
Master’s Thesis in Marine

Biogeochemistry

Anthropogenic Carbon
in the Nordic seas and Arctic Ocean,

1994 to 2007

Anne Kari Øhman Meisingset

University of Bergen
Geophysical Institute

June 3, 2019





Abstract

The increase of anthropogenic CO2 between 1994 and 2007, ∆Cant, is quantified in the Nordic seas

and Arctic Ocean with the extended multiple linear regression method (eMLR(C*)). To be able

to map the increase in Cant with the eMLR(C*) method in all parts of the Nordic seas and the

Arctic Ocean, climatological distribution for the seven variables; temperature, salinity, alkalinity,

AOU, nitrate, phosphate, and silicate, have been prepared. Anthropogenic carbon concentrations

in the Nordic seas have increased by between 5.0 and 11.1 µmol/kg between 1994 and 2007. The

increase in column inventories of ∆Cant in the Nordic seas were ∼15 - 25 moles/m2, with the largest

increase in the Lofoten Basin. The results for the Nordic Seas agree in general with previous studies.

However, in the Greenland Sea, the increase of Cant is a bit lower than expected. This may be a

result of increasing deep mixing that brings old water masses, with relatively low concentrations of

Cant, to the upper ocean. The Arctic Ocean has the highest estimates of ∆Cant, both for column

inventories and individual water masses. Some parts of the Eurasian Basin have a column inventory

of ∆Cant of ∼30 moles/m2, associated with a very large increase in Cant for some of the water

masses. These high values are likely unrealistic and related to variability in data coverage and water

mass distributions, as well as to deficiencies in the water mass definition schemes themselves.
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Chapter 1

Introduction

Since the beginning of the industrial revolution, CO2 corresponding to ∼640 Gt of CO2 has been

emitted to the atmosphere by fossil fuel combustion, cement production, and land use change. 270

Gt has stayed in the atmosphere, causing the CO2 concentration to rise from 280 ppm in prein-

dustrial times, to 410 ppm in 2018, while the rest has been absorbed by the oceans and terrestrial

biosphere.

The ocean has been the only true net sink of anthropogenic CO2 in the past 200 years, and its

ability to absorb and store CO2 plays an essential role for the Earth’s climate. According to today’s

estimates, the ocean stores between 25 and 30 percent of all anthropogenic CO2 emitted annually

(Le Quéré et al., 2018; Gruber et al., 2018). As anthropogenic CO2 levels rise in the atmosphere, the

ocean will keep storing CO2. Sabine et al. (2004) estimated that by 1994, the ocean had stored 50%

of all CO2 emitted by humans since the industrial revolution, but that the potential is much larger

on longer time scales. One rotation of the conveyor belt takes about 1000 years, and the ocean needs

several rotations to fully equilibrate with the atmospheric. Over a few millennia, about 80% of the

total anthropogenic CO2 can be taken up by the oceans (Sabine et al., 2004). If we let the sys-

tem fully equilibrate with the seafloor sediments, silicate rock weathering, and river input, all of the

anthropogenic CO2 in today’s atmosphere can be stored in the ocean (Sarmiento and Gruber, 2006).

Models show that the ocean’s uptake efficiency likely will decline in the future (Friedlingstein

et al., 2006; Schwinger et al., 2014). Accordingly, the reduction is primarily a result of decreasing

overturning circulation, as the upper ocean gets more stratified because of climate change. The

upper ocean has little storage capacity because of its small volume (Sarmiento et al., 1992). There-

fore, it is the transport from the surface to the deep that is the rate-limiting step for anthropogenic

CO2 uptake in the ocean. By continuously monitoring the ocean sink, we can keep track of how it

changes. This knowledge provides insight on its climate change sensitivity and the redistribution of

emitted CO2 in the global carbon cycle.

Gruber et al. (2018) used the eMLR(C*) method (Clement and Gruber, 2018) to estimate the

global uptake and inventory of anthropogenic CO2 (Cant) from 1994 to 2007. They compared data

from the WOCE/JGOFS era in the 1990s to data from the Repeat Hydrography/GO-SHIP period

in the 2000s, and estimated the change in Cant, ∆Cant, based on a linear regression model. They

estimated an increase in the global ocean inventory of 33±4 Pg carbon between 1994 and 2007.
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CHAPTER 1. INTRODUCTION

Their study showed that the highest uptake was in the North and South Atlantic, while the lowest

was in the the upwelling zones. The total uptake was as expected compared to the atmospheric

increase in this period, and the global distribution matched with the uptake pattern in Sabine et al.

(2004) (see Figure 2.3). However, there are some differences in the Atlantic Ocean, most likely

arising from circulation changes (Gruber et al., 2018). The uptake represents 30±4% of the global

emissions, which is the same percentage as Sabine et al. found in 2004.

Figure 1.1: Global Cant inventory estimated with the eMLR(C*) method. The Arctic Ocean

and Nordic seas are left out (Gruber et al., 2018).

Unfortunately, Gruber et al. (2018) excluded the Nordic Seas and Arctic Ocean from their eMLR(C*)

analysis, as can be seen from Figure 1.1. Instead, they added the results of Olsen et al. (2010) and

Tanhua et al. (2009) to the total uptake. The complexity and poor data coverage in the Nordic seas

and Arctic Ocean make it difficult to implement the eMLR(C*) method since it relies on steady-

state circulation and well-defined climatologies. Neither of these exists in this region. In addition,

Gruber et al. (2018) used isopycnal slabs to separate between the eMLR(C*) equations. The ocean

density is too homogenous in the Arctic Ocean and Nordic seas to use isopycnal slabs for water mass

division. There are also relatively little data from the 90s, especially when considering the great

variability.

While the Arctic Ocean and Nordic seas are small in size compared to the global oceans, they

have great potential for storing Cant due to extensive ventilation. In the Nordic seas, open ocean

convection in the Greenland and Iceland gyre and recirculated Atlantic Water contribute to the

formation of newly ventilated deep water (Brakstad et al., 2019). From the Arctic Ocean, Atlantic

and Intermediate Water, which are both high in Cant (Tanhua et al., 2009), exit through the Fram

Strait and into the Nordic seas. These processes link the Arctic Ocean and Nordic seas to the global

carbon system as the dense water masses rich in Cant flow southward over the Greenland-Scotland

Ridge and enter the North Atlantic (Mauritzen, 1996). This newly ventilated water causes the

deepest intrusion of Cant in the world, resulting in a column inventory change of ∼16 mol C/m2

between 1994 and 2007 in the mid-latitude North Atlantic - twice the global mean storage rate per

year (Gruber et al., 2018).

In this thesis, I will use the eMLR(C*) method in the Nordic seas and the Arctic Ocean to estimate

Cant uptake and storage in the same period of time as Gruber et al. (2018). I will use data from

GLODAPv2 (Olsen et al., 2016), in addition to data from more recent cruises, and address the
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CHAPTER 1. INTRODUCTION

problems mentioned above. This entails overcoming future challenges like making new climatologies

and use water mass definitions from Rudels et al. (2012) instead of isopycnal slabs.
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Chapter 2

Theoretical background

2.1 Seawater CO2-chemistry and anthropogenic carbon

The CO2 chemistry in seawater is governed by the following three equilibrium reactions:

1)

CO2,gas +H2O ⇀↽ H2CO
∗
3 (2.1)

2)

H2CO
∗
3
⇀↽ HCO−

3 +H+ (2.2)

3)

HCO−
3
⇀↽ CO2−

3 +H+ (2.3)

There are in total three different carbon species involved in the equilibria. The concentration of

all of them combined equals the dissolved inorganic carbon (DIC):

DIC = [H2CO
∗
3 ] + [HCO−

3 ] + [CO2−
3 ] (2.4)

When CO2 dissolves, it reacts with the water and forms carbonic acid, but it is difficult to distin-

guish between the two. Therefore, H2CO∗
3 is the sum of dissolved CO2 and carbonic acid, H2CO3.

The distribution of the three species in Equation 2.4 is linked to the pH of the ocean. This depen-

dency can be visualized through a Bjerrum plot (Figure 2.1).

A very special feature of the ocean is that, on average, only one in twenty CO2 molecules react

with water and form carbonic acid according to Equation 2.1. This is because seawater contains

large amounts of carbonate, CO2−
3 , from weathering of volcanic siliceous rocks:

CaSiO3 + CO2 = SiO2 + Ca2+ + CO2−
3 (2.5)

Thus, the most important reaction in the ocean when it comes to uptake of anthropogenic carbon

is the reaction between these carbonate ions and CO2. On average, the oceanic uptake of 19/20

CO2 molecules from the atmosphere follows the following equation (Sarmiento and Gruber, 2006):

CO2 +H2O + CO2−
3

⇀↽ 2HCO−
3 , (2.6)
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Bjerrum plot; relationship between pH and the different inorganic carbon species

(https://en.wikipedia.org/wiki/Revelle factor).

where the strongest base in the ocean, CO2−
3 , reacts with the strongest acid, H2CO∗

3, and forms

bicarbonate, HCO−
3 . In this way, the carbonate ions are buffering the ocean since it neutralizes the

dissolved CO2.

If it were not for the presence of carbonate ions in the ocean, the uptake of CO2 would act as

any other gas, i.e every molecule of absorbed CO2 would have increased the ocean’s back-pressure

accordingly, and the uptake would quickly come to a stop.

2.2 Ocean uptake of anthropogenic CO2

We consider the uptake of natural CO2 and anthropogenic CO2 as two different processes, even

though they are the same molecule. The anthropogenic uptake can be seen as an ”extra” signal of

DIC on top of the natural steady state processes operating in the background ocean.

The uptake of natural CO2 in the surface ocean is dependent on the solubility pump, soft tissue

pump, and carbonate pump, while the uptake of Cant into the surface ocean is strongly dependent

on the Revelle factor (Maier-Reimer and Hasselmann, 1987). The soft tissue pump and carbonate

pump are biological processes, and will not change when extra CO2 is added to the ocean. Biology

is limited by nutrients, light, and vertical mixing, not by the concentration of CO2 (Sarmiento and

Gruber, 2006). Therefore, Cant can be treated as a passive tracer moving with the ocean circulation.

Natural DIC will, on the other hand, increase due to remineralization of organic matter after the

water has left the surface. This is why DIC increases in old deep water masses.

Essentially, the Revelle factor determines the Cant solubility in the surface ocean. The Revelle

factor quantifies the ocean’s ability to buffer uptake of CO2 as the atmospheric content increases,

with values that typically range between 8 and 13. A low Revelle factor is proportional to a large

buffer capacity, while a high factor means that the buffer capacity is low and the ocean is more

sensitive to an increase of CO2. In this case, less than 19/20 of CO2 molecules will react with

carbonate and form bicarbonate (Equation 2.6), and more CO2 will remain as such and increase
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the ocean’s CO2 back-pressure to the atmosphere. I.e., when the concentration of dissolved CO2

increases, the partial pressure difference between the atmosphere and the ocean decreases, and the

uptake potential of Cant reduces. On the other hand, high buffer capacity is proportional to a

smaller change in the dissolved CO2 concentration, since there are better availability of carbonate

ions. More than 19/20 of the molecules react with carbonate in these areas. In general, the same

increase in CO2 will lead to a larger change in pH in an area with low buffer capacity compared to

an area with high buffer capacity. The availability of carbonate ions is the most important factor

(see Equation 2.8 and 2.9).

