

FW implementation of SMILE SXI
Radiation Shutter Control System

Anders Lerum Alme

Master of Science in Physics

University of Bergen

June 2019

II

© Author

2019

FW implementation of SMILE SXI Radiation Shutter Control System

Anders Lerum Alme

http://bora.uib.no/

http://bora.uib.no/

III

Abstract

In 2023 a Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) satellite is set to

launch to explore how solar wind interacts with the earth’s magnetosphere and ionosphere. The

SMILE space mission is a joint operation between the European Space Agency (ESA) and the

Chinese Academy of Science, where scientists and industry are contracted to provide the

satellite and its instruments.

A Soft X-ray Imager (SXI) which is one of those instruments, is designed to detect low energy

electrons in this interaction. As the satellite will orbit the earth, it will during a percentage of

the orbit come within the radiation belt of the earth, where there are high energy particles. To

protect the detectors in the SXI instrument from the high energy radiation near the earth, a

radiation shutter is being developed by a team at the University of Bergen to enclose the detector

inside the satellite when needed.

This device is split into the radiation shutter mechanics (RSM) and the radiation shutter

electronics (RSE) that is going to control the operation of the RSM. This work covers the

continued development, implementation, testing and verification of the RSE.

This thesis explains the functionality of the RSE and the implementation of that system on a

field-programmable gate array (FPGA). The RSE will be commanded by a central master that

oversees the operation of the whole SXI instrument. A reliable communication protocol is

designed and implemented to be able to communicate with the master. The RSE will be able to

perform different operations, including opening and closing the shutter, reading different

sensors related to the shutter operations and it will be able to protect the SXI detectors should

the master data process unit (DPU) fail.

The system has been tested with both simulations with a test bench and on a breadboard. These

tests have been done to check that the RSE operates as desired and that a breadboard version of

the shutter will be able to open and close.

IV

V

Acknowledgements

First and foremost, I would thank my supervisor and the man responsible for the design and

development of the Radiation Shutter Electronics, Professor Kjetil Ullaland. He has been a

tremendous help with developing an actual useful design and excellent guidance in writing this

thesis, especially when I was struggling at different times. I would thank him for unbeknownst

to me, nominating me to be in charge of buying in snacks and drinks for the Christmas party,

which I assume is the highest honour a student of his can achieve.

I give my thanks to Ove Lylund, whose work this thesis continues, Chief Engineer Bilal Hasan

Qureshi who have both tested my design and collaborated with me in the testing of the RSM,

and Senior Engineer Shiming Yang for his development of the hardware I got to use. I would

also thank Senior Engineer Georgi Genov, who helped us set up the measurements and the rest

of the SMILE team for their work with the SMILE project.

For tips, tricks and solutions to problems, both Ola Grøttevik and Associate Professor Johan

Alme, who also helped with my thesis, have my gratitude. Also, Magnus Rentsch Ersdal has

my thanks. He helped me with making a working test program when I was handed a python

program for the first time in my life.

At last, I would like to thank my friends and my family for support and encouragement. My

time at the University would not have been the same without them.

VI

VII

Content

1 Introduction .. 11

1.1 Background .. 11

1.2 About this thesis .. 11

1.3 Thesis outline ... 12

2 Requirements for the electronics .. 14

2.1 Objective .. 14

2.2 Soft X-ray Imager Instrument .. 15

2.2.1 Electronics box ... 16

2.3 Radiation Shutter Mechanics ... 16

2.3.1 Rotary actuator ... 17

2.3.2 Hold Down Release Mechanism .. 19

2.3.3 End Switch ... 19

2.3.4 End Stops .. 19

2.4 Radiation Shutter Electronics .. 20

2.4.1 Radiation considerations .. 21

2.4.2 FPGA .. 22

2.4.3 Stepper Motor ... 22

3 RSE Development .. 27

3.1 Software vs Hardware ... 27

3.1.1 FPGA .. 27

3.1.2 Embedded system ... 28

3.1.3 FPGA or CPU... 31

3.2 State machine ... 32

3.3 VHDL development strategy ... 33

3.3.1 Waterfall development method .. 33

3.3.2 Lean development method ... 35

3.3.3 Choosing a strategy .. 36

4 Functionality ... 38

4.1 Design - VHDL ... 38

4.2 Registers .. 38

4.2.1 Status registers .. 39

VIII

4.2.2 Control registers ... 41

4.2.3 Debug registers ... 44

4.2.4 Command register .. 45

4.3 Operational procedures .. 45

4.3.1 Emergency closure ... 45

4.3.2 Temperature reading .. 46

4.4 Command operations ... 46

4.4.1 Motor commands .. 48

4.4.2 Other commands .. 49

4.5 Communication ... 49

4.6 RSE protocol.. 52

4.6.1 Character level .. 52

4.6.2 Package level .. 53

5 Firmware implementation .. 59

5.1 Top level design... 59

5.2 UART .. 60

5.3 RSE protocol.. 62

5.4 Smile register bank .. 65

5.5 Debugging module .. 66

5.6 Clock generator .. 66

5.7 Heartbeat .. 67

5.8 HDRM ... 67

5.9 Reset generator .. 68

5.10 Stepper motor modules .. 68

5.11 Switch debounce .. 69

5.12 Pulse width modulator ... 69

5.13 Settling time period .. 70

5.14 Half step synchroniser .. 70

5.15 Stepper control ... 71

5.16 Stepper driver ... 71

6 Test and development ... 75

6.1 Development of the firmware .. 75

6.2 DPU simulator ... 77

IX

6.2.1 RSE Register Window updates .. 78

6.2.2 RSE Command Window updates ... 78

6.2.3 RSE Log Window updates ... 79

6.3 Hardware tests ... 79

6.3.1 Testing of communication on board ... 80

6.3.2 RSM bench test .. 81

6.3.3 Settling time ... 81

6.3.4 Chopping .. 85

6.3.5 Motor current .. 89

7 Summary and conclusion ... 92

References .. 94

RMAP over RBDP protocol ... 97

X

Abbreviations

SMILE

Solar Wind Magnetosphere

Ionosphere Link Explorer

 TID Total-Ionising Dose

ESA

European Space Agency EBB Elegant breadboard

SXI

Soft X-ray Imager RAM

Random-Access Memory

RSM

Radiation Shutter Mechanics CPU Central Processing Unit

RSE

Radiation Shutter Electronics VHDL

Very High-Speed Integrated Circuit

Hardware Description Language

DPU

Data Process Unit PWM Pulse Width Modulator

PSU

Power Supply Unit RoR

Remote Memory Access Protocol

over Regular Byte stream DAQ

Protocol

HDRM

Hold Down Release

Mechanism

 UART Universal Asynchronous Receiver-

Transmitter

PCB Printed Circuit Board

 SPI Serial Peripheral Interface

SEL Single-Event Latch-up

 VVC VHDL Verification Component

CMOS

Complementary Metal-

Oxide-Semiconductor

 GUI Graphical User Interface

11

1 Introduction

1.1 Background
The radiation from the sun makes it possible for life to be sustained on earth, but the radiation has

immense destructive powers too. In 2012 a solar flare just missed the earth [1]. This flare could

have caused a mass blackout. In 1989 a solar storm took out the power transmission system in

Quebec, Canada [1]. To be able to understand these and be better able to forecast events, the space

weather must be studied. Space weather is phenomena that are the constant interactions between

the sun and the magnetosphere of the earth.

ESA has a vision of getting a better understanding of these effects. The SMILE mission is planned

to launch as a mission to further explore the full connection between the sun and the earth. The

satellite will be placed outside the magnetosphere to observe. There, an SXI will be used to map

the magnetosphere and look at the emission from the solar wind. [2]

1.2 About this thesis
The objective of this thesis is to continue the development and implementation of a control unit

called the radiation shutter electronics (RSE). Lylund and the SMILE team started the development

of this project in [3]. The RSE will control the RSM which will enclose the detectors of the SXI

instrument when the satellite is within the radiation belt of the earth, as there are high energy

particles there which can damage the detectors. As such, the instrument and the RSM will be

explored before the requirements of the RSE is explained in Chapter 2. The RSE’s primary purpose

is to drive the stepper motor in the RSM, so a stepper motor and how to drive it and how power

will be saved will be explained. Also, the FPGA that is going to be used will be explained.

The development of the RSE is then focused upon. This thesis moved the project from using a

microcontroller to utilise an FPGA. The microcontroller was abandoned in favour of an FPGA

because it has not featured in many space missions, which results in a lack of space heritage. The

FPGA has been used in previous space missions, so it is proven to work reliably in space.

12

The fundamental pieces of the RSE are the stepper driver, the register bank which stores all

necessary information, and the communication module that lets the central master of the

instrument command the RSE. To be able to communicate with the RSE efficiently and reliably,

a new small communication protocol was developed to reduce the overhead from the

communication standard used previously. The commands that are going to be used to control the

RSM need to be well defined and are explained in Section 4.4.

The RSE shall perform different tasks that need to be well defined. Therefore, the different

modules have been properly developed to work independently and having a simple hierarchy in

order to get a simple and understandable design. The design has been developed with care to ensure

that the modules were behaving as expected. The system has also been tested continuously in

simulation. The RSE has been developed with a version control tool and is stored on the University

of Bergen’s git lab repository. Finally, the system has been tested on the bench with an elegant

breadboard of the RSE and RSM. A master DPU simulator was modified and used to test by

sending signals in accordance with the communication protocol.

1.3 Thesis outline
Chap 2: Requirements for the electronics

This chapter describes the objective of this work. The SXI instrument and the RSM will be looked

at and explained first as these provide the fundament for the RSE. From this, the RSE is described

with the radiation considerations, the FPGA that is selected and a close look will be had on the

stepper motor as the main purpose is to drive it.

Chap 3: RSE development

In this chapter, the choices that were done for the development will be explored. First, why the

microcontroller was abandoned for an FPGA will be explained, before a more general outlook on

FPGAs and microcontrollers will be had. Then one of the main features of a sequential system, the

state machine, will be looked on. The chapter rounds of with a discussion of developments

strategies.

13

Chap 4: Functionality

The functionality of the RSE will be defined in this chapter. The core design will first be looked

upon before the register that is to be used are defined. Then the procedures and commands will be

established before the communication protocol that has been developed is explained.

Chap 5: Firmware and implementation

This chapter describes the firmware that has been developed to satisfy the requirements. How the

different modules are working and implemented are gone through in detail. First, the top-level

design is looked at before the individual modules are described.

Chap 6: Test and development

How the development of the system was done is explained first in this chapter. Then the modified

DPU simulator is explained, and the modifications are highlighted. The rest of the chapter

describes how the tests on board were done, and the results of those tests are shown.

Chap 7: Summary and conclusion

In the final chapter, the work is summarised, and the results of the test are discussed.

Appendix A

This appendix explains the communication protocol that was used in the previous iteration.

14

2 Requirements for the electronics

2.1 Objective
In the SXI Instrument document [4] the SXI’s energy band is described to extend up to 5 keV. As

seen in Figure 1, the SMILE satellite will orbit the earth and come within the earth’s radiation belt.

In the radiation belt around the earth, some protons reach above 10 MeV and electrons reaching

above 0.5 MeV [5]. The SXI instrument must be protected against these particles when the satellite

is within reach of the radiation belt of the earth, as radiation there can degrade or destroy the

instrument. The satellite might have to perform manoeuvres to calibrate different instruments, and

the SXI needs to be protected against stray particles. To protect the instrument from stray particles

and high energy radiation, a Radiation Shutter is required.

Figure 1 SMILE satellite’s orbit illustration

An internal team at the University of Bergen called the SMILE team develops the mechanical part

of the Radiation Shutter. The main objective of this work is to create an electronic system to be

able to operate the RSM from commands.

15

2.2 Soft X-ray Imager Instrument
On ESA’s webpage about the instruments belonging to the SMILE mission, they describe the SXI

like this:

“The SXI is a wide-field lobster-eye telescope using micropore optics to spectrally map the

location, shape, and motion of Earth's magnetospheric boundaries, including the bow

shock, magnetopause, and cusps, by observing emission from the solar wind charge

exchange (SWCX) process. The SXI is equipped with two large X-ray-sensitive CCD

[Charge-Coupled Device] detectors covering the 0.2 keV to 2.5 keV energy band, and has

an optic field of view spanning 15.5° × 26.5°.” [6]

According to [4] the scientific objective of the SXI is to image the X-ray emission produced when

solar wind ions interact with neutral atoms in the exosphere of the Earth. These X-ray lines have

intensities that peak in the cusps and magnetosheath. The flow of solar wind and energy into the

magnetosphere can be imaged from the density boundaries of the X-ray emissions. The SXI

telescope combines imaging with spectroscopy to obtain information on the composition of the

solar wind that generates the solar wind charge exchange X-ray emission. This way changes in the

solar wind reaching the magnetosphere can be detected. [4] The SXI is illustrated in Figure 2.

Figure 2 3D rendering of the SXI instrument. One of two possible configurations [4]

16

The SXI instrument has four units in addition to the x-ray imager instrument itself. These are

explained in the instrument interface control document [4] as:

• Straylight baffle: Avoid light into the system from the Sun or the Earth.

• Telescope Assembly: Optical telescope structure

• Radiation Shutter: Shutter mechanism

• Focal Plane Assembly: CCD detectors and front end electronics

2.2.1 Electronics box

In addition to these components, there is a separate chassis containing all the backend electronics.

In there is the DPU, the power supply unit (PSU) and the radiation shutter control electronics

(RSE).

2.3 Radiation Shutter Mechanics
This section is mainly based on the RSM design report [7] from the SMILE team. The RSM is the

shutter itself, as shown in Figure 3. The RSM frame is mounted in the telescope assembly. The

RSM Rotary Actuator on the top of the figure in rotates the RSM Door Leaf in with the bearings

on each side of the Rotary Actuator. The RSM Launch Lock is a pin puller that keeps the Door

Leaf in place during launch. Besides, there is the RSM End Switches, the RSM End Switch Trigger

and the RSM End Stops.

17

Figure 3 RSM prototype

The main components of the RSM are made from aluminium. Where the door leaf is in temporary

physical contact with other elements like the end stops are made from INERMET (Heavy tungsten

alloy) and hardened stainless steel. These places where there is contact are prone to cold welding.

When a metal surface impacts another metal surface, there is a natural oxide level on the surface

that is impacted. This layer would naturally re-oxide on earth. In space, this layer is broken

irreversibly. Breaking this layer will create a pure metal to metal contact, and this enables welding.

This layer is either degraded over time from impacts or broken from vibrations might lead to

oscillating movements that also enables welding, called fretting. These processes are called cold

welding [8], and may happen on the RSM during launch as the door leaf might vibrate heavily.

