
 

Erasmus Mundus European Master in System Dynamics 

 

Automated Model Conceptualization and 

Interactive Modeling Environment: A Software Prototype 

By 

Wang Zhao 

 

Thesis submitted in partial fulfillment of the requirements of 

Master of Philosophy in System Dynamics (University of Bergen) 
Master of Science in System Dynamics (New University of Lisbon) 

and 
Master of Science in Business Administration (Radboud University Nijmegen) 

 

Supervised by 

Prof. Dr. Pål I. Davidsen 
 

 

System Dynamics Group 
Department of Geography 

University of Bergen 

 

June 2019 

  



 2 

Acknowledgement 

 

It is a great pleasure to acknowledge my deepest gratitude to Prof. Pål Davidsen for his patient guidance 
and valuable advices throughout this research and development project. Many thanks for all the time 
for helping me and all the fruitful discussions in this semester. 
 
I would also like to acknowledge the guidance and advices I received from Prof. Yaman Barlas. It was 
because of the wonderful discussions we had in Nijmegen that I finally decided to develop a software 
to test my hypotheses. 
 
In this course of research, I was very often helped and advised by Dr. David Lara-Arango, Ph.D. 
candidate William Schoenberg (Billy), Ph.D. candidate Anaely Aguiar Rodriguez, and Prof. Birgit 
Kopainsky at University of Bergen. The discussions we had brought up great ideas. I specially 
appreciate their professional interest in my work and personal encouragement to me. 
 
I would like to extend my sincere appreciation to Prof. Hubert Korzilius and Prof. Dr. Inge Bleijenbergh 
at Radboud University Nijmegen, for their instructions in the course ‘Research Methodology’ on 
developing a research topic, and specially to Prof. Korzilius for being my second reader from Radboud 
University. 
 
Many thanks to Prof. David Lane for his helpful comments on this project. 
 
It has been a great experience to participate in the 8th cohort of EMSD. I am grateful for the chance to 
spend these two amazing years with friends from all over the world. 
 
 
 
Wang Zhao 
 
June 2019 
Bergen 
  



 3 

Abstract 

 

In system dynamics modeling process, modelers retrieve information from various sources to come up 
with a model that is able to reproduce a problematic behavior, then based on the model, policies are 
designed to alleviate this problem. Aiming at facilitating or automating this process, researchers have 
been focusing on integrating this modeling process with technologies from computer science, data 
science, and artificial intelligence. 

Model conceptualization is a key step in this process. Sometimes it is also called ‘structure generation’. 
It is about coming up with model structures based on available information on the problem or the 
situation where the problem is manifested. A series of research projects have been focusing on 
automating this conceptualizing step. 

In the first part ‘Introduction’, the author will introduce basics of system dynamics modeling process, 
with a focus on the step ‘model conceptualization’ and information needed for this step. 

In the second part ‘Literature review’, the author will guide a tour of important researches in the past 
20 years on automated model conceptualization. In the end of this part, the author will discuss their 
methods and information sources they used for model conceptualization. 

In the third part ‘A platform for interactive model conceptualization’, the author will propose a 
method for automated model conceptualization. The method is able to utilize information sources which 
have not been used in existing researches. The method has been preliminarily implemented as a demo 
software: A Python-based interactive modeling platform. 

In the fourth part ‘Experiments and results’, features of the software will be demonstrated by carrying 
out three case-studies step-by-step. 

In the last part ‘Discussions’, the author will summarize this project, discuss the innovations in this 
work, how these innovations could help the research of automation of model conceptualization, 
limitations to this work, and how the author plans to overcome these limitations in the future. 
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1. Introduction 

“System dynamics is a computer-aided approach to policy analysis and design. With origins in 
servomechanisms engineering and management, the approach uses a perspective based on information 
feedback and circular causality to understand the dynamics of complex social systems.” (Richardson, 
1991, pp. 144) Models are center to this methodology, as they are used to represent the understanding 
of a particular system in the real world in which a problematic behavior is observed and to be alleviated 
by policies. Model building, analyzing, and model-based policy design are key parts of system 
dynamics practice. 

1.1 The system dynamics modeling process 

This work is about automation of system dynamics modeling process. It is therefore necessary to 
delineate this modeling process at beginning. Although there is still not a sole definition accepted by 
all, throughout decades’ research and practice, some opinions have been widely accepted, of which 
three highly followed ones are elaborated and discussed as follows. 

In the context of working with clients, Sterman (2000, pp.86) defines the system dynamics modeling 
process as five steps: 

Table 1 Steps in modeling process summarized from Sterman (2000) 

No. Step What to do in this step 

1 
Problem Articulation 

Make clear what to consider and time horizon, define the model boundary, and find 

reference modes. 

2 Formulation of Dynamic 

Hypothesis 
Come up with a dynamic hypothesis and represent it with tools such as diagrams. 

3 Formulation of a Simulation 

Model 

Make clear more details, build a simulation model by specifying equations and 

parameters. 

4 
Testing 

Compare simulation behavior with reference modes, carry out extreme condition 

tests, sensitivity test, and so forth. 

5 Policy Design and Evaluation Design and analyze policies based on the simulation model. 

 

Moreover, Sterman (2000, pp.87) explicitly states that this modeling process should be iterative, which 
means modelers are not to follow these five steps only once, but iteratively, and could go from any step 
to another. 

Sterman (2000)’s division of the modeling process and his iterative perspective are shared by others. 
For example, J. W. Forrester, in his 1994 publication, defined modeling process as 6 steps (figure 1), of 
which steps from 1 to 5 are similar to Sterman (2000)’s five steps. Moreover, the arrows between steps 
indicate the possibility for the modeler to jump from one step to another. 
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Figure 1 System dynamics steps from problem symptoms to improvement, from Forrester (1994) 

Another example is the modeling paradigm taught in University of Bergen, which is named P’HAPI 
and practiced in almost all system dynamics modeling courses in that school. Although having not been 
published formally, P’HAPI1 can be briefly explained as the following steps: 

Table 2 Steps in the P'HAPI modeling process 

No. Step What to do in this step 

1 P (Problem) Identify the problem and illustrate the problem by reference mode(s). 

2 H (Hypothesis) Put the system structure that is believed to create the reference mode behavior into a formal 

model such as stock-and-flow diagram, as hypothesis. 

3 A (Analysis) Test the model’s structure and behavior to make sure it reproduces the right behavior (the 

reference mode) from an endogenous perspective. 

4 P (Policy) Based on the model, formulate hypotheses about policies that could alleviate the problem. 

5 I (Implementation) Consider the costs of implementation of policy in the context of the real world. 

 

P’HAPI also stresses iteration. Iteration in P’HAPI often happens between H (Hypothesis) and A 
(Analysis). 

Given the fact that different definitions of system dynamics modeling process have a big part in 
common, and to make it simple for discussions in the coming chapters, the author would propose a 
simplified division of this modeling process: 

Table 3 A simplified division of system dynamics modeling process 

No. Step 

1 Problem definition 

2 Model conceptualization (including structure generation and parameter calibration) 

3 Model analysis 

4 Policy design 

5 Implementation of policy 

                                                   

1 Since P’HAPI has not been formally published, this table is summarized from the lectures given by Professor Erling Moxnes. 
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1.2 Model conceptualization 

1.2.1 Common understandings 

As ‘model conceptualization’ is the focus of this work, the table below further compares steps relevant 
to ‘formulation of a system dynamics model’ from all three divisions. 

Table 4 Comparison of steps related to model formulation 

 Sterman (2000) Forrester (1994) P’HAPI 

Related 

step(s) 

Step 2 and 3 Step 2 Step 2 

Formulation of Dynamic Hypothesis; 

Formulation of a Simulation Model 

Convert description to level 

and rate equations 

Hypothesis 

Details 

1) Examine the current theories of the 

problematic behavior; 

2) Formulate a dynamic hypothesis that 

can explain the problematic behavior 

from an endogenous perspective; 

3) Map the hypothesis into a formal 

representation; 

4) Formulate the formal representation 

into a simulation model, including 

specifying equations, parameters, and 

initial conditions. 

1) Translate the system 

description into the 

level and rate equations 

(stock and flow 

diagrams, to put in a 

more modern way), 

which requires- 

2) Make the general 

description of system 

more explicit; 

1) Put the system structure that 

is believed to create the 

reference mode behavior 

into a formal model; during 

which it would be beneficial 

to- 

2) Identify if the hypothesis 

belongs to a class of 

problems such that one can 

benefit from previous 

research and such that the 

results can be generalized. 

 

Although formed in different times and under different contexts, what could be found in common about 
‘model conceptualization’ in these three interpretations are: 

1. It requires problematic behavior obtained from a real-world system as reference mode; 
2. It requires a preliminary informal understanding of the system or the structure that generates the 

problematic behavior; 
3. It could benefit from relating the hypothesis (the suspected structure or theory) to an existing class 

of problems; 
4. The outcome is in a formal representation, often a simulation model. 

