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The cellular phenotypes and the expression of cytokines were studied in the lungs of mice, using

immunohistochemistry, during different phases of slowly progressive primary murine tuberculosis infection.

During the ®rst phase the small focal lesions in healthy mice contained predominantly interleukin-2 (IL-2)-

expressing cells. A small number of tumour necrosis factor-a (TNF-a)-, monocyte chemoattractant protein-1

(MCP-1)- and IL-10-expressing cells were also present. IL-4-expressing cells were not detected. During the

second phase the mice became unwell, but the bacterial counts and the size of focal lesions stabilized. IL-4-

expressing cells appeared. The IL-10-, TNF-a- and MCP-1-expressing cells increased in number. On

progression to phase three, the mice became seriously unwell and died rapidly. The in¯ammation spread to

< 80% of the lung parenchyma. There was a marked increase in the number of IL-10-expressing cells.

Expression of other cytokines was similar to that observed in the second phase. In the lesions, 3±6% of the

macrophages (Mf) containing mycobacterial antigens expressed high levels of IL-10 and TNF-a. The

absolute numbers of CD3-, CD4- and CD11b-expressing cells in the lesions increased with the progression of

infection. The numbers of CD8� cells were reduced in the last phase of infection. The kinetics of

T-lymphocyte subsets and the pattern of cytokine expression changed with the type and degree of tissue

injury. The small number of Mf with a heavy load of mycobacterial antigens may be the cause of this

disturbance in cytokine balance, thus leading to progression of in¯ammation.

Tehmina Mustafa, Center for International Health, Armauer Hansen Building, Haukeland University

Hospital, N-5021 Bergen, Norway

INTRODUCTION

Acquired resistance to Mycobacterium tuberculosis infection is

believed to depend upon cell-mediated immunity, with major

effectors being mononuclear phagocytes and T lymphocytes [1,

2]. The immune response, however, contributes both to control of

infection and tissue damage. In murine tuberculosis (TB), both

CD4� [3, 4] and CD8� [3±6] T cells play a major role in

protective immunity. The T helper 1 (Th1) cytokines ÿ inter-

leukin (IL)-2 and interferon-g (IFN-g) ÿ promote cellular

immunity by activating macrophages (Mf), while T helper 2

(Th2) cytokines (IL-4, ÿ5, ÿ6 and ÿ10) induce B-cell differ-

entiation and promote humoral immunity [7]. Th2 cytokines are

known to down-regulate the Th1 response to a number of micro-

bial pathogens, consequently preventing infection from being

resolved [8±10]. During the ®rst 3±4 weeks of M. tuberculosis

infection, it has been shown that mice predominantly generate

a Th1 response, whereas in the following weeks they also

generate a Th2 response. This is interpreted as evidence that

the Th1 cells are protective, whereas the Th2 cells are associated

with the chronic and progressive disease [11, 12]. In human TB

the presence of an increased level of Th2 cytokines in blood is

shown to be associated with severe disease [13, 14]. A Th2-

dominated immune response has been found in tuberculin-

negative patients as compared with tuberculin-positive patients

or healthy donors [15]. In leprosy, the Th1 cytokines are

correlated with the tuberculoid form of disease while Th2

cytokines dominate in the lepromatous form [16].

We have previously established a mouse model of slowly

progressive primary tuberculosis [17, 18]. Mice infected intra-

peritoneally (i.p.) with a moderate dose of M. tuberculosis strain

H37Rv developed slowly progressive disease, which passed
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through three distinctive phases [17]. The ®rst phase was

characterized by lack of clinical signs of disease, small granulo-

mas in the lungs and progressive increase in bacterial counts.

During the second phase, mice developed signs of disease. The

bacterial counts and granuloma size, however, remained stable.

The third phase was characterized by severe disease, high

mortality and a sudden loss of the focal nature of the lesions

and spread of in¯ammatory in®ltrates to about 80% of lung

parenchyma. This dramatic deterioration took place without

signi®cant change in the bacterial counts. Thus, the increase in

morbidity and mortality appears to occur as a result of sudden

changes in the host immune response.

The aim of this study was to analyse the composition of

in¯ammatory cells and the cytokine pro®le in situ in the lungs

throughout the course of infection, with particular emphasis on

the immunological changes coinciding with a shift to different

phases of infection.

