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Summary 
 

The tumor microenvironment consists of a complex system of interactions, with multiple cell 

types such as fibroblasts, macrophages, and endothelial cells present alongside cancer cells. This 

microenvironment is especially important in Pancreatic Ductal Adenocarcinoma (PDAC), as the 

interaction between PDAC tumor cells and the surrounding microenvironment has been shown to 

play a significant role in the development and progression of PDAC, as well as the inhibition of 

targeted therapeutic strategies. Therefore, any preclinical model systems attempting to replicate 

PDAC for the analysis and development of therapeutic strategies must include or address this 

microenvironment in some manner.  

 

In this study, we have designed and applied a novel PDAC model system with the use of 

decellularized porcine intestine, with the potential to reflect the complex tumor-stroma 

interactions seen in PDAC. A framework for the model was developed to allow for the real-time 

visualization of cells so that experimental efficiency and reliability may be maximized through 

implementation of dynamic endpoints. Furthermore, the growth and development of PDAC cells 

was analyzed within the system both alone and in coculture alongside fibroblasts, to assess 

development and interactions between the two cell lines.  

 

Multiple cell lines were able to be grown, retaining distinct growth patterns. Interactions between 

fibroblasts and pancreatic cells were also observed, with fibroblast addition generally correlating 

with increased cell proliferation. An imaging system was successfully developed allowing the 

following of multiple cell lines concurrently. Comparisons of our preliminary system with other 

established preclinical models shows promise in the potential for biological relevance.  
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1 Introduction 

1.1 Pancreatic Ductal Adenocarcinoma 

Pancreatic Ductal Adenocarcinoma (PDAC) has an overall five-year survival rate of only 9%, 

with the incidence of death rates increasing from 2012-2016 (1). PDAC is diagnosed at a median 

age of 70, and its presentation is typically characterized by late-stage detection (2). This delay 

between onset and diagnosis is generally attributed to the high mortality rates and low treatment 

efficacy seen in PDAC patients (3).   

 

1.1.1 Biology and development of PDAC 

PDAC develops in the ductal epithelium of the pancreas, forming from non-malignant precursor 

lesions (4). Common precursor lesions include intraductal papillary mucinous neoplasms 

(IPMNs), and pancreatic intraepithelial neoplasia (PanIN) (5). Of the two, PanIN is much more 

prevalent, with well-established classifications (6,7).  During the development of PDAC from 

pre-malignant precursor lesions to an advanced stage invasive cancer, the mutated cells will 

spend many years confined to the pancreas before adopting a metastatic phenotype (8). However, 

once the disease progresses to a more advanced stage, rapid progression is observed, putting 

additional strain on treatment efficacy (9).  

 

Approximately 10% of PDAC cases arise from familial origins (10), with the majority of 

incidences arising from sporadic development (2). There are genetic commonalities in PDAC, 

with each typically containing one or more common mutations (11). The more prevalent 

abnormalities are the activation of KRAS and inactivation of CDKN2A, each seen in 

approximately 90% of PDAC cases.  Other mutations commonly present include the inactivation 

of TP53, as well as the inactivation of DPC4 (11).  

 

1.1.2 Current PDAC therapy 

Out of the cases of PDACs that are successfully diagnosed, less than 20% are resectable (12), 

putting an emphasis on the need for non-surgical treatment options. In patients with non-

resectable PDAC, the disease has commonly progressed to a metastatic state. However, tumors 

that involve the celiac axis or superior mesenteric artery of the pancreas are also considered non-

resectable, even when they have not spread beyond the pancreas (13). Due to the difficulty in 



Introduction 

2 
 

surgical intervention, PDAC treatment has historically been characterized by chemotherapy. 

Initially this involved solely the administration of gemcitabine, increasing the median survival by 

approximately 5.6 months (14). Recently, other therapeutic standards have come into practice. 

FOLFIRINOX, a combination of oxaliplatin, irinotecan, fleurouracil, and leucovorin, was 

introduced as an alternative to monotherapy with gemcitabine, demonstrating an overall survival 

of 11.1 months (15). Compared to gemcitabine however, FOLFIRINOX has a more hazardous 

safety profile, correlating with higher incidences of fibrotic neutropenia, thrombocytopenia, 

diarrhea, sensory neuropathy, and alopecia (15). As an alternative to FOLFIRINOX, albumin-

bound paclitaxel (nab-paclitaxel) combined with gemcitabine has been associated with an overall 

survival of 8.5 months. There is not an increase in secondary effects seen in nab-paclitaxel + 

gemcitabine administration compared with gemcitabine alone, although there are occasional 

cases of peripheral neuropathy which can be rapidly reversed (16). Current standards of care for 

non-resectable PDAC include both FOLFIRINOX and nab-paclitaxel + gemcitabine, with 

FOLFIRINOX primarily administered to patients with good performance status, and nab-

paclitaxel + gemcitabine administered to a more broad patient cohort less suited for the toxicity 

of FOLFIRINOX (17).  

 

1.2 PDAC Stroma 

One reason why there has been much difficulty in providing effective therapies for PDAC is the 

stroma (18). PDAC is characterized by a highly desmoplastic and fibrotic tumor 

microenvironment, with an increased ratio of stromal factors and components compared to the 

pancreatic cancer cells themselves (19). There are many components in this stromal 

environment, the most prominent of which include cancer-associated fibroblasts (CAFs) and 

immune cells (20). These components of the stroma interact with the cancer cells and drive the 

stimulation of many extracellular matrix (ECM) factors, such as fibronectin, collagen I, 

hyaloranin, laminin, as well as various growth factors including connective tissue growth factor 

(CTGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-β) 

(21, 22).  
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1.2.1 Cellular stromal components 

In the stroma, fibroblasts play a large role in creating the complex, desmoplastic environment 

commonly seen in PDAC. Pancreatic stellate cells (PSCs) are the most common and prolific cell 

within PDAC stroma (23). In cancerous tissue, PSCs are activated through the increased 

signaling from nearby cancer cells, at which point they begin to develop a myofibroblast-like 

phenotype (24). These activated cells then produce a number of ECM components, as well as 

growth factors that serve as a positive feedback loop, further increasing the number of activated 

PSCs and ECM material (24). The increased concentration of PSCs seen in PDAC has been 

shown to be correlated with an increase in growth and metastasis in orthotopic models (25). 

Activated PSCs also have an effect on the pancreatic cancer cells, inducing an increased 

proliferation rate as well as resisting apoptotic signals (24). These effects are reversible, as 

inactivation of these PSCs is attributed to a more favorable tumor microenvironment, slowing 

progression of tumor development (26).  

 

Along with PSCs, immune cells such as macrophages play a large role in defining the 

characteristics of the PDAC tumor environment. Traditionally, there are two types of activation 

that a macrophage can undergo, M1 and M2 activation. M1 activation denotes a classically 

activated macrophage, and these cells typically serve the function of protecting against 

pathogens. M2 activated macrophages, however, are activated through alternative, non-classical 

pathways, and have been shown to correspond with tumor progression (27). The macrophages 

found in PDAC have been shown to correspond with the alternatively activated M2 phenotype 

(28). The macrophages found surrounding PDAC tumors drive its progression by increasing the 

proliferation of pancreatic cancer cells and facilitating cell migration, as well as acting in a 

positive feedback loop by further recruitment of other immune cells (28).  

 

1.2.2 Non-cellular stromal components 

The most commonly present non-cellular ECM factor found in PDAC stroma is type I collagen 

(29). Type I collagen is known to inhibit the ability of cancer cells to invade by forming a barrier 

which will impede movement of cells (30). However, type I collagen has conversely been shown 

to promote cancer cell invasion through the induction of endothelial to mesenchymal transition 

(EMT), in which cancer cells adopt a more mesenchymal phenotype allowing them to invade and 
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migrate through tissue (30). This conflicting role of type I collagen can be attributed to multiple 

isoforms created under differing conditions (29). The normal isoform of type I collagen produced 

by CAFs and other fibroblasts are known to be heterotrimers, while in cancerous tissue 

homotrimers are synthesized by the cancer cells themselves as a means of promoting EMT and 

invasion (29).  

 

Hyaloranin (HA) is an ECM component commonly overproduced in the PDAC stroma, where its 

function is to gather and form around cells, creating a matrix capable of signal transduction 

surrounding the cancer cells (31). The most common receptor targets of HA include CD44 and 

the HA-mediated motility receptor (RHAMM) (32). Another common ECM component is 

laminin, often involved as a factor essential for cell adhesion, differentiation, and migration (35). 

Increased expression of both HA and laminin is correlated with accelerated tumor progression, as 

well as poor survival in PDAC patients (33, 34, 35).  

 

Multiple growth factors are overexpressed in the stroma of PDAC, including CTGF, PDGF, and 

TGF-β (36). These growth factors are commonly attributed to driving the development of the 

highly desmoplastic microenvironment by instigating the production of stromal components as 

well as large amounts of connective tissue, ultimately leading to a growth advantage for the 

tumor tissue (19, 37).  

 

1.3 Pre-Clinical Models 

1.3.1 Patient-derived cell lines 

To allow for a better understanding of the complex microenvironment present in PDA, the 

development of accurate pre-clinical models is vital for progress in characterization and 

treatment. Perhaps the most fundamental method of modelling PDAC is through the culturing 

and study of pancreatic cancer cells derived from patient material. These cells are harvested from 

either the primary tumor sites or from distant metastases, resulting in a collection of 

immortalized cancer cells that can be expanded and characterized (38). Patient-derived cell lines 

are useful for efficient characterization and identification of possible target pathways for therapy 

due to their quick and consistent growth, as well as the availability of efficient screening 

methods such as high-throughput RNAi, which can analyze a large number of target genes in a 



Introduction 

5 
 

short period of time (39). The migratory activity and invasion potential of pancreatic cell lines 

may be analyzed through the application of wound-healing and transwell assays, respectively 

(40, 41). These cell lines may also be used in drug screening when testing novel therapies (42). 

Using the results from the characterization and classification of pancreatic cell lines, subtypes of 

PDAC were identified, allowing patients to be segmented into effective therapy groups based on 

the characteristics of their disease (43).  

 

However, while patient-derived cell lines have proven quite useful in the identification and 

classification of many instances of PDAC, the potential for this system to be used as a pre-

clinical model is limited.  Perhaps the most significant factor preventing pancreatic cell lines 

alone from accurately reflecting PDAC as it occurs in patients is that, when cultured, the system 

typically consists of a 2D monolayer of cells growing across a plastic surface. This system lacks 

the structural framework and support seen in vivo, as well as all mechanical context provided by 

the stroma and areas surrounding the tumor (44). Also, due to the fact that patient-derived cell 

lines consist solely of cancer cells, there is a lack of a representative microenvironment, which 

ignores the effects of the complex interactions seen within the stroma and ECM (45).  