These four points could be put into the following diagram:  
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Figure 2 Model conceptualization in diagram (1) 

1.2.2 Structure and parameters 

Generally, ‘model structure’ refers to all variables in a model and connections between them. In this 
sense, parameters that are constants are also included in model structure. Since no causal relationships 
go into constants, they are usually seen as a model’s boundary. 

Forrester (1980a) provides a different perspective which is worth to discuss. In Forrester (1980a), a 
diagram is used to explain the process of creating a system dynamics model: 

 

Figure 3 Creating a system dynamics model, from Forrester (1980a), pp.559 

It is noteworthy that in this figure, ‘model’ comprises ‘structure’ and ‘parameters’. From this perspective, 
‘structure’ is different from ‘parameters. This division is important to this work. Theoretically, it inspires 
a new perspective to see a model. Assume in a simulation model we have the following equation: 

𝑦 = 𝑎 ∗ 𝑥&, where 𝑥& is the input, y is the output, and 𝑎 is a parameter. 

If we accept the division put forward in Forrester (1980a), in this equation, 𝑎 would be a ‘parameter’ 
and the ‘structure’ would only include the function, which is the operation of multiplication.  

Model
conceptualization

Problematic	behavior
as	reference	modes

Preliminary	understanding
of	the	system

Hypothesis	of	the
structure	responsible	for

the	problem

Existing	class	of	problems
in	previous	researches

Model	in	a	formal
representation
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Figure 4 Goal-gap model 

Moreover, when looking at a causal loop in a simulation model, this differentiation between structure 
and parameters could help us to see loops in a different way. Take the goal-gap model (figure 4) as an 
example. The flow ‘adjustment’ in this model is calculated through the following equations: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = /01
0234567896	6;78

	, where 

𝑔𝑎𝑝 = 𝑔𝑜𝑎𝑙 − 𝑠𝑡𝑜𝑐𝑘. 

We have known that ‘adjustment time’ and ‘goal’ are constants and therefore parameters. Following the 
division in Forrester (1980a), the above equations could be transformed into: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝑔C𝑓(𝑠𝑡𝑜𝑐𝑘)G, where 

𝑓 = 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟L, 𝑠𝑡𝑜𝑐𝑘), 𝑔 = 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑔𝑎𝑝, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟&); 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟& = 𝑔𝑜𝑎𝑙, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟L = 	𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑡𝑖𝑚𝑒 

From this perspective, ‘coming up with model structure’ is be different form ‘calibrating parameters’ 
since the former is only about selecting functions and the latter is only about tuning parameters. The 
author names these two different processes structure generation and parameter calibration. 
Although many researches use ‘structure generation’ for both, in our discussions they are referred to 
differently, and are collectively called model conceptualization. 

To sum up, structure generation means to come up with the right functions to use as ‘backbones’ of 
computation, while parameter calibration means to tune parameters in an existing model so that the 
simulation behavior will fit the reference mode. 

1.2.3 Definition of model conceptualization 

According to Forrester (1980a) and learning from figure 3, to conceptualize a model one needs at least 
the following inputs: 

� Principles of feedback loops; 
� Concepts from written literature; 
� Purpose (as a part of mental and written information); 

stock

goal

adjustment

gap

adjustment	time
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� Other mental and written information; 
� Miscellaneous numerical data; 
� Time-series data. 

As for now, we have had a list of inputs for model conceptualization from analysis of different divisions 
of the system dynamics model process, and another list of inputs for model conceptualization from 
Forrester 1980a). In the same paper, Forrester also proposed a taxonomy of information sources that 
could be used for modeling: mental data, written data, and numerical data. This taxonomy is used here 
to categorize these inputs. Putting everything in one diagram, we have: 

 

Figure 5 Model conceptualization in diagram (2) 

Blue elements: Taxonomy proposed in Forrester (1980a); Red elements: Inputs from analysis of divisions of 
system dynamics modeling process; Black elements: Necessities for building a model in Forrester (1980a). 

In summary, to conceptualize a system dynamics model in a formal representation, a modeler needs 
four types of inputs. 

First, the modeler needs to know basics of system dynamics, such as the concepts of stock, flow, 
feedback loops, and how they work with one another.  

Second, the modeler needs to have mental and written data about the problem at hand, such as basic 
understandings of the system in the real world (‘the real system’). 

Third, the modeler needs numerical data, such as time-series data which is used for reference mode.  

Fourth, the modeler could be helped by written literature, from which concepts and existing class of 
problems could be borrowed to model the new problem at hand. As commented by Forrester, “the 
conceptualization phase in system dynamics has rested heavily on past modeling experience gained 
from working with ‘canned’ models, from apprenticeship in working with experienced modelers, and 
from trial-and-error learning.” (Forrester 1994, pp.254) 

Last but not least, as the modeling process is iterative, the above necessities may not be all available at 
the same time. Some information may come after others, and very often, only in a certain stage will the 
modeler become aware that a specific part of information is needed. 

Based on discussions so far, the author would propose a definition for model conceptualization: 

13	Model
conceptualization

8	Problematic	behavior
as	reference	modes

1	Preliminary	understanding	of
the	system

2	Hypothesis	of	the
structure	responsible	for

the	problem

10	Existing	class	of	problems
in	previous	researches

14	Model	in	a	formal
representation

12	Principles	of
feedback	loops

11	Concepts	from
written	literature

4	Purpose

3	Other	mental	and
written	information

6	Miscellaneous
numerical	data

7	Time-series	data

9	Numerical	data

5	Mental	and	written	data
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Model conceptualization is a step in the system dynamics modeling process, where with the help 
of previous study and following the system dynamics modeling paradigm, understanding of the 
real system and speculated structural causes of the problem are formulated into a formal model 
that is able to reproduce the reference mode. 

However, such a definition does not provide insights into how conceptualization actually works. What 
has been clarified are the input and output of this process, while the underlying mechanism – how these 
inputs are utilized to get the output still remains unclear. Richardson and Pugh have pointed out that, 
“Problem identification and model conceptualization are the apparently less technical stages of a system 
dynamics study.” (Richardson and Pugh 1981, pp.61) 
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2. Literature review 

In the past 20 years, there have been multiple attempts to automate model conceptualization, by at least 
4 research teams. In this chapter, after an overview, the author will discuss the methods used by them 
in detail and compare them with the concept of model conceptualization. 

2.1 Attempts to automate model conceptualization 

Four research teams have made attempts to automate model conceptualization over the past 20 years. 
They are referred to as Barlas team, Chen & Jeng team, Drobek team, and Abdelbari and Shafi team. 
Using the simplified division of the system dynamics modeling process proposed in Chapter 1 (Table 
5), works by these four teams are listed and categorized in Table 6, of which shaded entries are directly 
related to model conceptualization. 

Table 5 A simplified division of system dynamics modeling process 

No. Step 

1 Problem definition 

2 Model conceptualization (including structure generation and parameter calibration) 

3 Model analysis 

4 Policy design 

5 Implementation of policy 

 

Table 6 Researches on automation of system dynamics modeling process since 2000 

Year Researchers Step automated 

2000 Barlas & Kanar Model analysis 

2002 Chen & Jeng Structure generation 

Parameter calibration 

2004 Chen & Jeng Policy design 

2006 Jeng, Chen, & Liang. Parameter calibration 

2007 Yücel & Barlas Parameter calibration 

2011 Chen, Tu, & Jeng. Structure generation 

Parameter calibration 

2011 Yücel & Barlas Parameter calibration 

2014 Drobek, Gilani, & Soban. Structure generation 

2015 Drobek, Gilani, Molka, & Soban. Structure generation 

2015 Yücel & Barlas Model analysis 

2015 Abdelbari, Elsawah, & Shafi Structure generation 

2016 Abdelbari & Shafi Structure generation 

2017 Abdelbari & Shafi Structure generation 

2018 Abdelbari & Shafi Structure generation 
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Barlas team started on this direction from 2000 and their research continued until recent years. They 
haven’t been directly focusing on generating model structure but made considerable progress on 
parameter calibration based on recognition of behavior pattern. 

Research led by Chen and Jeng also has a long history. Different from Barlas team, they had the 
objective to automate model conceptualization - especially structure generation - from the very 
beginning, and developed an artificial neural network-based methodology, where system dynamics 
models are represented not in stock-and-flow diagrams but in neural networks. They also used genetic 
algorithm as the core mechanism for structure generation. 

A similar method is later adopted by Abdelbari, Shafi, and Elsawah in 2015. Benefited from the fast 
development in machine learning (especially neural network-based deep learning), they are able to use 
more advanced neural networks to approximate a system dynamics model. 