MATERIALS AND METHODS

Mouse model. The mouse model for slowly progressive primary tuber-

culosis has been described previously [17]. Brie¯y, B6D2F1Bom hybrid

female mice of approximately 12 weeks of age were used. Each mouse

was inoculated i.p. with 200 ml of phosphate-buffered saline (PBS)

containing < 1.5 ´ 106 colony-forming units (CFU) of M. tuberculosis

strain H37Rv. Mice were killed at four-weekly intervals up to week 41

and later at 52, 57 and 70 weeks after infection. Time-points selected for

this study were weeks 8 and 12 from phase 1, weeks 24 and 29 from

phase 2, and weeks 41 and 70 from phase 3.

Immunohistochemistry. One-half of a lung from each mouse was

frozen in isopentane prechilled with liquid nitrogen. From week 29

onwards, perfusion of the lungs was performed, followed by ®xation.

The right lungs were perfused with a mixture (1 : 1, vol/vol) of distilled

water and Tissue-TekÒ (OCT compound, Leica Mikroscopi AS, Oslo,

Norway) before freezing. The frozen specimens were embedded in OCT

compound and stored at ÿ 70 8C until sectioning. Sections of approxi-

mately 5 mm were prepared, in a cryostat, from frozen tissues. All the

antibodies used are described in Table 1. The sections were stained by

using the avidin±biotin±peroxidase complex (ABC; Dako A/S,

Glostrup, Denmark), as described previously [17]. Brie¯y, the sections

were ®xed in cold acetone for 10 min. Endogenous peroxidase activity

was blocked with H2O2. Sections were also pretreated with avidin and

biotin blocking solution in order to reduce endogenous biotin staining

(Vector Laboratories, Burlingame, CA, USA). To block nonspeci®c

binding mainly by Fc receptors, incubation was carried out with

normal serum of the animal species in which the secondary antibody

was made. Sections were then incubated overnight with primary

antibody. Incubation with biotinylated secondary antibody was fol-

lowed by incubation with ABC (Dako A/S). Location of antigen was

visualized by incubating sections with H2O2 and 3-amino-9-ethylcar-

bazol-containing buffer. The sections were washed in Tris-PBS (TBS)

between incubations. The slides were slightly counter-stained with

Mayer's haematoxylin. As a negative control, 1% BSA/TBS instead of

primary antibody, and an irrelevant antibody from the same species

with the same immunoglobulin subtype as the primary antibody, were

used.

Evaluation of immunostaining. For the evaluation of immunostaining,

three to four animals were analysed at each time-point. The positively

stained cells were enumerated in a light microscope as:

(1) Percentage of stained cells as evaluated by using a ´ 40 ocular

®tted with a 0.25 ´ 0.25 mm graticule. The positively stained cells

and the total number of nucleated cells were counted for each ®eld.

For each specimen, three to ®ve ®elds were counted separately from the

in¯ammatory area and morphologically normal parenchyma.
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Table 1. Antibodies used in the immunohistochemical staining

Antibodies Speci®city Source

Rat IgG2a, KT-3 CD3 (T cells) AMS biotechnology,

Frankfurt, Germany

Rat IgG2a, k, H129.19 CD4 (T cells) PharMingen, CA, USA

Rat IgG2a, k, 53-6.7 CD8 a-chain (T cells) PharMingen, CA, USA

Rat IgG2b, M1/70.15 Macrophage CD11b Seralab, Leicestershire,

England

Rat IgG2a, S4B6 IL-2 PharMingen, CA, USA

Rat IgG2b, BVD4±1D11 IL-4 PharMingen, CA, USA

Rat IgG2b, JES5±16E3 IL-10 PharMingen, CA, USA

Hamster IgG, 5H2 MCP-1 PharMingen, CA, USA

Rabbit polyclonal TNF-a Genzyme, Mexico

Rabbit polyclonal Mycobacterial antigens Dako A/S, Denmark

(BCG antigens)

Rabbit anti-rat Secondary antibody Vector Laboratories,

Burlinghame, CA

Swine anti-rabbit Secondary antibody Dako A/S, Denmark

Mouse anti-hamster Secondary antibody PharMingen, CA, USA

BCG, M. bovis bacille Calmette±GueÂrin; IL, interleukin; MCP-1, monocyte chemo-

attractant protein-1; TNF-a, tumour necrosis factor-a.