 

1.3.2 Patient-derived xenograft models 

 In an attempt to more accurately reflect the complex microenvironment that contributes to tumor 

growth and development, the patient-derived xenograft (PDX) model system was developed. In 

this system, tumor samples from the patient may be engrafted into immunocompromised mice 

either as solid tumor pieces, or a cell suspension created through the digestion and processing of 

these tumor pieces (46). While solid tumor engraftments often have difficulties in growing 

successfully, they have been shown to more accurately represent drug response than other 

engraftment methods, such as traditional cell line-derived xenograft models (47).   

 

The most apparent benefit to PDX models is that the system allows for patient samples to be 

grown and developed in an in vivo environment that much more closely represents the 3D nature 

seen in the patient, especially when compared to a 2D system in vitro (48). Similarly to patient-

derived cell lines, xenograft models provide the opportunity for characterization of patient 

material. However, these xenograft models are useful for discovering more accurate biomarkers 
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that may not be present without the three-dimensional structure and interaction of the 

microenvironment (49). This in turn creates a more accurate overview of the characteristics seen 

in an individual patient, which leads to the potential for better personalized treatment (50). Also, 

due to their ability to more accurately portray drug response than other systems, xenograft 

models have been used in generalized studies as a means of testing drug efficacy (51, 52).  

 

However, while PDX models provide a beneficial utility and have proven useful in preclinical 

studies, the system still has some limitations. For example, not every patient sample can be 

successfully engrafted and grown even in immunocompromised mice, and samples that are able 

to grow successfully actually serve as a predictor for poor prognosis (49). This means that less 

aggressive tumors may not be represented, skewing the availability of the model towards more 

aggressive tumors. When gathering patient material, many aggressive cases of PDAC are 

diagnosed at a non-operable stage (53), though techniques such as fine needle aspirate biopsies 

may be used to retrieve tumor samples (54). Even when a sample is successfully engrafted, there 

is a significant time of development within the mouse before the model can be used. This delay 

between the time of implantation and successful development can take longer than 4 months for 

each sample (55). Considering the correlation between successful engraftment and tumor 

aggression, this delay is especially dangerous. Xenograft models also rely on the development of 

mouse stroma surrounding the transplanted patient material, and this drift from human to mouse 

stroma adds some limitations such as potentially inaccurate tumor-stroma interaction, as well as 

a lack of inflammatory cells present in PDAC patients (56). 

 

1.3.3 3D cell culture models 

While in vivo models provide a biologically representative model and environment, their 

limitations demonstrate a need for more efficient in vitro models that can approach the accuracy 

seen in vivo while retaining the time and cost effective properties of traditional in vitro systems. 

One such model is the spheroid model, in which cells are cultured in suspension using a matrix 

most commonly composed of Matrigel or collagen along with the appropriate growth factors 

(57). While suspended, the cells are able to grow in three dimensions, resulting in the 

development of a cluster of cells in contrast with the monolayer seen in 2D cultures.   
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The 3D structure of this model system also has the potential to maintain structural morphology. 

This is demonstrated in PDAC models in which much of the ductal cell morphology is retained 

after culturing the cells in vitro (58, 59). Along with a more accurate structural model, spheroid 

models also display expression patterns more similar to those seen in vivo. For example, 3D 

cultures of PDAC cells exhibited increased expression of ECM components, as well as a shift to 

the more glycolytic metabolism seen in PDAC tumors when compared with their 2D 

counterparts (60). 

 

Patient material can be resected and implemented into a 3D culture system where it can be grown 

and characterized much more quickly than in vivo models, providing information about the 

patient in a much more reasonable time frame (58). Also, drug screening can be performed on 

organoids developed from patient material, allowing treatment to be personalized for each 

patient (61).  

 

 

1.3.4 Development of 3D matrix materials 

Much progress is being made as well in the development of biologically accurate matrices in 

which cells can be cultured. One way in which these 3D models have become more relevant is 

through adapting many of the mechanical properties of the ECM to more accurately reflect what 

is present natively. ECM stiffness is an important factor of the cellular environment affecting cell 

growth and development (62), influencing cell morphology and migrational ability (63). 

Synthetic hydrogels have been developed with the ability to manipulate the stiffness of the 

simulated ECM, demonstrating the ability to assess the development of cells under a variety of 

structural conditions (64). Synthesized materials, such as polycaprolacetone (PCL) are also 

available as printed discs containing micropores that provide a structural scaffold to analyze cell-

ECM interactions (65).  

 

Given the significance of cell interaction with the ECM, it is important in a 3D model system 

that the composition of the matrix in which the cells are grown accurately reflects the natural 

environment. There is a great variety in ECM expression patterns and signaling interactions with 

cells seen in vivo (66), which provides some difficulties in the development of a generic and 
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widely-applicable matrix material. To address this, modifiable hydrogels are available with the 

potential to be manufactured with varying composition of ECM components, such as collagen I, 

collagen IV, fibronectin, and laminin (67). The versatility of these hydrogels allow for the 

development of a 3D model system specialized for accurate ECM interactions with many cell 

types.   

 

1.3.5 3D models developed with decellularized matrix scaffolds 

When developing a pre-clinical model system, the type of matrix on which pancreatic cells are 

grown is responsible for providing an environment with the potential for accurate growth and 

interaction of the constituents within the system. With the use of Matrigel, cells may certainly 

grow into 3D structures; however, each of these structures is largely independent of those 

surrounding it and the complex system of stroma-tumor interactions remain ignored. Using a 

more biologically relevant scaffold on which the cells may grow can address some of these 

issues. One solution is through the use of decellularized porcine intestine, which can be divided 

into the mucosa (MUC), submucosa (SIS), and serosa (SER) layers (68). Cells may be seeded 

and grown on these surfaces to analyze their morphological growth and expression patterns (69).  

 

When manufactured, these scaffolds undergo a decellularization process that removes cellular 

material and DNA residue while preserving the ECM, resulting in a biologically accurate 

scaffold composed primarily of collagen and elastin fibers (70, 71). When cultured on these 

scaffolds, multiple cell types develop in a more biologically relevant manner as opposed to other 

in vitro models. Hepatic cells seeded on a decellularized scaffold were able to synthesize their 

own ECM components, demonstrating the ability to restructure the scaffold during development 

(70). Lung cancer cells, when grown on a decellularized scaffold, displayed proliferation rates 

closer to what is seen in vivo than when compared to 2D culture conditions (72). Also, 

histological analysis of these cells displayed a representation of EMT in vitro. Colorectal 

carcinoma cells cocultured with fibroblasts resulted in enhanced invasion of the cancer cells into 

the scaffold, demonstrating an interaction similar to that seen between the tumor cells and stroma 

in vivo (68). Development of the cells also retained the time-efficient nature of in vitro models, 

with evidence of differentiation and invasion typically seen after 14 days (68).  
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This model system also allows for dynamic culturing conditions. Static conditions are not 

representative of those seen in vivo, and creating an in vitro system with dynamic flow 

conditions brings these models closer to bridging the gap. One method of supplying 

decellularized scaffolds with dynamic conditions is through the application of a bioreactor 

system that provides regulated flow of medium surrounding the scaffold and cells (73).  

 

Overall, a model system implementing 3D cell culture on decellularized matrix scaffolds 

provides a very flexible and agile system, allowing for the interaction between multiple cell 

types in a biologically relevant environment while still retaining the efficiency seen in vitro.  

 

1.4 Optical imaging modalities 

As the development in model systems becomes more complex and detailed, so also must the 

methods in which the models are assessed and visualized. Optical imaging provides an 

opportunity for the real-time analysis of cell growth and development, to ensure the 

establishment of a useful endpoint for multiple cell lines. However, due to the depth and density 

of the decellularized matrix, traditional fluorescence microscopy is not sufficient to clearly 

image cells through such a dense scaffold.  

 

1.4.1 Confocal Microscopy 

Confocal laser scanning microscopy (CLSM) is a fluorescent imaging technique which may be 

used for the production of clear and focused images of cells in a scaffold system. In CLSM, light 

from a laser is focused on exciting a small portion of the sample. During emission, the light path 

is focused through a pinhole before reaching the detector, effectively removing any out-of-focus 

planes. This excitation may then be repeated at varying focal depths, resulting in a number of in-

focus planes. These planes may then be stacked, creating a clear 3D image of the sample (74). 

When applied to imaging scaffolds of decellularized matrix, this technique allows for clear 

visualization at a greater depth than other optical imaging solutions. A similar technique, known 

as spinning disk confocal laser microscopy (SDCLM), works on the same principles of sample 

illumination as CLSM. However, through the application of a spinning disk with a series of 

pinholes, multiple points may be focused and imaged simultaneously (75) 
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1.4.2 Fluorescent reporter genes 

Fluorescent reporter genes may be employed as a useful tool for imaging cells through SDCLM. 

However, for reporter genes to function properly, they must have been previously transduced 

into any cell lines used. Due to this necessity, fluorescent reporter genes are most useful for 

reliably and repeatedly imaging established cell lines. 

 

Green Fluorescent Protein (GFP) is one such fluorescent reporter gene. GFP absorbs blue light 

and is excited at a wavelength of ~470nm, and emits green light at a wavelength of ~510nm (76). 

One consideration that should be made when imaging with GFP, however, is that there typically 

is some endogenous autofluorescence seen in tissues that may reduce the sensitivity or 

specificity of the image.  

 

Tissue autofluoresence may be limited with the use of a fluorescent reporter in the near-infrared 

range, which has been shown to generate less autofluorescence when compared to emission at a 

lower wavelength (77). Nitroreductase (NTR) is a flavoprotein that is responsible for the 

reduction of nitro groups, and is currently used in pre-drug therapies due to its reduction 

capabilities (78, 79). However, the reduction potential of NTR may also be used as a fluorescent 

reporter gene in conjunction with CytoCy5s. CytoCy5s is a quenched, near-infrared probe that, 

when reduced by NTR, emits a fluorescent signal. Cytocy5s together with NTR is excited at a 

wavelength of ~631nm, and emits light a wavelength of ~688nm (80). With multiple potential 

reporter genes, it is also possible to image and distinguish more than one cell line simultaneously 

in a co-culture situation. 

 

1.4.3 Imaging unlabeled cell lines 

The most significant limitation seen in the use of fluorescent reporter genes is that the cells must 

be previously prepared for that precise purpose. However, with many analysis and 

characterization models relying on rapid availability of primary material, it is necessary to use an 

imaging solution that does not require any alteration or manipulation of the cells. 

