
Statistical approaches for constructing
runoff maps

Random forest, linear models and spatial models
tested for predictive performance of ungauged catchments

in Norway

Ida Jahren Herud

Supervisor: Ingelin Steinsland

Department of Mathematics University of Bergen

Master of Science in Statistics (Data Analysis) STAT399

June 3, 2019





Summary

In this thesis we study statistical approaches to tackle predictions of ungauged catchments
in Norway. In collaboration with Norwegian Water Resources and Energy Directorate
(NVE) we use observations of runoff, catchment characteristics (e.g. elevation and land
use) and observations of precipitation for constructing runoff models suitable for runoff
maps. The challenge of constructing suitable models for ungauged catchments is due to
the lack of observations, and in the field of hydrology this problem is known as the prob-
lem of ungauged basins (Blöschl et al., 2013). It is common to either use a deterministic
hydrological model or a suitable model for transferring observations from a gauged catch-
ment to an ungauged catchment. Our statistical approach for modeling median annual
runoff has been done in a three-step procedure where our main focus has been on the mod-
els predictive performance also including the uncertainty quantification. First, we did an
exploratory analysis of observed median annual runoff and catchment characteristics. As
a second step we fitted two initial model classes (linear regression models and random
forests models) where we observed how the different explanatory variables/features influ-
enced our predictions. With the main learning’s of our second step we built four different
spatial models within the Bayesian framework. From the main learning’s we found that
spatial dependency have a large effect on predictive performance, and that gradient basin
was the only catchment characteristics that influenced the models. The model with the best
predictive performance was a Bayesian hierarchical model of three levels where gradient
basin was included in addition to a Gaussian random field (GRF) and precipitation with
a spatially varying coefficient. All models have been carefully evaluated through leave-
one-out cross-validation (LOOCV), where each model have been evaluated in terms of
predictive performance with the two evaluation metrics; root mean square error (RMSE)
and continuous ranked probability score (CRPS). While RMSE describes the difference
between observed and predicted runoff, we account for the whole posterior predictive dis-
tribution with CPRS, and is thus useful for quantifying the uncertainty of our predictions.
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Chapter 1
Introduction

This thesis is done in collaboration with the Norwegian Water Resources and Energy Di-
rectorate (NVE). NVE produces runoff maps describing mean annual runoff within Nor-
way for 30 years periods (see Beldring et al. (2002)). Runoff maps describes the amount of
water that flows trough a specific area within some time period. Runoff maps are important
tool frequently used in the fields of hydro power, water supply, agriculture and engineer-
ing projects. In fact, 99 % of all power production in Norway comes from hydro power
(Statkraft, 2016). Accurate predictions of runoff with uncertainty estimates can contribute
to improvement of these runoff maps, and thus also planning of hydropower production.

Motivated by improving the predictive performance of models for runoff, we explore
and develop statistical models for median annual runoff based on predictive performance.
We demonstrate how observations of runoff in neighbouring catchments, catchment char-
acteristics, and precipitation can be used for predictions of runoff in areas where observa-
tions of runoff and/or precipitation does not exist.

Our statistical models for predicting runoff are in hydrology known as models of re-
gionalization. For our models we use catchment characteristics, observations of runoff
and observations of precipitation, all provided by NVE. The observations of runoff comes
from 266 catchments. For all catchments we require at least 10 years of daily observa-
tions between September 1st 1986 to August 31st 2017 to be included in the dataset. A
hydrological year is from September 1st until August 31st the following year, such that
storage effects from snow does not have to be considered. Each catchment has corre-
sponding catchment characteristics describing catchments attributes e.g. elevation and
land use. Observations of precipitation is also corresponding to each catchment, with the
same requirements as for runoff. The precipitation data is referred to as SeNorge, and it
is published at http://www.senorge.no/, and produced by The Norwegian Meteorological
Institute (MET). For a thorough description of the SeNorge data we refer to Lussana et al.
(2018). When we develop our statistical models we have considered median annual runoff
and median annual precipitation, as the median is less affected by outliers than the mean.

A great challenge in the field of hydrology is known as the problem of ungauged basins
(Blöschl et al., 2013). For predicting ungauged catchments (basins) it is common to either
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use a hydrologic approach or a regionalization approach. A hydrologic model is often a
deterministic model that uses precipitation and temperature as exploratory variables for
estimating runoff. It is also common that hydrologic models are calibrated/optimized with
local observations of e.g. runoff. A model of regionalization describes how one can trans-
fer information from an observed catchment to an ungauged catchment. Regionalization
approaches are defined by He et al. (2011) as either distance based approaches (spatial
proximity and physical similarity) or regression based approaches.

Our approach is divided into a three-step procedure where we (1) perform an ex-
ploratory analysis of our catchment characteristics, observations of runoff and observa-
tions of precipitation. (2) we use multiple linear regression and random forest to investi-
gate the relationships between runoff and catchment characteristics and also to investigate
the effect of having observations of neighbouring catchments and precipitation. (3) we
build spatial models based on our main learning’s of (1) and (2). Note that for our models
we refer to runoff as the dependent variable while catchment characteristics and obser-
vation of precipitation is referenced as independent variables and explanatory variables
within the linear models and the spatial models. For random forest models catchment
characteristics and observation of precipitation is referenced as features.

With multiple linear regression we assume that there is a linear relationship between
runoff and explanatory variables that can be modeled with some random errors (Fahrmeir
et al., 2013). Multiple linear regression is a common method used for predicting ungauged
catchments (Parajka et al. (2005)). Most studies comparing (multiple) linear regression
with other regionalization approaches find that multiple linear regression performs worse
than other approaches (see e.g. Yang et al. (2018), Parajka et al. (2005) and Parajka et al.
(2013)). As previous work indicates that multiple linear regression do not model runoff
well, we use it as a tool for investigation of how well the different explanatory variables
are for predicting runoff.

Our multiple linear regression models assumes a linear relationship between runoff
and explanatory variables. With random forest we are able to explore non-linear relation-
ships between runoff and features (explanatory variables) and also interaction between the
different features. Random forest was first introduced by Breiman (2001), and segments
the predictor space into a number of simple regions. Random forest are in most cases
not competitive with the best supervised learning approaches (James et al., 2013). On the
other hand random forest regression are easy to use and we can visualise how the features
influence our prediction of runoff, it is thus used as a additional tool for exploring our
features.

To our knowledge there are few studies using random forest for modelling runoff. Li
et al. (2016) compare random forest with a linear model, artificial neural network and
support vector regression. Their area of study is the Poyang Lake in China, and by com-
paring the different models in terms of R2 and mean square error (MSE), they find that the
random forest gives the most reliable results when predicting daily water level. The only
other study found so far is the master thesis, White (2015), which compares random forest
with the Basin Characterization Model (BCM) and a linear multivariate regression model
for predictions of unimpaired flow in ungauged basins in 69 California basins. When they
compare the models with the R2 and Nash-Sutcliffe efficiency score, they conclude that
the BCM is the best and the linear multivariate regression model is the worst.
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Due to large local variations of runoff within Norway, we assume that neither multiple
linear regression nor random forest regression are assumed to be suited models for predict-
ing runoff. Although the work of Li et al. (2016) and White (2015) indicates that random
forest have more accurate predictions for runoff than multiple linear regression, it is better
to have a model where spatial dependency is accounted for.

Runoff is part of the climate system, and it is first and foremost a result of precipitation
and some evaporation. We know that precipitation in Norway is influenced by the Gulf
Stream and the large differences in elevation, which gives large local variations in space.
It is thus reasonable to assume that neighbouring catchments are more related than distant
catchments. For the initial models we use the average of the five closest catchments as a
proxy for the spatial dependency, and precipitation is also included to explore the effect
on our models predictive performance. Such spatial dependencies can also be modeled in
a more direct manner by a spatial effect, and this is why we use spatial models to build our
final models. Spatial models are within the field of geostatistics and in the past been done
by Kriging approaches (see eg. Sauquet et al. (2000) and Skøien et al. (2006)). Roksvåg
et al. (2019) use a Bayesian geostatistical model for interpolating hydrological data in the
Voss area, similar work was conducted for modeling precipitation in Ingebrigtsen et al.
(2015).

Motivated by the work of Roksvåg et al. (2019), our spatial models are linear mixed
models where we allow the random effect to vary spatially. For computational benefits we
use Bayesian linear mixed models with an hierarchical structure, these models are known
as latent Gaussian model (LGM). Where the LGM is a subclass of hierarchical models
within the Bayesian framework. Our model consist of three levels, where the first level
specifies the likelihood of the observation given some parameters and hyper parameters,
second level describes the probability of the spatial process given some parameters. The
third level is the model for the parameters specifying the prior distribution of the hyper-
parameters. To draw inference for such models we use the Integrated nested Laplace
approximation (INLA) (Rue et al., 2009). Our spatial effects are modeled by a Gaussian
random field (GRF). As GRFs are computationally expensive we use the Stochastic Partial
Differential Equation (SPDE) proposed by Lindgren and Rue (2011). The SPDE allows
us to express our GRF as a Gaussian Markov random field (GMRF). GMRFs reduce the
computational cost and allows for fast inference (Rue and Held, 2005).

For our spatial models it is also possible to allow the coefficient of the explanatory
variables to vary spatially. This was done in the work of Gelfand et al. (2003) where they
present spatial models with spatially varying coefficients. Motivated by their work we will
use spatially varying coefficients in our spatial models, such that the importance of the
explanatory variables depends on the location of a catchment.

We explore the models ability to make accurate predictions of runoff. For this we use
leave-one-out cross-validation (LOOCV), where we use observations for all other catch-
ments to do predictions of runoff in the catchment left out. We measure the predictive
performance by calculating the mean of the root mean square error (RMSE) and the mean
of the continuous ranked probability score (CRPS). RMSE is only able to evaluate the pos-
terior predictive mean, while CRPS is able to account for the whole posterior predictive
distribution.

The aim of this thesis is to present geostatistical models for predicting runoff in un-
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gauged basins suited for runoff maps. Our main focus is on the models predictive perfor-
mance. We also evaluate how the exploratory variables of catchment characteristics and
precipitation influence the predictive performance.

The outline of our thesis is as follows: In chapter 2 we introduce the data received from
NVE, it also consists of a thorough exploratory analysis of the observations and catchment
characteristics. In Chapter 3 we introduce the background and underlying theory of the
methods applied in the thesis. In chapter 4 we build our models, and in Chapter 5 we
first present the results of the initial models, present the catchment characteristics ability
to model runoff and whether information about neighbouring catchments should be in-
troduced into the models. Further in chapter 5 we also do a brief summary of the main
learning’s of the initial models. In chapter 6 we evaluate the predictive performance of our
spatial models, and also explore how the models perform for different locations and levels
of runoff. We also investigate posterior distribution the coefficients, SPDE parameters and
GRFs. In chapter 7 we discuss the results of our studies.
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Chapter 2
Data and exploratory analysis

In this chapter we first introduce the data from 266 catchments used in this thesis and we
follow up with an exploratory analysis. The exploratory analysis has been an important
part of our work because it has prepared us for the main goal of this thesis–doing accurate
predictions of ungauged basins that minimizes the uncertainty. Exploratory analysis of our
data is essential for creating good models. It lets us understand relationships within the
data and can help us answer and form new questions about the data.

For the exploratory analysis the app https://idajahrenherud.shinyapps.io/shiny app/
was built as a tool enabling visual exploration of the catchments used within our thesis.
With this app we are able to explore a catchment location and characteristics. Throughout
the thesis we refer to catchments by their field ID, which can be used as a key for locating
catchments within the app.

The app has also been used as a tool for exploring spatial dependency between yearly
observations of runoff. With this app it is possible to evaluate the correlation of the yearly
runoff for one catchment with all other catchments. We also explored the spatial correla-
tion between catchments through a variogram. As the variogram describes the degree of
relationship between yearly runoff for all catchments it has been left out for readability of
this chapter as we only explore and model the median annual runoff. The variogram with
a corresponding semivariance plot can bee found in the appendix C.

2.1 Data

The collaboration with NVE has enabled us to work with daily observations of runoff
from 699 catchments across Norway. The catchments we received observations from are
displayed as points in fig. 2.1, here the points marked in blue belongs to the 266 catchments
used in this thesis. The acquired runoff data (is supposed to) only represent unregulated
catchments. NVE has done a thorough review and evaluated the quality and how well the
raw data fits as a valid observation for the analysis. Only stations with data from after
1958 and with at least five years of data has been included. Catchments that have been
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Figure 2.1: Map showing the centroid of the 699 catchments provided to us by NVE. Red points
locates catchments that was left out of our analysis, and blue points locates the 266 catchments that
was used.

regulated in the past, but not anymore, are also included, as for the catchments that today
are regulated, but not in the past.

An initial analysis of the data received from NVE was conducted, this analysis led us
to the 266 catchments used for our thesis. The initial analysis is presented in the appendix
2. All data selected for this thesis was done in collaboration with NVE. If any suspect
observations were found we had a discussion with NVE regarding the observation, in
order to decide whether it should be removed or not.

The unit of the observed runoff data from NVE was received in the unit m3/s. The
unit of our work is in mm/year. To transform our data into the preferred unit, each daily
observation was divided by the area of catchment and multiplied by 86.4, giving mm/day.
We accumulated each year, which returns mm/yr. The time period of our thesis is from
September 1st 1986 until August 31st 2017. In hydrological years this is 1986 to 2016.

The notation used for the 266 observations of runoff are yi,t where i denotes catchment
and t denotes year. Our models are based on median yearly runoff observations which we
denotes as ỹi for catchment i. Median yearly runoff is the median of all yearly runoff
observation yi,t for each catchment i. We refer to runoff as median annual runoff ỹi from
here on. We use the centroid of all catchments for point predictions, is denoted as si for
catchment i.

From NVE we also received catchment characteristic, this is denoted as xji for char-
acteristic j, catchment i. The catchment characteristics used for analysis are listed in Tab.
2.1.

We received the precipitation as daily observations for all catchments, and as for runoff
we summed each year and found the median observation within our time period. Observa-
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tions of median annual precipitation is denoted as pi, and often referred to as precipitation.
The precipitation data is a product of interpolation over a high resolution grid (1 km spac-
ing) that is updated daily.

2.2 Software
The data used in the analysis is of various data formats, the runoff observations is gathered
from multiple text files, data with catchment information is stored in a large Excel file, and
map data for catchments and stations are stored as shape files.

R by R Core Team (2013) has been used as programming language. It provides a
variety of statistical packages that have been useful when getting all the data in the right
format, transforming, plotting, mapping, fitting models and evaluating the models.

For merging all the text files, the package dplyr has been of great help (Wickham et al.,
2017). This package has been used to restructure data and also transforming data.

The catchment characteristics that was received in an Excel file which was imported
via a simple base function in R. The rows that contained catchments that did not contain
sufficient information was removed. Further a data frame with the median discharge was
appended, as the observation data used for further analysis.

The spatial data where with help of the sp package (E. J and Bivand, 2005; Bivand
et al., 2013) and the rgdal package (Bivand et al., 2016) packages imported and trans-
formed to the preferred coordinate system. For mapping with the leaflet package (Cheng
and Xie, 2016) a long-lat projection was used. Calculations of distance was done with
a UTM 33 projection of our coordinates, this returns distance in meters. Enabling us to
view catchment characteristics and observations in a map, a data frame was merged with
the SpatialPolygonsDataframe where the field ID identifies what observations belongs to
which polygon.

2.3 Exploratory analysis of Catchment characteristics
We now present an exploratory analysis of the catchment characteristics. The catchment
characteristics are presented in table. 2.1. We first present the distribution of character-
istics within the catchments. For this we subdivide the different catchment characteris-
tics into sections that contains characteristics describing similar attributes of a catchment.
Further we investigate if there are a linear association between the individual catchment
characteristics.

2.3.1 Easting and northing
Easting and northing refers to the UTM east and -north coordinates of the centroid of the
catchments. UTM is short for Universal Transverse Mercator, and is a two dimensional
Cartesian coordinate system. UTM east is the distance from the central meridian in the
relevant UTM zone and UTM north is the distance from equator, we use UTM zone 33.

The histograms describing the distribution of UTM east and UTM north coordinates
are displayed in fig. 2.2. Most UTM east coordinates are located at small values, as seen
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(a) Histogram of UTM east. (b) Histogram of UTM north.

Figure 2.2: Histogram of the UTM coordinates.

in the histogram in fig. 2.2a. The histogram illustrating UTM north coordinates (fig. 2.2b)
shows that most catchments are also located around 6000 km north. If we have a look at
fig. 2.1 it can be seen that most catchments are located in the southern parts of Norway
while less catchments are located in the northern parts. Northern Norway has a rotation
towards the east, which is why most UTM east coordinates are small.

2.3.2 Gradients

(a) Gradient basin (m/km). (b) Gradient 1085 (m/km). (c) Gradient river (m/km).

Figure 2.3: Histogram of gradients used for this thesis. Notice that the range of the gradients differ.

Gradient river and gradient 1085 are both measures of how the difference is in height
of the main river within a catchment. Gradient river is the total difference in height along
the main river divided by the length of the river. Gradient 1085 is similar but it is exclusive
the 10% lowest and 15% highest parts of the river. Gradient basin is the total difference in
height within the catchment. The unit of the three measures are in m/km.

Gradient basin (Fig. 2.3a) has a mean of 26.15 m/km, with one outlier that has a
gradient of 89.6. This belongs to Lundberg (field ID 2082), and is located north, in the
mountainous area of Bardufoss. Gradient river in fig. 2.3c has a mean gradient of 28
m/km, but reviles some steeper gradients, with a maximum of 200 m/km, which belongs
to Nigardsbreavatnet (field ID 1339), which is located in the mountains of the north-west
part of Norway. Gradient 1085 in fig. 2.3b is similar to gradient river with a mean of 28
m/km, here maximum is at 173 m/km. The larges gradient river belongs to Engabrevatn
(field ID 1893), and is at the cost in the northern parts of Norway. In Fig. B.1 maps of
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the different gradients can be seen. We see how the gradients are higher towards west and
north, as these are mountainous areas.

All measures of gradient reviles that most catchments contains some elevation change.
This is as expected since Norway is dominated by mountains and most catchments contains
some mountainous areas, but there are more mountains towards the east and along the
coast. As gradient river and gradient basin describe the total difference in elevation of the
main river they revile much larger changes in elevation, than gradient basin that account
for the total difference in elevation for the whole catchment, which make gradient basin
more symmetrically distributed than gradient river and gradient basin.

2.3.3 Elevation

(a) Height minimum. (b) Height hypso 50. (c) Height maximum.

Figure 2.4: Histogram of elevation (m a.s.l).

Our catchment characteristics height minimum, height hypso 50 and height maximum
are all measures of how far above sea level the catchment is located in meters. Height min-
imum is the lowest elevation point within the catchment, height hypso 50 is the 50% per-
centile for the hypsometric curve for our catchment. The hypsometric curve is described
by Strahler (1952) as a curve that relates horizontal cross-sectional area of a catchment to
the relative elevation above the catchments lowest point. Height maximum is the highest
elevation point within our catchment.