The Revelle factor is defined as the instantaneous change in pCO2 over the instantaneous change

in DIC:

Rf =
∆pCO2/pCO2

∆DIC/DIC
, (2.7)

where ∆pCO2 is the change in pCO2. pCO2 and DIC are the mean values in the water mass. The

Revelle factor can also be approximated as:

Rf ≈ 2 ·DIC − 3 ·Alk
((Alk/DIC)− 2) · (Alk −DIC)

, (2.8)

and carbonate can be approximated as the difference between total alkalinity (Alk) and DIC

(Sarmiento and Gruber, 2006):

[CO2−
3 ] ≈ Alk −DIC (2.9)

As seen from Equation 2.8, the Revelle factor is dependent on the relationship between DIC and Alk.

Similarly, the concentration of carbonate, which regulates the buffer capacity, can be approximated

as the surplus of Alk over DIC (Equation 2.9). If DIC increases, the Revelle factor increases, and

the buffer capacity decreases. If the alkalinity increases, consequently the Revelle factor decreases,

and the buffer capacity increases. In other words, the greater the ratio [Alk]/[DIC], the more Cant

can be taken up at the surface as the surplus of CO2−
3 is larger. Figure 2.1 illustrates how an in-

crease in the concentration of dissolved CO2 reduces the pH and buffer capacity since the carbonate

concentration decreases.

Figures 2.2 illustrates the geographical distribution of the Revelle factor. High values are typically

found in high latitude waters; these areas have a low buffer capacity and low Cant solubility. This

is a bit surprising since CO2 is more soluble in cold water than in warm. However, Cant solubility

is only dependent on the DIC/Alk ratio. Cold water holds more DIC and dissolved CO2 than warm

water, and the carbonate ions have been used by the the absorption of this DIC. This results in a

high DIC/Alk ratio and a low buffer capacity. There are differences between the North Pacific and

North Atlantic even though they are at the same latitude. Upwelling in the North Pacific brings

up water with relatively high nutrient and DIC concentration. The biology is not able to utilize all

the available macronutrients in these areas, resulting in a higher DIC/Alk ratio than in the North

Atlantic. This is also the case for the Southern Ocean, where the lowest values are found in the

warm, stable, subtropical areas. Here, the waters are warm and biological production has used most

of the macronutrients in the surface layer, including DIC, leading to a low DIC/Alk ratio (Egleston

et al., 2010).

Figure 1.1 and 2.3 show the Cant column inventory. Comparing Figure 2.2 with the inventory, it

is clear that the Revelle factor in the surface layer and the column inventory of Cant do not match.

6
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Figure 2.2: Geographical distribution of the Revelle factor averaged for the upper 50 meters,

inversely proportional to the uptake potential of CO2 at the surface. (Sabine et al., 2004)

Figure 2.3: Geographical distribution of the column inventory of Cant in 2004 (Sabine et al.,

2004).

When the amount of CO2 increases in the atmosphere, the ocean will absorb CO2 until the air and

surface ocean reach a new state of equilibrium. This uptake is governed by the Revelle factor. If the

surface ocean was motionless, a new equilibrium state would be reached after one year. After that,

surface water needs to be replaced to continue absorbing CO2. In some parts of the Nordic seas

and the Arctic Ocean, this replacement happens very efficiently because of the intense ventilation in

these regions. Even if the Revelle factor is high here, the vertical transport of water brings Cant deep

into the interior. In contrast, the North Pacific lacks ventilation, leading to low column inventories.

The northern parts of the Southern Ocean have a relativity large inventory due to the ventilation

of the Antarctic Mode Water and the Antarctic Intermediate Water.

7
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2.3 The Arctic Ocean and Nordic seas

Figure 2.4: Main circulation pattern in subsurface and intermediate layers, from Rudels et al.

(2012). Circles with crosses are areas with possible deep convection.

The Arctic Ocean and Nordic seas consist of several deep basins that are connected through the

Fram Strait and the Barents Sea. In the Arctic Ocean, there are two large basins separated by the

Lomonosov Ridge; the Eurasian Basin (EB) and the Canadian Basin (CB). They are ∼5500 and

∼4000 meters at their deepest. In addition to the connection with the Nordic seas, there are two

more gateways to the world oceans; the Bering Strait and the Canadian Archipelago.

The Nordic seas consists of the relatively deep Norwegian Basin, the Lofoten Basin, and the Green-

land basin, in addition to the shallower Iceland Sea. The deep basins reach depths of almost 4000

meters. The Nordic seas are separated from the North Atlantic in the south by the Greenland-

Scotland Ridge (GSR). The deepest part of the GSR is the Faroe Bank Channel at ∼850 meters.

Here, and through the Denmark Strait, relatively deep and dense water exits and enters the Atlantic

Ocean, while the deepest and densest water is trapped inside the basins.

The Nordic seas are dominated by inflowing Atlantic Water in the east, and outflowing Polar

Water in the west, shown by the red and pink arrows in Figure 2.4. Polar Water and Atlantic Water

mix in the middle of the Nordic seas and create Arctic Surface Water. These three water masses

represent the upper layers of the Nordic seas. The intermediate layer forms when Arctic Surface

Water sinks and becomes Arctic Intermediate Water. The deep water in the Nordic seas is formed

locally through deep mixing in the Greenland Basin, among other places, and through advection

from the Arctic Ocean via the Fram Straight (Bluhm et al., 2015).
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Figure 2.5: Main Arctic Ocean water masses. Pacific Water (PW) and halocline (HC) make

up the halocline described in the text. SW = Surface Water, AW = Atlantic Water, and DW =

Deep Water. From Bluhm et al. (2015). The basin to the right is the Greenland Basin with a

tube representing bottom water formation. The figure is somewhat outdated, since there have

not been bottom water formation in the Greenland Sea since the early 80’s.

The Arctic Ocean consists of four main layers: the Surface Water, the halocline, the Atlantic

Water, and the Deep Water. The surface water consists of Atlantic and Pacific origin water, river

input, sea ice melt, and precipitation (Yamamoto-Kawai et al., 2009). The halocline is mainly made

up of shelf water (Bluhm et al., 2015), and consist of modified water originating from both the

Atlantic and the Pacific. The Atlantic layer consists of the warm and high salinity modified Atlantic

water. The deep water is partly formed locally by brine rejection on the shelves and partly from

deep waters that flow in from the Norwegian Sea. The deepest water in the CB is about 450 years

old, while the deepest water in the Eurasian Basin is about 250 (Bluhm et al., 2015).

In the Arctic Ocean, the circulation broadly follows the topographic features in a cyclonic manner.

Atlantic water flows through the Nordic seas and enters the Arctic Ocean through the Fram Strait

and the Barents Sea. The Fram Strait branch flows into the EB where it gets covered by freshwater

and ice, north of Svalbard. The Barents Sea branch cools and sinks down the St. Anna Trough, as

shown by the purple arrow in Figure 2.4. These two branches are of similar size and meet in the

EB north of Kara Sea (Rudels et al., 2012). From here, they circulate cyclonically before exiting

through the Fram Strait (Mauritzen, 1996). This is the only place where deep water exchange in or

out from the Arctic Ocean happens. Apart from this exchange, the deep water is trapped inside the

basins. The surface circulation (not illustrated in 2.4) consists mainly of shallow inflow from the

Pacific Ocean and riverine input. Most of the surface water exits along the east coast of Greenland

via the East Greenland Current, while some of it exits through the Canadian Archipelago (Rudels

et al., 2012).

The ventilation of the Arctic Ocean happens through inflowing Atlantic Water and brine rejection.

The Atlantic Water has been in contact with the atmosphere for many years before it enters the

Arctic Ocean where it subducts and circulates under the surface layer. This input leads to a

substantial renewal of subsurface and intermediate water. When it comes to brine, it is produced

during winter when seawater freezes and rejects high salinity water to the underlying ocean. The

main production areas are on the shelves. The brine plumes typically sink down the continental

slope and spread into the basins. However, their ventilation properties are not well described in

9
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literature.
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Chapter 3

Data and Methods

3.1 Data

The data used in this theses are divided into two parts: data for making the eMLR(C*) equations,

and data for making the climatologies. To make the eMLR(C*) equations, every sample has to

contain eight variables. That is temperature, salinity, total alkalinity, apparent oxygen utilization

(AOU), nitrate, phosphate, silicate, and total carbon. This is not necessary for the climatologies,

since they are made independently for each variable.

3.1.1 Data for the eMLR(C*) equations

The data used to produce the eMLR(C*) equations are mainly from the GLODAP version 2

data product (Olsen et al., 2016). In addition, I added data from five more recent cruises from

the Arctic Ocean. These are:

* R/V Polarstern, cruise: TransArc, 2011, Central Arctic (Anderson et al., 2011)

* R/V Polarstern, cruise: TransArc II, 2015, Arctic Ocean - Eurasian Basin (Jones and Ulfsbo,

2017)

* R/V Helmer Hansen, cruise: EXPOCODE: 58HJ20120807, 2012, Arctic Ocean - north of

Svalbard

* R/V Oden, cruise: LOMROG, 2007, Lomonosov Ridge of Greenland (Polarforskningssekre-

tariatet, 2017)

* HEALY, cruise: HLY1502, 2015, Arctic Ocean - Canadian Basin

https://cchdo.ucsd.edu/cruise/33HQ20150809

Before creating the final data set from which I make the eMLR(C*) equations, the data were

subjected to quality control and further and processing.

Data processing:

* Remove outliers, NaNs, and bad quality data.

* Calculate potential temperature with the ”seawater” package for all samples missing it.

11
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* Calculate AOU for the added cruises with the equations from Garcia and Gordon (1992). This

is how AOU is computed in GLODAP version 2 as well.

* Calculate potential density with the seawater package.

* Calculate total alkalinity with CO2SYS whenever both DIC and pH were available, and mea-

sured Alk not.

* Remove all samples that does not contain all eight variables mentioned above.

* Convert nutrient data to µmol/kg.

3.1.2 Data for the climatologies

In addition to the data used to make the eMLR(C*) equations, I added salinity and temperature

data from the UDASH database (Behrendt et al., 2018) and nutrient data from the North Atlantic

and Nordic Seas hydrography collection (NANSHY) .

Data processing:

* Remove all data below 55 degrees latitude.

* Remove data from the Pacific Ocean, Labrador Sea, and the coast of Norway.

* Remove winter data (October - April) from the upper 200 meters to avoid and exclude the

seasonal changes caused by the winter mixed layer.

* Remove outliers, NaNs, and bad quality data.

* Convert nutrient data to µmol/kg.