Drobek et al. also use neural network techniques but in a way different from Chen & Jeng team and 
Abdelbari & Shafi team. While the other 2 teams use a single neural network to represent a whole 
system dynamics model, Drobek et al. represent equations for variables each with a neural network and 
train all of them in the same time. 

2.2 Techniques used for automation 

2.2.1 Essence of a model conceptualization task 

Before moving to detailed analysis of techniques, it would be helpful to generally discuss the essence 
of a model conceptualization task. As discussed in Chapter 1, the expected outcome of model 
conceptualization is a formal model. In the field of system dynamics, two most often used forms to 
represent a model are stock-and-flow diagram (SFD) and causal loop diagram (CLD). Model 
conceptualization can have any of them as outcome. 

The essence of a model conceptualization task depends on which form is chosen for the outcome. If 
CLD is chosen, the outcome will include only variables and causal links between them, and the nature 
of this task will be to estimate causal relations between variables and their directions. However, if the 
conceptualized model is to be in SFD, the outcome will comprise both the structure (which is a set of 
functions) and the parameters. The essence of this task will therefore be to come up with a set of 
functions and to calibrate their parameters. 

2.2.2 Techniques used by existing researches 

With the objective of generating a preliminary CLD, Drobek et al. (2014) uses Pearson product-moment 
correlation coefficient, which is a statistical tool to estimate dependencies between variables in a system. 
As time series data of all variables are provided, the task is to estimate their dependencies by calculating 
correlation. The estimated dependencies are later used as indication for causal relationships. Although 
correlation could not be seen as causality, the goal of this method is to generate a correlation graph for 
later incorporation of expert knowledge to finally get the CLD, and the method fits this goal well. 

Except for Drobek et al. (2014), all other attempts aim for a simulation model. They all use and only 
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use time-series data as information source. As mentioned above, their tasks are two-fold: coming up 
with a set of functions and calibrating parameters. Their objective is to generate simulation models that 
are able to reproduce the reference behaviors. 

Abdelbari and Shafi (2016, 2017, and 2018) chose to represent system dynamics models with a type of 
artificial neural networks (ANN), because the structural similarity between these two architectures and 
ANN’s ability to learn by training with time-series data. In a neural network, neurons (nodes) are 
connected by edges, and each edge has a weight. Through a training process, the weights will be 
adjusted, which altogether can make the neural network produce the desired output. 

In Abdelbari and Shafi’s works, the chosen type of neural network is Echo State Network (ESN) because 
it is structurally similar to stock-and-flow diagram. Through training, an ESN is able to formulate some 
structures that resemble stocks and loops, which creates opportunity for this neural network to morph 
toward an SFD. However, because the similarity is still limited, we could find stocks and loops in the 
trained structure, but not counterparts for functions or equations that we normally use in an SFD. 
Therefore, the authors set their goal to be ‘generating a CLD that can run’. As in Drobek et al. (2014), 
the outcome is supposed to be used subsequently by experts to elicit SFDs. 

Drobek team changed their method in their 2015 work. They used neural networks not to represent an 
entire model but to represent functions in every single variable. Through a training process, each neural 
network will approximate the equation in one variable. The learning outcome will be a set of 
approximated equations. This is an advancement, but the approximated equations are still different from 
the equations used in SD models, since the generated functions are still in a form of neural network and 
therefore not analytic. Analytic functions are those we would use when manually building a system 
dynamics model, such as subtraction and multiplication. Modelers use these functions to represent 
causal relations in the real world, while a neural network, even if able to reproduce a behavior, could 
not be used to map such a causal relation. 

Moreover, it is noteworthy that in Drobek et al. (2015) and Abdelbari and Shafi (2016, 2017 and 2018), 
time series for all variables in the system are readily available, which means there is no need to suggest 
new variables. The algorithm only needs to suggest ways to connect them. This is different from another 
type of structure generation, in which not all variables are pre-defined, and the algorithm needs to 
suggest new variables by itself. The latter therefore demands a more flexible method that is able to 
construct model structure.  

Chen and Jing used artificial neural networks in their 2002 work to represent model structure and in the 
following years their focus was policy design based on parameter optimization. Later, in Chen et al. 
(2011) a new method was proposed. This method enables a complete translation of SFDs into neural 
networks. That means, equations used in an SFD such as subtraction and multiplication can be translated 
into neural networks and still stay analytic. It is therefore different from the method in Drobek et al. 
(2015) and Abdelbari and Shafi (2016, 2017, and 2018). 

Such an advancement makes it possible to generate ‘real’ system dynamics model structure, but it puts 
forward a new problem. Since analytic functions could not be obtained through training a neural 
network, they need a new mechanism to build model structures in a humanly way. Abdelbari and Shafi 
(2015) and Chen et al. (2011) solve this problem by using genetic algorithm to build analytic equations. 
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In their methods, functions, operators, and operands are seen as ‘elements’ or ‘blocks’ of equations. 
Using genetic algorithm, a great amount of possible combinations of these basic elements are 
formulated and tested, and the performance of one combination is measured by how well its simulation 
behavior fits the reference mode. 

Genetic algorithm is an adaptive algorithm widely used in generative tasks. It needs only basic elements 
and rules that tell how these elements could be combined. Then it can try huge amount of possible 
combinations and test their performance against pre-defined criterion. Although mechanisms such as 
‘mutation’ and ‘selection’ are used to help this ‘evolution’ of combinations by making it more efficient, 
time consumption is still very often a problem for this algorithm, because it highly relies on brutal 
computational force to try different combinations. Adaptivity and flexibility of this method is at cost to 
efficiency. 

Because of its high adaptivity, genetic algorithm is also used in parameter calibration tasks to try 
enormous combinations of parameter values. Chen & Jeng (2004), Jeng et al. (2006), and Yücel & 
Barlas (2007 and 2011) all use genetic algorithm for this purpose. 

Barlas team never tried to directly generate model structure. Instead, they focused on parameter 
calibration, and their purpose was not to reproduce exactly the reference mode, but to reproduce the 
dynamic pattern of the reference mode. The significance of this pattern-based method to categorize 
behavior will be elaborated in the next chapter. 

Overall, the above explanations could be summarized into the following table: 

Table 7 Techniques used in automatic model conceptualization 

  Automatic model conceptualization 

  Structure generation Parameter calibration 

Method 

Representation 

of SD models 

Graph network (as model) 

Artificial neural network (as model) 

Artificial neural network (as equation) 

Combination of basic elements (as model) 

Artificial neural network (as model) 

Searching for 

optimal solution 

Genetic algorithm 

Training of artificial neural network 
Genetic algorithm 

 

2.3 Discussions on existing methods 

2.3.1 On simplifying model conceptualization into a mathematical task 

Taking a close look at one time step in the simulation of a system dynamics model, one would find that 
all calculations will converge into the calculation of flow(s). In the end of this time step, stocks are 
updated by the flows they are connected with. In a word, initial level of stocks, values of parameters, 
and all the functions determine the outcome of the simulation. 

Since we can aggregate all functions into flow functions, one could compare ‘model conceptualization’ 
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to ‘coming up with equations for flows’, which makes it a mathematical problem. And the judge of 
‘how correct the equations are’ will be the fitness between the model’s behavior and the reference mode. 
However, such a mathematical simplification of model conceptualization may not always be valid. 
Different models can fit the data equally well but produce different predictions and respond to a policy 
differently, because they might be different in structure. Therefore, the ability to fit the historical data 
does not necessarily indicate which hypothesis about the feedbacks in the real system is the one to select. 
(Sterman, 2000, pp. 330) 

For example, assume we have the following reference mode for a stock (figure 6), and we want to find 
a model that can explain this behavior. 

 

Figure 6 Reference mode for a stock 

Because the reference mode shows that the stock stabilizes at a level, one may come up with the 
following structure (Figure 7), which is an isolated stock with initial value of 50. 

 

Figure 7 Suggested structure (1) 

However, it is also possible for the underlying structure to be the one in figure 8, where a stock is 
connected to two equal flows. 

 

Figure 8 Suggested structure (2) 

In this case, it is not important which one of the hypotheses is correct; the point is, there might be 
multiple explanations for one reference mode, if we only look at the time-series data. It is easy for one 
to forget this when the situation is much more complicated, when the time-series data is abundant and 
of high quality, and when the generated model structure is convincing. 
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2.3.2 On information used in model conceptualization 

Bring back the definition made for model conceptualization in the first chapter:  

Model conceptualization is a step in system dynamics modeling process, where with the 
help of previous study and following the system dynamics modeling paradigm, 
understanding of the real system and speculated structural cause of the problem are 
formulated into a formal model that is able to reproduce the reference mode. 