Acetoxylmethyl Calcein (Calcein-AM) is an uncharged, lipophilic variant of Calcein that is able 

to freely and easily cross the cell membrane. Inside the cell, nonspecific esterases cleave the 

lipophilic blocking groups from Calcein-AM, resulting in a fluorescent form of Calcein that may 



Introduction 

11 
 

no longer freely leave the cell (81). When active, Calcein-AM has an excitation wavelength of 

~488nm, and an emission wavelength of ~520nm. Unlike the previously mentioned fluorescent 

reporter genes, Calcein-AM will provide a signal for any viable cells present.  
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2 Aims 

 

PDAC is a disease characterized by high mortality rates and low treatment efficacy, and late-

stage detection caused by a delayed onset of symptoms further increases the need for novel and 

effective therapeutic strategies. Currently, focus is being shifted to the complex tumor 

microenvironment, which has been shown to both drive PDAC progression and impair treatment 

efficacy.  Efficient and accurate preclinical models are therefore necessary to serve as a 

foundation for research driving therapeutic developments. With the goal of creating a system 

retaining the efficiency of in vitro models while also approaching the biological relevance 

typically reserved for in vivo models, we are striving towards an effective experimental platform 

for the application of novel therapeutics. In developing this model, our objectives are as follows: 

 

 Design and optimize a system in which PDAC cells may be grown and followed 

in real time for the establishment of dynamic endpoints 

 

 Apply and validate this system through the assessment of PDAC cells grown in 

monoculture 

 

 Analyze interactions of PDAC and stromal cells within the system, moving closer 

towards a more representative system 

 

 Comparison of results with other clinically relevant model systems 
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3 Materials and Methods 

3.1 Cell Experiments 

3.1.1 Cell Culture 

All work involving cells was carried out under sterile conditions using a laminar flow bench with 

a HEPA filter. Cells were grown in 75 cm
2
 tissue culture flasks (VWR International, ltd., 

Radnor, PA, USA), incubated at 37℃ with a CO2 concentration of 5%. Adequate cell growth 

and maintenance of sterility were ensured though daily observation under microscope.  

 

All pancreatic cell lines were kindly provided by Anders Molven (Clinical Institute 1, University 

of Bergen).  MIA PaCa-2 cell lines were cultured in a complete medium consisting of 

Dulbecco’s Modified Eagle Medium (DMEM)-High Glucose, with 10% Fetal Bovine Serum 

(FBS), 2.5% Horse Serum (HS), 2% L-Glutamine (L-G) (Thermo Fisher Scientific, Waltham, 

MA, USA), and 1% Sodium pyruvate. MIA Paca-2 cells were split at a ratio of 1:10 into new 

complete medium twice per week, after reaching approximately 1 x 10
7
 cells. 

 

PANC-1 cell lines were cultured in a complete medium consisting of DMEM-High Glucose, 

with 10% FBS, 1% L-G, and 1% Sodium pyruvate. PANC-1 cells were split at a ratio of 1:4 into 

new complete medium twice per week, after reaching approximately 5 x 10
6
 cells.  

 

BxPC-3 cell lines were cultured in a complete medium consisting of Roswell Park Memorial 

Institute (RPMI)-1640 medium, with 10% FBS, 2% L-G, and 1% Sodium pyruvate. BxPC-3 

cells were split at a ratio of 1:3 into new complete medium twice per week, after reaching 

approximately 4 x 10
6 

cells.  

 

BJ human fibroblasts were kindly provided by Donald Gullberg (Department of Biomedicine, 

University of Bergen). BJ fibroblast cell lines were cultured in a complete medium consisting of 

DMEM-High Glucose, with 10% FBS, 1% L-G, and 1% Penicillin/Streptomycin (P/S). BJ 

fibroblasts were split at a ratio of 1:3 into new complete medium twice per week, after reaching 

approximately 4 x 10
6 

cells.  
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When passaging each cell line, medium was removed from the flask, and the cells were then 

washed with 10 mL phosphate-buffered saline (PBS). After removal of the PBS, 2 mL of 

Trypsin was added and the cells were incubated at 37℃ for 5 minutes, or until completely 

detached. Trypsin was then inactivated through the addition of fresh complete medium, and the 

suspended cells were seeded at their appropriate ratio into a new 75 cm
2 

flask before returning to 

the incubator.  

 

3.1.2 Freezing of Cells 

All cells were frozen in medium containing 95% complete medium and 5% Dimethyl sulfoxide 

(DMSO). Cells were first counted, and then pelleted at 1200 RPM for 5 minutes at room 

temperature. The pelleted cells were resuspended in their respective freezing medium, before 

transfer into 2 mL low-temp freezer vials (VWR International, ltd., Radnor, PA, USA), at a 

concentration of 1 x 10
6 

to 2 x 10
6
 cells per vial. The vials were incubated overnight at -80℃ in 

either Mr. Frosty freezing containers (Thermo Fisher Scientific, Waltham, MA, USA) filled with 

isopropyl alcohol, or CoolCell freezing containers (BioCision, San Rafael, CA, USA) to ensure a 

cold rate of freezing of approximately 1C/minute. Once fully frozen, the vials were then 

transferred to cryoboxes stored at -80℃.  

 

3.1.3 Thawing of Cells 

Vials containing 1 x 10
6 

to 2 x 10
6 

cells were transferred from -80℃ storage to a laminar flow 

bench, where they were thawed at room temperature until completely defrosted. 4 mL complete 

medium was added to the cells before transfer into a 15 mL Falcon tube (Sarstedt, Nümbrecht, 

Germany). The cells were then pelleted at 1200 RPM for 5 minutes at room temperature, and 

washed twice with complete medium before being transferred to a 75 cm
2
 flask in 10 mL 

complete medium.  

 

3.2 Viral transduction of BJ fibroblasts 

3.2.1 Production of virus 

4 x 10
6
 293T cells (DSMZ - The German resource center for biological material) were seeded in 

6 mL DMEM + 10% FBS medium on a 10 cm petri dish (Sarstedt, Nümbrecht, Germany) and 

incubated for 8 hours at 37℃. Once the cells were attached to the plate following incubation, 6 



Materials and Methods 

15 
 

μL of chloroquine was added to the dish. Directly after chloroquine addition, a mixture was 

prepared of 195 μL 2M CaCl2, 9 μg pPAX2 I viral vector (James Lorens, Department of 

Biomedicine, University of Bergen), 0.9 μg pMD2 II plasmid (James Lorens), 9 μg cd502 NTR 

(System Biosciences, Palo Alto, CA, USA), and 1295 μL filtered milliQ water. 15 minutes 

following the addition of chloroquine, 1527 μL Hepes buffered saline (HeBS) was added to the 

mixure, which was then air-bubbled for 20 seconds using an autopipette, and added dropwise to 

the dish.  

 

The petri dish was then incubated for 16 hours at 37C, after which the medium was removed and 

replaced with 10 mL fresh DMEM + 10% FBS medium.  The dish was incubated again for 8 

hours, after which the medium was replaced with fresh DMEM + 30% FBS medium and 

transferred back to incubation for 24 hours. 

 

3.2.2 Transduction of BJ fibroblasts 

1 x 10
4
 BJ fibroblasts were seeded in one well of a 24-well plate (Techno Plastic Products AG, 

Trasadingen, Switzerland) and incubated for 8 hours at 37℃ to allow for cell attachment. The 

medium from the previously transfected 293T cells was then collected and transferred to a 15 

mL Falcon tube. The tube was sealed with parafilm and centrifuged at 1250 RPM for 5 minutes 

to remove any remnant 293T cells. The resulting supernatant was then transferred to a fresh 15 

mL Falcon tube. The medium in the well containing fibroblasts was then replaced with 2 mL of 

the collected supernatant (Estimated viral titre: 3 x 10
6
 transducing units (TU)/mL), with the 

remaining volume stored in 1 mL aliquots at -80℃. The fibroblasts were incubated for 24 hours 

before the medium was replaced with 500 μL fresh complete medium.   

 

3.2.3 Preparation of cells for flow cytometry 

1 x 10
5
 cells were incubated with complete medium in 6-well plates (Thermo Fisher Scientific, 

Waltham, MA, USA) for 24 hours at 37C, after which the medium was replaced with 2 mL fresh 

complete medium + 2 μL 1 mM CytoCy5s (Elvira García de Jalón Viñegra, Clinical Institute 2, 

University of Bergen) for a final concentration of 1 μM CytoCy5s. The cells were incubated in 

medium containing CytoCy5s for 1 hour, before washing with 2 mL PBS. 500 μL of trypsin was 

added to the cells, and they were then incubated for 5 minutes at 37℃. Trypsinization was halted 
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with the addition of 1.5 mL fresh complete medium, and the cells were transferred to a flow tube. 

The cells were then pelleted at 1200 RPM for 5 minutes and washed twice in PBS + 2% bovine 

serum albumin (BSA). After washing the cells were pelleted once again, and the supernatant was 

removed, leaving a small volume of PBS + 2% BSA in which the cells were resuspended for 

analysis using the BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). Viable, 

single cells were selected through gating in CFlow Plus (BD Biosciences, San Jose, CA, USA), 

and results were analyzed and processed using FlowJo V10 (BD Biosciences, San Jose, CA, 

USA). Live cells were first gated based on forward scatter (FSC) area and side scatter (SSC) 

area, followed by single cell selection based on the ratio of FSC area to FSC height.  

 

3.2.4 Preparation of cells for sorting with FACS 

Cells were expanded to approximately 90% confluence in a 75 cm
2
 flask before preparation for 

cell sorting. The medium was removed from the flask, and replaced with 7 mL complete medium 

+ 7 μL 1 mM CytoCy5s and incubated for 1 hour at 37℃. The medium containing CytoCy5s 

was then removed, and the cells were washed with 10 mL PBS.  2 mL of trypsin was then added 

to the cells, and they were then incubated for 5 minutes at 37℃. Trypsinization was halted with 

the addition of 8 mL fresh complete medium. The cells were then transferred to a 15 mL Falcon 

tube, and pelleted at 1200 RPM for 5 minutes. The cells were resuspended in 5 mL PBS + 2% 

BSA and filtered through a 40 μm strainer (VWR International, ltd., Radnor, PA, USA) into a 50 

mL Falcon tube. The cells were pelleted once more at 1200 RPM for 5 minutes, and resuspended 

in a mixture containing 100 μL Hank’s Balanced Salt Solution (HBSS) and 100 μL 

deoxyribonuclease (DNAse) I. The cells were then incubated in this mixture for 30 minutes at 

room temperature to prevent aggregation and clumping of cells. 1 mL PBS + 2% BSA was then 

added before transferring the cells to a 15 mL Falcon tube.  

 

3.2.5 Confirmation and selection of NTR positive cells 

The recently transduced BJ fibroblasts were analyzed for NTR positivity using fluorescence-

activated cell sorting (FACS). The fluorescent potential for the fibroblasts was screened with 

FACS, and the 10% brightest cells were selected and passaged. The cells were sorted using 

FACS ARIA II (BD Biosciences, San Jose, CA, USA), and the 10% most positive cells selected 

were transferred to a 15 mL collection tube containing 5 mL complete medium + 1% P/S. Once 
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sorting was completed, the collection tube was centrifuged at 1200 RPM for 5 minutes, and the 

cells were resuspended in the appropriate volume of fresh complete medium + 1% P/S and 

seeded on the appropriate plate. Once the sorted cells were expanded to approximately 4 x 10
6
, 

NTR positivity was re-evaluated with flow cytometry. Sorting and evaluation were then repeated 

until approximately 95% of the fibroblasts were positive for NTR signal.  