2.3.1 Rotary actuator

The rotary actuator is the motor that is used to rotate the door leaf. It consists of a phySPACE

stepper motor and a gearbox that comes preassembled from the manufacturer Phytron. Some

parameters of the phySPACE stepper motor are listed in Table 1. The stepper motor allows the use

of a relatively simple control system to drive it. How a stepper motor works are explained in 2.4.3.

End

switches

Rotary Actuator

Launch lock

Door leaf

End stop

End stop

18

The gearbox has a small diameter and gives a high torque/mass ratio. A drawback of the high ratio

is that the gearbox has many mechanical components.

Table 1 phySPACE stepper motor parameters [7].

Parameter Value Note

VSS stepper motor 200 full steps per revolution

Pole pairs 50

Half-step mode, phases 8

Electrical half-steps 400

RS Opening angle, ° 100

Gearbox ratio 192

Half-step speed, s-1 500

Opening time, s 44

Motor speed, RPM 75 or 75/60 = 1.25 𝑠−1

By knowing the key parameters of the stepper motor and the mechanism, we can determine the

number of half steps per second and the rotational speed. With a half step speed of 500 steps per

second, we obtain an opening time of around 41 seconds at a rotational speed of 75 rounds per

minute. This is well within the recommended maximum speed of 100 rounds per minute for dry

lubricated motors. A close-up picture of the rotary actuator is shown in Figure 4.

Figure 4 Close-up of the rotary actuator with bearing

19

2.3.2 Hold Down Release Mechanism

The purpose of the hold down release mechanism (HDRM), on the RSM Launch Lock, is to hold

the door leaf secure in place during launch and then release it before the instrument starts operating.

The door leaf will be at risk of moving around under launch if it is not held in place. The HDRM

pin is inserted before launch. In the locked position the leaf will be in contact with the end stop.

This contact might lead to cold welding. To reduce this risk, a bronze hub is used for the leaf/pin

interface. Should the end stop and leaf fuse, the rotary actuator must be driven at max torque to try

to force the shutter open. A close up picture of the HDRM is shown in Figure 5.

Figure 5 Close-up of Hold Down Release Mechanism

2.3.3 End Switch

End switches are used to signal that the leaf has reached the end position. The two redundant

systems each have its pair of end switches for the two end states. Upon contact with the leaf, the

switches will be activated. There is some slack in the switches after they activated to allow for a

gap between the nominal end position and the end stops.

2.3.4 End Stops

In case the end switches should stop working, the rotation of the shutter needs to be stopped, and

the end stops mechanically stops the leaf from rotating. The end stop also uses a spring to preload

the leaf against the stop during launch.

20

2.4 Radiation Shutter Electronics
The purpose of the RSE is to control the RSM described in detail in [7], which includes:

• Operation of RSM Rotary Actuator (a stepper motor with gearbox)

• H-bridge motor driver circuit

• Sensor read-out for the temperature sensor

• Sensor read-out for the RSM Sensors (“Shutter open” and “Shutter closed”-switches)

• A communication link between the DPU and the RSE

The RSE needs to be an independent system. To accommodate its purposes the necessary circuits

and an FPGA is placed on a printed circuit board (PCB), where the FPGA can control the other

circuits. A system overview produced by the SMILE team is shown in Figure 6, where the motor

control and the motor driver are central to the RSE. In the earlier stages of the project, the DPU

through the RSE was supposed to control the HDRM.

The Radiation Shutter is designed to be fully redundant. I.e., the stepper motor (RSM Rotary

Actuator) has a double set of windings, and a double set of temperature sensors, enabling

independent control from two individual electronics boards. All feedback switches and actuators,

as well as communication channels, are also redundant.

For the RSE in the electronics box, this means that there are two independent PCBs connected to

their redundant PSUs and DPUs. There are no cross connections between the dual redundant

systems, and only one redundant system will be powered at the time.

21

Motor
control

Motor driver

Feedback
Shutter Open

Feedback

Shutter Closed

HDRM
(Pin puller)

D
P

U M

HDRM
Driver

T

PT100

In
 m

o
to

r

UART
driver

P
SU

Regulators
and filters

Figure 6 RSE overview

2.4.1 Radiation considerations

Radiation effects are divided into two main effects. The first effect is Single Event Effects, that is

a stochastic effect that can happen anytime. As the name implies, these effects happen in a single

event as either a non-destructive effect such as corrupting data or as a destructive effect where the

corruption permanently damages or destroys the circuit. An example of a non-destructive effect is

single event upsets, where a radiation effect occurs in a memory node. This stored data will be in

an erroneous state but can be overwritten with new valid data. A destructive effect is a single-event

latch-up (SEL) where an ion-generated charge triggers the bulk of complementary metal-oxide-

semiconductor (CMOS) technology to produce a low-impedance path between ground and power.

This path can create a feedback loop that maintains a high current through the path [9].

The other effect is the total-ionising dose (TID). This is the energy that is absorbed by the

technology per mass when the technology is exposed to ionising radiation. This is measured in

rad. This effect is an accumulated effect as that degrades the performance and potentially the

functionality of material like insulators that are common in CMOS technology [9].

22

The RSE needs to be protected and able to withstand these effects as it will break otherwise.

Therefore all SMILE electronics shall be immune to destructive SEL and protected against other

Single Event Effect. All electronic components must also be able to withstand a TID of 60 krad

[10]. In case critical components are marginally tolerant to the applicable dose, spot shielding will

be applied.

2.4.2 FPGA

The FPGA that is going to be used needs to be able to meet the requirements for radiation tolerance.

In addition, it needs to be reliable and not draw too much power. The choice of using an FPGA is

explained in Section 3.1.3.

An anti-fuse FPGA from Microsemi will be used for the main motor controller, either RTAX250

or RTAX1000, depending on design needs. NanoXplore NG-MEDIUM (NX1H35S) FPGA is kept

as an option, but this is a brand-new component, so little or no space heritage exists for it.

Microsemi RTAX250

The RTAX family is the second generation of Microsemi’s products for space applications. The

RTAX250 FPGA has registers that are hardened for single event upsets. Being hardened, the

registers are immune against single event upsets at a linear energy transfer of less than 37

MeV/cm2/mg. The FPGA will survive a TID up to 300 krad, which is above the demand of 20

krad. It is also immune against SEL with a linear energy transfer up to 117 MeV/cm2/mg. The

RTAX series also comes with a low power option, which saves up to 80% of static current

compared to the standard versions in the worst-case scenario [11].

2.4.3 Stepper Motor

A stepper motor is an electrical motor that moves a single step when the magnetic field changes

as a consequence of switching the direction of the current flow in the field coils. There are two

principal types of stepper motors, as illustrated in Figure 7. The bipolar stepper motor, which has

one coil per phase and needs two switches for each phase. The unipolar stepper motor, which has

one coil for each phase and one switch for each phase. The current flow in the coil is reversed by

flipping the switches [12].

23

Figure 7 Stepper motor configuration [12].

Our motor uses a bipolar configuration, and the advantage of the bipolar configuration is that there

is only one coil with low winding resistance. The unipolar has a double winding with a higher

winding resistance because of the thinner wire that is required. The advantage of the unipolar

configuration is that is can have a simpler driver circuit for switching, whereas the bipolar requires

a more complex driver circuit [12]. As previously discussed, the stepper motor used in the RSM

is a phySPACE stepper motor. This stepper motor is bipolar and needs a driver circuit that fits it.

By switching the direction of the current flow through the two coil pairs, the stepper motor is

driven.

Stepper driver circuit

A common way to operate the two coil pairs is by using an individual H-bridge for each coil, as

shown in Figure 8. This circuits main components are the four transistors and the coil forming an

H-shape in the middle. The transistors have their own regulatory circuits that set the voltage on

them to turn them on and off.

24

Figure 8 Stepper motor driver circuit H-bridge

The current through the transistors will excite the coils which in turn steer the stepper motor.

Current will flow through the transistor pair Q1 and Q3, or Q2 and Q4. Q3 and Q4 are also forming

constant current sources, enabling a controlled current flow in the inductors. The controlled current

is set by the Vctrl pulse, which is derived from a filtered pulse width modulator (PWM) source,

connected to the FPGA. The current through the power transistors results in a voltage drop over

Rsense, which is fed back via the operational amplifiers to control the power transistors. The

terminals labelled PA, PB and NA, and NB is connected to the FPGA, again one set for each coil.

Step sequence

A change in the current through the coils will produce a step in the motor. With one pole pair to

move the stepper, there are four full steps in each electrical cycle. Typically for stepper motors,

each step will move 1.8° or 7.5°. With full steps, there will always be current through both the

coils. Instead, the current can be turned off before switching to the other side as an intermediate

step. This method is called half-step and gives eight half-steps instead of four full steps, as seen in

Figure 9 [12].

Q1 Q2

Q3 Q4

25

Figure 9 Half-step sequence for a two-phase bipolar motor [12]

Using half steps effectively doubles the resolution of the stepper motor but comes at the cost of

getting only about 70% torque [12]. The torque margin is more than large enough for us, and we

can get a smoother operation with less mechanical stress by using half-step mode.

As shown in Figure 9, the current in one coil is sustained in one direction for three out of eight

phases before turning off, and changing direction. Each motor-on sequence is always started by a

programmable length settling time, in which transistor Q3 or Q4 is fully on, and the current limiter

circuit controls the full current as described earlier. After that, current chopping is enabled, where

transistor Q3 or Q4 is turned off and on again at regular programmable intervals, resulting in a

current decay determined by the motor coil inductance, before the appropriate transistor is turned

on again. By turning the inductor current on and of faster than the inductor manages to change the

current significantly, we can hold the current at a nearly constant level. The current level will fall

and be raised again to the current plateau where the current is at the set motor current level, before

being allowed to fall again. This chopping of the motor current results in a significant reduction in

average power as the power source will deliver less current in total.

As the settling time only is needed to get the motor current up to the desired current plateau where

the current will stay if the corresponding transistor is on, it will have little effect on the torque the

motor produces. The chopping is used to save current while simultaneously holding the inductor

current near constant. As long as the inductor current stays at the current plateau and do not fall

towards zero, the torque should be constant. The torque will have a breakpoint where the chopping

26

causes a significant drop in the inductor current. As the current then will go towards 0, there will

not be any power to create the torque. As torque will be a function of the inductor current, the main

component of increasing the torque will then be the motor current as this sets the inductor current.

To be able to operate the motor with half steps, the transistors in the driver circuits needs to be

turned on in the correct order, as shown in Figure 10. The driver needs to go through eight stages,

corresponding to the eight half-steps. In order to reverse the motor direction, we need to run the

half step sequence in the opposite direction by switching the A and B coil’s driving sequence. As

eight steps are needed for each direction, a state machine will need at least 16 states to drive the

stepper motor.

Figure 10 H-bridge electrical cycle states for coil A and coil B for 8 half step phases

27

3 RSE Development

3.1 Software vs Hardware
In the first iteration of the RSE, a stepper driver breadboard was developed with a driver software

placed on a microcontroller to drive a stepper motor. In this iteration, an elegant breadboard (EBB)

was designed by the SMILE team, that is closer to the real version but still using commercial

components. When this iteration of the RSE is done, an Engineering Qualification Model can be

created, where the identical components to the ones used in flight will be used to test the

functionality and the fit. At last, a Pre-Flight Model is made with the components that are going to

used, and when it has passed the tests, it is upgraded to the Flight Model, which will be launched.

The RSE needs a firmware to control the stepper driver circuits as described in Section 2.3. There

is no official definition of firmware, but in general, the term firmware is used about a code that is

placed onto a device to control the low-level functions of the device. Typically, this is a software

code that uses a microcontroller to execute the code. Another way of looking at this is to say that

a hardware description language is also a firmware as it is synthesised and place onto an FPGA.

At the core, it is, however, hardware instead of software.

3.1.1 FPGA

FPGA is an integrated circuit that consists of configurable logic blocks. These logic blocks are

built up by using two different methods. Our FPGA uses anti-fuses to program the FPGA. The use

of anti-fuses makes the FPGA one-time programmable. Other FPGAs can use static Random-

Access Memory (RAM) or flash memory to hold the configuration of the logic blocks. A simplified

FPGA floorplan is illustrated in Figure 11.

28

Figure 11 Simplified FPGA floorplan [13, p. 630]

Vendors sell the FPGA without a configuration, and the customer can then program the FPGA as

desired. In our project, a reconfigurable FPGA is used to test the firmware. One-time

programmable FPGA is often used in space projects, as they have proven to be reliable in a

radiation environment [14].

3.1.2 Embedded system

“An embedded system is a microprocessor based system that is built to control a function or a

range of functions”, see for example [15]. The embedded system is a part of a larger system where

its job is to control a function. One such microprocessor-based system is a microcontroller. “A

microcontroller (sometimes called an MCU or Microcontroller Unit) is a single Integrated Circuit

(IC) that is typically used for a specific application and designed to implement certain tasks” [16].

A microcontroller consists of multiple components as a Central Processing Unit (CPU), Integrated

memory such as RAM and peripheral interfaces such as I/O ports. The CPU is the brain of the

system that controls everything that happens.

29

Microprocessors come in different bit sizes, which indicate how wide the data bus is. As such an

8-bit microcontroller will utilise an 8-bit data bus. The bit size will limit the register widths, address

bus and that every single instruction has a set range to work within. An 8-bit microcontroller can

only work on 8 bits at a time, while a 32-bit microcontroller can work with 32 bits. This makes the

smaller microcontroller useful if we want to save power. Whereas the larger microcontroller can

use a more significant number of bits in its calculations, to get a more accurate result, or a number

higher than the smaller microcontroller can handle. Being more precise comes with increased size,

power usage, memory and price of the microcontroller.

The previous RSE design used an ATmega128 microcontroller, which is a low-power AVR 8-bit

microcontroller. Microchip has a space version of the ATmega128 microcontroller called

ATmegaS128. It is the same chip as the ATmega128 but has improved radiation toleration, and its

main features are shown in Table 2. The original thought was to make a prototype on the

ATmega128 and then transfer the system over to an ATmegaS128.

30

Table 2 Features of ATmegaS128 [17]

Features ATmegaS128

Flash (KB) 128

SRAM (KB) 4

EEPROM (KB) 4

External Memory (KB) 64

General Purpose I/O pins 53

SPI 1

USART 2

ADC 10-bit, up to 76.9ksps (15ksps at max resolution)

ADC channels 8

8-bit Timer/Counters 2

16-bit Timer/Counters 2

PWM channels 6

Operating voltage 3.0-3.6V

Max operating frequency 8 MHz

Temperature range -55°C to 125°C

The ATmegaS128 has “[n]o Single Event Latch-up below a LET threshold of 62.5

MeV/mg/cm2@125°C[, and is] tested up to a Total Ionizing Dose of 30 krads(Si) according to

MIL-STD-883 Method 1019” [17]. Microchip also states that the microprocessor “has been

developed and manufactured according to the most stringent requirements of MIL-PRF-38535

International Standards and Aerospace AEQA0239 specification” [17]. MIL-PRF-38535 is the US

military’s performance specification that “establishes the general performance requirements for

integrated circuits or microcircuits and the quality and reliability assurance requirements, which

are to be met for their acquisition” [18].