(2) Absolute number of stained cells in the in¯ammatory lesions in the

lung section from each mouse, which was evaluated as: (average number

of stained cells in three to ®ve ®elds/area of each ®eld) ´ area of the focal

lesions in the section.

The area of the focal lesions was measured using a Leitz Dialux 22 EB

microscope with ´ 1 and ´ 10 objective lens connected to a Sony CCD

video camera and using the image processing system Videoplan (Kon-

tron Bild-analyse, Eching, Germany), as described previously [17].

Statistical analysis. The Kruskal±Wallis test for three-group compar-

isons and the Mann±Whitney U-test for two-group comparisons were

used.

RESULTS

The phenotype of mononuclear cells in the lungs during the

course of infection

Figure 1(A) shows the absolute number of CD3�, CD4�,

CD8� and CD11b� cells in the focal lesions during the course

of infection. The low level of in¯ammatory cells corresponded to

the small focal lesions observed during phase 1. During phase 2,
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Fig. 1. In situ distribution of CD3 (r), CD4 (p),

CD8 (B), and CD11b (A) positive cells in lung

sections of mice with slowly progressive

primary tuberculosis analysed by using

immunohistochemical staining. (A) Absolute

number of stained cells in the lesions. The

number of all the in¯ammatory cells increased

as the size of the focal lesions increased except

for CD8� cells, which did not increase with

shift to phase 3.

(B) Stained cells as a percentage of all cells

in the lesions. The proportion of CD8� cells

was signi®cantly lower in phase 3 as compared

to phase 2 (P� 0.003) and phase 1 (P� 0.03).

The mice at week 41 were moribund (dying

mice). At week 70 they constituted a selected

population of late survivors owing to natural

loss of all the moribund mice. The percentage

of CD3� cells in dying mice at week 41 was

low as compared to the late survivors at week

70 (P� 0.03).

(C) Stained cells as a percentage of all cells

in the morphologically normal lung

parenchyma. The proportion of CD11b� cells

was signi®cantly lower in phase 3 as compared

to phase 2 (P� 0.003).

In each group, n� 3 or n� 4 mice except for

normal parenchyma (C) where the number of

mice in each group varied from two to seven.

Bars represent standard error of the mean

(SEM).

Table 2. Ratios of the percentage of CD11b� cells to CD3� cells and

CD4� to CD8� cells in the lungs of mice with slowly progressive

primary tuberculosis

Weeks after

infection CD11b/CD3 CD4/CD8

In¯ammatory lesions

Phase 1 8 0.9 1.9

12 1.7 2.1

Phase 2 24 1.3 1.6

29 1.2 1.5

Phase 3 41 1.6 6.8*

70 0.6 6.8*

Normal areas²

Phase 1 2.8 3.9

Phase 2 1.9 0.8

Phase 3 1.3 2.9

* CD4/CD8 in phase 3 versus phase 1 and phase 2, P-value � 0.003.

² Morphologically normal parenchyma in infected lungs.



as the lesions became larger, the total number of all cell types

increased. With shift to phase 3, when the in¯ammatory in®l-

trates spread to about 80% of the lung parenchyma, the total

number of CD3�, CD4� and CD11b� cells increased but the

number of CD8� cells was largely unchanged.

Figure 1(B) shows the percentage of stained cells in the focal

lesions during the course of infection. There was no signi®cant

change in the percentage of cells in the ®rst and second phases of

infection. With the shift to phase 3, the percentage of CD8� cells

was lower than in phase 2 (P� 0.003) and phase 1 (P� 0.03).

The percentage of CD4� cells was at some time-points higher or

equal to the percentage of CD3� cells. This may be because CD4

molecules are expressed on some monocytes and Mf in addition

to T cells [19]. The ratio of the percentage of CD11b� to CD3�

cells was similar in all the phases. The ratio of CD4� to CD8�

cells was similar in phases 1 and 2, while in phase 3 was

signi®cantly higher (P� 0.003) (Table 2). The main change

was the reduced number of CD8� cells in the lesions in phase

3. In phase 3 at week 41, the mice were moribund, whereas mice

killed at week 70 constituted a selected population of late

survivors as all the moribund mice were lost by this time, as

described in our previous study [17]. The ratio of CD11b� to

CD3� cells in the dying mice was 1.6, but in the late survivors

this ratio was reduced to 0.6 (Table 2). This difference was

mainly the result of a lower percentage of CD3� cells in the

dying mice as compared to the late survivors (P� 0.03).