 

3.3 SISser scaffold system preparation 

3.3.1 Cell crown production 

Cell crowns were produced with a Form 2 3D printer (Formlabs, Somerville, MA, USA), using 

High Temp resin (Formlabs, Somerville, MA, USA). After printing was complete, the crown 

structures were carefully removed from the build plate with a scalpel blade, and soaked in 

isopropyl alcohol for 15 minutes. The cell crowns were then dried using compressed air to 

remove any excess print material. The material was cured in a UV chamber in two rounds of 20 

minutes.  

 

3.3.2 WST-1 toxicity assay 

2 mL MIA PaCa, BxPC-3, and PANC-1 complete media were incubated with samples of White, 

High Temp, or Dental SG material (Formlabs, Somerville, MA, USA), silicone, Polyether ether 

ketone (PEEK) material (Fraunhofer Institute, Würzburg, Germany), or no added material. One 

material sample was incubated per complete medium at 37℃ for 72 hours to generate 

conditional medium.  

 

MIA PaCa-2, BxPC-3, and PANC-1 cells were split into numbers of 7 x 10
3
, 10 x 10

3
, and 10 x 

10
3 

cells respectively. The cells were pelleted at 1200 RPM for 5 minutes, and resuspended in 

100 μL of each conditional medium in triplicate before transfer to a 96-well plate (Techno Plastic 

Products AG, Trasadingen, Switzerland). 100 μL of each experimental medium was also added 

to the 96-well plate without cells. The plate was then incubated at 37℃ for 72 hours. 

 

After incubation, the medium was removed from each well, replaced with fresh complete 

medium + 10% cell proliferation assay reagent WST-1, and incubated once more for 5 hours. 

After incubation, the viability of cells in each well was analyzed using a Spectra Max Plus 384 
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microplate reader (Molecular Devices, San Jose, CA, USA) via absorbance (WST-1: 490 nm 

Background: 620 nm). The absorbance of wells containing no cells was averaged for each cell 

line, and this average was subtracted from each well containing cells to obtain the actual 

absorbance.  

 

3.3.3 Production of SISser matrices 

Porcine intestine was received as leftover material from surgical training subjects from the 

Laboratory Animal Facility, Department of Clinical Medicine, University of Bergen, and the 

lumen was flushed with tap water until no feces was visible. The intestine was then cut into 

sections approximately 10 cm in length, and each sample was flushed once again with tap water. 

Each section was then inverted with the use of long forceps, pulling the intestine through itself so 

that the mucosa surface of the lumen was facing outward. The mucosa surface, now on the 

exterior, was scraped off using forceps, resulting in sections with the submucosa facing outward 

and the serosa facing inwards. The sections were incubated in PBS + 1% P/S over night at 4C 

under agitation.  

 

Each section was then washed three times with PBS, and filled with an 82 mM solution of 

sodium deoxycholate (DOC). Each section was clamped at both ends to seal the DOC solution 

inside. The sections were then incubated in DOC solution for 90 minutes at 4C under agitation to 

rid the samples of cellular material. After incubation, the sections were emptied of DOC solution 

and filled with PBS, re-securing both ends to prevent leakage, and washed in PBS for 60 minutes 

at 4C under agitation. The clamps were then removed, and each section emptied before washing 

in PBS + 1% P/S for 5 hours at 4C under agitation. PBS + 1% P/S was replaced every 60 

minutes, and after the fifth change the sections were left overnight in fresh PBS + 1% P/S at 4C 

under agitation.  

 

A DNase solution was prepared consisting of 50 mg DNase I (STEMCELL Technologies, 

Vancouver, Canada) + 300 ml warm PBS (+Ca/Mg) + 1% P/S. The SISser sections were 

incubated in the DNase solution for 2 hours at 37C under agitation to remove any remnant DNA 

material. After incubation, the sections were washed three times in PBS for 60 minutes at 4C 

under agitation, and were kept in fresh PBS + 1% P/S at 4C.  
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3.3.4 Mounting of decellularized matrix 

SISser scaffolds used in mounting were obtained from the Translational Center for Regenerative 

Therapies, Fraunhofer Institute, Würzburg, Germany, received as 3 to 5 cm tubes of 

decellularized material, shipped at 4C in PBS. Scaffolds were processed as described (Section 

3.3.3) and sterilized before shipment. Each scaffold was first spread and flattened with the use of 

forceps onto a 10 cm petri dish. The scaffolds were then cut along the side of the tube 

approximately 5 mm from the edge with a scalpel blade from one open end to the opposite. 

Using forceps, the scaffolds were opened from the recently cut side, and spread flat against the 

petri dish. The scaffolds were then divided into segments of approximately 1 to 2 cm
2
, before 

spreading across the bottom surface of a cell crown. The outer ring of the crown system was then 

slid over the crown to secure the scaffolds, and each complete crown was added to one well of a 

12-well plate (Thermo Fisher Scientific, Waltham, MA, USA) containing 1 mL complete 

medium. 500 μL of complete medium was added to the interior of each crown, followed by 

incubation for 24 hours at 37℃.  

 

3.3.5 Cell seeding and culturing on scaffolds 

Cells were first counted, and an appropriate concentration was pelleted at 1200 RPM for 5 

minutes before resuspension in complete medium. The medium inside each crown was removed, 

and replaced with 500 μL fresh complete medium containing the desired number of cells. The 

crowns were then incubated for 72 hours at 37℃ to allow the cells to attach to the scaffold.  

 

When imaging was not necessary, the cells remained in the interior of the crown, which was 

incubated for the duration of the experiment at 37℃. The medium in each well was replaced 

with fresh complete medium twice per week to ensure appropriate growth conditions.  

 

3.3.6 Preparing scaffold system for imaging 

When imaging was necessary, the orientation of the scaffolds needed to be inverted (Fig 3.1). 

Each crown was transferred into a 10 cm petri dish, and the outer ring was removed carefully so 

that the scaffold remained attached to the crown. The crown with the attached scaffold was then 
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placed on top of a fresh crown, oriented so that the bottom surfaces of each crown were 

touching. The excess matrix on the side of the original crown was then folded down using 

forceps so that it becomes attached to the new crown. The original crown was then removed, 

leaving only the new crown with the scaffold oriented so the cells were located on the outer 

surface. The outer ring was then slid over the new crown to secure the scaffold, and each 

complete crown was transferred back to the 12-well plate containing 1 mL fresh complete 

medium, with the addition of 500 μL fresh complete medium to the inner well. The medium in 

each well was replaced with fresh complete medium twice per week to ensure appropriate 

growth conditions.  

 

When preparing each crown for imaging, 1 mL fresh medium was first added to each well of a 6-

well plate. Second, using forceps, each crown was transferred from a 12-well plate to 6-well 

plates so that the outer surface of the scaffold was in direct contact with the fresh medium and 

plate surface. Each crown was then imaged in this configuration. 

 

The medium in the 12-well plates was replaced with fresh complete medium, and after imaging 

each crown was returned to the 12-well plates. The medium inside each crown was then replaced 

with 500 μL fresh complete medium and the plate was returned to incubation at 37℃.  

 

3.3.7 Assessment of matrix permeability 

Four replicates of SISser matrices were mounted onto crowns, and the inner well was filled with 

10 μL Trypan Blue solution, 0.4% + 90 μL complete medium. The outer well was filled with 

complete medium containing no added dye. 10 μL samples were taken from both the inner and 
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outer wells at 0, 5, 10, 20, 40, and 60 minutes, as well as 2, 3, 6, 8, and 24 hours, and transferred 

to a 96-well plate.  The concentration of Trypan Blue in each sample was measured with a 

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Three 

measurements of 1 μL were taken from each sample, and absorbance (490 nm) was measured. 

 

3.4 Confocal Microscopy 

3.4.1 Image acquisition 

All scaffolds were imaged using a Dragonfly 505 confocal spinning disk system (Andor 

Technologies, Inc, Belfast, Northern Ireland), and images were captured with the iXon 888 Life 

EMCCD camera within the confocal system. Image capture was directed and processed using 

FUSION imaging software (Andor Technologies, Inc, Belfast, Northern Ireland). Each image 

was taken at 10x magnification, utilizing a Z-stack depth of 150 to 300 μm with a 2 μm step size, 

depending on scaffold thickness. Due to the large surface area, three imaging fields were selected 

at random and captured in each scaffold to provide an overview of the entire sample area.  

 

In every scaffold, the background matrix structure was imaged using a 561 nm laser line at 30% 

intensity, 100ms exposure time, and a 600 nm filter. No labelling dye was required to stimulate 

autofluorescence of the scaffold.  

 

Scaffolds to be imaged with GFP were imaged using a 488 nm laser line at 5% intensity, 50ms 

exposure time, and a 525nm filter. No labelling dye was required to visualize GFP
+
 cells. 

 

Scaffolds to be labelled with CytoCy5s were imaged using a 637 nm laser line at 56% intensity, 

50ms exposure time, and no filter. 500 μL complete medium containing 1 μM CytoCy5s was 

added to the inner well, while complete medium alone was added to the outer well. Scaffolds 

were then incubated for 1 hour in the culturing position before imaging. Fresh complete medium 

was added to both the inner and outer wells when transferring to the imaging position.  

 

Scaffolds to be labelled with Calcein-AM were imaged using a 488 nm laser line at 5% intensity, 

50ms exposure time, and a 525 nm filter. 500 μL complete medium containing 1 μM Calcein-

AM was added to the inner well, and 1 mL complete medium with 1 μM Calcein-AM was added 

http://www.andor.com/cameras/ixon-emccd-camera-series
http://www.andor.com/cameras/ixon-emccd-camera-series
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to the outer well. The scaffolds were then incubated for 30 minutes in the culturing position 

before imaging. Fresh complete medium was added to both the inner and outer wells when 

transferring to the imaging position. 

 

3.4.2 Image processing 

All confocal images were processed using IMARIS 9 image analysis software (Oxford 

Instruments, Abington, UK). Fluorescent signal was quantified through the creation of surface 

volumes delineating areas of fluorescently labelled material. The overlap of multiple surface 

volumes was quantified with the use of the surface colocalization function, in which a new 

surface volume was generated from only voxels in which both surfaces were present.  

  

3.5 Histology 

3.5.1 Fixation and embedding of scaffolds 

At the endpoint for each experiment where histological analysis was needed, the medium 

surrounding the crowns was removed, and each crown was washed with 1 mL PBS in the 

exterior well and 500 μL PBS in the interior. The PBS was then replaced with 4% 

paraformaldehyde (PFA) (VWR International, ltd., Radnor, PA, USA), and the crowns were 

incubated for 1 hour. After incubation, the PFA was removed and the crowns were washed again 

with PBS.  

 

Each crown was then transferred to a 10 cm petri dish, and the outer ring was removed. Excess 

matrix attached to the side of the crown was flattened onto the petri dish using forceps, and cut 

away with a scalpel blade. The crown itself was lifted, leaving only the section of matrix 

containing cells on the dish. This matrix was then rolled using forceps and divided into three 

segments using a scalpel blade before transfer into histological cassettes for dehydration and 

paraffin processing.  