3.2 Methods

To find the change of Cant in the Arctic Ocean and Nordic seas t1 = 1994 and t2 = 2007, I use

the eMLR(C*) method described by Clement and Gruber (2018). This is an improvement and

combination of previous methods, namely the eMLR method of Friis et al. (2005), the C* approach

of Gruber et al. (1996), and the transient steady state (TSS) method of Tanhua et al. (2007). The

uncertainty in the eMLR(C*) method is reduced compared to the eMLR method of Friis et al.

(2005), as I will explain later.

The change in DIC at one particular place in the ocean from t1 to t2, ∆DIC(t2 - t1), is the result of

many different processes, both natural and anthropogenic. In addition to the processes described in

Chapter 2, circulation and mixing can also change the DIC content. Therefore, since ∆DIC(t2 - t1)

is a result of more than just the anthropogenic signal, we need an indirect method like eMLR(C*)

to separate changes in Cant from natural variations in DIC.

Wallace (1995) was the first trying to overcome the challenge of separating Cant from natural

CO2 over a time period, ∆Cant(t2 - t1), by using a multi linear regression method (MLR). The

principle is then, that the bias in the estimated DIC for t2, reflects changes in Cant. He created

a multiple linear regression equation for t1 to predict the carbon in t2. The MLR equation for
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t1 relates DIC to hydrographic and biogeochemical variables, like temperature, salinity, alkalinity,

AOU, and nutrients:

DIC = a ·X1 + b ·X2 + c ·X3...etc, (3.1)

These variables are able to describe the distribution of DIC in the water column since they re-

flect the processes that governs the DIC distribution; temperature affects DIC through solubility;

salinity through its definition (salinity contains both bicarbonate and carbonate); alkalinity through

the Revelle factor; and nutrients and AOU through the biological production/remineralization of

organic matter, which affect DIC through the stoichiometry. AOU is the ”apparent oxygen utiliza-

tion”, defined as O2,sat - O2,obs. O2,sat is the saturation concentration of oxygen in a water parcel,

while O2,obs is the measured oxygen. Oxygen is used in remineralization, such that AOU increases

with time after a water parcel leaves the surface.

When an MLR equation like Equation 3.1 is established for t1, it is used on a data set from t2.

The predicted DIC, calculated from Equation 3.1, is subtracted from the observed DIC at t2, and

the difference interpreted as the change in Cant from t1 to t2. Any natural change in DIC will be

described by Equation 3.1 and accounted for. The difference between observed DIC and predicted

DIC is reflecting the anthropogenic change alone as long as these assumptions are met:

1) The DIC value anywhere in a specific water mass can be described by a multi linear equation

that relates DIC (response variable) to other hydrographic and biogeochemical properties (predictor

variables).

2) The underlying natural correlation between DIC and predictor variables does not change during

the time period t1 to t2.

3) The Cant change is not affecting any of the predictor variables, and is only a result of the in-

creasing CO2 levels in the atmosphere.

4) Circulation and mixing are invariant between t1 and t2.

This also implies that if the correlation between DIC and the predictors variables change in time,

it will result in errors in the estimated Cant. A spatial change in correlation is less serious, since it

will be eliminated by the MLR equations and not affect the change in C2 between t1 and t2.

Based on the MLR method, Friis et al. (2005) created the ”extended MLR method” (eMLR), an

improvement of the earlier method as it has less error in the Cant estimates. Friis et al. (2005)

use two MLR equations, one for t1 and one for t2. The coefficients of the predictor variables in

equation 1 are subtracted from those of equation 2, resulting in one single equation that estimates

anthropogenic CO2 uptake between t1 and t2 (Equation 3.2 - 3.4). The eMLR method is based on

the same assumptions as the MLR method.

Reference year 1:

DIC(tref1 ) = a1 + b1 · V1(t1) + c1 · V2(t1) + ...+ z1 · Vk(t1) +Residuals(t1), (3.2)

Reference year 2:

DIC(tref2 ) = a2 + b2 · V1(t2) + c2 · V2(t2) + ...+ z2 · Vk(t2) +Residuals(t2), (3.3)
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Combined:

∆CeMLR
ant (tref2 −tref1 ) = (a2−a1)+(b2−b1) ·V1+(c2−c1) ·V2+ ...+(z2−z1) ·Vk+(Res(t2)−Res(t1)),

(3.4)

where a, b, c, and z are the regression coefficients, V1, V2, Vk are the predictor variables, and the

subscripts 1 and 2 are the two years that are compared.

If the coefficients do not change, the resulting equation thet express the increase of Cant from t1

to t2 (Equation 3.4) equals zero. In that case, if there is a change in observed DIC from t1 to t2 it

means that this change is a result of natural variation, which the eMLR equation accounts for. If

the resulting equation does not equal zero, DIC has changed compared to the other variables due

to Cant uptake.

The data sets from t1 and t2 have to originate from the same area or water mass, otherwise re-

gional natural processes can cause errors in the Cant estimates. Either the first or the second data

set can be used as input when Equation 3.4 is used to determine Cant increase, but it is preferable

to use the one with the highest quality data. Equation 3.4 estimates Cant at the location for the

input data. A problem with this method is that there are rather few places where there have been

repeated cruises with measurements for all the necessary variables. This makes the method unsuited

for a large portion of the global ocean.

Clement and Gruber (2018) improved the eMLR method in the following ways:

1) Instead of DIC, they use DIC corrected for biological processes, C*, as the response variable (Sec-

tion 3.2.1). The oceanic variability is less for C* than for DIC, which means a regression analysis

with C* as the response variable instead of DIC will tend to have smaller uncertainties. Also, ∆C∗

resembles the pattern of ∆Cant more than ∆DIC, which also make approach less prone to errors.

2) They used the TSS assumption to normalise data from two periods/eras to two reference years,

which increases the availability of data for t1 and t2. (Section 3.2.2).

3) Instead of only using one eMLR-equation for each region, Clement and Gruber (2018) used the

results of ten equations to generate more robust Cant estimates (Section 3.2.3).

This approach is called the eMLR(C*) method. I will explain this in the next sections.

3.2.1 C*

The DIC concentration in a water mass is, as mentioned, determined by many different processes,

both natural and anthropogenic. If we assume that stoichiometric ratios are constant, we can take

advantage of what we know about natural biological processes and remove their impact on the DIC

distribution by making a new variable, C*, as described in Gruber and Sarmiento (2002).

When marine organic matter is remineralized, carbon in its inorganic form is added to the

ocean. Other nutrients, like nitrate and phosphate, are added at the same time, in a ratio that

is equal to the ratio in the organic matter. Redfield et al. (1963) found this relationship to be

carbon:nitrate:phosphate = 106:16:1, broadly valid for the global ocean. In other words, the oceans’

stoichiometry, or the Redfield ratio, is a result of remineralized organic matter. We can use the Red-

field ratio together with phosphate, PO4, to correct the DIC for carbon added by remineralization
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of organic matter in the water column:

C∗ = DIC − rc:p · PO4 − 0.5 · (Alk + rn:p · PO4). (3.5)

rc:p and rn:p are the stoichiometric ratios between carbon, phosphate, and nitrate. If these sto-

ichiometric ratios are correct and constant, C* removes the carbon originating from both steady

and non steady state biological processes. What is left is a result of natural air-sea gas exchange

and anthropogenic CO2 uptake. However, the stoichiometric ratios are not constant throughout the

world ocean (e.g., Martiny et al., 2013). They vary on both time and space. Therefore, here I use

the ratios determined for the North Atlantic by Körtzinger et al. (2001), with mean values for rc:p

and rn:p of 126 and 17.5, respectively.

The last term on the right side of Equation 3.5 corrects for the dissolution of CaCO3 shells and

skeletons of marine calcifying organisms. This releases CO2−
3 ions into the water, which will lead

to an increase in Alk. The effect on DIC is 0.5 times the effect on Alk as carbonate ions contribute

twice to Alk:

Alk ≈ [HCO−
3 ] + 2[CO2−

3 ] (3.6)

but only once to DIC (see Equation 2.4). The term rn:p · PO4 corrects the Alk for the addition of

protons during the remineralization of organic matter.

Now, C* is a tracer with conservative properties and has no biological sources or sinks in the

ocean. Variations in C* are a result of air-sea gas exchange only (Gruber et al., 1999). Therefore,

we can use C* together with the TSS-assuption and adjust all C* data to either one of the reference

years.

3.2.2 Overcoming the problem of poor data coverage

One big challenge with the eMLR(C*) method is to have enough data from a region for at least

two reference years in order to be able to construct statistically significant regression equations.

There have been two global survey programs that have produced large carbon data sets; the

WOCE/JGOFS (1990 - 1998) (W.R.Wallace, 2001; Key et al., 2004) and the CLIVAR/GO-SHIP

program (2000 - precent) (Talley et al., 2016). Although these programs are extensive, the data sets

have gaps in both time and space. The lack of data coverage is especially problematic in the Arctic

Ocean and Nordic seas, where there are very few cruises from 1994 and 2007.

Further, for the eMLR it is necessary that the two time-separated data sets are from the same

place. As an example, Ulfsbo et al. (2018) used repeated sections from 1996 to 2015 in order to esti-

mate anthropogenic uptake for a few specific cross sections in the Arctic Ocean. With the improved

method of Clement and Gruber (2018), we can use all the data available in the Arctic Ocean and

Nordic seas, instead of being limited to the few repeated sections, as was the case earlier.

Firstly, climatological distributions can be used as input variables in equation 3.4. With clima-

tologies as input, the eMLR(C*) equations can define entire water masses and produce estimates

of ∆Cant in 3D, as long as the change in each variable from t1 to t2 is small compared to their
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climatological value.

Secondly, the TSS assumption enables the normalisation of data to a single year, i.e. all data from

two eras (here 1991 to 2000, and 2001 to 2015) can be collapsed to a single reference year (here 1994

and 2007). This means that any data collected in the two eras can be used to define the eMLR(C*)

equation for one of the reference years. The TSS concept states that if a tracer had an exponential

growth rate over a period significantly longer than the ”adjustment time” of the tracer, the tracer

has reached a transient steady state (Tanhua et al., 2007). The adjustment time is the time it

takes for the contribution of tracer’s initial conditions to become negligible in the water column.

When this happens, the shape of the tracer profile in the water column no longer changes. Since

anthropogenic carbon meet the criteria, we can apply the transient steady state on C*, assuming

there are constant mixing and circulation in the ocean over time. This means that the change in

C* between two years, tx and ty, anywhere in the water column are linearly related to the amount

of C* at time tx, with a proportionality factor determined by the relative change in atmospheric

CO2 between tx and ty. The TSS framework therefore allows us to adjust all C* data to a given

reference year, as done by Clement and Gruber (2018):

C∗(tref ) = C∗(t)− β(t) · Cant(t
ref ), (3.7)

where β(t) = pCOatm
2 (t) - pCOatm

2 (t)ref / pCOatm
2 (t)ref - pCOatm

2 (t)pi, is the factor given by

the change in atmospheric CO2. (t)ref is the reference year, (t)pi is the preindustrial time with a

ppm of 280, and t is the year the data sample was taken (Tanhua et al., 2007; Clement and Gruber,

2018). Cant(t
ref ) is the total Cant content in the water mass for the reference years. These values

have to be taken from previous estimates, but there are no estimates of Cant from 1994 and 2007

in the Nordic seas and Arctic Ocean. Therefore, these were generated by adjusting the existing

estimates for 2002 (Nordic seas) and 2005 (Arctic Ocean) (Olsen et al., 2010; Tanhua et al., 2009).