31

3.1.3 FPGA or CPU

Since this project will go onto a satellite that will be launched into space, we need a technology

that is approved for usage in space. The previous RSE utilised a microcontroller as described in

Lylund [3]. An appropriate microcontroller for the mission was found, the ATmegaS128. The main

problem with the ATmegaS128 for us is that it does not have space heritage. Space heritage means

that none or few space missions have used this microcontroller. Having used a particular

technology multiple times proves that it performs reliably in space. Besides, ESA has a rigorous

set of test procedures to test software and technology that are lacking space heritage. This would

have meant that we would have to prove that the microcontroller would work.

Some alternative microcontrollers with increased bit sizes were considered, but those would also

come at an increased cost and system complexity. An external memory might also have been

necessary. There are, however, multiple FPGAs with space heritage that we could then use instead.

As these FPGAs have space heritage and hardware would be used instead of software, we would

have an easier time to get the design approved, as hardware are easier to get accepted by ESA’s

test procedures. In this project, the lack of space heritage and the easier test procedures made us

abandoned the microcontroller, and switch to an FPGA.

In addition to the reasons above we wanted to take a more general view on an FPGA vs an

embedded system. In embedded systems, the microcontroller reacts to stimuli on the different

inputs, and from the incoming data and stored information, the system creates the desired output.

The FPGA on the other side has dedicated logic to respond to the stimuli coming into the system.

So, while the microcontroller would have to let the incoming data got through the CPU to create

an output, the FPGA creates a logic block directly between the input and the output to speed up

the response scientifically. To create this configuration, a hardware description language is

required. VHDL (Very High-Speed Integrated Circuit Hardware Description Language) is one

such language. A general comparison of a CPU and an FPGA is shown in Table 3.

32

Table 3 Comparison of CPU and FPGA adopted from [19]

 CPU FPGA

Overview Traditional sequential processor

for general purpose

applications

Flexible collection of logic elements and IP

blocks that can be configured

Processing Single- and multi-core MCUs

and MPUs, plus specialized

blocks: FPU, etc.

Configured for application; SoCs include

hard or soft IP cores (e.g., Arm)

Programming OSes, APIs run a huge range of

high-level languages; assembly

language

Traditionally HDL (Verilog, VHDL)

Peripherals Wide choice of analogue and

digital peripherals in MCUs;

MPUs include digital bus

interfaces

SoCs may include many transceiver blocks,

configurable I/O banks

Strengths Versatility, multitasking, ease

of programming

Configurable for a specific application;

configuration can be changed after

installation; high performance per watt;

accommodates massively parallel operation;

wide choice of features: DSPs, CPUs

Weaknesses OS capability adds high

overhead; optimized for

sequential processing with

limited parallelism

Relatively difficult to program; long

development time; difficult for floating-

point operations

3.2 State machine
One of the core components of a sequential digital system is a state machine. A finite state machine

is a sequential system that consists of combinational logic and a state register, as illustrated in

Figure 12. The outputs of the FSM are a function of the current inputs and past inputs. The state

gives information about previous data. The present state stored in the state register is the

culmination of everything that has happened thus far, see for example [20].

33

Figure 12 Synchronous finite state machine block diagram [20]

The state machine can be asynchronous or synchronous. So, either the state and the outputs only

update on the triggering clock edge, or it updates as soon as one input changes value.

3.3 VHDL development strategy
To be able to create a design and implement it, we need a plan so we can prioritise and stage the

development. There are a lot of different strategies for developing a firmware system. Various

approaches were considered to be able to develop the firmware efficiently.

3.3.1 Waterfall development method

A common technique to use when developing a project is the so-called waterfall design strategy.

The waterfall strategy bases itself upon that the requirements of the design need to be figured out

before anything can be done. From these requirements, a design can be proposed. If the design is

accepted, it can then be implemented.

At last, the implementation needs to be verified. No steep can be done before the completion of

the previous. By going through the development step by step and locking down the different

aspects before moving onto the next task, one can achieve good flow.

Combinational

logic

State

register

clock

Present

state

Next

state

Inputs Outputs

34

In the article “Understanding the pros and cons of the Waterfall Model of software development”

Melonfire [21] comes with this explanation of the waterfall model:

“Essentially, it's a framework for software development in which development proceeds

sequentially through a series of phases, starting with system requirements analysis and

leading up to product release and maintenance. Feedback loops exist between each phase,

so that as new information is uncovered or problems are discovered, it is possible to "go

back" a phase and make [an] appropriate modification. Progress "flows" from one stage to

the next, much like the waterfall that gives the model its name.”

Tutorialspoint [22] says that the “[w]aterfall approach was first SDLC [Systems Development Life

Cycle] Model to be used widely in Software Engineering to ensure [the] success of the project.

(…) In this Waterfall model, typically, the outcome of one phase acts as the input for the next

phase sequentially.” A typical waterfall is shown in Figure 13.

Figure 13: Waterfall model

There is an ideas phase where people pitch the goals of design formulated and different designs,

and from that, the development of a prototype is possible. These two phases are often presumed to

have already happened in the waterfall model. An idea about what the system is and how it should

function must be given in advance. From these ideas, a prototype can be developed to see if the

proposals are possible and find out what requirements are needed. If there is not a lot of external

Requirements

Design

Implementation

Verification

Ideas

Prototype

35

demands on the system, it can be hard to start with coming up with the requirements list. In a large

software project, it is often useful to create a smaller version in a more straightforward language

like python at first to get a feel for the solution. Such a prototype lets the developers have a look

at the system and figure out what precisely the customer desires. Often it is hard to know precisely

what is desired at an early stage.

A modification upon the waterfall strategy is to split the design up into different modules and

create localised "waterfalls" where we go through the four aspects for a single module which exist

in a bigger system which is the main "waterfall".

The main problem with the waterfall strategy is that requirements might change during the

development. Such changes would be difficult to implement since one has to go back and change

the previously done work.

3.3.2 Lean development method

Another strategy is the lean software development method. According to Poppendieck and

Cusumano [23], lean is more about a set of principles that are applied to development, and not a

distinct practice.

Poppendieck and Cusumano [23] go on to explain the seven principles that lean is based upon.

“Optimise the whole” is about seeing the software as a part of a larger system. Only then can the

developer understand what the customer needs and want. “Eliminating waste” is the need to

remove anything that does not contribute value to the customer or gives more or better knowledge

about how to deliver value more effectively. “Build quality in” is also called “top-down-

programming”. This method is about how smaller modules are continuously integrated into larger

systems. “Learn constantly” is about how development is about developing knowledge and then

placing that knowledge into a product. There are two ways to go about this. Either to learn first, or

continuously learning throughout the development.

“Deliver fast” is how there are multiple in-house releases or releases to the customer. These

releases are designed, developed and delivered repeatedly with small changes. “Engaging

everyone” means that the software is only a part of a bigger system. There is different knowledge

around in different departments and value might be lost if no one sees the system as a whole.

36

Decisions should be taken by the people who have the power and the knowledge about what they

are deciding. “Keep getting better” is to realise that the known specific practices are often not the

best for the current problem and that the system needs to adapt and improve over time [23]. How

a development will flow is shown in Figure 14.

Figure 14 Lean development [24, p. 23]

3.3.3 Choosing a strategy

The Bergen SMILE team has put forth the ideas behind the system. From these ideas, Lylund has

developed a software prototype to be used on a breadboard. They figured out most of the

requirements during the creation of the prototype. This prototype was working and could run a

stepper motor according to the current specifications at the time.

Since the SMILE project and the requirements for the RSE are changing during the development,

the lean manufacturing strategy was selected. This project is the second iteration of the whole RSE

project. Lylund and the SMILE team pitched the ideas and developed a prototype to work with a

breadboard in the first iteration. The lean strategy bases itself upon reducing waste and focus on

the value for the customer. In our case, this means that we focus on the necessary parts first and

foremost. We will make a minimum viable product which can be accepted, and then we add

functionality to it by continually adding changes and small new parts. This way, each step could

37

be designed, implemented, tested and accepted. This method let the requirements be nailed down

for the barebone design. With a barebone design, we can expand upon it. While developing the

system, we will learn about new situations and problems that we need additional requirements to

solve.

38

4 Functionality

4.1 Design - VHDL
In the conclusion of Lylund [3], a potential FPGA design based upon his software design was

proposed by the SMILE team, as shown in Figure 15. This design was our fundament. There are

three primary tasks the design must accomplish. We need a method for communicating with the

DPU, some way of storing essential information and a method for driving the motor. The

components that make these three tasks possible is our barebone design. From that design, more

functionality was added to protect the RSE.

Figure 15 FPGA design proposed by the SMILE team [3]

4.2 Registers
If the DPU is going to be able to retrieve or send any data to the RSE, the RSE needs some registers

to store information. The registers are composed of multiple flip flops to store a logic vector. With

various registers, they can be defined in order with addresses. Individual bits can also be specified.

Via specified registers with set address and given content, the DPU can reliably access the RSE to

read or write data. Typically, on the hardware side, these registers are situated in the register bank

and can be probed from other modules.

39

4.2.1 Status registers

The DPU needs to know the status of the RSE and the RSM in order to be able to perform

operations. The status registers will always be readable, but not writeable for the DPU, as the RSE

maintains them. Most of these registers will come directly from the corresponding modules and

therefore, be updated immediately. The status registers are shown in Table 4.

Table 4 Status registers

Register Address Bits Purpose

Firmware Version 0x00 0-7 FPGA firmware revision number

Motor Temperature 0x01 0-7 Monitor motor temperature

Electronics

Temperature

0x02 0-7 Monitor electronics/heat-sink temperature

Shutter status 0x03 0 Shutter is closed

1 Shutter is open

2 Shutter closure in progress

3 Shutter opening in progress

4 Shutter emergency closure initiated

5 Motor too hot

6 Electronics too hot

HDRM status 0x04 0 HDRM is armed

1 HDRM is activated (only valid for 1 sec)

Performed steps L 0x05 0-7 Number of steps performed for ongoing operation

(LSB)

Performed steps H 0x06 0-7 Number of steps performed for ongoing operation

(MSB)

Heartbeat count 0x07 0-7 Incremented for every heart-beat register request

Processor status 0x08 0 Heartbeat missing

1 Reset armed

40

Firmware version

The firmware version register contains the current firmware revision number so that any revisional

changes can be detected. The set number also gives the DPU something stable to read during

testing as the value is not changed. During testing on board, we can read this register, and since

we know what to expect, we can detect any errors in the communication.

Motor temperature

This register is the current sampled motor temperature. The motor temperature will be regularly

updated as long as the ±12V rails are enabled. The heat will be measured with a periodic readout

of the thermistor voltage. The motor temperature will increase if a motor operation is in progress.

Rest of the time, nothing should be happening, so there should be no generation of heat. So, most

of the time, the temperature should be following structural temperature.

Electronics temperature

The electronics temperature register is the current sampled temperature of the electronics driving

the motor. The temperature is read together with motor temperature in the same procedure. Like

the motor, the driver electronics temperature should increase when the motor is running, and other

than that, the temperature should be stable.

Shutter status

To keep track of the shutter operation and position, we need a register to keep up with the state of

the shutter. The definition of every single bit in the shutter status register is shown in Table 4. We

need to know if the shutter is open or closed. The easiest way of knowing this is to see if the

corresponding end switch is engaged. Should the end switches stop working, the last run command

needs to be remembered by the DPU. If an operation is running, no other operation can be accepted,

so the current running operation must be able to be read by the DPU. At last, the DPU needs to

know if the motor or electronics temperature is exceeding safe limits.

HDRM status

This functionality will not be used beyond the EBB. The HDRM status register indicates the status

of the HDRM, as described in Table 4. There are only flags indicating if HDRM has been armed

or activated, as no sensors are measuring the HDRM. The HDRM must be armed before it can be

41

activated. The HDRM will stay armed for 1 sec. If any other write command than HDRM activate

is performed, the HDRM will disarm. The point of arming the HDRM is to ensure that the shutter

is not released before the satellite is in place. The HDRM active will only be active for one second.

Performed steps L/H

These two registers count the number of steps the motor has taken during the ongoing or last

operation. The low register contains the least significant byte, and the high register contains the

most significant byte. When the maximum number these two registers can hold is reached, the

number will wrap-around back to 0.

Heartbeat count

The primary purpose of this register is the safety handling of the radiation shutter. This heartbeat

count is set up to protect the instrument by closing the shutter in case of a DPU failure. The DPU

must access this register minimum every 30 sec or the RSE will initiate an emergency closure.

This register will start with a 0, and each access will increment the content. In order to prevent

overflow, the number will wrap-around.

Processor status

The status of the RSE firmware system, as described in Table 4. The two signals here are the

heartbeat missing, which indicates that the heartbeat has gone 30 sec without having been read and

that an emergency closure is initiated. The reset functionality is designed the same way as the

HDRM. This means that there is a reset armed signal that needs to be set before the system can be

reset to prevent any accidental resets.

4.2.2 Control registers

The DPU needs to be able to control the operation and to do that we need some control registers.

These registers need to be read/write register. The control register is shown in Table 5.

42

Table 5 Control registers

Register Address Default

value

Purpose

Motor current 0x20 100 Set stepping current. 0xFF for max available

current

Settling time 0x21 20 Ramp up time allowed to reach set motor

current before chopping start, in steps of 4

microseconds

Chop duty cycle 0x22 150 Step Motor chop duty cycle time in units of

clock cycles relative to 256

Max acceptable motor

temperature

0x23 170 For motor protection. 0xFF for no

temperature protection

Max acceptable

electronics temperature

0x24 170 For electronics protection. 0xFF for no

temperature protection

Max steps for operation

L

0x25 255 Number of steps allowed before the operation

is aborted (LSB)

Max steps for operation

H

0x26 255 Number of steps allowed before the operation

is aborted (MSB)

Enable ±12 V 0x27 0 Set to 1 to enable ±12 V rails

Max motor current 0x28 205 Maximum allowed motor current. In order to

set motor current higher, this register must be

changed first.

Motor current

The motor current register controls the duty cycle of a PWM, in order to set the current level for

the motor driver. The output of the PWM is the Vctrl shown in Figure 8. The PWM starts with an

output of ‘1’ and counts until the motor current value is reached, where it switches to ‘0’. The

register can contain 0-255, where 255 will be the maximum current.

43

Settling time

The settling time register is in control of the duty cycle of a PWM, but this PWM will only send

one pulse on each start and not wrap around for a new pulse. As the settling time signal will only

be used in the start of turning on a new set of motor driver transistors, it is is easier to give the

settling time a reset signal that initiates a single pulse instead of having to ignore the rest of the

pulses.

