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Abstract 

In 2023 a Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) satellite is set to 

launch to explore how solar wind interacts with the earth’s magnetosphere and ionosphere. The 

SMILE space mission is a joint operation between the European Space Agency (ESA) and the 

Chinese Academy of Science, where scientists and industry are contracted to provide the 

satellite and its instruments.  

A Soft X-ray Imager (SXI) which is one of those instruments, is designed to detect low energy 

electrons in this interaction. As the satellite will orbit the earth, it will during a percentage of 

the orbit come within the radiation belt of the earth, where there are high energy particles. To 

protect the detectors in the SXI instrument from the high energy radiation near the earth, a 

radiation shutter is being developed by a team at the University of Bergen to enclose the detector 

inside the satellite when needed.  

This device is split into the radiation shutter mechanics (RSM) and the radiation shutter 

electronics (RSE) that is going to control the operation of the RSM. This work covers the 

continued development, implementation, testing and verification of the RSE. 

This thesis explains the functionality of the RSE and the implementation of that system on a 

field-programmable gate array (FPGA). The RSE will be commanded by a central master that 

oversees the operation of the whole SXI instrument. A reliable communication protocol is 

designed and implemented to be able to communicate with the master. The RSE will be able to 

perform different operations, including opening and closing the shutter, reading different 

sensors related to the shutter operations and it will be able to protect the SXI detectors should 

the master data process unit (DPU) fail. 

The system has been tested with both simulations with a test bench and on a breadboard. These 

tests have been done to check that the RSE operates as desired and that a breadboard version of 

the shutter will be able to open and close. 
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1 Introduction 

1.1 Background 
The radiation from the sun makes it possible for life to be sustained on earth, but the radiation has 

immense destructive powers too. In 2012 a solar flare just missed the earth [1]. This flare could 

have caused a mass blackout. In 1989 a solar storm took out the power transmission system in 

Quebec, Canada [1]. To be able to understand these and be better able to forecast events, the space 

weather must be studied. Space weather is phenomena that are the constant interactions between 

the sun and the magnetosphere of the earth. 

ESA has a vision of getting a better understanding of these effects. The SMILE mission is planned 

to launch as a mission to further explore the full connection between the sun and the earth. The 

satellite will be placed outside the magnetosphere to observe. There, an SXI will be used to map 

the magnetosphere and look at the emission from the solar wind. [2] 

1.2 About this thesis 
The objective of this thesis is to continue the development and implementation of a control unit 

called the radiation shutter electronics (RSE). Lylund and the SMILE team started the development 

of this project in [3]. The RSE will control the RSM which will enclose the detectors of the SXI 

instrument when the satellite is within the radiation belt of the earth, as there are high energy 

particles there which can damage the detectors. As such, the instrument and the RSM will be 

explored before the requirements of the RSE is explained in Chapter 2. The RSE’s primary purpose 

is to drive the stepper motor in the RSM, so a stepper motor and how to drive it and how power 

will be saved will be explained. Also, the FPGA that is going to be used will be explained. 

The development of the RSE is then focused upon. This thesis moved the project from using a 

microcontroller to utilise an FPGA. The microcontroller was abandoned in favour of an FPGA 

because it has not featured in many space missions, which results in a lack of space heritage. The 

FPGA has been used in previous space missions, so it is proven to work reliably in space. 
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The fundamental pieces of the RSE are the stepper driver, the register bank which stores all 

necessary information, and the communication module that lets the central master of the 

instrument command the RSE. To be able to communicate with the RSE efficiently and reliably, 

a new small communication protocol was developed to reduce the overhead from the 

communication standard used previously. The commands that are going to be used to control the 

RSM need to be well defined and are explained in Section 4.4. 

The RSE shall perform different tasks that need to be well defined. Therefore, the different 

modules have been properly developed to work independently and having a simple hierarchy in 

order to get a simple and understandable design. The design has been developed with care to ensure 

that the modules were behaving as expected. The system has also been tested continuously in 

simulation. The RSE has been developed with a version control tool and is stored on the University 

of Bergen’s git lab repository. Finally, the system has been tested on the bench with an elegant 

breadboard of the RSE and RSM. A master DPU simulator was modified and used to test by 

sending signals in accordance with the communication protocol. 

1.3 Thesis outline 
Chap 2: Requirements for the electronics 

This chapter describes the objective of this work. The SXI instrument and the RSM will be looked 

at and explained first as these provide the fundament for the RSE. From this, the RSE is described 

with the radiation considerations, the FPGA that is selected and a close look will be had on the 

stepper motor as the main purpose is to drive it. 

Chap 3: RSE development 

In this chapter, the choices that were done for the development will be explored. First, why the 

microcontroller was abandoned for an FPGA will be explained, before a more general outlook on 

FPGAs and microcontrollers will be had. Then one of the main features of a sequential system, the 

state machine, will be looked on. The chapter rounds of with a discussion of developments 

strategies. 
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Chap 4: Functionality 

The functionality of the RSE will be defined in this chapter. The core design will first be looked 

upon before the register that is to be used are defined. Then the procedures and commands will be 

established before the communication protocol that has been developed is explained. 

Chap 5: Firmware and implementation 

This chapter describes the firmware that has been developed to satisfy the requirements. How the 

different modules are working and implemented are gone through in detail. First, the top-level 

design is looked at before the individual modules are described. 

Chap 6: Test and development 

How the development of the system was done is explained first in this chapter. Then the modified 

DPU simulator is explained, and the modifications are highlighted. The rest of the chapter 

describes how the tests on board were done, and the results of those tests are shown. 

Chap 7: Summary and conclusion 

In the final chapter, the work is summarised, and the results of the test are discussed. 

Appendix A 

This appendix explains the communication protocol that was used in the previous iteration. 
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2 Requirements for the electronics 

2.1 Objective 
In the SXI Instrument document [4] the SXI’s energy band is described to extend up to 5 keV. As 

seen in Figure 1, the SMILE satellite will orbit the earth and come within the earth’s radiation belt. 

In the radiation belt around the earth, some protons reach above 10 MeV and electrons reaching 

above 0.5 MeV [5]. The SXI instrument must be protected against these particles when the satellite 

is within reach of the radiation belt of the earth, as radiation there can degrade or destroy the 

instrument. The satellite might have to perform manoeuvres to calibrate different instruments, and 

the SXI needs to be protected against stray particles. To protect the instrument from stray particles 

and high energy radiation, a Radiation Shutter is required. 

 

Figure 1 SMILE satellite’s orbit illustration 

An internal team at the University of Bergen called the SMILE team develops the mechanical part 

of the Radiation Shutter. The main objective of this work is to create an electronic system to be 

able to operate the RSM from commands. 



 

15 

 

2.2 Soft X-ray Imager Instrument 
On ESA’s webpage about the instruments belonging to the SMILE mission, they describe the SXI 

like this: 

“The SXI is a wide-field lobster-eye telescope using micropore optics to spectrally map the 

location, shape, and motion of Earth's magnetospheric boundaries, including the bow 

shock, magnetopause, and cusps, by observing emission from the solar wind charge 

exchange (SWCX) process. The SXI is equipped with two large X-ray-sensitive CCD 

[Charge-Coupled Device] detectors covering the 0.2 keV to 2.5 keV energy band, and has 

an optic field of view spanning 15.5° × 26.5°.” [6] 

According to [4] the scientific objective of the SXI is to image the X-ray emission produced when 

solar wind ions interact with neutral atoms in the exosphere of the Earth. These X-ray lines have 

intensities that peak in the cusps and magnetosheath. The flow of solar wind and energy into the 

magnetosphere can be imaged from the density boundaries of the X-ray emissions. The SXI 

telescope combines imaging with spectroscopy to obtain information on the composition of the 

solar wind that generates the solar wind charge exchange X-ray emission. This way changes in the 

solar wind reaching the magnetosphere can be detected. [4] The SXI is illustrated in Figure 2. 

 

Figure 2 3D rendering of the SXI instrument. One of two possible configurations [4] 
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The SXI instrument has four units in addition to the x-ray imager instrument itself. These are 

explained in the instrument interface control document [4] as: 

• Straylight baffle: Avoid light into the system from the Sun or the Earth. 

• Telescope Assembly: Optical telescope structure 

• Radiation Shutter: Shutter mechanism 

• Focal Plane Assembly: CCD detectors and front end electronics 

2.2.1 Electronics box 

In addition to these components, there is a separate chassis containing all the backend electronics. 

In there is the DPU, the power supply unit (PSU) and the radiation shutter control electronics 

(RSE).  

2.3 Radiation Shutter Mechanics 
This section is mainly based on the RSM design report [7] from the SMILE team. The RSM is the 

shutter itself, as shown in Figure 3. The RSM frame is mounted in the telescope assembly. The 

RSM Rotary Actuator on the top of the figure in rotates the RSM Door Leaf in with the bearings 

on each side of the Rotary Actuator. The RSM Launch Lock is a pin puller that keeps the Door 

Leaf in place during launch. Besides, there is the RSM End Switches, the RSM End Switch Trigger 

and the RSM End Stops. 
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Figure 3 RSM prototype 

The main components of the RSM are made from aluminium. Where the door leaf is in temporary 

physical contact with other elements like the end stops are made from INERMET (Heavy tungsten 

alloy) and hardened stainless steel. These places where there is contact are prone to cold welding.  

When a metal surface impacts another metal surface, there is a natural oxide level on the surface 

that is impacted. This layer would naturally re-oxide on earth. In space, this layer is broken 

irreversibly. Breaking this layer will create a pure metal to metal contact, and this enables welding. 

This layer is either degraded over time from impacts or broken from vibrations might lead to 

oscillating movements that also enables welding, called fretting. These processes are called cold 

welding [8], and may happen on the RSM during launch as the door leaf might vibrate heavily. 

2.3.1 Rotary actuator 

The rotary actuator is the motor that is used to rotate the door leaf. It consists of a phySPACE 

stepper motor and a gearbox that comes preassembled from the manufacturer Phytron. Some 

parameters of the phySPACE stepper motor are listed in Table 1. The stepper motor allows the use 

of a relatively simple control system to drive it. How a stepper motor works are explained in 2.4.3. 

End 

switches 

Rotary Actuator 

Launch lock 

Door leaf 

End stop 

End stop 
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The gearbox has a small diameter and gives a high torque/mass ratio. A drawback of the high ratio 

is that the gearbox has many mechanical components. 

Table 1 phySPACE stepper motor parameters [7]. 

Parameter Value Note 

VSS stepper motor 200 full steps per revolution 

Pole pairs 50  

Half-step mode, phases 8  

Electrical half-steps 400  

RS Opening angle, ° 100  

Gearbox ratio 192  

Half-step speed, s-1 500  

Opening time, s 44  

Motor speed, RPM 75 or 75/60 = 1.25 𝑠−1 

 

By knowing the key parameters of the stepper motor and the mechanism, we can determine the 

number of half steps per second and the rotational speed. With a half step speed of 500 steps per 

second, we obtain an opening time of around 41 seconds at a rotational speed of 75 rounds per 

minute. This is well within the recommended maximum speed of 100 rounds per minute for dry 

lubricated motors. A close-up picture of the rotary actuator is shown in Figure 4. 

 

Figure 4 Close-up of the rotary actuator with bearing 
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2.3.2 Hold Down Release Mechanism 

The purpose of the hold down release mechanism (HDRM), on the RSM Launch Lock, is to hold 

the door leaf secure in place during launch and then release it before the instrument starts operating. 

The door leaf will be at risk of moving around under launch if it is not held in place. The HDRM 

pin is inserted before launch. In the locked position the leaf will be in contact with the end stop. 

This contact might lead to cold welding. To reduce this risk, a bronze hub is used for the leaf/pin 

interface. Should the end stop and leaf fuse, the rotary actuator must be driven at max torque to try 

to force the shutter open. A close up picture of the HDRM is shown in Figure 5. 

 

Figure 5 Close-up of Hold Down Release Mechanism 

2.3.3 End Switch 

End switches are used to signal that the leaf has reached the end position. The two redundant 

systems each have its pair of end switches for the two end states. Upon contact with the leaf, the 

switches will be activated. There is some slack in the switches after they activated to allow for a 

gap between the nominal end position and the end stops. 

2.3.4 End Stops 

In case the end switches should stop working, the rotation of the shutter needs to be stopped, and 

the end stops mechanically stops the leaf from rotating. The end stop also uses a spring to preload 

the leaf against the stop during launch. 
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2.4 Radiation Shutter Electronics 
The purpose of the RSE is to control the RSM described in detail in [7], which includes: 

• Operation of RSM Rotary Actuator (a stepper motor with gearbox) 

• H-bridge motor driver circuit 

• Sensor read-out for the temperature sensor  

• Sensor read-out for the RSM Sensors (“Shutter open” and “Shutter closed”-switches) 

• A communication link between the DPU and the RSE 

The RSE needs to be an independent system. To accommodate its purposes the necessary circuits 

and an FPGA is placed on a printed circuit board (PCB), where the FPGA can control the other 

circuits. A system overview produced by the SMILE team is shown in Figure 6, where the motor 

control and the motor driver are central to the RSE. In the earlier stages of the project, the DPU 

through the RSE was supposed to control the HDRM. 

The Radiation Shutter is designed to be fully redundant. I.e., the stepper motor (RSM Rotary 

Actuator) has a double set of windings, and a double set of temperature sensors, enabling 

independent control from two individual electronics boards. All feedback switches and actuators, 

as well as communication channels, are also redundant. 