 

Using a TP1020 tissue processor (Leica Biosystems, Wetzlar, Germany), the matrix scaffolds 

were run through a dehydration battery of two series of 80% ethanol, two series of 96% ethanol, 

four series of 100% ethanol, and two series of Xylene, submerged for 1 hour in each well. The 
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scaffolds were then transferred into two series of paraffin wax for 1 hour each to allow for 

paraffin infiltration.  

 

After paraffin infiltration, the scaffolds were oriented vertically in metal molds containing 

paraffin wax, and placed on a cold plate until the paraffin was solid. The resulting paraffin 

blocks were removed from their molds and stored at 4℃ overnight. 

 

3.5.2 Slicing of histology samples 

The paraffin blocks were transferred to storage at -20℃ for 1 hour before slicing. Blocks were 

sliced using an RM2155 microtome (Leica Biosystems, Wetzlar, Germany). The blocks were 

trimmed in 45 μm slices until the cross section of the scaffold was visible on the surface of the 

block. The block was then sliced in 5 μm sections, and each slice was transferred to a water bath 

at 35℃. After any creases were removed in the water bath, the slices were then transferred flat 

onto microscope slides (VWR International, ltd., Radnor, PA, USA) and allowed to dry 

overnight.  

 

3.5.3 Hematoxylin-Eosin (H&E) staining 

Paraffin was removed from the slides through 2 changes of Xylene for 10 minutes each. The 

samples were then rehydrated in 2x 100% ethanol for 5 minutes, followed by 96% ethanol and 

70% ethanol for 5 minutes each. The samples were washed briefly in distilled water, and stained 

in Harris hematoxylin solution (Merck, Kenilworth, NJ, USA) for 8 minutes. To remove excess 

hematoxylin, the samples were washed in running tap water for 5 minutes. After washing, the 

samples were transferred to 1% acid alcohol for 1 minute, followed by running tap water for 1 

minute, and sodium bicarbonate for 1 minute. The samples were then washed in running tap 

water once more for 5 minutes, followed by 10 dips in 96% ethanol and counterstaining with 

Eosin working solution for 1 minute. The samples were then dehydrated in 96% ethanol, 

followed by two changes of 100% ethanol and two changes of Xylene for 5 minutes each. 

Finally, coverslips were mounted over the samples using a mounting solution of distyrene, 

tricresyl phosphate, and xylene (DPX). Samples were then left to dry overnight.  
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3.5.4 Masson-Goldner Trichrome staining 

Paraffin was removed from the slides through 2 changes of Xylene for 10 minutes each. The 

samples were then rehydrated in 2x 100% ethanol for 5 minutes, followed by 96% ethanol and 

70% ethanol for 5 minutes each. The samples were washed briefly in distilled water, and stained 

in Harris hematoxylin solution for 5 minutes. To remove excess hematoxylin, the samples were 

washed in running tap water for 5 minutes. Samples were then washed in 1% acetic acid for 30 

seconds and stained in Azophloxine solution (Merck, Kenilworth, NJ, USA) for 10 minutes. The 

samples were washed again in 1% acetic acid for 30 seconds and stained in Tungstophosphoric 

acid orange G solution (Merck, Kenilworth, NJ, USA) for 1 minute. The samples were washed 

again in 1% acetic acid for 30 seconds and stained in Light green SF solution (Merck, 

Kenilworth, NJ, USA) for 2 minutes. The samples were washed again in 1% acetic acid for 30 

seconds, followed by dehydration in 70% ethanol for 30 seconds, 96% ethanol for 30 seconds, 

two changes of 100% ethanol for 2 minutes each, and two changes in Xylene for 5 minutes each. 

Samples were mounted with DPX mounting solution and left to dry overnight.   

 

3.5.5 Slide Imaging 

Histology samples were imaged using a VS120 S6 slide scanner (Olympus Life Science, 

Waltham, MA, USA), collecting multiple imaging fields across the sample and stitching them 

together, resulting in a single image containing the entire sample field. Images were captured and 

stitched using VS-ASW S6 software (Olympus Life Science, Waltham, MA, USA). An overview 

of each slide was first imaged at 2x magnification, followed by the identification and imaging of 

sample fields at 10x magnification. The resulting images were processed using QuPath image 

analysis software (82).  

 

3.6 Statistics 

Statistical analysis of the difference in cell viability between each pancreatic cell line present in 

the WST-1 assay, as well as the difference in surface volumes of MIA PaCa-2, BxPC-3, PANC-

1, and BJ Fibroblast cell lines was carried out using Student’s t-test. For all statistical analysis, 

statistically significant results were determined by p < 0.05. 
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4 Results 

4.1Optimization and validation of the 3D culture system 

In collaboration with the Translational Center for Regenerative Therapies (Fraunhofer Institute, 

Würzburg, Germany) we were allowed access to samples of the original cell crown design, as 

well as the use of SISser decellularized matrix scaffolds. We wanted to establish a 3D model of 

PDAC utilizing the information and resources afforded to us, and to optimize and validate this 

system so that each application will produce accurate and reliable results.   

 

4.1.1 Cell crown design 

One feature of our system is the ability to follow cell growth in real time through confocal 

imaging, allowing dynamic endpoints to be set for cells with varying rates of growth. The 

original crowns were designed with the scaffold suspended and secured above the plate surface 

to allow for cell culturing with medium above and below the scaffold (Fig 4.1a). Confocal 

imaging requires the scaffold to be in contact with the imaging surface, so a new crown design 

was required to allow for both the culturing and imaging of cells on the scaffold. Various crowns 

were developed and tested (Fig 4.1b) before arriving at a design with both culturing and imaging 

orientations, and the ability to efficiently transfer between the two (Fig 4.1c).  
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4.1.2 WST-1 Toxicity Assay 

While the original crowns were developed using the biocompatible PEEK material, our newly 

designed crowns were produced via 3D printing with Formlabs White material, which has not 

been previously rated for biocompatibility. To ensure a lack of cytotoxic effects from the 3D-

printed material, a WST-1 cell viability assay was carried out. MIA PaCa-2, BxPC-3, and 

PANC-1 cells were incubated in their respective complete media conditioned with PEEK, 

Formlabs White, Formlabs Dental SG, silicone, or no material. Cell viability was assessed by 

metabolic activity, which is directly correlated with absorbance (Fig 4.2a). MIA PaCa-2 cells, 

when cultured alongside silicone and Formlabs White, showed a significant decrease in 

metabolic activity compared to cells grown in medium with no material. When compared with 

Formlabs Dental SG, a material known to be biocompatible, this response was diminished, with 

a decrease in absorbance of approximately 8% compared with Formlabs Dental SG as opposed to 

the 18% decrease seen when compared with no material. A similar decrease in metabolic activity 

was also seen in PANC-1 cells cultured alongside PEEK and Formlabs White material, showing 

a decrease in absorbance of approximately 18% and 15% respectively. BxPC-3 cells, however, 

showed a significant increase in metabolic activity when cultured alongside Formlabs White 

material, and a trend of increased metabolic activity in all other materials with the exception of 

PEEK.  

 

In practice, Formlabs White material was not durable enough to withstand the heat and pressure 

of autoclaving over time. Therefore, the material used to print crowns was changed to Formlabs 

High Temp. The viability assay was then repeated to analyze cells cultured alongside Formlabs 

High Temp and White materials. In this assay, there were no statistically significant differences 

in metabolic activity in any of the three cell lines (Fig 4.2b). 
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4.1.3 Assessment of scaffold permeability 

The porousness of the scaffold in the crown system was analyzed to determine the ability of 

elements such as labelling dyes or therapy drugs to diffuse into and through the scaffold. Using 

SISser scaffolds, 100 μL complete medium + Trypan Blue was added to the inner well, with 

complete medium containing no dye in the surrounding well. Spectrophotometry was then used 

to detect absorbance corresponding with Trypan Blue (~490 nm) in both the inner and outer well 

over 24 hours, with absorbance directly correlated with Trypan Blue concentration (Fig 4.2c). 

After 6 to 8 hours, the concentration of Trypan blue is almost equal in both the inner and outer 

wells, with complete equilibrium by 24 hours.  

 

4.1.4 “In-house” production of SISser 

To streamline the use of our model system and increase self-sufficiency, production of the SISser 

scaffold was attempted in our lab. H&E-stained samples produced by our lab were compared 

with those received from the Translational Center for Regenerative Therapies (Fraunhofer 

Institute, Würzburg, Germany) in the absence of cells. While the decellularized matrices were 

generally uniform, sections from both origins showed occasional areas that appeared thicker, and 

samples from these areas were also compared. The normal, thin sections showed a similar pattern 

of H&E staining and similar structural patterns were present in both samples (Fig 4.2d i, iii). 

Scaffolds produced by our lab were noticeably thicker, averaging a thickness of approximately 

300-500 μm, as opposed to a thickness of approximately 100-300 μm in the received samples. 

Areas from the visibly thicker sections showed structural similarities with the mucosa layer in 

both produced and received s (Fig 4.2d ii, iv). Samples from these sections produced in our lab 

displayed areas of hematoxylin staining, indicating the presence of cellular or DNA material.  

 

4.1.5 Assessing imaging potential of the system 

While confocal imaging provides a valuable tool for visualizing three dimensional samples with 

some degree of depth, SISser scaffolds are composed of dense materials that tend to diffract and 

block the penetration of light. The visualization of cells on both the upper and lower surfaces 

was tested by seeding MIA PaCa-2 NTR
+
 cells and imaging with CytoCy5s. Cells imaged on the 

bottom surface in direct contact with the imaging plate showed a clear and measurable signal, 
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while no fluorescence was able to be seen through the dense material of the SISser scaffolds  

(Fig 4.2e).  

 

4.1.6 Optimization of Calcein-AM fluorescent dye 

To allow for live-cell imaging of any cells seeded on the scaffold, Calcein-AM was selected as a 

candidate fluorescent dye that interacts with and labels all cells. To determine the optimal 

incubation strategy for the use of Calcein-AM, two methods of administration were tested. 1 μM 

Calcein-AM was added either to the inner well alone, or to both the inner and outer wells. Each 

condition was then monitored over time with confocal imaging (Fig 4.3a). When samples 

containing Calcein-AM only in the inner well were imaged, no signal could be seen from the 

cells at the 10 and 30 minute time points. The only discernible image from these images was the 

background autofluorescence from the scaffold. At the 60 and 120 minute time points, some 

sporadic signals appearing the size of a typical MIA PaCa-2 cell were visible, with the remaining 

areas becoming washed out.  

 

Cells were easily discernible at each time point in the samples containing Calcein-AM in both 

the inner and outer wells. However, the most uniform and reliable signal appeared at 30 minutes. 

Images captured at 10 and 60 minutes show spots of weak or washed out signal where cells 

would be expected, along with patches of bright signal scattered across the image. This uneven 

staining seems to become more exacerbated after 120 minutes, and does not provide an optimal 

representation of the cells located on the scaffold.  