Chop Duty cycle

Chop Duty cycle controls the duty cycle of another ordinary PWM, in order to control the current

chopping. Chopping is described in Section 2.4.3. The chopping will start with a ‘1’ and switch to

a 0 when the register value is reached. Should the register be set to the maximum value 255, then

there will be no chopping so that the current from the transistors will be DC.

Max acceptable motor temperature

This register contains the maximum allowed motor temperature. The measured temperature is

compared to the maximum allowed, and should it exceed the maximum the motor operation will

have to wait to let the motor cool down. This maximum limit is to ensure that the motor does not

overheat and degrade consequently. Should we want to ignore the temperature measurement, the

maximum acceptable temperature is set to the maximum register value, as no measured value can

exceed it.

Max acceptable electronics temperature

The max acceptable electronics temperature is set as the mac acceptable motor temperature, to

protect the driver circuit electronics. The driver transistors will degrade and might stop working

should they overheat. The temperature is measured and compared to the maximum the same way

the max acceptable motor temperature works, and also halt any running operation should the

temperature exceed the maximum allowed.

Max steps for operation

The max steps for operation limit the open/close shutter – max number of steps operation. The

operation will run until it reaches the maximum number of steps where it will end. The operation

is explained in Section 4.4.1.

44

Enable ±12 V

The LSB of this register will turn on and off the power rails to the driver circuits. Turning off the

power will stop any commands from happening as a driving current cannot be created. Not having

the power on will also stop any leakage through the transistors so that power is saved.

Max motor current

Max motor current acts as a safeguard on the motor current register, so that the motor current

cannot be set above the max current without increasing the max motor current. The maximum

current should be set so that the motor and the driver electronics don’t overheat to extensively.

4.2.3 Debug registers

A debug register can be written or read-back for verification. These registers, as shown in Table

6, are used for various RSE debugging tasks.

Table 6 Debug registers

Register Address Default

value

Read/

Write

Purpose

Disable blinking LED 0x30 0 R/W 0x01 Disable the blinking LED

Seconds since access 0x31 NA R Number of seconds since last

heartbeat register access

Disable blinking LED

To be able to easily check that that communication works while testing the system on board the

disable blinking LED register is used. This register will be used to control a blinking LED on a

test pin on the breadboard. The blinking LED will be on when the FPGA is programmed or reset.

If the LED is blinking the system is properly reset and functioning. Then the disable blinking LED

register can be written to, to disable the blinking led. If the LED stops blinking, then the

communication is working.

45

Seconds since access

This register enables monitoring of the heartbeat register timer during testing, for example, to see

that it counts the correct amount before initiating the emergency closure.

4.2.4 Command register

A command is used to perform RSE operations like opening the radiation shutter and closing it,

by writing to the control register. The register is automatically reset to zero after receiving a new

command and will therefore always read 0x00, and is shown in Table 7.

Table 7 Command registers

Register Address Default value Purpose

Command register 0x40 0 Register to take commands. Commands

listed in Table 8

4.3 Operational procedures
After power-up and initialisation of the RSE, the DPU should check the RSE status registers to

confirm normal operation. In particular, the heartbeat counter register should be accessed regularly

to prevent emergency closure of the RSM, see Section 4.2.1. After that, the DPU should configure

the parameters of the control registers according to specifications and requirements. Then, after

renewed confirmation of nominal conditions, the commanding of RSM opening or closure can be

performed.

4.3.1 Emergency closure

The heartbeat function work as a register that needs to be accessed to safeguard the system. The

RSE is dependent on commands from the DPU to perform operations. Should the DPU

malfunction or the communication link not work, the RSE will need to protect the SXI instrument

as the RSE does not know if the satellite is within the radiation belt of the earth or not. Should this

happen, an emergency closure needs to be performed.

The emergency closure will be initiated 30 seconds after the last heartbeat was received. At this

point, the power rails to the driver circuit are dependent on the enable ±12V rails register. The

46

register needs to be overridden as the rails could be either on or off. When turning the power rails

one, we need to wait one additional second to ensure the power rails are fully on, as they will have

some delay turning on. During this if the DPU can reaccess the RSE it should be able to cancel the

emergency closure and return to normal operation, as being able to access the RSE at this stage

should indicate the DPU is still working.

After the power rails have been on for a second, an emergency closure will be initiated. This

closure will go on until the end switch is engaged. This operation will also be able to cancel, as to

more rapidly get the shutter open again should the DPU be able to access the RSE quickly after

the emergency procedure was initiated. When the shutter is closed, or the operation was cancelled,

the RSE will wait for a new heartbeat before any new motor operation is allowed.

An emergency closure will adhere to the max acceptable temperature registers, to not destroy the

radiation shutter. Should the temperature be disregarded, the max acceptable temperature needs to

be set to the maximum register value. This way the operators of the satellite will be able to select

if they want a fast closure at the expense of the degradation of the radiation shutter, or if a slower

closure with the risk of degrading and damaging the instrument be acceptable. As destroying the

radiation shutter will either shut the instrument inside or leaving it exposed to high energy

radiation, while saving the radiation shutter can damage the instrument.

4.3.2 Temperature reading

Two temperatures need to be read: the motor and the driver electronics. There is a pt100 thermistor

on each that is connected to an analogue-to-digital converter. The minimum and maximum

temperature allowed on the motor are from -150°C to 70°C [7] and on the electronics -55°C to

80°C [10]. The value of the two temperatures will be sampled each second as long as the power

rails are on.

4.4 Command operations
A command will result in activation of the required procedure, or an error response, as discussed

in Section 4.6. If, for example, the motor or electronics temperature is too high, the operation is

not permitted, but if the motor or electronics temperature becomes too high during RSM

closure/opening, the RSE will suspend the operation until the temperature is below the threshold.

47

In the latter case, no intervention is required from the DPU side, but in case of an emergency, the

operation may be aborted, in order to adjust the temperature thresholds before reissuing the RSM

operation.

There is a set of sporadic operations that operates the stepper motor or the HDRM or are used to

reset the RSE. These commands can be performed at any time, from the DPU. The command

register is made to accept these commands into it and then perform the corresponding action. The

command register is a write-only register, which clears directly after having been written to. All

commands are shown in Table 8.

Table 8 Commands

Register Address Command

identifier

Purpose

Open Shutter

 Stop at end

0x40 0x01 Open Shutter, run motor until end stop

detected

Close Shutter

 Stop at end

0x40 0x02 Close Shutter, run motor until end stop

detected

Open Shutter

 Max no of steps

0x40 0x04 Open Shutter, run maximum no of step

regardless of end-stop detection

Close Shutter

 Max no of steps

0x40 0x08 Open Shutter, run maximum no of step

regardless of end-stop detection

Emergency close

 Stop at end

0x40 0x10 Close Shutter as fast as possible, run motor

until end stop detected

Arm Reset 0x40 0x20 Arm Reset Function

Reset 0x40 0x22 Reset RSE FW

Arm HDRM 0x40 0x40 Arm Activate Hold Down and Release

Mechanism

Activate HDRM 0x40 0x42 Activate Hold Down and Release Mechanism

Cancel command 0x40 0x80 Cancel any ongoing command

48

Five commands start the motor, two that are necessary to reset the RSE, two for activating the

HDRM and a final command that cancels whatever is ongoing. The HDRM commands will not be

used after the EBB, as they are not needed.

4.4.1 Motor commands

The motor needs to have at least one open and one close shutter command. Since the shutter has

end switches for open and closed, these can be used to end a command. In case of a malfunction

in one of the end switches, there needs to be an alternative set of commands to open and close the

shutter. These operations will be suspended should a temperature reading exceed the maximum

allowed temperature, to allow the electronics and/or the motor to cool down. Temperature readings

will be performed regularly so that the operation can continue.

Open/Close Shutter – Stop at end

These commands are designed to be utilised during the regular operation. The purpose of these is

to open or close the shutter. This operation is performed until the end switch is engaged.

Open/Close Shutter – Max no of steps

The stop at end commands is reliant on that the end switches work. In case the end switch stops

working, there needs to be another method of getting the shutter open and closed. These two

commands work independently of the end switch and will then work if the end switches fail. The

max number of steps command uses a set control register to run. The operation will start and count

the number of steps. It will run until it reaches the set maximum number of steps, before ending

the operation.

Emergency close – Stop at end

The emergency close – stop at end command operates the same way that the normal close shutter

stop at end command. It was held as an option that this command could ignore temperature

readings, but it was decided that the command should wait if the motor or electronics got too hot.

Therefore, this command is now identical to the regular close shutter command. If the motor or

electronic temperature should be ignored, then the max allowed temperature registers should be

set to max.

49

4.4.2 Other commands

There is a couple of other commands that are not directly related to the stepper motor.

Arm Reset & Activate Reset

The arm reset command will arm the reset function. This signal will hold reset armed for 1 sec,

where it will be unarmed if nothing is written to the RSE. If anything, other than a activate reset is

written, it will unarm. The activate command will activate the armed reset signal. Only when the

reset is armed and activated within 0 seconds after it was armed, will a reset of the RSE be

performed.

Arm HDRM & Activate HDRM

Arm HDRM arms the HDRM signal, in the same way, the arm reset work. After 1 second or should

any other write operation than activate HDRM be performed, the HDRM signal will be unarmed.

The activate HDRM command needs to come within that time limit to activate the armed HDRM

signal. The two HDRM commands will only be used on the EBB as they are not needed after.

After EBB the PSU will activate the HDRM.

Cancel command

This command will cancel any other command. As it is a write command, it will unarm both

HDRM and reset. It will also end any motor operation, including an emergency that has started

from a missing heartbeat. For example, should an emergency closure be initiated from a missing

heartbeat, and the DPU is still working, the closing operation can be cancelled, and the shutter

reopened without having to wait for the shutter to close.

4.5 Communication
The DPU needs to be able to access the RSE and write and read data to and from it. As the RSE

does not act independently, it acts as a slave that reacts to commands from the DPU. A protocol is

then necessary to use to facilitate the communication between the RSE and the DPU, so commands

can be sent from the DPU to the RSE and the RSE have some way of reporting back to the DPU.

A protocol defines a dependable interface where the communication between multiple components

can be performed predictably and must weight different needs against each other. There are robust

50

protocols like the Remote Memory Access Protocol over Regular Byte stream DAQ Protocol

(RoR) protocol that is a secure protocol which is good at roughing out errors, but it also has much

overhead and therefore slower with transferring actual data bits. Different protocols prioritise

being small and with little overhead. This means a high percentage of the payload are data bits. A

smaller protocol might sacrifice robustness so it cannot detect some errors that a more robust

protocol can detect.

The previous iteration of the RSE used the RoR communication standard in [3]. A simpler protocol

was possible to use as the communication was going to be performed point to point. Point to point

communication means that there will only be one master and one slave, and the communication

will be directly between them. A single slave and master make using a slave address unnecessary

as there is only one slave. A simpler protocol could be used.

As the DPU and RSE communicate point-to-point, a simpler interface was possible and less

resource demanding. Neither a slave address nor a chip select is necessary. However, we need to

do some checking. As the RSE must be autonomous, it does not need to be able to send data from

the RSE without being prompted from the DPU. At the low level of the transmission, the baud rate

is defined as the number of symbols that are sent per second, as there are methods to include more

than one bit in a single symbol transmission. In our project, a standard I/O pin is used that either

is set high or low. This results in the baud rate are the same as the bit rate.

A standard Universal Asynchronous Receiver-Transmitter (UART) is suitable for a simple

communication link. The drawbacks of the UART is that it cannot support multiple slaves and

masters, both the master and slave must use a set baud rate and the limit on the data frame. There

is only one slave and one master in our system. The baud rate has to be set the same at both the

master and the slave for both systems to be able to interpret the incoming data. This problem could

make a UART undesirable as the technology might come with a set baud rate or a couple of

selected baud rates. Given the whole project are developed to be used on an FPGA, the limits on

the baud rate are how fast the system clock can sample it and the sampling rate, and other than that

the baud rate is selectable. Since we are not limited in the same way the DPU is, this meant in

effect that the DPU could set a baud rate that it is limited to, our system can adapt to it.

51

A serial peripheral interface (SPI) interface would require more pins than a UART as the UART

only needs a receiving and transmitting pin, whereas the SPI would need a chip select signal and

a clock signal. The SPI is great at full-duplex mode as data is sent in both directions during a

transmission. Developing a UART that supports full duplex is more complex to do. The SPI would

introduce a second clock to the system as the master will send its clock to the slave. Two clock

domains would give us a problem with having to cross the clock domains, but can be solved by

letting the clock only do the sampling and putting up slow write signals, and then letting the

internal clock react to the rising edge of the write signal for new data.

I2C main advantage is that it supports multiple masters and up to 1008 slaves, which is not useful

in this project. It also requires a more complex solution than a UART or an SPI. [25]

As a UART was to be utilised, an internal protocol on top of the character level was developed

that satisfied our demands. The UART handles the character level, which handles the low-level

bits, and the RSE protocol that handles the top-level communication that looks at the characters

that are sent.

The system clocks frequency is 10 MHz. We are going to send eleven bits each time the UART is

used. There are about 20 registers that should be read once each second. With the proposed RSE

protocol, there are four times this with overhead, so we end up with at least 880 transactions each

second. Using the RoR protocol would add five times the overhead increasing this to 4400

transactions each second.

Going with the RSE estimate, some transactions must happen each second, but also a lot more

could happen during a second if a start-up of the motor is initiated. A baud rate of 100 kHz was

proposed as it would give us some speed, but not make it a high-speed system as it is not needed.

The motor will use around 40 seconds to go from open to closed and vice versa, so the speed of

the transmission does not have to be set as fast as possible.

As the speed is not a huge problem, and we are also able to use a half-duplex system. As the DPU

is always the only one to initiate a transaction, there are no problems with making sure a collision

does not occur with a half-duplex system. A full-duplex mode would be possible, but this would

have required using queues and a more complex system with a different philosophy. As we have

52

already set the speed low, it would be easier to set the speed higher than creating a full-duplex

system, if we wanted a faster system.

4.6 RSE protocol
A simple serial communication part, such as a UART only creates a method of sending a set of

data bits. What goes into these data bits in what order needs to be defined as the UART does not

define order. There exist multiple large complex protocols, but there are no standardised smaller

protocols. Therefore, an internal protocol was developed that satisfied all our demands. As we do

not want much unnecessary overhead, it contains only two layers. The character level drives the

communication on the low level, and the package level decides what to put into the character level

in what order, as shown in Figure 16.

Figure 16 RSE protocol levels in operation

4.6.1 Character level

The character level is a single transmission package and is the low level of transmission. The

character consists of a start bit, eight data bits, one parity bit and a stop bit, as shown in Figure 17.

The UART must handle this level by receiving and checking each bit in order, before checking

them overall. The UART must also handle sending out the bits in the correct order and calculate

the parity bit.