This adjustment is also carried out using the TSS framework, such that::

Cant(t2) = Cant(t1) + α · Cant(t1), (3.8)

where t2 is either one of the reference years (1994 or 2007) and t1 is 2002 (Nordic Seas, gridded

Cant estimates from Olsen et al. (2010)) or 2005 (Arctic Ocean, gridded Cant estimates from Tanhua

et al. (2009)).

α was calculated from the change in atmospheric CO2, the buffer factor, and the disequilibrium

factor. Gruber et al. (2018) calculated α to be ∼0.26 for the high latitudes between 1994 and 2007.

Since I scaled from 2002 and 2005, and not from 1994 to 2007, I calculated new α values. The term

with atmospheric CO2 has the biggest effect on α, and the disequilibrium and buffer factor terms are

difficult to calculate for the study area. Therefore, I only adjusted the term with atmospheric CO2.

I ended up with four new values for α: 0.034 and -0.18 to scale Cant from 2005 to 2007 and 1994,

and 0.096 and -0.133 for 2002. I also tried other values between -1 and 1 to check the sensitivity of

α, but there were actually no visible changes in the plotted ∆Cant results.

When C* is adjusted to the reference years, all the data from the Arctic Ocean and Nordic seas can

be used, and not just the data from 1994 and 2007. The data from 1991 to 2000 was normalized to

1994, and the data from 2001 to 2015 was normalized to 2007. Ideally, the reference year should lie in
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the middle of the intervals, but I chose this division based on the spatial cruise distribution. This di-

vision offered the best geographical coverage of cruise data for both reference years. Now, eMLR(C*)

equations for each reference year can be computed and used together with the predictor variable

climatologies to estimate the change in Cant, ∆CeMLR
ant , for the entire Nordic Seas and Arctic Ocean.

Reference year 1:

C∗(tref1 ) = a1 + b1 · V1(t1) + c1 · V2(t1) + ...+ z1 · Vk(t1) +Residuals(t1), (3.9)

Reference year 2:

C∗(tref2 ) = a2 + b2 · V1(t2) + c2 · V2(t2) + ...+ z2 · Vk(t2) +Residuals(t2), (3.10)

Combined:

∆C
eMLR(C∗)
ant (tref2 −t

ref
1 ) = (a2−a1)+(b2−b1)·V clim

1 +(c2−c1)·V clim
2 +...+(z2−z1)·V clim

k +(R(t2)−R(t1))

(3.11)

3.2.3 Selecting predictor variables

It is not possible to define a universal MLR because of differences in preformed values of both DIC

and the various potential predictors. There are also different importance of various processes and

possibly regional and seasonal variations in the Redfield ratios. Hence, no global MLR equation can

be defined and the MLRs are usually determined for specific regions (Carter et al. (2017)), water

masses (Ulfsbo et al. (2018)) or depth/density layers (Gruber et al. (2018)). This applies in terms

of which predictor variables to use, and in terms of the actual statistical coefficients.

For the best possible fit, the predictor variables should be independent of each other and the relation-

ship between response and predictor variable linear. Friis et al. (2005) used potential temperature,

salinity, and silicate as predictor variables, and let the forth variable vary between phosphate, AOU,

and nitrate. I will do as Clement and Gruber (2018) and use a purely statistical routine to find the

best predictor variables. DIC adjusted for biological processes, C*, is used as the response variable,

and nitrate, phosphate, silicate, alkalinity, AOU, temperature, and salinity as possible predictor

variables. Then, all combinations of variables are tested and the final equations selected based on

the statistical robustness of the fit, as expressed by the ”root-mean-square-error” (RMSE) of the

various regressions.

In this thesis, the Nordic seas and Arctic Ocean were divided into water masses (see Section 3.6).

In each water mass, 112 MLRs were generated by using every possible combination with a minimum

of 2, and a maximum of 5 predictor variables. I used the MATLAB function robustfit to generate

the MLRs. From the 112 different MLR-equations, I selected the ten best based on the average

RMSE values for t1 and t2. Accordingly, there are now ten equations for t1 and ten equations for t2,

equivalent to equation 3.9 and 3.10. The coefficients of each pair were subtracted from each other to

create ten estimator equations, such as equation 3.11. Then, the mean result of all ten eMLR(C*)

equations were used as the final estimate of ∆Cant, see Figure 3.1.
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Figure 3.1: The work flow of estimating ∆Cant with the eMLR(C*) method, from Clement

and Gruber (2018).

3.2.4 Division between water masses and regions

In order to create robust eMLR(C*) equations, water masses with different properties have to be

separated from each other. I used the water mass definitions of Rudels et al. (2012) for the Nordic

seas and Arctic Ocean, and created individual eMLR(C*) equations for nine different water masses

(see Table 3.1). The upper 100 meters and shelf regions are excluded in order to avoid unduly in-

fluence of processes such as river run off, sea ice melt, brine rejection, and seasonal changes. Figure

3.2 shows which regions are included.

Figure 3.2: Borders around the Canadian Basin, Eurasian Basin, and Nordic seas used to

separate the shelf data from the basins. The borders between the Arctic Ocean (including EB

and CB) and the Nordic seas were to separate the regions from each other in the eMLR(C*)

equations. EB and CB are separated to define uPDW EB and uPDW CB independently.
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Water mass Comments Area restrictions

PW1 As in Rudels et al., 2012 AO

PW2 –——– AO

AAW –——– AO

DAAW –——– AO

uPDW EB –——– EB

uPDW CB –——– CB

AW removed lower density restriction none

DAW lower density restriction modified NS

AIW removed lower density restriction NS

Table 3.1: The nine different water masses used in this thesis. Some of them had to be

modified to include all regions in the climatologies. The modifications and area restrictions are

listed under comments. The Atlantic Water is restricted to the Nordic seas when I made the

eMLR(C*) equations, but it has no area restrictions in the climatologies. AO = Arctic Ocean,

NS = Nordic seas.

Clement and Gruber (2018) divided the water masses into isopycnal slabs, and created individual

equations for each slab. The assumption is that every slab has similar properties since mixing and

ventilation generally happen along isopycnals in the ocean. The density gradients in the Nordic

seas and Arctic Ocean are very small, and the density classes used by Clement and Gruber (2018)

would therefore include many different water masses if they were used in this region. Ulfsbo et al.

(2018) tested the option of using isopycnal slabs, but got unrealistically high ∆Cant values in the

deep waters. The deep water of the Eurasian and Canadian basin are between 250 and 450 years

old, and it is therefore unlikely that they have high levels of Cant.

I used the water mass definitions of (Rudels et al., 2012) instead of isopycnal slabs since they

also include potential temperature, Θ, and salt restrictions. The potential temperature and salt

restrictions separate water masses with the same density from each other (see Figure 3.3).

In addition, I used the water mass definitions on the GeoCap climatologies, but some of the def-

initions had to be modified in order to include all regions in the climatologies. Large areas in the

Nordic seas are left blank, especially in the upper 300 meters. Here, the climatologies have places

where the density is lighter than 1027.97 at the same time as temperature is below zero. This does

not match with either AW or DAW as defined by Rudels et al. (2012). I chose to modify the defi-

nitions of AW and DAW to include all empty regions. I also removed the lower density restriction

on AIW to include blank regions of water with potential temperature below 0 and potential density

below 27.97.

There were three water masses from (Rudels et al., 2012) I could not identify in neither the data or

in the climatologies: Canadian Basin Deep Water (CBDW), Eurasian Basin Deep Water (EBDW),

and Nordic sea Deep Water (NDW). When I got the first results, the uPDW covered the entire Arc-

tic Ocean below 1000 meters. The Cant below 2000 meters in both basins were suspiciously high,

reaching 12 µmol/kg at some places. According to Tanhua et al. (2009) and Ulfsbo et al. (2018),

there should not be any Cant at these depths. Since CBDW and EBDW have different properties, I
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Figure 3.3: ΘS plots from a) the Arctic Ocean and Nordic seas water masses, b) the Arctic

Ocean water masses. The Red line represents the Fram Strait (West Spitsbergen Current); or-

ange - Nansen Basin (Fram Strait branch), purple - Nansen Basin interior, light blue - Amundsen

Basin, black - Makarov Basin, blue - Canadian Basin, and green - the Greenland Sea (Rudels

et al., 2012).

divided uPDW into two parts; uPDW CB for the Canadian Basin and uPDW EB for the Eurasian

Basin. Ideally, the deep water should be separated from uPDW, but there is no apparent way of

doing this. I tried separating at different depths between 1500 and 2500 meters, since this is where

the literature states that the deep water begins (Bluhm et al., 2015, Rudels et al., 2012), but they

all resulted in high increase of Cant at the bottom. By dividing only into uPDW CB and uPDW

EB, I got rid of the high uptake in the deepest parts of CB, but the Cant increase estimated for

the deepest part of the EB still seems unrealistically high (see Section 4.3). For future studies there

should be a way to identify CBDW and EBDW since that would potentially lead to more precise

results. I did not compensate for the lack of NDW since the uptake looks reasonable at all depths

in the Nordic seas (see Chapter 4).

3.3 Making climatologies with GeoCap

GeoCap is a software originally used to model geological structures. It has many similarities with

Matlab since it can run scripts and do mathematical calculations. In addition, it is built on top of a

3D system, and is therefore a great visualization tool. To create the climatologies, I used a plug-in

to GeoCap developed by ModelGeo AS, originally meant for petroleum geology. ModelGeo helped

me adjust it for oceanographic use.

See https://www.geocap.no/products-and-services/geocap-desktop?originId=3689

and https://geocap.atlassian.net/wiki/spaces/ug/pages/7372985/Geocap+Main

Originally, I planned to use the climatologies from GLODAP version 2 (Lauvset et al., 2016) and

World Ocean Atlas (WOA) (https://www.nodc.noaa.gov/OC5/woa18/woa18data.html). Unfortu-

nately, the GLODAP climatologies contains many blanked out grid cells because of unacceptable

uncertainty of the mapped values. This is especially a problem in the Eurasian and Canadian Basin.
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WOA contains blanked out grid cells for temperature and salinity, and do not have grids below 500

meters. In my studies, I needed mapped climatologies for all depths since I wanted to calculate

the column inventories of ∆Cant. Since more data have become available after the GLODAP and

WOA climatologies were made, I can make new climatologies for all the variables I need in this thesis.

I used GeoCap to create climatologies of every variable needed as input in the eMLR(C*) equations.