For the RSE in the electronics box, this means that there are two independent PCBs connected to 

their redundant PSUs and DPUs. There are no cross connections between the dual redundant 

systems, and only one redundant system will be powered at the time. 
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Figure 6 RSE overview 

2.4.1 Radiation considerations 

Radiation effects are divided into two main effects. The first effect is Single Event Effects, that is 

a stochastic effect that can happen anytime. As the name implies, these effects happen in a single 

event as either a non-destructive effect such as corrupting data or as a destructive effect where the 

corruption permanently damages or destroys the circuit. An example of a non-destructive effect is 

single event upsets, where a radiation effect occurs in a memory node. This stored data will be in 

an erroneous state but can be overwritten with new valid data. A destructive effect is a single-event 

latch-up (SEL) where an ion-generated charge triggers the bulk of complementary metal-oxide-

semiconductor (CMOS) technology to produce a low-impedance path between ground and power. 

This path can create a feedback loop that maintains a high current through the path [9]. 

The other effect is the total-ionising dose (TID). This is the energy that is absorbed by the 

technology per mass when the technology is exposed to ionising radiation. This is measured in 

rad. This effect is an accumulated effect as that degrades the performance and potentially the 

functionality of material like insulators that are common in CMOS technology [9]. 
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The RSE needs to be protected and able to withstand these effects as it will break otherwise. 

Therefore all SMILE electronics shall be immune to destructive SEL and protected against other 

Single Event Effect. All electronic components must also be able to withstand a TID of 60 krad 

[10]. In case critical components are marginally tolerant to the applicable dose, spot shielding will 

be applied. 

2.4.2 FPGA 

The FPGA that is going to be used needs to be able to meet the requirements for radiation tolerance. 

In addition, it needs to be reliable and not draw too much power. The choice of using an FPGA is 

explained in Section 3.1.3. 

An anti-fuse FPGA from Microsemi will be used for the main motor controller, either RTAX250 

or RTAX1000, depending on design needs. NanoXplore NG-MEDIUM (NX1H35S) FPGA is kept 

as an option, but this is a brand-new component, so little or no space heritage exists for it. 

Microsemi RTAX250 

The RTAX family is the second generation of Microsemi’s products for space applications. The 

RTAX250 FPGA has registers that are hardened for single event upsets. Being hardened, the 

registers are immune against single event upsets at a linear energy transfer of less than 37 

MeV/cm2/mg. The FPGA will survive a TID up to 300 krad, which is above the demand of 20 

krad. It is also immune against SEL with a linear energy transfer up to 117 MeV/cm2/mg. The 

RTAX series also comes with a low power option, which saves up to 80% of static current 

compared to the standard versions in the worst-case scenario [11]. 

2.4.3 Stepper Motor 

A stepper motor is an electrical motor that moves a single step when the magnetic field changes 

as a consequence of switching the direction of the current flow in the field coils. There are two 

principal types of stepper motors, as illustrated in Figure 7. The bipolar stepper motor, which has 

one coil per phase and needs two switches for each phase. The unipolar stepper motor, which has 

one coil for each phase and one switch for each phase. The current flow in the coil is reversed by 

flipping the switches [12]. 
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Figure 7 Stepper motor configuration [12]. 

Our motor uses a bipolar configuration, and the advantage of the bipolar configuration is that there 

is only one coil with low winding resistance. The unipolar has a double winding with a higher 

winding resistance because of the thinner wire that is required. The advantage of the unipolar 

configuration is that is can have a simpler driver circuit for switching, whereas the bipolar requires 

a more complex driver circuit [12]. As previously discussed, the stepper motor used in the RSM 

is a phySPACE stepper motor. This stepper motor is bipolar and needs a driver circuit that fits it. 

By switching the direction of the current flow through the two coil pairs, the stepper motor is 

driven. 

Stepper driver circuit 

A common way to operate the two coil pairs is by using an individual H-bridge for each coil, as 

shown in Figure 8. This circuits main components are the four transistors and the coil forming an 

H-shape in the middle. The transistors have their own regulatory circuits that set the voltage on 

them to turn them on and off. 
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Figure 8 Stepper motor driver circuit H-bridge 

The current through the transistors will excite the coils which in turn steer the stepper motor. 

Current will flow through the transistor pair Q1 and Q3, or Q2 and Q4. Q3 and Q4 are also forming 

constant current sources, enabling a controlled current flow in the inductors. The controlled current 

is set by the Vctrl pulse, which is derived from a filtered pulse width modulator (PWM) source, 

connected to the FPGA. The current through the power transistors results in a voltage drop over 

Rsense, which is fed back via the operational amplifiers to control the power transistors. The 

terminals labelled PA, PB and NA, and NB is connected to the FPGA, again one set for each coil. 

Step sequence 

A change in the current through the coils will produce a step in the motor. With one pole pair to 

move the stepper, there are four full steps in each electrical cycle. Typically for stepper motors, 

each step will move 1.8° or 7.5°. With full steps, there will always be current through both the 

coils. Instead, the current can be turned off before switching to the other side as an intermediate 

step. This method is called half-step and gives eight half-steps instead of four full steps, as seen in 

Figure 9 [12]. 

Q1 Q2 

Q3 Q4 
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Figure 9 Half-step sequence for a two-phase bipolar motor [12] 

Using half steps effectively doubles the resolution of the stepper motor but comes at the cost of 

getting only about 70% torque [12]. The torque margin is more than large enough for us, and we 

can get a smoother operation with less mechanical stress by using half-step mode.  

As shown in Figure 9, the current in one coil is sustained in one direction for three out of eight 

phases before turning off, and changing direction. Each motor-on sequence is always started by a 

programmable length settling time, in which transistor Q3 or Q4 is fully on, and the current limiter 

circuit controls the full current as described earlier. After that, current chopping is enabled, where 

transistor Q3 or Q4 is turned off and on again at regular programmable intervals, resulting in a 

current decay determined by the motor coil inductance, before the appropriate transistor is turned 

on again. By turning the inductor current on and of faster than the inductor manages to change the 

current significantly, we can hold the current at a nearly constant level. The current level will fall 

and be raised again to the current plateau where the current is at the set motor current level, before 

being allowed to fall again. This chopping of the motor current results in a significant reduction in 

average power as the power source will deliver less current in total. 

As the settling time only is needed to get the motor current up to the desired current plateau where 

the current will stay if the corresponding transistor is on, it will have little effect on the torque the 

motor produces. The chopping is used to save current while simultaneously holding the inductor 

current near constant. As long as the inductor current stays at the current plateau and do not fall 

towards zero, the torque should be constant. The torque will have a breakpoint where the chopping 
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causes a significant drop in the inductor current. As the current then will go towards 0, there will 

not be any power to create the torque. As torque will be a function of the inductor current, the main 

component of increasing the torque will then be the motor current as this sets the inductor current.  

To be able to operate the motor with half steps, the transistors in the driver circuits needs to be 

turned on in the correct order, as shown in Figure 10. The driver needs to go through eight stages, 

corresponding to the eight half-steps. In order to reverse the motor direction, we need to run the 

half step sequence in the opposite direction by switching the A and B coil’s driving sequence. As 

eight steps are needed for each direction, a state machine will need at least 16 states to drive the 

stepper motor. 

 

Figure 10 H-bridge electrical cycle states for coil A and coil B for 8 half step phases 
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3 RSE Development 

3.1 Software vs Hardware 
In the first iteration of the RSE, a stepper driver breadboard was developed with a driver software 

placed on a microcontroller to drive a stepper motor. In this iteration, an elegant breadboard (EBB) 

was designed by the SMILE team, that is closer to the real version but still using commercial 

components. When this iteration of the RSE is done, an Engineering Qualification Model can be 

created, where the identical components to the ones used in flight will be used to test the 

functionality and the fit. At last, a Pre-Flight Model is made with the components that are going to 

used, and when it has passed the tests, it is upgraded to the Flight Model, which will be launched. 

The RSE needs a firmware to control the stepper driver circuits as described in Section 2.3. There 

is no official definition of firmware, but in general, the term firmware is used about a code that is 

placed onto a device to control the low-level functions of the device. Typically, this is a software 

code that uses a microcontroller to execute the code. Another way of looking at this is to say that 

a hardware description language is also a firmware as it is synthesised and place onto an FPGA. 

At the core, it is, however, hardware instead of software. 

3.1.1 FPGA 

FPGA is an integrated circuit that consists of configurable logic blocks. These logic blocks are 

built up by using two different methods. Our FPGA uses anti-fuses to program the FPGA. The use 

of anti-fuses makes the FPGA one-time programmable. Other FPGAs can use static Random-

Access Memory (RAM) or flash memory to hold the configuration of the logic blocks. A simplified 

FPGA floorplan is illustrated in Figure 11.  
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Figure 11 Simplified FPGA floorplan [13, p. 630] 

Vendors sell the FPGA without a configuration, and the customer can then program the FPGA as 

desired. In our project, a reconfigurable FPGA is used to test the firmware. One-time 

programmable FPGA is often used in space projects, as they have proven to be reliable in a 

radiation environment [14]. 

3.1.2 Embedded system 

“An embedded system is a microprocessor based system that is built to control a function or a 

range of functions”, see for example [15]. The embedded system is a part of a larger system where 

its job is to control a function. One such microprocessor-based system is a microcontroller. “A 

microcontroller (sometimes called an MCU or Microcontroller Unit) is a single Integrated Circuit 

(IC) that is typically used for a specific application and designed to implement certain tasks” [16].  

A microcontroller consists of multiple components as a Central Processing Unit (CPU), Integrated 

memory such as RAM and peripheral interfaces such as I/O ports. The CPU is the brain of the 

system that controls everything that happens.  
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Microprocessors come in different bit sizes, which indicate how wide the data bus is. As such an 

8-bit microcontroller will utilise an 8-bit data bus. The bit size will limit the register widths, address 

bus and that every single instruction has a set range to work within. An 8-bit microcontroller can 

only work on 8 bits at a time, while a 32-bit microcontroller can work with 32 bits. This makes the 

smaller microcontroller useful if we want to save power. Whereas the larger microcontroller can 

use a more significant number of bits in its calculations, to get a more accurate result, or a number 

higher than the smaller microcontroller can handle. Being more precise comes with increased size, 

power usage, memory and price of the microcontroller. 

The previous RSE design used an ATmega128 microcontroller, which is a low-power AVR 8-bit 

microcontroller. Microchip has a space version of the ATmega128 microcontroller called 

ATmegaS128. It is the same chip as the ATmega128 but has improved radiation toleration, and its 

main features are shown in Table 2. The original thought was to make a prototype on the 

ATmega128 and then transfer the system over to an ATmegaS128. 
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Table 2 Features of ATmegaS128 [17] 

Features ATmegaS128 

Flash (KB) 128 

SRAM (KB) 4 

EEPROM (KB) 4 

External Memory (KB) 64 

General Purpose I/O pins 53 

SPI 1 

USART 2 

ADC 10-bit, up to 76.9ksps (15ksps at max resolution) 

ADC channels 8 

8-bit Timer/Counters 2 

16-bit Timer/Counters 2 

PWM channels 6 

Operating voltage 3.0-3.6V 

Max operating frequency 8 MHz 

Temperature range -55°C to 125°C 

 

The ATmegaS128 has “[n]o Single Event Latch-up below a LET threshold of 62.5 

MeV/mg/cm2@125°C[, and is] tested up to a Total Ionizing Dose of 30 krads(Si) according to 

MIL-STD-883 Method 1019” [17]. Microchip also states that the microprocessor “has been 

developed and manufactured according to the most stringent requirements of MIL-PRF-38535 

International Standards and Aerospace AEQA0239 specification” [17]. MIL-PRF-38535 is the US 

military’s performance specification that “establishes the general performance requirements for 

integrated circuits or microcircuits and the quality and reliability assurance requirements, which 

are to be met for their acquisition” [18].  
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3.1.3 FPGA or CPU 

Since this project will go onto a satellite that will be launched into space, we need a technology 

that is approved for usage in space. The previous RSE utilised a microcontroller as described in 

Lylund [3]. An appropriate microcontroller for the mission was found, the ATmegaS128. The main 

problem with the ATmegaS128 for us is that it does not have space heritage. Space heritage means 

that none or few space missions have used this microcontroller. Having used a particular 

technology multiple times proves that it performs reliably in space. Besides, ESA has a rigorous 

set of test procedures to test software and technology that are lacking space heritage. This would 

have meant that we would have to prove that the microcontroller would work. 

Some alternative microcontrollers with increased bit sizes were considered, but those would also 

come at an increased cost and system complexity. An external memory might also have been 

necessary. There are, however, multiple FPGAs with space heritage that we could then use instead. 

As these FPGAs have space heritage and hardware would be used instead of software, we would 

have an easier time to get the design approved, as hardware are easier to get accepted by ESA’s 

test procedures. In this project, the lack of space heritage and the easier test procedures made us 

abandoned the microcontroller, and switch to an FPGA. 

In addition to the reasons above we wanted to take a more general view on an FPGA vs an 

embedded system. In embedded systems, the microcontroller reacts to stimuli on the different 

inputs, and from the incoming data and stored information, the system creates the desired output. 

The FPGA on the other side has dedicated logic to respond to the stimuli coming into the system. 