Start and stop bit are necessary to detect a new package is being received. A package that will not

be able to detect at the right place where to start if there is no start bit. Data bits transfer the data

from one component to the other. If a bit flips during the transmission, the parity check on the

parity bit will be able to detect this. A parity bit can help the stability of the system by rejecting

faulty characters. Adding a parity bit comes at the cost of more overhead on the character level.

There could have been implemented some hamming code to restore the package, but it was

considered more straightforward to reject the package and let the DPU know that an error occurred.

RSE DPU

Character

level

Package level

Character

level

Package level

53

To be able to see if the communication lines break, the idle level is set ordinarily high. The parity

bit and the stop bit will be wrong if the line breaks so that the UART will accept no characters.

The last error that the character level needs to handle is if a bit cannot be validated. So, if a bit is

not stable in the middle of it, it must be rejected.

Figure 17 UART character [26]

4.6.2 Package level

The package level is the high-level part of the communication. A high-level lets the DPU and RSE

make sense of what is put in the characters and in what order characters should be sent.

The primary purpose of this protocol has been to keep the overhead on the package level low. We

have point-to-point communication, so no invocation with a slave address is needed. A write and

a read transaction are defined in the protocol. The DPU is the one to initiate the communication,

and the RSE respond on the command. Both commands need a write/not-read (wnr) bit and an

address in the memory to interact with. As the highest defined register has an address of 40, so

only 7 bits are necessary. This lets the wnr bit be placed in the same character as the address to

save one character in transmission. Should however there be 8 bits required for the address, the

UART could be extended to use 9 data bits instead of requiring more character to send the wnr bit.

In the response message, the response should include the whole command received so that the

DPU can check if the correct command was performed. If it was not the DPU can send the correct

command again, to write over the faulty command. The command could be dropped from the

response to achieve even less overhead, but by having it in, the DPU gets some help in verifying

the that the correct command was performed. Otherwise, the DPU would have to do a read

operation, as well as having to check that the correct data had been written.

54

There is no cyclic redundancy check in the protocol to make it more error proof and no self-

checking. To reply with the command and letting the DPU overwrite the error fast was a better

solution, as implementing self-checking would make the system more complex.

There is a sequence number in the response message. This lets the DPU keep track of how many

commands have been performed and is a fast way for the DPU to figure out that something was

skipped or went wrong in the previous interactions with the RSE. The DPU should then proceed

to read all the registers to check that everything is as expected and the DPU should figure out if it

must reset the RSE. The whole memory write and read procedure is illustrated in Figure 18.

Figure 18 RSE protocol memory write and read transaction

Read operation

The read operation is going to be performed most, so it been prioritised to keep it as small as

possible. So, it is necessary to provide a wnr bit and the address, which could be done in just one

character. This was then selected to be the read command, as seen in Table 9. The response would

include the command, the status of the register that had been read and a sequence number, and is

shown in Table 10.

55

Table 9 Read command format

8 bits

Command

0AAAAAAA

Table 10 Read response format

8 bits 8 bits 8 bits

Command Status Sequence number

0AAAAAAA BBBBBBBB SSSSSSSS

Write operation

The write operation is designed the same way the read operation is, but it also needed the 8 bits

that are to be written to the desired register. The write command would include two characters, as

described in Table 11. The first containing the command, and the second with the data bits to be

written into the register. The response would mirror the command and the data bits that have been

written in addition to the sequence number, as shown in Table 12. This lets the DPU see that the

command has been performed correctly or incorrectly.

Table 11 Write command format

8 bits 8 bits

Command Register

1AAAAAAA RRRRRRRR

56

Table 12 Write response format

8 bits 8 bits 8 bits

Command Written value Sequence number

1AAAAAAA RRRRRRRR SSSSSSSS

Error response

In the case that an error occurs, the RSE will provide an error indicator and an error message, so

that the DPU can see what went wrong. The response message also contains the sequence number,

as it might indicate other errors if it has skipped, as shown in Table 13.

Table 13 Error response format

8 bits 8 bits 8 bits

Error indicator Error message Sequence number

11111111 BBBBBBBB SSSSSSSS

The different errors are listed in Table 14. The low numbered error messages tell that something

went wrong on the low level (parity, validation, timeout). The higher numbered error message

indicates that there is a top-level problem, i.e. not allowed.

57

Table 14 Errors

Response ID Description

Parity error 0x01 Message parity error

Data validation error 0x02 A received bit could not be validated as '0' or '1'

Transmission timeout 0x03 Slave timed out waiting for remaining words from the master

Not writable register 0x04 The register is read-only

Wrong address 0x05 No such register

Not allowed 0x10 Not allowed since another command is already being

performed

Shutter already closed 0x11 Not allowed since the shutter is already closed

Shutter already open 0x12 Not allowed since the shutter is already open

Motor temperature too

high

0x13 Not allowed since the motor is too hot

Electronics temperature

too high

0x14 Not allowed since the electronics are too hot

12V rails not active 0x15 Not allowed since the ±12V rails are not on

Exceeding max current 0x16 Not allowed to set current above the max motor current

Unknown command 0x21 The received command is undefined

Timing

Given that a half-duplex transmission, the RSE or the DPU are not allowed to start transmitting

before the end of the stop bit on the command or response was received, as illustrated in Figure

19. This would give the system feeding the UARTs data some slack to finish its operations and go

back to idle.

58

Figure 19 Start of new transmission timing

The write operation might timeout in between the two parts of a write command, or the RSE might

timeout in between two characters. This timeout is called a transaction completion timeout. To

make sure this timeout does not happen, a maximum of 11 baud delays between successive words

is allowed. If this requirement is breached, the RSE will issue an error message if it is waiting for

the DPU.

The RSE might also timeout after it has received a command. This timeout is a response timeout.

If the RSE has not started sending the response within 11 baud delays, it should clear and be ready

for a new command so that the DPU can start a new transaction. The slave would need 11 baud

delays to be able to recognise a silent link. Eleven baud delays were selected for both timeouts as

it is the length of one full character from start to stop bit, so a silent link can be recognised should

either the DPU or the RSE have mistakenly started a receiving operation.

59

5 Firmware implementation

5.1 Top level design

Figure 20 Top level design

At the top level, as shown in Figure 20, there is a UART that handles the low-level communication,

and an RSE protocol that handles the top-level communication towards the DPU. The data received

is put into the register bank, and requested data is pulled from there. The register bank stores all

the software registers and connects wires from other places, so they act as read-only registers. The

data registers are then sent out in records to the different modules that need them. Some modules

send back value to the registers. These are read-only register as modules control them.

In the top level, there is a couple of timer modules. There is a clock generator module that generates

a pulse each millisecond and second. These signals are used to time the other processes, so they

run synchronously to each other.

The design is split up where it is appropriate. The stepper driver is reliant on a lot of in signals, but

to keep the size of it down it only connects different incoming signals to the output when they are

60

required. Dividing up the modules made the testing simpler as an error could be isolated to its

module that produced the wrong signal. Also, by using regularity as a philosophy for the different

modules, the modules were simpler to build fast and test.

5.2 UART
UART is a component that handles the low-level communication with the DPU. The UART must

control the transmission and check that all the communication is legal. All the communication is

done in baud periods. Therefore, each step has a counter which is counting the clock periods in

that step and checking if it reaches the number of clock pulses per baud period, before entering the

next step. When no communication is occurring, the transmission lines are set high. The start bit

is then low so that a new message can be detected. Then comes the eight data bits from the least

significant to the most. Then a parity bit comes, before a stop bit, which is high.

The UART consists of two parts, with support functions. One part handles the transmission of

packages from the RSE to the DPU. First, the transmitter needs to be started from a valid data

signal. Then the transmitter needs to fetch the desired data that is to be sent. This data is then

wrapped with a start bit, parity bit and a stop bit. All the data is sent through the transmitting data

line. First out in the transmission, the start bit is transmitted for one baud period. Then the data bits

will be sent for one baud each. A counter is utilised to count which data bit is in progress of being

sent. While the data bits are being sent, the odd parity bit is being calculated in a separate process.

A separate process makes it so that the parity bit does not have to be calculated during one single

clock cycle. The calculated bit is then sent out for one baud period. At last the stop bit is sent out

for one baud period to complete the transmission.

The receiver part controls the reception of packages from the DPU to the RSE. The receiving

transmission line is monitored to check for incoming data. First, all the data from the transmission

line is synchronised through two registers. The synchronisation is done to avoid metastability

problems, so the signals are usable in the UART clock domain. The synchronised bit is sampled

each clock cycle into a sampling register. This register oversamples the bit by a factor of clock

pulses per baud period. The oversampling, together with a counter, can then look at the middle bits

of the transmission. The five middle bits are compared, and if all of them has the same value, the

sampled value is accepted. If they have different values, an error is indicated. That way, the bit

61

used is sampled when the transmission is at its most stable, and all the middle bits are the same

value ensures that a proper sample is utilised. This process is illustrated in Figure 21.

Figure 21 Sampling the value of incoming data

When the transmission line goes low, a start bit is detected. This start bit will then fill up the

sampling register. The sampling register is looking for a start word where half the register is high,

and the other half is low. The start word is timed, so the next steps samples when the whole

sampling register is full of the first single bit. If the search word appears, the next step waits so the

whole bit is in the sampling register. Then it checks the middle bits if they are all low. If not,

something is wrong, and the state goes back to idle, where it waits for a new search word to be

found. Should all the bits be 0, the counter is reset and, the process goes to the next step. There the

data bits are collected. They are checked if they are valid and then put into a register, where a

counter places them in the correct order. After the data bits are collected, a parity bit is calculated,

and the parity bit from the package is received. The calculated and the received parity bit is then

compared. If they are unequal, an error flag is set. At last, the stop bit is collected, and a flag is set

indicating that a new word has been received.

62

5.3 RSE protocol
The RSE protocol handles the top-level communication of the transmission in accordance with the

protocol. The implementation of the top-level is done by using a state machine, as illustrated in

Figure 22. Since all communication is initiated from the DPU, the state machine can wait until it

receives something. The UART will deliver the data and a valid data bit when new data is received.

It will also deliver flags for low-level errors such as parity bit error and data validation error. The

state machine has one idle state, and one state for each of the words that are to be sent and received

during the transmission, in addition to two wait states. It also has an error state where an error

message is produced, which the state is sent to if an error has been produced.

Figure 22 RSE protocol state machine

63

First, in the idle state, the code will be waiting for the UART to indicate that a new word has been

received. Then the parity check flag will be check. Then the write/not read bit is checked. This

determines whether a write or read procedure is to be performed. This bit is put in a variable to

keep it for later purposes. Since it is a variable, it can be utilised at once. If it is a write operation,

the state is sent on to the write state, and the timeout counters are reset. However, if it is a read

operation, the address that is received is check if it exists before the read operation is performed

by setting the cs and read signal high. The state is then set to address send.

The write state waits first for a new data valid flag to be set. Then the data validation, parity,

existing address and writable address are checked for in that order. This order is used so that the

lows level error is given priority. This is done as an unwritable address is an input error from the

DPU, but a validation or parity error is a much more critical error as there is something wrong with

the system.

Then which of the address that is written to is checked. If the command register is tried to be

written to, checks must be done to check if it is legal to write the command that is received. First,

the command that is written needs to be checked if it is one command that warrants checks. If the

command is related to the shutter first, the 12V rails need to be checked if they are on. Then the

temperature of the motor and the electronics must be check if they are too hot. Then the status of

the shutter is checked to see if it is in the process of opening or closing. At last, if it is an open

command that has been received, check if the shutter is already open, and vice versa for the close

command.

If the command is another known command, no checking must be done. However, if it is not a

known command that has been received, an unknown command error is set. If no error was

detected a standard SBI write to the register is performed, the timeout counters are reset, and the

write data is placed in a data register inside the register bank, and the state is sent on to the address

send state. If an error has been detected, the corresponding error message is put into the data

register to indicate what kind of error has occurred, and the state is sent to the error state.

In the address send state if a read command has been performed, the data read is put into the data

register. The data read is not ready before this state and is then put into the data register. Then the

address and the wnr bit is feed to the UART so that it can be sent. When the UART tells that it is

64

ready to send, the valid data signal is set to initiate the transmission in the UART. It will then enter

the address wait state. This wait state waits only one clock period so that UART gets time to reset

the ready signal, so the data send state will not imminently happen. It also resets timeout counters.

Given that the shutter will use seconds to go from open to closed, and just the transmission uses a

baud rate much smaller than the clock frequency, one clock period is not that critical. A method

where a done signal was utilised instead of the ready signal was used early in the project but

discarded to get a clearer interface. The done signal only last one clock period, and so the ready

signal which lays high is easier to handle and made the waveform simpler to understand during

the simulation.

The data send state waits for the UART to be ready again. When the ready signal arrives, it will

send the data bits to the UART so that they can be sent. This procedure is performed while a

transmission timeout counter is running. It will timeout at a set constant where it will go back to

the idle state as it is defined in Section 4.6.2 that if the transmission is not initiated within 11 baud

periods, the DPU can send a new package. To implement this the timeout counts twice so that the

first package finishes before it starts counting for the second.

The same procedure is applied in the data wait state as in the address wait. This state resets the

timeout counter and waits a clock period so that the ready signal has time to go low again. Then

the sequence number state applies the same procedure as the data send state, but it will send out

the sequence number register value, before adding 1 to it for the next transaction. The addition is

done to track the number of interactions from the DPU to the RSE.

For the error state, the data register is set to the corresponding error message when the state is set

to the error state. Setting the data register then ensures that the correct error message is produced

since the flag telling what is causing the error often last only a single clock period. The data register

holds the data from the register bank when read, or the data to be written is held in this register

during a write operation. The data register is what that is sent back during the data word of the

package. The error state itself replaces the write state where the state machine waits for the data to

be received. It also works as a stage in between the idle state when a character has been received,

and the address send state where the response is generated, in case of a read operation. The address

to be sent is set to 1’s indicating an error has occurred, and the cs is set to 1.

65

The check that controls that the received address is valid and the check for a writable address are

both placed in functions as the to help the readability of the state machine. A simple function name

is used, and in them, they will check the received address against all legal addresses.

5.4 Smile register bank
This module was generated using the Bitvis register wizard early in the development. The

generation of a register bank created an SBI interface, and it has been used to access the register

bank from the RSE protocol code. This SBI interface was chosen to be used early so it could be

used for learning to utilise the Universal VHDL Verification Methodology tool from Bitvis. There

is a top level of the register bank, and it consists of two parts: the SBI controller and the core where

the registers are located, with two records in-between them.

The SBI controller is an SBI interface and two decoders, one for writing to the register bank and

one for reading from the register bank. The record from the register bank contains all the register

values. In the read process, if read and chip select is set, the address is used to chose which register

value is placed into the read data output. The only case where it is different is that if the heartbeat

register is read, it produces a heartbeat count accessed signal that is used in the heartbeat module

in Section 5.7. This is done to simplify the heartbeat module. The write process checks if the write

signal and chip select signal is set. If the write signal is set, the address is checked, and the

corresponding register signal in the record is set to the write data value, and the write enable signal

is set for that register. All the individual write enables is or-ed together to create a general write

signal. This is done because some other modules must see if a general write was performed.