These variables are temperature, salinity, alkalinity, AOU, nitrate, phosphate, and silicate. In

addition, I prepared climatologies of potential temperature and density. These climatologies are

needed to identify the regions and depths where to apply the various eMLR(C*) equations, as these

were developed on a water mass basis, as described above.

3.3.1 Gridding routine

GeoCap makes regular 3D-cubes with fixed distances in the x, y, and z direction of observed irreg-

ular input data, and lets you choose between different types of gridding and smoothing. For the

climatologies in this theses, a single grid cell is 20.000 * 20.000 meters. In the vertical, I created

a layer for every 10 meters. The observations are first linearly interpolated to every layer in the

vertical direction. The closest observation above and below a layer is used for the interpolation.

Then, all the grids are modelled independently. I used what is called ”parabolic interpolation” for

every grid, and medium to low smoothing. GeoCap grids horizontally on each layer and extrapolates

to the borders. I chose to not let it extrapolate vertically. After each layer is modelled, the cube is

cut against topography.

Next, the surfaces were interpolated to 33 standard depths similar to GLODAPv2 and WOA and

exported to MATLAB. Since my goal is to determine the increase in column inventory of anthro-

pogenic CO2, it is important that the interpolated layers represent a typical value. Therefore, I used

the vertical mean values of every interval when I made the 33 layers. Each interval lies symmetrically

around each layer.

There is very little alkalinity data for the Arctic Ocean and Nordic seas, which resulted in an

unrealistic looking alkalinity climatology at first try. Each grid had circular features - ”bulls eyes”,

around the location of the original observations since GeoCap could not identify a clear pattern in

the data. Alkalinity is important for the ∆Cant results since it is included in most of the eMLR(C*)

equations, as seen from Table 4.1. Therefore, in order to make a better alkalinity climatology, I

correlated the observed alkalinity data with the collocated values extracted from the salinity clima-

tology and used the relationship to make a new alkalinity climatology based on the existing salinity

climatology. The linear regressions were made for three different water masses:

1) Atlantic Water; T > 0, S > 34.92, after Walczowski (2013).

2) Deep water: S > 32 & S < 34.92.

3) Surface water: S < 32.

All data above 100 meters were excluded from the regression. The Atlantic Water definition in-

cludes Atlantic origin water in both the Arctic Ocean and Nordic seas. The R2 statistics of the

three correlations are 0.54, 0.45, and 0.57 for the three water masses.
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Specifically, the mapped climatologies for salinity and temperature were used to define the distri-

bution of the three water masses. Then, each regression equation was used on the different water

masses in the salinity climatology, to generate the alkalinity climatology. To make the mapped

alkalinity climatology more accurate, the residuals from the regression analysis were used to adjust

it. This is done by making a new climatology from the residuals and simply add it to the alkalinity.

Generally, there are two ways of making the residual cube; 1) let each residual influence a distance

around it defined by a fixed radius, or 2) let GeoCap find isolines through in the residual data and

map each surface in the climatology based on this. To decide which gridding method to use, the

residuals were analysed in a variogram. A variogram describes the spacial interdependency of the

data. If the difference in residuals are constant after they reach a certain distance, they are said to

be stationary. If the difference between the residuals increases the further away they are from each

other, they are non-stationary. In this case, the residuals are non-stationary, and therefore the best

choice was to map them with method number 2.
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Results

4.1 GeoCap climatologies

Figure 4.1 to 4.7 show the GeoCap climatologies for all variables at 125 meters. We can clearly see

how the warm, saline, Atlantic Water flows northward through the Nordic seas and into the Arctic

Ocean. The nutrient rich upper halocline in the Canadian Basin (Rudels et al., 2012), is also clearly

present, with very high values of silicate, phosphate and AOU, for instance.

Figure 4.1: Temperature at 125 meters. Figure 4.2: Salinity at 125 meters.
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Figure 4.3: Silicate at 125 meters. Figure 4.4: Phosphate at 125 meters.

Figure 4.5: Nitrate at 125 meters. Figure 4.6: Alkalinity at 125 meters.

Figure 4.7: AOU at 125 meters.
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4.2 eMLR(C*) equations and predicted C*

Water mass Number of times variables were used in the 10 best equations

S T AOU TAlk NO−
3 PO3−

4 SiO2

PW1 6 7 8 6 4 10 7

PW2 2 6 8 7 7 6 10

AAW 4 5 4 10 8 10 6

DAAW 3 10 4 10 4 10 3

uPDW EB 7 4 7 10 1 10 4

uPDW CB 9 4 10 8 4 4 7

AW 5 10 6 8 4 10 3

DAW 6 10 4 10 4 8 5

AIW 2 4 7 10 4 10 6

Total 44 60 58 79 40 78 51

Table 4.1: The number of times each variable appear in the ten best eMLR(C*) equations for

each water mass.

Table 4.1 shows that alkalinity and phosphate are variables that are most frequently used in the

eMLR(C*) equations, while salinity and nitrate are the least selected. Alkalinity affects the solubil-

ity of Cant through its impact on the buffer capacity, and is as such expected to be important for

the equations. Alkalinity and salinity are usually well correlated, but in the Arctic Ocean, Russian

river input carrying alkalinity might decouple this relationship. Therefore, salinity is not chosen

as many times as alkalinity. Nitrate can be affected by denitrification, and this non-conservative

behaviour likely explains why phosphate and not nitrate is, broadly, the preferred nutrient variable

in the equations.

Figure 4.8 illustrate the RMSEs of the ten best equations for each water mass. The RMSEs rep-

resent the spread of residuals around the best fitted regression line. A low value represents a better

fitted regression line than a high value. The RMSEs in Table 4.8 range from 3 in AW to 7.1 in

PW1, and are quite similar to the RMSEs of Clement and Gruber (2018) for the Atlantic Ocean.

In general, the Nordic seas’ water masses have lower RMSEs than the water masses of the Arctic

Ocean, indicating that the equations fit better for the Nordic seas. PW1 and PW2 are especially

high because they are the upper waters and actually consist of several different water types, includ-

ing shelf water affected by local processes.

Figure 4.9 shows that for all of the water masses, except uPDW CB, C* has increased from 1994

to 2007, and as such likely reflects the increase in Cant. PW2 and DAW seem to have the highest

increase of about 20 µmol/kg, but there is little data from the 1994 period. PW1 and AW also have

little data from 1994 compared to 2007.

By comparing the predicted C*, C*pred with the ”observed” C*, C*obs, we can check how well

the water mass definitions fit with its respective data set. If the fit between C*pred and C*obs

show a linear relationship without any features of particularly biased data off the overall line, the

eMLR(C*) equations are successfully describing the entire water mass as there is consistency in the
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Figure 4.8: RMSE values of the 10 best equations for each water mass. Lower RMSE values

represent less uncertainty and better fits for the regression analysis.

Figure 4.9: The mean of the 10 predicted C* values plotted against ”observed” C* for each

reference year. The dark blue dots are the data from the 1994 period and the light blue dots

the 2007 period. The R2 values are also shown in each subplot. The gray, dotted, line behind

the data is the 1:1 relationship, representing a perfect fit between predicted C* and ”observed”

C*. The red line is the regression line for the 1994 data, and the orange for 2007.
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Figure 4.10: The mean of the 10 predicted C* values plotted against ”observed” C* for each

reference year for AIW. Equation number 8 and 9 do not have the large scatter above the

regression line as the other equations, indicating that these equations describe the water mass

better than the others.

relationship throughout the water mass. On the other hand, if there is a large scatter on either side

of the line, it means that the eMLR(C*) equations are not able to describe all parts of the water

mass, which may give rise to errors in the results.

From Figure 4.9, it looks like most of the water masses are well defined with only a few data points

off the linear relationship. Also PW1 and PW2 have relatively little scatter, despite the relatively

high RMSE values, mentioned above. However, PW2 has some points with high C*pred values com-

pared to C*obs at the lower end of the scale. The same is true for AAW and DAAW. uPDW EB has

little scatter, and the same is the case for AW and DAW. uPDW CB is more spread on both sides

of the linear fit compared to the other water masses. This is expected as we know there are two

water masses included in uPDW CB (Section 3.2.4). This is also the case for uPDW EB. Regard-

less, the eMLR(C*) equations clearly reproduce the overall features of C* in these two water masses.

AIW has a few points with high C*pred values. We know there is missing a water mass in the

Nordic seas, namely the Nordic seas Deep Water. The high values might belong to NDW as this

was identified as AIW when following Rudels et al. (2012). If a few points from another water mass

with different relationship between the variables are included in AIW, it can result in scatter outside

the linear relationship, as shown in Figure 4.9. Figure 4.10 show predicted vs. observed C* for each

of the ten equations that define AIW. Equation 8 and 9 clearly predict the AIW C* variability the
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best, caused by inclusion of salinity.

4.3 The increase of anthropogenic CO2 in the Nordic seas

and Arctic Ocean, 1994-2007

4.3.1 Nordic seas

The estimated uptake and Cant column inventories increase between 1994 and 2007 are shown in

Figure 4.11, 4.12, and 4.13. Figure 4.11 also shows the water mass distribution. At all depths, of the

Nordic seas show an increase of anthropogenic CO2, except in the most western parts, near the East

Greenland Current at 100 m, Figure 4.11. The highest ∆Cant values are found in the Lofoten Basin,

with a maximum of about 16 µmol/kg from 100 meters and down to about 800 m. In general, the

lowest increase is in the deepest parts of the Nordic seas, around 3 - 4 µmol/kg. There is in general

higher increase in the upper eastern part of the Nordic seas where AW and DAW are located. AIW

is the dominating water mass from about 800 and down, but is present in the Greenland and Iceland

Sea up to 100 m. The increase of Cant in the Iceland Sea is highest at 100 meters and gradually

decreases towards the bottom. In the central Greenland Sea, fairly high ∆Cant values, of 7 umol/kg,

are found all the way down to 1200 m.

The features described above, broadly aligns with the expected features of Cant increase in the

Nordic seas. The water masses are relatively young because of the vertical transportation of modi-

fied AW that ventilates the intermediate and deep water masses (Jeansson et al., 2011). Therefore,

we expect Cant to increase in the entire Nordic seas. We also predict the largest increase in the

Atlantic derived water masses (AW and DAW) since these water masses are saturated with Cant

from lower latitudes when they enter the Nordic seas (Anderson and Olsen, 2002). In addition, the

buffer capacity is high in these water masses, as they are warm (relatively little natural DIC) and

saline (high alkalinity) (see Section 2.2). Therefore, the Atlantic derived water masses have a higher

uptake potential for Cant than AIW, which is colder, has lower alkalinity, and is older. Finally, we

anticipate higher increase at depth in regions where there is vertical transport of water downward

from the surface. This happens in the Greenland Sea, Iceland Sea, and Lofoten Basin, but also

where modified re-circulating AW cools and becomes dense. This happens in the north-west part of

the Nordic seas (Brakstad et al., 2019, Bosse et al., 2018, Mauritzen, 1996, Eldevik et al., 2009).

