Wi wawy)
1
+ Z ()\5 + >\6) |w3]2 (U)ik + wl) + 5/\7 (w1w§2 + wffw%) =0,
— _ * 7)\ *
AW SH1(wy + w2) + S A1 [(lo1* + |wal?) (w5 4 w2)]
]' * *
+ 5/\2 [wiws + wiws — [wi]? (wh + wo)]
]' * * *
+ 5 [wilwal” + witws + wi(wi + w3)]
1 N %
+ 1 [2|w1| (W + wg) + wg (w12 —wi? — 2[w2\2) + wg (w% —wi — 2\w2|2)]
1 * * *
Z ()\5 + )\6) |w5] (’LUQ + ’lUQ) + 5)\7 (11)2’[052 + UJQUJ%) = 0,
(B.1.4Db)
8V 1 2 2 *
9is = 3H p3(wk + wg) + )\4 (w1w2 + witwy + (2|w1]* = [wal?) (w3 + w2))
(v)
+1 (/\5 +X6) (Jw1]? + |wal?) (we + ws) + A7 [wE (w} +w3) +ws (Wi + w3?)]
1 ,
+ §A8”w5‘2 (UJS + ’LUS) = 0,
(B.1.4c)
oV i . i N
A = 5#?(“}1 —wi) + M [(lw1 [* + [wa]?) (w} —wi)]
v
+ )\2 [w1w22 —w1w2 |w2| (wy —wl)]
(B.1.5a)

— A3 [w1|w1| + wlw*2 — w{(w% + w%)]

+
.J;\@ N = DN =N =,

+ - M (wwswg + wjwews + w{w%ws — W] WoWg — WIWHWS — W WaWy)

()\5 + X¢) |w5| (w] —wr) + )\7 (wlws wlws) 0,
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- = g ) [ foaP) a5~ )]
%)\2 [—w%wg + wawg — \wl\Q (wy — wg)]
+ %)\3 [w§|w2|2 + wiwy — wi(w? + w%)]
- %M [2fwn|? (wh — ws) + ws (w2 — wi + 2wnl?) + 1wl (w? — wh + 2ws|?)]
5 A6) s (5 — wa) + A7 (o — wiuR) =0,
(B.1.5b)
g;s e (s — ws) + T Aa [~wdug + wis + (2~ Junf?) (w - ws)]

+ % (A5 + X6) (\w1|2 + |w2|2) (wg —wg) + %)\7 [—wg (w% + w%) + wg (’sz + wé‘z)]

/l: *
+ 5)\8|w5’2 (wS — wg) =0.
(B.1.5¢)

In case of the real vacuum configuration the derivatives are of a different form. Nevertheless, one
should realize that it is just a matter of the prefactor, which is a constant. Thus derivatives can
be divided by it without leading to another solution.

Next, we consider another possible description of the vacuum configuration by explicitly splitting
VEVs into a real part w; and a complex phase o;:
e 92 g} (B.1.6)

{Qf}le wge

The only significant change comes from eq. (B.1.3):

oV . o . o A .
9% = /ﬁwl + )\1w1 (w% + w%) — 2)\211)110%831,02 + )\3’[1}1 (wf + w%cz(al,@))
1 {(w) , (B.1.7a)
+ M wows (C(ggl,@) + 2C02) + 5 (A5 + X6) ﬁ)lwgv + )\7@11@%C201 =0,
oV . . A O n A .
Oy | ) = pin + Atz (0F + 03) — 22X Wiwesy, _y, + Mgtz (WFCo(g, —oy) + W3)
v
1. . . R . 1 . .
+ 5)\4105 [w%c(gol,ﬁ) + (211}% — 3’w§) CJQ] + B (A5 + X6) wgw% + /\71021U§~C202 =0,
(B.1.7b)
oV R 1. . (. R .
3 = s + 5)\4102 [w%(:(gal_@) + (2w% — w%) 002]
S1(v) , (B.1.7¢)
+ 5 (X5 + Xe) (@7 + @3) g + Mg [hfcos, + Wacan,] + Agd = 0,
LA (A2 + Ag) Dissy — M2 ptbgs o — Mtis,, =0 (B.1.7d)
(90'1 <U> 01_02) ( 01_02) 1 ? b
ov A2 2 Ly o 9 A2 a9 22 .2
8702 " = A2+ A3) WIW382 () —g) + 5)\4w2w5 [wls(%l_az) — (2w1 - w2) sgz] — A5 W5S25, = 0.
v