Fig. 2.4a shows how the minimum height for most catchments centres around 50
meters above sea level (m a.s.l.) but we also have a long upper tail ranging from 100
m a.s.l. up to 1077 m a.s.l. Height hypso 50 is displayed in Fig. 2.4b showing a more
symmetrical distribution than height minimum. Height hypso 50 has a mean of 752 m a.s.l.
Height maximum in Fig. 2.4c also shows a symmetric distribution of observations and has
a mean of 2463 m a.s.l. The large values of elevation are found in the interior of southern
Norway as we can see from the maps in Fig. B.2. Fig. B.2a shows that catchments along
the eastern border of Norway have smallest minimum height, Fig. B.2c also shows how
some of the catchments along the coast has large maximum heights.

The heights illustrates what we had expected, as the largest elevations are found in the
interior in the southern parts of Norway. For the catchments in the interior, both maximum
and minimum elevation are larger than most catchments. And for catchments along the
coast and along the border of Sweden we have the minimum elevation at approximately
sea level and do not have as large maximum height as seen for interior catchments.
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2.3.4 Land characteristic ratios

(a) Percentage agriculture. (b) Percentage bog. (c) Percentage effective lake.

(d) Percentage lake. (e) Percentage forest. (f) Percentage mountain.

(g) Percentage glacier. (h) Percentage urban.

Figure 2.5: Histogram of land characteristic ratios.

For ratios of land characteristics we can determine what types of characteristics that
dominates within each catchment. The different ratios can be seen in fig. 2.5. The different
land characteristics are agriculture, bog, effective lake, lake, forest, mountain, glacier and
urban.

fig. 2.5a shows that percentage of agriculture is small as most catchments contains no
agriculture and only six catchments contains more than 20% agriculture, with a maximum
of 42%. Percentage of bog in fig. 2.5b shows that most catchments contains some bog,
with an average of 5%. Percentage of effective lake in fig. 2.5c has an mean of 2.17%, and
with a small upper tail. Fig. 2.5d show percentage of lakes, with a mean of 6.17% with
an outlier at 35% named Storvatn which is located in the south western parts of Norway.
Percentage forest in fig. 2.5e shows a large range of different observations, with a mean
of 34%, a maximum of 100% and minimum of 0%, showing that most of the catchments
contains some forest. Fig. 2.5f also shows that most catchments contains some mountains.
Fig. 2.5g shows how a few catchments has some glaciers, but most do not, we see two
outliers which is Nigardsbrevatn (field ID 1339), with 73% glacier and Engabrevatn (filed
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ID 1893), with 72% glacier. In Fig. 2.5h catchments with urban areas have an average of
0.08 %, showing that this does not dominate any catchments.

In fig.B.3 all the different ratios of land characteristics are displayed in different maps.
Here we see how most of the characteristics only account for a small percentage of the
catchments attributes. The only dominating characteristics are percentage forest in fig.
B.3e and percentage mountain in fig. B.3f. As the altitude increase percentage of forest
decrease and percentage of mountains increase, such that the the compliment each other.
As expected we can also see how areas in south eastern parts of Norway has the most
forest, and that western and coastal parts contains the majority of mountains.

2.3.5 Rivers and basins

(a) Length river (km). (b) Length basin (km).

Figure 2.6: Histogram showing lengths of rivers and basins.

Length river is the total length of all the rivers within a catchment, and length basin is
the total length of the catchment.

In Fig. 2.6b length of the basins is centred around 33 km, while some catchments are
much longer. For example Rånåsfoss (field ID 248), which is the longest catchment in our
data has a length of 321 km, and is located in the south eastern part of Norway. The rivers
length in fig. 2.6a has a similar shape as the length of the basins, with most observations
centred around 45 km. The longest river also belongs to Rånåsfoss. In Fig. B.4 Rånåsfoss
is easy to spot, and we can see how the longest rivers and basins are found in the south
eastern part of Norway.

2.3.6 Dependency between catchment characteristics

In the following section we explore the dependency between our catchment characteris-
tics. If catchment characteristics are highly correlated and used within the same model it
could affect the models predictive performance. The correlation matrix in Fig. 2.7 repre-
sents the correlation coefficient which indicates whether two catchment characteristics are
linearly related. As several catchment characteristics describes natural phenomenons, it is
reasonable to assume that some strong correlations are observed.

Fig. 2.7, shows that several catchment characteristics are highly correlated. The
figure shows for example how all the characteristics describing elevation (height min,
height hypso 50 etc.) have high positive correlations with each other. We also see that
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Figure 2.7: A plot showing correlation between catchment characteristics. The blue colour rep-
resents a positive correlation and the red colour represents a negative correlation. The correlation
values are calculated with correlation coefficient, which measures the linear dependency between
the catchment characteristics.

the percentage of forest within a catchment has strong negative correlation with elevation.
The strong negative correlation is reasonable since we know that increasing elevation leads
to a decrease in forest. This is also reflected in the high negative correlation between the
percentage of forests and the percentage of mountains within the catchments.

The correlation matrix (Fig. 2.7) shows how most catchment characteristics have some
degree of linear association. And as expected, the characteristics describing similar phys-
ical attributes of a catchment have a positive linear association.
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Name Catchment feature Unit
utm east z33 east UTM 33 coordinates m
utm north z33 north UTM 33 coordinates m
area total total catchment area km2

gradient 1085 river gradient exclusive 10% and 85% elevation of river m/km
gradient basin basin gradient m/km
gradient river river gradient m/km
height minimum minimum height m a.s.l.
height hypso 10 10% percentile for hypsographic curve m a.s.l.
height hypso 20 20% percentile for hypsographic curve m a.s.l.
height hypso 30 30% percentile for hypsographic curve m a.s.l.
height hypso 40 40% percentile for hypsographic curve m a.s.l.
height hypso 50 50% percentile for hypsographic curve m a.s.l.
height hypso 60 60% percentile for hypsographic curve m a.s.l.
height hypso 70 70% percentile for hypsographic curve m a.s.l.
height hypso 80 80% percentile for hypsographic curve m a.s.l.
height hypso 90 90% percentile for hypsographic curve m a.s.l.
height maximum maximum height m a.s.l.
length km basin length of river km
length km river length of basin km
perc agricul percentage agriculture %
perc bog percentage bog %
perc eff lake percentage effective lake %
perc forest percentage forest %
perc glacier percentage glacier %
perc lake percentage lake %
perc mountain percentage mountain %
perc urban percentage urban %

Table 2.1: Table of all catchment characteristics received from NVE with a small description of
what they are and what unit they have.

2.4 Exploratory analysis of observed runoff

Median annual runoff is plotted in a histogram in fig. 2.8a. The histogram shows how most
observations of runoff are approximately 1000 mm/yr, while the long upper tail shows that
many catchments have much larger observations of runoff. We observe that there are two
observations that are larger than 4000 mm/yr, these are Straumstad (filed ID 1434) and
Flostrand (field ID 1888), they are both located in wet coastal areas where it is reasonable
to have large observations.

The standard deviation plotted in fig. 2.8b shows a similar distribution as median an-
nual runoff with left skewed values and a long upper tail. The mean standard deviation
is 284 mm/yr with a minimum of 50 mm/yr and a maximum of 1061 mm/yr. The catch-
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(a) Median annual runoff. (b) Standard deviation.

(c) Relative variability.

Figure 2.8: Histogram of observed median annual runoff (mm/yr), standard deviation annual runoff
(mm/yr) and relative variability for the 266 catchment used in this thesis in the hydrological period
19872017.

ment with the larges standard deviation is Engabrevatn (field ID 1893). This catchment
is located at Svartisen which is a large glacier. For glaciers it is natural to assume large
deviations, as runoff in areas with glaciers depend on how much the glacier melts within a
hydrological year.

The relative variability plotted in fig. 2.8c is a measure of how much the standard
deviation deviates from the observed median annual runoff. Most observations have a
small relative variability with one observation that is far greater than all other observations.
This belongs to Engabrevatn (feild ID 1893), which contains large amounts of glaciers.
Observations of large relative variability is common for catchments located in areas with
glaciers. One catchment not containing any glaciers, namely Vismunda (field ID 270) has
a large relative variability. This is not expected as most catchments in this area have a low
median annual runoff and a small standard deviation.

We can further explore how our observations of runoff are distributed by visualizing
them in a map. This is done in fig. 2.9. The median annual runoff (fig. 2.9a) shows how
the highest runoffs are to be found along the coast of Norway. The interior has a low runoff
compared to the coastal areas. Towards north the largest observations are along the coast
while smaller observations of runoff are found towards the eastern border.

The standard deviation mapped in fig. 2.9b shows similar results as median annual
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(a) Median annual runoff. (b) Standard deviation.

(c) Relative variability.

Figure 2.9: Maps of median annual runoff (mm/yr), standard deviation annual runoff (mm/yr) and
relative variability for the 266 catchment used in this thesis in the hydrological period 19872017.

runoff. Catchments with large standard deviation are located along the cost and towards
the north. The relative variability mapped in fig. 2.9c shows that most catchments have
similar relative variability, but some catchments in the interior of southern Norway have
higher relative variability than most catchments.

The large observations of runoff along the coast are as expected, caused by the steep
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topography leading to increased precipitation. The coastal areas are wet areas compared to
the catchments in the interior, and as they are more wet they also have a larger standard de-
viation. The large observations of runoff does not indicate a larger relative variability, the
catchments with larger relative variability are located in the interior and could be caused
by the watershed separating western and eastern parts of southern Norway.

From the maps in fig. 2.9 we also notice that the area of our catchments vary greatly.
Within the south-east parts of Norway we have some large catchments ranging up to 38
440 km2. For the coastal areas in the western and northern parts of Norway we have much
smaller catchments, and our smallest catchment has a area of only 0.44 km2.

2.5 Exploration of dependency between runoff and field
characteristics

Now we explore how the different catchment characteristics are able to explain median
annual runoff. We first investigate whether there are a linear association between median
annual runoff and the individual catchment characteristics. Secondly we visually explore
the relationship between individual catchment characteristics and runoff.

2.5.1 Linear dependency between catchment characteristics and runoff

The linear relationship between a runoff (dependent variable) yi and a catchment charac-
teristic (independent variable) xi can be seen as

yi = β0 + β1xi + εi, i = 1, ..., n (2.1)

where β0 is the intercept, β1 is the unknown regression coefficient of xi and εi is assumed
to be independent and identically distributed (i.i.d.) with mean 0 (µ = 0) and variance σ2.
From this linear relationship we are able to investigate how our independent variable xi is
able to describe the dependent variable yi. This is done with the p-value and the correlation
coefficient. We now present an overview of the p-value and the correlation coefficient and
how the two are related. The presentation is based on Devore and Berk (2012).

From the linear relationship described in eq. 2.1, we are able test the probability of
there being a correlation between our dependent variable yi and the independent variable
xi, known as the p-value. For estimating the p-value we assume that there is no correlation
between the two variables yi and xi. Further we assume that the a test statistic (t-value)
has a t distribution with n - 2 degrees of freedom. With this we calculate the p-value as the
probability of the t-value being grater than zero, e.g. no correlation. If the calculated p-
value is smaller than some level α we say that our p-value is significant, which means that
there is a small probability of there not being any correlation between the two variables yi
and xi, but it does not indicate how the relationship is.

With the correlation coefficient we are able to determine the direction of correlation.
By direction we refer to a increasing or decreasing relationship between the dependent
variable yi and the independent variable xi. For estimating the correlation coefficient we
use the covariance, which describes the dependency between our two variables yi and xi,

16



e.g. Cov(xi, yi) = E[(xi − µx)(yi − µy)]. With the covariance Cov(xi, yi) we obtain the
correlation coefficient for our two variables yi and xi as follows,

r =
Cov(xi, yi)

µxµy
(2.2)

where r is the correlation coefficient, and ranges between -1 and 1. Thus a correlation
coefficient of ±1 would indicate a perfectly positive/negative linear relationship between
the dependent variable yi and the independent variable xi, while 0 means that there is no
correlation.

For describing the relationship between our p-value and correlation coefficient we use
the properties of the t-value, which are based on the assumption that the variables yi and
xi are normally distributed. With the assumption of normally distributed variables, the
t-value can be calculated as

t-value =
r
√
n− 2√

1− r2
. (2.3)

where n is the number of observations yi for i =, ..., n. Eq. 2.3 reflects the relation-
ship between the p-value and the correlation coefficient. Telling us that a large absolute
correlation coefficient returns a large t-value which again returns a small p-value.

With a significant level of α = 0.001 we see from tab. 2.2 that most catchment charac-
teristics have a p-value smaller than our significance level α, while only seven catchment
characteristics have a correlation coefficient more positive or more negative than ±0.35.
Further we observe that gradient basin have a correlation coefficient of 0.67, and it is thus
the catchment characteristic that seem to have most linear association with runoff. We
also notice that the two other characteristics describing the gradient within a catchment
have a strong correlation coefficient, and as all three where found to have a strong linear
association in the correlation matrix in fig. 2.7 it is sufficient to only include one in our
finale models.

From the results of the p-value and correlation coefficient listed in tab. 2.2 we can
assume that most catchment characteristics does not have a linear association with runoff.

2.5.2 Scatterplots
We explored the linear association in section 2.5.1. With the scatter plot presented in this
section we visually explore the relationship between catchment characteristics and runoff.
This allow us to investigate other relationships than the linear relationship. We note that
if a relationship between a individual catchment characteristic and runoff are not visible
from the scatter plot, it is still possible that there would be a relationship if we had some
interaction between two or more characteristics. We fitted a simple linear regression line as
presented in eq. 2.1, to each plot as it lets us associate the relationships between individual
catchment characteristics and runoff to a linear relationship.

The UTM east and UTM north coordinates are plotted against runoff in fig. 2.10. For
the UTM east coordinates plotted in fig. 2.10a there is a decrease in runoff with decreasing
UTM coordinates, this is as expected, as we know that much of the catchments along the
coast in southern Norway has large observations of runoff. For the UTM east coordinates
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catchment characteristic correlation p-value
1 utm east z33 -0.3503 0.000
2 utm north z33 -0.009 0.889
3 area total -0.2366 0.004
4 gradient 1085 0.4298 0.000
5 gradient basin 0.6760 0.000
6 gradient river 0.5157 0.000
7 height minimum -0.1087 0.077
8 height hypso 50 -0.0059 0.923
9 height maximum -0.0482 0.433

10 length km basin -0.3414 0.000
11 length km river -0.3406 0.000
12 perc agricul -0.1827 0.015
13 perc bog -0.4378 0.000
14 perc eff lake 0.1897 0.003
15 perc forest -0.4722 0.000
16 perc glacier 0.2434 0.000
17 perc lake 0.1682 0.010
18 perc mountain 0.4223 0.000
19 perc urban -0.1826 0.009

Table 2.2: A table with Person correlation coefficient calculated between catchments observed me-
dian annual runoff and characteristics, and the p-value from simple linear regression with one catch-
ment characteristic. The catchment characteristics with a correlation larger than the absolute value
of 0.35 correlation coefficient is written in bold.

in fig. 2.10a we also notice how some observations follow the same decreasing trend, but
for larger values of UTM east coordinates, this belongs to the catchments in the northern
parts of Norway as seen in the map in fig. 2.9a showing runoff. For the UTM north
coordinates plotted against runoff in fig. 2.10b it is difficult to see any relationship as
most, both large and small UTM north coordinates, contain large and small observations
of runoff.

For the gradients plotted against runoff in fig. 2.11 there seem to be some linear rela-
tionship with observed runoff. Gradient 1085 plotted against runoff in fig. 2.11a shows
that there is a positive trend with observed runoff, but the deviation between some observa-
tions and the fitted line are large. Gradient basin plotted against runoff in fig. 2.11b shows
a stronger relationship with median annual runoff compared to gradient 1085, were the
deviation between observations is not as large as for gradient 1085. For gradient basin in
fig. 2.11b we also notice that there is one outlier that deviates from the other observations.
This belongs to Lundberg (field ID 2082), and is the catchment with the largest observed
gradient basin (see section 2.3.2). Gradient river plotted against runoff in fig. 2.11c, show
a similar scatter as seen for gradient 1085. As expected from the p-value and correlation
seen in tab. 2.2 there is a stronger linear association between gradient basin and runoff,
than for gradient 1085 and gradient river.

The height observations plotted against runoff are seen in fig. 2.12, and neither show
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(a) UTM east vs. runoff. (b) UTM north vs. runoff.

Figure 2.10: Scatter plot of runoff vs. UTM east and UTM north with a fitted linear regression line.

(a) Gradient 1085 vs. runoff. (b) Gradient basin vs. runoff. (c) Gradient river vs. runoff.

Figure 2.11: Scatter plot of runoff vs. gradients with a fitted linear regression line.

any relationship with runoff. As the p-value and correlation coefficient indicated in tab.
2.2 it does not seem to be any linear association between the observations of height and
runoff.

Moving on to the characteristics describing length we see from the plots in Fig. 2.13
how there is a covariability between length km basin and length km river. From the plots
(Fig. 2.13) we also notice that there are visibly not possible to determine a relationship
between the lengths and runoff. And there is no linear association between the lengths
of the river and basin and observed runoff, which we expected from the results of our
exploration of linear dependency in section 2.5.1.

The catchment areas vary greatly. Therefore we also investigate whether there are
some linear relationship between the area of our catchments and runoff. Fig. 2.14 shows
the area of the catchments plotted against runoff, and it does not seem to be any linear
association here, as the fitted line does not describe our observations well. What we can
see from fig. 2.14 is that small catchments contains the largest observations of runoff.

Fig. 2.15 shows the different ratios of land characteristics plotted against runoff. Sev-
eral land characteristics only account for zero to ten percent of a catchment attribute as we
see in their histograms in fig. 2.18b. As the characteristics account for small portions of a
catchment attribute they do not visually show any relationship with runoff which we can
see in fig. 2.15 were they are plotted against runoff. The only characteristics that domi-
nates a catchment are forests and mountains. The percentage of forest is plotted against
runoff in fig. 2.15d, the fitted line shows an increasing runoff with decreasing forests,
but the deviation between observations is large and therefore it does not visually indicate
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(a) Height minimum vs. runoff. (b) Height hypso 50 vs. runoff. (c) Height maximum vs. runoff.

Figure 2.12: Scatter plot of runoff vs. elevations with a fitted linear regression line.

(a) Length river vs. runoff. (b) Length basin vs. runoff.

Figure 2.13: Scatter plot of median observed annual runoff vs. lengths of rivers and basins with a
fitted linear regression line.

a strong linear association. The same yields for percentage of mountain plotted against
runoff in fig. 2.15g, where we have a positive increase, but large deviation between the
observations. We notice from the plot of forest in fig. 2.15d and the plot of mountain in
fig. 2.15g that the correlation between them found in the correlation matrix in fig. 2.7 is
reflected since they are opposite with a similar distribution of observations, this effect is
known as covariability.

2.6 Average neighbour runoff
We assume that neighbouring catchments are more related than distant catchments due to
some spatial correlation between our observations of runoff. With the assumption of spa-
tial correlation we create a variable named avg 5, which allow us explore if it is reasonable
to assume that the observations of runoff are spatially dependent (correlated). Avg 5 is
used as an explanatory variable for the linear models and the random forest models. By
comparing the predictive performance of the initial models with and without avg 5 we can
explore spatial correlation between our observations of runoff.