My results correspond well with previous studies from these areas. Olsen et al. (2006) estimated

the increase of Cant from 1981 to 2002/2003 in the Nordic seas, while Olsen et al. (2010) determined

the total uptake since pre-industrial times. Although they study a different period, the patterns are

comparable. Especially the pattern in Figure 6 from Olsen et al. (2006) is relevant, since the figure

illustrates the estimated increase over a fairly short period, 1981 to 2002/2003, similar to what I do.

The most significant differences between Figure 6 in Olsen et al. (2006) and the results presented

here occur in the Greenland Sea. Olsen et al.’s Figure 6 shows higher uptake in the upper 1500

meters compared to the present results. At 100 meters, it is ∼6 µmol/kg higher than my estimates.

The difference between the Lofoten Basin and the Greenland Sea in the upper 100 - 500 meters

is also higher in the present results. Here, the estimated increase In the upper 700 meters of the

Lofoten Basin is about twice as large as the increase in the Greenland Sea, while according to Olsen

et al. (2006) it is only a few µmol/kg higher (their Figure 6). The increase in the Greenland Sea is
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also more uniform through the water column in my figures.

4.3.2 Arctic Ocean

The highest increase in the Arctic Ocean is found in the PW2 and AAW in the Eurasian Basin and

Makarov Basin at 100 meters. Here, the increase reaches 35 - 40 µmol/kg at some places (see 100

meter panel in Figure 4.11). This is the largest increase in both the Arctic Ocean and the Nordic

seas. There are also a few places down to 250 meters where PW2 has high increase (see 250 meter

panel).

The increase in the Canadian Basin varies a lot at 100 meters. PW1 is the dominating water mass

with an average increase of -7.2 µmol/kg, but some places it reaches 10 - 25 µmol/kg. Negative

values are not realistic, and the lower limit is therefore set to 0 µmol/kg in the maps. Gruber et al.

(2018) chose to replace all negative values with 0. However, to show that the eMLR(C*) method

does not work well for all water masses, I kept the negative ∆Cant in the data set, as can be seen

in Table 5.1, Table 5.2, and Figure Revelle profile .

From 100 to 700 meters, the mean increase gradually becomes smaller. At 700 meters, the increase

is around 8 µmol/kg, with some local variations. The increase is in general lower in the Canadian

Basin, especially on the Pacific side, and higher above the Lomonosov ridge. The increase is par-

ticularly large north of the Laptev Sea. All water masses from 100 - 700 meters show high ∆Cant

values at this place. At 800 meters, there is a large gradient between uPDW EB/uPDW CB and

DAAW that appears unrealistic. Here, DAAW has an increase of about 7 µmol/kg, while uPDW

EB/uPDW CB have an uptake of 15 µmol/kg. Because of this, there is a unrealistically sharp

gradient of ∆Cant between 700 and 800 meters, visible in the 800 meter panel in Figure 4.11. From

800 to 2500 meters, the uptake gradually decreases to 0 µmol/kg in the Canadian Basin and 2 - 4

µmol/kg in the Eurasian Basin. Below this, the uptake does not change much towards the bottom

of the sea.

We expect relatively high uptake in AAW and DAAW since these water masses are modified At-

lantic water masses. AW enters the Arctic Ocean through the Fram strait and Barents Sea, and is

already fully saturated with Cant from lower latitudes (Anderson and Olsen, 2002; Jeansson et al.,

2011). In the water mass definitions, AAW and DAAW cover the entire Arctic Ocean from 300 -

700 meters. Ulfsbo et al. (2018) present several cross sections showing ∆Cant across the Eurasian

and Makarov Basins. They found an increase of 2.5 - 12.5 µmol/kg from 1996 to 2011 at 300 - 700

meters across the middle of the Eurasian Basin, with most values ranging from 7 - 12 µmol/kg. My

results agree quite well with this, although we expect the results of Ulfsbo et al. (2018) to be a bit

higher since their time period is two years longer than ours. Below 700 meters, ∆Cant gradually

decreases to 0 µmol/kg at about 2000 meters in Ulfsbo et al. (2018). This is different from the

results, which have higher values at these depths. In the Eurasian Basin an increase in Cant was

detected all the way to the bottom. This is expected, since the Nansen Basin receives dense water

from the Barents Sea, as described in Section 2.3. There is no detectable increase in Cant below 2500

meters in the Canadian Basin, which corresponds well with expectations since the water masses here

are old (Bluhm et al., 2015). The ∆Cant estimates in the upper 300 meters are higher than Ulfsbo

et al. (2018), especially at 100 meters. The differences might arise from the fact that Ulfsbo et al.

(2018) define the upper water masses as AAW, not PW1/PW2.
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If we assume that circulation and water masses have remained in steady state since pre-industrial

times, we can compare the results with Tanhua et al. (2009). They estimated the total uptake of

Cant in the Arctic Ocean normalized to 2005. We compared the patterns in their Figure 6 to the

∆Cant estimates in Figure 4.11. Figure 6 shows the distribution of Cant increase at selected depths.

The patterns show similarities to my estimates of ∆Cant at ∼2000 meters and below. They also

show relatively high increase in the area north of Laptev Sea at all depths above ∼1500 meters,

similar to the increase in this area in my results, as seen from Figure 4.11. Apart from that, the

uptake patterns are quite different. Especially when it comes to the sudden gradient between DAAW

and uPDW at ∼800 meters, that results in higher values of ∆Cant at 1000 meters than 400 meters

in my estimates. There is no such gradient in the estimates of Tanhua et al. (2009).

4.3.3 ∆Cant column inventories

Figure 4.12a show the estimated increase in the column inventories of Cant in the Nordic seas. Of

course, it is strongly dependent on water column depth, and is highest in the deepest parts. The

highest values are found in the Lofoten Basin, followed by the Norwegian and Greenland Sea. The

region north of the Greenland Sea also has quite high column inventories. This fits with our expec-

tations since Cant saturated Atlantic water travels through the eastern part of the Nordic seas and

gets partially re-circulated west of Svalbard.

The column inventories in the Lofoten Basin are especially high. This is due to the deep convec-

tion that takes place down to ∼500 meters in this area, plus the permanent ”Lofoten Basin Eddie”

bringing water further down to ∼1200 meters (Bosse et al., 2018). The Greenland Sea is heavily

ventilated, and the high inventory in this region is expected. The column inventories in the Iceland

Sea are about half those in deep basins. This is largely explained by the shallow depths of the

Iceland Sea. Figure 4.12b shows the column inventories of the Nordic seas below 1000 meters. Here,

the column inventories in the Greenland Sea are highest, reflecting the deep convection that takes

place here.

The column inventories of Cant in the Arctic Ocean is shown in Figure 4.13 and 4.14. They

are higher than the Nordic seas, especially in the Eurasian Basin, and there is a sharp gradient

between the water masses of the Nordic seas and Arctic Ocean in the Fram Strait. The high column

inventories in the Arctic Ocean is related to the high the ∆Cant values in the uPDW EB/CB, PW2

and upper 250 meters of AAW. Figure 1 in Khatiwala et al. (2013) show the column inventories

in the Nordic seas and Arctic ocean based on Olsen et al. (2010) and Tanhua et al. (2009). In

this figure, the column inventories of Cant are highest in the Nordic seas, which is the opposite of

my figures. There is also no gradient in the Fram Strait, reflecting more realistic estimates of the

column inventories.
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Figure 4.11: ∆Cant to the left and water masses on the right. The black dots on the water

mass maps shows data from 1994, and the red dots are from 2007. Note that the colorbar scale

are changing. 33
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Figure 4.12: ∆Cant inventory in the Nordic seas. a) shows the inventory of the entire water

column except for the upper 100 meters. Figure b) shows the inventory of from 1000 meters

and down to the bottom. The Lofoten Basin has the highest inventory in the Nordic seas, while

the Greenland Sea has the highest inventory below 1000 meters because of the deep ventilation.
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Figure 4.13: ∆Cant inventory in the Arctic Ocean.

Figure 4.14: Combined inventory of ∆Cant in the Arctic Ocean and Nordic seas.
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Discussion

5.1 Trends in C*

In order to evaluate to which extent the estimated increase in anthropogenic carbon is present in the

actual data, I investigate how C* change in each water mass. Later, I will compare the results with

the estimated uptake of Cant for each water mass. These values are then compared with the annual

increase in C*, normalised to 1994 and 2007, in order to evaluate the effect of the TSS based time

normalisation of the data, and to the estimates of the Cant increase determined with the eMLR(C*)

method, ∆C
eMLR(C∗)
ant , presented in the previous chapter.

Figure 5.1: Increase in C* [µmol/kg] over time for each water mass. All data points outside

two standard deviations are removed.

∆C* is, as mentioned earlier, a result of both natural and anthropogenic contributions. If all

assumptions (see Chapter 2) are true, then ∆C*(t2 - t1) reflects the anthropogenic and natural gas

exchange with the atmosphere:
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∆C∗(t2 − t1) = ∆Cant(t2 − t1) + ∆Cgasex
nat (t2 − t1). (5.1)

∆Cgasex
nat (t2 - t1) is in general smaller than ∆Cant (Clement and Gruber, 2018). ∆C*(t2 - t1)

should therefore be comparable to ∆C
eMLR(C∗)
ant .

The evolution of C* over time in each water mass is shown in Figure 5.1. Table 5.1 presents the

increase in C* based on the linear regressions, ∆C*reg, along with the difference in the adjusted

C*, ∆C*ref , calculated by subtracting the mean value of C*1994 from the mean value of C*2007.

∆C
eMLR(C∗)
ant in Table 5.1 is the mean change in Cant in each water mass based on the eMLR(C*)

equations (Equation 3.11) used together with the GeoCap climatologies.

Table 5.1 and Figure 5.1 show that all water masses except for the uPDW EB/CB have an uptake

of 10 ± 5 µmol/kg from 1994 to 2007 according to the regression analysis. An increase in the

younger water masses (younger than ∼200 years) is expected since they have been in contact with

the modern atmosphere. Similarly, I do not expect to see an increase in the deepest and oldest

water masses of the Arctic Ocean.

Water Mass ∆C
eMLR(C∗)
ant ∆C*reg ∆C*ref Water Mass Age

PW1 -7.23 (-0.56) 11.31 (0.87) 8.08 (0.62) 1-5

PW2 16.80 (1.30) 10.92 (0.84) 8.30 (0.64) 1-5

AW 11.10 (0.85) 13.40 (1.03) 8.61 (0.66) 0 - ?

AAW 10.18 (0.78) 9.62 (0.74) 9.85 (0.76) ∼10

DAW 8.44 (0.65) 8.71 (0.67) 7.62 (0.59) young

DAAW 8.37 (0.64) 9.36 (0.72) 10.68 (0.82) ∼20

AIW 5.03 (0.39) 5.46 (0.42) 5.43 (0.42) ventilated each winter

uPDW EB 4.87 (0.38) 0.39 (0.03) 4.62 (0.36) 100-250

uPDW CB 4.44 (0.34) -0.78 (-0.06) 1.75 (0.14) 100-450

Table 5.1: Table comparing ∆CeMLR
ant , ∆C*reg, and ∆C*ref between 1994 and 2007, and

water mass age. The values inside the parenthesis are the yearly uptake rate in µmol/kg yr.