So, while the microcontroller would have to let the incoming data got through the CPU to create 

an output, the FPGA creates a logic block directly between the input and the output to speed up 

the response scientifically. To create this configuration, a hardware description language is 

required. VHDL (Very High-Speed Integrated Circuit Hardware Description Language) is one 

such language. A general comparison of a CPU and an FPGA is shown in Table 3. 
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Table 3 Comparison of CPU and FPGA adopted from [19] 

 CPU FPGA 

Overview Traditional sequential processor 

for general purpose 

applications  

Flexible collection of logic elements and IP 

blocks that can be configured 

Processing Single- and multi-core MCUs 

and MPUs, plus specialized 

blocks: FPU, etc. 

Configured for application; SoCs include 

hard or soft IP cores (e.g., Arm) 

Programming OSes, APIs run a huge range of 

high-level languages; assembly 

language 

Traditionally HDL (Verilog, VHDL) 

Peripherals Wide choice of analogue and 

digital peripherals in MCUs; 

MPUs include digital bus 

interfaces 

SoCs may include many transceiver blocks, 

configurable I/O banks 

Strengths Versatility, multitasking, ease 

of programming 

Configurable for a specific application; 

configuration can be changed after 

installation; high performance per watt; 

accommodates massively parallel operation; 

wide choice of features: DSPs, CPUs 

Weaknesses OS capability adds high 

overhead; optimized for 

sequential processing with 

limited parallelism 

Relatively difficult to program; long 

development time; difficult for floating-

point operations 

 

3.2 State machine 
One of the core components of a sequential digital system is a state machine. A finite state machine 

is a sequential system that consists of combinational logic and a state register, as illustrated in 

Figure 12. The outputs of the FSM are a function of the current inputs and past inputs. The state 

gives information about previous data. The present state stored in the state register is the 

culmination of everything that has happened thus far, see for example [20]. 
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Figure 12 Synchronous finite state machine block diagram [20] 

The state machine can be asynchronous or synchronous. So, either the state and the outputs only 

update on the triggering clock edge, or it updates as soon as one input changes value. 

3.3 VHDL development strategy 
To be able to create a design and implement it, we need a plan so we can prioritise and stage the 

development. There are a lot of different strategies for developing a firmware system. Various 

approaches were considered to be able to develop the firmware efficiently. 

3.3.1 Waterfall development method 

A common technique to use when developing a project is the so-called waterfall design strategy. 

The waterfall strategy bases itself upon that the requirements of the design need to be figured out 

before anything can be done. From these requirements, a design can be proposed. If the design is 

accepted, it can then be implemented. 

At last, the implementation needs to be verified. No steep can be done before the completion of 

the previous. By going through the development step by step and locking down the different 

aspects before moving onto the next task, one can achieve good flow. 
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In the article “Understanding the pros and cons of the Waterfall Model of software development” 

Melonfire [21] comes with this explanation of the waterfall model: 

“Essentially, it's a framework for software development in which development proceeds 

sequentially through a series of phases, starting with system requirements analysis and 

leading up to product release and maintenance. Feedback loops exist between each phase, 

so that as new information is uncovered or problems are discovered, it is possible to "go 

back" a phase and make [an] appropriate modification. Progress "flows" from one stage to 

the next, much like the waterfall that gives the model its name.”  

Tutorialspoint [22] says that the “[w]aterfall approach was first SDLC [Systems Development Life 

Cycle] Model to be used widely in Software Engineering to ensure [the] success of the project. 

(…) In this Waterfall model, typically, the outcome of one phase acts as the input for the next 

phase sequentially.” A typical waterfall is shown in Figure 13. 

 

Figure 13: Waterfall model 

There is an ideas phase where people pitch the goals of design formulated and different designs, 

and from that, the development of a prototype is possible. These two phases are often presumed to 

have already happened in the waterfall model. An idea about what the system is and how it should 

function must be given in advance. From these ideas, a prototype can be developed to see if the 

proposals are possible and find out what requirements are needed. If there is not a lot of external 
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demands on the system, it can be hard to start with coming up with the requirements list. In a large 

software project, it is often useful to create a smaller version in a more straightforward language 

like python at first to get a feel for the solution. Such a prototype lets the developers have a look 

at the system and figure out what precisely the customer desires. Often it is hard to know precisely 

what is desired at an early stage. 

A modification upon the waterfall strategy is to split the design up into different modules and 

create localised "waterfalls" where we go through the four aspects for a single module which exist 

in a bigger system which is the main "waterfall".  

The main problem with the waterfall strategy is that requirements might change during the 

development. Such changes would be difficult to implement since one has to go back and change 

the previously done work. 

3.3.2 Lean development method 

Another strategy is the lean software development method. According to Poppendieck and 

Cusumano [23], lean is more about a set of principles that are applied to development, and not a 

distinct practice.  

Poppendieck and Cusumano [23] go on to explain the seven principles that lean is based upon. 

“Optimise the whole” is about seeing the software as a part of a larger system. Only then can the 

developer understand what the customer needs and want. “Eliminating waste” is the need to 

remove anything that does not contribute value to the customer or gives more or better knowledge 

about how to deliver value more effectively. “Build quality in” is also called “top-down-

programming”. This method is about how smaller modules are continuously integrated into larger 

systems.  “Learn constantly” is about how development is about developing knowledge and then 

placing that knowledge into a product. There are two ways to go about this. Either to learn first, or 

continuously learning throughout the development. 

“Deliver fast” is how there are multiple in-house releases or releases to the customer. These 

releases are designed, developed and delivered repeatedly with small changes. “Engaging 

everyone” means that the software is only a part of a bigger system. There is different knowledge 

around in different departments and value might be lost if no one sees the system as a whole. 
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Decisions should be taken by the people who have the power and the knowledge about what they 

are deciding. “Keep getting better” is to realise that the known specific practices are often not the 

best for the current problem and that the system needs to adapt and improve over time [23]. How 

a development will flow is shown in Figure 14. 

 

Figure 14 Lean development [24, p. 23] 

3.3.3 Choosing a strategy 

The Bergen SMILE team has put forth the ideas behind the system. From these ideas, Lylund has 

developed a software prototype to be used on a breadboard. They figured out most of the 

requirements during the creation of the prototype. This prototype was working and could run a 

stepper motor according to the current specifications at the time. 

Since the SMILE project and the requirements for the RSE are changing during the development, 

the lean manufacturing strategy was selected. This project is the second iteration of the whole RSE 

project. Lylund and the SMILE team pitched the ideas and developed a prototype to work with a 

breadboard in the first iteration. The lean strategy bases itself upon reducing waste and focus on 

the value for the customer. In our case, this means that we focus on the necessary parts first and 

foremost. We will make a minimum viable product which can be accepted, and then we add 

functionality to it by continually adding changes and small new parts. This way, each step could 
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be designed, implemented, tested and accepted. This method let the requirements be nailed down 

for the barebone design. With a barebone design, we can expand upon it. While developing the 

system, we will learn about new situations and problems that we need additional requirements to 

solve. 
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4 Functionality 

4.1 Design - VHDL  
In the conclusion of Lylund [3], a potential FPGA design based upon his software design was 

proposed by the SMILE team, as shown in Figure 15. This design was our fundament. There are 

three primary tasks the design must accomplish. We need a method for communicating with the 

DPU, some way of storing essential information and a method for driving the motor. The 

components that make these three tasks possible is our barebone design. From that design, more 

functionality was added to protect the RSE. 

 

Figure 15 FPGA design proposed by the SMILE team [3] 

4.2 Registers 
If the DPU is going to be able to retrieve or send any data to the RSE, the RSE needs some registers 

to store information. The registers are composed of multiple flip flops to store a logic vector. With 

various registers, they can be defined in order with addresses. Individual bits can also be specified. 

Via specified registers with set address and given content, the DPU can reliably access the RSE to 

read or write data. Typically, on the hardware side, these registers are situated in the register bank 

and can be probed from other modules. 
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4.2.1 Status registers 

The DPU needs to know the status of the RSE and the RSM in order to be able to perform 

operations. The status registers will always be readable, but not writeable for the DPU, as the RSE 

maintains them. Most of these registers will come directly from the corresponding modules and 

therefore, be updated immediately. The status registers are shown in Table 4. 

Table 4 Status registers 

Register Address Bits Purpose 

Firmware Version 0x00 0-7 FPGA firmware revision number 

Motor Temperature 0x01 0-7 Monitor motor temperature 

Electronics 

Temperature 

0x02 0-7 Monitor electronics/heat-sink temperature 

Shutter status 0x03 0 Shutter is closed 

1 Shutter is open 

2 Shutter closure in progress 

3 Shutter opening in progress 

4 Shutter emergency closure initiated 

5 Motor too hot 

6 Electronics too hot 

HDRM status 0x04 0 HDRM is armed 

1 HDRM is activated (only valid for 1 sec) 

Performed steps L 0x05 0-7 Number of steps performed for ongoing operation 

(LSB) 

Performed steps H 0x06 0-7 Number of steps performed for ongoing operation 

(MSB) 

Heartbeat count 0x07 0-7 Incremented for every heart-beat register request 

Processor status 0x08 0 Heartbeat missing 

1 Reset armed 
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Firmware version 

The firmware version register contains the current firmware revision number so that any revisional 

changes can be detected. The set number also gives the DPU something stable to read during 

testing as the value is not changed. During testing on board, we can read this register, and since 

we know what to expect, we can detect any errors in the communication. 

Motor temperature 

This register is the current sampled motor temperature. The motor temperature will be regularly 

updated as long as the ±12V rails are enabled. The heat will be measured with a periodic readout 

of the thermistor voltage. The motor temperature will increase if a motor operation is in progress. 

Rest of the time, nothing should be happening, so there should be no generation of heat. So, most 

of the time, the temperature should be following structural temperature. 

Electronics temperature 

The electronics temperature register is the current sampled temperature of the electronics driving 

the motor. The temperature is read together with motor temperature in the same procedure. Like 

the motor, the driver electronics temperature should increase when the motor is running, and other 

than that, the temperature should be stable. 

Shutter status 

To keep track of the shutter operation and position, we need a register to keep up with the state of 

the shutter. The definition of every single bit in the shutter status register is shown in Table 4. We 

need to know if the shutter is open or closed. The easiest way of knowing this is to see if the 

corresponding end switch is engaged. Should the end switches stop working, the last run command 

needs to be remembered by the DPU. If an operation is running, no other operation can be accepted, 

so the current running operation must be able to be read by the DPU. At last, the DPU needs to 

know if the motor or electronics temperature is exceeding safe limits.  

HDRM status 

This functionality will not be used beyond the EBB. The HDRM status register indicates the status 

of the HDRM, as described in Table 4. There are only flags indicating if HDRM has been armed 

or activated, as no sensors are measuring the HDRM. The HDRM must be armed before it can be 
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activated. The HDRM will stay armed for 1 sec. If any other write command than HDRM activate 

is performed, the HDRM will disarm. The point of arming the HDRM is to ensure that the shutter 

is not released before the satellite is in place. The HDRM active will only be active for one second. 

Performed steps L/H 

These two registers count the number of steps the motor has taken during the ongoing or last 

operation. The low register contains the least significant byte, and the high register contains the 

most significant byte. When the maximum number these two registers can hold is reached, the 

number will wrap-around back to 0. 

Heartbeat count  

The primary purpose of this register is the safety handling of the radiation shutter. This heartbeat 

count is set up to protect the instrument by closing the shutter in case of a DPU failure. The DPU 

must access this register minimum every 30 sec or the RSE will initiate an emergency closure. 

This register will start with a 0, and each access will increment the content. In order to prevent 

overflow, the number will wrap-around. 

Processor status 

The status of the RSE firmware system, as described in Table 4. The two signals here are the 

heartbeat missing, which indicates that the heartbeat has gone 30 sec without having been read and 

that an emergency closure is initiated. The reset functionality is designed the same way as the 

HDRM. This means that there is a reset armed signal that needs to be set before the system can be 

reset to prevent any accidental resets.  

4.2.2 Control registers 

The DPU needs to be able to control the operation and to do that we need some control registers. 

These registers need to be read/write register. The control register is shown in Table 5. 
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Table 5 Control registers 

Register Address Default 

value 

Purpose 

Motor current 0x20 100 Set stepping current. 0xFF for max available 

current 

Settling time 0x21 20 Ramp up time allowed to reach set motor 

current before chopping start, in steps of 4 

microseconds 

Chop duty cycle 0x22 150 Step Motor chop duty cycle time in units of 

clock cycles relative to 256 

Max acceptable motor 

temperature 

0x23 170 For motor protection. 0xFF for no 

temperature protection 

Max acceptable 

electronics temperature 

0x24 170 For electronics protection. 0xFF for no 

temperature protection 

Max steps for operation 

L 

0x25 255 Number of steps allowed before the operation 

is aborted (LSB) 

Max steps for operation 

H 

0x26 255 Number of steps allowed before the operation 

is aborted (MSB) 

Enable ±12 V 0x27 0 Set to 1 to enable ±12 V rails 

Max motor current 0x28 205 Maximum allowed motor current. In order to 

set motor current higher, this register must be 

changed first. 

 

Motor current 

The motor current register controls the duty cycle of a PWM, in order to set the current level for 

the motor driver. The output of the PWM is the Vctrl shown in Figure 8. The PWM starts with an 

output of ‘1’ and counts until the motor current value is reached, where it switches to ‘0’. The 

register can contain 0-255, where 255 will be the maximum current. 
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Settling time 

The settling time register is in control of the duty cycle of a PWM, but this PWM will only send 

one pulse on each start and not wrap around for a new pulse. As the settling time signal will only 

be used in the start of turning on a new set of motor driver transistors, it is is easier to give the 

settling time a reset signal that initiates a single pulse instead of having to ignore the rest of the 

pulses. 