We calculate avg 5 by calculating the distance from the centroid of one catchment to
the centroid of all other catchments. The observations of median yearly runoff from the
five catchments with smallest separation distance are then averaged and this returns avg 5i
for the i = 1, ..., n observations of runoff.

We have illustrated avg 5 in Fig. 2.16, and from the map we observe the distribution
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Figure 2.14: Scatter plots of runoff vs. area total with a fitted linear regression line.

avg 5 within Norway. We notice that the map of avg 5 is similar with the map illustrating
the distribution of median annual runoff within Norway from fig. 2.9a. The histogram of
avg 5 in fig. 2.16b illustrates how most observations are around 1000 mm/yr and we also
have some observations that ranges up to 3500 mm/yr which is similar with our observa-
tions of median annual runoff in the histogram in fig. 2.8.

We fit a simple linear regression model as described in eq. 2.1, with runoff being the
dependent variable and avg 5 as the independent variable. The simple linear regression
model is plotted as a line in fig. 2.17 where we see how there is a positive linear association
between avg 5 and runoff. There is some deviation between the observations, but there is
an increase in runoff with increasing avg 5. From the fitted model the resulting p-value
is significant with a p-value of 2 ∗ 10−16, and when calculating the correlation coefficient
between median annual runoff and avg 5 we get a positive correlation coefficient of 0.83,
which is much stronger than any correlation coefficient calculated between runoff and a
individual catchment characteristic (see tab 2.2). The strong linear association between
runoff and avg 5 indicates that it is reasonable to assume some spatial dependence between
our observations of runoff.

2.7 Exploratory analysis of observed precipitation

With observations of precipitation we explore how the predictive performance change as it
is introduced as an explanatory variable in our models for predicting runoff. We will now
explore observations of precipitation. We know that precipitation is the driving force of
runoff, and it is thus reasonable assume a strong relationship between the two.

The observed precipitation is plotted in a map in fig. 2.18b and shows that the largest
observations of precipitation are located on the coast and in western parts of Norway. From
the histogram in fig. 2.18b we observe that observed precipitation are centred around 1000
mm/yr and ranges up to approximately 4300 mm/yr. The minimum observed runoff is 518
mm/yr with a mean of 1321 mm/yr and has a maximum of 4340 mm/yr, which is similar
with the observed values of runoff (see section 2.4).

If we fit the simple linear regression model from eq. 2.1 with runoff as the dependent
variable and runoff as the independent variable, we obtain the fitted line plotted in fig. 2.19.
The corresponding p-value is 2∗10−16 which is significant and the correlation coefficient is
0.88, which is even stronger than the correlation coefficient of avg 5 (see section 2.6). The
significant p-value and the positive correlation coefficient indicates a linear association
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(a) % agriculture vs. runoff. (b) % bog vs. runoff. (c) % effective lake vs. runoff.

(d) % forest vs. runoff. (e) % glacier vs. runoff. (f) % lake vs. runoff.

(g) % mountain vs. runoff. (h) % urban vs. runoff.

Figure 2.15: Scatter plots of runoff vs. rations of land characteristics with a fitted linear regression
line.

between runoff and precipitation, which is confirmed by the plot in fig. 2.19 showing
precipitation plotted against runoff. It is thus reasonable to assume precipitation and runoff
are highly dependent.

22



(a) Map of avg 5. (b) Histogram of avg 5.

Figure 2.16: Map and histogram of avg 5, which is constructed form the average of the observed
median annual runoff of the five closest neighbouring catchments.

Figure 2.17: Scatter plot of median annual runoff plotted against the spatial dependency parameter
(avg 5).
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(a) Map of observed precipitation. (b) Histogram of observed precipitation.

Figure 2.18: Map and histogram of observed precipitation (mm/yr).

Figure 2.19: Scatter plots of observed median annual runoff vs. observed median annual precipita-
tion.
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Chapter 3
Background

In this chapter we present important background theory allowing us to construct statisti-
cal models for predicting runoff. We first present an introduction to linear mixed models,
followed by the LGMs which are hierarchical Bayesian linear mixed models allow us to
include a random field. Furthermore we explain random forest models and how these are
built. We also present the most important parts of our spatial model, this comprises Gaus-
sian random fields (GRFs), Gaussian Markov random fields (GMRFs) and the stochastic
partial differential equation (SPDE) which links GRFs with GMRFs.

In the appendix we give an overview of Integrated Nested Laplace Approximation
(INLA) approach for approximating the posterior marginals of the GRF, and allows fast
inference and predictions for a LGM.

3.1 Linear Mixed Models
With linear models, multiple linear models and linear mixed models we assume that the
response (runoff) can be modeled as a linear response of one or more explanatory variable
(catchment characteristics, avg 5 and precipitation). We now present the basic theory for
linear models with their most important assumptions. We introduce the linear models
based on Fahrmeir et al. (2013) and refer to this work for further details.

Multiple linear models are an extension of the simple linear model presented in eq.
2.1. For our multiple linear model we assume that the observations of runoff y1, ..., yi are
independent and that that the distribution of runoff yi depends on j continuous explanatory
variables x1,i, ..., xj,i where j = 1, ...,m. For i = 1, ..., n observations of runoff we can
can express the ith observation as

yi = β0 + β1xi,1 + ...+ βmxi,m + εi (3.1)

where the random term ε1, ..., εn are assumed to be i.i.d. with E(εi) = 0 and V ar(εi) =
σ2. In eq. 3.1 we also have that β0 is the intercept, and β1, ..., βm are the unknown
coefficients for the explanatory variables xi1, ..., xim. Eq. 3.1 can be written in matrix
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notation as

y = Xβ + ε (3.2)

where y = [y1, ..., yn] are the vector of our dependent variables, X is a design matrix
where the first row are ones corresponding with the intercept and the other rows are cor-
responding to the independent explanatory variables, the vector β = [β0, ..., βm] are the
intercept and the unknown coefficients, and the vector ε = [ε1, ...εn] are our i.i.d. random
errors with mean 0 and covariance σ2I.

When we extend our multiple linear models into a linear mixed model we incorporate
some random effect in addition to the coefficient β1, ..., βm, into our model. A linear
mixed model for the ith runoff observation can be expressed as

yi = β0 + β1xi,1 + ...+ βmxi,m + γi + εi (3.3)

where γi is some random effect. If the response yi is Gaussian distributed we make the
assumption that the random effect γi is i.i.d. with mean 0 and variance τ2. We can then
interpret εi and γi as an unobserved process.

In matrix notation eq. 3.3 becomes

y = Xβ + γ + ε (3.4)

where we have that the random effect vector γ = [γ1, ..., γn] is i.i.d. with mean 0 and
covariance matrix Σ. The covariance matrix for two observations i and k is Σi,k =
Cov(τi, τk), Cov(τi, τk) is a covariance function and specifies the correlation structure
between two observations. The model in eq. 3.3 induce a marginal correlation structure
between the observations y, such that y are conditionally independent given the unob-
served process that εi and γi represents. Based on the assumption of i.i.d normal dis-
tributed unobserved process, we have the marginal distribution of y is

y ∼ N(Xβ, σ2I + τ2J). (3.5)

The linear mixed model in eq. 3.3 can be extended to Bayesian linear mixed models,
where we assign a prior distribution to the random term ε and the coefficients γ.

3.2 Hierarchical models and latent Gaussian models
We now briefly introduce the Bayesian hierarchical models and the latent Gaussian models
(LGMs). LGMs are hierarchically structured regression models where we use a Bayesian
inference approach for computational benefits. This section is based on Gelfand et al.
(2010) and Rue et al. (2009).

For Bayesian Inference we use a Bayesian hierarchical model of three layers, which
consists of an observation model, a process (latent) model and a parameter model. The
idea comes from basic probability theory where the joint distribution of some random
variables can be broken up into conditional and marginal distributions, e.g. P (A,B,C) =
P (A|B,C)P (B|C)P (C) (Gelfand et al., 2010).
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At the top level of hierarchy we have the observation model, for this we have that the
dependent variables y are conditional dependent on a unobserved process η and some
parameters θτ . The observation model or observation likelihood can be expressed as
π(y|ζ,θτ ) =

∏n
i=1 π(yi|ηi,θτ ).

At the second stage of our Bayesian hierarchy we have a model that describes the
unobserved process η. The unobserved process is a linear mixed model expressed as

η = Xβ + ζ (3.6)

where Xβ is the fixed effect and ζ is a random field. The unobserved process is assigned a
Gaussian distribution π(η|θκ) where θκ is an vector with related parameters. In Gelfand
et al. (2003) it is discussed how one can include spatially varying coefficients in the obser-
vation model, such that the explanatory variables included in the model account for local
variations within the study area.

At the last stage we have the parameter model θ = [θ1,θ2] that we assign some prior
distribution.

3.3 Random forest
Random forest is a forest that consist of many decision trees. This section provides an
overview of what a decision tree and a random forest is. For the random forest we refer to
explanatory variables (catchment characteristics, avg 5 and observations of precipitation)
as features or predictors and the dependent variable (runoff) is referred to as response.
James et al. (2013) states that linear regression outperforms a regression tree if the rela-
tionship between features and the response is well approximated by a linear model. For
a non-linear and complex relationship between the features and the response, a regression
tree is likely to outperform a liner regression. This is much of our motivation for using ran-
dom forest, as seen in section 2.5.2, most catchment characteristic does not have a linear
relationship with median annual runoff.

In this section we introduce the regression tree, after this we explain the method of
bagging which is used for bootstrapping our data and then we present the random forest
which are a result of regression trees and bagging. We also introduce the partial depen-
dency plots that allow us to visualise the marginal effect of one or more features on the
predicted runoff.

3.3.1 Regression trees
First out we start by explaining a regression tree, based on James et al. (2013). A regression
tree is a tree-based method where we stratify the predictor space into two or more regions.
To understand what a regression tree is we start out with an example based on the data in
this thesis, where we would like to predict runoff based on some catchment characteristics.
For simplicity we only use gradient basin and UTM east coordinates. After the example
we explain how it is built.

An example of a regression tree is illustrated in Fig. 3.1a which is fitted to our data.
In the regression tree a series of splitting rules is illustrated, from top of the tree to the
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(a) An example of a regression tree for predicting runoff.

(b) The partition from the regression tree.

Figure 3.1: At left we have an example of a regression tree for a small sample of our data. The
left-hand branches corresponds to gradient basin < 32 and the right-hand branches corresponds
to gradient basin ≥ 32. To the right we have an illustration of the partition of our data from the
regression tree.

bottom. The top split assigns the runoff observed having gradient basin < 32 m/km to
the left-hand branch. The predicted runoff for these catchments are given by the mean
response value for the catchments within our data that has gradient basin < 32 m/km. For
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those catchments we have a mean runoff of 1118 mm/yr. At the right-hand side we assign
the catchments with gradient basin ≥ 32 m/km. This group is further subdivided by UTM
east coordinates, and is continued until a stopping criteria is reached. In this case we stop
growing the tree if the relative error does not improve more than 0.05. The result of our
tree is plotted in fig. 3.1b, where we see that the tree stratifies the predictor space into ten
regions. These regions are called terminal nodes or leaves of the tree.

We now explain how a regression tree is built. The tree is grown by first dividing
our predictor space into two regions R1 and R2 where we have a mean response of 1118
mm/yr forR1 and 2460 mm/yr forR2, such that for a given response X = x, where x ∈ R1

we predict runoff of 1118 mm/yr. The goal is to find regions R1, ..., Rj that minimize the
mean squared error (MSE), which gives us

1

J

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2 (3.7)

here ŷRj
is the mean response for the observations within the region Rj .

The partitioning is done by an approach called recursive binary splitting. Where the
splitting begins at the top of the tree and the successively splits the predictor space. This is
called a greedy approach because in each step of the process of building a tree each split
is chosen as the best split, rather than looking into the future and look at what results
in a better tree in some future step. By best split we mean the split that reduces the
MSE the most, it is also possible to use other evaluation measures. Recursive binary
splitting is performed as follows: First selecting a predictor Xj and a cut point s so that
the splitting of the predictor space falls into two regionsX|Xj < s andX|Xj ≥ s leading
to the larges possible reduction of MSE. Then for all the predictors X1, X2, ..., Xj , and
all the possible values of the cut point, s, the predictor and cut points are considered and
whichever combination that results in the lowest MSE is chosen. In mathematical form
this is defined as,

R1(j, s) = X|Xj < s and R2(j, s) = X|Xj ≥ s, (3.8)

where we wish to find the j and s minimising

1

J

∑
i:xi∈R1(j,s)

(yi − ŷR1
)2 +

1

J

∑
i:xi∈R2(j,s)

(yi − ŷR2
)2 (3.9)

here ŷR1
and ŷR2

are the mean response inR1(j, s) andR2(j, s) respectively. This is done
for each leaf on the tree until a stopping criteria is reached. When the regions have been
defined we can predict the response (runoff) for a given observation.

Trees are easy to explain and visualise, but they tend to be sensitive to small changes in
the data and therefor also poor as predictors. The average observations from several trees
reduces the variance of our prediction.

3.3.2 Bagging
Bagging, bootstrap aggregation, is a method used for reducing variance of our predictions
from regression tree. First introduced by, Breiman (1996). It is the process of randomly
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picking observations from training data and making several subsets of the training data,
with replacements. Some observations from the original training data may be observed
several times. By making a separate tree for each of these subsets of the training data,
we get equally many predictions as there are subsets of the training data. Averaging the
prediction from each tree creates an overall predicted value. And in the process of bagging
the training data, about 2/3 of the data is used. The 1/3 that is not used in each tree, are
used to calculate an out-of-the-bag (OOB) prediction that can be obtained from the average
of all the trees that does not use that observation. This way we can create an OOB error,
and for a sufficiently large number of trees, the OOB error is virtually equivalent to the
leave-one-out-cross-validation-error (James et al., 2013).

By applying bagging to a regression tree it becomes much harder to visualise the pro-
cedure, but in return it increases the accuracy. To get an overview of what is happening in
the case of bagging regression trees, the decrease or increase in MSE can be recorded as
new features are introduced in a tree, and then averaged over all the trees. Large increase
in MSE indicates more important features.

In bagging all original features are considered at every split in all the trees, such that
a broad part of the trees use its strongest predictor at the top. This creates correlation
between the bagged trees, and the reduction of variance is not optimal. Therefor methods
that force trees to not be correlated has been developed.

3.3.3 Random forest

Random forest is like bagging, but for random forest we do not only subset the data, we
also subset the features to choose at each split. Random forest was introduced by Breiman
(2001), and we refer to his work in the following section.

Random forest grows a number of decision trees where we at each leaf (split) within
each tree only consider a random subset n of our predictors (features) and at the next split a
new random sample of n predictors are considered. For each tree we are only considering
a random sample of our original data set, e.g. using bagging. This method makes the trees
less correlated and thus make our predictions more accurate.

3.3.4 Partial dependency plots

With partial dependency plots we are able to visualise the marginal effect of one or more
features on the predicted runoff. It was first introduced by Friedman (2001), and the fol-
lowing is based on his work.

With partial partial dependency plots (PDPs) we visualise the partial dependence of
the response ŷ = F̂ (x) on a small selected subset of our features (explanatory variables).
If xl is the chosen subset of size l from the features x,

xl = [x1, ..., xl] ⊂ [x1, ..., xn] (3.10)

and x−l is the complimented subset such that

x−l ∪ xl = x (3.11)

30



we have that F̂ (x) depending on the features from both subsets,

F̂ (x) = F̂ (xl,x−l). (3.12)

By conditioning on specific variables in x−l we are able to consider F̂ (x) as a function of
the chosen subset xl,

F̂ (xl) = F̂ (xl|x−l). (3.13)

Then the partial dependence of F̂ (x) can be expressed as

F̄l(xl) = Ez−l
[F̂ (x)] =

∫
F̂ (xl,x−l)p−l(x−ldz−l (3.14)

where F̄l(xl) is the average effect of the chosen feature subset xl, and p−l(x−l is the
marginal probability density of x−l.

3.4 Gaussian spatial models

Based on our main learning’s of chapter 5.4 we now introduce an approach for modelling
runoff with a spatial model. Our spatial models are reflected by an assumption stated by
W. R. Tobler, in 1970, which was everything is related to everything (Tobler, 1970). This
is known as the first law of geography, and underline our motivation for using a random
field for modelling runoff.

For construction of spatial models we present the important background theory. First
we introduce GRFs followed by the SPDE which allows us to link GRFs with GMRFs.
Next we introduce GMRFs, latent Gaussian models and finally INLA which allows fast
inference and prediction of our spatial models.

3.4.1 Gaussian processes and Gaussian random fields

Now an introduction of GRFs is presented, based on Cressie (1993) and Lindgren and
Rue (2011). The GRFs allow use to account for spatial correlation and will be used as the
random field in the second stage of our LGM (see section 3.2 and eq. 3.6).

We assume that [γ(s) : s ∈ D] is a realization of a random field where D is a fixed
subset of Rd, our spatial dimension is d = 2. The random field is a GRF if all finite
collections of γ are jointly Gaussian distributed, e.g.

[γ1, ..., γn] ∼ Nn(µ,Σ) n ≥ 1 (3.15)

whereNn the multivariate normal distribution with mean µ and covariance Σ. The random
field γ(s) for the i = 1, ...n locations s1, ..., sn will be denoted as γ = [γ1, ..., γn]. If the
covariance Σ is only a function of the relative position of two locations it is stationary,
meaning that the distribution of (γ(s1), ..., γ(sn)) is the same as for (γ(s1+z1), ..., γ(sn+
zj)). If the covariance only depends on the Euclidean distance between two locations it is
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isotropic. A stationary and isotropic GRF then has

E[γi] = µ

V ar[γi] = τ2

Corr[γi, γk] = ρ(|sk − si|)

for any location si and sk, where | · | is the Euclidean distance.
Due to the partial differential equation approach that is presented later in this chapter,

we have chosen the Matérn covariance function to construct the covariance matrix Σ,
which specifies the dependency structure of the GRF. The stationary and isotropic Matérn
covariance function is given by

Cov(si, sk) =
σ2

Γ(v)2v−1
(κ|si − sk|)vKv(κ|si − sk|) v > 0, κ > 0 (3.16)

where σ2 is marginal variance, Γ(·) is the gamma function, κ is a scale parameter, v is a
shape parameter and Kv is the modified Bessel function of second kind and order v.

The range of the field is defined as

ρ =

√
8v

κ
(3.17)

and tells us at which distance between two observations it becomes approximately inde-
pendent. In our work we let the scale parameter v = 0 and thus define the range as

ρ =

√
8

κ
(3.18)

and we use this for further work.
For inference GRFs have computational costs of O(n3), where n is the dimension of

our covariance matrix.