The register bank contains registers for each of the defined writable and static registers. Most of

the read-only registers are signals come in as through a signal in a record and are just passed

directly on to the SBI. The registers are also connected to the different records going out as they

are needed in other modules. There could have been a general record out, but since most modules

only use a few of the registers, individual records were created after where they are going to. This

also made the naming of the records symbolise more what they contain. The command register is

unique since it is cleared after holding the new value for one period.

66

5.5 Debugging module
To make the first test on the board easy a debugging module was created. The purpose of this is to

have a blinking LED on startup. This LED makes it simple to see that the programming of the

board was successful. The communication could also be checked if the blinking LED could be

turned off, as visual feedback is provided instantaneously from the led. The LED will start blinking

again on reset. This has been great to check with when problems occurred as a sent command was

received on the board, but no response came back. This reduced the amount of probing and time

used on other techniques to troubleshoot.

The debugging module code is implemented as a process with a linear-feedback shift register. The

shift registers output change value roughly every second. The process was made to be independent,

and while the sec pulse from the clock generator could be used, it would make it rely on other

modules, and not be fully independent. A normal binary counter could have been implemented

instead. Since the counting order does not matter, the LFSR has a simpler logic, and there was a

wish to try using an LFSR, it was decided to be made that way.

The debugging module was created early in the project after the communication and register bank

was done. This was to enable testing of accessing the register bank on an FPGA early in the

development.

5.6 Clock generator
A clock generator was made as a millisecond and a second pulse was required. The pulses were

required to be independent, so multiple modules could rely on it to keep them synchronous. This

central clock generator makes the other modules dependent on signals outside them instead of

using counters inside them. However, having a synchronous clock pulse and reducing the number

of counters was considered to be better. It was simpler to develop and made the readability better

because of the reduced size of other modules.

The clock generator is built with a conventional counter where a variable counter is used to count

from 0 to a constant holding the value of clock pulse per millisecond. This counts each clock pulse.

When it reaches the constant value, a pulse is set, and the counter is reset. This generates the

67

millisecond pulse. Then the same process is repeated to create a sec counter. The millisecond pulse

is used to count, and a second pulse is created.

In addition, an arm timeout process is used to timeout the arm signals. This process counts on each

ms. There is an uncertainty in wherein the ms counting process the ms counter is when the arm

timeout is reset, so an additional counter was used for arm timeout. The arm timeout is reset by

the different modules that use this process. When reset the counter will count for one sec, where

an arm timeout signal is set. This is sent back to the modules that need it.

5.7 Heartbeat
The purpose of the heartbeat module is to be able to control that DPU communication is working.

If the communication lines stop working, the instrument needs to be protected, as the RSE does

not know anything about the outside and what is happening. The DPU is required to read the

heartbeat register at least once each 30 sec. This lets a timer be created to count until the

communication can be assumed to be broken. When the heartbeat register is read, the counter is

reset back to 0. The counter counts on each second pulse. The counter will remain at max value if

it is reached. This is to prevent the counter from looping around and deactivate the emergency

closure. If it counter reaches the timeout constant, a heartbeat missing signal is set.

Each access increases the heartbeat register's value by one. Incrementing is a simple way to see

that the heartbeat register has been accessed. The heartbeat module monitors the SBI interface into

the register bank and performs the addition if the heartbeat accessed signal is high. The heartbeat

register value is sent back to the register bank where it is just connected to the SBI interface

directly.

5.8 HDRM
HDRM is the module that is supposed to release the shutter after the satellite is in place. The shutter

is locked in place with a hold-down mechanism during launch. This needs to be activated by a

current to release. The HDRM module provides a signal to activate this.

The HDRM requires a command to arm it, and then a command activating it. If any other write

operation than the activate command is performed while the HDRM is armed, it will unarm. This

68

is to make sure that the shutter is not released before it should, and thereby doing damage to the

shutter and its surrounding.

The process will wait for an HDRM arm command. If an arm command and a command write are

written to the register bank, the arm signal will be set. When the arm command is received, the

HDRM resets the arm timeout procedure in the clock generator. This will give back a signal if a

too long time goes before the activate command is received. Then if a write command is performed

to the register bank and the arm signal is high, the command register is checked if it is written an

HDRM activate command to. If it is, the activate signal is set, and else the armed signal is reset. If

the timeout signal is set, the arm signal is also reset. The module sends the arm and activate signals

to the register bank to the HDRM status register.

5.9 Reset generator
The reset generator operates much in the same way the HDRM works. It is designed to be able to

reset the whole design while from a command. To perform a reset an arm and a activate command

is needed to be written in succession to the command register within one sec of each other. This is

to ensure no single wrong package can by accident reset the system.

The reset generator runs a process that checks if an arm reset command is written to the command

register. If it is, the reset armed signal is set, and the arm timeout is reset in the clock generator.

Then if the timeout is activated, the arm signal is reset. However, if the arm is set and a write

command is received, the process will check if a reset activate is written to the command register

and then set the reset activate signal. If it is not a reset activate command, the reset arm will be

unarmed.

5.10 Stepper motor modules
Most of the stepper motor could be placed in a single module. To stop it from bloating, it was

simpler and easier to split it into different modules to handle the different purposes. This increased

the number of global signals but was at the benefit of getting a better hierarchy. The modules have

been tried to look alike and using the same methods to achieve the same results.

69

5.11 Switch debounce
Switches usually jump between closed and open, and there are no clean edges. To deal with this,

a debounce module is needed. Two switches need debouncing, one that detects that the shutter is

open, and one that detects that the shutter is closed. The debounce are not affected by the other

code and are not required to be in sync with anything else. Since this is the case and the clock

generator was providing a millisecond pulse, that was utilised to keep it simple.

The debounce process receives the millisecond pulse and from that counts until it reaches the set

debounce time constant. When it reaches the constant, the current input value from the switch is

checked against the previous value. If they are the same value, the incoming value is let through,

if not the previous value is used.

This method is used so that if the stepper motor samples in a transition period of the switch where

the signal will be jumping between high and low, it will have to run another step. The alternative

is not to have a debounce module and just let the signal straight through. It could just as well work,

as the noise on the signal is only present when the switch is transitioning, which means it is either

as good as open or closed. The momentum of the shutter might be good enough to close the shutter

fully. There is also a closing step in the stepper motor to let the stepper sequence finish, and this

might also be good enough to flip the switch value properly. However, at an early stage in the

development, nothing was known about this, and so to ensure there are no problems the debounce

was developed and utilised.

5.12 Pulse width modulator
The PWM’s job is to create a digital signal that is modulated to be on and off in cycles. This signal

is used to turn a transistor on and off, to achieve certain currents as described in Section 2.4.3. In

this project, one PWM is used to control the current in the motor, and one to chop the signal on

the transistors. This is to limit the power used.

The motor current is connected to an output which is connected to the current source, and by

turning it on and off, a corresponding current is delivered. The chop signal is delivering a constant

chopped signal, and this is used in the stepper driver to chop the signal on the Q3 and Q4 driver

transistors, as seen in Figure 8.

70

The PWM takes in a register value. A process will count from 0 until the register value. During

this, the modulated signal is high. When the counter reaches the register value, the modulated

signal is set low. The counter then goes to the maximum value and then loops around.

A goal of the PWM was to design it as universal as possible so it could be reused.

5.13 Settling time period
The settling time module is a module should provide a high signal up until a particular time. This

is done to drive the signals on the transistors driving the motor for the settling period. This allows

the current through the driver transistors to be settled at the desired value before any power saving

methods are applied. In this project, the settling time period signal is supposed to be high for the

settling period, and then the signal is chopped to save power. The settling time period module is

to be similar to the PWM module, except that it is missing the wrap-around. So, the module needs

to be reset each time the counting is to be performed.

The way this is implemented is by creating two counters. One that counts until every four

microseconds and one that counts those microseconds until the settling time constant is meet.

When the settling time is reached, a settling done register is set. When the settling done register is

set, the settling pulse output is set low, where it was high before the settling was done. When the

register is set, the counters will continue counting, but they do not affect anything.

5.14 Half step synchroniser
To synchronise the steps in the stepper motor, and ensure all steps are equal, an independent step

counter was developed to ensure this. This module is consisting of a counter that counts until the

half step constant is meet, where an out signal is pulsed. This signal is used to proceed in the

stepping order in the setter driver. The stepper driver is required to reset the half step synchroniser

to sync the stepper driver sequence. This was a simple way of getting the stepping in sequence,

instead of having to sync the sequence to the half step by waiting for the pulse.

71

5.15 Stepper control
To know what command should be performed, the command register must be interpreted. To

interpreted it, a stepper control module was made to detect changes in the command register and

pass the interpretation on to the stepper driver. Since the command register is cleared one clock

cycle after a new command has been placed in it, so all new commands are easily detected by

checking if the command register is not cleared.

To make this simple, the command register is checked if it holds a value which corresponds to a

motor relevant command. Illegal commands are rejected in the communication part, so all

commands that are received can be expected to be legal. For example, this will stop a new open

command to override an ongoing close command. So, in the procedure the command register is

checked, and then all the command flags are set low, and the new stepper command signal is set

high. Then the command is checked which command is being received, and its corresponding flag

is set high.

The only special case is the cancel command which checks if an ongoing command is being

performed. If it is the cancel command flag that is set high, or else it is kept low, and the new

stepper command flag is set low, so it never goes high. While it is not necessary for the stepper

driver, it is done to ensure the new stepper command are always set with a command flag and not

trigger any checks in stepper driver. This also ensures no unnecessary interactions across modules.

The flags are held high until a new command is received. This is so that the stepper can just check

on the flag to know which command is going on, and thereby which end conditions to check for.

5.16 Stepper driver
The stepper driver is the component that controls the stepper motor operation. The stepper

sequence must be fulfilled in the correct order, as shown in Figure 9. The signals that go into the

stepper sequence comes from other independent modules, to reduce the size of the stepper driver

module. The module handles the power rails, the status of the motor, emergency mode, checking

the temperature, and driving the stepper sequence.

72

For the power rails in normal mode, they are to follow the LSB in the enable 12V rails register,

but in the emergency mode, they need to be powered on to ensure that the shutter closes. Since the

rails might be off to save power when the emergency mode sets in, it needs to be able to override

the register. The easiest way to perform this is to check if the emergency state is not in the normal

operation mode and override it should that be the case.

The shutter status register is the only way for the DPU to get to know what is going on with the

motor within the RSE. The stepper driver places the corresponding signals from other processes

into the bits in the register where they belong where it is possible. For the closing and opening in

progress status bits, the state of the stepper process is checked if the state is in the closing or

opening sequence. The emergency status is checked the same way the power rails is checked.

The test procedure needs to check if the motor temperature or the electronics temperature exceeds

the maximum allowed temperature. This set two registers indicating if the motor or the electronics

are too hot. This lets the sequence check if one of these registers is set so it can wait for cooling

down.

The RSE might lose communication to the DPU, and should it an emergency mode is needed. A

state machine handles the emergency mode. There is a normal mode state where the

communication is working, and heartbeats are received. When a missing heartbeat is indicated

with a signal, the state goes to the heartbeat missing state. This will power on the power rails,

overriding the register controlling the rails normally. There if the heartbeat is received again, the

state goes back to the normal state. If a second pulse is received as it will come one second after

the missing heartbeat signal, then the emergency initiated signal is set, so the stepper driver process

will start closing the shutter. When the shutter is closed by end switch or max number of steps, the

finish motor command is sent back from the stepper process. The emergency initiated is then reset,

and the emergency finished state is set. If it, however, receives a cancel command, it will stop the

stepper process as normal, and the emergency state is set to the emergency finished, as a heartbeat

is imminent as a cancel command was received from the DPU. In the emergency finished state, it

will wait for the heartbeat missing signal be set low, before going back to the normal state.

The emergency is based on the missing heartbeat from the heartbeat module. So, the RSE needs a

way to protect the detector if the DPU stops working and needs a reset. The rails need to be

73

powered on. Then the state takes a second to ensure the rails are properly turned on. This also

gives some time to let a heartbeat come as a reaction on the power rails turning on and stop the

emergency before it is initiated. Then in the close process, the closing procedure needs to respect

the too hot condition and the max number of steps. This is to ensure that the RSE does not degrade

and destroys itself, and thereby leave the detector exposed to high energy radiation or that the

shutter is closed without the possibility of opening it again. The switches might also malfunction

and get stuck to a value, so it can’t be used to check if the shutter is closed. Then in the finished

state, it will just check if the heartbeat is received before going back to normal operation.

The stepper driver is the process that goes through the stepper sequence. This process sits in idle

with all the transistors off, before while waiting for a new command to come from the stepper

control, or an emergency is initiated by the emergency process. When a new command is received,

the counters in the settling time module, the half step module and the number of steps performed

value is reset. This is to ensure that the number of steps register is kept at its value until a new

command is performed. The flags from the stepper control are checked to find out what command

is to be performed. The state is then set to the appropriate stepper sequence. There are two

sequences, one for opening the shutter and one close sequence.

As described in 2.4.3, the stepper needs 16 states to reach the whole stepper sequence in both

directions. The stepper sequence is built up so that there is a step zero, the normal steps from the

stepper sequence, initial steps where signals to other modules are set, cooldown steps, a step nine,

and an all off step. When started for the first time in a sequence or restarted after a cooldown, step

0 is used instead of step 1. This step is first in an initialisation step, before going into the main

step. The main step runs until the half step is received, before going into a new step. There are

initialization steps where there are changes to the transistors, and it lasts only one clock period.

The main steps will send out the settling time reset when the half step is received when it is

necessary to power on a new transistor.

In step eight, when the half step is received, different checks must be performed to check if the

operation is finished. The test sequence is vital as specific conditions like temperature or cancels

needs to take precedence over other conditions. First, the number of steps is increased here. This

74

is a simple way of ensuring that the number of steps is progressed, as the eighth step is the end

step of a single sequence, and the start point might be in either step zero or step one.

The first check is to see if it was an emergency has been initiated. It will then check if it has been

cancelled or if the end has been reached. If it was not an emergency that initiated the operation, or

it is an opening operation that is being performed, the first thing to check is if the current operation

is cancelled. This will send the state to the ninth step to finish the sequence before ending the

operation, however, if the operation is not cancelled, which operation that is being performed needs

to be checked so that the correct end conditions can be checked.

For the stop-at-switch commands, the switch is checked if it is set. If it is, the ninth step is the next

to end the operation. If the switch is not set, the electronics and motor temp must be check if they

are too hot, which in case the operation goes to the cooldown state. Else a new step is run. For the

max number of steps operation, the number of steps is checked if the max number of steps is

reached. If it is the operation goes to the ninth step to end, and if not, it must check the temperature

and either go to the cooldown state or run a new step.