One would find that almost all works analyzed above, whatever the technique, only use time-series data 
as the only source of information. If mapping this to the system dynamic modeling process illustrated 
by Forrester (1980a) (figure 9) or to the inputs for model conceptualization (Figure 10), one would find 
that the essence of the attempts is the ‘giant leaps’ marked in the diagrams. 

 

Figure 9 Generating system dynamics model directly from time-series data with the ‘giant leap’ marked 

 

 

Figure 10 Model conceptualization with the ‘giant leap’ marked 

Blue elements: Taxonomy proposed in Forrester (1980a); Red elements: Inputs from analysis of theories of 
modeling process; Black elements: Necessities for getting a model in Forrester (1980a). 
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Considering the example in figure (6, 7, and 8), it would be very possible that the learned model 
structures in the analyzed works are subject to great uncertainly. This is not because their mathematical 
algorithms are not advanced enough, but because their algorithms are not able to ascertain which 
possible structure is the one in the real world. And when these possible structures are many, the outcome 
will be ambiguous. This is actually what happened: in their many results, redundant causal relations 
still exist in great amount. Efforts by human modelers and expert knowledge are therefore needed to 
make the outcomes clear. 

On the other hand, exclusion of any information sources in figure 10 may lead to negative consequences. 
First, if not including mental and written data, understandings of the system and hypotheses of the 
structure owned by clients would not be sufficiently considered and engagement of the stakeholders 
would therefore be compromised. Second, not following the principles of feedback loops, one may 
build models that could not produce meaningful result. Moreover, not relating the hypothesized 
structure to an existing class of problems may slow down the conceptualization process and make it 
more difficult, because humans highly rely on previous experience when conceptualizing a model: 

“The conceptualization phase in system dynamics has rested heavily on past modeling 
experience gained from working with ‘canned’ models, from apprenticeship in working 
with experienced modelers, and from trial-and-error learning.” (Forrester 1994, pp. 254) 

It is therefore not only necessary but also beneficial to consider using more information sources than 
only time series data. However, the current situation is still understandable, because up to now 
algorithms are best at – if not only good at – analyzing numerical data. It is still impossible for 
computers to fully understand a dialogue or a text, although we already have seen great advancement 
in the field of natural language processing (Young et al. 2018). Under current condition, relying solely 
on numerical data is clearly a compromise that is made due to the limitations of technologies on 
handling mental and written data. 
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3. A platform for interactive model conceptualization 

To improve the performance of existing methods for automatic model conceptualization, additional 
information sources need to be included. Due to technical limitations, it is currently not possible to 
incorporate all of them in one time. Therefore, instead of aiming at an ideal automatic method, this 
work intends to take one step forward and explore the possibility of incorporating two of them. 

The first one is mental data. They include preliminary understanding of the system, hypotheses about 
the structure beneath the problem, and purpose of building this model. These are information specific 
to a particular problem or situation, and usually come from the problem owners. This part of information 
is utilized by allowing the modeler to interact with the conceptualization algorithm during the model 
building process. 

Second, existing class of problems in previous researches. They are generic structures and behaviors, 
often extracted from models that are already built, and could be adapted for new situations and problems. 
This part of information is utilized by building a knowledge base for the algorithm. 

To achieve these goals, a new framework to integrate information and a new algorithm to carry out 
model conceptualization are proposed. They are developed with lessons drawn from the way we 
conceptualize models, as humans are the only ones so far that could utilize all those information sources. 

3.1 Learning from humans: how do we build a model? 

3.1.1 Iteratively making and testing hypotheses 

Conceptualizing a system dynamics model is to a large extent about working with hypotheses. One 
makes new hypotheses by building structures and test these hypotheses by comparing structures and 
their behaviors with the real world. 

As the P’HAPI workflow says, a modeler needs to iteratively go through Hypothesis and Analysis to 
get a plausible model. Qualitative and quantitative information are utilized in both forming and testing 
hypothesis (Forrester, 1980a; Barlas, 1996). The iterative process allows the modeler to take up 
information little by little, for one cannot focus on too much information at one time. Similar 
observation could be made from figure 3, in which a loop is in the center of the diagram. 

The new framework follows this iterative process. In one iteration, different information could be taken 
up and utilized in different steps. Moreover, as hypotheses are made and tested alternately, some steps 
in one iteration could be used to generate possible structures while others used to test and validate them. 

3.1.2 Following rules and previous experience 

A modeler could benefit his or her previous experience obtained from practice. Every modeler maintains 
a stock of models in memory as well as the situations the models were built for. A modeler does not 
always need to build new models from scratch. Instead, he/she will be glad to take a shortcut by adapting 
an existing model built for a previous problem to a new situation. As Forrester wrote in his 1980 work: 
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In the process of finding valuable insights in the mental data store, one talks to a variety 
of people in the company […]. The discussion is filtered through one’s catalog of 
feedback structures into which the behavioral symptoms and the discussion of structure 
and policy might fit. (Forrester, 1980a, pp.560). 

Interrogation must be guided by a knowledge of what different structures imply for 
dynamic behavior. (Forrester, 1980a, pp. 556). 

This process happens so often that generic structures could be used as generalized insights to facilitate 
one’s searching for inspiration (Lane, 1998). In contrast, if a modeler does not have this ‘catalog of 
feedback structures’, he/she has to re-invent all models even if it is a generic structure familiar to many. 

On the other hand, there are times when we cannot find a proper generic structure or a previous model 
ready for use, which means we have to from time to time build some structures on our own. Even if we 
are able to find one, the adaptation will include modifications to the model structure. In these occasions, 
we need to follow a certain set of rules for building a system dynamics model, such as ‘a stock needs 
to be adjusted by a flow’ or ‘a subtraction function takes two parameters’. This does not rely heavily on 
previous experience but the ability to map relationships in the real world into model structures. 

Moreover, the two mechanisms are not conflicting but often cooperating: after adding a few elements 
to a structure, one suddenly realizes that there might be a generic feedback structure. Such alternation 
of mechanisms happens subconsciously and is therefore often not noticed.  

The new framework reproduces these two mechanisms. The one guided by previous experience and 
generic structures is called ‘top-down’, while the other one that builds structure with basic elements is 
called ‘bottom-up’. 

3.1.3 Exploring and exploiting possibilities 

Humans are able to keep multiple possibilities in mind at the same time, but without paying equally 
much attention to each of them. Usually only one or two are focused on, with the rest being inactive. 
However, this allocation of attention is dynamic. As we only have limited patience for a specific 
possibility, if one possibility takes too long time to try or some inactive possibility is suddenly found 
promising, we would re-allocate our attention to focus somewhere else. 

This mechanism is termed as ‘parallel terraced scan’ (Hofstadter and Mitchell, 1994) and has a bionic 
origin, since it was inspired by the behavior of ants. When searching for food, a group of ants will 
neither focus solely on one path, nor evenly distributed on all possible paths. They start by exploring 
many paths, and once food is found on one path, through a feedback mechanism, more ants will gather 
to this path for exploiting. Meanwhile, there are still ants exploring other paths. 

Paths are comparable to different ways to build a model structure, and our search for an optimal 
structure is comparable to ants’ search for food in terms of their ability to balance exploration and 
exploitation. Comparing to genetic algorithm which has been used in many previous works, this method 
relies less on computational force because it has a mechanism that gradually allocates computational 
capacity to the most promising candidates as they emerges. This mechanism of prioritization is a feature 
of the new framework. 
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3.2 The workflow 

This interactive modeling platform is designed to work in an iterative way. It allows the system, which 
is the automatic model conceptualization algorithm, to interact with the modeler in order to generate 
model structures. The main workflow of it is therefore a circle (1-2-3-4), as shown in figure 11. What 
runs through the circular path are partially-built models, which are called candidate structures. Through 
iteration, candidate structures are constantly generated, modified, validated, and selected. Inside this 
circle are mechanisms that could influence this iterative process. 

In this diagram, the owner of the problem could interact with the system through managing reference 
modes (5), manually modifying model structure (7) and accepting structures generated by the system 
(8). The rest of the processes are automatically done by the system. 

Once a reference mode (time-series data) is added through managing reference mode (5), it will stay (6) 
unless manually deleted. Every time before a new loop begins, the system will check if all reference 
modes have their stock/variables in the model structure. If not, the system will build them through (9). 
Problem owner can also manually modify a structure (7) before and after a new loop begins. 