3.4.2 The stochastic partial differential equation approach to spatial
modeling

The following section is based on Lindgren and Rue (2011) and Lindgren and Rue (2015).
In Lindgren and Rue (2011) it was shown that a GRF with Matérn covariance function can
be expressed as a solution of a SPDE, where the SPDE is expressed as following

(κ2 −∆)α/2(τγ) = W (3.19)

here we have that, κ > 0 is a scaling parameter, ∆ is the two dimensional Laplacian
defined as ∆ =

∑d
i
δ2

δx2
i

, α is a smoothness parameter, τ is a parameters controlling the
variance, γ is a GRF and W is spatial Gaussian white noise with unit variance. κ is the
same as for the Matérn covariance function in eq. 3.18, the parameter v from eq. 3.18 is
linked to the SPDE through

v = α− d

2
(3.20)
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and also the marginal variance σ2 from eq. 3.18 is related to the SPDE through

σ2 =
Γ(v)

Γ(α)(4π)d/2κ2vτ2
(3.21)

For the range in eq. 3.18 we specified that v = 0 for our work, further we also let α = 1
and d = 2 and we can thus define the marginal variance as

σ2 =
1√

4πτκ
(3.22)

which we use for further work.
Using a finite element method we can approximate the solution of the SPDE in eq.

3.19, such that we can express our GRF as γ through a basis function representation.
Where the domain of the GRF is discretizied into a triangular mesh (see fig. 4.1 for a
illustration of our mesh) with l mesh nodes and l basis functions ψo, e.g.

γ =

l∑
o=1

ψowo (3.23)

where wo are Gaussian distributed weights with mean µ = 0 and precision matrixQ−1(τ, κ).
The basin function ψo is defined such that ψo = 1 at vertex o and 0 at all other vertices. Eq.
3.23 can be interpreted in the sense that the weights determine the value of the filed in the
vertices and the interior of the triangles are determined by linear interpolation. The joint
distribution of the weights determines the full distribution for the continuously indexed
solution.

The precision matrix Q−1(τ, κ) for the weights wo is defined such that γ is continu-
ously indexed. For the smoothness parameter α = 2, we have that Q is defined as

Q(τ, κ) = τ2(κ4C + 2κ2G + GC−1G) (3.24)

here Cij = (ψiψj), Gij = (∇ψi∇ψj) for i = 1, ..., n and j = 1, ...,m. We use a
common parameterization of the precision matrix, where log(τ) = θτ and log(κ) = θκ.
Which gives the following presentation of Q

Q(θτ , θκ) = exp(2θτ )[exp(4θκ)C + 2 exp(2θκ)G + GC−1G] (3.25)

now we have that Q(θτ , θκ) as a sparse matrix.

3.4.3 Gaussian Markov random fields
Now we introduce Gaussian Markov random fields (GMRFs). We will represent our GRFs
as GMRFs as allow us make faster inference and predictions for our spatial models. This
section is based on the work of Rue et al. (2009) and Rue and Held (2005) and we refer to
this work for further details.

With the SPDE approach from eq. 3.23 we can represent our GRF from section 3.4.1
as a GMRF γ with mean µ and precision matrix Q = Σ−1 characterized by a Markov
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property. For the Markov property we have that the GMRF γ = [γ1, ..., γn] for the lo-
cations i = 1, ...n, where the vector γ− is the vector γ not containing element i. Where
the conditional distribution of γi for each location i only depends on a set of neighbors δi.
This Markov property is reflected in the sparse precision matrix Q = Σ−1. Q is called a
sparse precision matrix as it contains many zeros due to the conditional distribution of γi.

The sparse precision matrix Q allows for a large reduction in computational cost of
compared to the computational cost of the GRF (see section 3.4.1), as the computational
cost of a GMRF is typically of O(n3/2).

3.4.4 Integrated nested Laplace approximation

For Bayesian inference of LGMs as presented in section 3.2 we use the Integrated nested
Laplace (INLA) approach. Traditionally Markov chain Monte Carlo (MCMC) sampling
was used to do inference for models such as the LGMs (see Robert and Casella (2004)).
INLA was presented by Rue et al. (2009), where they argue that for a given the computa-
tional cost, INLA approach outperforms MCMC. Thus our motivations for using INLA is
due to the high computational speed compared to the MCMC.

As we are within the Bayesian world the goal is to approximate the marginal posterior
distribution of the unobserved process π(ηi|θκ) for i = 1, ..., n and the posterior distribu-
tion of the parameter model π(θ). We now present the LGMs suited for INLA based on
Lindgren and Rue (2015) and Rue et al. (2009).

For our LGM we must have some requirements fulfilled. Further we need our unob-
served process η to be a GMRF, such that numerical methods for sparse matrices can be
used. Secondly our parameter model π(θ) should be small, meaning number of hyperpa-
rameters θ should not be much larger than approximately 5.

As stated, the goal of Bayesian inference are the marginal posterior distributions for
each element of the latent model and each element of the parameter model. They are
computed with the following integrals

π(ηi|y) =

∫
p(ηi, θ|y)dθ =

∫
p(ηi|θ,y)p(θ|y)dθ (3.26)

p(θj |y) =

∫
p(θ|ydθ−j (3.27)

these needs integrals to be computed. For our spatial models we have that likelihood y is
Gaussian distributed. The integrals in eq. 3.26 and eq. 3.26 are determined by numerical
approximation that er described in Rue et al. (2009).

3.5 Evaluation measures

We now present the different evaluations used to compare the predictive power of our
models. By evaluating the predictive power we explore our models ability to make accurate
predictions ŷ.
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3.5.1 Coefficient of determination

We use the coefficient of determination R2 to compare our linear models that we present
in chapter 4.1. The coefficient of determination R2 was first introduced in Wright (1921),
and for presenting the coefficient of determination R2 we refer to Fahrmeir et al. (2013).

The coefficient of determination R2 is closely related to the correlation coefficient r
that we introduced in 2.5.1, where we used the correlation coefficient for exploring the
linear association between the dependent variable yi and a independent explanatory vari-
able xi for i = 1, ..., n. In the case of a simple linear regression model as described in
eq. 2.1 the coefficient of determination R2 corresponds to the squared correlation coef-
ficient r, e.g. R2 = (r)2. For multiple linear regression models as described in eq. 3.1
the coefficient of determination R2 is the squared correlation coefficient between the ob-
servations y = [y1, ..., yn] and the minimum mean squared error (MSE) predicted values
ŷ = [ŷ1, ..., ŷn] which implies that R2 = (r)2.

R2 represents the proportion of variance of runoff that is explained by the explanatory
variables, and is defined as

R2 =
∑n

i=1(ŷi−ȳ)2∑n
i=1(yi−ȳ)2 = 1−

∑n
i=1 ε̂i∑n

i=1(yi−ȳ)2 , (3.28)

where ȳ is the average of the minimum MSE predicted runoff ŷ, and ε̂ is the minimum
MSE estimated residuals. The value of R2 ranges between 0 and 1, where a high value
indicates a better fit.

The R2 increase in value as more explanatory variables are included in the model
while the adjuster R2 (also known as corrected coefficient of determination) accounts for
the number of explanatory variables included in the models. The adjusted R2 are defined
as follows

R̄2 = 1− m− 1

m− p
(1−R2) (3.29)

where m is the number of explanatory variables and p is the p-value. The adjusted R2 is
supposed to penalize for increased number of explanatory variables, but for tests scores
larger than 1 it starts to increase and is therefor not a preferred evaluation measure.

3.5.2 Root mean square error

Measuring predictive performance of all models presented in this thesis are done with root
mean square error (RMSE), which measures the squared difference between predicted ŷi
runoff and observed yi runoff. The difference between predicted ŷi runoff and observed
yi runoff are what we refer to as residuals. The RMSE indicates accurate predictions ŷ by
a low value in the unites of the dependent variable (runoff).

The RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (3.30)
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3.5.3 Continuous ranked probability score
In addition to the RMSE we use the continuous ranked probability score (CRPS) for mea-
suring the predictive performance of our models. With CRPS we are able to evaluate
the whole posterior predictive distribution of our predicted value ŷi (Ingebrigtsen et al.,
2015). When we account for the whole posterior predictive distribution we asses both the
sharpness and the precision of our predicted value ŷi. With sharpness we refer to small
standard deviation of posterior distribution, while precision refers to the accuracy of the
predicted outcome ŷi when we compare it to the observed value yi. An accurate prediction
is indicated by a low value of mean CRPS in the units of the dependent variable yi.

Gneiting and Raftery (2007) defines the CRPS as follows,

CRPS(F, y) =

∫ ∞
−∞

(F (u)− 1(y ≥ u)2du (3.31)

where F is the predicted cumulative distribution function of the predicted value ŷi and yi
is the observed value.

3.6 Evaluation schemes

3.6.1 Leave-one-out cross validation
The models we use for this thesis are tested through a evaluation scheme named leave-one-
out cross-validation (LOOCV). LOOCV leaves out one observation yi from the original
data with i = 1, ..., n observations, and the remaining (n− 1) observations y− are used to
construct a model. With the constructed model we obtain a prediction ŷi of the observation
yi left out. Each predicted value ŷi is then evaluated in terms of some evaluation metric.
This procedure is repeated n times, such that we have n predicted values ŷ and n scores
from some evaluation measure.

To compare the predictive performance of the models built in this thesis we use the
two evaluation metrics RMSE and CRPS presented in section 3.5. We use both the n
individual RMSE and CRPS scores, and the mean RMSE (RMSE) score and the mean
CRPS (CRPS) score for comparison.

The RMSE and CRPS are calculated as follows

RMSE =
1

n

n∑
i=1

RMSEi (3.32)

CRPS =
1

n

n∑
i=1

CRPS(Fi, yi). (3.33)
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Chapter 4
Models for prediction of median
annual runoff

We now present the models used to predict runoff in this thesis, and also how we have
inference for such models. First we do an overview of the multiple linear models, and then
an overview of our random forest models. Next we present how we construct our spatial
models (LGM) with the SPDE approach.

Our linear regression models and random forest models have been created as a tools
for exploring the relationships between our catchment characteristics and observed runoff,
thus all available catchment characteristics are included. We also investigate how spatial
dependency in terms of how average neighbor runoff (avg 5) and observations of precipi-
tation influence our predictions.

4.1 Multiple linear regression method
We have created three different linear models, the first model is named lm c and does only
include the catchment characteristics xj,i (listed in tab. 2.1). Next we have created a
model named lm cn which includes our catchment characteristics xj,i plus average neigh-
bour runoff avg 5i. The last model created is the model lm cnp, which contains all the
catchment characteristics xj,i, average neighbour runoff avg 5i and precipitation pi.

The simple multiple linear regression model we use are as described in section 3.1,
where we have

yi = β0 + β1x1 + ...+ βmxm,i + εi (4.1)

our response variable yi is median annual runoff at catchment si where i = 1, ..., 266,
and that β0 is the intercept and β1, ..., βm are the unknown coefficients of our explanatory
variables x1, ..., xm. The different explanatory variables xm for j = 1, ...,m depend on
which model we are considering. For the random term εi we make the same assumptions
as we specified in section 3.1.
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4.1.1 Inference for linear regression

To estimate the explanatory variables βm and the random term εi we use the minimum
MSE. With the minimum MSE estimators we get the predicted median annual runoff at
catchment si as

ŷ(si) = β̂0 + β̂1x1(si) + ...+ β̂nxn(si) + ε̂(si) (4.2)

with this we are able to evaluate the predictive performance with RMSE and CRPS.

4.1.2 LM models

The different liner regression models used to predict median annual runoff are listed in the
tab. 4.1.

Model Catchment characteristics Average neighbor runoff Precipitation
1 LM c YES NO NO
2 LM cn YES YES NO
3 LM cnp YES YES YES

Table 4.1: Table with the three linear models (LM) built for this thesis and what parameters they
contain. Catchment characteristics xi,j are listed in tab. 2.1, average neighbor runoff avg 5i is the
average runoff of the five closest neighbors (see section 2.6) and precipitation pi is the observed
median annual precipitation at each catchment (see section 2.7).

4.2 Random forest method

We have built three different random forest models, in the same manner as the linear
models described in section 4.1. For our random forest models we did a manual search,
for constructing the best possible random forest model. With a manual search we tested
many combinations of how many features that each split should be allowed to select from,
maximum number of leafs a tree should contain and how many trees the forest should
consist of. We determined the best structure of combination in terms of what forest resulted
in the best MSE.

As there are many possible combinations of how to build a tree, we have not been able
to test all. The models we present are the models that was found to have the smallest MSE
score after a process of testing some combinations. Tab. 4.2 is presented with what was
found as the best structure for a each random forest model.

4.2.1 RF models

The different random forest models used for predicting runoff are listed in tab. 4.3.
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Model Max depth Number of features Number of trees
1 RF c 20 5 500
2 RF cn 12 10 500
3 RM cnp 16 14 500

Table 4.2: Set up for the random forest models (RF) created by a manual search of possible com-
binations of number of leafs (max depth), number of features to select at each split (number of
features) and number of trees that the forest consist of (number of trees).

Model Catchment characteristics Average neighbor runoff Precipitation
1 RF c YES NO NO
2 RF cn YES YES NO
3 RF cnp YES YES YES

Table 4.3: Table of the three random forest models (RF) built for this thesis and what parameters
they contain. Catchment characteristics are listed in tab. 2.1, average neighbor runoff avg 5i is the
average runoff of the five closest neighbors (see section 2.6) and precipitation pi is the observed
median annual precipitation at each catchment (see section 2.7).

4.3 Latent Gaussian model
The spatial models built for this thesis are based on the assumption that our observations
are correlated and the result of exploration of our linear models (section 4.1) and random
forest models (section 4.2). The main learning’s of the linear models and random forest
models can be found in section 5.4. We now construct our spatial models as the LGMs
presented in section 3.2.

For this thesis we present four different spatial models. The first model, SP r only
contains a GRF. The second model, SP rb, contains a GRF and the explanatory variable gi
which is the catchment characteristics gradient basin. The third model, SP rbp, contains a
GRF and the two explanatory variables gi and precipitation pi. For the fort model, SP rbpc
we have included a spatially varying coefficient such that we have the same construction
as for SP rbp, but now also allowing the coefficient of precipitation to vary spatially, this
is denoted as β̃j,i.

As introduced in section 3.4 our LGMs are hierarchical models of three levels. We
now present the different models within each level.

Observation model

For our observation model we have Norway as our spatial domain D, such that D ⊂ R2.
We denote true runoff at the point location (centroid) si ∈ D as yi where i = 1, ...n.
The observed runoff yi is observed with some random error εi for location si. Thus the
observation model for true runoff is

yi = ηi + εi (4.3)

where the random error εi is assumed to be i.i.d. Gaussian distributed with mean 0 and
variance (precision) τ−1

p , and also independent of the unobserved process ηi. The observa-
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tion model for true runoff in eq. 4.3 is for the three model SP r, SP rb and SP rbp, where
we do not have any spatially varying coefficients.

For the model SP rbpc we let the coefficient of precipitation vary within our spatial
domain (Norway). For SP rbpc we express the observation model for true runoff y*i at
location si as

y*i = η*i + ε*i (4.4)

where we assume that the random error ε*i is i.i.d Gaussian distributed with mean 0 and
precision τ−1

c . The random error ε*i is also assumed to bee independent of the unobserved
process η*i.

Process model

Our process model is assumed to model the true level of runoff, and expressed as

ηi = β0 + γi (4.5)

where β0 is the intercept and γi is a stationary and isotropic GRF. Eq. 4.5 is the process
model of SP r. For SP rb we also include the explanatory variable gi and for SP rbp
we include the two explanatory variables gi and precipitation pi, this gives the following
process model for SP rb

ηi = β0 + β1gi + γi. (4.6)

For SP rbp we have the following process model

ηi = β0 + β1gi + β2pi + γi. (4.7)

For SP rbpc we include the spatially varying coefficient β̃i, with the following process
model

η*i = β0 + β1gi + β̃ipi + γi, (4.8)

where we interpreter β̃i = β2 +βi as a spatially varying coefficient, where βi is a spatially
random adjustment at location si for the explanatory variable pi, thus βi is a GRF as γi.
We can thus express the process model of SP rbpc as

η*i = β0 + β1gi + β2pi + βipi + γi. (4.9)

For further detail on spatially varying explanatory variables we refer to Gelfand et al.
(2003).

SPDE approach

For expressing our GRF γi as a GMRF we use the SPDE approach described in section
3.4.2. When we use the SPDE approach we discreetly index the GRF γi into a mesh
covering Norway as seen in fig. 4.1, this is the mesh that have been used for all our spatial
models. Whit triangulation mesh in fig. 4.1 our GRF γi can be expressed as
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Figure 4.1: The mesh used in INLA for solving our SPDEs. Within the mesh we have added the
border of Norway, and blue points locating our runoff observation locations. Our mesh has 4949
mesh nodes.

γi =

l∑
k=1

ψk,iwk, (4.10)

where ψk,i is the basis functions constructed in the mesh with k = 1, ..., l vertices and
l = 4949. wk is the approximation of γi at the k mesh nodes. In order to let the wk
be an GMRF it assigned a Gaussian distribution with 0 mean and the precision matrix
Q−1(θτ,u, θκ,u), which is expressed as

w = [w1, ..., wk, ..., wm]T ∼ N(0,Q−1(θτ , θκ)) (4.11)

here θτ = log(τ) and θκ = log(κ), where θτ is linked to the range ρ from eq. 3.18 and θκ
is linked to the marginal variance σ2 from eq. 3.22.

Inserting eq. 4.10 into the process model for SP r eq. 4.5 we obtain the following,

ηi = β0 +

l∑
k=1

ψk,iwk (4.12)

and the process model for SP rb in eq. 4.6 becomes

ηi = β0 + β1gi +

l∑
k=1

ψk,iwk. (4.13)

The process model for SP rbp in eq. 4.7 becomes

ηi = β0 + β1gi + β2pi +

l∑
k=1

ψk,iwk. (4.14)

For expressing the process model η*i at locations si for SP rbpc in eq. 4.9 we first
express our spatially random adjustment for precipitation (GRF) βi as

βi =

l∑
k=1

δk,iuk (4.15)
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where δk,i is the basins function constructed in the mesh from fig. 4.1 with k = 1, ..., l
vertices and l = 4949. uk is the approximation of βi at the k mesh nodes, and by assigning
it a Gaussian distribution with mean 0 and precision matrix Q−1(θτ,w, θκ,w). Thus our
spatially random adjustment for precipitation βi is a GMRF. The process model of SP rbpc
can now be expressed as,

η*i = β0 + β1gi + β2pi

+ pi

l∑
k=1

δk,iuk +

l∑
k=1

ψk,iwk
(4.16)

where we have the GRF γi expressed as the GMRF described in eq. 4.10. And the spatially
random adjustment βi is expressed as a GMRF through eq. 4.15.

4.3.1 Inference for spatial models

Our spatial models are Bayesian linear mixed models which contains a GRF. For fast com-
putation and inference we have used the INLA approach. For readability of this chapter we
present the construction of our spatial models within the INLA framework in the appendix
D.

From the spatial models we obtain the posterior distribution (probability distribution)
of the different parameters within the model. From the posterior distribution we obtain
the posterior mean through the minimum MSE estimator, which for the predicted runoff
ŷi from SP r can be seen as

ŷ(si) = β̂0 + x̂(si), (4.17)

and it would be similar for all our spatial models which we have listed in tab. 4.4.

4.3.2 SP models

The different spatial models used to predict median annual runoff is listed in tab. 4.4
below.