The cooldown states turn off all the transistors and then rechecks the temperature each half step.

Then if the temperature has lowered to or under the max acceptable temp the cancel flag is checked

if the operation has been cancelled during the cooldown. If not, it will go to step zero for a new

step. This is since the only conditions that use the cooldown states is if a new step is to be

performed. If the operation ends, the transistors are turned off and will cool down. As no new

commands are allowed as the motor or electronics are too hot, so nothing will heat them.

When ending the operation, the ninth step is utilised. At the start, one transistor keeps low at the

very first step, even though it should have been high, step nine is used to compensate for this. The

final step is the all off step that turns of all transistors. This is used as a clean-up state where all

the transistors are turned off. It provides a simple universal test for testing, as it is the end state for

both the closing and opening sequence. This lets a check on the state make sure the operation was

finished cleanly, as the only clean exit is going through this state.

75

6 Test and development
The RSE protocol was developed with these steps:

1. Development and testing of the communication with the DPU

2. Test of communication on board with a simple program

3. Development of motor and other modules

4. Further testing in a test bench

5. Expanded python program for testing on board

6. Testing on board

6.1 Development of the firmware
The communication was developed first as Bitvis provides a register tool to create a register bank

with an SBI interface, and two test methods. This tool is called Bitvis Register Wizard. These were

desired to be utilised in the project and came with an SBI and UART example. This did let a single

test bench for the register bank be generated to make sure the register bank worked. In it, each

register was accessed via an SBI interface and read. All writeable registers were written different

values to and then checked.

As the register bank was working, the communication modules to access the register bank from

the DPU was to be created. The RSE protocol was decided to be used, and so on a high-level

module was created to fulfil this. To test this, we created a new test bench with the RSE protocol

and the register bank. The RSE protocol is connected to the UART via two records. Two

procedures were created to make a write operation and a read operation over the records. Having

tested this, the UART was created to get the whole communications aspect ready. The test bench

was expanded, as illustrated in Figure 23, and different procedures replicating the RSE protocol

was created to perform the tests.

76

Figure 23 Test bench for communication

The Bitvis Universal VHDL Verification Methodology framework was incorporated into the tests,

and their UART VHDL Verification Component (VVC) was put into the test bench. A testbench

harness was used to instantiate the UART VVC, the RSE components, the engine for the

framework and the clock process. This was done to reduce the size of the test bench file and

separate the instantiation as it would not be modified a lot afterwards.

This was the fundament for the testbench that was expanded upon. In the test bench, the register

default was read before the write operation was performed to all writeable registers. As the normal

operation was working, the different illegal cases were tested to check if the corresponding error

message were received. First, multiple read transmissions were sent before the RSE had time to

respond. This does not work as the UART will receive the observed characters, but the RSE

protocol ignores them as they come in during states that do not care about any new received signal.

The only way this works is if the DPU initiate sending a word after the sequence number have

started sending from the RSE. Then the UART will have received the whole word as the RSE

protocol has had enough time to get back to idle. Then unknown commands are sent and rejected.

The parity bit is changed in the VVC to use even parity. This makes it so that all communication

from the DPU is rejected. This is then changed back to odd parity before the test bench tries reading

and writing non-existing register and writing to read-only registers. At last, transaction timeouts is

performed while writing both correctly and faulty. All of this worked in the simulation.

Test bench

Test hardness

UART

VVC

Smile_top

UART RSE

protocol

Register

bank

77

As the communication was working the functionality could be developed. The other functions, as

described in Chapter 5, was developed. First, the functionality that did not affect driving the stepper

motor directly was developed, and after that, the stepper driver modules were developed. These

modules were continuously tested in the test bench by accessing the registers that controlled the

functionality and from there check that the correct output was produced, probing different signals

to check if they behaved as intended and at last we did see if the RSE behaved as expected in

communication with the DPU. As all functionality is either dependent on commands from the DPU

or running independently, we would trigger different functions by writing to the RSE, or wait for

functions to trigger.

6.2 DPU simulator
Lylund created a DPU simulator to test his code. His thesis [3] gives the following description of

the DPU simulator:

“The DPU simulator is created in Python, which is a high-level, general-purpose

programming language. Python has simpler syntax compared to the alternative

programming languages: C, C++, and Java. It also supports a large variety of libraries and

development tools, such as serial communication and Graphical User Interface (GUI). This

enables complex programmes to be created in a relatively short time, so it was decided to

use Python as the framework for constructing the DPU simulator” [3].

This software has been taken as the starting point of the present RSE GUI. During this work, the

software has been restructured into several python modules, each with dedicated functionality.

Some new functionality has also been added, for example, access to new registers, regular access

to the heartbeat register and ability to open and close the radiation shutter multiple times

sequentially. The latter functions needed a major software change in order to run continuously in

the background, which was implemented employing the Python QTimer class, which provides

repetitive and single-shot timers. The “Open Close Cycles” button sets a flag which triggers a

software finite state machine controlling the open-close cycles.

78

The new GUI also implements the RSE communication protocol instead of the previous RoR, see

Figure 24. This example shows how the heartbeat register is accessed every second, and from the

log, we can see how the sequence number is incremented for each access.

Figure 24 Modified DPU simulator for operating and testing the RSE

6.2.1 RSE Register Window updates

Previously we had to choose a register and then write a value or read it. Using the drop-down menu

and writing to a register was tedious when trying to write to multiple registers. We changed every

register label to buttons that read the register, and each register got a text box where we could write

the desired value. Pressing enter triggers a new function that sends the proper command to the

RSE. If the user writes an illegal number or a number not within 0 to 255, this now caught by an

exception routine, preventing wrong values to be written to control registers or the software to

crash. As previously mentioned, some new registers have also been added.

6.2.2 RSE Command Window updates

The RSE register window simplifies the process of writing commands to the RSE by specific

command buttons. In principle, there should be a single button per command, but for the arm and

79

activate functionality, single buttons are needed. This is because it is difficult to click two buttons

quickly enough to be within the required one second time window for the valid arming time, see

Section 4.2.4. So, the button for arming and activating HDRM and reset was combined in the GUI

for testing proposes.

In addition, as previously mentioned, an “open and close cycles” function was implemented. This

function runs multiple open and close until end switch commands in succession. This allows long

term testing of the hardware without manual intervention.

6.2.3 RSE Log Window updates

A terminal was used, but we wanted a log window instead. Using that we could easily connect the

window to a file to read afterwards. With the extensive RoR communication protocol, the whole

process of a single write or read were shown. The RSE protocol allowed a simpler log message as

we just printed the characters that were sent to the RSE and the response message. A comment

was added in case of an error or for commands. The sequence number would also increase on the

screen so we could see if any packages were lost.

When we implemented the emergency close feature on the FPGA, we had to create a background

function that provided heartbeats to the RSE. This function stopped the RSE from closing the

radiation shutter after 30 sec while testing the RSM.

6.3 Hardware tests
After thorough simulations, the firmware is ready to be tested on the physical system. The EBB is

connected to the FPGA development board, and the RSM is attached to the RSE via the RSE-RSM

harness.

To put the firmware onto the FPGA, it must be compiled. First, a tool like Libero synthesises the

code. Synthesis is a process that analyses the code and finds syntax errors (language grammar

error) and static semantic errors (ex. wrong type assignment). Compiling the code generates an

executable object code [20]. These languages contain a sequential list of statements.

80

During the compilation of code, the constraints of the code are added. An I/O constraints file is

needed. This file makes the FPGA set inputs and outputs to desired pins on the FPGA. The FPGA

pins are then connected to components on the PCB board. This way, for example, standard I/O

pins, LED or switches can be accessed from the FPGA. On a microcontroller, in contrast, there are

set registers that correspond to hard-wired components, and the registers cannot be chosen to

correspond to a different pin. [27]

In addition, there is a timing constraints file that is necessary. “Timing constraints represent the

performance goals for your designs. The software uses timing constraints to guide the timing-

driven optimisation tools in order to meet these goals” [28]. These constraints are set to give

information to the tool about the delay from ports, minimum speed of the clock domain and

identify critical logic paths that need a maximum delay or more clock cycles [28]. This is used

when the tool generates the floorplan of the FPGA and decide where to put the logic. By putting

logic and nets around the floorplan, the delay and timing constraints can reach a satisfactory level.

A floorplanning constraints file can be used to create regions on the FPGA and assign logic and

nets to these regions [28]. This is practical as modules that belong together can be placed close to

each other. A set floorplan will also allow a set space for different systems, where there are

conflicts over the usage of the area. A set floorplan also enables reconfiguration of certain blocks

when desired. As our system are rather small, and it will be burned into an FPGA, a dedicated

floorplan was not used.

The firmware was put onto a ProASIC 3E, and the DPU simulator was connected through I/O pins.

We did also compile the firmware for use on the RTAX250 FPGA. On that, we would use 40% of

the combinational cells and 36% of the sequential cells, ending up with a total of using 39% of all

the cells.

6.3.1 Testing of communication on board

A blinking-LED module is included as a firmware module to ease the first test. The main idea is

that the I/O pins toggles regularly after power-up and reset, and the blinking can be inhibited by

writing to a control register. Proper firmware operation can thus be verified immediately by

observing the blinking LED activity, and proper communication link operation can be confirmed

81

by writing to the inhibit register. The FPGA I/O pin can either be connected to a physical LED or

simply to a test pin that can be probed.

6.3.2 RSM bench test

The main functionality of the RSM can be verified by running the motor in order to open or close

the radiation shutter. Full functionality is simply verified by commanding “open door stop at end”

or “close door stop at end” while observing the movement of the door leaf. In addition, the motor

parameters should be tuned by setting the optimum motor current, half-step settling time and the

chop duty cycle. The figures gathered from the oscilloscope, view the current through one of the

coils driving the stepper motor where the current will go in one direction for 3 out of 8 half steps

before switching off the current for one half step, and then turning it one in the other direction for

another 3 half steps as illustrated in Figure 9.

6.3.3 Settling time

At the onset of the coil current, there is a dedicated “Settling time”, allowing the current to reach

the desired value before current-chopping is started. As can be seen from Figure 25, the needed

settling time is very short, about 40 µs before reaching the current plateau. The initial current peak

shown in the figure is related to the speed of the current regulation circuitry, specifically the speed

and the slew-rate of the opamp. At the start of the step, the current control is regulated to maximum,

before the set current is reached, and it takes a few microseconds before the speed and the precision

of the current regulator.

82

Figure 25 Ideal settling time peak

The set settling time has very little influence on the motor torque, as described in Section 2.4.3.

Therefore, it can be set as low as possible in order to save power by keeping the chopping period

as long as possible for every current phase. An experiment can be done in order to verify the power

saving effect of lowering the settling time. Trying to settle with a value of 10 gives us a settling

period of 40 µs, and a register value of 50 corresponds to a settling period of 200 µs. Using 10

instead of 50 represents a settling time difference of 160 µs per step. A step is 2 ms, and the power

saving effect can be calculated if we assumed negligible power consumption during the chopping

period:

10 ∗ 4𝜇𝑠

50 ∗ 4𝜇𝑠
=

160μs

2000𝜇𝑠
= 8%

40 µs

Necessary settling time

Current

plateau

83

There will be 8% saving of power using the lower settling time. Observing the power supply meter,

we saw a change from 58 mA for 200 µs settling time and 51 mA for 40 µs, representing a change

of about 12%. Too high settling time can be seen in Figure 26.

Figure 26 Too high settling time peak

We also tried setting the settling time to 0, as shown in Figure 27. This had no settling time, and

therefore, chopping started immediately. With a high enough chopping and current, we could still

reach the plateau.

Figure 27 Zero settling time peak

The result of the settling time measurements is listed in Table 15, and the actual motor current is

drawn in Figure 28, and the power supply current is drawn in Figure 29.

Current plateau

Unnecessary

settling time

84

Table 15 Settling time test (Motor current 100, Chop duty cycle 150)

Settling Time Actual Motor Current (mA) Power Supply Current (mA)

0 -- 125

20 400 139

50 415 145

100 420 165

150 425 180

200 425 200

250 425 --

Figure 28 Motor current as a function of settling time

395

400

405

410

415

420

425

430

0 50 100 150 200 250 300

A
ct

u
al

 M
o

to
r

C
u

rr
en

t
(m

A
)

Settling Time

85

Figure 29 Power supply current as a function of settling time

6.3.4 Chopping

As mentioned in 6.3.3, the settling time allows the current to reach the desired value before current-

chopping is started. The chopping signal is constantly going, but the settling time signal overrides

it, by locking the output to 0 for as long as desired. After the settling is done, the chopping controls

the current. The chopping lets the transistors be charged and discharged perpetually. The recharge

needs to reach the current plateau again. As can be seen in Figure 30, the current is chopped where

the current falls off, before being charged back up again. This process moves the average current

down. In Figure 31, the same operation is done without chopping.

0

50

100

150

200

250

0 50 100 150 200 250

Po
w

er
 S

u
p

p
ly

 C
u

rr
en

t
(m

A
)

Settling Time

86

Figure 30 Normal chopping

Figure 31 Without chopping

Settling time is only active for the ramp-up of the current. The current is then primarily set by the

chopping and the motor current register. The chopping needs to be high enough so that the circuitry

can recharge itself, as seen in Figure 25. The current needs to reach the plateau again, or the current

will fall off, as seen in Figure 32.

Chopping on

Chopping off

87

Figure 32 Too low chopping

The chopping needs to be set so that the circuitry has time to recharge the transistors. The optimum

chopping will only just reach the current plateau again before letting the transistors discharge

again. Staying at the current plateau is counterproductive as we want to minimise power usage.

Looking at Figure 33 and Figure 34, we can see that the effective time duty cycle where the current

ramps up are 2 µs of 25 µs.

2 𝜇𝑠

25 𝜇𝑠
= 8%

Figure 33 Effective on-period of one chop

Current plateau

88

Figure 34 Whole period of one chop

The test results are listed in Table 16. At lower chop duty cycles, settling time created a current

before the transistors lost the charge, as shown in Figure 32. At a chop duty cycle value of 123,

the shutter did get a high enough current to open the shutter. As seen in Figure 35, the current

ramped up in between 120 and 130. However, looking at Figure 36, the current drawn from the

power supply only increased while the motor current stopped just before 450 mA at a chop duty

cycle of 140. Comparing the two graphs, we can see that we will use unnecessary power at higher

chop duty cycles.