 

4.1.5 Accuracy of Calcein-AM signal 

To assess the accuracy of Calcein-AM staining, CytoCy5s was used as a known fluorescent 

marker for comparison. MIA PaCa-2 NTR
+
 cells were incubated in 1 µM CytoCy5s for 1 hour 

and 1 µM Calcein-AM for 30 minutes, and the signals from each dye were visualized. The 

resulting images showed a similar pattern between the Calcein-AM and CytoCy5s reporter 

signals (Fig 4.3b).  

 

To quantify the similarity between the Calcein-AM and CytoCy5s signals, surface colocalization 

was used. 50 x 10
3
 MIA PaCa-2 NTR

+
 cells were seeded on the submucosa and serosa surfaces 



Results 

30 
 

of the SISser scaffold. The surface volume of each channel was then analyzed using IMARIS 

image analysis software and the colocalization between the two surfaces was calculated. The 

colocalized surface volume, consisting of the voxels in which both the Calcein-AM and 

CytoCy5s surfaces intersect, represented 65% of the original Calcein-AM surface volume (Fig 

4.3c).  

 

 

 

 

 

 



Results 

31 
 

4.2 Pancreatic cell growth in monoculture 

With a greater understanding of the behavior of the model system, it is important to determine 

how the system functions in combination with various pancreatic cancer cell lines. MIA PaCa-2, 

BxPC-3, and PANC-1 cell lines were selected to provide an overview of the response seen in 

cancer cells from different origins. Initially, GFP
+ 

cell lines were employed as a means of 

following their development in a reliable manner without the use of any fluorescent dyes.  

 

4.2.1 MIA PaCa-2 monoculture 

6 x 10
3
, 12 x 10

3
, 25 x 10

3
, or 50 x 10

3
 MIA PaCa-2 GFP

+
 cells were seeded on the submucosa 

of SISser scaffolds, and growth was followed with confocal microscopy. After imaging was 

completed, the samples were fixed and prepared for histological analysis through H&E staining 

(Fig 4.4a). MIA PaCa-2 cells grew rapidly in comparison to the other two cell lines, reaching 

approximate confluency at day 14 in the lowest seeding number of 6 x 10
3
. At other seeding 

concentrations, confluency was reached around day 10, with a clear pattern of increased cell 

concentration leading to a more rapid path to confluency. MIA PaCa-2 cells grew in a pattern of 

small colonies of circular cells expanding and combining until a mostly uniform surface was 

created over the scaffold.  

 

Histological analysis shows areas of sporadic penetration of single or paired cells into the 

scaffold, along with instances of oval-shaped cell colonies appearing embedded within the 

scaffold. It is difficult to distinguish a pattern of invasion that aligns with an increased number of 

cells, as the most deeply embedded colony was seen in a sample initially seeded with 6 x 10
3
 

cells, with other examples of these colonies seen in samples seeded with 50 x 10
3
 cells. 

However, as the concentration of seeded cells increases, so does the number of cells present on 

the surface of the scaffold, with the cells beginning to form loosely-packed layers in any initial 

number of seeded cells greater than 6 x 10
3
.  

 

4.2.2 BxPC-3 monoculture 

The process of cell seeding, imaging, and histological analysis was repeated using similar 

numbers of BxPC-3 GFP
+
 cells (Fig 4.4b). BxPC-3 cells were not able to grow with the ease 

seen in the MIA PaCa-2 samples, with a complete loss of cell signal by day 21 in the lowest 
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initial seeding number of 6 x 10
3
. Only the highest seeding number of 50 x 10

3
 was able to reach 

confluency, and did so around day 14. There was a pattern of increased initial seeding 

concentration leading to a larger area of cell coverage over time. The cells first developed into 

small, circular colonies which then expanded and combined to cover larger areas across the 

scaffold. However, the colonies of BxPC-3 cells were not comprised of spherical cells akin to the 

growth of MIA PaCa-2 cells, but grew in a more evenly-distributed and planar manner, with 

individual cells difficult to distinguish within the GFP signal.   

 

Histological analysis showed; when cells were present, groups of evenly-distributed cells across 

the scaffold surface with areas of cells growing into the scaffold. As seen in a sample of 12 x 10
3
 

seeded cells, this growth into the scaffold does not require confluency to occur. Some cell 

colonies can also be seen growing within the scaffold, separated from those cells growing on the 

surface within samples seeded with 12 x 10
3 

cells or greater. As the number of initially seeded 

cells increases, a greater area of the scaffold surface can be seen covered in BxPC-3 cells, with 

samples seeded with 50 x 10
3
 cells showing almost complete confluency across the surface.  

 

4.2.3 PANC-1 monoculture 

The process of cell seeding, imaging, and histological analysis was repeated using PANC-1 

GFP
+
 cells (Fig 4.4c). PANC-1 cells did not grow as reticently as BxPC-3 cells; however they 

achieved a rate of confluency lower than in MIA PaCa-2 cells. Increasing from 6 x 10
3
 to 12 x 

10
3
, confluency was reached around day 14, with cells almost reaching full confluency in the 

lower concentration by day 21. At these concentrations, the PANC-1 cells grew in populations of 

spherical cells expanding to distribute across the scaffold, with areas of denser cell concentration 

where individual cell distinction became difficult.  

 

At seeded cell numbers of 25 x 10
3
 and 50 x 10

3
, dense colonies of cells were able to form before 

the cells could expand to cover the scaffold, resulting in a decreased surface coverage moving 

from 12 x 10
3
 to 25 x 10

3
 cells. This pattern was also seen in samples seeded with 50 x 10

3
 cells, 

although the increased starting concentration appeared sufficient to drive more rapid growth. By 

the time of confluency in these seeding concentrations, a combination of dense colonies of cells 
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and individually distinguishable spherical cells can be seen, similar to that seen in the lower 

seeding concentrations.  

 

Histological analysis showed cells growing across the scaffold surface, in a combination of 

tightly and loosely-packed cells.  PANC-1 cells can also be seen growing into the scaffold 

directly from the surface, along with oval and circular shaped colonies of cells seen embedded 

more deeply within the scaffold. As seeding density is increased, a larger number of cells can be 

seen across the surface of the scaffold, and areas of growth into the scaffold seem to become 

more commonplace. Similarly to MIA PaCa-2 samples, more deeply embedded colonies can be 

seen across many seeding densities, including the lowest of 6 x 10
3
.  

 

4.2.4 Quantification of monoculture fluorescent signals 

The growth of each cell line was quantified through analysis of the volume of surfaces created 

within IMARIS image analysis software, and surface volumes were plotted as a function over 

time (Fig 4.4d). Surface volume data showed that, in samples seeded with MIA PaCa-2 cells, the 

highest cell volume was achieved by day 10 in seeding densities of 25 and 50 x 10
3
, or day 14 in 

seeding densities of 6 and 12 x 10
3
. Samples seeded with BxPC-3 cells did not reach their 

maximum cell volume until day 21. PANC-1 samples reached a maximum volume at day 14 for 

seeding densities of 12 and 50 x 10
3
, or day 21 in seeding densities of 6 and 25 x 10

3
.  

 

Samples containing MIA PaCa-2 and PANC-1 cells that reached a maximum volume before day 

21 showed a continuous decline in surface volume until day 21. This response was not seen with 

BxPC-3 cells, as no samples reached a maximum volume prior to day 21.     
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4.3 Preparation for coculture experiments 

To expand the model system in a way that the seeded pancreatic cells may grow in a more 

representative environment, BJ human fibroblasts were chosen to be seeded in coculture with the 

pancreatic cells. To distinguish between pancreatic cells and fibroblasts in confocal images, a 

dual color system was necessary. Therefore, one of the cell lines in the coculture required a 

fluorescent reported using a wavelength that does not overlap with the emission of GFP. 

CytoCy5s was selected as a reporter to image BJ fibroblasts in the far-red emission range, 

requiring transduction of the fibroblasts with NTR.  

 

BJ human fibroblasts were transfected with NTR as described in the methods (Section 3.2). 

Following successful transfection, NTR
+
 cells were selected using FACS, and after two rounds 

of sorting a population of BJ fibroblasts with approximately 94% NTR
+
 cells was attained (Fig 

4.5a). However, after analyzing the response of wild-type pancreatic cell lines to CytoCy5s 

administration, BxPC-3 wild-type cells showed an increased response when compared to other 

NTR
-
 cells. When compared with the recently finalized BJ fibroblast NTR

+
 cell line, 

approximately 70% of the BxPC-3 NTR
-
 signal overlapped with the positive signal from the BJ 

fibroblast NTR
+
 cell line, with <1% overlap with PANC-1 NTR

-
 cells (Fig 4.5b). 
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4.4 Pancreatic cell growth in coculture with BJ fibroblasts 

With a system in place to visualize and track multiple cell lines at once, GFP
+
 BxPC-3, GFP

+
 

PANC-1, and MIA PaCa-2 wild-type cells were seeded on the submucosa of SISser scaffolds in 

coculture with NTR
+
 BJ Fibroblasts to assess the effects of fibroblasts within the system. BxPC-

3 and PANC-1 samples were followed with confocal imaging before histology, while MIA 

PaCa-2 samples were assessed only via histological analysis. This was to avoid cross-staining 

due to NTR
+
 expression in the only available GFP

+
 MIA PaCa-2 cell line.  

 

4.4.3 MIA PaCa-2 + BJ Fibroblasts 

12 x 10
3
 MIA PaCa-2 cells were seeded on the submucosa surface of SISser scaffolds, either 

alone or in combination with 2.4 x 10
3

 (20%) or 4.8 x 10
3
 (40%) BJ Fibroblasts. 12 x 10

3
 BJ 

fibroblasts were also seeded alone, and each condition fixed after 21 days for histology. 

Histological analysis of scaffolds containing MIA PaCa-2 cells showed a gradient of increasing 
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invasion potential correlated with increased fibroblast concentration (Fig 4.6d). When seeded 

alone, MIA PaCa-2 cells showed evidence of invasion into the scaffold, while typically 

remaining near or connected to cells on the surface.  With the addition of 20% BJ fibroblasts, 

MIA PaCa-2 cells travelled farther from the surface, exhibiting the ability to move from one 

surface to the other by penetrating the entire scaffold. When BJ fibroblast concentration was 

increased to 40%, large colonies of MIA PaCa-2 were observable embedded deeply within the 

scaffold and independent of cells on the surface. BJ fibroblasts seeded alone were distributed 

sparsely across the surface and embedded within the scaffold.  

 

4.4.2 BxPC-3 + BJ Fibroblasts 

50 x 10
3
 BxPC-3 cells were seeded on the submucosa surface of SISser scaffolds, either alone or 

in combination with 10 x 10
3

 (20%) or 20 x 10
3
 (40%) BJ Fibroblasts. 50 x 10

3
 BJ fibroblasts 

were also seeded alone. When grown in coculture with BJ fibroblasts, BxPC-3 cells reached 

confluency more quickly than BxPC-3 cells grown alone (Fig 4.6a). When cultured without 

fibroblasts, BxPC-3 cells reached confluency at day 14, while confluency was reached at day 7 

in both concentrations of added fibroblasts. Cells grew in a similar pattern to that seen in 

monoculture, grouped together in colonies of increasing size until confluency was reached.  