Model random spatial field Gradient basin Precipitation SVC
1 SP r YES YES NO NO
2 SP rb YES YES NO NO
3 SP rbp YES YES YES NO
4 SP rbps YES YES YES YES

Table 4.4: The four SP models and what explanatory variables they contain, the random spatial field
γ, gradient basin gi is the catchment characteristics listed in tab. 2.1, precipitation pi is as described
in section 2.1 and SVC is the spatially varying coefficients of precipitation β̃j,i.
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4.4 Software
In this section we will present the different packages used to build our models, do predic-
tions of runoff, compare in terms of predictive performance and visually investigate.

For our linear models we have used a base R package named stats by R Core Team
(2016). The stats package was also used for predictions with both our linear models and
our random forest models. Plotting is done with the ggplot2 package by, Wickham (2009).

To evaluate the models the RMSE and CRPS from LOOCV was calculated with the
Metrics package and the scoringRules package respectively. The Metrics package is by
Hamner (2012) and the scoringRules is by Jordan et al. (2016).

The random forest models where built with the randomForest package by Liaw and
Wiener (2002). With the randomForest package we were also able to view variable impor-
tance plots. With the result of our randomForest model we were also able to view partial
dependency plot with the R-package pdp by Greenwell (2016).

All of our spatial models have been built with the R-package INLA by Rue et al. (2009),
INLA is available at www.r-inla.org. Within the INLA framework we use the SPDE ap-
proach which was presented by Lindgren and Rue (2011).
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Chapter 5
Results initial model exploration

In this chapter we present the main results of the linear models and random forest models
introduced in chapter 4 (see tab. 4.1 and tab. 4.1). In the first section we present the
results of the linear models and evaluate the performance and uncertainties of the explana-
tory variables included. In the next section we present the results of the random forest
models, with focus on feature importance and the partial dependency of features (explana-
tory variables) within the models. Furthermore we compare and evaluated the predictive
performance of our linear models and random forest models.

With the linear models and our random forest models we want to explore what catch-
ment characteristics are most influential on the prediction of runoff. We also want to
explore how the explanatory variables/features average neighbour runoff (avg 5) and pre-
cipitation, influence the estimated coefficients and predictive power of our models.

The main learning’s from the linear model and the random forest will be summarised in
the end of this chapter, the main learning’s are used for construction of our spatial models.

5.1 Results linear model

We first consider the linear model LM c where the explanatory variables are the catch-
ments characteristics presented in tab. 2.1. For LM c the model estimates for the coeffi-
cients, together with their standard deviation is presented in tab. E.1. The model output of
LM c shows that the catchment characteristics that have a significant p-value on a 5% level
are the coefficients of UTM east coordinates, gradient basin, gradient river and percentage
of glacier.

Tab. E.3 are the same results for the model where the average of neighbours (avg 5)
is included as a explanatory variable, LM cn. If we compare the model estimates for the
coefficients in tab. E.1 of LM c with the estimated for the coefficients of LM cn in tab.
E.3 we find that the p-values change, and the coefficient for the UTM east coordinates are
no longer significant and neither is the percentage of glacier. The coefficients for gradient
basin and gradient river both remain significant in LM cn, so is the coefficient for avg 5.
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Tab. E.5 are the estimated coefficients for the models that also include precipitation
LM cnp. Here we find that the estimated coefficient for precipitation and the catchment
characteristics gradient 1085 have a significant p-value, we also find that the p-value of the
estimated coefficient of avg 5 is not significant.

Fig. 5.1 allow us to visualise the change in p-value for the estimated coefficients of
our linear models. When we compare the p-values for the estimated coefficient of avg 5
in fig. 5.1h, we observe a difference between the two models LM cn and LM cnp. This
change in p-value indicates that precipitation seem to account for much of the same spatial
dependency that avg 5 accounts for. Further we also notice that the estimated coefficients
have much larger p-values for LM cnp than LM cn.

Fig. 5.1 also illustrates how the p-values of the catchment characteristics decrease as
we introduce information about either neighbouring catchments and precipitation. This
indicates that the catchment characteristics are less influential in the linear model when
we include some explanatory variables that describes the spatial dependency between our
observation of runoff.

(a) UTM east. (b) Gradient 1085. (c) Gradient basin.

(d) Gradient river. (e) Percentage bog. (f) Percentage glacier.

(g) Percentage mountain. (h) Spatial dependency. (i) Precipitation.

Figure 5.1: Plots of the p-values within the three linear models (LM c, LM cn and LM cnp). The
plots illustrates how the p-values of the coefficient for the explanatory variables change within the
different linear models.
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The estimated coefficients decrease in estimated value as avg 5 and precipitation are
included, but there are not much change in their uncertainty. This is illustrated in fig. 5.2,
where the significant (on a 5% level) estimated coefficients are plotted with their corre-
sponding 95% confidence interval. The only estimated coefficient with a visibly smaller
confidence interval when avg 5 and precipitation are included is the coefficient gradient
river seen in fig. 5.2d.

(a) UTM east. (b) Gradient 1085. (c) Gradient basin.

(d) Gradient river. (e) Spatial dependency. (f) Precipitation.

(g) Percentage bog, glacier and mountain.

Figure 5.2: 95% confidence interval for the estimated coefficients for the explanatory variables in
the linear models LM c, LM cn and LM cnp.

To illustrate the effect of the two explanatory variables avg 5 and precipitation for
modeling runoff we can have a look at the plots with the coefficient of determination
R2 and the adjusted coefficient of determination R2

adj in fig. 5.3. Both coefficient of
determination R2 and adjusted coefficient of determination R2

adj illustrates an increasing
value when the catchment characteristics no longer are the only covariates. Therefore it
seems like our predictions of runoff will improve if we are able to include information
about spatial dependency. We also notice that the adjusted coefficient of determination
R2
adj in fig. 5.3b is larger for LM cnp than for LM cn, indicating that precipitation increase

the predictive performance of our linear models.
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(a) Multiple R2. (b) Adjusted R2.

Figure 5.3: The multiple R2 and the adjusted R2 for the linear models.

5.2 Results random forest
Random forest serves the same purpose as our linear models, further it enable us to explore
the functional form (non-linear) and interactions between features.

The importance of the different features within our random forest models are illus-
trated in fig. 5.4. Here we can see how the importance of different features changes with
the different models. For RF c (with catchment characteristics as features) the most im-
portant feature are the UTM east coordinates followed by gradient basin. When the feature
average neighbour runoff (avg 5) are included in RF cn we observe that it is the most im-
portant feature, and also that the features which was most important for RF c becomes less
important. For RM cnp precipitation accounts for more than 30% of the decrease in MSE,
indicating that all other features have a much smaller impact on the model compared to
LM c and LM cn.

Further we explore the functional form of our random forest models by analysing the
partial dependency plots of fig. 5.5. Here we have only included the features that seems
to have the greatest importance based on the results of our variable importance plots seen
in fig. 5.4. We observe that the marginal effect of the UTM east coordinates with a
small/negative value have a large predicted runoff, and that this quickly decrease as we
move further towards the east (larger value of UTM east, see map in fig. 2.1). The UTM
north coordinates have a more complicated marginal effect on the predicted runoff. Where
we in fig. 5.5b see that past 6.7*106 meters increasing UTM north coordinates also gives
an increase in predicted runoff. The gradient basin have an increasing predicted runoff
with increasing gradient basin past 20 m/km, past 40 m/km the marginal effect is constant,
and the marginal effect is similar for gradient river. For percentage of forest (fig. 5.5e)
and percentage of mountain (fig. 5.5f) do both seem to have a linear trend with predicted
runoff, for percentage of forest the marginal effect is decreasing and for percentage of
mountain marginal effect is increasing. The feature describing neighbouring catchments
have a linearly increasing relationship with the predicted runoff, and so does also the
median precipitation.

What we notice from the marginal effect of our most important features in fig. 5.5 is
that they all seems to have an approximately linear marginal effect on predicted runoff.

The partial dependency plots in fig. 5.5 illustrate what we have observed from the
variable importance plots in fig. 5.4. When the features avg 5 and precipitation are intro-
duced in the random forest models, the marginal effects of the catchment characteristics
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(a) Variable importance for RF c. (b) Variable importance for RF cn.

(c) Variable importance for RF cnp.

Figure 5.4: Variable importance for our random forest models. The top 5 most important features
for RF c, RF cn and RF cnp, importance is decided from what features result in the largest percent
decrease in MSE.

are reduced. Comparing the marginal effect of the features contained in LM c and LM cn,
in fig. 5.5 observe how the marginal effect is larger within the RF c model than in RF cn.
Further we observe that the marginal effect of our features in RF cnp are even smaller than
the marginal effect of the features in LM cn.

The marginal effect of precipitation seem to dominate the random forest models based
on the partial dependency plots in fig. 5.5. From the plot with variable importance (fig. 5.4)
we also observe that precipitation also account for the largest decrease in MSE error. The
marginal effect of avg 5 increase when precipitation is excluded from the model (RF cn),
and so does the variable importance. Which indicates that spatial dependency is sufficient
for predicting runoff.

The random forest models that only contains catchment characteristics (RF c) indi-
cates that UTM east is the most important feature, and it is not a large difference between
UTM east and gradient basin in terms of decrease in MSE. As UTM east coordinates de-
fines how far east the observation is located, it seem like it is able to account for some
of the spatial dependency that the features avg 5 and precipitation accounts for. This is
further indicated by how UTM east perform in terms of importance for the two models
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RF cn and RF cnp, where we in fig. 5.5 observe how gradient basin are more important.
Thus indicating that gradient basin is able to account for some other effect than the spatial
dependency.

From the partial dependency plots in fig. 5.6 we observe that the marginal effect of both
gradient basin and avg 5 have local variations within Norway. While precipitation have an
overall larger marginal effect, thus indicating that precipitation is not able to detect local
variations as well as gradient basin and avg 5.

5.3 Predictive performance

Model mean RMSE mean CRPS
1 LM c 347.14 254.70
2 LM cn 323.89 238.30
3 LM cnp 251.50 191.30
4 RF c 341.18 247.80
5 RF cn 287.61 212.00
6 RF cnp 222.40 167.80

Table 5.1: Table of mean RMSE and mean CRPS for evaluating model performance of the linear
regression and random forest models. The two models written in bold are the models with lowest
RMSE and/or CRPS score within the two different model frameworks.

In this section we evaluate the predictive performance of both the linear models and
the random forest models. For evaluating their predictive performance a LOOCV was
conducted, as described in section 3.6.

From tab. 5.1 we observe that the models containing precipitation LM cnp and RF cnp
have the highest predictive performance in terms of mean RMSE (RMSE) and mean
CRPS (CRPS). Further we observe that theRMSE andCRPS is larger for both the lin-
ear models and random forest model with the explanatory variable/feature avg 5 (LM cn
and RF cn) than it is for the models that only contain catchment characteristics (LM c and
RF c). This tell us that it is not sufficient to only include catchments characteristics when
modelling runoff.

The RMSE and CRPS scores are plotted against the coverage probability of a 95%
prediction interval in fig. 5.7. This illustrates that all models have a satisfying coverage
probability, as 0.95 is the best coverage probability. We further observe that the two models
containing precipitation (LM cnp and RF cnp) have both the highest coverage probabil-
ity and RMSE and CRPS score, which indicates that the models are both sharp and
accurate.

From the plots with RMSE and CRPS plotted against 95% coverage probability
in fig. 5.7 we notice that the accuracy of the LM c is better than the accuracy of LM cn,
RF c and also that RF cn it is less sharp as it has a higherRMSE and CRPS score. RF c
does not perform much better than the LM c in therms of accuracy, but it has a smaller
coverage probability. For the two models LM cn and RF cn we have that the LM cn is
better in terms of higher coverage probability and lower RMSE and CRPS score.
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If we further have a look at the boxplots with RMSE and CRPS in fig. 5.8, we observe
that all models have a long upper tail, and although the models containing precipitation
(LM cnp and RF cnp) have smaller RMSE and CRPS scores, their upper tails are just
as long as for the other models. We also notice that RF cnp have one observation that is
much larger than all other, that could be a possible outlier.

The large upper tails of RMSE and CRPS score for our models, and the high accuracy
and low precision of our linear model LM c, indicates that our models perform better for
some predictions than other. By evaluating the residuals of our linear models plotted in
fig. 5.9a we observe that our linear models does not have a constant variance σ2 across
its residuals, which indicate heteroscedasticity. The common remedy to heteroscedasticity
would be to use a log-transformation. This was conducted for our linear models by log-
transforming observed runoff. The results showed us that the evaluation metric RMSE
performed well, but according to CRPS they performed very bad compared to all other
models in this thesis. Due to readability of this result chapter we have chosen to not
present the log-transformed models here. They can be found in the appendix G, where
we demonstrate that the log-transformation fails due to large standard deviation of the
posterior distribution.

The residuals of our random forest models plotted in fig. 5.9b seems be approximately
random.

5.4 Main learning’s
From our initial models (linear models and random forest models) the goal have been
to understand what catchment characteristics are most influential for modelling runoff.
We also wanted to explore how the explanatory variables/features avg 5 and precipitation
influence the models and their predictive performance.

From both linear models and random models we found that the catchment character-
istics are not sufficient for modeling runoff. For the linear models we observed that some
of the catchment characteristics indicated predictive power when avg 5 and precipitation
are not included as explanatory variables. While we observed that gradient basin indicated
greater influence on our random forest models than any other feature.

Further we have observed that avg 5 have large influence on our models compared
to the catchment characteristics, but when precipitation are included into the models, the
influence of avg 5 is reduced. This decreased influence of avg 5 on our models, illustrates
what we already know, which is that runoff are first and foremost driven by precipitation.
The decrease in influence of avg 5 on our model also illustrates how precipitation account
for much of the spatial dependency between our observation that are described by avg 5.

Precipitation is obviously important for modeling runoff, but from the marginal effect
of precipitation on predicted runoff illustrated in fig. 5.5 we find that it does not seem to
account for local variations in the same manner as avg 5 and gradient basin. This tells us
that it is sufficient to include more explanatory variables than just precipitation into the
spatial models.

There are three catchment characteristics that describe the gradient of a catchment,
gradient basin, gradient river and gradient 1085, all of which influence the linear models
in terms of p-value and correlation coefficient. Gradient basin and gradient river also in-
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dicated some influence on the predictive performance of our random forest models. From
the explanatory analysis in chapter 2 we observed substantial correlation between the char-
acteristics and it is thus not sufficient to use all three for our spatial models. As gradient
basin is the characteristic that have largest influence on our models among the three, it is
preferred for the spatial models.

Spatial dependency seem to be the driving force of all our models. We observe that the
residuals of the linear models does not fulfill the required model assumptions. The lack of
homogeneity in our residuals indicate that a more direct way of modelling runoff could be
sufficient.
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(a) UTM east coordinates. (b) UTM north coordinates. (c) Gradient basin.

(d) Gradient river. (e) Percentage of forest. (f) Percentage of mountain.

(g) Spatial dependency. (h) Precipitation.

Figure 5.5: Partial dependency plots (pdp) of the most influential features in our random forest
models. The red line belongs to marginal effect of the feature in RF c, the blue belongs to RF cn
and the green belongs to RF cnp.
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(a) Partial dependency with three features for
RF c.

(b) Partial dependency with three features for
RF cn.

(c) Partial dependency with three features for
RF cnp.

Figure 5.6: Partial dependency in the trellis display where three features from the random forest
models are displayed. On the y-axis we have the UTM north coordinates, on the x-axis we have the
UTM east coordinates, and the most important features from fig. 5.4 defines the four panels. The
legend represents predicted median annual runoff (mm/yr).
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(a) |RMSE vs. 95% coverage probability. (b) |CRPS vs. 95% coverage probability.

Figure 5.7: mean RMSE and mean CRPS plotted against the 95% coverage probability for the linear
models and the random forest models.

(a) RMSE score. (b) CRPS score.

Figure 5.8: RMSE and CRPS score plotted as boxplots for the linear models and the random forest
models.

(a) Linear models. (b) Random forest models.

Figure 5.9: Residuals plotted against predicted runoff for the linear models and the random forest
models.
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Chapter 6
Results spatial models

In the following chapter we present the results of the spatial models constructed in chapter
4.3. Based on the main learning’s of chapter 5.4, it seems sufficient to use a LGM allowing
us to account for spatial dependence through a spatial random effect, we also include the
catchment characteristics gradient basin as it seem to account for some local variations
that precipitation is not able to account for.

The spatial models have been used for modeling point predictions of runoff, which
we now evaluate in terms of predictive performance. The first model SP r only uses a
GRF to model runoff, from this we want to decide on whether it is sufficient to include
observations of gradient basin and precipitation into the LGM. We also want to explore
how well a LGM with a spatially varying coefficient for observed precipitation perform
for prediction of runoff.

In this chapter, we first present the predictive performance of the four models and then
we compare them. We also investigate how the models perform for different levels of
runoff, and locations of catchment. Further we investigate the explanatory variables, the
SPDE parameters and the GRFs to understand how the different parameters behaves for
the fitted models.

6.1 Predictive performance
We now evaluate the predictive performance of the four different spatial models. The spa-
tial models are SP r which only includes a GRF, SP rb with a GRF and gradient basin,
SP rbp with a GRF, gradient basin and precipitation. The forth model SP rbpc is con-
structed with a GRF, gradient basin and precipitation with a spatially varying coefficient
approach.

Tab. 6.1 gives the predictive performance of our spatial models in terms of RMSE
and CRPS scores and also with the percentage of true runoff contained in the 95%, 65%
and 45% posterior prediction intervals. Comparing SP r and SP rb we find a small im-
provement in the RMSE and CRPS score as we introduce gradient basin (SP rb) as a
covariate in the pure spatial model (SP r). The spatial model improves further if we let the

57



Model mean RMSE mean CRPS Coverage95 Coverage65 Coverage45
1 SP r 289.48 227.65 0.82 0.65 0.42
2 SP rb 273.71 217.50 0.73 0.54 0.31
3 SP rbp 234.68 188.42 0.76 0.46 0.23
4 SP rbpc 218.28 163.42 0.92 0.71 0.44

Table 6.1: Table with the evaluation metrics mean RMSE and mean CRPS for the LOOCV posterior
predictions for the spatial models, where SP r only contains a GRF, SP rb contains a GRF and
gradient basin, SP rbp contains a GRF, gradient basin and precipitation and SP rbpc contains a
GRF, gradient basin and precipitation with a varying coefficient approach. The coverage probability
of the 95%, 65% and 45% posterior prediction interval is also included.

observations of precipitation (SP rbp) be included as well. The model where the coeffi-
cient of precipitation is allowed to vary spatially (SP rbpc) shows the best results in terms
of RMSE and CRPS scores.

Fig. 6.1 illustrates the result of tab. 6.1 that gives us predictive performance of our
spatial models. Although the two models containing covariates (SP rb and SP rbp) have a
lower RMSE and CRPS score than the SP r model (which only contains a GRF), they
perform worse in terms of coverage probability. Allowing us to believe that when we do
not account for spatial dependency between observations in the covariates, it decreases
the models performance. This is confirmed if we compare the two models SP rbp and
SP rbpc. As SP rbpc lets the coefficient of observed precipitation vary across our spatial
domain, the coverage probability for the increases with approximately 17%, from 75% to
92%.