(B.1.7¢)

All the other derivatives are of the same form except for the fact that they are not expanded in
terms of the absolute value w; and the overall phase e*7:.
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Appendix C

Potential in the Higgs Basis

C.1 "Rjs. R, Higgs Basis Rotation

We present relations between the couplings in the Higgs basis and the generic basis of egs. (2.5.9,
2.5.10) using transformations givens by eq. (2.5.14). The quadratic couplings are:

Yii = Ngsﬁls@ + 3 (c%1 + S%1C%2) , (C.1.1a)
Yio = (15 — 1) sp,5, 5, (C.1.1b)
Yiz = (15 — 17) 58,¢5,565 (C.1.1c)
Yoo = pgcs,sh, + 1 (55, + ¢k, c3,) (C.1.1d)
Yaz = (1t — 17) ©5,¢5,56, (C.1.1e)
Y3 = HgCh, + Hish,- (C.1.1f)

The soft symmetry breaking terms of eq. (3.2.2) result in a change of parameters in the Higgs basis:

1
Yl/l =Y+ §V2662C‘71*U28251 + 'u% ((%1 - 0%28%1) + Mg%cal%sﬁz + M?LC52CU2S%1852’ (C.1.2a)

1 . 1
Y1/2 =Y+ Zy2cﬂ2 (02614-01—02 + €281 01402 — 21501702) - 1”3 (C252 + 3) 5281

1 (C.1.2b)
+ 5#%852 (CQﬂl Coy — ism) + :u?lcﬂl CB2Co258158s
1 T 1 w
Yy =Yig = gv'e (o1=02) e 85, + p3cs,96,58, + Shae " ep e
1 (C.1.2¢)
+ 5:“421851 (0252(302 - 2‘Ssz) )
1
Y2/2 =Y — §V2C,32C01—028261 + M% (S%l - C%IC%Z) - N%Cﬁlcalsﬁlsﬁz + Nic%lcﬁzcozsﬁzj (C‘l'2d)
1 T 1 w
Yis = Yas + 57O sg,50, + idcs,co58, — SHie M en55
1 (C.1.2¢)
+ §M?1C51 (C2,32 Coy — isaz) )
Y3,3 = Y33 — N%S%g - N4210,32C02852' (C.1.2f)

The real quartic couplings are:

2 2 21\2 2 2 2 2 4 2 9 2 4 4
Zun =M\ (Cﬁl + C52S‘51) - 4/\2C51052551 So1—oy T A3 [051 + 2052051 C2(01-02)83 T 052851]
2 2 3 4 2 2 (.2 2 2
+ M [Cﬁl (C201—02 + 20"2) 56,828, — 2052002851552] + )‘5851852 (Cﬁl + Cﬁzsﬁl)
A2 §2 (2 2 2 M2 &2 (2 2 2 (C.1.3a)
+ A6S3, 55, (C5, +€3,55,) + 2783, 55, (€3, 201 + €5,C20,53, )

+ )\88%1 8%2’
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2 2 2 2 2 2 2 2 2 2
Zi122 =2\ (¢ ¢, + Sﬁl) (% + %Sﬂl) + 8)‘2%%% o102

2

— 23 [Cﬁzcﬂl Cﬁlsﬂl ( 4C52 o1—oy T CBQ + 1) + 0,6’2861]

1 2 3 2
+ A [ 828, ((Cap, +3) Cop — A€o, Cor—02533,) — C3,Co2523, 56, (C.1.3b)

2 2 2 2 2 4
+ g/\5 [2(ca, +3) 55, + 525,526,] — 2265, 55,95,
- 4)\7C%1S,%’1 S%z (CZUI - C%2C202) + 2>\8C%15%51 S%z’
2 2 2 2 2 2 2 2 2 2
Zizs =2\1sg, (cB, +C3,85,) — 2Assp, (CB, — €3,53,) — 2M48,C0,88, (CB, — C25,83,)