 

Histological analysis of BxPC-3 samples show a general trend of decreased invasion as the 

number of added fibroblasts was increased. When seeded alone, invasion patterns appearing as 

cells extending away from the surface were present across much of the scaffold. With the 

addition of 20% BJ fibroblasts, combinations of invasion patterns were present. In some areas 

cells were growing from the surface into the scaffold, while small oval-shaped colonies were 

located within the scaffold. However, the instances of invasion were not as ubiquitous when 

compared to BxPC-3 cells seeded alone, with many areas showing no signs of invasion. With the 

addition of 40% BJ fibroblasts, very few instances of invasion were visible. The primary pattern 

of invasion when present was oval-shaped colonies of BxPC-3 cells embedded within the 

scaffold.  
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4.4.3 PANC-1 + BJ Fibroblasts 

50 x 10
3
 PANC-1 cells were seeded on the submucosa surface of SISser scaffolds, either alone or 

in combination with 10 x 10
3

 (20%) or 20 x 10
3
 (40%) BJ Fibroblasts. 50 x 10

3
 BJ fibroblasts 

were also seeded alone. When grown in coculture with BJ fibroblasts, PANC-1 cells were able to 

grow more rapidly, with higher concentrations of cells visible at days 3 and 7 when fibroblasts 

were present (Fig 4.6b).  PANC-1 cells grew in a similar pattern to that seen in monoculture 

under all conditions, with a combination of spherical cell clusters and dense cell colonies 

developing and spreading until confluency was reached. However, when cultured with 40% BJ 

fibroblasts, bright areas indicating tightly clustered cells were no longer present at day 21, 

instead appearing as a rather uniform distribution of signal intensity.  

 

Histological analysis shows a trend of increasing invasion potential correlated with increased 

fibroblast concentration. When seeded alone, PANC-1 cells showed areas of single cells and 

oval-shaped clusters of cells embedded within the scaffold. The occurrence of these patterns was 

increased with the addition of 20% BJ fibroblasts, as well as the ability for cells to more 

commonly travel deeper into the scaffold. When cultured with 40% BJ fibroblasts, invasion was 

even more common, with a majority of the scaffold cross-section filled with cells in many areas.  

  

4.4.4 Quantification of culture fluorescent signals 

The growth of each cell line was quantified through analysis of the volume of surfaces created 

within IMARIS image analysis software, and surface volumes were plotted as a function over 

time (Fig 4.6c). Surface volume showed that BxPC-3 samples reached a maximum volume at 

day 7 when cultured with fibroblasts, and day 14 when cultured alone. Also, the surface volume 

of BxPC-3 cells in coculture with 40% BJ fibroblasts was significantly higher (p<0.01) than 

BxPC-3 cells seeded alone. PANC-1 samples reached a maximum volume by day 14 when 

cultured alone and with 20% fibroblasts. Surface volume of PANC-1 cells cultured with 20% BJ 

fibroblasts was also significantly greater (p<0.05) than when grown alone However, PANC-1 

cells cultured with 40% BJ fibroblasts never reached this maximum volume, comprising a lower 

surface volume than the other two conditions after day 7.  
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Both BxPC-3 and PANC-1 showed a decrease in surface volume following the time point at 

which the maximum volume was reached. PANC-1 cells cultured with 40% BJ fibroblasts, 

despite never reaching the maximum volume, also demonstrated a decreased signal volume at 

day 21.  
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4.4.5 BJ Fibroblasts in coculture 

Utilizing the two-color system, BJ fibroblast development was followed over time alongside 

PANC-1 cells (Fig 4.7a). Between day 3 and day 7, there was a decrease in signal intensity. This 

is quickly reversed by day 14 however, with the fibroblasts covering a much larger area. 

Following day 14, there is once again attenuation in signal at all concentrations, resulting in an 

inability to visually identify fibroblasts when PANC-1 cells were also present.  

 

Quantification of surface volume (Fig 4.7b) demonstrates a similar pattern of development in all 

BJ fibroblast concentrations, achieving a peak volume on day 14. The pattern is also consistent 

with that seen in PANC-1 cells, where there is a drop in surface volume after reaching a 

maximum value.  
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4.5 Comparison with established model systems 

By comparing our system to standard in vivo models, a better understanding of its clinical 

relevance may be ascertained. Using Masson-Goldner trichrome staining, the cells and ECM 

may be more easily differentiated, allowing for a more accurate assessment of both (Fig 4.8). In 

collaboration with Anders Molven (Department of Clinical Medicine, University of Bergen) and 

Dag Hoem (Department of Gastrointestinal Surgery, Haukeland University Hospital), PDAC 

samples were collected from patients that underwent surgical resection after their informed 

consent. Processing and engraftment of samples was carried out by Gorka Ruiz de Garibay 

(Department of Clinical Science, University of Bergen), who provided the primary, orthotopic, 

and subcutaneous samples for staining.  

 

When comparing the histological analysis of a primary tumor and subsequent orthotopic tumor 

in two PDX models, large areas of highly desmoplastic ECM are present in the primary material, 

while orthotopic tumors of the same origin lack these areas of desmoplasia (Fig 4.8b). A tumor 

arising from subcutaneous injection of MIA PaCa-2 cells shows even less evidence of 

desmoplasia, with the landscape consisting almost entirely of cellular material (Fig 4.8c). In 

contrast to the in vivo tumor models, our system demonstrates areas of cells embedded within the 

ECM more similar to the morphology seen in primary material (Fig 4.8a). 
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5 Discussion 
PDAC is a disease plagued by difficult diagnose and ineffective treatment opportunities. 

Multiple factors lead to these issues, including the onset of symptoms at a late stage of disease 

progression and the complex tumor microenvironment that serves as a barrier to successful 

therapeutic strategies. This microenvironment consists of a complex system of multicellular 

interaction, with the effects of stromal cells, immune cells, and endothelial cells all coalescing 

around the PDAC tumor cells. Effective preclinical models are therefore necessary to allow for 

the characterization of the tumor-stroma interactions, which may provide some insights for 

potential therapeutic targets. Additionally, effective testing of novel therapeutics relies on 

accurate and reliable model systems, further increasing the need for potent preclinical models. 

With the preliminary design and development of a novel 3D PDAC model system, we hope to 

address these needs.  

 

5.1 Optimization and validation of the 3D culture system 

In the development our model system, one key aspect is the ability to follow cell growth in real 

time with the use of confocal microscopy. The original crowns we received are not compatible 

with this method of imaging due to a fixed scaffold position above the imaging plane, so a new 

design was necessary. Proper culturing conditions require the scaffold to be suspended to keep 

the system isolated and surrounded with medium, while confocal imaging requires the scaffold to 

be in contact with the plate surface. Multiple designs were drawn up and tested in an attempt to 

accommodate both positions, focusing initially on systems with two configurations that could be 

altered with physical manipulation (Results Fig 1b). This manipulation was a source of 

difficulty, leading to torn or dislodged scaffolds, contamination from extensive interaction, and 

inefficient use of time when imaging in larger batches. To negate these issues, a final design was 

implemented as a simple system meant to secure the scaffolds, with both imaging and culturing 

orientations possible depending on well size (Results Fig 1c). Removing the requirement of 

physical manipulation resulted in the reduction of damaged samples, occurrences of 

contamination, and time required for transitioning between imaging and culturing.  

 

Production of the new crown design was carried out via 3D printing, using materials not 

previously rated for biocompatibility. When assessing the biocompatibility of printed material, 
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some effects on cell viability could be seen depending on the material cells were cultured 

alongside. However, while some of these differences may have been statistically significant, 

effects were not consistent across all materials or cell lines, and the combinations of materials 

and cell lines that did show evidence of toxicity only demonstrated a minor reduction in cell 

viability. Similarly, PEEK has been shown to display no cytotoxic or mutagenic activity (83), so 

the significantly lower absorbance seen in PANC-1 cells may be within an acceptable range for 

biocompatibility. The unique response of increased viability in BxPC-3 cells may be due to the 

genotypic expression separating these cells from MIA PaCa-2 and PANC-1, with only the BxPC-

3 cell line containing a wild-type form of KRAS oncogene between the three cell lines (84).  

 

After securing the details of the crown system supporting the scaffold, imaging potential was 

tested. Cells are typically seeded in the inner well, so that they come to rest on the upper surface 

of the scaffold. However, even when in contact with the imaging plate, no fluorescent signal was 

seen from cells on the upper surface of the SISser scaffold. This is most likely due a scattering 

and diffusion of the fluorescent signal as it travels through the dense scaffold. CytoCy5s was 

implemented as the reporter dye, with an emission wavelength of ~690 nm. As emission 

wavelength of a dye increases, so also does the ability to penetrate deeper tissue (85). Based on 

this, it can be assumed that dyes with shorter wavelengths, such as GFP and Calcein-AM, will 

similarly not be seen through the scaffold. Due to the inability of cell visualization on the upper 

surface of the scaffold, successful imaging requires the scaffold itself to be flipped to position the 

cells on the lower surface. Using this method, cells may be cultured in normal conditions on the 

upper scaffold surface until attachment, and then flipped for imaging and future culturing on the 

lower surface.  

 

SISser scaffolds produced in our lab displayed similar morphology and structure to those 

received from the Fraunhofer Institute. The difference in overall size seen in our slides may be a 

result of varying anatomy between pigs. However, some samples produced in our lab showed 

areas of increased H&E staining when compared to our received samples. Due to a lack of access 

to adequate sterilization techniques, our samples did not undergo the same sterilization 

techniques as the samples received from the Fraunhofer Institute. Due to this, it is possible that 

the stained material represents the presence of bacteria or fungal activity, and proper sterilization 
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techniques would result in the removal of stained material. Additionally, the presence of staining 

could be a result of incomplete decellularization and removal of DNA material. In either event, if 

the scaffolds we produce are to be used in cell culture they will require proper sterilization. 

 

5.2 Pancreatic cell growth in monoculture 

When MIA PaCa-2, BxPC-3, and PANC-1 pancreatic cell lines were grown on the SISser 

scaffold in monoculture, each cell line showed a distinct pattern of growth. These growth 

patterns demonstrate that the model system is flexible enough to allow for the individualized 

growth of any seeded cells, and that cells do not simply conform to a pattern of growth directed 

by the scaffold interaction. Our ability to successfully follow these growth patterns also 

demonstrates the potential to assess the development and state of cells grown on the model 

system without the need for halting the experiment for fixation.  

 

Samples that were able to successfully reach confluency prior to day 21 were all followed by a 

decrease in surface volume, possibly caused by cell cycle arrest leading to a decreased 

expression of GFP, or the detachment of cells during manipulation of the crown system for 

imaging.  

 

One limitation of the information gathered from these confocal images is that they primarily 

demonstrate the location and growth of cells along the surface of the scaffold. As seen in the 

issue of imaging cells on the upper surface of the scaffold, signal interference is increased with 

the depth of cells within the scaffold structure. While the imaging platform is certainly able to 

provide images with some depth (Each image was captured with a thickness between 150 and 

300 µm), it is quite difficult to distinguish visually between cells located on the surface of the 

scaffold and those that may have become embedded. However, the purpose of following cells 

with confocal imaging is not to accurately quantify growth over time, but rather provide some 

system through which standardized endpoints may be implemented across cell lines with 

unknown rates of growth.  