(a) RMSE vs. coverage (b) CRPS vs. coverage

Figure 6.1: The evaluation metrics mean RMSE and mean CRPS plotted against the coverage per-
centage of a 95% posterior prediction interval for the LOOCV predictions from the spatial models.
The red line at 0.95 marks the best coverage probability.

While the RMSE and CRPS scores of SP rbp and SP rbpc are lower than for SP r
and SP rb we can see from the boxplot in fig. 6.2 that the largest RMSE and CRPS scores
of SP rbp and SP rbpc are larger than the largest RMSE and CRPS scores for the two other
models. From the boxplots with the RMSE and CRPS model it is seen that all models have
some large RMSE and CRPS scores compared to the 50% quantile. If we look at the maps
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plotted in fig. F.1 and fig. F.2 we can visualise the locations with the largest RMSE
and CRPS scores. From the map we observe that the catchments with large RMSE and
CRPS scores are located in coastal areas, and coastal catchments are often located in wet
areas. Some of the catchments with large RMSE and CRPS scores are also located in
areas containing glaciers, which in periods with warm temperatures contributes to runoff.
This indicates our models perform worse for areas with more runoff than most catchments.
From the map in fig. F.1 we also observe that one catchment which is located in the middle
of Norway, have much higher RMSE and CRPS score than the surrounding catchments.
As this catchment deviates from all other nearby catchments it indicates a possible outlier,
and should be further explored.

(a) RMSE values. (b) CRPS values.

Figure 6.2: Boxplot of the RMSE and CRPS scores from the LOOCV predictions for the spatial
models.

In fig. 6.3 we have plots showing predicted versus observed runoff, and for each pre-
diction the corresponding 95% posterior prediction interval is plotted. The SP r model has
a much wider prediction interval than the other models. This is why SP r has a higher
coverage probability than the two models SP rb and SP rbp. SP rb does not have any
higher coverage probability than SP rbp have, even though the prediction intervals are
much larger. SP rbp have narrow prediction intervals and thus also a low coverage proba-
bility. SP rbpc has increasing prediction intervals with increasing predicted runoff, and is
thus able to cover true runoff within most predictions.

From fig. 6.3 with plots showing predicted versus observed runoff we also observe
that the two models SP r and SP rb have increasing deviation from observed (true) runoff
as observed runoff increases. We also observe that the same occurs for SP rbp, but the
deviation from true runoff is not as large. For SP rbpc there is also an increasing deviation
from true runoff, but that most prediction intervals cover the true runoff observation. What
we notice for the two models containing precipitation (SP rbp and SP rbpc) is that they
contain two observations with much larger deviations from true runoff than for any other
similar observed value, which correspond with the two large RMSE and CRPS values seen
in the boxplot in fig. 6.2.

The increasing deviation from observed (true) runoff as observed runoff increases seen
in fig. 6.3, indicate that the residuals are not homoscedastic, and that there are some effect
in our observations of runoff which our models are not able to account for.
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(a) SP r. (b) SP rb.

(c) SP rbp. (d) SP rbpc.

Figure 6.3: Predicted vs. observed runoff with the corresponding 95% posterior prediction interval.
The colour of the prediction interval is coloured blue if the observed runoff is located within the
prediction interval, and red otherwise.

The fig. 6.4 illustrates how the residuals increase with increasing posterior predicted
runoff. We also observe that the larges posterior predicted runoff values have much more
negative residuals than any other posterior predicted runoff. The largest negative residuals
belongs to SP rbp and SP rbpc, and belong to the same two catchments that we observed
as large errors in the plot with posterior predicted runoff versus observed runoff in fig. 6.3c
and in the boxplot with RMSE and CRPS infig. 6.3c.

For eliminating the observed heterogeneity seen in the residual plot in fig. 6.4, a
log-transformation of observed runoff was conducted for our spatial models. The log-
transformation was not a success, according to the CRPS. For readability of the this chapter
we have left out the results of the log-transformed models. These models and an explo-
ration of their predictive performance can bee found in the appendix chapter G.

6.2 Posterior marginal distribution of the coefficients and
SPDE parameters

There are some differences in the predictive performance of our spatial models. With an
analysis of the posterior marginal distribution we gain knowledge about how the differ-
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Figure 6.4: Residuals plotted against posterior predicted runoff for the four spatial models.

ent parameters behave within the models. This enable us to understand how the different
terms in the models influence the posterior predictive performance. When we explore the
posterior marginal distribution we explore the uncertainty and the influence the parameter
have on our models, this is done by evaluating density plots. The marginal distributions
are Gaussian, thus the density plots are symmetrical and centered around its mean, where
the width of the density plots illustrates the variances. From the variance we obtain how
uncertain the posterior marginal distribution of a coefficient is, while the mean value de-
termines the influence a coefficient have on the model.

In this section we first present an evaluation of the posterior marginal distribution for
the intercept, and the two coefficients of the explanatory variables gradient basin gi and
precipitation pi. Further we evaluate the posterior marginal distribution of SPDE parame-
ters of the GRF γi and the spatially random adjustment βi.

We first explore the posterior marginal distribution of the intercept β0 in fig. 6.5a,
which shows that its posterior marginal distribution for the two models SP rbp and SP rbpc
are similar. We further observe that the intercept have a larger posterior marginal mean
when the observations of precipitation is not included in the two models SP r and SP rb.
We also observe that the posterior marginal variance of SP rbp and SP rbpc are much
smaller than for the two other models SP r and SP rb. This tells us that precipitation
decrease the influence of the intercept and also reduce the uncertainty.

For the coefficient of gradient basin in fig. 6.5b, we observe that the posterior marginal
distribution is more uncertain within SP rb than it is within SP rbp and SP rbpc. There
is also a small increase in the marginal posterior mean as we move from SP rb to SP rbp.
This tells us that gradient basin has less effect on the model SP rbpc than it is has for the
two other models SP rb and SP rbp.

Further we observe from Fig. 6.5c that the coefficient of precipitation is more uncertain
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within SP rbp than within SP rbpc, where we allow the coefficient of precipitation to vary
spatially. We also observe that the posterior marginal mean is smaller for SP rbp than it
is for SP rbpc. The decrease in uncertainty and increase in posterior marginal mean when
we allow the coefficient of precipitation to vary spatially tells us that the coefficient of
precipitation in SP rbpc have more effect on the model and is less uncertain compared to
SP rbp.

(a) Coefficient of the intercept β0. (b) Coefficient for gradient basin β1.

(c) Coefficient for precipitation β2.

Figure 6.5: Posterior marginal distribution of the coefficients for the intercept β1, gradient basin β2
and precipitation β3 from the spatial models SP r, SP rb, SP rbp and SP rbpc.

Further we evaluate the posterior marginal distribution of the SPDE parameters θτ,w,
θκ,w θτ,u and θκ,u illustrated in fig. 6.6. These SPDE parameters are linked to the range
and the marginal variance of the random field γi and the spatially varying coefficient of
precipitation βi. The posterior marginal distribution of the SPDE parameters for the spa-
tially varying coefficients in SP rbpc is not possible to compare with any other model, but
is added to illustrate its SPDE parameters distribution. The posterior marginal distribution
for the random fields SPDE parameter θτ,w θκ,w, shows a difference between the mod-
els. The uncertainty is much larger within SP rbp and SP rbcp than it is for the two other
models.
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(a) θτ,w. (b) θκ,w.

(c) θτ,u. (d) θκ,u.

Figure 6.6: Posterior distribution of the SPDE parameters for our GRF γi are denoted θτ,w, θκ,w,
and the SPDE parameters for our spatially random adjustment (GRF) of precipitation βi are denoted
θτ,u, θκ,u. The SPDE parameters are linked to the range ρ and the marginal variance σ2.

6.3 Posterior distribution of the GRFs

We now evaluate the posterior mean and standard deviation of the random field γi and the
spatially random adjustment of precipitation βi. To illustrate this we use maps showing
their posterior mean and standard deviation within the whole study area. The two models
without precipitation (SP r and SP rb) are very similar and we thus evaluate the posterior
distribution of the random field of SP r and look at the difference between the two models,
rather than SP rb itself. Further we evaluate the posterior distribution for the random field
of SP rbp, as it is very similar with the random field of SP rbpc we also illustrate the
difference between the two rather than SP rbpc alone. Finally, we evaluate the spatially
random adjustment of precipitation βi.

The posterior mean of the random field for SP r is illustrated in fig. 6.7a, showing
that the the random field has a positive posterior mean along the coast, while the posterior
mean is negative for the interior of Norway. We also observe that the posterior mean is
not as high for all coastal areas of Norway, the interior also have some local variations.
A positive posterior mean illustrates that the effect of the random field is large in coastal
areas, and that the random field account for a negative effect in the model for the interior.

Looking at the difference between the two models SP r and SP rb in fig. 6.7d, we see
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that SP r has a larger posterior mean for the coastal areas. For the interior of Norway the
random field has a smaller posterior mean for SP r than SP rb. This tells us that random
field have a larger effect on the posterior predicted runoff for SP r than SP rb, while the
posterior predicted runoff in the interior of Norway is less influenced by the random field
of SP r than SP rb. The large posterior predicted mean of the random field SP r in the
coastal areas is as expected, as the random field is the only explanatory variable in SP r.

If we further evaluate the posterior standard deviation of SP r in fig. 6.8a, it seems like
there is an approximately constant posterior standard deviation within the whole study
area, with some increase in standard deviation as we move further north in Norway. The
difference in posterior predicted standard deviation of the two random field, seen in fig.
6.8d tells us that within the whole study area the uncertainty of SP r is larger than within
SP rb. This reflects the decreased coverage probability of SP rb compared to SP r illus-
trated in tab. 6.1.

The posterior mean of the random field for SP rbp can be seen in fig. 6.7b. Here we
see that the posterior mean is negative within most of our study domain, which tell us that
the random field of the SP rbp has a negative effect on the posterior predicted runoff and
thus punish the explanatory variables gradient basin and precipitation.

Looking at the difference between SP rbp and SP rbpc in fig. 6.7e we see some dif-
ferences between the two models in the coastal areas and in the mountainous area in the
interior of Norway. Illustrating that random field of SP rbp has less effect on the posterior
predicted runoff in the interior mountainous areas, and that the random field of SP rbp
account for more of the posterior predictive runoff in the coastal areas of Norway.

The posterior standard deviation of SP rbp illustrated in fig. 6.8b shows that the un-
certainty of the random field is constant for the whole study area, while the difference
between the random fields of SP rbp and SP rbpc illustrated in fig. 6.8e shows that the
posterior mean of SP rbpc is more varying across Norway. This reflects the improved
predictive performance and high coverage probability of SP rbpc compared to SP rbp that
was shown in tab. 6.1.

Further we can observe the posterior mean and standard deviation of the spatially ran-
dom adjustment βi in fig. 6.9. Here it can bee seen that most of our study domain has
a constant posterior mean of 0, while there are some local variations. For coastal areas
are the effects of spatially random adjustment positive, while it is negative for most of
the interior of Norway. We observe a strong positive random adjustment in the interior of
Norway which belongs to the two posterior predictive runoff observations, seen in e.g. the
boxplot in fig. 6.2. From the standard deviation of our spatially random adjustment we
observe that the the uncertainty is larger in coastal areas where runoff is larger, these local
variations in standard deviation of our spatially random effect illustrates why the model
has the best predictive performance (see tab. 6.1), which increase our model performance
in terms of CRPS score.
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(a) SP r. (b) SP rbp.

(c) Posterior mean.

(d) SP r - SP rb. (e) SP rbp - SP rbpc.

(f) Posterior mean diff.

Figure 6.7: Posterior mean of the random filed γi within Norway for the spatial models. (a) and (b)
are the posterior mean for SP r and SP rbp respectively, and (d) and (e) are the difference between
posterior mean of SP r and SP rb, and of SP rbp and SP rbpc respectively. Obs. the range of the
two legends are different.
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(a) SP r. (b) SP rbp.

(c) Posterior standard deviation.

(d) SP r - SP rb. (e) SP rbp - SP rbpc.

(f) Posterior standard deviation diff.

Figure 6.8: Posterior standard deviation of the random field gammai within Norway for the spatial
models. (a) and (b) are the posterior standard deviation for SP r and SP rb respectively, and (d) and
(e) are the difference between posterior standard deviation of SP r and SP rb, and of SP rbp and
SP rbpc respectively. Obs. the range of the two legends are different.
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(a) Posterior mean.

(b) Posterior standard deviation.

Figure 6.9: Posterior mean and standard deviation of the spatially random adjustment βi of SP rbpc
model. Obs. the range of the two legends are different.
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Chapter 7
Discussion

In this thesis we have explored different statistical models to construct runoff maps in
Norway. The analysis were done in three steps. First we did explanatory analysis of
catchment characteristics, runoff and precipitation data. Next, we explored two classes
of initial models, linear models and random forest. From these analysis we concluded
to proceed to spatial models within the Bayesian framework suited for fast computations.
Within the Bayesian framework we built LGMs where the SPDE approach allow us to
reduce the computational cost.

Our thesis is motivated by the runoff maps NVE creates of Norway showing mean
annual runoff for the past 30 years. Our goal was to find a model able to predict runoff
efficiently and with high accuracy. We explored the predictive performance by conducting
a LOOCV where we used the two evaluation metrics RMSE and CRPS. While RMSE
only explore the precision of our models, CRPS allow us to also explore the accuracy as it
accounts for the whole posterior predictive distribution.

Through the exploration of predictive performance of our models we have found that it
is not sufficient to only have a random field for modelling runoff, neither is gradient basin
as an explanatory variable. The predictive performance showed large improvements as we
introduced precipitation as an explanatory variable.

When we introduced precipitation into our models we observed that the intercept ap-
proached zero, which illustrates how precipitation is the main force for runoff. We also
observed that gradient basin become less important as precipitation was introduced in the
model. The importance of gradient basin was even less important when we introduced
a spatially random adjustment of precipitation into the model. The spatially random ad-
justment was also able to scale the uncertainty of the model with increase observations of
precipitation, such that the model become heteroscedastic.

The models where we did not allow our explanatory variable to have a spatially vary-
ing coefficient, was not able to model the heteroscedasticity in our data. And the log-
transformed models was not able to improve the predictive performance of these models
in terms of CRPS. A remedy to the heteroscedasticity in the models without a spatially
varying coefficient could have been to allow the random error to have precision scaled
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with the observations of runoff, as done in the work of Roksvåg et al. (2019) and Inge-
brigtsen et al. (2015).

The model containing gradient basin only, could possibly be improved if we allowed
its coefficient to vary spatially. As this would allow gradient basin to have a varying effect
on the predicted runoff for different catchment locations in Norway. It would also be
interesting to see if we were able to increase the predictive performance of our models if
we scaled the precision of the random error.
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for avrenning 1961-1990. Tech. Rep. 2, Norges vassdrags- og energidirektorat.

Bivand, R., Keitt, T., Rowlingson, B., 2016. rgdal: Bindings for the Geospatial Data Ab-
straction Library. R package version 1.1-10.
URL https://CRAN.R-project.org/package=rgdal
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Appendix A
Suspect observations and data
selection

For this thesis we have emphasized the uncertainty within our models. One part of re-
ducing the uncertainty is to carefully choose the data, and remove outliers and suspicious
observation. We will now present how we have selected our data, what data was left out
and also reasoning for these choices.

A.1 Data selection

Removing catchments based on time

At NVE they create runoff maps of 30-year periods. As this thesis is based on the same
data as they will use in their runoff map of Norway for the period 19912020, and also
motivated by this work we have chosen to look at the 30-year period from 19872016.

From NVE we received observed runoff from 699 catchments. Each catchment has
been carefully considered by NVE and they have criterias that each catchment has to fulfil
in order to be used. The requirements are that they only consider catchments with data
from after 1958 and they have to have at least 5 years of data. Catchments that have been
affected by regulations are left out, if a catchment has been regulated in the past, but not
anymore, they can use the parts unaffected.

When we choose to focus on the hydrological years 19872016, 16 of our catchments
provided by NVE was removed. The catchments removed can be seen in tab. A.1.

Further we decided that in order to minimize uncertainty we choose to only use the
years within each catchment that contained at least 99.5% of the data. If more than 99.5%
of the data was missing, the year was removed.

It was also required that each catchment had to have at least 10 years of overlap of
data. This reduced number of catchments considerably, 308 catchments did not meet this
requirement. The 308 catchments left out of our dataset are listed in tab. A.2.
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Removing catchments based on catchment characteristics

After removing catchments with missing observations within our time period we are left
with 341 catchments. We know that some catchments also have missing catchment char-
acteristics. The catchment characteristics with missing observations can be found in tab.
A.3. With some simple initial analysis of our dataset, gradient basin seems too be a catch-
ment characteristic we want to carry on with, so we only remove the catchments that are
missing this catchment characteristic. We also remove the catchments that have missing
observations of gradient 1085 and length of the basin. This leaves us with 268 catchments.
The catchments we remove can be found in tab. A.4 and tab. A.5.

Field ID Station name
163 Fossum bru
179 Visa
215 Fundin ndf.
343 Gryta
368 Sæternbekken
505 Strøen ndf.
678 Bitdalsvatn
863 Stegemoen
878 Homstølvatn
919 Lundevatn
1460 Sørdalsvatn
1585 Elverhøy bru
1660 Gaulfoss
1699 Stokke
1873 Søndre Bjøllåvatn
2238 Galten

Table A.1: Catchments with missing observations in the hydrological time period 19872017.

Removing catchments based on strange observations

While working on the initial analysis some time was spent on analysing values of yearly
runoff. In Fig. A.1 histograms of yearly runoff for our catchments are displayed. Also a
histogram comparing median runoff from the periods of 19872016 and 19611990 can be
seen in Fig. A.2.

First investigating Fig. A.1, the histogram illustrating maximum yearly runoff. Catch-
ment named, Flostrand (field ID 1888), has a maximum value of 6567.0 mm/yr and a
minimum of 2937.1 mm/yr, it also has a high standard deviance of 789 mmyr. And an-
other 9 catchments also have a maximum yearly runoff above 5000 mm/yr.

Looking at minimum yearly runoff in Fig. A.1. The larges minimum value belongs to
the catchment named, Skjerdalselv (field ID 1450), which has a minimum of 3380 mm/yr,
a maximum of 5294 mm/yr, a median of 4271 mm/yr and a standard deviance of 556
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mm/yr. The smallest observation belongs to the catchment named, Dorgefoss (field ID
886), it has a minimum of 11 mm/yr, maximum of 286 mm/yr, median of 21 mm/yr and a
standard deviation of 50.1 mm/yr.

In the 95% quantile histogram (Fig. A.1) we observe that the largest runoff obser-
vation, also belong to the larges values observed in the histogram with maximume runoff
Fig. A.1. The largest runoff value belongs to the catchment Flostrand (field ID 1888) with
a runoff of 5602 mm/yr. And the smallest observed runoff value belongs to the catchment
Dorgefoss (field ID 886) with a value of 85 mm/yr.

In the 5% quantile histogram in (Fig. A.1). This also shows that the smallest value
belongs to Dorgefoss, and the larges to Flostrand.

Figure A.1: Histogram of maximum runoff, minimum runoff, 5% quantile runoff, 95% quantile
runoff, median runoff, and standard deviation runoff.