1
2 2 2
+ A5 [051052 + 1 (cap, +3) 53, 2)\6052851852 4)\70520202%1552 + 2/\8Cﬁ28B1852,
(C.1.3c)
1
Z1221 22)\10%15%15%2 - *)\2%2 (cap, + 2C2(01—U2)S%BI +3)
2 4
+ 2/\3 [cB,ch, +chysh, (C3, +4¢B,55, oy +1) + 3,85,
+ 1)\4C52852 [(50451 +3) o, — 25231 (C28,Cos + 2@201_02)] (C.1.3d)
2 2 4 2 (.4 2 2 2 4
- 2)‘5051851 g, + )‘6852 (CB1 + 2C52C51851 + Sﬁl)
- 4)\70%15/%’1 S,%’z (C201 - 6%262‘72) + 2>\8C%15/%’1 S%Q’
Z1331 = 2>‘1C%2S%1 S%z - 2>‘2C%1 S%z + 2)‘38%2 ((%1 + C%zsél) — 204CB,Co,88, (C/%l - C252S%1)
1
+ 2)\50?328%1 s%z + Xg c%lc%2 + 1 (Cap, +3) s%l — 4)\7(:%2@028%13%2 + 2/\8(:%28%15?32,
(C.1.3¢)
2 2 232 2 2 2 2 4 4 2 2 2 4
Za22 =\ (C510,32 + S/31) - 4)\20/310/528,31 Sg1—02 + A3 [Cﬁl Csy + 2C51 CByC2(01-02)58, + 5/31]
+ A\ [c%l (C20y—0y + 2Coy) 8%182,32 - 2C%IC%2002852] + )\5(3%18%2 (C%IC%Q + s%l) (C.1.3f)
+ )‘GC,%H 8%2 (C%1 C%z + S%1) + 2>‘7C%1S%2 (0%10%26202 + C2018%'31) + ASC%1S%2’
Z2233 = 2)\18%2 (C%1C%2 + S%l) + 2)\38%32 (C%IC%Z - S%l) + 2A4C/82C0—28ﬂ2 (C%I C2ﬁ2 - S%l)
1
+ A5 |: (C452 +3) Cﬁl + Cﬁzsﬁ1:| B 2>‘6C%1C%QS%2 o 4)‘7C%1C/%202‘728%2 + 2)‘80?310%28%2’
(C.1.3g)
Z2332 = 2)‘10%1 6%28%2 B 2)‘2821 S%z + 2)‘38%32 (C%ﬁcgb + S%1) + 2)‘4052CU2852 (0%1 €26, — S%‘31)
1
2>\5C/51 Cﬁzsﬂ2 + s [ (C4/32 + 3) C/BI + Cﬁzsﬁ1:| - 4/\7C%1C%202‘72S%2 + 2)\8C%1C%25%2’
(C.1.3h)
23333 = )\1S%2 + )\38%2 + 2)\4C52CJQS%2 + )\5C%QS%2 + )\60%28%2 + 2)\70%2(32028%2 + /\8C?.}2, (C.1.3i)
Z1233 = — 2)\1C518518?32 + 2A3cs, (c%2 + 1) g, s%z + 2A4c%260282glsﬁ2
1 (C.1.3j)
_ §A5c25282518252 - 2/\60510%2551 5%2 — 2)\7c%202025251 S%Q + )\80?325251 S%Q,
71332 = )\1(3%282518%2 + )\282618%2 — 2)\30518/315%2 + 2)\4C%2(3028251852
(C.1.3k)

1
— 2As5¢8, c2ﬁ2551s%2 )\6c2,325251 862 2)\705202023231 852 + )\80628251 SBQ,
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and the complex quartic couplings are:

Zinz2 = — 2)\16/318/315%52 (C%l + C%QS%I) o 2’\2(3%28251501*02 (0251501702 + Z.CUI*O'Z)

o 2)\36—21(01 +02)C,81 55, (6210'1 - 6210'2 C%2) (6210'2 C%1 + 62201 C%2 S%l)

+ 5)\46_2(2014_02)(3,818518252 |:2 (62201 + 6220'2 + 621(0’1-{—0’2)) Cél

— BZiJIS%I (621'02 (Copy +3) + cap, + 2¢%01 4 3)

2 2 2 2 2 2
+ )‘5C51 56183, (Cﬁl + C2p, Sﬂl) + )‘GCBI 56183, (C51 + 0252851)

e C%l - S%l (_20%2C2‘72 + €201 + iSZUl)] + 2>‘8C51 S%l S%z’

+ 2)\7(3518/318%2 [6
1 o . .
Zi113 = — Z)\l [(0251 + 3)sp,528, + 8%18452] + \ge 201 (62“’1 - 62“’2) C%18518252
— A3 (20%2852821 + 26721’(01702)021 052sﬂ2551>
1 —1(201+0 103 Lo
e [0 (2, 4 0 (58, — 1S,