Figure 1(C) shows the percentage of stained cells in the

morphologically normal parenchyma of infected lungs. There

was no difference in the number of stained cells between

different phases of infection except for CD11b� cells which

were signi®cantly lower in number in phase 3 as compared to

phase 2 (P� 0.003). The ratios of CD11b� to CD3� cells and

CD4� to CD8� cells were not signi®cantly different in different

phases of infection (Table 2).

Figure 2 shows the pattern of staining of CD3-, CD4-, CD8-

and CD11b-expressing cells. The staining was restricted to mem-

branes in the case of CD3�, CD4� and CD8� cells (Fig. 2A, 2B,

2C). In the lesions, only < 20±35% of the lymphocytes

expressed CD3 molecules. Some of the lymphocyte aggregates

did not express CD3, CD4 or CD8 (Fig. 2A, 2B, 2C). These

might thus be B lymphocytes or natural killer (NK) cells. With

CD11b antiserum, both monocyte-like cells (Fig. 2D) and large

vacuolated Mf (Fig. 2E, 2F) were stained. On the monocyte-like

cells the stain was restricted to the membranes, whereas on large

vacuolated Mf the stain was also found intracellularly. The large

vacuolated Mf expressed CD11b strongly compared with the

monocyte-like cells.

Kinetics of cells expressing IL-2, IL-4, IL-10, tumour necrosis

factor-a (TNF-a) and monocyte chemoattractant protein-1

(MCP-1) in the lesions

Figure 3 shows the percentage of cells expressing IL-2, IL-4,

IL-10, TNF-a and MCP-1 in the lungs during the course of

infection. IL-2 was expressed throughout the course of infection.

In phase 1, 30±35% of the cells expressed IL-2. In phase 2 a

lower percentage of cells (< 0.06% at week 24 and < 16% at

week 29) expressed IL-2 as compared to phase 1 (P� 0.002). In

phase 3, the percentage of IL-2-expressing cells was higher

(< 21±25%) compared with phase 2 (P� 0.004), but not sig-

ni®cantly different from phase 1. IL-2 was expressed on cells

both in Mf and lymphocyte aggregates, while some lymphocyte

aggregates did not express IL-2 (Fig. 4A).

IL-4 was found on a very small number of cells (Fig. 4B).

During phase 1, IL-4-expressing cells were not seen (Fig. 3).

During phase 2, 0.1±0.2% of the cells expressed IL-4 (P� 0.01).

With a shift to phase 3 there were no changes in the number of

IL-4-expressing cells as compared to phase 2, and were higher

compared with phase 1 (P� 0.002).

IL-10 was expressed by 0.15±0.3% of cells during phase 1

(Fig. 3). In phase 2, a higher number of cells expressed IL-10

(0.6±1.2%) as compared to phase 1 (P� 0.016). With the shift

to phase 3 there was a marked increase in IL-10-expressing

cells as compared to phase 2 (P� 0.008) and phase 1
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Fig. 2. Lung tissue from mice with slowly

progressive primary tuberculosis showing the

staining pattern of CD3-, CD4-, CD8- and

CD11b-positive cells in the focal in¯ammatory

lesions at week 70 after infection. Frozen

sections were stained using immunoperoxidase

staining with the avidin±biotin±peroxidase

complex (ABC). (A) (´ 280) CD3� cells in the

lesion. Some lymphocyte aggregates did not stain

with CD3 (arrow). (B) (´ 280) CD4� and

(C) (´ 280) CD8� cells in the lesions. (D) (´ 106)

CD11b was expressed by monocyte-like

macrophages. The staining occurred along the

membranes. (E) (´ 106) and (F) (´ 432) Large

vacuolated macrophages express CD11b and

stain very strongly. The stain is also expressed

intra-cellularly. Lymphocyte aggregates usually

did not contain CD11b� cells (arrow).