 

Figure 11 Main workflow of the interactive modeling platform 

Reference modes (6) play an important role in this system and could influence the model 
conceptualization process through multiple ways. First, they could be used for measuring the 
performance of a candidate structure through comparison of behaviors (15). Second, it could be used to 
suggest a possible feedback structure and apply this feedback structure to a candidate structure (10-11-
12-13), which is the ‘top-down’ mechanism. Third, they are used as reference behaviors for calibrating 
the parameters (14) of a candidate structure. 
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A new iteration begins with structure expansion (1-2), through which the base structure (1) could be 
modified through one or more mechanisms. The diagram only shows one mechanism, which is the ‘top-
down’ mechanism (10-11-12-13). Modification is not working on the base structure itself but on a copy 
of it, which makes the base structure co-exist with the modified structure.  

Like structure expansion (1-2), parameter calibration (6-14-2) is also a part of model conceptualization. 
Through this process, the system will adjust the parameters in candidate structures, trying to make their 
behavior closer to the reference mode. 

Candidate structures whose behavior matches the reference mode the best (15-3) are ranked top (2-3), 
and they will be proposed to the problem owner for selection (3-4). The problem owner could accept 
and keep (8) the one he or she finds convincing. It is also possible for him/her to manually modify one 
or more candidate structures (7), and to add or remove reference modes (6) through (5) before the next 
iteration begins. 

3.3 Key mechanisms 

To implement the workflow discussed above, the modeling platform is equipped with a number of key 
mechanisms. They are revealed by the following diagram and will be explained in detail. 

 

 

 

 

3.3.1 Incorporation of mental data 

The modeling platform incorporates mental data into the conceptualization process by interacting with 
the problem owner. Mental data include the problem owner’s understanding of the situation and the 
speculated structures responsible for the problematic behavior. There are two ways for the problem 
owner to input his/her mental data into the platform. First, the problem owner could build a model 
structure (7) for the system to begin with, which would help the structure expansion (1-2) to go in a 
more directed way. Second, by the end of each iteration (1-2-3-4), the problem owner is able to accept, 
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reject or modify any candidate structure through (8), influencing the next iteration. 

3.3.2 The top-down mechanism for structure generation  

The top-down mechanism is guided by the experience a modeler accumulates throughout his/her 
practice and learning, which is a type of knowledge a priori. It comes from building and analyzing huge 
amounts of models, but it is not just models. For example, a tea-cup model (whose core structure is a 
first order negative feedback loop) will contribute to this knowledge base not only by itself, but also by 
the idea of first order negative feedback loop, which is represented as a chain of functions discussed in 
Section 1.2.2. 

These feedback loops can be used to guide the generation of new candidate structures (10-11-12-13). 
First, the reference mode is categorized (6-10) as one of the generic dynamic patterns defined in Barlas 
and Kanar (2000). Most of the generic dynamic patterns are linked with feedback loops. For example, 
Decline (c) in figure 13 is linked to a first order negative feedback loop. 

 

Figure 13 Typical dynamic patterns from Barlas and Kanar (2000) 

When a reference mode is categorized as Decline (c), the concept of ‘first order negative feedback loop’ 
is activated. Then through process (13-12), a first order negative feedback structure is retrieved from a 
particular model (e.g. a tea-cup model) and added to a candidate structure (12-2). 

The following example is used to elaborate this mechanism. 
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Figure 14 An example for the 'top-down' mechanism 

The example shows how a reference mode could be used to derive a new candidate structure through 
the ‘top-down’ mechanism. 

3.3.3 Managing all candidate structures in a tree 

As we use ‘candidate structures’ to represent the many possible ways a model could be built, there are 
often multiple candidate structures (2) existing in the system at the same time. They all originate from 
the root candidate structure which is the first one that comes to (1). Each candidate structure has a 
pathway that traces back to the root. Candidate structures are therefore managed in a tree-shape data 
structure, in which each node represents a candidate structure, and to derive a new candidate structure 
from an existing one is done by adding a node and point to it with an arrow from the existing node.  
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Figure 15 Example of an expansion tree 

Figure 15 shows an expansion tree with three candidate structures. Candidate structure No.1 is the root, 
from which all other candidate structures are derived. Candidate structure No.2 and No.3 are different 
but both modified based on No.1, through structure expansion (1-2). 

As described before, deriving a new candidate structure from an existing one does not overwrite the old 
one, but keeps both of them. In figure 15, this means that after Candidate structure No.2 is derived from 
No.1, No.1 is still considered as an existing candidate structure and therefore can be used to derived 
Candidate structure No.3 afterward. This is because a structural modification may not always be 
beneficial. In the case of figure 15, Candidate structure No.2 is different from No.1 in structure, and 
this difference may make its behavior less fitting the reference behavior. If so, Candidate structure No.2 
will be less likely to survive in later selections. Keeping the old one (base structure) is to keep the 
possibility for it to be expanded on a different direction, as in figure 15, keeping Candidate structure 
No.1 makes possible the later derivation of No.3. 

Comparing with the way ants searching for food, this mechanism to search for promising candidate 
structures is trying to keep a balance between exploration and exploitation when there are only limited 
computational resources to allocate: building new candidate structures is to explore new pathways, 
while the pathway on which candidate structures are most promising would be prioritized for further 
exploitation, by deriving even more candidate structures from those existing. However, no matter how 
promising one pathway seems to be, exploration on other pathways will not completely stop; just as in 
ants’ searching, there are always a few ants scouting around the area. 

3.3.4 A scoring system to identify promising candidate structures 

A scoring system is designed to decide which candidate structure to prioritize. It is implemented through 
a scoring system that grades candidate structures (2-3). The indicator used for score is ‘likelihood’, 
which calibrates how possible one candidate structure could become the expected model structure. A 
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candidate structure with higher likelihood would receive more attention from the system, which makes 
its further expansion easier to happen. Adjustment of likelihood is based mainly on the similarity 
between the candidate structure’s behavior and the reference mode. 

However, there is not a fixed mapping between ‘similarity’ and ‘likelihood’. Instead, the adjustment of 
likelihood is carried out through competition. Every time, two candidate structures are picked and each 
of them is compared with the reference mode to calculate similarity. The one with higher similarity will 
get some score from the other one. This mechanism is implemented through the Elo rating algorithm. 
The entire prioritizing process can be summarized in the following causal diagram:  
 

 
Figure 16 The prioritizing process 
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4. Experiments and results 

In this chapter, the author will further demonstrate both the features and the user interface of the 
interactive modeling platform by running three experiments. Features to demonstrate are: 

• Suggesting model structure to explain a given time-series; 
• Suggesting model structure to explain a given time-series while incorporating structural 

information from the user; 
• Suggesting model structure while being adaptive to new information during the modeling process. 

4.1 Case study 1: Tea cup case with time-series data only 

4.1.1 Case description 

This experiment is set up to test the platform’s ability to automatically suggest a model structure from 
only time-series data. 

The situation in this case is a cup filled with hot water cooling down in a room. The time series shows 
the cup’s temperature going down over time (figure 17). The manually measured temperature data is 
obtained from Wagon and Portmann (2005) and converted into degrees Celsius from original degrees 
Fahrenheit (figure 18). No additional information is provided to the system. 

 

Figure 17 Time series of the cup’s temperature (degrees Fahrenheit), x-axis in seconds. 

 

Figure 18 Time series of the cup's temperature (degrees Celsius), x-axis in seconds. 
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The expected outcome of this experiment is a model structure that could explain this reference behavior. 

4.1.2 Experiment process and result 

Step 1: Load reference mode 

The platform is able to load reference modes from file. In this experiment, the time-series data of the 
cup’s temperature is stored in a csv file. The platform loads the csv file and displays time-series data. 
The user can preview a reference mode by selecting it in the interface (figure 19). 

 

Figure 19 Reference mode loader 

The user needs specify the type of variable for this reference mode. In this case, the temperature takes 
time to change, so it needs to be represented by a stock. By selecting ‘stock’ and clicking the ‘add’ 
button, a reference mode is added to the system’s reference mode manager. After adding all reference 
modes, the window could be closed by clicking the ‘close’ button. 

 

Figure 20 Reference mode manager 

Reference mode manager of the system has a graphic user interface to preview, add, and remove 
reference modes (figure 20). 
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Step 2: Start a conceptualization loop 

The user can control the conceptualization process with the platform controller. 

 

Figure 21 Platform controller 

When reference modes have been loaded, the system will generate its first candidate structure as a 
starting point. In this candidate structure, variables are created for each reference mode. In this case, we 
only have the stock ‘tea_cup’ in the model, because only one reference mode is added. The first value 
in the reference mode is extracted and used as the initial value of this stock, which is about 98.0. The 
model is simulated to generate an initial behavior. The simulation time is 25 time-units. With a DT of 
0.25, 100 time-steps are calculated. 

Through the graphic user interface, a candidate structure can be displayed in both a stock-and-flow 
diagram and a causal loop diagram, with its behavior shown in line graph. 