Chop Duty cycle 

Chop Duty cycle controls the duty cycle of another ordinary PWM, in order to control the current 

chopping. Chopping is described in Section 2.4.3. The chopping will start with a ‘1’ and switch to 

a 0 when the register value is reached. Should the register be set to the maximum value 255, then 

there will be no chopping so that the current from the transistors will be DC. 

Max acceptable motor temperature 

This register contains the maximum allowed motor temperature. The measured temperature is 

compared to the maximum allowed, and should it exceed the maximum the motor operation will 

have to wait to let the motor cool down. This maximum limit is to ensure that the motor does not 

overheat and degrade consequently. Should we want to ignore the temperature measurement, the 

maximum acceptable temperature is set to the maximum register value, as no measured value can 

exceed it. 

Max acceptable electronics temperature 

The max acceptable electronics temperature is set as the mac acceptable motor temperature, to 

protect the driver circuit electronics. The driver transistors will degrade and might stop working 

should they overheat. The temperature is measured and compared to the maximum the same way 

the max acceptable motor temperature works, and also halt any running operation should the 

temperature exceed the maximum allowed. 

Max steps for operation 

The max steps for operation limit the open/close shutter – max number of steps operation. The 

operation will run until it reaches the maximum number of steps where it will end. The operation 

is explained in Section 4.4.1. 
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Enable ±12 V 

The LSB of this register will turn on and off the power rails to the driver circuits. Turning off the 

power will stop any commands from happening as a driving current cannot be created. Not having 

the power on will also stop any leakage through the transistors so that power is saved. 

Max motor current 

Max motor current acts as a safeguard on the motor current register, so that the motor current 

cannot be set above the max current without increasing the max motor current. The maximum 

current should be set so that the motor and the driver electronics don’t overheat to extensively. 

4.2.3 Debug registers 

A debug register can be written or read-back for verification. These registers, as shown in Table 

6, are used for various RSE debugging tasks.  

Table 6 Debug registers 

Register Address Default 

value 

Read/ 

Write 

Purpose 

Disable blinking LED 0x30 0 R/W 0x01 Disable the blinking LED 

Seconds since access 0x31 NA R Number of seconds since last 

heartbeat register access 

 

Disable blinking LED 

To be able to easily check that that communication works while testing the system on board the 

disable blinking LED register is used. This register will be used to control a blinking LED on a 

test pin on the breadboard. The blinking LED will be on when the FPGA is programmed or reset. 

If the LED is blinking the system is properly reset and functioning. Then the disable blinking LED 

register can be written to, to disable the blinking led. If the LED stops blinking, then the 

communication is working. 
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Seconds since access 

This register enables monitoring of the heartbeat register timer during testing, for example, to see 

that it counts the correct amount before initiating the emergency closure. 

4.2.4 Command register 

A command is used to perform RSE operations like opening the radiation shutter and closing it, 

by writing to the control register. The register is automatically reset to zero after receiving a new 

command and will therefore always read 0x00, and is shown in Table 7. 

Table 7 Command registers 

Register Address Default value Purpose 

Command register 0x40 0 Register to take commands. Commands 

listed in Table 8 

 

4.3 Operational procedures 
After power-up and initialisation of the RSE, the DPU should check the RSE status registers to 

confirm normal operation. In particular, the heartbeat counter register should be accessed regularly 

to prevent emergency closure of the RSM, see Section 4.2.1. After that, the DPU should configure 

the parameters of the control registers according to specifications and requirements. Then, after 

renewed confirmation of nominal conditions, the commanding of RSM opening or closure can be 

performed. 

4.3.1 Emergency closure 

The heartbeat function work as a register that needs to be accessed to safeguard the system. The 

RSE is dependent on commands from the DPU to perform operations. Should the DPU 

malfunction or the communication link not work, the RSE will need to protect the SXI instrument 

as the RSE does not know if the satellite is within the radiation belt of the earth or not. Should this 

happen, an emergency closure needs to be performed. 

The emergency closure will be initiated 30 seconds after the last heartbeat was received. At this 

point, the power rails to the driver circuit are dependent on the enable ±12V rails register. The 
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register needs to be overridden as the rails could be either on or off. When turning the power rails 

one, we need to wait one additional second to ensure the power rails are fully on, as they will have 

some delay turning on. During this if the DPU can reaccess the RSE it should be able to cancel the 

emergency closure and return to normal operation, as being able to access the RSE at this stage 

should indicate the DPU is still working. 

After the power rails have been on for a second, an emergency closure will be initiated. This 

closure will go on until the end switch is engaged. This operation will also be able to cancel, as to 

more rapidly get the shutter open again should the DPU be able to access the RSE quickly after 

the emergency procedure was initiated. When the shutter is closed, or the operation was cancelled, 

the RSE will wait for a new heartbeat before any new motor operation is allowed. 

An emergency closure will adhere to the max acceptable temperature registers, to not destroy the 

radiation shutter. Should the temperature be disregarded, the max acceptable temperature needs to 

be set to the maximum register value. This way the operators of the satellite will be able to select 

if they want a fast closure at the expense of the degradation of the radiation shutter, or if a slower 

closure with the risk of degrading and damaging the instrument be acceptable. As destroying the 

radiation shutter will either shut the instrument inside or leaving it exposed to high energy 

radiation, while saving the radiation shutter can damage the instrument. 

4.3.2 Temperature reading 

Two temperatures need to be read: the motor and the driver electronics. There is a pt100 thermistor 

on each that is connected to an analogue-to-digital converter. The minimum and maximum 

temperature allowed on the motor are from -150°C to 70°C [7] and on the electronics -55°C to 

80°C [10]. The value of the two temperatures will be sampled each second as long as the power 

rails are on. 

4.4 Command operations 
A command will result in activation of the required procedure, or an error response, as discussed 

in Section 4.6. If, for example, the motor or electronics temperature is too high, the operation is 

not permitted, but if the motor or electronics temperature becomes too high during RSM 

closure/opening, the RSE will suspend the operation until the temperature is below the threshold. 
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In the latter case, no intervention is required from the DPU side, but in case of an emergency, the 

operation may be aborted, in order to adjust the temperature thresholds before reissuing the RSM 

operation. 

There is a set of sporadic operations that operates the stepper motor or the HDRM or are used to 

reset the RSE. These commands can be performed at any time, from the DPU. The command 

register is made to accept these commands into it and then perform the corresponding action. The 

command register is a write-only register, which clears directly after having been written to. All 

commands are shown in Table 8. 

Table 8 Commands 

Register Address Command 

identifier 

Purpose 

Open Shutter 

 Stop at end 

0x40 0x01 Open Shutter, run motor until end stop 

detected 

Close Shutter 

 Stop at end 

0x40 0x02 Close Shutter, run motor until end stop 

detected 

Open Shutter 

 Max no of steps 

0x40 0x04 Open Shutter, run maximum no of step 

regardless of end-stop detection 

Close Shutter 

 Max no of steps 

0x40 0x08 Open Shutter, run maximum no of step 

regardless of end-stop detection 

Emergency close 

 Stop at end 

0x40 0x10 Close Shutter as fast as possible, run motor 

until end stop detected 

Arm Reset 0x40 0x20 Arm Reset Function 

Reset 0x40 0x22 Reset RSE FW 

Arm HDRM 0x40 0x40 Arm Activate Hold Down and Release 

Mechanism 

Activate HDRM 0x40 0x42 Activate Hold Down and Release Mechanism 

Cancel command 0x40 0x80 Cancel any ongoing command 
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Five commands start the motor, two that are necessary to reset the RSE, two for activating the 

HDRM and a final command that cancels whatever is ongoing. The HDRM commands will not be 

used after the EBB, as they are not needed. 

4.4.1 Motor commands 

The motor needs to have at least one open and one close shutter command. Since the shutter has 

end switches for open and closed, these can be used to end a command. In case of a malfunction 

in one of the end switches, there needs to be an alternative set of commands to open and close the 

shutter. These operations will be suspended should a temperature reading exceed the maximum 

allowed temperature, to allow the electronics and/or the motor to cool down. Temperature readings 

will be performed regularly so that the operation can continue. 

Open/Close Shutter – Stop at end 

These commands are designed to be utilised during the regular operation. The purpose of these is 

to open or close the shutter. This operation is performed until the end switch is engaged. 

Open/Close Shutter – Max no of steps 

The stop at end commands is reliant on that the end switches work. In case the end switch stops 

working, there needs to be another method of getting the shutter open and closed. These two 

commands work independently of the end switch and will then work if the end switches fail. The 

max number of steps command uses a set control register to run. The operation will start and count 

the number of steps. It will run until it reaches the set maximum number of steps, before ending 

the operation. 

Emergency close – Stop at end 

The emergency close – stop at end command operates the same way that the normal close shutter 

stop at end command. It was held as an option that this command could ignore temperature 

readings, but it was decided that the command should wait if the motor or electronics got too hot.  

Therefore, this command is now identical to the regular close shutter command. If the motor or 

electronic temperature should be ignored, then the max allowed temperature registers should be 

set to max. 
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4.4.2 Other commands 

There is a couple of other commands that are not directly related to the stepper motor. 

Arm Reset & Activate Reset 

The arm reset command will arm the reset function. This signal will hold reset armed for 1 sec, 

where it will be unarmed if nothing is written to the RSE. If anything, other than a activate reset is 

written, it will unarm. The activate command will activate the armed reset signal. Only when the 

reset is armed and activated within 0 seconds after it was armed, will a reset of the RSE be 

performed. 

Arm HDRM & Activate HDRM 

Arm HDRM arms the HDRM signal, in the same way, the arm reset work. After 1 second or should 

any other write operation than activate HDRM be performed, the HDRM signal will be unarmed. 

The activate HDRM command needs to come within that time limit to activate the armed HDRM 

signal. The two HDRM commands will only be used on the EBB as they are not needed after. 

After EBB the PSU will activate the HDRM. 

Cancel command 

This command will cancel any other command. As it is a write command, it will unarm both 

HDRM and reset. It will also end any motor operation, including an emergency that has started 

from a missing heartbeat. For example, should an emergency closure be initiated from a missing 

heartbeat, and the DPU is still working, the closing operation can be cancelled, and the shutter 

reopened without having to wait for the shutter to close. 

4.5 Communication 
The DPU needs to be able to access the RSE and write and read data to and from it. As the RSE 

does not act independently, it acts as a slave that reacts to commands from the DPU. A protocol is 

then necessary to use to facilitate the communication between the RSE and the DPU, so commands 

can be sent from the DPU to the RSE and the RSE have some way of reporting back to the DPU. 

A protocol defines a dependable interface where the communication between multiple components 

can be performed predictably and must weight different needs against each other. There are robust 
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protocols like the Remote Memory Access Protocol over Regular Byte stream DAQ Protocol 

(RoR) protocol that is a secure protocol which is good at roughing out errors, but it also has much 

overhead and therefore slower with transferring actual data bits. Different protocols prioritise 

being small and with little overhead. This means a high percentage of the payload are data bits. A 

smaller protocol might sacrifice robustness so it cannot detect some errors that a more robust 

protocol can detect. 

The previous iteration of the RSE used the RoR communication standard in [3]. A simpler protocol 

was possible to use as the communication was going to be performed point to point. Point to point 

communication means that there will only be one master and one slave, and the communication 

will be directly between them. A single slave and master make using a slave address unnecessary 

as there is only one slave. A simpler protocol could be used.  

As the DPU and RSE communicate point-to-point, a simpler interface was possible and less 

resource demanding. Neither a slave address nor a chip select is necessary. However, we need to 

do some checking. As the RSE must be autonomous, it does not need to be able to send data from 

the RSE without being prompted from the DPU. At the low level of the transmission, the baud rate 

is defined as the number of symbols that are sent per second, as there are methods to include more 

than one bit in a single symbol transmission. In our project, a standard I/O pin is used that either 

is set high or low. This results in the baud rate are the same as the bit rate. 

A standard Universal Asynchronous Receiver-Transmitter (UART) is suitable for a simple 

communication link. The drawbacks of the UART is that it cannot support multiple slaves and 

masters, both the master and slave must use a set baud rate and the limit on the data frame. There 

is only one slave and one master in our system. The baud rate has to be set the same at both the 

master and the slave for both systems to be able to interpret the incoming data. This problem could 

make a UART undesirable as the technology might come with a set baud rate or a couple of 

selected baud rates. Given the whole project are developed to be used on an FPGA, the limits on 

the baud rate are how fast the system clock can sample it and the sampling rate, and other than that 

the baud rate is selectable. Since we are not limited in the same way the DPU is, this meant in 

effect that the DPU could set a baud rate that it is limited to, our system can adapt to it. 
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A serial peripheral interface (SPI) interface would require more pins than a UART as the UART 

only needs a receiving and transmitting pin, whereas the SPI would need a chip select signal and 

a clock signal. The SPI is great at full-duplex mode as data is sent in both directions during a 

transmission. Developing a UART that supports full duplex is more complex to do. The SPI would 

introduce a second clock to the system as the master will send its clock to the slave. Two clock 

domains would give us a problem with having to cross the clock domains, but can be solved by 

letting the clock only do the sampling and putting up slow write signals, and then letting the 

internal clock react to the rising edge of the write signal for new data. 

I2C main advantage is that it supports multiple masters and up to 1008 slaves, which is not useful 

in this project. It also requires a more complex solution than a UART or an SPI. [25] 

As a UART was to be utilised, an internal protocol on top of the character level was developed 

that satisfied our demands. The UART handles the character level, which handles the low-level 

bits, and the RSE protocol that handles the top-level communication that looks at the characters 

that are sent. 