(P� 0.001). IL-10 was expressed by cells both in lymphocyte

aggregates and by a small number of the vacuolated Mf in

Mf aggregates (Fig. 4D, 4E). The bronchiolar epithelial cells

and the bronchus-associated lymphoid tissue (BALT) cells also

expressed IL-10.

TNF-a was expressed by 0.02±1% of the cells during phase 1

(Fig. 3). In phase 2 a higher number of TNF-a-positive cells

(3±5%) were found compared with phase 1 (P� 0.001). In

phase 3, the number of cells expressing TNF-a was not

different compared with phase 2, and higher compared with

phase 1 (P� 0.002). TNF-a was expressed exclusively by cells

in the Mf aggregates (Fig. 4G, 4H). The lymphocyte aggre-

gates did not contain TNF-a-expressing cells. TNF-a and IL-10

seemed to be expressed by the same cells in the Mf aggregates

as the staining co-localized in the neighbouring sections

(Fig. 4F, 4I).

During the course of slowly progressive TB, mycobacterial

antigens were detected in only 3±6% of the Mf in the lesions, as

has been described previously [17]. Neighbouring sections

stained for TNF-a, mycobacterial antigens and IL-10 were

analysed during phase 3. Cells with high levels of mycobacterial

antigens in the Mf aggregates seemed to express high levels of

IL-10 and TNF-a (Fig. 5).

The chemokine MCP-1 was expressed during all phases of the

infection, but the number of positive cells was, in general, low,

resembling that of IL-4-positive cells (Fig. 4C). In phase 2, the

number of cells expressing MCP-1 (0.08±0.2%) increased as

compared to phase 1 (P� 0.03) (Fig. 3). During phase 3, the

number of MCP-1-expressing cells did not change signi®cantly

as compared to phase 2, and were higher as compared to phase 1

(P� 0.005).

DISCUSSION

The immunological pro®le was different in the different phases

of infection in mice with slowly progressive primary TB. In the

®rst phase, cells expressing Th1 cytokines dominated small focal

lesions. A high number of cells expressed IL-2, but no IL-4-

expressing cells and only a small number of IL-10-, TNF-a- and

MCP-1-expressing cells were seen. During phase 2 there was a

Th0 pattern of cytokines in the lesions. Cells expressing IL-4

appeared. The number of IL-10-expressing cells increased

slightly. The number of cells expressing TNF-a and MCP-1

also increased. There was a reduction in the number of IL-2-

expressing cells. With a shift to phase 3 there was a marked

increase in the number of IL-10-expressing cells. There was still

a predominance of IL-4, TNF-a and MCP-1, as in phase 2, and of

IL-2, as in phase 1. There was a relative reduction in the number

of CD8� cells.

During phase 1 the mice were healthy. There was a progres-

sive increase in bacterial numbers despite the predominance of

Th1 cytokines. The in¯ammatory lesions were, however, small.

TNF-a contributes to protection against M. tuberculosis infec-

tion in mice [20±23], in particular with Th1 cytokines [24].

MCP-1 is also shown to contribute less to the in¯ammation in the

granulomas with a Th1 pattern of cytokines [25]. In phase 1, IL-2,

TNF-a and MCP-1 therefore probably contribute to the granu-

loma formation and attempt to contain the infection, but are not

able to control the bacillary multiplication.

During phase 2 the mice start to show signs of illness [17]. The

host immunity controlled bacillary multiplication and pathology.

There was, however, a reduction in the number of IL-2-produ-

cing cells, as compared to phase 1, and the appearance of IL-4-

expressing cells. IL-4 belongs to the Th2 group of cytokines [7]

and has been associated with severe or chronic disease [9±16].

IL-4 has, however, also been shown to contribute to the control

of bacillary multiplication and in¯ammatory response [26±30].