The water mass ages for the Arctic Ocean are taken from Figure 2 and 3 in Tanhua et al. (2009)

(AAW and DAAW), from Rudels et al. (2012) (PW1 and PW2), and from Bluhm et al. (2015)

(uPDW EB and uPDW CB). Tanhua et al. (2009) does not define water masses, but I compare

the depth of my water masses with Figure 2 and 3. I could not find specific ventilation ages for

DAW, but expect it to be relatively young, since it consists of AW which is heavily ventilated on

its way north from lower latitudes (Anderson and Olsen, 2002). AIW is ventilated each winter

in the Greenland Sea (Brakstad et al., 2019).

Table 5.1 shows that there are five water masses in that stand out with relatively large differences

in the their ∆C
eMLR(C∗)
ant , ∆C*reg, and ∆C*ref values: PW1, PW2, AW, uPDW EB, and uPDW

CB. If we assume constant stoichiometric ratios within a water mass, and well defined water mass

definitions, the differences in the parameters can arise because of several reasons:

Firstly, the difference between ∆C*reg and ∆C*ref for each water mass gives information about

the adequacy of the TSS-based adjustment of C* to the two reference years. Ideally, the trends
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should be similar, i.e. if the actual ocean behaves as assumed under TSS. Any difference between

∆C*reg and ∆C*ref can therefore be caused by errors in the TSS assumption. Secondly, depending

on the spatial spreading of the data, errors in ∆C*reg can arise from sampling bias. ∆C*ref can

adjust for the sampling bias to some extent, leading to differences in the two parameters. The calcu-

lation of C∗
ref helps to reduce effects of sampling bias since it adjusts all C* data points from 1991 to

2000, or 2001 to 2015, to one of the reference years, 1994 and 2007. Each water mass thus contains

more data for each reference year, hopefully with a better spatial representation. Thirdly, differences

in ∆C*ref and ∆CeMLR
ant can also arise from sampling bias, as the anthropogenic carbon estimates

are determined for the full region of each water mass, while the ∆C*ref estimates are based on the

individual sampling locations - which differ between the eras. The eMLR(C*) equations can correct

sampling bias since they are a product of ratios between predictor and response variables, and not an

increase/decrease of C*ref itself. Finally, the climatologies can have errors that affect ∆C
eMLR(C∗)
ant .

In this case, ∆C*reg most likely has sampling bias for all water masses since the cruise data are

spread so widely over time and space (see Figure 4.11). For example, there might be sampling bias

in the DAAW data, since the uptake rate of C
eMLR(C∗)
ant in this water mass (0.64 µmol/kg yr) fits

quite well with Ulfsbo et al. (2018). Ulfsbo et al. (2018) estimate the uptake rate of DAAW to

be 0.56 (±0.15) for EB. The uptake rate calculated from ∆C*ref for DAAW is higher than this,

but the eMLR(C*) method might have adjusted for sampling bias in ∆C*ref , as explained above.

For AW, I believe there are some problems with the TSS-assumption. The increase in the TSS

normalized C*, ∆C*ref , is almost 5 µmol/kg lower than ∆C*reg. Studies on the Cant saturation of

the AW suggest that it has more ∆Cant than expected from the atmospheric increase. Anderson

and Olsen (2002) show this theoretically, while Skjelvan et al. (2008) based on data from the time

series station Mike in the Norwegian Sea, find that the increase in carbon in the surface layer is

larger than that expected from the atmospheric increase. These finding means there most likely are

some errors in assuming a transient steady state in AW, since TSS assumes that the increase in

ocean anthropogenic carbon tracks the atmosphere.

Both uPDW and EBDW/CBDW are included in the uPDW EB/uPDW CB as defined here. Most

likely these have different rates of increase of Cant. We expect very low or to undetectable rates of

Cant increase in the old and deep EBDW and CBDW, but some increase in the overlying uPDW.

Ulfsbo et al. (2018) found an uptake rate of 0.46 µmol/kg·yr for uPDW in the Eurasian Basin. The

uPDW can be found at depths from 700/800-1500/1600 meters. If we look at the uptake rate in

this depth interval for uPDW EB/CB, we get 0.62 for EB and 0.74 for CB. Compared to Ulfsbo

et al. (2018), this seem slightly high. The definition of uPDW EB/uPDW CB could be a problem if

the stoichiometric ratios change between uPDW and EBDW/CBDW. However, from Figure 4.9, the

water mass definition appears to be well defined for uPDW EB. For uPDW CB, on the other hand,

the water masses do not seem to be as well defined because of the wider spread of data around

the regression line. There are differences between ∆C*reg and ∆C*ref indicating problems with

the TSS assumption for these water masses, especially in uPDW EB. Therefore, the main problem

is probably found in the TSS assumption in uPDW EB since the water mass definition seems rea-

sonable. While for uPDW CB, both the water mass definition and TSS assumption are problematic.

PW1 and PW2 are mixtures of many different water types close to the surface, which is not ideal

for the eMLR(C*) method. The C* and AOU in the surface layer water masses can be affected by
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gas exchange. C* can therefore loose its conservative properties, and AOU become biased. This

is probably the main reason for the differences between C
eMLR(C∗)
ant and ∆C*reg/ref in these water

masses.

5.2 Revelle factor

The Revelle factor equation, 2.7, can be used to estimate the potential uptake of Cant in a water

mass by rearranging the terms:

∆CRf
ant =

DIC/∆pCO2

CO2/Rf
, (5.2)

where ∆CRf
ant is the ”equilibrum increase”, this is the increase expected for an ocean fully tracking

the atmospheric increase in CO2. DIC and CO2 represent the mean concentration in the time period

of interest, 1994 - 2007. ∆pC2 is the atmospheric increase of pCO2 in the same period, and Rf is

the Revelle factor. Rf is calculated with the CO2SYS (Lewis and Wallace, 1998) for MATLAB (van

Heuven et al., 2011). ∆CRf
ant can be compared to the ∆CeMLR

ant estimates for the youngest water

masses. However, some caution must be taken. In particular, the deep water masses are old and

thus not expected to track the atmospheric CO2 increase; here the equilibrium will be higher than

the increase in Cant. In addition, the equation assumes fully saturated water which is not the case

in the Arctic Ocean and the Nordic seas (Tanhua et al., 2009; Olsen et al., 2010). For the AW, on

the other hand, the equilibrium increase may be smaller than the estimated increase in Cant, as it

has been demonstrated that this can exceed what is expected from the increase in the atmosphere

(Anderson and Olsen, 2002; Olsen et al., 2006; Skjelvan et al., 2008).

The equilibrium increase calculated from Equation 5.2 and presented in Table 5.2 was calculated

from the data used to make the eMLR(C*) equations, while the ∆CeMLR
ant estimates are based on

the climatologies. Ideally, the equilibrium increase should also have been calculated using the cli-

matologies, but unfortunately I did not make climatologies for total carbon which is needed in the

CO2SYS package in MATLAB to calculate the Revelle factor. Therefore some of the differences

may be due to spatial biases in the data.

Water mass PW1 PW2 AW AAW DAW DAAW AIW uPDW EB uPDW CB

Uptake potential 5.36 8.68 10.92 10.18 11.0 10.34 11.32 11.35 11.71

∆CeMLR
ant -7.23 16.80 11.10 10.18 8.44 8.37 5.03 4.87 4.44

Table 5.2

Table 5.2 shows the calculated equilibrium increase compared to the estimates of ∆C
eMLR(C∗)
ant .

The equilibrium increase for AW is lower than ∆Creg, just like ∆Cref and ∆CeMLR
ant in Table 5.1.

As mentioned above, this aligns with previous findings in the Nordic seas since the increase in Cant

in the AW was higher than expected from the atmosphere in the time period considered (Olsen

et al., 2006; Skjelvan et al., 2008).
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For PW1 and PW2, ∆CRf
ant and ∆C

eMLR(C∗)
ant are very different. Here, this is likely a result of

errors in the ∆C
eMLR(C∗)
ant estimates, as discussed above. ∆CRf

ant for these two water masses seems

more reasonable and they are closer to ∆C*reg in Table 5.1.

The older water masses are overestimated in ∆Cant because of the underlying assumptions in

the Revelle factor. There is no point in comparing them to ∆CRf
ant other than checking that the

estimates of ∆CeMLR
ant are not higher.

5.3 Denitrification

Errors in the ∆C
eMLR(C∗)
ant estimates can arise from denitrification, since this process changes the

underlying relationship between predictor (nitrate) and estimator(C*) in the water masses. If this

process happens during the period of interest it is especially bad for the ∆C
eMLR(C∗)
ant estimates,

since the change will be misinterpreted as a change in Cant. Denitrification can happen when there

is no oxygen in the water mass and anaerobic bacteria reduce nitrate in the process of breaking

down organic material. Nitrate is reduced several times and ultimately escapes the water mass as

N2. If nitrate is included in the eMLR(C*) equations, the denitrification affects the estimates of

∆Cant. However, denitrification is expected to reduce the quality (increse the RMSE value) in the

eMLR(C*) equations and nitrate will therefore most likely not be favoured in the variable selection

process described in Section 3.2.3.

Figure 5.2 relates phosphate to nitrate for all nine water masses. The Redfield ratio used in this

thesis has a ratio of 17.5:1 for nitrate vs. phosphate. The grey dotted lines in Figure 5.2 represent

this ratio and compare it to the nitrate-phosphate relationships in each water mass. Whenever the

data lie below this line, it is a sign of denitrification.

PW1 and PW2 show signs of denitrification in Figure 5.2. However, nitrate is only selected 4/10

times in the ten best eMLR(C*) equations which is the least times a variable was selected for PW1.

It seems like nitrate is reducing the quality in the equations, as described above. In this way, the

eMLR(C*) method seems to remove the effects of denitrification to some degree. On the other hand,

nitrate is selected 7/10 in PW2 even though this water mass has clear signs of denitrification. There

is also indication of denitrification in AAW and DAAW. However, nitrate is selected 8/10 times

in AAW, but only 4 times in DAAW. The rest of the water masses seem to follow the expected

stoichiometric ratios. uPDW EB and uPDW CB is combined in Figure 5.2, but I also looked at

them individually and there are no signs of denitrification in either one of them.

For future work, we can try removing nitrate from the predictor variables in the water masses with

denitrification to potentially improve the eMLR(C*) equations.