Table 16 Chop duty cycle test (Motor current 100, Settling time 50)

Chop D Cycle Actual Motor Current (mA) Power Supply Current (mA)

100 0 23

110 0 24

120 57 30

122 164 40

123 244 50

124 280 63

125 312 70

130 396 99

140 444 124

150 448 140

160 448 181

180 456 285

200 440 390

89

Figure 35 Motor current as a function of chop duty cycle

Figure 36 Power supply current as a function of chop duty cycle

6.3.5 Motor current

The motor current is the main driver of the current. This sets the current plateau that the chopping

and settling time should reach. As can be seen in Table 17, the current increases linearly with the

motor current register. From these results, Figure 37 and Figure 38 with trendlines were made. We

could see a linear increase in current as we increased the register value.

0

50

100

150

200

250

300

350

400

450

500

100 110 120 130 140 150 160 170 180 190 200

A
ct

u
al

 M
o

to
r

C
u

rr
en

t
(m

A
)

Chop D Cycle

0

100

200

300

400

500

100 110 120 130 140 150 160 170 180P
o

w
e

r
Su

p
p

ly
 C

u
rr

e
n

t
(m

A
)

Chop D Cycle

90

Table 17 Motor current test (Chop D cycle 150, Settling time 50)

Set Motor Current Actual Motor Current (mA) Power Supply Current (mA)

50 205 60

75 335 105

100 408 145

125 508 190

150 608 230

170 680 275

175 715 280

180 720 290

200 800 340

Figure 37 Actual motor current as a function of set motor current with trendline

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

A
ct

u
al

 M
o

to
r

C
u

rr
en

t
(m

A
)

Set Motor Current

91

Figure 38 Power supply current as a function of set motor current with trendline

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

Po
w

er
 S

u
p

p
ly

 C
u

rr
en

t
(m

A
)

Set Motor Current

92

7 Summary and conclusion
The system was developed as a second stage of the RSE. The requirements that are explained in

chapter 2 were adapted from the first iteration described in Lylund [3] and the design document of

the RSM [7], and edited when needed, to work with the FPGA version of the RSE. In the first

iteration, Lylund and the SMILE team created a breadboard that was able to run a simple stepper

motor. We ended up with an elegant breadboard of the RSE that is run with an FPGA on a

development board. The elegant breadboard is almost ready to be taken to the next stage as only

some small alterations to the RSE was requested at a late stage of this work. The only main missing

part of the RSE is the temperature readings. An SPI needs to be created to access the analogue-to-

digital converter that reads out the temperature of the motor and the driver electronics. The allowed

temperature for the motor is in a range of 220, so the register can be tuned to have a resolution of

almost 1 degree as the register range is 256.

In this work, we started with a quick project on the previous communication protocol, before

discarding it early on in favour of developing a simpler protocol. The RSE protocol that is

described in Section 4.6 was developed to work with a register bank and a UART while providing

far less overhead than the previous protocol. The communication with the register bank and the

debugging module was implemented first to get a test on board done as soon as possible. When

this was working, the rest of the functionality from Chapter 4, like the control of the stepper motor

was developed and implemented into the system. Each module has been individually created and

place into the system, where new tests were added to check that the new module behaved as

wanted. We have

This new functionality was continuously tested as it was developed with a test bench in Questa.

As we learned more about the system and methods, we discovered new problems and cases that

may fail us. As a result of this, we finalised and created new requirements to fit the problems and

corner cases that arose. Many of these issues are logged in the git revision tool. For example, we

had the settling time set in steps of microseconds. This proved to be too small when we tested it

on the board, so we changed it to use steps of 4 microseconds instead. Developing the system, we

have taken into consideration what can go wrong, like the end switches stop working, and designed

an alternative that can go around the problem.

93

The system has been designed with modulation in mind. We have implemented all modules

internally, and only the register bank has been generated from a tool. No intellectual property cores

have been used in the design. All modules have been designed to be as independent as possible.

As we can see in the results in Section 6.3, we achieved the same characteristics that were reached

in [3]. Motor current is the primary factor in setting the desired current in the coils to operate the

stepper motor. The chopping will save current as long as it high enough to not let the current drop

off. Setting the settling time higher than necessary will only waste power, and we do lose some

inductor current going by not having a settling time. Ideally, we would want the chopping the be

able to hold the inductor current constant, but just bearly. As for the settling time, we want it to

get the correct inductor current as fast as possible, but also allow chopping to start once the current

is in place. Then the motor current register can be used to adjust the current.

94

References

[1] NASA, “Near Miss: The Solar Superstorm of July 2012,” NASA, 23 07 2014. [Online].

Available: https://science.nasa.gov/science-news/science-at-nasa/2014/23jul_superstorm.

[Accessed 14 05 2019].

[2] ESA, “Smile summary,” ESA, 06 03 2019. [Online]. Available:

http://sci.esa.int/smile/59137-summary/. [Accessed 24 04 2019].

[3] O. Lylund, “Design and Development of the SMILE SXI,” University of Bergen, Bergen,

2018.

[4] SMILE team, “SMILE Instrument Interface Control Document - ICD Soft X-ray Imager -

SXI [Internal rapport],” University of Bergen, Bergen, 2016.

[5] B. Mauk, N. Fox, S. Kanekal, R. Kessel, D. Sibeck and A. Ukhorskiy, “Science

Objectives and Rationale for the Radiation Belt Storm Probes Mission,” Space Science

Reviews, pp. 3-27, 7 09 2012.

[6] ESA, “SMILE instruments,” ESA, 26 02 2019. [Online]. Available:

http://sci.esa.int/smile/59140-instruments/. [Accessed 1 5 2019].

[7] BCSS, “SMILE SXI Design Report for RSM 002,” University of Bergen [Internal

Report], Bergen, 2018.

[8] A. Merstallinger, M. Sales, E. Semerad and B. Dunn, “Assessment of Cold Welding

between Separable Contact Surfaces due to Impact and Fretting under Vacuum,” ESA

Communication Production Office, Noordwijk, 2009.

[9] R. Baumann and K. Kruckmeyer, “Radiation handbook for electronics,” Texas

Instrument, Dallas, TX, 2019.

[10] SMILE team, “FPGA and Firmware Requirements Specification for RSE [Internal

rapport],” University of Bergen, Bergen, 2019.

[11] Microsemi, “RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs,” Microsemi

Corporation, Aliso Viejo, 2015.

95

[12] T. Hopkins, “AN235 Application note Stepper motor driving,” 14 11 2012. [Online].

Available:

https://www.st.com/content/ccc/resource/technical/document/application_note/57/c8/7c/c

1/0d/91/46/89/CD00003774.pdf/files/CD00003774.pdf/jcr:content/translations/en.CD000

03774.pdf. [Accessed 01 05 2019].

[13] N. H. E. Weste and D. M. Harris, CMOS VLSI Design, Boston: Pearson, 2010.

[14] M. Wirthlin, “FPGAs operating in a radiation environment: lessons learned from FPGAs

in space,” IOP Publishing for SISSA MEDIALAB, Oxford, 2013.

[15] S. Heath, Embedded Systems Design, Oxford: Newnes, 2003.

[16] M. Gudino, “What is a Microcontroller?,” Arrow Electronics, 26 02 2018. [Online].

Available: https://www.arrow.com/en/research-and-events/articles/engineering-basics-

what-is-a-microcontroller. [Accessed 03 05 2019].

[17] Microchip, “ATmegaS128 - Datasheet,” 13 12 2017. [Online]. Available:

https://www.microchip.com/wwwproducts/en/ATmegas128. [Accessed 26 04 2019].

[18] US Defense Logistics Agency, “PERFORMANCE SPECIFICATION INTEGRATED

CIRCUITS (MICROCIRCUITS) MANUFACTURING GENERAL SPECIFICATION

FOR DEPARTMENT OF DEFENCE UNITED STATES OF AMERICA,” 06 12 2018.

[Online]. Available: https://landandmaritimeapps.dla.mil/Downloads/MilSpec/Docs/MIL-

PRF-38535/prf38535.pdf. [Accessed 26 04 2019].

[19] Arrow Electronics, “FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into the

Processing Jigsaw Puzzle?,” Arrow Electronics, 5 October 2018. [Online]. Available:

https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-

microcontroller. [Accessed 03 05 2019].

[20] K. L. Short, VHDL for Engineers, Harlow, UK: Pearson Education Limited, 2014.

[21] C. Melonfire, “Understanding the pros and cons of the Waterfall Model of software

development,” TechRepublic, 22 09 2006. [Online]. Available:

https://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-

model-of-software-development/. [Accessed 03 05 2019].

[22] Tutorialspoint, “SDLC - Waterfall Model,” Tutorialspoint, [Online]. Available:

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm. [Accessed 28 04 2019].

96

[23] M. Poppendieck and M. A. Cusumano, “Lean Software Development: A Tutorial,” IEEE

Software, pp. 26-32, 26 06 2012.

[24] C. Ebert, P. Abrahamsson and N. Oza, “Lean Software Development,” IEEE Software, p.

23, 21 08 2012.

[25] Sparkfun, “I2C Sparkfun,” Sparkfun, [Online]. Available:

https://learn.sparkfun.com/tutorials/i2c/all. [Accessed 24 04 2019].

[26] P. Horváth, “SMILE SXI PSU - Regular Bytestream DAQ Protocol Definition,”

Budapest, 2018.

[27] DIGILENT, “What is a Constraints file,” DIGILENT, [Online]. Available:

https://reference.digilentinc.com/learn/software/tutorials/vivado-xdc-file. [Accessed 20 05

2019].

[28] Microsemi, “Libero SoC v11.6 Users Guide,” 9 2015. [Online]. Available:

https://www.microsemi.com/document-portal/doc_download/130850-libero-soc-v11-6-

user-s-guide. [Accessed 20 5 2019].

[29] P. Horváth, “SMILE SXI PSU - RMAP over RBDP Protocol Definition documentation,”

Budapest, 2018.

97

Appendix

RMAP over RBDP protocol

RoR stands for Remote Memory Access Protocol (RMAP) over Regular Byte stream DAQ

Protocol (RBDP). The protocol came about by implementing the RMAP on top of the RBDP to

create an interface that fulfils the responsibilities of the slave. This protocol lets the creates a read

and a write operation to access the registers in the slave.

The RoR protocol defines a protocol that uses the UART at low-level, but it uses 9 data bits instead

of 8. Otherwise, the character level is the same as in the RSE protocol. The package level is where

the RoR protocol is different from the RSE protocol.

At the packet level, the RoR protocol operates with query packets and response packages. Only

the master can generate query packages, and the targeted slave creates a response package. There

are five different query packages: Invocation, instruction, register address, write data high and

write data low. Each query has a unique header telling the slave which query is sent, and then the

remaining five bits provide addresses R/nW and data to write. The MSB in all characters from the

master is set to 0 to indicate this character comes from the master. In the response characters, this

is 1. This is done so that other slaves on the communication line can easily check if it is a master

command that needs to be check if they are going to respond to, or if it is a slave responding.

The response from the slave consists of three characters. The first is the confirmation character,

confirming the master that the package has been received. The header of the query character is

repeated and the second to the LSB indicate if a timeout happened. The LSB tells if the query was

rejected. The next character will contain either the register content that has been read, no data or

the error message that facilitated the rejection. The last character contains a CRC number

calculated from the two first characters using the polynomial g(x) = x8 + x2 + x + 1.

Out of this a read operation and a write operation is created. The read operation uses the invocation

character, follows with the instruction character and ends with the register address character. This

lets the data from the register come in response to the register address character. The write

operation goes all the way by using the write data high and write data low characters also. More

about the RoR standard can be found in [29] and [26].

98

Figure 39 RoR memory write and read

Timing

One baud delay is required before any response from the slaves or new transaction from the master

can be initiated. The delay is necessary so that all the slaves can recognise a silent channel, and

then they can prepare to receive an invocation. By demanding a quiet channel before a new

invocation can take place, a continuous transaction between the master and one of the slaves can

happen. The other slaves can sleep and don’t have to check on each character from the master. The

slave also needs some slack, so it has time to prepare for the response. The RoR was developed

with software in mind, so this provides the software with some time to react to the character that

has been received and act upon it.

	1 Introduction
	1.1 Background
	1.2 About this thesis
	1.3 Thesis outline

	2 Requirements for the electronics
	2.1 Objective
	2.2 Soft X-ray Imager Instrument
	2.2.1 Electronics box

	2.3 Radiation Shutter Mechanics
	2.3.1 Rotary actuator
	2.3.2 Hold Down Release Mechanism
	2.3.3 End Switch
	2.3.4 End Stops

	2.4 Radiation Shutter Electronics
	2.4.1 Radiation considerations
	2.4.2 FPGA
	Microsemi RTAX250

	2.4.3 Stepper Motor
	Stepper driver circuit
	Step sequence

	3 RSE Development
	3.1 Software vs Hardware
	3.1.1 FPGA
	3.1.2 Embedded system
	3.1.3 FPGA or CPU

	3.2 State machine
	3.3 VHDL development strategy
	3.3.1 Waterfall development method
	3.3.2 Lean development method
	3.3.3 Choosing a strategy

	4 Functionality
	4.1 Design - VHDL
	4.2 Registers
	4.2.1 Status registers
	Firmware version
	Motor temperature
	Electronics temperature
	Shutter status
	HDRM status
	Performed steps L/H
	Heartbeat count
	Processor status

	4.2.2 Control registers
	Motor current
	Settling time
	Chop Duty cycle
	Max acceptable motor temperature
	Max acceptable electronics temperature
	Max steps for operation
	Enable ±12 V
	Max motor current

	4.2.3 Debug registers
	Disable blinking LED
	Seconds since access

	4.2.4 Command register

	4.3 Operational procedures
	4.3.1 Emergency closure
	4.3.2 Temperature reading

	4.4 Command operations
	4.4.1 Motor commands
	Open/Close Shutter – Stop at end
	Open/Close Shutter – Max no of steps
	Emergency close – Stop at end

	4.4.2 Other commands
	Arm Reset & Activate Reset
	Arm HDRM & Activate HDRM
	Cancel command

	4.5 Communication
	4.6 RSE protocol
	4.6.1 Character level
	4.6.2 Package level
	Read operation
	Write operation
	Error response
	Timing

	5 Firmware implementation
	5.1 Top level design
	5.2 UART
	5.3 RSE protocol
	5.4 Smile register bank
	5.5 Debugging module
	5.6 Clock generator
	5.7 Heartbeat
	5.8 HDRM
	5.9 Reset generator
	5.10 Stepper motor modules
	5.11 Switch debounce
	5.12 Pulse width modulator
	5.13 Settling time period
	5.14 Half step synchroniser
	5.15 Stepper control
	5.16 Stepper driver

	6 Test and development
	6.1 Development of the firmware
	6.2 DPU simulator
	6.2.1 RSE Register Window updates
	6.2.2 RSE Command Window updates
	6.2.3 RSE Log Window updates

	6.3 Hardware tests
	6.3.1 Testing of communication on board
	6.3.2 RSM bench test
	6.3.3 Settling time
	6.3.4 Chopping
	6.3.5 Motor current

	7 Summary and conclusion
	RMAP over RBDP protocol
	Timing