It has been shown to act as a Mf-activating factor [26, 27], can

induce monocyte in®ltration in vivo [28] and multinucleated

giant cell formation in vitro [29]. Recombinant IL-4 has been

shown to bring about the arrest of M. tuberculosis multiplication
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Fig. 3. In situ distribution of cells expressing interleukin (IL)-2, IL-4,

IL-10, tumour necrosis factor-a (TNF-a) and monocyte

chemoattractant protein-1 (MCP-1) in the lesions in lung sections of

mice with slowly progressive primary tuberculosis analysed by

immunohistochemistry. In each group, n� 3 or n� 4 mice. Bars

indicate the SEM. Note the different scale on the y-axis for different

cytokines. In phase 2 of infection as compared to phase 1, there were

lower numbers of IL-2-expressing cells (P� 0.002) and a higher

number of IL-4- (P� 0.01), IL-10- (P� 0.016), TNF-a- (P� 0.001)

and MCP-1- (P� 0.03) expressing cells. In phase 3 as compared to

phase 2 there was a signi®cant increase in numbers of IL-10-

(P� 0.008) and IL-2- (P� 0.004) expressing cells. Other cytokines

were not signi®cantly different from phase 2, and were signi®cantly

higher as compared to phase 1(IL-4, P� 0.002; IL-10, P� 0.001;

TNF-a, P� 0.002; MCP-1, P� 0.005) except for IL-2 which was at

the same level as in phase 1.
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Fig. 4. Lung tissue from mice with slowly

progressive primary tuberculosis showing the

staining pattern of interleukin (IL)-2-, IL-4-,

monocyte chemoattractant protein-1 (MCP-1)-,

IL-10- and tumour necrosis factor-a (TNF-a)-

positive cells in the focal in¯ammatory lesions.

Frozen sections were stained with

immunoperoxidase using the avidin±biotin±

peroxidase complex (ABC). (A) (´ 110) Mainly

lymphocytes express IL-2 (week 29 after

infection). Note some lymphocyte aggregates

without stain for IL-2 (arrow). (B) (´ 436) IL-4

was detected in a very small number of cells

(week 24). (C) (´ 436) MCP-1 was expressed by

a small number of cells, like IL-4 (week 24).

(D) (´ 110) and (E) (´ 436) IL-10 was expressed

by lymphocytes (arrows) and macrophages

(arrow heads) (week 24). Note the small

number of macrophages with very strong

expression of IL-10. (G) (´ 110) and (H) (´ 436)

TNF-a was expressed by macrophages (week

40). Note the very strongly stained

macrophages. Lymphocyte aggregates do not

contain TNF-a expressing cells (arrows).

(F) (´ 110) and (I) (´ 110) TNF-a and IL-10

seemed to be expressed by the same cells as the

staining co-localized in neighbouring sections

(week 70).

Fig. 5. Lung tissue from mice with slowly

progressive primary tuberculosis showing the

pattern of co-localization of mycobacterial

antigen (M.Ag)-containing cells with interleukin

(IL)-10-positive (A) (´ 108), (B) (´ 108) and

tumour necrosis factor-a (TNF-a)-positive

(C) (´ 60) (D) (´ 60) cells in the same areas in

focal in¯ammatory lesions (week 70 after

infection). Frozen sections were stained with

immunoperoxidase using the avidin±biotin±

peroxidase complex (ABC).



in murine bone marrow-derived Mf [30]. In phase 2 there was a

signi®cant increase in the number of TNF-a- and MCP-1-

expressing cells. The increase in the number of MCP-1-expres-

sing cells could be promoted by IL-4 [25, 31, 32]. The increase of

MCP-1 in af¯icted mice is in agreement with the results obtained

in human TB [33, 34]. MCP-1 can contribute to control of

infection by recruiting monocytes [35] and CD4� T cells [36]

to the lesions. TNF-a stimulates the antimicrobial Mf functions

[20]. It drives the delayed type hypersensitivity response by

inducing a chemokine response, leading to recruitment of Mf in

the lesions [22, 37, 38]. This restricts the infection and prevents

dissemination [38]. The mixture of IL-2, IL-4 and a small amount

of IL-10 with TNF-a and MCP-1, as seen in the present study,

thus seems to contribute to the control of bacillary multiplication

and pathology in phase 2. Increase in the level of proin¯amma-

tory cytokines seems to cause the appearance of signs of disease.