The system clocks frequency is 10 MHz. We are going to send eleven bits each time the UART is 

used. There are about 20 registers that should be read once each second. With the proposed RSE 

protocol, there are four times this with overhead, so we end up with at least 880 transactions each 

second. Using the RoR protocol would add five times the overhead increasing this to 4400 

transactions each second. 

Going with the RSE estimate, some transactions must happen each second, but also a lot more 

could happen during a second if a start-up of the motor is initiated. A baud rate of 100 kHz was 

proposed as it would give us some speed, but not make it a high-speed system as it is not needed. 

The motor will use around 40 seconds to go from open to closed and vice versa, so the speed of 

the transmission does not have to be set as fast as possible.  

As the speed is not a huge problem, and we are also able to use a half-duplex system. As the DPU 

is always the only one to initiate a transaction, there are no problems with making sure a collision 

does not occur with a half-duplex system. A full-duplex mode would be possible, but this would 

have required using queues and a more complex system with a different philosophy. As we have 
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already set the speed low, it would be easier to set the speed higher than creating a full-duplex 

system, if we wanted a faster system. 

4.6 RSE protocol 
A simple serial communication part, such as a UART only creates a method of sending a set of 

data bits. What goes into these data bits in what order needs to be defined as the UART does not 

define order. There exist multiple large complex protocols, but there are no standardised smaller 

protocols. Therefore, an internal protocol was developed that satisfied all our demands. As we do 

not want much unnecessary overhead, it contains only two layers. The character level drives the 

communication on the low level, and the package level decides what to put into the character level 

in what order, as shown in Figure 16. 

Figure 16 RSE protocol levels in operation 

4.6.1 Character level 

The character level is a single transmission package and is the low level of transmission. The 

character consists of a start bit, eight data bits, one parity bit and a stop bit, as shown in Figure 17. 

The UART must handle this level by receiving and checking each bit in order, before checking 

them overall. The UART must also handle sending out the bits in the correct order and calculate 

the parity bit.  

Start and stop bit are necessary to detect a new package is being received. A package that will not 

be able to detect at the right place where to start if there is no start bit. Data bits transfer the data 

from one component to the other. If a bit flips during the transmission, the parity check on the 

parity bit will be able to detect this. A parity bit can help the stability of the system by rejecting 

faulty characters. Adding a parity bit comes at the cost of more overhead on the character level. 

There could have been implemented some hamming code to restore the package, but it was 

considered more straightforward to reject the package and let the DPU know that an error occurred. 

RSE DPU 

Character 

level 

Package level 

Character 

level 

Package level 
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To be able to see if the communication lines break, the idle level is set ordinarily high. The parity 

bit and the stop bit will be wrong if the line breaks so that the UART will accept no characters. 

The last error that the character level needs to handle is if a bit cannot be validated. So, if a bit is 

not stable in the middle of it, it must be rejected. 

 

Figure 17 UART character [26] 

4.6.2 Package level 

The package level is the high-level part of the communication. A high-level lets the DPU and RSE 

make sense of what is put in the characters and in what order characters should be sent. 

The primary purpose of this protocol has been to keep the overhead on the package level low. We 

have point-to-point communication, so no invocation with a slave address is needed. A write and 

a read transaction are defined in the protocol. The DPU is the one to initiate the communication, 

and the RSE respond on the command. Both commands need a write/not-read (wnr) bit and an 

address in the memory to interact with. As the highest defined register has an address of 40, so 

only 7 bits are necessary. This lets the wnr bit be placed in the same character as the address to 

save one character in transmission. Should however there be 8 bits required for the address, the 

UART could be extended to use 9 data bits instead of requiring more character to send the wnr bit. 

In the response message, the response should include the whole command received so that the 

DPU can check if the correct command was performed. If it was not the DPU can send the correct 

command again, to write over the faulty command. The command could be dropped from the 

response to achieve even less overhead, but by having it in, the DPU gets some help in verifying 

the that the correct command was performed. Otherwise, the DPU would have to do a read 

operation, as well as having to check that the correct data had been written. 
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There is no cyclic redundancy check in the protocol to make it more error proof and no self-

checking. To reply with the command and letting the DPU overwrite the error fast was a better 

solution, as implementing self-checking would make the system more complex. 

There is a sequence number in the response message. This lets the DPU keep track of how many 

commands have been performed and is a fast way for the DPU to figure out that something was 

skipped or went wrong in the previous interactions with the RSE. The DPU should then proceed 

to read all the registers to check that everything is as expected and the DPU should figure out if it 

must reset the RSE. The whole memory write and read procedure is illustrated in Figure 18. 

 

Figure 18 RSE protocol memory write and read transaction 

Read operation 

The read operation is going to be performed most, so it been prioritised to keep it as small as 

possible. So, it is necessary to provide a wnr bit and the address, which could be done in just one 

character. This was then selected to be the read command, as seen in Table 9. The response would 

include the command, the status of the register that had been read and a sequence number, and is 

shown in Table 10. 
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Table 9 Read command format 

8 bits 

Command 

0AAAAAAA 

 

Table 10  Read response format 

8 bits 8 bits 8 bits 

Command Status Sequence number 

0AAAAAAA BBBBBBBB SSSSSSSS 

 

Write operation 

The write operation is designed the same way the read operation is, but it also needed the 8 bits 

that are to be written to the desired register. The write command would include two characters, as 

described in Table 11. The first containing the command, and the second with the data bits to be 

written into the register. The response would mirror the command and the data bits that have been 

written in addition to the sequence number, as shown in Table 12. This lets the DPU see that the 

command has been performed correctly or incorrectly. 

Table 11 Write command format 

8 bits 8 bits 

Command Register 

1AAAAAAA RRRRRRRR 
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Table 12 Write response format 

8 bits 8 bits 8 bits 

Command Written value Sequence number 

1AAAAAAA RRRRRRRR SSSSSSSS 

 

Error response 

In the case that an error occurs, the RSE will provide an error indicator and an error message, so 

that the DPU can see what went wrong. The response message also contains the sequence number, 

as it might indicate other errors if it has skipped, as shown in Table 13.  

Table 13 Error response format 

8 bits 8 bits 8 bits 

Error indicator Error message Sequence number 

11111111 BBBBBBBB SSSSSSSS 

 

The different errors are listed in Table 14. The low numbered error messages tell that something 

went wrong on the low level (parity, validation, timeout). The higher numbered error message 

indicates that there is a top-level problem, i.e. not allowed. 
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Table 14 Errors 

Response ID Description 

Parity error 0x01 Message parity error 

Data validation error 0x02 A received bit could not be validated as '0' or '1' 

Transmission timeout 0x03 Slave timed out waiting for remaining words from the master 

Not writable register 0x04 The register is read-only 

Wrong address 0x05 No such register 

Not allowed 0x10 Not allowed since another command is already being 

performed 

Shutter already closed 0x11 Not allowed since the shutter is already closed 

Shutter already open 0x12 Not allowed since the shutter is already open 

Motor temperature too 

high 

0x13 Not allowed since the motor is too hot 

Electronics temperature 

too high 

0x14 Not allowed since the electronics are too hot 

12V rails not active 0x15 Not allowed since the ±12V rails are not on 

Exceeding max current 0x16 Not allowed to set current above the max motor current 

Unknown command 0x21 The received command is undefined 

 

Timing 

Given that a half-duplex transmission, the RSE or the DPU are not allowed to start transmitting 

before the end of the stop bit on the command or response was received, as illustrated in Figure 

19. This would give the system feeding the UARTs data some slack to finish its operations and go 

back to idle.  
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Figure 19 Start of new transmission timing 

The write operation might timeout in between the two parts of a write command, or the RSE might 

timeout in between two characters. This timeout is called a transaction completion timeout. To 

make sure this timeout does not happen, a maximum of 11 baud delays between successive words 

is allowed. If this requirement is breached, the RSE will issue an error message if it is waiting for 

the DPU. 

The RSE might also timeout after it has received a command. This timeout is a response timeout. 

If the RSE has not started sending the response within 11 baud delays, it should clear and be ready 

for a new command so that the DPU can start a new transaction. The slave would need 11 baud 

delays to be able to recognise a silent link. Eleven baud delays were selected for both timeouts as 

it is the length of one full character from start to stop bit, so a silent link can be recognised should 

either the DPU or the RSE have mistakenly started a receiving operation.  



 

59 

 

5 Firmware implementation 

5.1 Top level design 
 

 

Figure 20 Top level design 

At the top level, as shown in Figure 20, there is a UART that handles the low-level communication, 

and an RSE protocol that handles the top-level communication towards the DPU. The data received 

is put into the register bank, and requested data is pulled from there. The register bank stores all 

the software registers and connects wires from other places, so they act as read-only registers. The 

data registers are then sent out in records to the different modules that need them. Some modules 

send back value to the registers. These are read-only register as modules control them. 

In the top level, there is a couple of timer modules. There is a clock generator module that generates 

a pulse each millisecond and second. These signals are used to time the other processes, so they 

run synchronously to each other.  

The design is split up where it is appropriate. The stepper driver is reliant on a lot of in signals, but 

to keep the size of it down it only connects different incoming signals to the output when they are 
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required. Dividing up the modules made the testing simpler as an error could be isolated to its 

module that produced the wrong signal. Also, by using regularity as a philosophy for the different 

modules, the modules were simpler to build fast and test. 

5.2 UART 
UART is a component that handles the low-level communication with the DPU. The UART must 

control the transmission and check that all the communication is legal. All the communication is 

done in baud periods. Therefore, each step has a counter which is counting the clock periods in 

that step and checking if it reaches the number of clock pulses per baud period, before entering the 

next step. When no communication is occurring, the transmission lines are set high. The start bit 

is then low so that a new message can be detected. Then comes the eight data bits from the least 

significant to the most. Then a parity bit comes, before a stop bit, which is high. 

The UART consists of two parts, with support functions. One part handles the transmission of 

packages from the RSE to the DPU. First, the transmitter needs to be started from a valid data 

signal. Then the transmitter needs to fetch the desired data that is to be sent. This data is then 

wrapped with a start bit, parity bit and a stop bit. All the data is sent through the transmitting data 

line. First out in the transmission, the start bit is transmitted for one baud period. Then the data bits 

will be sent for one baud each. A counter is utilised to count which data bit is in progress of being 

sent. While the data bits are being sent, the odd parity bit is being calculated in a separate process. 

A separate process makes it so that the parity bit does not have to be calculated during one single 

clock cycle. The calculated bit is then sent out for one baud period. At last the stop bit is sent out 

for one baud period to complete the transmission. 

The receiver part controls the reception of packages from the DPU to the RSE. The receiving 

transmission line is monitored to check for incoming data. First, all the data from the transmission 

line is synchronised through two registers. The synchronisation is done to avoid metastability 

problems, so the signals are usable in the UART clock domain. The synchronised bit is sampled 

each clock cycle into a sampling register. This register oversamples the bit by a factor of clock 

pulses per baud period. The oversampling, together with a counter, can then look at the middle bits 

of the transmission. The five middle bits are compared, and if all of them has the same value, the 

sampled value is accepted. If they have different values, an error is indicated. That way, the bit 
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used is sampled when the transmission is at its most stable, and all the middle bits are the same 

value ensures that a proper sample is utilised. This process is illustrated in Figure 21. 

 

Figure 21 Sampling the value of incoming data 

When the transmission line goes low, a start bit is detected. This start bit will then fill up the 

sampling register. The sampling register is looking for a start word where half the register is high, 

and the other half is low. The start word is timed, so the next steps samples when the whole 

sampling register is full of the first single bit. If the search word appears, the next step waits so the 

whole bit is in the sampling register. Then it checks the middle bits if they are all low. If not, 

something is wrong, and the state goes back to idle, where it waits for a new search word to be 

found. Should all the bits be 0, the counter is reset and, the process goes to the next step. There the 

data bits are collected. They are checked if they are valid and then put into a register, where a 

counter places them in the correct order. After the data bits are collected, a parity bit is calculated, 

and the parity bit from the package is received. The calculated and the received parity bit is then 

compared. If they are unequal, an error flag is set. At last, the stop bit is collected, and a flag is set 

indicating that a new word has been received. 
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5.3 RSE protocol 
The RSE protocol handles the top-level communication of the transmission in accordance with the 

protocol. The implementation of the top-level is done by using a state machine, as illustrated in 

Figure 22. Since all communication is initiated from the DPU, the state machine can wait until it 

receives something. The UART will deliver the data and a valid data bit when new data is received. 

It will also deliver flags for low-level errors such as parity bit error and data validation error. The 

state machine has one idle state, and one state for each of the words that are to be sent and received 

during the transmission, in addition to two wait states. It also has an error state where an error 

message is produced, which the state is sent to if an error has been produced. 

 

Figure 22 RSE protocol state machine 
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First, in the idle state, the code will be waiting for the UART to indicate that a new word has been 

received. Then the parity check flag will be check. Then the write/not read bit is checked. This 

determines whether a write or read procedure is to be performed. This bit is put in a variable to 

keep it for later purposes. Since it is a variable, it can be utilised at once. If it is a write operation, 

the state is sent on to the write state, and the timeout counters are reset. However, if it is a read 

operation, the address that is received is check if it exists before the read operation is performed 

by setting the cs and read signal high. The state is then set to address send. 

The write state waits first for a new data valid flag to be set. Then the data validation, parity, 

existing address and writable address are checked for in that order. This order is used so that the 

lows level error is given priority. This is done as an unwritable address is an input error from the 

DPU, but a validation or parity error is a much more critical error as there is something wrong with 

the system.  