5.4 Anthropogenic CO2

5.4.1 Nordic seas

The Cant uptake in the Nordic seas agrees well with previous studies and expectations. Also, there

is good agreement in uptake across the boundaries between the different water masses all over the

Nordic seas, i.e where different sets of eMLR(C*) equations have been used. This is a sign of well
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Figure 5.2: Nitrate vs. phosphate for all water masses. The dashed lines are the expected

stoichiometric relationships between nitrate and phosphate (17.5:1) when there is no denitrifi-

cation.

defined water masses. The Cant increase in the AW is, however, potentially underestimated since the

TSS assumption used to normalise the data to 1994 and 2007, is unsuited for this water mass. The

estimates of ∆Cant in the Greenland Sea are lower and more homogeneous throughout the water

column than found by Olsen et al. (2006). The recent increase of deep mixing in the Greenland Sea

gyre might explain this. The winter mixed layer depth has gradually increased since 2003, with a

maximum depth of 1500 meters during the winter of 2011 (Brakstad et al., 2019). The deepening

ventilation brings newly formed water down, but also older water up towards the surface. The young

water is rich in Cant, while the old water from below is not. Therefore, the upward mixing of older

water might slow the increase of ∆Cant in the water column all the way up to the surface. Deep

mixed layers in the Irminger Sea, on the other hand, are fully saturated in Cant (Fröb et al., 2019).

This difference suggest that the interaction between deep mixing and Cant uptake may be different in

the Greenland and Irminger Sea. Consequently, this would be an interesting topic for future studies.

The mixed layer depth is not the only thing that has changed in the Greenland Sea. The water

masses are becoming warmer, saltier, and lighter (Lauvset et al., 2018; Brakstad et al., 2019). There

has also been a shift in water masses in the deeper parts of the basin. Before 2002, the Greenland

Sea Deep Water (GSDW), a water mass denser than AIW, was present in the Greenland Sea. But

the presence of GSDW gradually decreases from 1990 to 2002, when it almost vanishes completely.

From 1994 to 2002 it is only present below 1500 meters. The climatologies are not able to describe

the changing water masses, in addition to the eMLR(C*) equations not being suited for changes in

water mass distribution. This can lead to errors in the results since the climatologies are based on

data from 1985 to present, and might be part of the reason why the uptake is different from previous

studies.
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5.4.2 Arctic Ocean

The uptake of Cant in AAW and DAAW in the Arctic Ocean resembles previous estimates, as de-

scribed in Results. AAW and DAAW are the best defined water masses in the Arctic Ocean based

on all the results so far, but they do show signs of denitrification and might have errors because of

this. In Figure 4.9, PW2, AAW, and DAAW have scatter on the lower end of the scale, indicating

poor water mass definition. Since these three water masses also show signs of denitrification, this is

most likely the reason for the scatter in Figure 4.9.

PW1 also shows signs of denitrification, but there are not much scatter in Figure 4.9. This may

simply come from the fact that there is very little data for PW1, but if we look at Table 4.1, PW1

only uses nitrate in 4/10 equations and might therefore not be affected too much by denitrification,

as discussed above. Overall, Table 4.1 shows that nitrate is the variable least used in all of the

equations.

DAAW is modified Atlantic Water and is younger than the uPDW. Therefore, we would expect

a larger Cant increase in this water mass. However, DAAW is also affected by denitrification and

might have errors. Either way, the uptake in uPDW EB/CB seems suspiciously high compared to

DAAW and the other water masses above, and the sudden increase in uPDW EB/CB at 800 meters

is probably due to errors in the water mass definition. I was not able to detect any deep water

in the Eurasian or Canadian Basin. Ulfsbo et al. (2018) define both uPDW and EBDW/CBDW

according to Rudels et al. (2012). I divide uPDW into uPDW CB/EB in lack of finding any deep

water, even though Ulfsbo et al. (2018) used the same water mass definition as I have done. We

might expect some uptake deep in the Eurasian Basin because of the dense water flowing through St.

Anna Trough from the Barents Sea. However, the deepest reaching convection and it’s properties

within the Arctic Ocean is not yet described (Rudels et al., 2012).

The Arctic Ocean has gone through changes during the study period. One of the assumptions

behind the eMLR(C*) method is that the underlying properties of the water masses remain the

same. We know that there has been an increase in both temperature and salinity in AW entering

the Arctic Ocean, especially in the upper 250 meters (Lind et al., 2018). Since temperature and

salinity are important variables and used in almost all selected MLR equations, these changes are

most likely affecting the results together with the other errors sources mentioned earlier. In addi-

tion, the climatologies are not able to describe changes since they represent mean state based on

data gathered between 1985 and present. Errors can arise from this as well. I suspect the uptake

of Cant between 100-250 meters in PW1, PW2 and AAW are affected by the changes described by

Lind et al. (2018), together with the other errors mentioned earlier.

One could imagine that the recent summer sea ice loss, leading to longer freeze-up seasons and more

brine rejection (Onarheim et al., 2018), increasing areas with open water, and ”atlantification” of

the Barents Sea and Eurasian Basin (Lind et al., 2018; Polyakov et al., 2017) would lead to large

uptake of Cant in the surface layer in these areas. However, as these processes are mostly happening

in surface near layers, there are many sources of error and the eMLR(C*)-method is not well suited.

Any increase may be hidden in the uncertainties. Also, the largest increase in brine production due

to less summer sea ice and longer freeze-up season happens along the continental slopes in the Arctic

Ocean (Onarheim et al., 2018). We would therefore expect that significant ventilation in these areas

would lead to an uptake pattern similar to figure 6a in Tanhua et al., 2009, but the results do not
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look like this.

5.4.3 Inventory

The estimated column inventories of ∆Cant in the Nordic seas (Figure 4.12) looks very similar to

that of Figure 5 in Olsen et al. (2010), except that they find the highest inventories in the Greenland

Sea. The estimated column inventories in Figure 4.12 is about 31% of their Figure 5 at the place

with the highest inventory in the Lofoten Basin, about 24% in the Norwegian Sea, and 23% in the

Greenland Sea. The total atmospheric increase from preindustrial times to 2002, the time period

evaluated by Olsen et al. (2010), was 93.3 ppm, and the increase from 1994 to 2007 25 ppm. I.e. the

increase of atmospheric COant in the study period is 27 % of the total increase since preindustrial

times. Thus, assuming that the inventory of the oceans follows the atmospheric content of CO2, my

inventory estimate for the Nordic seas is in full accordance with the literature.

The highest column inventories of ∆Cant in the Nordic seas and Arctic Ocean are found in the

Eurasian Basin, as seen from Figure 4.14. I did not expect to find the highest column inventories

of ∆Cant in the Arctic Ocean, since the advected Cant through the Barents Sea and Fram Strait

is expected to be the main source of Cant here. High increase in PW2 and uPDW EB/CB are the

main contributors to the inventory. However, as the increase in Cant is probably overestimated for

these water masses, as discussed above, the column inventories for the Arctic Ocean is probably

also overestimated. Brine rejection could contribute to additional uptake in the Arctic Ocean, but

the volume and uptake potential of Cant in brine is not fully understood and are most likely small

compared to the Cant advected into AO (Smedsrud et al., 2013).

5.4.4 Comments on water mass definitions

A big difference between the Nordic seas and the Arctic Ocean is how well the estimated uptake

match at the borders between water masses. In the Nordic seas, the water masses seem well defined

since there are no sharp gradients in the estimated Cant increase at the borders. In the Arctic

Ocean, on the other hand, the gradients are unrealistically sharp in the surface near water masses

and between uPDW EB/CB and DAAW, indicating bad water mass definitions. This is expected

since I could not identify any CBDW or EBDW. The results also vary a lot in the upper 200 meters

depending on how much surface water I exclude from the eMLR(C*) equations. This is not the case

for the Nordic seas where ∆Cant changed very little (1 - 2 µmol/kg) when I varied the depth of

the excluded surface water. The conditions in the Arctic Ocean are more complicated than in the

Nordic seas because of sea ice, brine rejection, and fresh water input. This especially has an effect

on the water masses near the surface. The gradients between AAW and DAAW seem OK, which

means that these water masses are better defined.
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Conclusions

The eMLR(C*) method is suited for some water masses, but for others it needs more work. The

method seems to work well for the Nordic seas, except that it appears to underestimate the increase

in the Atlantic Water because of errors assuming TSS in this water mass (Anderson and Olsen,

2002). The estimates of Cant uptake and inventory fit quite well with expectations and previous

studies. Also, the gradients across different water masses look natural. The biggest deviance from

my immediate expectations is found in the Greenland Sea, where my estimates are lower than the

results of Olsen et al. (2006) and Olsen et al. (2010). However, the results seem logical when we

compare them to the changes in mixed layer depth (Brakstad et al., 2019).

The uptake and inventory estimates in the Arctic Ocean appear too high compared to the Nordic

seas, especially if the main contributor of Cant is the inflowing Atlantic Water, and not the local

processes. The uptake in PW2 and uPDW EB/CB are much higher than expected, and make up a

significant amount of the total inventory between 1994 and 2007. In PW2, AAW, and DAAW there

are problems with denitrification. There are, in general, large uncertainties in PW1 and PW2 since

their definition does not suit the eMLR(C*) method. uPDW EB/CB also suffer from unsuited water

mass definitions since the old deep water of both basins are added to uPDW, but there are also

problems with the TSS assumption in these water masses. Even though Figure 4.9 has little scatter

for uPDW EB, the eMLR(C*) method is very sensitive to how the water masses are defined. Other

water mass definition schemes should be explored in future studies. In summary, the estimates for

all water masses of the Arctic Ocean have errors. The eMLR(C*) method is therefore, so far, not

well suited here.

There are in general little data, especially in the Arctic Ocean. The region is under-sampled when

it comes to both time and space, which affects the accuracy of the different steps in the eMLR(C*)

method. There are many sources of error in the estimates because of all these steps, all with their

own assumptions. I was unfortunately not able to estimate uncertainties because of too little time

and the complexity of the Monte Carlo method that would be needed. Clement and Gruber (2018)

estimated an uncertainty of ±20% in the North Atlantic, and I believe the Nordic seas have a similar

uncertainty. The values is most likely higher for the Arctic Ocean. If I had more data, I could test

the equations on different data sets to see how well they correspond. This would be a big advantage,

and lead to more robust results.
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6.1 Future work

There is much to explore and improve in the method used in this thesis. Only selecting equations

based on the RMSE values is maybe not the best solution when considering the Nordic seas and

the Arctic Ocean. An idea could be to review plots of C∗
pred vs. C∗

obs, similar to Figure 4.9, more

thoroughly, and choose the equations with the best fits, such as Equation 8 and 9 in Figure 4.10. In

this figure, 8/10 equations for AIW have scatter above the ideal linear relationship, indicating that

some parts of this water mass are not well described. However, Equation 8 and 9 do not have this

at all, and are therefore better fitted to the water mass. These two equations are the only ones that

have salinity as a predictor variable. Because of this, it looks like salinity is needed to account for

mixing in this water mass, even though the RMSEs of other equations without salt are higher.

The water mass definitions of Rudels et al. (2012) are created for physical oceanographic purposes,

and might not be the best way to divide the water masses. The definition of PW1 and PW2 are

especially problematic since they include different types of water. For future work, it would be an

idea to try another water mass definition since this seems to be one of the most sensitive aspects. I

experienced this myself when I tried different intervals of excluded surface water. Additionally, the

climatologies need to be improved further. These contain some outliers that should have been be

removed, and we can look for more data to include in the gridding.
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