 

Figure 22 Candidate structures (1) 
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Step 3: Building structure by applying blocks 

Structure expansion is the process to derive a new candidate structure from an old one by adding more 
structures to it. After derivation, the old candidate structure is still in the memory, and a tree-shape data 
structure is used to track the derivation path. The structure is called ‘expansion tree’. 

For example, the expansion tree shown below has only one branch, on which there are three candidate 
structures, namely No.1, No.2, and No.3. The arrows indicate the derivations’ direction. Numbers in 
‘[ ]’ after the structure’s serial number is the structure’s likelihood to reproduce the reference behavior. 

 

Figure 23 Example of an expansion tree 

As discussed in Section 3.1.2, structure expansion is done through two different mechanisms. One is 
‘bottom-up’, the other is ‘top-down’. ‘Bottom-up’ is more random than ‘top-down’, since it only follows 
basic system dynamics modeling rules, while ‘top-down’ is to apply a generic causal structure, for 
example, a first order negative feedback loop, to a candidate structure. 

In this run, ‘top-down’ comes in first. The system recognizes the reference mode for ‘tea cup’ as 
‘Decline (c)’, which in Barlas and Kanar (2000)’s dynamics patterns is the third one from the left. 

 

Figure 24 The decline family of behaviors in Barlas and Kanar (2000) 

The generic causal structure associated with ‘Decline (c)’ is a first order negative feedback loop. As 
mentioned before, it is not a discrete model structure, but the abstract concept of this loop. A chain of 
functions is used to represent this concept. In the platform’s denotation, the feedback loop looks like: 
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Figure 25 Function chain as the concept of a feedback loop 

It means this loop starts with a stock, then calculates the difference between this stock and some other 
variable. The gap between them is be divided by yet another variable. The quotient calculated from the 
division is used as a flow to influence the starting stock. This is more like a ‘backbone’ of a feedback 
loop than a feedback loop itself. 

Applying this concept of feedback loop to candidate structure No.1, a new candidate structure – No.2 
is derived. As shown in figure 26, ‘variable_1’ and ‘variable_2’ are created with subtraction and division 
as their functions respectively. Parameters are set to their default value, because they have not been 
calibrated. 

 

Figure 26 Candidate structures (2) 
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Step 4: Calibrating parameters 

Parameter calibration comes after structure expansion. In this step, the system goes over the variables 
in a model to look for parameters and calibrates them. For example, the equation in ‘variable_1’ is: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒& = 𝑡𝑒𝑎_𝑐𝑢𝑝 − 0 

In this case, 0 would be the parameter to adjust. Following this process, the system identifies 2 
parameters in candidate structure No. 2, one in the ‘subtraction’ function, another in the ‘division 
function’, whose equation is: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒L = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒L ÷ 1 

The goal of the calibration algorithm is to minimize the distance between the model’s behavior and the 
reference mode. The distance is calculated through ‘dynamic time warping’ (DTW), an algorithm 
designed for calculating similarity between time-series (Berndt & Clifford, 1994). Inspired by the 
gradient descending algorithm, a similar algorithm is developed to minimize this distance by gradually 
adjusting parameters. 

Table 8 Process of parameter calibration 

  

(1) (2) 

 
 

(3) (4) 
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As calibration goes on, the model’s behavior gets closer to the reference mode. In the meantime, 
changing history of the two parameters is also recorded. They stabilize at 36 and 6 respectively after an 
adjusting phase. 

 

Figure 27 Changing history of the two parameters 

Figure 28 shows the calibrated candidate structure No.3, which is derived from No.2. 

 

Figure 28 Candidate structures (3) 
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4.2 Case study 2: Tea cup case with time-series data and structural information 

4.2.1 Case description 

This experiment is set up to test the platform’s ability to conceptualize a simulation model from time-
series data while incorporating structural information provided by the problem owner. 

In system dynamics modeling process, there are very often mental and written information for model 
conceptualization. They include both understandings of the situation in which the problem happened 
and preliminary hypotheses about the structure that could explain the problematic behavior (Forrester, 
1980a). As discussed before, given that it is still difficult for algorithms to extract such information 
automatically from mental and written data, the modeling platform is designed to be interactive so that 
the user can build a piece of structure they know before or during a conceptualization process. 

In this case, in addition to time-series data provided as in case study 1, additional information about the 
structure is given as: 

“The cup’s cooling down speed might have to do with the gap between the cup’s temperature and 
something else.” 

This information implies a hypothesis about a part of the target model structure, but still far from a 
complete model. The platform is supposed to begin the conceptualization with an incomplete model 
that already contains structure built by the user, which reflects the above sentence. 

4.2.2 Experiment process and result 

Step 1: Load reference mode  

The reference mode is loaded in the same way as in case study 1 and a root candidate structure is 
generated as a starting point. 



 39 

 

Figure 29 Candidate structures (4) 

Step 2: Incorporate the structural information from the problem owner into the model 

In this case, in addition to the time-series, additional information about the model structure is provided 
as knowledge a priori: 

“The cup’s cooling down speed might have to do with the gap between the cup’s temperature and 
something else.” 

From this information, a modeler could infer that the cup’s temperature, which is represented by stock 
‘tea_cup’, needs to be fed into a subtraction function to calculate a gap between itself and another 
unknown variable. Such a structure, although incomplete, still reflects some preliminary understanding 
of the feedback structure underlying the problematic behavior, and therefore needs to be provided to 
the platform before starting conceptualization. 

After loading the reference mode, an initial candidate structure is generated (figure 29). In the candidate 
structure window, the user can modify a candidate structure by clicking ‘modify’. Multiple tools are 
provided for modification, as shown in figure 30. 
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Figure 30 Structure modification 

A variable is needed to represent the function ‘subtraction’. It can be added through clicking the 
‘Auxiliary’ button (figure 31). The value of this variable should be a subtraction function, in this case 
‘tea_cup – 0’. The ‘0’ is used as a default value for a parameter in the subtraction function when 
information about this parameter is not available. Finally, because this function indicates a dependency 
on ‘tea_cup’, a causal relation from ‘tea_cup’ to ‘gap’ is added through ‘Connector’ (figure 32). 

 

 

Figure 31 Adding variable 

 

 

 

 

Figure 32 Adding connector 

 

The modified initial candidate structure to begin with is shown in figure 33. 
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Figure 33 Modified candidate structure 

Step 3: Building structure by applying blocks 

As in case study 1, the ‘top-down’ mechanism comes first when structure expansion begins, trying to 
apply a first order negative feedback loop to this candidate structure (No. 1). This mechanism is 
designed to be able to search for needed functions in the existing structure before building new ones. 
In other words, if a variable containing the needed function already exists, the algorithm will try to use 
it. Such a feature effectively enables the incorporation of structural information provided by the problem 
owner. As shown in figure 34, the algorithm recognizes the subtraction function in the variable ‘gap’ 
and includes it in the feedback loop. 
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Figure 34 Candidate structures (5) 

Step 4: Calibrating parameters 

The rest of this experiment is identical to case study 1. Parameters for the subtraction function 
(parameter_1) and the division function (parameter_2) are calibrated to make the behavior fit the 
reference mode as shown in figure 35. 
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Figure 35 Candidate structures (6) 

4.3 Case study 3: Water sink case with additional reference mode provided during 

conceptualization 

4.3.1 Case description 

In system dynamics modeling process, not all the information will always be readily available from the 
very beginning. Due to the iterative nature of this process, one could assume that new information can 
come up to the modeler throughout the entire modeling process. Additional information, whether it 
provides structural or behavioral insights, can be used to confirm or reject existing hypotheses. In the 
case of rejection, a modeler would think of a new possible structure. Such a maneuvering process 
reflects adaptivity, which is required for an automated model conceptualization algorithm. 

This experiment is therefore set up to test the platform’s adaptivity to additional behavioral information 
provided in the course of conceptualization. 

The case used here is a water sink. In this situation, water is added to a sink from a faucet and in the 
same time drained through a pipe. The complete target model structure is: 
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Figure 36 Complete SFD for the water sink case 

However, information for conceptualization is only partly available in the beginning. Available 
behavioral information is the reference modes for water level in the sink: 

 

Figure 37 Reference mode for water sink 

Available structural information is about the faucet: 

“Water is added to the sink through a faucet.” 

Sometime after the model building process begins, additional behavioral information about the faucet 
becomes available, shown as the following reference mode: 

 

Figure 38 Reference mode for faucet 

A modeler will then take this additional information into consideration and find out that this inflow 
could not itself generate the stock’s behavior, because the reference mode for water sink indicates a net 
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flow of 4 water amount per time unit but this inflow is 6, according to its reference behavior. Such 
contradiction will lead the modeler to a new hypothesis that there could be an outflow as well.  

This experiment is to test if the platform can reproduce this deliberating process. 

4.3.2 Experiment process and result 

Step 1: 

The time series data for the water sink is imported to the platform. 