Then which of the address that is written to is checked. If the command register is tried to be 

written to, checks must be done to check if it is legal to write the command that is received. First, 

the command that is written needs to be checked if it is one command that warrants checks. If the 

command is related to the shutter first, the 12V rails need to be checked if they are on. Then the 

temperature of the motor and the electronics must be check if they are too hot. Then the status of 

the shutter is checked to see if it is in the process of opening or closing. At last, if it is an open 

command that has been received, check if the shutter is already open, and vice versa for the close 

command. 

If the command is another known command, no checking must be done. However, if it is not a 

known command that has been received, an unknown command error is set. If no error was 

detected a standard SBI write to the register is performed, the timeout counters are reset, and the 

write data is placed in a data register inside the register bank, and the state is sent on to the address 

send state. If an error has been detected, the corresponding error message is put into the data 

register to indicate what kind of error has occurred, and the state is sent to the error state. 

In the address send state if a read command has been performed, the data read is put into the data 

register. The data read is not ready before this state and is then put into the data register. Then the 

address and the wnr bit is feed to the UART so that it can be sent. When the UART tells that it is 
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ready to send, the valid data signal is set to initiate the transmission in the UART. It will then enter 

the address wait state. This wait state waits only one clock period so that UART gets time to reset 

the ready signal, so the data send state will not imminently happen. It also resets timeout counters. 

Given that the shutter will use seconds to go from open to closed, and just the transmission uses a 

baud rate much smaller than the clock frequency, one clock period is not that critical. A method 

where a done signal was utilised instead of the ready signal was used early in the project but 

discarded to get a clearer interface. The done signal only last one clock period, and so the ready 

signal which lays high is easier to handle and made the waveform simpler to understand during 

the simulation. 

The data send state waits for the UART to be ready again. When the ready signal arrives, it will 

send the data bits to the UART so that they can be sent. This procedure is performed while a 

transmission timeout counter is running. It will timeout at a set constant where it will go back to 

the idle state as it is defined in Section 4.6.2 that if the transmission is not initiated within 11 baud 

periods, the DPU can send a new package. To implement this the timeout counts twice so that the 

first package finishes before it starts counting for the second. 

The same procedure is applied in the data wait state as in the address wait. This state resets the 

timeout counter and waits a clock period so that the ready signal has time to go low again. Then 

the sequence number state applies the same procedure as the data send state, but it will send out 

the sequence number register value, before adding 1 to it for the next transaction. The addition is 

done to track the number of interactions from the DPU to the RSE. 

For the error state, the data register is set to the corresponding error message when the state is set 

to the error state. Setting the data register then ensures that the correct error message is produced 

since the flag telling what is causing the error often last only a single clock period. The data register 

holds the data from the register bank when read, or the data to be written is held in this register 

during a write operation. The data register is what that is sent back during the data word of the 

package. The error state itself replaces the write state where the state machine waits for the data to 

be received. It also works as a stage in between the idle state when a character has been received, 

and the address send state where the response is generated, in case of a read operation. The address 

to be sent is set to 1’s indicating an error has occurred, and the cs is set to 1.  



 

65 

 

The check that controls that the received address is valid and the check for a writable address are 

both placed in functions as the to help the readability of the state machine. A simple function name 

is used, and in them, they will check the received address against all legal addresses. 

5.4 Smile register bank 
This module was generated using the Bitvis register wizard early in the development. The 

generation of a register bank created an SBI interface, and it has been used to access the register 

bank from the RSE protocol code. This SBI interface was chosen to be used early so it could be 

used for learning to utilise the Universal VHDL Verification Methodology tool from Bitvis. There 

is a top level of the register bank, and it consists of two parts: the SBI controller and the core where 

the registers are located, with two records in-between them. 

The SBI controller is an SBI interface and two decoders, one for writing to the register bank and 

one for reading from the register bank. The record from the register bank contains all the register 

values. In the read process, if read and chip select is set, the address is used to chose which register 

value is placed into the read data output. The only case where it is different is that if the heartbeat 

register is read, it produces a heartbeat count accessed signal that is used in the heartbeat module 

in Section 5.7. This is done to simplify the heartbeat module. The write process checks if the write 

signal and chip select signal is set. If the write signal is set, the address is checked, and the 

corresponding register signal in the record is set to the write data value, and the write enable signal 

is set for that register. All the individual write enables is or-ed together to create a general write 

signal. This is done because some other modules must see if a general write was performed. 

The register bank contains registers for each of the defined writable and static registers. Most of 

the read-only registers are signals come in as through a signal in a record and are just passed 

directly on to the SBI. The registers are also connected to the different records going out as they 

are needed in other modules. There could have been a general record out, but since most modules 

only use a few of the registers, individual records were created after where they are going to. This 

also made the naming of the records symbolise more what they contain. The command register is 

unique since it is cleared after holding the new value for one period. 
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5.5 Debugging module 
To make the first test on the board easy a debugging module was created. The purpose of this is to 

have a blinking LED on startup. This LED makes it simple to see that the programming of the 

board was successful. The communication could also be checked if the blinking LED could be 

turned off, as visual feedback is provided instantaneously from the led. The LED will start blinking 

again on reset. This has been great to check with when problems occurred as a sent command was 

received on the board, but no response came back. This reduced the amount of probing and time 

used on other techniques to troubleshoot. 

The debugging module code is implemented as a process with a linear-feedback shift register. The 

shift registers output change value roughly every second. The process was made to be independent, 

and while the sec pulse from the clock generator could be used, it would make it rely on other 

modules, and not be fully independent. A normal binary counter could have been implemented 

instead. Since the counting order does not matter, the LFSR has a simpler logic, and there was a 

wish to try using an LFSR, it was decided to be made that way. 

The debugging module was created early in the project after the communication and register bank 

was done. This was to enable testing of accessing the register bank on an FPGA early in the 

development. 

5.6 Clock generator 
A clock generator was made as a millisecond and a second pulse was required. The pulses were 

required to be independent, so multiple modules could rely on it to keep them synchronous. This 

central clock generator makes the other modules dependent on signals outside them instead of 

using counters inside them. However, having a synchronous clock pulse and reducing the number 

of counters was considered to be better. It was simpler to develop and made the readability better 

because of the reduced size of other modules. 

The clock generator is built with a conventional counter where a variable counter is used to count 

from 0 to a constant holding the value of clock pulse per millisecond. This counts each clock pulse. 

When it reaches the constant value, a pulse is set, and the counter is reset. This generates the 
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millisecond pulse. Then the same process is repeated to create a sec counter. The millisecond pulse 

is used to count, and a second pulse is created. 

In addition, an arm timeout process is used to timeout the arm signals. This process counts on each 

ms. There is an uncertainty in wherein the ms counting process the ms counter is when the arm 

timeout is reset, so an additional counter was used for arm timeout. The arm timeout is reset by 

the different modules that use this process. When reset the counter will count for one sec, where 

an arm timeout signal is set. This is sent back to the modules that need it. 

5.7 Heartbeat 
The purpose of the heartbeat module is to be able to control that DPU communication is working. 

If the communication lines stop working, the instrument needs to be protected, as the RSE does 

not know anything about the outside and what is happening. The DPU is required to read the 

heartbeat register at least once each 30 sec. This lets a timer be created to count until the 

communication can be assumed to be broken. When the heartbeat register is read, the counter is 

reset back to 0. The counter counts on each second pulse. The counter will remain at max value if 

it is reached. This is to prevent the counter from looping around and deactivate the emergency 

closure. If it counter reaches the timeout constant, a heartbeat missing signal is set. 

Each access increases the heartbeat register's value by one. Incrementing is a simple way to see 

that the heartbeat register has been accessed. The heartbeat module monitors the SBI interface into 

the register bank and performs the addition if the heartbeat accessed signal is high. The heartbeat 

register value is sent back to the register bank where it is just connected to the SBI interface 

directly. 

5.8 HDRM 
HDRM is the module that is supposed to release the shutter after the satellite is in place. The shutter 

is locked in place with a hold-down mechanism during launch. This needs to be activated by a 

current to release. The HDRM module provides a signal to activate this. 

The HDRM requires a command to arm it, and then a command activating it. If any other write 

operation than the activate command is performed while the HDRM is armed, it will unarm. This 
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is to make sure that the shutter is not released before it should, and thereby doing damage to the 

shutter and its surrounding. 

The process will wait for an HDRM arm command. If an arm command and a command write are 

written to the register bank, the arm signal will be set. When the arm command is received, the 

HDRM resets the arm timeout procedure in the clock generator. This will give back a signal if a 

too long time goes before the activate command is received. Then if a write command is performed 

to the register bank and the arm signal is high, the command register is checked if it is written an 

HDRM activate command to. If it is, the activate signal is set, and else the armed signal is reset. If 

the timeout signal is set, the arm signal is also reset. The module sends the arm and activate signals 

to the register bank to the HDRM status register. 

5.9  Reset generator 
The reset generator operates much in the same way the HDRM works. It is designed to be able to 

reset the whole design while from a command. To perform a reset an arm and a activate command 

is needed to be written in succession to the command register within one sec of each other. This is 

to ensure no single wrong package can by accident reset the system. 

The reset generator runs a process that checks if an arm reset command is written to the command 

register. If it is, the reset armed signal is set, and the arm timeout is reset in the clock generator. 

Then if the timeout is activated, the arm signal is reset. However, if the arm is set and a write 

command is received, the process will check if a reset activate is written to the command register 

and then set the reset activate signal. If it is not a reset activate command, the reset arm will be 

unarmed. 

5.10  Stepper motor modules 
Most of the stepper motor could be placed in a single module. To stop it from bloating, it was 

simpler and easier to split it into different modules to handle the different purposes. This increased 

the number of global signals but was at the benefit of getting a better hierarchy. The modules have 

been tried to look alike and using the same methods to achieve the same results.  



 

69 

 

5.11  Switch debounce 
Switches usually jump between closed and open, and there are no clean edges. To deal with this, 

a debounce module is needed. Two switches need debouncing, one that detects that the shutter is 

open, and one that detects that the shutter is closed. The debounce are not affected by the other 

code and are not required to be in sync with anything else. Since this is the case and the clock 

generator was providing a millisecond pulse, that was utilised to keep it simple. 

The debounce process receives the millisecond pulse and from that counts until it reaches the set 

debounce time constant. When it reaches the constant, the current input value from the switch is 

checked against the previous value. If they are the same value, the incoming value is let through, 

if not the previous value is used.  

This method is used so that if the stepper motor samples in a transition period of the switch where 

the signal will be jumping between high and low, it will have to run another step. The alternative 

is not to have a debounce module and just let the signal straight through. It could just as well work, 

as the noise on the signal is only present when the switch is transitioning, which means it is either 

as good as open or closed. The momentum of the shutter might be good enough to close the shutter 

fully. There is also a closing step in the stepper motor to let the stepper sequence finish, and this 

might also be good enough to flip the switch value properly. However, at an early stage in the 

development, nothing was known about this, and so to ensure there are no problems the debounce 

was developed and utilised. 

5.12  Pulse width modulator 
The PWM’s job is to create a digital signal that is modulated to be on and off in cycles. This signal 

is used to turn a transistor on and off, to achieve certain currents as described in Section 2.4.3. In 

this project, one PWM is used to control the current in the motor, and one to chop the signal on 

the transistors. This is to limit the power used. 

The motor current is connected to an output which is connected to the current source, and by 

turning it on and off, a corresponding current is delivered. The chop signal is delivering a constant 

chopped signal, and this is used in the stepper driver to chop the signal on the Q3 and Q4 driver 

transistors, as seen in Figure 8. 
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The PWM takes in a register value. A process will count from 0 until the register value. During 

this, the modulated signal is high. When the counter reaches the register value, the modulated 

signal is set low. The counter then goes to the maximum value and then loops around. 

A goal of the PWM was to design it as universal as possible so it could be reused. 

5.13  Settling time period 
The settling time module is a module should provide a high signal up until a particular time. This 

is done to drive the signals on the transistors driving the motor for the settling period. This allows 

the current through the driver transistors to be settled at the desired value before any power saving 

methods are applied. In this project, the settling time period signal is supposed to be high for the 

settling period, and then the signal is chopped to save power. The settling time period module is 

to be similar to the PWM module, except that it is missing the wrap-around. So, the module needs 

to be reset each time the counting is to be performed.  

The way this is implemented is by creating two counters. One that counts until every four 

microseconds and one that counts those microseconds until the settling time constant is meet. 

When the settling time is reached, a settling done register is set. When the settling done register is 

set, the settling pulse output is set low, where it was high before the settling was done. When the 

register is set, the counters will continue counting, but they do not affect anything. 

5.14  Half step synchroniser 
To synchronise the steps in the stepper motor, and ensure all steps are equal, an independent step 

counter was developed to ensure this. This module is consisting of a counter that counts until the 

half step constant is meet, where an out signal is pulsed. This signal is used to proceed in the 

stepping order in the setter driver. The stepper driver is required to reset the half step synchroniser 

to sync the stepper driver sequence. This was a simple way of getting the stepping in sequence, 

instead of having to sync the sequence to the half step by waiting for the pulse. 
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5.15  Stepper control 
To know what command should be performed, the command register must be interpreted. To 

interpreted it, a stepper control module was made to detect changes in the command register and 

pass the interpretation on to the stepper driver. Since the command register is cleared one clock 

cycle after a new command has been placed in it, so all new commands are easily detected by 

checking if the command register is not cleared. 