Fig. A.2 shows the median annual runoff from our data (red), and mean annual runoff
within the time period 19611990. We have used this as an indication of what observa-
tions might be strange. By looking at the shapes of the two histograms everything seems
mostly fine. When calculating the difference between the observations in median runoff
for 19611990 and median runoff for 19872017, we get a mean difference of 4.3 mm/yr,
median difference of -45.4 mm/yr, the maximum difference is of 2710.5 mm/yr and a
minimum of -1352.7 mm/yr.

From fig. A.2 we see that the smallest observation in red belongs to Dorgefoss with a
value of 21.5 mm/yr. In blue this catchment has a value of 2413 mm/yr. If we now look at
tab. A.6 and tab. A.7 where tables of the observations with larges difference is displayed,
we see that the difference in runoff between the two time periods for Dorgefoss is of 2391
mm/yr, which is a large difference. Tab. A.7 and tab. A.6 shows several catchments with
large difference, but most of them are either located within glaciers or in areas with large
precipitation. We also notice Valle (field ID 801) in tab. A.7 which has a low minimum
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median annual runoff and a high difference compared with the data from 19611990.
After consulting my findings with experts at NVE we have also decided to leave Dorge-

foss and Valle out of our data reducing our dataset to a number of 266 catchments.

Figure A.2: Histogram comparing median runoff in 1961-1990 period with the 1987-2017 period.
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field ID field ID field ID field ID field ID field ID field ID
23 511 857 1124 1587 1914 2171
45 517 858 1162 1592 1917 2181
50 520 864 1164 1600 1920 2183
51 525 870 1170 1628 1922 2184
65 547 872 1179 1632 1941 2190
67 548 875 1180 1633 1942 2201
76 549 885 1193 1663 1943 2203
78 550 887 1195 1679 1944 2204

132 551 888 1212 1686 1954 2211
141 565 889 1213 1694 1959 2212
144 583 891 1225 1702 1966 2213
153 588 894 1234 1709 1967 2223
164 591 895 1242 1710 1973 2224
167 594 901 1262 1712 1975 2233
173 597 920 1265 1713 1986 2234
174 601 930 1267 1725 1990 2240
175 637 943 1288 1730 1996 2250
180 651 956 1323 1740 1997 2263
182 662 957 1338 1749 1998 2272
183 663 958 1352 1772 1999 2273
184 668 962 1395 1788 2000 2274
187 669 963 1404 1816 2003 2275
196 679 966 1407 1820 2011 2278
205 684 970 1417 1821 2016 2283
214 687 986 1420 1824 2031 2284
218 701 989 1422 1828 2041 2289
219 710 992 1424 1829 2043 2290
220 711 993 1431 1832 2053 2294
241 714 994 1432 1840 2056 2300
250 720 1010 1441 1841 2059 2309
260 723 1011 1443 1847 2063 2323
279 728 1013 1445 1855 2083 2325
283 740 1015 1474 1857 2104 2330
284 748 1041 1475 1858 2105 2336
294 749 1052 1478 1862 2112 2339
312 759 1060 1479 1868 2114 2350
317 760 1065 1487 1870 2115 2351
323 761 1072 1497 1871 2127 2359
327 762 1079 1526 1872 2135 2369
370 779 1092 1545 1889 2137 2385
378 782 1095 1575 1894 2138 2417
452 807 1101 1578 1896 2145 2431
456 832 1113 1579 1907 2152 2483
488 847 1118 1582 1913 2161

Table A.2: Field ID for the catchments that do not have a 10 year overlap.
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Catchment characteristic number of missing data
gradient basin 70
gradient 1085 2
lenght km basin 2

Table A.3: Catchment characteristics with missing data.

feltNr gradient basin gradient 1085 length km basin
17 0.29 104.86

305 1.89 226.04
330 3.34 34.28
719 22.04 2.40
860 14.63 19.54

1053 29.43 20.99
1055 34.92 23.07
1058 55.74
1061 83.10
1353 28.53 14.71
1418 62.88 11.72
1470 33.84 33.46
1472 5.89 21.70
1480 51.83 21.07
1576 10.61 44.62
1577 35.15 16.72
1580 25.50 12.91
1584 59.14 8.03
1614 26.24 6.28
1664 20.03 23.20
1665 27.57 14.35
1666 21.06 35.03
1768 9.10 21.78
1782 4.38 125.36
1784 24.00 14.55
1789 12.21 34.16
1790 7.86 45.41
1796 5.99 74.68
1823 21.29 11.63
1825 14.52 8.80
1827 8.23 31.49
1861 36.80 14.83
1864 22.83 35.84
1867 26.50 11.12

Table A.4: Catchments with missing catchment characteristics, part 1.
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Field ID gradient basin gradient 1085 length km basin
1874 27.46 8.98
1876 40.31 11.10
1932 15.60 18.32
1938 25.87 29.78
1939 14.17 14.69
2022 15.30 36.44
2026 98.53 6.65
2047 21.91 7.28
2052 64.27 3.67
2064 6.47 38.87
2081 15.04 48.93
2090 11.25 41.01
2094 7.48 80.70
2095 4.90 84.36
2103 30.36 13.67
2116 31.09 11.91
2126 5.57 64.66
2168 6.36 31.62
2180 0.99 219.73
2185 1.71 50.97
2189 1.68 50.94
2194 1.00 218.32
2200 21.15 5.95
2206 1.82 89.38
2207 1.74 88.10
2214 3.51 23.36
2216 10.26 18.03
2225 8.85 28.52
2228 1.22 68.87
2230 2.35 142.63
2242 5.74 26.19
2253 4.33 372.51
2255 3.12 146.87
2261 16.67 22.63
2264 273.87 69.74
2279 4.98 39.14
2280 6.35 23.88
2281 5.12 13.21
2460 0.90 224.46

Table A.5: Catchments with missing catchment characteristics, part 2.
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Field ID Runoff 2017 Runoff 1990 Diff MIN MAX SD
1440 1827.90 4538.37 2710.47 1219.76 2995.03 472.16
1138 1830.03 4313.63 2483.60 1094.88 2517.64 373.76

886 21.50 2412.74 2391.24 10.73 285.64 50.13
1893 1463.91 3500.88 2036.97 880.45 4602.84 1061.99
1076 1943.34 3470.67 1527.33 1609.89 3326.43 455.83

801 215.95 1659.83 1443.88 144.56 397.97 53.20
1800 1533.22 2608.92 1075.70 1011.44 2428.67 299.54
1799 2502.79 3484.82 982.03 1908.33 3485.67 441.88
1004 938.94 1919.00 980.06 787.95 1457.97 199.35

820 1743.78 2613.12 869.34 1206.36 2961.54 410.08
977 2655.68 3409.94 754.26 1802.04 4087.15 611.72

1007 1108.58 1671.00 562.42 881.72 1588.62 182.42
1051 2669.56 3225.26 555.70 1744.44 5480.08 778.70
1345 1297.32 1846.41 549.09 804.86 2733.72 406.51
1344 1740.13 2256.22 516.09 1482.14 2661.23 258.41

Table A.6: Highest positive difference between median annual runoff in 1961-1990 and mean annual
runoff in 1987-2017.

Field ID Runoff 2017 Runoff 1990 Diff MIN MAX SD
1895 2999.52 2347.15 -652.37 2022.23 4768.15 631.88
1888 4002.52 3317.25 -685.27 2937.05 6566.95 859.01
1711 1252.85 503.00 -749.85 934.63 1611.54 219.98
1559 2680.94 1780.63 -900.31 2036.47 3457.11 435.73
2136 2650.66 1648.48 -1002.18 1962.49 3036.39 293.81

89 1789.31 436.60 -1352.71 1190.78 1981.00 218.93

Table A.7: Highest negative difference between median annual runoff in 1961-1990 and mean an-
nual runoff in 1987-2017.
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Field ID Field ID Field ID Field ID Field ID Field ID Field ID Field ID
17 317 709 958 1331 1632 1876 2135
22 323 710 962 1338 1633 1887 2136
23 327 711 963 1339 1639 1888 2137
29 330 714 966 1344 1644 1889 2138
30 343 718 970 1345 1660 1893 2145
32 365 719 977 1352 1661 1894 2147
39 368 720 986 1353 1663 1895 2148
40 370 723 989 1363 1664 1896 2149
43 378 728 992 1367 1665 1907 2152
45 392 740 993 1383 1666 1913 2156
50 393 746 994 1393 1679 1914 2157
51 424 747 997 1395 1683 1917 2160
65 426 748 1003 1396 1684 1918 2161
67 445 749 1004 1401 1686 1920 2167
76 452 750 1007 1402 1689 1922 2168
78 454 751 1010 1404 1691 1932 2171
81 455 752 1011 1405 1694 1938 2177
86 456 753 1013 1406 1699 1939 2180
89 474 759 1014 1407 1701 1940 2181
95 475 760 1015 1417 1702 1941 2183
97 485 761 1032 1418 1709 1942 2184

128 488 762 1041 1420 1710 1943 2185
132 502 763 1051 1421 1711 1944 2189
141 505 767 1052 1422 1712 1954 2190
144 507 770 1053 1424 1713 1959 2194
153 511 775 1054 1425 1714 1965 2200
158 513 776 1055 1429 1715 1966 2201
159 514 777 1058 1431 1723 1967 2203
160 515 779 1060 1432 1725 1972 2204
161 516 782 1061 1433 1727 1973 2206
163 517 784 1063 1434 1729 1975 2207
164 518 801 1065 1440 1730 1986 2211
166 520 807 1072 1441 1731 1987 2212
167 524 820 1076 1443 1736 1988 2213
168 525 822 1079 1445 1739 1990 2214
169 527 831 1092 1448 1740 1996 2216
172 529 832 1094 1450 1749 1997 2219
173 537 840 1095 1460 1753 1998 2220
174 545 844 1098 1468 1762 1999 2223
175 547 846 1101 1470 1765 2000 2224
176 548 847 1109 1471 1768 2003 2225
177 549 853 1113 1472 1772 2005 2228

Table A.8: First half of field IDs for catchments received by NVE.
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Field ID Field ID Field ID Field ID Field ID Field ID Field ID Field ID
179 550 857 1118 1474 1782 2008 2230
180 551 858 1121 1475 1784 2011 2233
182 561 860 1124 1478 1788 2016 2234
183 565 861 1136 1479 1789 2022 2238
184 567 863 1138 1480 1790 2026 2240
186 569 864 1157 1486 1796 2031 2242
187 583 869 1162 1487 1797 2041 2250
195 586 870 1163 1497 1799 2043 2253
196 588 872 1164 1502 1800 2047 2255
201 589 875 1167 1504 1808 2048 2261
205 591 878 1170 1513 1810 2052 2263
206 593 879 1171 1526 1811 2053 2264
214 594 881 1172 1530 1816 2055 2272
215 597 885 1175 1532 1820 2056 2273
218 599 886 1179 1534 1821 2057 2274
219 601 887 1180 1535 1823 2059 2275
220 602 888 1187 1544 1824 2060 2278
231 612 889 1193 1545 1825 2063 2279
241 618 891 1195 1559 1827 2064 2280
242 635 894 1212 1560 1828 2065 2281
248 637 895 1213 1561 1829 2068 2283
250 643 899 1225 1573 1832 2077 2284
252 645 900 1226 1575 1835 2081 2289
255 651 901 1232 1576 1836 2082 2290
260 662 905 1234 1577 1840 2083 2294
263 663 908 1239 1578 1841 2090 2300
267 668 910 1242 1579 1847 2094 2309
268 669 919 1256 1580 1855 2095 2323
269 672 920 1257 1582 1857 2101 2325
270 677 929 1262 1584 1858 2103 2330
271 678 930 1265 1585 1861 2104 2336
272 679 931 1267 1587 1862 2105 2339
279 680 932 1272 1592 1864 2112 2350
283 682 935 1277 1593 1865 2113 2351
284 684 939 1288 1594 1867 2114 2359
294 687 940 1298 1600 1868 2115 2369
304 693 941 1300 1602 1870 2116 2385
305 694 943 1302 1614 1871 2121 2417
311 698 949 1323 1621 1872 2125 2431
312 701 956 1325 1628 1873 2126 2460
313 702 957 1326 1630 1874 2127 2483

Table A.9: Second half of field IDs for catchments received by NVE.
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Field ID Field ID Field ID Field ID Field ID Field ID Field ID
248 40 1534 1739 1799 1138 752

81 454 255 272 2060 677 1559
231 612 680 1723 502 1171 1187
424 1727 746 128 910 770 1051

97 304 507 1448 899 1363 527
693 160 2219 1167 514 1502 753
268 475 1630 1753 1175 1530 1383

2149 1715 776 2157 941 672 1226
2147 1573 861 1691 1560 22 2055
2148 635 524 949 767 201 694

593 455 1232 1513 1406 1940 643
445 1661 1239 1561 1339 698 1811
393 2113 2125 1593 747 1014 751
561 940 169 2101 931 682 1393

39 474 1121 2160 1076 1888 513
775 158 177 267 935 1440 1689
618 1468 176 2068 586 1063 1054
537 1344 2082 32 853 1987 977
569 1429 1621 567 599 905 763
545 426 718 86 2220 1277 784

1683 1256 2156 932 1865 1367
161 159 1421 820 929 1302

1639 1835 1109 1098 2077 900
518 2065 1918 529 1300 1988
311 1172 1433 29 908 1272

1711 1401 269 702 1972 1486
777 1701 1396 645 515 485
831 186 166 1434 1893 1594
252 30 1965 1808 392 1298

1007 1736 1762 1765 1136 1450
1004 1094 1402 1405 881 997

95 43 1325 879 1714 1895
602 271 846 1729 313 2008

89 172 869 1810 1836 1032
709 1731 1471 1644 1331 2177

1535 263 2121 242 195 750
1163 1532 270 589 2057 822
1684 168 365 206 1326 2048

844 1797 939 2005 1345 1887
1257 1800 516 1504 1003 1157
2167 1425 840 1602 1544 2136

Table A.10: List of field ID for all 266 catchments used
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Appendix B
Maps of catchment characteristics

(a) Gradient basin (m/km). (b) Gradient 1085 (m/km).

(c) Gradient river (m/km).

Figure B.1: Map of gradients.
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(a) Height minimum (m. a.s.l). (b) Height hypso 50 (m. a.s.l).

(c) Height maximum (m. a.s.l).

Figure B.2: Map of elevation.
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(a) Percentage agriculture. (b) Percentage bog.

(c) Percentage effective lake. (d) Percentage lake.

(e) Percentage forest. (f) Percentage mountain.

(g) Percentage glacier. (h) Percentage urban.

Figure B.3: Map of elevation.
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(a) Length river (km). (b) Length basin (km).

Figure B.4: Map showing lengths of rivers and basins.
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Appendix C
Exploration of spatial dependency
between observations of yearly
runoff

To explore the spatial correlation between observations of yearly runoff we use a semi-
variogram plot. We use this semivariogram as a tool for exploring whether there are any
spatial dependency between our catchments. If there is spatial dependency, we are able to
get an approximate range of how far the correlation reaches.

The variogram is defined by Cressie (1993) as

2γ(s1 − s2) = Var(η1 − η2) (C.1)

where 2γ(·) is the variogram of the random process η defined as {η(s) : s ∈ D} where si
are locations in R2 for i = 1, .., n.

The model illustrated below in Fig. C.1 is a semivariogram γ(·) where a Gaussian
model has been fitted. The 266 catchments have been divided into 15 groups based on
distance of separation. In the plot we can see that the distance ranges from 75 km to 1000
km. By looking at the semivariogram we see that it flattens out at a range of approximately
200 km. Telling us that there probably are some correlation between catchments, but if the
range between catchments becomes greater than approximately 200 km it does not seems
to be any correlation.
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Figure C.1: Semivariance plot of the 266 catchments divided into 15 groups. The nugget is where
the semivariogram model intercepts the y-axis, here it is at approximately 100 000. The range is
where the model first flattens out, which here is at approximately 200 km. The sill is the value of
semivariance where our model attains its range.
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Appendix D
The LGM

In this chapter we build the LGM presented in sections 3.2 suited for INLA, which we use
for predicting runoff y. We first present the Bayesian hierarchical construction of the pure
model SP r, this model is the ”baseline” for all our spatial models, afterwards we present
an overview of the LGMs SP rb, SP rbp and SP rbpc.

The observation model eq. 4.3 has a Gaussian distributed random error with mean
zero and prePIsion τ−1

p , and thus the observation model is Gaussian distributed dependent
on the GMRF w, the intercept β0 and the prePIsion τ−1

p , e.g.

y|w, β0, τp ∼ N(η, τ−1
p I) (D.1)

with the expected value being

E[y|w, β0, τp] = η(s) (D.2)

where η(s) is the model for the unobserved process (field) as defined in eq. 4.12.
Further we gather the parameters of the unobserved random process η(s) in a vector,

θ1 = [w, β0], where our spatial parameter w is a GMRF with the prePIsion matrix given
in eq. 3.25.

w|θτ,w, θκ,w ∼ N(0,Q−1(θτ,w, θκ,w)) (D.3)

β0 ∼ N(·, ·) (D.4)

since all the parameters of the unobserved process η(s) are all Gaussian they are also
jointly Gaussian e.g. θτ,w ∼ N(·, ·).

For our spatial models we have the three SPDE parameters τp, θτ,w and θκ,w gathered
in the following vector θ2 = [τp, θκ,w, θτ,w]. θ2 defines our last level of our Bayesian
hierarchical model, and the joint distribution of our model for the hyper parameters θ2 are
defined as

π(θ2) = π(τp)π(θκ,w)π(θτ,w) (D.5)
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where we have to assign some prior distributions to each hyperparameter in θ2. The prior
distributions used are INLA default priors which are Gaussian distributed with mean 0 and
and variance σ∗2.

The LGMs SP rb ad SP rbp only differ by the number of hyperparameters in the latent
vector. For SP rb we have the vector θ1 = [w, β0, β1] for the unobserved process ηi
now expressed as η(s) where s = [s1, ..., si], and for SP rbp we have the vector θ1 =
[w, β0, β1, β2] for the unobserved process η(s).