2i 2 2
— eioicy, ((052 + c3,) S5, — 4061052)}

+ A (c%1c52552551 + i8452s%1> + X6C8,54,58, (C5, + 28,55, )

+ A7 [267 7 e 80,85, (<, — €775h,) + €7 ek sa,85, ] + 2Asca,5h ST,
Z1123 = — A\1CB, 528, (C%1 + 6%25%1) — X <1 — 672i(01702)) cms%ls%

+ A3¢3, 528, [c%l + 53, <s%2 + 6—2’5(”1—02))}

+ )‘4(351 [ — e C%2 S,%l + elra 8%1 (_0252 + > (CQﬁz + 2) S,%’z)
+ c%l (C28,Coy — isUQ)]

1 2 2 2 .3
+ 5)\50518252 (CB1 + c252sﬂ1) — 263,853,583,

2i09 —2i01

3 2 .3
Cp,83, — € 8252] + 2)\8C51C52851852,
_2i(01+02)c%2 (621'020%1 i 62”15%1) 2

+ )\70518%1 [26_%020%2852 —2e
Z1919 = )\10%18%18%2 + Aoe
0 [ HOTIG b OIS (e, +1)

- (1) (&, ) €]

2
+ )\46_i(201+"2)c/32 CER [eQw? c%

2 2 4 2 2 4
— A5C3,83,85, — A6C3, 55,55,

1

1 ,
+ )\78%2 [4 (cap, +3) cogy + 2(:%1 0%202g2s%1 - ZC2518201:| + /\8C2615%3’15%27
719213 :2)\1051C528%1S%2 — 2X2€B,C3,58, <s%31 + 6721'(01—02)0%)

— A3 (20%20518%1852 + 26_%(01_02)0,620%1852)

1 . .
+ Z)\46—2(20'14-0'2) |:46220'2 C%l Copy

— g2 Cp, S%l (60252 + a8, — 4?02 (CQgQ + 3) S%Q + 5)

2 .3 2 .3
— 2A5¢8, C3,53,58, — 2A6c51052861 S3,
+ 2)‘7051(3528,32 [Q_QWI C%1 + 6_22028,%’1 (0%2 B 641023%2)] + 2)‘80519328%18%2’

(C.1.4a)

(C.1.4b)

(C.1.4c)

(C.1.4d)

(C.1.4e)
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21222 =

21223 =

21231

21232 =

21313 =

_ 2Alcﬁls51s%2 (c%l(:%2 + s%l) + 2)\2c%25251801 —0s (C28,501—05 + 1Cq1—0s)

- 2)\36_2i(01+02)0ﬁ1 55, (eZiUQ o 621'01 C%2) ( 2i09 C% CBQ + 62101 8%1)
+ 20 BN eg 55,5, [ e,

, 4 , (C.1.4f)

- (1) (], (&, + 1) = 5,) + €

1
+ A506,88,5%, (C28,¢3, +53,) + A6cs, 98,55, (C28,¢5, +55,)

+ %)\75%2 [80%20%10202851 — C20, 848, + 2i52515201] + 2)\80%18/318%2,
2A16%10528515%2 + 2X2C3,58,53, (s%1 + e_2i("1_”2)c%1>

+ 2X3C3,54, 54, [_S%?l + C%l (—C%Q | e2iloi—0) _ 1)]

1 . . . . .
+ 7)\487z(201+02)851 [_ 262101 (1 + 62102) C452C%1 + 62101 (_1 + 62102) (50251 —+ 1)
8 (C.1.4g)

+ 2co8, (—€*" (Beap, + 1) — 26772 (14 (14 €71) cop,))

2 3 2 2
— 2X5C3,C0,88:53, T A6C3,86,88, (C28,C, + 55, )

— 2ze 2T e2 g5 55, [€2 (—cB, + €723, ) + €*7?] + 2\s¢3, 04,56, 55,

2

=2\1cp, C52S%18%2 +2X2cs,C8,58, <C%1 + 621'(01702)5%1)

+ 2)\3051C52852 [_C%l + S%l (_C%Q + e2i(01—02) _ 1)]
e (-, + o)
(C.1.4h)

1 ) )
4651 Sﬂl ((2 +4 ( 2o + 62102)) Cag, + e*o2 (0452 + 3) + Capy, — 3) :|

2 3 2 2
— 2X5C8,C3,55,53, + A6C3,C3,58, (CB1 + 0252%1)