 

Histological analysis demonstrated that a more detailed and accurate visualization of cell growth 

on the scaffold is possible once the endpoint is reached. The appearance of each cell line in this 
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histological analysis coincides with their respective confocal images across the surface. When 

assessing invasion potential, each cell line demonstrated some degree of embedding under all 

seeding conditions. BxPC-3 samples also show that confluence is not necessary for invasion of 

the scaffold. At 12 x 10
3
 seeded cells, two separate areas of cell growth can be seen, with both 

displaying some amount of invasion into the scaffold. BxPC-3 samples at large also seem to 

show a greater ratio of embedded cells to surface cells when compared with MIA PaCa-2 and 

PANC-1 samples. This coincides with literature detailing the difference between these pancreatic 

cell lines, as BxPC-3 cells display a higher invasive potential in substrates such as fibronectin 

and laminin (86).   

 

5.3 Preparation for coculture experiments 

After confirmation of the ability to follow and assess pancreatic cells in monoculture, a more 

complex use of the model was applied, requiring a two-color system where two cell lines could 

be independently labelled and followed. After successful transduction and sorting, NTR
+
 BJ 

fibroblasts were developed to produce a fluorescent signal with almost no overlap compared to 

NTR
-
 BJ fibroblasts or PANC-1 wild-type cells when incubated with CytoCy5s. However, the 

overlap seen in BxPC-3 wild-type cells with NTR
+
 BJ fibroblasts indicates a similar fluorescent 

response between the two cell lines. One explanation for the increased fluorescence in BxPC-3 

cells could be due to increased hypoxia. NTR
+
 cells have an enhanced ability in the reduction of 

nitrile groups, leading the fluorescent emission in the presence of CytoCy5s (80). However, 

native nitroreductase activity may be increased under hypoxic conditions (87), indicating that a 

fluorescent signal in the presence of CytoCy5s may indicate hypoxia in NTR
-
 cell lines, such as 

wild-type BxPC-3.  It is possible that the signal from these cells is due to the expression pattern 

of the cell line, as BxPC-3 cells are the only instance of pancreatic cells with wild-type KRAS 

expression out of the cell lines we used. However, the ability of CytoCy5s to label hypoxic 

conditions may have some benefit in testing other cell lines or growth conditions for hypoxia.  

 

Based on the results of SISser membrane permeability (Fig 4.2c), more efficient usage of 

CytoCy5s was attained by administering only in the inner well and allowing the dye to enter and 

pass through the scaffold. While the permeability seen in Trypan Blue may not predict an exact 
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equilibrium curve for other dyes such as CytoCy5s, it does demonstrate a porousness of the 

scaffold and indicates the ability for the transfer of materials from the inner to outer well.  

 

5.4 Pancreatic cell growth in coculture with BJ fibroblasts 

With a system in place to image follow both pancreatic cells and fibroblasts independently; the 

two cells types were cultured both alone and alongside each other to assess any effects of 

interaction. Imaging analysis showed an overall increase in growth rate of both BxPC-3 and 

PANC-1 cells when cultured alongside BJ fibroblasts, indicating some form of interaction. An 

increased rate of proliferation due to interaction with fibroblasts correlates with patterns seen in 

PDAC, where growth factors and ECM components excreted by PSCs induces increased 

proliferation of tumor cells (24).  

 

After reaching confluency, all conditions of both BxPC-3 and PANC-1 cells resulted in a 

decreased surface volume until the endpoint was reached. However, PANC-1 cells cultured with 

40% BJ fibroblasts reached a maximum surface volume much lower than that shared between 

both PANC-1 cells seeded alone and with 20% BJ fibroblasts. One possibility for this subdued 

signal is that the increased concentration of fibroblasts drives the cells to invade the scaffold, as 

seen in experiments with colorectal cells on SISser scaffolds (68). As the cells move deeper into 

the scaffold structure, the fluorescent signal becomes more occluded due to the dense material 

surrounding the cells. This, coupled with a decreased number of cells on the surface, would 

result in a lesser amount of cells visualized and included in the surface volume quantification.  

 

Histological analysis of BxPC-3, PANC-1, and MIA PaCa-2 cells in coculture with BJ 

fibroblasts also showed trends of pancreatic cell invasion potential driven by the presence of 

fibroblasts. PANC-1 and MIA PaCa-2 cell lines both showed a positive correlation between 

concentration of fibroblasts and magnitude of invasion, similar to previous experiments using 

colorectal cells (68). BxPC-3 cells, however, demonstrated a negative correlation, with much 

fewer areas of invasion seen as the concentration of fibroblasts was increased. This is unexpected 

in the context of the response seen in MIA PaCa-2 and PANC-1 cells, although the unique 

genetic composition of BxPC-3 cells may be responsible. It is possible that wild-type KRAS 
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expression present only in BxPC-3 cells is responsible for the vastly different responses 

compared to MIA PaCa-2 or PANC-1 cells that contain mutated KRAS expression.  

 

5.5 Comparison with established model systems 

With a greater understanding of the SISser model obtained from our experiments, it is important 

to compare this model with other standard systems to better understand where pancreatic cell 

lines grown on SISser scaffolds can fit in the landscape of preclinical analysis.  

 

The lower concentration of ECM material present in both orthotopic and subcutaneous injection 

models demonstrates a tumor microenvironment dissimilar to the desmoplastic nature of primary 

tumors. This may potentially lead to a subdued role of the tumor stroma in these models, 

characterized by both a lack of ECM factors that drive tumor-stroma interaction and mechanical 

isolation of tumor cells within the desmoplastic core.  

 

MIA PaCa-2 cells and BJ fibroblasts seeded on SISser scaffolds show an ECM density and 

morphology similar to examples of ECM in primary tumors. It is important to note however, that 

the MIA PaCa-2 cells were added to a pre-existing collection of ECM materials, and the ability 

of these cells to drive the secretion and development of their own ECM factors has not yet been 

determined. Masson-Goldner trichrome staining used to distinguish the ECM also colors all 

ECM factors with the same green hue, so it is possible that there are some compositional 

differences between the ECM in primary material and SISser scaffolds. Overall these 

comparisons are quite preliminary, though they provide insight on the potential for future 

directions in developing a representative model of PDAC.  

 

One method in which the SISser model can be further analyzed is through the addition of 

primary PDAC material as opposed to genetically labelled pancreatic cell lines. Cell suspensions 

derived from primary tumors may contain multiple cell types biologically relevant to PDAC 

development, and it would be useful to assess their interaction and development in a SISser 

model. Before this can be accomplished, however, a method of labelling and following these 

cells will be necessary. Calcein-AM demonstrated the ability to fluorescently label unmodified 

cell lines, and would be useful for applications with primary material (Results Fig 3). When 
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compared with CytoCy5s, Calcein-AM signal covered a larger volume. One possibility for this is 

that Calcein-AM is present in a larger portion of the cytoplasm, whereas CytoCy5s signal 

appears more compact within the cell. Overall though, the volume of the colocalized surface was 

not significantly smaller than the Calcein-AM volume alone, indicating a statistical similarity 

between the two dyes.  

 

Based on our results, Calcein-AM does not possess the same ability as CytoCy5s to perfuse 

through the scaffold in a way that it can still label cells. However, Calcein-AM was able to 

visualize cells clearly when added to both the inner and outer wells. However, the fluorescent 

signal was inconsistent and partially washed out at the 10, 60, and 120 minute time points. Based 

on these results, the optimal method for imaging unlabeled cells is to incubate each sample for 

30 minutes with 1 μM Calcein-AM added to both the inner and outer wells.  

 

5.6 Future perspectives 

With the potential for expansion into unlabeled cell lines, a generalized experimental structure 

can be created based on the results of labelled cells within the SISser model. After selection of a 

cohort of cells to analyze, varying concentrations of cells may be seeded and followed visually 

with confocal microscopy to determine optimal seeding concentrations to allow for a common 

time endpoint to be established. If material availability is limited, endpoints based on cell volume 

or confluency may be determined before seeding, with each condition halted upon reaching the 

desired threshold. Consistent endpoints ensure that analyzed information across multiple 

conditions can be reliably compared. 

 

Another potentially useful area of expansion for SISser models is with the application of 

additional cell types in coculture. For example, immune cells such as macrophages have been 

shown to play an integral role in the development of PDAC (26), and inclusion of these samples 

in coculture with pancreatic cells and fibroblasts may result in more biologically relevant cell 

interactions. Endothelial cells are also commonly found in the tumor microenvironment, 

interacting with and directing immune cells as well (88). With the addition of each cell type in 

coculture, it would certainly be interesting to analyze if cell interactions seen in PDAC are 

conserved in our system. 
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Decellularized porcine intestinal scaffold models also possess the ability to mimic 

vascularization. Intestinal samples may be processed in a manner retaining the vascular system, 

which may then be attached to a bioreactor to provide accurate vascular flow (70). Given the 

importance of vascularity in both drug delivery and tumor progression (89), dynamic models 

with vascularization provide a much more accurate biological context compared to similar 

models in static conditions.  

 

More accurate analysis and characterization of the SISser model would also prove beneficial 

moving forward. In the current experiments, analysis was primarily based on morphology, 

focusing on areas such as the concentration and location of cells. While this information is useful 

in understanding cell behavior, more accurate characterization would be useful to gather more 

detailed information on the state of cells within the model. For example, immunohistochemistry 

may be employed to accurately label ECM factors typically secreted by PSCs (24) to determine 

if the interaction observed between fibroblasts and pancreatic cells is representative of that seen 

in PDAC. Also, PDAC tumor progression may be characterized by marker expression, providing 

the ability to assess the similarity of activity of cells within the model compared to examples 

seen in PDAC (90).  Combination with flow cytometry would provide an opportunity to assess 

expression patterns of the pancreatic cells under various conditions. This method may provide 

information on the activity and expression of cells as they interact with the scaffold, for example 

if there are some differences between cells located in the oval-shaped colonies as opposed to 

those that seem to travel independently from the surface. Also, characterization of expression 

patterns may provide some insight into the different responses of BxPC-3 cells.  

 

One goal in the development of a SISser model is the ability to accurately predict tumor response 

to various therapeutic strategies. With the addition of prevalent PDAC treatments, such as nab-

paclitaxel + gemcitabine or FOLFIRINOX, the response of cells within the SISser model can be 

compared to responses generated in other model systems, such as orthotopic injection, as well as 

primary tumors. Given the ability for permeation seen in the SISser scaffold (Fig 4.2c), it would 

be interesting to assess the treatment effects when the drug must travel through the matrix. 
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Ultimately, the SISser model system applied to PDAC shows potential in filling a necessary 

preclinical niche, retaining the efficiency of an in vitro model while providing accurate and 

biologically representative development typically reserved for in vivo models.  
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