To make this simple, the command register is checked if it holds a value which corresponds to a 

motor relevant command. Illegal commands are rejected in the communication part, so all 

commands that are received can be expected to be legal. For example, this will stop a new open 

command to override an ongoing close command. So, in the procedure the command register is 

checked, and then all the command flags are set low, and the new stepper command signal is set 

high. Then the command is checked which command is being received, and its corresponding flag 

is set high.  

The only special case is the cancel command which checks if an ongoing command is being 

performed. If it is the cancel command flag that is set high, or else it is kept low, and the new 

stepper command flag is set low, so it never goes high. While it is not necessary for the stepper 

driver, it is done to ensure the new stepper command are always set with a command flag and not 

trigger any checks in stepper driver. This also ensures no unnecessary interactions across modules. 

The flags are held high until a new command is received. This is so that the stepper can just check 

on the flag to know which command is going on, and thereby which end conditions to check for. 

5.16  Stepper driver 
The stepper driver is the component that controls the stepper motor operation. The stepper 

sequence must be fulfilled in the correct order, as shown in Figure 9. The signals that go into the 

stepper sequence comes from other independent modules, to reduce the size of the stepper driver 

module. The module handles the power rails, the status of the motor, emergency mode, checking 

the temperature, and driving the stepper sequence. 



 

72 

 

For the power rails in normal mode, they are to follow the LSB in the enable 12V rails register, 

but in the emergency mode, they need to be powered on to ensure that the shutter closes. Since the 

rails might be off to save power when the emergency mode sets in, it needs to be able to override 

the register. The easiest way to perform this is to check if the emergency state is not in the normal 

operation mode and override it should that be the case. 

The shutter status register is the only way for the DPU to get to know what is going on with the 

motor within the RSE. The stepper driver places the corresponding signals from other processes 

into the bits in the register where they belong where it is possible. For the closing and opening in 

progress status bits, the state of the stepper process is checked if the state is in the closing or 

opening sequence. The emergency status is checked the same way the power rails is checked. 

The test procedure needs to check if the motor temperature or the electronics temperature exceeds 

the maximum allowed temperature. This set two registers indicating if the motor or the electronics 

are too hot. This lets the sequence check if one of these registers is set so it can wait for cooling 

down. 

The RSE might lose communication to the DPU, and should it an emergency mode is needed. A 

state machine handles the emergency mode. There is a normal mode state where the 

communication is working, and heartbeats are received. When a missing heartbeat is indicated 

with a signal, the state goes to the heartbeat missing state. This will power on the power rails, 

overriding the register controlling the rails normally. There if the heartbeat is received again, the 

state goes back to the normal state. If a second pulse is received as it will come one second after 

the missing heartbeat signal, then the emergency initiated signal is set, so the stepper driver process 

will start closing the shutter. When the shutter is closed by end switch or max number of steps, the 

finish motor command is sent back from the stepper process. The emergency initiated is then reset, 

and the emergency finished state is set. If it, however, receives a cancel command, it will stop the 

stepper process as normal, and the emergency state is set to the emergency finished, as a heartbeat 

is imminent as a cancel command was received from the DPU. In the emergency finished state, it 

will wait for the heartbeat missing signal be set low, before going back to the normal state. 

The emergency is based on the missing heartbeat from the heartbeat module. So, the RSE needs a 

way to protect the detector if the DPU stops working and needs a reset. The rails need to be 
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powered on. Then the state takes a second to ensure the rails are properly turned on. This also 

gives some time to let a heartbeat come as a reaction on the power rails turning on and stop the 

emergency before it is initiated. Then in the close process, the closing procedure needs to respect 

the too hot condition and the max number of steps. This is to ensure that the RSE does not degrade 

and destroys itself, and thereby leave the detector exposed to high energy radiation or that the 

shutter is closed without the possibility of opening it again. The switches might also malfunction 

and get stuck to a value, so it can’t be used to check if the shutter is closed. Then in the finished 

state, it will just check if the heartbeat is received before going back to normal operation. 

The stepper driver is the process that goes through the stepper sequence. This process sits in idle 

with all the transistors off, before while waiting for a new command to come from the stepper 

control, or an emergency is initiated by the emergency process. When a new command is received, 

the counters in the settling time module, the half step module and the number of steps performed 

value is reset. This is to ensure that the number of steps register is kept at its value until a new 

command is performed. The flags from the stepper control are checked to find out what command 

is to be performed. The state is then set to the appropriate stepper sequence. There are two 

sequences, one for opening the shutter and one close sequence. 

As described in 2.4.3, the stepper needs 16 states to reach the whole stepper sequence in both 

directions. The stepper sequence is built up so that there is a step zero, the normal steps from the 

stepper sequence, initial steps where signals to other modules are set, cooldown steps, a step nine, 

and an all off step. When started for the first time in a sequence or restarted after a cooldown, step 

0 is used instead of step 1. This step is first in an initialisation step, before going into the main 

step. The main step runs until the half step is received, before going into a new step. There are 

initialization steps where there are changes to the transistors, and it lasts only one clock period. 

The main steps will send out the settling time reset when the half step is received when it is 

necessary to power on a new transistor. 

In step eight, when the half step is received, different checks must be performed to check if the 

operation is finished. The test sequence is vital as specific conditions like temperature or cancels 

needs to take precedence over other conditions. First, the number of steps is increased here. This 
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is a simple way of ensuring that the number of steps is progressed, as the eighth step is the end 

step of a single sequence, and the start point might be in either step zero or step one. 

The first check is to see if it was an emergency has been initiated. It will then check if it has been 

cancelled or if the end has been reached. If it was not an emergency that initiated the operation, or 

it is an opening operation that is being performed, the first thing to check is if the current operation 

is cancelled. This will send the state to the ninth step to finish the sequence before ending the 

operation, however, if the operation is not cancelled, which operation that is being performed needs 

to be checked so that the correct end conditions can be checked.  

For the stop-at-switch commands, the switch is checked if it is set. If it is, the ninth step is the next 

to end the operation. If the switch is not set, the electronics and motor temp must be check if they 

are too hot, which in case the operation goes to the cooldown state. Else a new step is run. For the 

max number of steps operation, the number of steps is checked if the max number of steps is 

reached. If it is the operation goes to the ninth step to end, and if not, it must check the temperature 

and either go to the cooldown state or run a new step. 

The cooldown states turn off all the transistors and then rechecks the temperature each half step. 

Then if the temperature has lowered to or under the max acceptable temp the cancel flag is checked 

if the operation has been cancelled during the cooldown. If not, it will go to step zero for a new 

step. This is since the only conditions that use the cooldown states is if a new step is to be 

performed. If the operation ends, the transistors are turned off and will cool down. As no new 

commands are allowed as the motor or electronics are too hot, so nothing will heat them.  

When ending the operation, the ninth step is utilised. At the start, one transistor keeps low at the 

very first step, even though it should have been high, step nine is used to compensate for this.  The 

final step is the all off step that turns of all transistors. This is used as a clean-up state where all 

the transistors are turned off. It provides a simple universal test for testing, as it is the end state for 

both the closing and opening sequence. This lets a check on the state make sure the operation was 

finished cleanly, as the only clean exit is going through this state. 
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6 Test and development 
The RSE protocol was developed with these steps: 

1. Development and testing of the communication with the DPU 

2. Test of communication on board with a simple program 

3. Development of motor and other modules 

4. Further testing in a test bench 

5. Expanded python program for testing on board 

6. Testing on board 

6.1 Development of the firmware 
The communication was developed first as Bitvis provides a register tool to create a register bank 

with an SBI interface, and two test methods. This tool is called Bitvis Register Wizard. These were 

desired to be utilised in the project and came with an SBI and UART example. This did let a single 

test bench for the register bank be generated to make sure the register bank worked. In it, each 

register was accessed via an SBI interface and read. All writeable registers were written different 

values to and then checked. 

As the register bank was working, the communication modules to access the register bank from 

the DPU was to be created. The RSE protocol was decided to be used, and so on a high-level 

module was created to fulfil this. To test this, we created a new test bench with the RSE protocol 

and the register bank. The RSE protocol is connected to the UART via two records. Two 

procedures were created to make a write operation and a read operation over the records. Having 

tested this, the UART was created to get the whole communications aspect ready. The test bench 

was expanded, as illustrated in Figure 23, and different procedures replicating the RSE protocol 

was created to perform the tests. 
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Figure 23 Test bench for communication 

The Bitvis Universal VHDL Verification Methodology framework was incorporated into the tests, 

and their UART VHDL Verification Component (VVC) was put into the test bench. A testbench 

harness was used to instantiate the UART VVC, the RSE components, the engine for the 

framework and the clock process. This was done to reduce the size of the test bench file and 

separate the instantiation as it would not be modified a lot afterwards. 

This was the fundament for the testbench that was expanded upon. In the test bench, the register 

default was read before the write operation was performed to all writeable registers. As the normal 

operation was working, the different illegal cases were tested to check if the corresponding error 

message were received. First, multiple read transmissions were sent before the RSE had time to 

respond. This does not work as the UART will receive the observed characters, but the RSE 

protocol ignores them as they come in during states that do not care about any new received signal. 

The only way this works is if the DPU initiate sending a word after the sequence number have 

started sending from the RSE. Then the UART will have received the whole word as the RSE 

protocol has had enough time to get back to idle. Then unknown commands are sent and rejected. 

The parity bit is changed in the VVC to use even parity. This makes it so that all communication 

from the DPU is rejected. This is then changed back to odd parity before the test bench tries reading 

and writing non-existing register and writing to read-only registers. At last, transaction timeouts is 

performed while writing both correctly and faulty. All of this worked in the simulation. 
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As the communication was working the functionality could be developed. The other functions, as 

described in Chapter 5, was developed. First, the functionality that did not affect driving the stepper 

motor directly was developed, and after that, the stepper driver modules were developed. These 

modules were continuously tested in the test bench by accessing the registers that controlled the 

functionality and from there check that the correct output was produced, probing different signals 

to check if they behaved as intended and at last we did see if the RSE behaved as expected in 

communication with the DPU. As all functionality is either dependent on commands from the DPU 

or running independently, we would trigger different functions by writing to the RSE, or wait for 

functions to trigger. 

6.2 DPU simulator 
Lylund created a DPU simulator to test his code. His thesis [3] gives the following description of 

the DPU simulator: 

“The DPU simulator is created in Python, which is a high-level, general-purpose 

programming language. Python has simpler syntax compared to the alternative 

programming languages: C, C++, and Java. It also supports a large variety of libraries and 

development tools, such as serial communication and Graphical User Interface (GUI). This 

enables complex programmes to be created in a relatively short time, so it was decided to 

use Python as the framework for constructing the DPU simulator” [3]. 

This software has been taken as the starting point of the present RSE GUI. During this work, the 

software has been restructured into several python modules, each with dedicated functionality. 

Some new functionality has also been added, for example, access to new registers, regular access 

to the heartbeat register and ability to open and close the radiation shutter multiple times 

sequentially. The latter functions needed a major software change in order to run continuously in 

the background, which was implemented employing the Python QTimer class, which provides 

repetitive and single-shot timers. The “Open Close Cycles” button sets a flag which triggers a 

software finite state machine controlling the open-close cycles. 
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The new GUI also implements the RSE communication protocol instead of the previous RoR, see 

Figure 24. This example shows how the heartbeat register is accessed every second, and from the 

log, we can see how the sequence number is incremented for each access.  

 

Figure 24 Modified DPU simulator for operating and testing the RSE 

6.2.1 RSE Register Window updates 

Previously we had to choose a register and then write a value or read it. Using the drop-down menu 

and writing to a register was tedious when trying to write to multiple registers. We changed every 

register label to buttons that read the register, and each register got a text box where we could write 

the desired value. Pressing enter triggers a new function that sends the proper command to the 

RSE. If the user writes an illegal number or a number not within 0 to 255, this now caught by an 

exception routine, preventing wrong values to be written to control registers or the software to 

crash. As previously mentioned, some new registers have also been added. 

6.2.2 RSE Command Window updates 

The RSE register window simplifies the process of writing commands to the RSE by specific 

command buttons. In principle, there should be a single button per command, but for the arm and 
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activate functionality, single buttons are needed. This is because it is difficult to click two buttons 

quickly enough to be within the required one second time window for the valid arming time, see 

Section 4.2.4. So, the button for arming and activating HDRM and reset was combined in the GUI 

for testing proposes. 

In addition, as previously mentioned, an “open and close cycles” function was implemented. This 

function runs multiple open and close until end switch commands in succession. This allows long 

term testing of the hardware without manual intervention. 

6.2.3 RSE Log Window updates 

A terminal was used, but we wanted a log window instead. Using that we could easily connect the 

window to a file to read afterwards. With the extensive RoR communication protocol, the whole 

process of a single write or read were shown. The RSE protocol allowed a simpler log message as 

we just printed the characters that were sent to the RSE and the response message. A comment 

was added in case of an error or for commands. The sequence number would also increase on the 

screen so we could see if any packages were lost. 

When we implemented the emergency close feature on the FPGA, we had to create a background 

function that provided heartbeats to the RSE. This function stopped the RSE from closing the 

radiation shutter after 30 sec while testing the RSM. 

6.3 Hardware tests 
After thorough simulations, the firmware is ready to be tested on the physical system. The EBB is 

connected to the FPGA development board, and the RSM is attached to the RSE via the RSE-RSM 

harness.  