+ 2\ze”H2¢g, 0528%1852 <e4i”20%2 - s%z — eQi("lJr"Q)) + 2Xgcg, 0528%18%2,

2Alc%1c52851s%2 +2X2€3,58,93, (—c%l - e%(‘”_”)s%l)

— A3 (20%1 C%’z 186y T e _02)8%1 S2ﬁ2>

+ Mge 02 [e%m CQ/BQS%I + c%l sg, ((cop, +3) S%Q — e%"?c%2 (cop, +2))] (C.1.4)
2 3 2 3

— 2A5cﬁlc52851s52 — 2A6cﬁlcg2851852

+ 2)‘76_2i02cﬁ2sﬂ1 582 [(%1 (78%2 + 642020 ) + SRR %1} + 2)‘8C%1C52S,318%2’

)‘1(:2525%18%2 + /\26_2i(01_02)C%1 S%z + )\38%2 (C%2S%1 + 6_2i(01_02)0%1>

—2i(o1—02)

2 2 2 2 1
C51:| + )‘5052851862 (C'1'4‘])

C%l C%Z —"_ @72“72 S%l (Cé2 + 64102 S4ﬁ2 )} —"_ AgC%? S%l S%Q ’

+ )\4e*i02c52552 [S%I (CQB2 - 627;028%2) —e

—2i01

B )\6C%2S%1 8%2 + A7 [e
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1399 = — 2)\10528/315/32 (C%IC%Q + s%l) + 29 (—1 + e—2z‘(a1—az)) C%1CB2861862
+ 2X3¢3,58,58, [5251 + 0251 (s%2 + e_2i(‘71_"2)>}

1 : ) )
+ g)\4eil(201+02)851 [ - 27 (1 + 62“72) Cap, C%ﬁ

+ €27 (=1 4 €277) (5egs, + 1) (C.1.4k)
2055, (=27 (3ca5, + 1) — 26277 (14 (14 €%7) cy5,)) ]
2 2 2 3
+ A5C3,53,58, (C252651 + Sﬁl) — 2/\6051%25@)1852
+ 2)‘7672i(01+02)cg1C52sﬁlsﬂ2 [6%01 (_C%2 + 64W2S5 ) + 62102] + 2/\8C61C52851 SBQ;
71393 = )\1C%28251 S/%Q — 2)\26721’(01702)(351 S6 S%Q + 2)\3(351 851852 (CB2 — 6721(01702))
+ 2)\46—7;(20'1"‘0'2)(;[31Cﬁ25ﬁ1852 [e%’l (C%2 — €2i028% ) + ezi"Q] — 2)\505162525518% (C.1.41)

+ 2)\60,31c%2551s%2 + 2X7¢s,88, (672i020%2 - 672""105 + %027 5,) + )\80528251%2,
Zi333 = — 2)\16528515%2 — 2)3C8,58, S%Q — e "P2sp, S%Q 1+ (1+ 62"72) €, |

4“725 ) + 2A8c52s51s52,

(C.1.4m)

1 1 %0
+ ZA58518452 - Z)\68518452 + 2X\7e 2 2C52851852 (—C%2 +e

Z2223 = — 2A1C3,CB,58, (C%IC%Q + s%l) + Mge 2o (6%01 — e2i”2) 0518%13252
— A3 (20?31 0%2832 + 26‘2i(01_”2)051 c525%1s@2>

- /\46_i(201+02)cﬁl [62% (C%Sm + 2% Spa (% Csy — 8%1))
(C.1.4n)

2 2 2
25
2 2 2 2
+ )\5C51052852 (C252C51 + Sﬂ1) + )‘6C51C52852 (C252C61 + 851)
+ 2)‘70/31(3625,32 [6_220%%1 (0%2 - 641028%2) + e 2 ] + 2)\8C51C52S/32,
Z2323 = Alc%lcé2s%2 + )‘26727;(01702)8%1 S?b + )‘38%2 (C%1 C%z + 6721(01702)8%1)

+ Ae" 2,85, |:C,%1 (C%Q . 622'028%2) _ 6—27:(0'1—0'2)8%1} + >\5c%1c%25%2 (C.1.40)

— N6Ch, €55, + A7 [e7272¢], (b, + eM2sh,) + e e, 85, | + Asch, B85,
Zy333 = — 2/\1051052822 — 2X3c3, 652536’2 — /\46_“’2051852 [1 + (1 + 62“’2) (32/32]

2 digs 2 3
CB,CB258, (—cﬁ2 +e “’2552) + 2A8c51052552.