 

Figure 39 Adding reference mode for water sink 

As described above, the modeler has known that water is added to the sink through a faucet. This could 
be represented by an inflow connected to the stock. Before conceptualization starts, the inflow is 
manually built to the initial candidate structure by the user, with a default value of 0, as shown in figure 
40, 41, and 42. 

 

Figure 40 Adding inflow 'faucet' to water sink 
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Figure 41 Inflow 'faucet' connected to water sink 

 

Figure 42 Candidate structure to begin with 

As all knowledge a priori has been provided to the platform, automatic structure generation and 
parameter calibration are performed. It does not take a long time for the system to reproduce the 
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reference mode by calibrating parameter: 

 

Figure 43 Conceptualization result based on information provided so far 

As shown in figure 43, in candidate structure No.2, the default value 0 in the inflow ‘faucet’ is replaced 
by a parameter, and the value of the parameter has been calibrated to 4, exactly the net flow required 
for reproducing the reference mode. 

Step 2: 

Reference mode for the inflow ‘faucet’ is now provided as additional information. In this case, it is 
loaded from file and managed by the reference mode manager of the platform (figure 44) as ‘filling’. 

After adding the reference mode, it is still needed to let the platform know which variable the reference 
is bound to. In other words, the platform should know ‘this is the reference mode for which variable’. 
A ‘binding management system’ is therefore implemented. On startup of the platform, when an initial 
reference mode is loaded and a variable is built for it, a binding is automatically created. Now a new 
reference mode needs to be assigned to an existing variable (in this case it is the inflow ‘faucet’). The 
user can manually do this with the binding manager (figure 45). 



 48 

 

Figure 44 Adding reference mode for inflow 'faucet' 

 

Figure 45 Binding 'faucet' to its reference mode 

In the binding manager, a list of existing bindings in the system is shown on the left side. The details of 
a selected binding are displayed in the section ‘binding details’ on the right side. For example, ‘Ref 
mode: filling; Element No. 2, faucet’ means the inflow ‘faucet’ is bound to reference mode ‘filling’. 
Such a binding can be created by: 

1) Browse through all candidate structures and choose the one that contains the variable to be bound 
(in this case it is candidate structure No.2); 

2) Browse through all variables in this candidate structure and select the variable to be bound (in this 
case it is ‘faucet’); 

3) Browse through all reference modes managed by the system and find the one to use (in this case it 
is ‘filling’); 

4) Click the ‘Add binding’ button on the top. 
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Step 3: 

With the updated information, a new iteration of conceptualization begins. Because there are now two 
reference modes (‘water sink’ and ‘filling’) bound to two variables respectively, the performance of a 
candidate structure is measured by the fitness of both reference modes. Therefore, the suggested 
candidate structure in step 1 will no longer be a good solution, because while the reference mode for 
stock ‘water sink’ is matched, the behavior of ‘faucet’ (which is 4) does not match its reference mode 
(which is 6). 

A drop in overall fitness is deemed by the system as a ‘rejection’ of a candidate structure. It is 
noteworthy that the system does not use the concept ‘rejection’ directly; instead, it is a dynamic process 
in the prioritizing system. As described in Chapter 3, the likelihood of one candidate structure to become 
the target structure is measured mainly by the fitness of its behavior to reference modes takes a big part. 
A likelihood number is used to represent a candidate structure’s performance. Candidate structures with 
higher likelihood will receive more attention from the system, which means they are more likely to be 
chosen for further structural expansion and parameter calibration. 

 

Figure 46 Expansion tree of this conceptualization task 

In case study 3, this process is revealed by the ‘expansion tree’ (figure 46). Candidate structure No.1 is 
the initial candidate structure, and No.2 is the candidate structure suggested in step 1. As a drop in 
behavioral fitness of No.2 happens as a result of the additional reference mode, more attention is paid 
again to No.1, making it more likely to be chosen for further expansion. The expansion happens and a 
new candidate structure (No. 3) is derived from No.1 by adding an outflow (flow_1) to the stock ‘water 
sink’, as shown in figure 47. This structure is different from No.2 as it contains two flows while No.2 
contains only one. Parameter calibration is then carried out for this new candidate structure, through 
which values of the 2 flows are adjusted, and both of the reference modes (‘water sink’ and ‘filling’) 
are successfully reproduced. A high behavioral fitness makes No.3 more likely to be the target structure, 
and the user can see this from the expansion tree. 
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The outcome of step 3 is shown in figure 47. The value of inflow ‘faucet’ is calibrated to 6 and the value 
of outflow ‘flow_1’ is calibrated to 2. They jointly make the stock ‘water sink’ increase from 0 to 100 
in 25 time-units, perfectly reproducing the reference mode. As it also complies with the provided 
structural information (‘water is added through a faucet’), it could be considered as one explanation of 
the observed situation. Moreover, it provides a hypothesis that there might be water flowing out from 
the water sink, and this hypothesis is to be validated in the real world by the user. For example, the user 
can go to check if the water sink really has a drain. 

 

Figure 47 Conceptualization based on information available so far 

4.4. Observations from the experiments 

In this chapter, features of the modeling platform are demonstrated and tested through three case studies. 
A summary of the experiments is provided below. 
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Table 9 Summary of experiments 

 Case 1 Case 2 Case 3 

Features Application of generic structure Incorporating existing structure Adaptivity to new information 

Available 

information 
Behavioral 

Structural and  

behavioral 

Structural and 

behavioral 

Expansion 

mechanism 
Top-down Top-down Bottom-up 

Platform 

modules 

1. Reference mode management 

2. Dynamic pattern categorization 

3. Structure expansion 

4. Parameter calibration 

5. Structure modification 

6. Binding management 

7. Behavioral fitness and 

8. likelihood-based ‘rejection’ 

 

Both structural information and behavioral information are utilized in model conceptualization. 
Structural information is provided to the platform by manually building stock-and-flow diagrams. 
Behavioral information is provided in the form of time-series data. The platform is able to use the 
provided information both before and during the conceptualization process. 

Two components of model conceptualization, namely structure generation and parameter calibration 
are carried out by the system. The system also shows its ability to generate new model structures through 
two different mechanisms: the ‘top-down’ mechanism, which implements feedback structures guided 
by generic dynamic patterns, and the ‘bottom-up’ mechanism, which adds new variables to an existing 
model structure following the system dynamics modeling rules. Moreover, in case study 2, the platform 
shows its capability to combine the two mechanisms: variables added to the structure through the 
‘bottom-up’ mechanism are able to be integrated or utilized by the ‘top-down’ mechanism. 

To sum up, the results from the experiments prove that the designed features are able to work as 
expected.  
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5. Discussions 

5.1 An overview of this work 

This research-and-development project is based on previous works on automatic model structure 
generation and aims to advance the research in this direction. It follows the hypothesis-validation 
paradigm by putting forward a new theory of automatic model conceptualization and testing it by 
developing a model building software and subsequently carrying out analytic experiments on it. 

Though varying in techniques, existing researches on automatic model structure generation are mainly 
taking a numerical data-driven perspective. The dominant method is to ‘learn’ model structures from 
time-series data. Beside the exclusive reliance on time-series data that constitutes only a small part of 
all types of information available for modeling, the outcome of the existing methods very often demands 
extensive human work to make it usable. 

Having provided an analysis of model conceptualization, the author defined it as the process a modeler 
derives conceptual or simulation model from multiple data sources. The existing automatic methods are 
aiming at the same objective as model conceptualization while using much more limited sources of data 
because mental and written data are excluded. The author therefore postulated that beside refining the 
existing methods, another possible method could be to bring broader sources of data into this automated 
conceptualization process. 

Accommodating mental and written data requires a new framework for information process, since the 
existing artificial neural network-based methods are suitable for processing numerical data but not for 
data in other forms. Moreover, the iterative characteristics of modeling process calls for an iterative 
workflow to allow structure generation and validation to take place iteratively. 

Learning from how a human modeler conceptualizes models, the author characterized the model 
conceptualization process as a process that has multiple iterations, that takes information from multiple 
sources, that benefits from previous modeling experience, and that ranks candidate structures to find 
the most promising ones. The author then proposed an interactive and iterative workflow in which the 
participation of human modeler is included, and previous modeling experience is consulted. In one 
iteration of the workflow, new hypotheses of structure (candidate structures) are automatically 
generated through ‘top-down’ and ‘bottom-up’ mechanism and validated by both comparing behavior 
to reference mode and by modeler’s selection. The hypotheses-validation process observed in human 
modeling is therefore reproduced in this human-machine interaction, with non-numerical information 
handled. 