To put the firmware onto the FPGA, it must be compiled. First, a tool like Libero synthesises the 

code. Synthesis is a process that analyses the code and finds syntax errors (language grammar 

error) and static semantic errors (ex. wrong type assignment). Compiling the code generates an 

executable object code [20]. These languages contain a sequential list of statements.  
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During the compilation of code, the constraints of the code are added. An I/O constraints file is 

needed. This file makes the FPGA set inputs and outputs to desired pins on the FPGA. The FPGA 

pins are then connected to components on the PCB board. This way, for example, standard I/O 

pins, LED or switches can be accessed from the FPGA. On a microcontroller, in contrast, there are 

set registers that correspond to hard-wired components, and the registers cannot be chosen to 

correspond to a different pin. [27] 

In addition, there is a timing constraints file that is necessary. “Timing constraints represent the 

performance goals for your designs. The software uses timing constraints to guide the timing-

driven optimisation tools in order to meet these goals” [28]. These constraints are set to give 

information to the tool about the delay from ports, minimum speed of the clock domain and 

identify critical logic paths that need a maximum delay or more clock cycles [28]. This is used 

when the tool generates the floorplan of the FPGA and decide where to put the logic. By putting 

logic and nets around the floorplan, the delay and timing constraints can reach a satisfactory level. 

A floorplanning constraints file can be used to create regions on the FPGA and assign logic and 

nets to these regions [28]. This is practical as modules that belong together can be placed close to 

each other. A set floorplan will also allow a set space for different systems, where there are 

conflicts over the usage of the area. A set floorplan also enables reconfiguration of certain blocks 

when desired. As our system are rather small, and it will be burned into an FPGA, a dedicated 

floorplan was not used. 

The firmware was put onto a ProASIC 3E, and the DPU simulator was connected through I/O pins. 

We did also compile the firmware for use on the RTAX250 FPGA. On that, we would use 40% of 

the combinational cells and 36% of the sequential cells, ending up with a total of using 39% of all 

the cells. 

6.3.1 Testing of communication on board 

A blinking-LED module is included as a firmware module to ease the first test. The main idea is 

that the I/O pins toggles regularly after power-up and reset, and the blinking can be inhibited by 

writing to a control register. Proper firmware operation can thus be verified immediately by 

observing the blinking LED activity, and proper communication link operation can be confirmed 
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by writing to the inhibit register. The FPGA I/O pin can either be connected to a physical LED or 

simply to a test pin that can be probed. 

6.3.2 RSM bench test 

The main functionality of the RSM can be verified by running the motor in order to open or close 

the radiation shutter. Full functionality is simply verified by commanding “open door stop at end” 

or “close door stop at end” while observing the movement of the door leaf. In addition, the motor 

parameters should be tuned by setting the optimum motor current, half-step settling time and the 

chop duty cycle. The figures gathered from the oscilloscope, view the current through one of the 

coils driving the stepper motor where the current will go in one direction for 3 out of 8 half steps 

before switching off the current for one half step, and then turning it one in the other direction for 

another 3 half steps as illustrated in Figure 9.  

6.3.3 Settling time 

At the onset of the coil current, there is a dedicated “Settling time”, allowing the current to reach 

the desired value before current-chopping is started. As can be seen from Figure 25, the needed 

settling time is very short, about 40 µs before reaching the current plateau. The initial current peak 

shown in the figure is related to the speed of the current regulation circuitry, specifically the speed 

and the slew-rate of the opamp. At the start of the step, the current control is regulated to maximum, 

before the set current is reached, and it takes a few microseconds before the speed and the precision 

of the current regulator.  
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Figure 25 Ideal settling time peak 

The set settling time has very little influence on the motor torque, as described in Section 2.4.3. 

Therefore, it can be set as low as possible in order to save power by keeping the chopping period 

as long as possible for every current phase. An experiment can be done in order to verify the power 

saving effect of lowering the settling time. Trying to settle with a value of 10 gives us a settling 

period of 40 µs, and a register value of 50 corresponds to a settling period of 200 µs. Using 10 

instead of 50 represents a settling time difference of 160 µs per step. A step is 2 ms, and the power 

saving effect can be calculated if we assumed negligible power consumption during the chopping 

period: 

10 ∗ 4𝜇𝑠

50 ∗ 4𝜇𝑠
=

160μs

2000𝜇𝑠
= 8% 

40 µs 

Necessary settling time 

Current 

plateau 
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There will be 8% saving of power using the lower settling time. Observing the power supply meter, 

we saw a change from 58 mA for 200 µs settling time and 51 mA for 40 µs, representing a change 

of about 12%. Too high settling time can be seen in Figure 26. 

 

Figure 26 Too high settling time peak 

We also tried setting the settling time to 0, as shown in Figure 27. This had no settling time, and 

therefore, chopping started immediately. With a high enough chopping and current, we could still 

reach the plateau. 

 

Figure 27 Zero settling time peak 

The result of the settling time measurements is listed in Table 15, and the actual motor current is 

drawn in Figure 28, and the power supply current is drawn in Figure 29. 

Current plateau 

Unnecessary 

settling time 
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Table 15 Settling time test (Motor current 100, Chop duty cycle 150) 

Settling Time Actual Motor Current (mA)  Power Supply Current (mA)  

0 -- 125 

20 400 139 

50 415 145 

100 420 165 

150 425 180 

200 425 200 

250 425 -- 

 

 

Figure 28 Motor current as a function of settling time 
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Figure 29 Power supply current as a function of settling time 

6.3.4 Chopping 

As mentioned in 6.3.3, the settling time allows the current to reach the desired value before current-

chopping is started. The chopping signal is constantly going, but the settling time signal overrides 

it, by locking the output to 0 for as long as desired. After the settling is done, the chopping controls 

the current. The chopping lets the transistors be charged and discharged perpetually. The recharge 

needs to reach the current plateau again. As can be seen in Figure 30, the current is chopped where 

the current falls off, before being charged back up again. This process moves the average current 

down. In Figure 31, the same operation is done without chopping.  
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Figure 30 Normal chopping 

 

Figure 31 Without chopping 

Settling time is only active for the ramp-up of the current. The current is then primarily set by the 

chopping and the motor current register. The chopping needs to be high enough so that the circuitry 

can recharge itself, as seen in Figure 25. The current needs to reach the plateau again, or the current 

will fall off, as seen in Figure 32. 

Chopping on 

Chopping off 
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Figure 32 Too low chopping 

The chopping needs to be set so that the circuitry has time to recharge the transistors. The optimum 

chopping will only just reach the current plateau again before letting the transistors discharge 

again. Staying at the current plateau is counterproductive as we want to minimise power usage. 

Looking at Figure 33 and Figure 34, we can see that the effective time duty cycle where the current 

ramps up are 2 µs of 25 µs. 

2 𝜇𝑠

25 𝜇𝑠
= 8% 

 

Figure 33 Effective on-period of one chop 

Current plateau 
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Figure 34 Whole period of one chop 

The test results are listed in Table 16. At lower chop duty cycles, settling time created a current 

before the transistors lost the charge, as shown in Figure 32. At a chop duty cycle value of 123, 

the shutter did get a high enough current to open the shutter. As seen in Figure 35, the current 

ramped up in between 120 and 130. However, looking at Figure 36, the current drawn from the 

power supply only increased while the motor current stopped just before 450 mA at a chop duty 

cycle of 140. Comparing the two graphs, we can see that we will use unnecessary power at higher 

chop duty cycles. 

Table 16 Chop duty cycle test (Motor current 100, Settling time 50) 

Chop D Cycle Actual Motor Current (mA)  Power Supply Current (mA)  

100 0 23 

110 0 24 

120 57 30 

122 164 40 

123 244 50 

124 280 63 

125 312 70 

130 396 99 

140 444 124 

150 448 140 

160 448 181 

180 456 285 

200 440 390 
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Figure 35 Motor current as a function of chop duty cycle 

 

Figure 36 Power supply current as a function of chop duty cycle 

6.3.5 Motor current 

The motor current is the main driver of the current. This sets the current plateau that the chopping 

and settling time should reach. As can be seen in Table 17, the current increases linearly with the 

motor current register. From these results, Figure 37 and Figure 38 with trendlines were made. We 

could see a linear increase in current as we increased the register value.  
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Table 17 Motor current test (Chop D cycle 150, Settling time 50) 

Set Motor Current  Actual Motor Current (mA)  Power Supply Current (mA)  

50 205 60 

75 335 105 

100 408 145 

125 508 190 

150 608 230 

170 680 275 

175 715 280 

180 720 290 

200 800 340 

 

 

Figure 37 Actual motor current as a function of set motor current with trendline 
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Figure 38 Power supply current as a function of set motor current with trendline 
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7 Summary and conclusion 
The system was developed as a second stage of the RSE. The requirements that are explained in 

chapter 2 were adapted from the first iteration described in Lylund [3] and the design document of 

the RSM [7], and edited when needed, to work with the FPGA version of the RSE. In the first 

iteration, Lylund and the SMILE team created a breadboard that was able to run a simple stepper 

motor. We ended up with an elegant breadboard of the RSE that is run with an FPGA on a 

development board. The elegant breadboard is almost ready to be taken to the next stage as only 

some small alterations to the RSE was requested at a late stage of this work. The only main missing 

part of the RSE is the temperature readings. An SPI needs to be created to access the analogue-to-

digital converter that reads out the temperature of the motor and the driver electronics. The allowed 

temperature for the motor is in a range of 220, so the register can be tuned to have a resolution of 

almost 1 degree as the register range is 256. 

In this work, we started with a quick project on the previous communication protocol, before 

discarding it early on in favour of developing a simpler protocol. The RSE protocol that is 

described in Section 4.6 was developed to work with a register bank and a UART while providing 

far less overhead than the previous protocol. The communication with the register bank and the 

debugging module was implemented first to get a test on board done as soon as possible. When 

this was working, the rest of the functionality from Chapter 4, like the control of the stepper motor 

was developed and implemented into the system. Each module has been individually created and 

place into the system, where new tests were added to check that the new module behaved as 

wanted. We have 

This new functionality was continuously tested as it was developed with a test bench in Questa. 

As we learned more about the system and methods, we discovered new problems and cases that 

may fail us. As a result of this, we finalised and created new requirements to fit the problems and 

corner cases that arose. Many of these issues are logged in the git revision tool. For example, we 

had the settling time set in steps of microseconds. This proved to be too small when we tested it 

on the board, so we changed it to use steps of 4 microseconds instead. Developing the system, we 

have taken into consideration what can go wrong, like the end switches stop working, and designed 

an alternative that can go around the problem. 
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The system has been designed with modulation in mind. We have implemented all modules 

internally, and only the register bank has been generated from a tool. No intellectual property cores 

have been used in the design. All modules have been designed to be as independent as possible. 

As we can see in the results in Section 6.3, we achieved the same characteristics that were reached 

in [3]. Motor current is the primary factor in setting the desired current in the coils to operate the 

stepper motor. The chopping will save current as long as it high enough to not let the current drop 

off. Setting the settling time higher than necessary will only waste power, and we do lose some 

inductor current going by not having a settling time. Ideally, we would want the chopping the be 

able to hold the inductor current constant, but just bearly. As for the settling time, we want it to 

get the correct inductor current as fast as possible, but also allow chopping to start once the current 

is in place. Then the motor current register can be used to adjust the current. 
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Appendix 

RMAP over RBDP protocol 

RoR stands for Remote Memory Access Protocol (RMAP) over Regular Byte stream DAQ 

Protocol (RBDP).  The protocol came about by implementing the RMAP on top of the RBDP to 

create an interface that fulfils the responsibilities of the slave. This protocol lets the creates a read 

and a write operation to access the registers in the slave. 

The RoR protocol defines a protocol that uses the UART at low-level, but it uses 9 data bits instead 

of 8. Otherwise, the character level is the same as in the RSE protocol. The package level is where 

the RoR protocol is different from the RSE protocol.  

At the packet level, the RoR protocol operates with query packets and response packages. Only 

the master can generate query packages, and the targeted slave creates a response package. There 

are five different query packages: Invocation, instruction, register address, write data high and 

write data low. Each query has a unique header telling the slave which query is sent, and then the 

remaining five bits provide addresses R/nW and data to write. The MSB in all characters from the 

master is set to 0 to indicate this character comes from the master. In the response characters, this 

is 1. This is done so that other slaves on the communication line can easily check if it is a master 

command that needs to be check if they are going to respond to, or if it is a slave responding.  

The response from the slave consists of three characters. The first is the confirmation character, 

confirming the master that the package has been received. The header of the query character is 

repeated and the second to the LSB indicate if a timeout happened. The LSB tells if the query was 

rejected. The next character will contain either the register content that has been read, no data or 

the error message that facilitated the rejection. The last character contains a CRC number 

calculated from the two first characters using the polynomial g(x) = x8 + x2 + x + 1. 

Out of this a read operation and a write operation is created. The read operation uses the invocation 

character, follows with the instruction character and ends with the register address character. This 

lets the data from the register come in response to the register address character. The write 

operation goes all the way by using the write data high and write data low characters also. More 

about the RoR standard can be found in [29] and [26]. 
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Figure 39 RoR memory write and read 

Timing 

One baud delay is required before any response from the slaves or new transaction from the master 

can be initiated. The delay is necessary so that all the slaves can recognise a silent channel, and 

then they can prepare to receive an invocation. By demanding a quiet channel before a new 

invocation can take place, a continuous transaction between the master and one of the slaves can 

happen. The other slaves can sleep and don’t have to check on each character from the master. The 

slave also needs some slack, so it has time to prepare for the response. The RoR was developed 

with software in mind, so this provides the software with some time to react to the character that 

has been received and act upon it. 
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