When the infection progressed to phase 3 there was an

extensive spread of in¯ammation to about 80% of the lung

parenchyma, and a sudden increase in morbidity and mortality

was found. Concomitantly there was a marked increase in the

number of IL-10-expressing cells. An increased level of IL-10 is

found to be associated with advanced human TB [13] and

pathogenesis of M. avium [39] and M. bovis bacille Calmette±

GueÂrin (BCG) [40] in mice. But how could the extensive immune

pathology in phase 3 be compatible with the suppressive effect of

IL-10 on T-cell differentiation, function and proliferation [8,

41±43]? IL-10 has been shown to cause immune stimulation

rather than inhibition in vivo in IL-10 transgenic diabetic mice

[44±46], BCG-infected mice [40] and in IL-10-transfected

tumours transplanted in mice [47]. IL-10 has also been shown

to have a direct effect on T-cell growth in in vitro systems,

particularly in concert with other cytokines [48]. The increased

level of IL-10 could thus contribute to immune pathology in

phase 3 because of its immune stimulatory functions.

There was no signi®cant change in the number of TNF-a-

expressing cells in phase 3 as compared to phase 2. The lung cells

from these mice produced high levels of IFN-g [49]. Despite the

presence of TNF-a and IFN-g, which contribute to protection

[20±22, 30], there was progression of disease. The effects of

these cytokines, to activate Mf for killing of intracellular organ-

isms, seem to be overridden by excess IL-10 [23, 40, 50±52].

IL-10 is shown to cause inactivation of TNF-a by inducing the

release of soluble TNF-receptor 2 [53]. The sustained production of

TNF-a by the infected Mf, in the face of reduced antimicrobicidal

functions of the Mf, can cause continued recruitment of in¯am-

matory cells into the lesions and consolidation of the lung tissue.

Mycobacterial antigens were detected in 3±6% of the Mf in

the lesions. These antigen-loaded cells expressed high levels of

IL-10 and TNF-a. These heavily infected Mf also expressed

large quantities of Fas ligand [54]. These Mf therefore might

eliminate Fas-expressing cytotoxic lymphocytes, protecting

themselves from being killed and thereby creating an intracel-

lular sanctuary for M. tuberculosis [54]. IL-10 is shown to have

an antiapoptotic function, causing an increase in the survival of

the cell [53, 55, 56]. These infected Mf seem to be a continuous

focus for the production of proin¯ammatory cytokines, leading

to an increased accumulation of in¯ammatory cells. The increase

in pathology seems to be the main cause of progression from

disease to mortality in the mice.

In spite of the Th0 pattern of cytokines in phases 2 and 3

and the presence of TNF-a, no necrosis was observed, except

in some of the dying mice at week 41, as described in our

previous morphological description of the model [17]. TNF-a

has been proposed as a major mediator of necrosis in M.

tuberculosis-infected tissue when Th1 cytokines are super-

imposed by Th2 cytokines [24, 57]. However, in M. tubercu-

losis-infected mice with disruptions in the principal TNF

receptor or treatment with anti-TNF-a antibody, tissue necrosis

is seen [22]. This shows that mechanisms other than TNF-a

contribute to necrosis.

Mycobacteria have evolved mechanisms to evade the phago-

lysosomal environment and probably escape to the cytoplasm

[58]. Cytotoxic CD8� cells recognize the antigens when pre-

sented with major histocompatibility complex (MHC) class I

molecules [6]. The perforin-containing cytotoxic granules in

CD8� cells can kill the bacilli directly and are important for

the containment of infection during the late stage of murine TB

[6]. The shift to phase 3 coincided with a signi®cant decrease in

the percentage of CD8� cells. This could be a result of the

change in cytokine pattern on CD8� cells as shown by some

studies. In murine schistosomiasis with a Th0 pattern of cyto-

kines, the generation of CD8� cells was found to be defective

[59]. Mature mouse CD8� cells were shown to develop into a

CD8ÿ CD4ÿ population in the presence of IL-4 [60]. In our study

the question remains whether the reduction in CD8� cells is the

cause or effect of changes in cytokine patterns.

In conclusion, the kinetics of T-lymphocyte subsets and the

pattern of cytokines produced in the lungs changed with the type

and degree of tissue injury in mice with slowly progressive

primary TB. The mixed Th1/Th2 cytokine pattern was associated

with the evolution of disease. A small number of Mf with a

heavy load of mycobacterial antigens may be the cause of this

disturbance in cytokine balance, thus leading to disease and

mortality. This model contributes to further understanding of the

factors responsible for progression of subclinical infection to

disease and to mortality.
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