(C.1.4p)

—2i02

1 1
+ Z>\5C518452 - Z)\GCﬁISLLBQ + 2\7e

Couplings which potentially lead to C'P violation are presented in eq. (C.1.4). In terms of the
generic basis, only terms multiplied by s, or A3, or Ay, or A7y may result in C'P violation in the
Higgs basis®. If the soft symmetry breaking terms of the generic basis (3.2.2) are added, the bilinear
terms in the Higgs basis may also lead to C'P violation. In this case the couplings Y/,, or Y/;, or
Yys may result in C'P violation. Not all of the Z couplings should be checked as:

Im (21223) =Im (21322) . (C.1.5C)

It should be noted that this is only true for transformation given by eq. (2.5.14).

!This is only true when an additional U(2) transformation is not considered.
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C.2 Rg,Rg, Higgs Basis Rotation

We present relations between the couplings in the Higgs basis and the generic basis of eqs. (2.5.9, 2.5.10)
using transformations given by eq. (2.5.26).
Quadratic couplings in the Higgs basis are:

Yir = (32 + phw?) (C.2.1a)

Yoo = i, (C.2.1b)
w? 2 2

Yis = 5 (=2 + pi2) (C.2.1c)

Vi = g (10 + pid), (C.2.1d)

(C.2.1e)

and the soft symmetry breaking terms of eq. (3.2.2) result in:

1 P . . S S
Yl/l =Y+ ? [V2w1w2601—02 + (w% - w%) :u% + wlwscmﬂg + 'wQ'wSCOz:U%ZL] s (0'2‘28‘)
1 1 ) : 1 1 .
Y/, = oo [2y23_l(01+02)y (62“’112)% e?io2 “2) + 20ty s + iewlvuﬁguﬁgug - 56102’0’@1’@5#2
(C.2.2b)
1 . . 1 . . o1 -
Y{3 = Yi3 + — |:I/2'w1w2601 oy + (W7 — 3 p3 + 3¢ T g (X + e i)
(C.2.2¢)
26 924012 (X + e2i"2u§5) ],
1 o . .
Yy = Yoo + N2 [— V21 09Cy, gy + (w% — w%) ,u%} ) (C.2.2d)
Y/ 1 1V26—z(01+02) (627,'0'212]2 o 62i0112)2) + I, ,u2 4+ le—ia'lw X,u2 o 16_7;021;] X,u2
23 — N2N3 2 1 1W2 9 2 2 3 2 1 41
(C.2.2¢)
Y3/3 = }/33 + N2N2 [VlewQCm—m + (Qf}% - w%) :u% + lecollug + w2X602M421] . (C.Q.Qf)
3
The real quartic couplings are:
1 9 . I . .
Z1111 = 1}4{)\1104 — 4)\2w%w§531_02 + A3 [ngw%c%gl_@) + w‘f + wg]
+ 22X th2ts [0 (Co0y—0p + 2Cy) — W3Coy | + Asw WG (C.2.3a)
+ AW + 2A70% (W5 c20, + W3ca0,) + Agwg},
1 2 W2 4
Zuz = N2y2 2)\11[) + 8)\2w1w2301*02 2)‘3 [ w W1C2(g1—02) + wl + wg]
2
(C.2.3b)

+ 2Agthoths [1W5Cr, — W (Cogy—op + 2Cay)] + Ag,w?wg},

1 ~, A~
Z1133 = N2y? {2)‘1“) — 8\wiwisy, _, +2X3 [205d1c C2(01-02) T Wi + )

+ 2\t [9F (C20y—0y + 2Cay) — WiCo, ] (s + X) + Asw? (05 + X?) (C.2.3¢)

— 2w’ — Ahw? (oo, + Wicon, ) + 2)\8w4},
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1

Zl221 = W

{ — 2X2 [2030TCo (g, —gy) + W] + W3] + 2A3 [—20507 (Co(oy—0p) — 2) + BT + 5]