In the LGM for SP rbpc we have introduced the spatially varying coefficient, β̃j,i =
β2 + βj,i, such as the observation models for SP rbpc is defined as

y*|w,u, τc, β0, β1, β2 ∼ N(η, τ−1
c I) (D.6)

and the vector for the unobserved process η*(s) becomes θ1 = [w,u, β0, β1, β2], where
both w and u are GMRFs with prePIsion matrices as given in eq. 3.25. Within the
Bayesian framework we assume a Gaussian prior to our intercept β0, and we assume Gaus-
sian priors for the coefficients of the two explanatory variables g and p, β1 and β3. This
can be seen as

w|θτ,w, θκ,w ∼ N(0,Q−1(θτ,w, θκ,w)) (D.7)

u|θτ,u, θκ,u ∼ N(0,Q−1(θτ,u, θκ,u)) (D.8)

β0 ∼ N(·, ·) (D.9)
β1 ∼ N(·, ·) (D.10)
β3 ∼ N(·, ·) (D.11)
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Appendix E
Results linear models
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -3608.0519 2352.6662 -1.53 0.1265

utm east z33 -0.0028 0.0005 -5.35 0.0000
utm north z33 0.0008 0.0004 2.17 0.0308

area total 0.0083 0.0190 0.44 0.6610
gradient 1085 -9.0641 3.2009 -2.83 0.0050

gradient basin 20.3458 3.8772 5.25 0.0000
gradient river 12.6899 3.4224 3.71 0.0003

height minimum 0.4048 0.2558 1.58 0.1149
height hypso 10 0.6331 1.0686 0.59 0.5542
height hypso 20 0.2194 2.4962 0.09 0.9300
height hypso 30 -5.8039 4.0228 -1.44 0.1504
height hypso 40 4.0449 4.7710 0.85 0.3974
height hypso 50 -2.2236 5.0481 -0.44 0.6600
height hypso 60 6.7968 5.7536 1.18 0.2387
height hypso 70 -7.4592 5.5227 -1.35 0.1781
height hypso 80 3.3739 3.7216 0.91 0.3656
height hypso 90 -1.6005 1.4190 -1.13 0.2605

height maximum 0.3079 0.2700 1.14 0.2553
length km basin 1.6873 4.1640 0.41 0.6857
length km river -1.8657 2.5838 -0.72 0.4710

perc agricul -14.5546 8.7347 -1.67 0.0970
perc bog 13.4708 8.2881 1.63 0.1054

perc eff lake -30.4932 15.9756 -1.91 0.0575
perc forest -3.1948 4.9273 -0.65 0.5174

perc glacier 23.8127 7.3291 3.25 0.0013
perc lake 21.6914 10.9884 1.97 0.0495

perc mountain 13.9847 5.3211 2.63 0.0091
perc urban 24.6405 88.5146 0.28 0.7810

Table E.1: Results form LM1.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6273 1.4401 2.52 0.0124

utm east z33 -0.0000 0.0000 -6.14 0.0000
utm north z33 0.0000 0.0000 2.32 0.0213

area total 0.0000 0.0000 0.94 0.3502
gradient 1085 -0.0031 0.0020 -1.58 0.1155

gradient basin 0.0121 0.0024 5.11 0.0000
gradient river 0.0044 0.0021 2.10 0.0366

height minimum 0.0001 0.0002 0.78 0.4340
height hypso 10 -0.0000 0.0007 -0.02 0.9825
height hypso 20 0.0003 0.0015 0.19 0.8482
height hypso 30 -0.0021 0.0025 -0.85 0.3955
height hypso 40 0.0010 0.0029 0.36 0.7201
height hypso 50 -0.0008 0.0031 -0.27 0.7881
height hypso 60 0.0017 0.0035 0.49 0.6261
height hypso 70 -0.0019 0.0034 -0.57 0.5690
height hypso 80 0.0013 0.0023 0.59 0.5564
height hypso 90 -0.0009 0.0009 -1.00 0.3189

height maximum 0.0002 0.0002 1.22 0.2249
length km basin -0.0001 0.0025 -0.03 0.9741
length km river -0.0015 0.0016 -0.94 0.3464

perc agricul -0.0103 0.0053 -1.93 0.0554
perc bog 0.0131 0.0051 2.59 0.0102

perc eff lake -0.0178 0.0098 -1.83 0.0692
perc forest -0.0003 0.0030 -0.09 0.9295

perc glacier 0.0190 0.0045 4.24 0.0000
perc lake 0.0227 0.0067 3.37 0.0009

perc mountain 0.0126 0.0033 3.87 0.0001
perc urban 0.0039 0.0542 0.07 0.9429

Table E.2: Results form LM1 c log.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.3172 2291.9406 0.00 0.9975

utm east z33 -0.0010 0.0006 -1.71 0.0889
utm north z33 0.0001 0.0004 0.18 0.8559

area total 0.0050 0.0178 0.28 0.7779
gradient 1085 -8.4243 3.0028 -2.81 0.0054

gradient basin 19.2175 3.6400 5.28 0.0000
gradient river 11.3706 3.2165 3.54 0.0005

height minimum 0.3760 0.2398 1.57 0.1183
height hypso 10 0.5181 1.0020 0.52 0.6056
height hypso 20 0.5826 2.3410 0.25 0.8037
height hypso 30 -4.2425 3.7809 -1.12 0.2630
height hypso 40 2.3368 4.4825 0.52 0.6026
height hypso 50 -1.2307 4.7356 -0.26 0.7952
height hypso 60 4.2969 5.4111 0.79 0.4279
height hypso 70 -4.5343 5.2020 -0.87 0.3843
height hypso 80 2.4110 3.4929 0.69 0.4907
height hypso 90 -1.5093 1.3304 -1.13 0.2577

height maximum 0.3123 0.2532 1.23 0.2186
length km basin 2.3986 3.9056 0.61 0.5397
length km river -2.1065 2.4227 -0.87 0.3855

perc agricul -14.0148 8.1892 -1.71 0.0883
perc bog 13.8197 7.7702 1.78 0.0766

perc eff lake -12.8636 15.2821 -0.84 0.4008
perc forest 0.2595 4.6575 0.06 0.9556

perc glacier 16.4143 6.9883 2.35 0.0197
perc lake 10.4671 10.4816 1.00 0.3190

perc mountain 11.0806 5.0135 2.21 0.0281
perc urban 48.7612 83.0855 0.59 0.5578

avg 5 0.4215 0.0727 5.80 0.0000

Table E.3: Results form LM cn.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5281 1.4289 3.87 0.0001

utm east z33 -0.0000 0.0000 -2.81 0.0054
utm north z33 0.0000 0.0000 0.60 0.5499

area total 0.0000 0.0000 0.82 0.4113
gradient 1085 -0.0028 0.0019 -1.47 0.1419

gradient basin 0.0115 0.0023 5.08 0.0000
gradient river 0.0037 0.0020 1.85 0.0655

height minimum 0.0001 0.0001 0.72 0.4727
height hypso 10 -0.0001 0.0006 -0.12 0.9048
height hypso 20 0.0005 0.0015 0.33 0.7406
height hypso 30 -0.0013 0.0024 -0.54 0.5890
height hypso 40 0.0001 0.0028 0.05 0.9573
height hypso 50 -0.0003 0.0030 -0.10 0.9167
height hypso 60 0.0004 0.0034 0.12 0.9048
height hypso 70 -0.0004 0.0032 -0.12 0.9044
height hypso 80 0.0008 0.0022 0.38 0.7015
height hypso 90 -0.0008 0.0008 -0.99 0.3241

height maximum 0.0002 0.0002 1.29 0.1988
length km basin 0.0003 0.0024 0.12 0.9050
length km river -0.0016 0.0015 -1.07 0.2849

perc agricul -0.0100 0.0051 -1.96 0.0511
perc bog 0.0133 0.0048 2.75 0.0064

perc eff lake -0.0086 0.0095 -0.90 0.3688
perc forest 0.0015 0.0029 0.53 0.5942

perc glacier 0.0151 0.0044 3.47 0.0006
perc lake 0.0168 0.0065 2.56 0.0110

perc mountain 0.0111 0.0031 3.55 0.0005
perc urban 0.0166 0.0518 0.32 0.7494

avg 5 0.0002 0.0000 4.89 0.0000

Table E.4: Results form LM cn log.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -2377.4479 2011.7625 -1.18 0.2385

utm east z33 -0.0008 0.0005 -1.61 0.1086
utm north z33 0.0004 0.0003 1.25 0.2120

area total 0.0104 0.0155 0.67 0.5026
gradient 1085 -12.6459 2.6679 -4.74 0.0000

gradient basin 10.9081 3.3109 3.29 0.0011
gradient river 11.1778 2.8125 3.97 0.0001

height minimum 0.2210 0.2114 1.05 0.2970
height hypso 10 0.5798 0.9057 0.64 0.5227
height hypso 20 0.6370 2.1368 0.30 0.7659
height hypso 30 -3.2646 3.3387 -0.98 0.3292
height hypso 40 2.1548 3.8978 0.55 0.5809
height hypso 50 -3.5669 4.1377 -0.86 0.3895
height hypso 60 6.4810 4.7369 1.37 0.1726
height hypso 70 -3.9800 4.5407 -0.88 0.3816
height hypso 80 1.5938 3.0412 0.52 0.6007
height hypso 90 -1.0075 1.1583 -0.87 0.3853

height maximum 0.0866 0.2216 0.39 0.6964
length km basin 0.8780 3.4020 0.26 0.7966
length km river -1.1627 2.1098 -0.55 0.5821

perc agricul -10.2626 7.1582 -1.43 0.1530
perc bog 3.0659 6.8759 0.45 0.6561

perc eff lake 1.6950 13.3884 0.13 0.8994
perc forest -2.2442 4.0662 -0.55 0.5815

perc glacier 1.7610 6.3021 0.28 0.7802
perc lake -8.5611 9.3694 -0.91 0.3618

perc mountain 3.5402 4.4421 0.80 0.4263
perc urban 6.5987 72.4328 0.09 0.9275

avg 5 0.0777 0.0746 1.04 0.2990
median prec 0.6218 0.0714 8.71 0.0000

Table E.5: Results form LM cnp.

100



Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9990 1.2810 -0.78 0.4363

utm east z33 -0.0000 0.0000 -2.06 0.0405
utm north z33 0.0000 0.0000 1.73 0.0851

area total 0.0000 0.0000 0.82 0.4105
gradient 1085 -0.0052 0.0015 -3.40 0.0008
gradient basin 0.0040 0.0019 2.05 0.0416
gradient river 0.0038 0.0016 2.37 0.0186

height minimum 0.0000 0.0001 0.18 0.8539
height hypso 10 0.0002 0.0005 0.35 0.7252
height hypso 20 0.0001 0.0012 0.07 0.9449
height hypso 30 -0.0006 0.0019 -0.31 0.7559
height hypso 40 0.0002 0.0022 0.07 0.9419
height hypso 50 -0.0016 0.0024 -0.67 0.5039
height hypso 60 0.0025 0.0027 0.92 0.3600
height hypso 70 -0.0008 0.0026 -0.32 0.7523
height hypso 80 0.0003 0.0018 0.19 0.8520
height hypso 90 -0.0004 0.0007 -0.67 0.5018

height maximum 0.0001 0.0001 0.40 0.6884
length km basin 0.0006 0.0020 0.33 0.7423
length km river -0.0013 0.0012 -1.05 0.2932

perc agricul -0.0086 0.0041 -2.09 0.0373
perc bog 0.0027 0.0040 0.66 0.5076

perc eff lake 0.0020 0.0077 0.26 0.7976
perc forest -0.0015 0.0023 -0.62 0.5355

perc glacier 0.0015 0.0037 0.42 0.6783
perc lake -0.0025 0.0055 -0.46 0.6485

perc mountain 0.0038 0.0026 1.46 0.1444
perc urban -0.0254 0.0418 -0.61 0.5434

avg 5 0.0000 0.0000 0.06 0.9498
median prec 0.8185 0.0714 11.46 0.0000

Table E.6: Results form LM cnp log.
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Appendix F
Additional results spatial models

(a) SP r RMSE score. (b) SP rb RMSE score.

(c) SP rbp RMSE score. (d) SP rbpc RMSE score.

Figure F.1: Map showing RMSE scores from our spatial models.
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(a) SP r CRPS score. (b) SP rb CRPS score.

(c) SP rbp CRPS score. (d) SP rbpc CRPS score.

Figure F.2: Map showing CRPS scores from our spatial models.
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(a) SP r. (b) SP rb.

(c) SP rbp. (d) SP rbpc.

Figure F.3: Absolute relative error from our spatial models plotted in a map with point locations of
the 266 catchments.
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Appendix G
Transformed models

Model RMSE CRPS
1 LM c log 332.24 1270.00
2 LM cn log 309.24 1281.00
3 LM cnp log 238.80 1315.00
4 SP r log 287.70 1309.10
5 SP rb log 259.90 1140.30
6 SP rbp log 221.10 1172.00
7 SP rbpc log 209.20 1143.00

Table G.1: Evaluation of model performance for the log-transformed models. The model perfor-
mance is evaluated with mean RMSE and mean CRPS score for the LOOCV predictions.

The models presented in chapter 4.1 and 4.3 where also fitted to the logarithm of runoff.
This was done to explore if it could remove the observed heterogeneity in our residuals
(see fig. 5.9a and fig. 6.4). Evaluation of predictive performance was done for the original
scale, e.g. predictions of runoff were back-transformed.

A log transformation of the dependent variable median annual runoff for our models
(tab. 4.1 and 4.4) was done as an attempt to remove heterogeneity in our data. The
CRPS scores of the log-transformed models in tab. G.1, tells us that something is going
terribly wrong as the CRPS value shows much higher values than the non-transformed
models. The CRPS is calculated based on the whole posterior predictive distribution, and
thus reviles more information about the posterior predictive distribution than RMSE which
only evaluates the difference between predicted and observed value. If we have a look at
tab. G.1a all RMSE values for all our models are plotted. It shows that there is not much
difference in the transformed and non-transformed models for the RMSE value. If we look
at tab. G.1b we see how there is a much larger difference in CRPS values within the linear
and spatial models. The log-transformed linear models are worst in terms of CRPS score.
The log-transformed spatial models do not perform much better, having much larger upper
tails than the corresponding non-transformed models.
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(a) RMSE values of LOOCV prediction for all our models.

(b) CRPS values of LOOCV prediction for all our models.

Figure G.1: Evaluation of model performance of all our models displayed in boxplots. (a) Shows
the RMSE score and (b) shows the CRPS score.

Further we look at the residuals plotted against the predicted median annual runoff in
fig. G.2. The log-transformed linear models (fig. G.2a) shows a cone shape that indicate
heterogeneity and we also observe some observations that are much larger than the residual
value we saw for the non-transformed linear models in fig. 5.9a. The log-transformed
spatial models in fig. G.2b shows a cone shape as we did for the log-transformed linear
models, where we also have some very large residuals that are much larger than the outliers
seen in fig. 6.4 for the non-transformed models.

To illustrate what happens when log-transforming the models we have plotted the pre-
diction interval (PI) of all our models. By looking at the PIs for our linear models with
catchment characteristics as the covariates (LM c and LM c log) in fig. G.6 we see how
the PIs for the non-transformed model (fig. G.6a) are quite similar for all observations,
and also that the range of the PIs are around 2000 mm/yr. For the transformed model (fig.
G.6b) the PIs differ a lot, for small observations the PIs are more narrow with a range
of approximately 800 mm/yr, but for larger observations the PIs are much larger, and the
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(a) Residuals of LM log models. (b) Residuals of SP log models.

Figure G.2: Residuals plotted against LOOCV predicted values for the log-transformed models. (a)
is for the log-transformed linear model, (b) is the log-transformed spatial models.

largest PIs have a range of almost 5000 mm/yr. These large PIs get punished in the CRPS
and they give us a large CRPS value. The same can be said about the linear models with
catchment characteristics and a spatial dependency term (LM cn and LM cn log) plotted
in fig. G.7. For the log-transformed model (fig. G.7b) the PIs are small for small observa-
tions of runoff and for the large observations is has a range of approximately 3000 mm/yr.
When precipitation is included, in addition to catchment characteristics and a spatial term
in the linear models (LM cnp and LM cnp log), the overall PIs get a smaller range, as
seen in fig. G.8, but the log-transformed model remains to have to wide PIs for large
observations.

The PIs for the spatial models are plotted in fig. G.9, G.10, G.11 and G.12. Here
we see that the PIs for our log-transformed models are much too wide, as it ranges from
-4000 and up to 4000 it is not a quality we want. We also notice how the PIs of the non-
transformed models are much more narrow than what any other model in this thesis show,
and although some observations are not covered by its PI, most observations are.

To further look at what happens with the log-transformed models we have chosen to
look at two catchments posterior predictive distribution. The two catchments are namely
Fiskum (field ID 515) and Risevatn (field ID 1440). Both are plotted in a map in fig. G.3.
They were chosen based on the residual value from the log-transformed models. Fiskum
has a residual value of -250 mm/yr, while fig. G.3 have a residual value of -1612 mm/yr.

We first look at the posterior predictive distribution of our linear models in fig. G.4.
The distribution for catchment named Fiskum (field ID 515) plotted in fig. G.4a and G.4c
shows a much wider standard deviation for the log-transformed than the non-transformed.
Also the mean of the non-transformed are much smaller than the mean of the transformed
model. For Risevatn (field ID 1440) both the non-transformed (fig. G.4b) and the trans-
formed (G.4c) has a mean much larger than observed. For Fiskum we observe that the
posterior predictive distribution is much wider for the transformed model, than for the
non-transformed model. The posterior predictive distribution is also much larger for Rise-
vatn than for Fiskum.

The posterior predictive distribution of our spatial models is seen in (fig. G.5). For
catchment number 515 the non-transformed models (fig. G.5a) perform very well in terms

109



Figure G.3: Map showing the point locations of the two catchments used to illustrate posterior
predictive distribution of our models.

of prediction versus observed, there is a difference between the different models within
this catchment. We see that the SP rbpc (with spatially varying covariate) has the smallest
standard deviation and that SP r (with spatially random field) has a larger standard devia-
tion of the spatial models. The log-transformed models (fig. G.5c) shows that SP rbp and
SP rbpc (both with precipitation) are similar, and so are the two models SP r and SP rb
(both without precipitation) where the standard deviation is much larger. For catchment
with field ID 1440 (fig. G.5b and G.5d) the models do not fit well with the observed me-
dian annual runoff. Here the SP rbpc has a much larger standard deviation than the other
models. The mean and standard deviation for the models at this catchment also seem to be
quite different, and the standard deviation of the transformed models are much larger than
the standard deviation of the non-transformed models.
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(a) Field ID 515. (b) Field ID 1440.

(c) Field ID 515. (d) Field ID 1440.

Figure G.4: Posterior predictive distribution for Fiskum (field ID 515) and Risevatn (field ID 1440)
with the linear models. The black line represents the observed value of runoff.

(a) Field ID 515. (b) Field ID 1441.

(c) Field ID 515. (d) Field ID 1440.

Figure G.5: Posterior predictive distribution for Fiskum (field ID 515) and Risevatn (field ID 1440)
with the spatial models. The black line represents the observed value of runoff.
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(a) LM c 95% PI. (b) LM c log 95% PI.

Figure G.6: Plots of the 95% prediction interval for the models LM c and LM c log.
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(a) LM cn 95% PI. (b) LM cn log 95% PI.

Figure G.7: Plots of the 95% prediction interval for the models LM cn and LM cn log.
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(a) LM cnp 95% PI. (b) LM cnp log 95% PI.

Figure G.8: Plots of the 95% prediction interval for the models LM cnp and LM cnp log.
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(a) SP r 95% PI. (b) SP r log 95% PI.

Figure G.9: Plots of the 95% prediction interval for the models SP r and SP r log.
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(a) SP rb 95% PI. (b) SP rb log 95% PI.

Figure G.10: Plots of the 95% prediction interval for the models SP rb and SP rb log.
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(a) SP rbp 95% PI. (b) SP rbp log 95% PI.

Figure G.11: Plots of the 95% prediction interval for the models SP rbp and SP rbp log.
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(a) SP rbpc 95% PI. (b) SP rbpc log 95% PI.

Figure G.12: Plots of the 95% prediction interval for the models SP rbpc and SP rbpc log.
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