+ 2\t [W5co, — W (C20y—0y + 2€0,)] + Aﬁuﬂwg},

(C.2.3d)
1 "2 . .
Z1331 = N2 5 {2)\1w — 8)\2w1w25§1_02 + 23 [2w§w%02(01_02) + w‘f + w%}
+ 2\1a [0F (C20y—ory + 2C0y) — WiCoy ] (s + X) (C.2.3¢)
— 225wt + Agw? (0F + X?) — dhw? (2o, + Wico0, ) + 2)\8w4},
1
Zogon = — 3 Mwh — DodfwdsZ . + A3 [20507co(g, _oy) + 0T + W3] 7, (C.2.3f)
N4 ( )
2
1 9 2 - A
Zoo33 = W{2A1w4 + SAQw%wgsgl_@ — 23 [2w§w%02(01,02) + ] + wg‘]
(C.2.3g)

+ M\ 208 X ey, — 20502 X (Co0y—0 + 2€0,)] + )\5w2X2},

1

22332 = NQQN?? o1—02)

+ M\ (205 X coy — 203109 X (Co0y—0p + 2€5,)] + Agw? X2 }

(C.2.3h)
1 "9 . "9 . . .
Z3333 = N4{)\1w4 — Ao ist, ,, + A3 [2“’%10%02(01—02) + ©f + 5]
3
~2 - ~3 2 y2 2 v2 .
+ A1 207 02X (€201 —gy + 2C5y) — 205X Coy | + Asw” X° + Agw” X (C.2.31)
+ 207 X? (Wicos, + W3co0, ) + >\8X4},
and the complex ones are:
Zi112 = 1 AN W28, o [(113% - UA)%) So1—gy + W Co, _o ]
No3 1—02 1—02 1—02
+ 4A311W285) 0, [(“AJ% 2) Soy—oy T iwzcﬂl—"?] (C.2.4a)

wy
+ Me 20 adg [(3+ 262201) w3 4 %02 (412)% -2+ e_%”l) w%)]

+ 2X7 (€71 — %17?) wwm@},
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1 . N N N
Z1113 = N303{2)\1w4 - 8)\2w%w%5(2n—az +2A3 [QW%U’%CZ(al—az) + o + w%]

+ Me~ 2y [2621'0112;%@5 +e201=02)52 (g + X)
+ (207 —03) (263 ds + s + X) |
+ Aswlig (s + X) + New?g (g + X)

+ 2X\7ig (€22 03g + e H T (X + MM bg) + e s X | — 2A8w2w§},

(C.2.4b)
1 - . .
Zi123 = NNy { — 4m26—2<"1+"2>w1w2301_02 (62“’11?1% + 62“72113%)
— didge 1D adn s, o, (290007 + eX02003)
— \ge "2, [e%”lw%wg — e_zi(gl_UQ)wg (362i01 wg + ws + X) (C.2.4¢)
+ (@2 — 203) (g + X)]
o 2)\7 (e—Qial _ e—2io’2) w2wlw2}7
Zio1o = W{/\Qe—%(al-i-az) (622'02@% + ele’lf)%) 2 4 )\36—2i(01+02) (62i02ﬁ)% + eZimw%) 2
2
(C.2.4d)
+ Aae” " abgibs (€273 — 3e” DY) + A (¥ 72T 4 €27 b)) }
1 P A2 a2 2
Z1213 = W AN W1 W21 — oy [(wl — wQ) So1—0y T IW 001_02}
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+ e, [ze%"l Wiy — 26292 (12 — 202) g — e 2O 2 X 4 311)§X}
+ 2)7 (%171 — ¢%172) wmmé},
(C.2.4e)
1 P 22 a2 2
Z1222 = o) ANgW1 W50, —y (BT — W5) oy -y + W Co) 0|
2
— A3 W1W2S0, — 0y [(BF — W3) Soy—y + W ey 0y (C.2.4f)
+ Me” g [€27 (0f — 203) — €23 }
1 .9 . . . 2 . . .
Z1993 = N2N3v{ — 2o [2030FCa(5y—0y) + Wi +Ws] + 273 20507 (c2(01-00) — 2) + Wy + W]
2

ey |~ iR + (3 - 207) (X + eHbg) — e MM TR x | — )\6w4},

(C.2.4¢g)
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1 A A 2 2 2

Z1931 = W AN W1 W21 — oy [(wl — w2) So—gy T IW Coy— 02]
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+ \e wl[ e W ws—i—e (wg—i—X) (C.2.4h)
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1

A A ~2 2 2
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— oo g2 X 4 302X |
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1 2 2 . .
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