The workflow is implemented with a Python-based modeling platform and experiments are carried out 
to further demonstrate the features and test its performance. 
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5.2 Innovations of this work 

A framework to utilize information from multiple sources 

Forrester (1980a) categorized information for system dynamics modeling into three types, namely 
mental data, written data, and numerical data. This work intends to bring more types of data than only 
numerical to the automatic model conceptualization process. The additional types of data are mental 
data from the problem owner and knowledge a priori. As they have not been included in automatic 
model conceptualization before, a new framework is proposed to handle all these data. 

Different from previous works in this field, the new framework conceptualizes models in a humanly 
way, reproducing the iterative hypothesis – validation workflow. Data are used to inform all steps of 
this workflow, both for making new hypotheses and for validating them. 

It is arguably that this new framework is no longer fully automatic, for it requires participation of the 
user to provide structural input, as a result of that current technology is still not able to extract model 
structures from verbal information. 

However, this expedient measure does not compromise the objective of automation. Although input of 
structural information is currently manually done by the user, the modeling platform is designed flexible 
enough to take input from automated data sources in the future. This feature is benefited from the high-
level application interface used in the structure modifier of the platform (figure 41). High-level 
application interface allows the system to take order from its user in a natural language-like format. For 
example, ‘flow A is connected to stock B’ looks like a sentence in natural language, and there is already 
a function built in the platform that can connect a flow to a stock, requiring only two parameters – flow 
A and stock B. In the future, once the natural language process technology – which is the ‘automatic 
data source’ mentioned above – is smart enough to extract ‘there is a flow A connected to stock B’ from 
a specific text (for instance, a paragraph that describes a bathtub), this readily built application interface 
could be called to make the corresponding structural change to the model.  

In a word, this work contributes not only by the automation it realized, but also by the framework that 
could accommodate future automation. 

A graph network-based representation of system dynamics models 

The platform is able to both add new variables to and modify existing variables in a model structure 
following a humanly way. This feature guarantees the transparency of the model conceptualization 
process, so that every step taken by the algorithm could be observed and understood by the modeler. It 
is made possible by graph network, a data structure that is adapted to store, represent, modify, and 
simulate system dynamics models. 

Graph network comes from graph theory. It is a data structure that can store a broad range of information 
in ‘nodes’, and relationships between them in ‘edges’. Concepts familiar to us in system dynamics such 
as variables, connectors, and loops all have their counterparts in graph networks. A wide range of 
algorithms to operate graph networks have already been developed, making it easier to operate a graph 
network-based system dynamics model: for example, detection of feedback loops in the model structure 
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can be done through one simple command. 

In addition to this new representation of SD models, the author also developed a simulation engine that 
could simulate such a model without using other modeling software. This is not the first Python-based 
system dynamics simulator, as the PySD project has become a reliable simulation engine that could run 
system dynamics models under a Python environment (Houghton and Siegel, 2015). However, what 
has not been seen is an engine that integrates Python and system dynamics closely enough so that not 
only simulation, but also model building can be done without switching to another platform. A by-
product of this work is a Python-based system dynamics modeling environment. As data science is 
becoming more significant and much of its applications are in Python, a Python-based modeling 
environment for system dynamics will be helpful to connect data science to system dynamics. 

Previous models as knowledge base 

One feature of the platform is a stock of existing models, mostly generic structures. They are used here 
as a knowledge base. Knowledge a priori plays an important role in conceptualizing models, according 
to Forrester (1980a and 1994), for it allows a modeler to search through and adapt an existing model to 
a new situation, instead of modeling every time from scratch. There might be multiple methods for 
carrying out this ‘filtering’ process in computer, and the one used in this work is through comparison 
between behaviors. 

Moreover, a stock of existing models implicitly contains rules to build system dynamics models, and if 
this stock is large enough, a good part of the system dynamics modeling rules could be elicited from it. 
For example, if in a model a stock is connected to a flow, it would be possible for the system to import 
this flow to a candidate structure and connect it to an existing stock. In this case, ‘a flow can be 
connected to a stock’ is not an explicit rule, but a precedent to follow. The advantage of this method is 
that sometimes there are so many rules to define and defining them is so time-consuming that a set of 
pre-built examples would work better. 

To sum up, previous models can be used for two purpose: adaptation for new situations and sources of 
system dynamics modeling rules. 

A way to operationalize generic structures 

Paich (1985) defines generic structures as ‘dynamic feedback systems that support particular but widely 
applicable behavioral insights’. Generic structures help system dynamists to generalize their learning 
results from specific social problems by storing and applying their insights in an integrative form (Lane 
1998). Forrester has asserted that ‘probably twenty basic structures would span 90% of the policy issues 
that most managers encounter’ (Forrester, 1980b), underscoring the importance of generic structures. 

Up to now, generic structures are used to help leaning and model building by modelers. This work, 
however, demonstrates a way to use them for automatic model conceptualization, which is a further 
operationalization of them. Moreover, Hines (1996) studies structure blocks that are often used in 
system dynamics modeling and proposed a repository of structure molecules. They range from ‘bathtub’ 
to ‘aging chain’, each associated with a situation and able to simulate. Arguably, these molecules of 
structure could be operationalized in the same way as in this work, reinforcing the capacity of the 
knowledge base. 
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Feedback loops characterized by a chain of functions 

Feedback loops are of great importance in a generic structure. As demonstrated in 4.1.2, although a 
feedback loop is usually called by its name (e.g. ‘first order negative feedback loop’) or the generic 
structures name (e.g. ‘goal-gap model’), they are in essence neither a name nor a set of variables’ names, 
but a chain of functions. Taking the example in 4.1.2, a goal-gap model consists of the following 
variables: 

 

Figure 48 A goal-gap model 

However, what characterizes its essence would be a chain of functions: 

 

Figure 49 Function chain elicited from the goal-gap model 

In this way, we can distill a chain of functions from every feedback loop and two loops that have the 
same chain of functions will be categorized as the same type. This provides three new opportunities: 

First, an opportunity to automatically categorize a large number of models. Models with the same chain 
of functions would probably show similar behavior. 

Second, an opportunity to automate the simplification of a complicated model. Saysel, Kerem, and 
Barlas (2006) proposed a workflow to simplify a complicated system dynamics model while keeping 
its key structures and behaviors unchanged. This workflow is to iteratively go through feedback 
structures, parameters, and flow equations to test if some of them could be simplified by aggregation. 
Dismantling model structure into functions and parameters is a key step in this process. As automatic 
elicitation of function chains is already realized in this work, it gives the opportunity to automate model 
simplification. 

Third, an opportunity to automate loops analysis, because it enables models to be seen as ‘chains of 
functions and parameters’, instead of ‘parameters and the model’. This new perspective allows the 
model to be tested loop by loop, and sensitivity analysis can also be performed loop by loop, instead of 
parameter by parameter. 
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Enhancement of model analysis and policy making 

Because of the graph network-based representation of SD models, modification of model structure 
could be done in an automated way more easily. Previously, automated model analysis is mainly about 
tuning parameters. With the help of a better understanding of loop as discussed above, automated model 
analysis and policy generation could also make structural change by itself. Such a structural change 
could be building an additional flow to a stock or closing a feedback loop by adding a causal relationship. 
Changes that alleviate the problematic behavior can be further considered for policy suggestions. 

5.3 Limitations and future research directions 

Although achieved its objectives, this work is still subject to the following limitations, or at least could 
be improved by working on them. This last section will discuss the limitations and point out possible 
future directions for research. 

Experiments on more complicated situations 

Although designed to test a prototype, the experiments in Chapter 4 are simple. A more complicated 
case will at least challenge the system from the following three aspects: 

First, there will be more variables and more reference modes. An increase in the scale of a model will 
raise the uncertainty of the target structure. As shown in Chapter 2, numerical-data based methods have 
difficulty when multiple time series are provided for them in the same time. The same uncertainty is 
also faced by the method proposed in this work, and it is still unknown how will this system behave 
under large amount of data. From experiment results, it is clear that structural information and a base 
of knowledge a priori would help a lot in reducing uncertainties, but to what extent can it help in 
complicated conditions still needs to be tested. 

Second, dynamic behavior of a reference mode becomes more complicated. The experiments carried 
out so far use reference modes that can be easily categorized into generic behavior patterns in Barlas 
and Kanar (2000). However, in cases from the real world, reference modes may be influenced by 
exogenous inputs or synthesized with behavior of other variables. For example, a behavior going 
upward may be synthesized with an oscillatory curve and yield an upward oscillation. This situation 
may be hard to model even for an experienced modeler. Theoretically, if the system has a model in its 
knowledge base which could produce a similar behavior, there is still a chance for it to find a solution. 
However, one could neither rely on the system to have every possible behavior pre-stored. Then it is 
still not clear if the best strategy would be to decompose this synthesized dynamic behavior, or to ask 
the modeler for more structural information. 

Third, some information provided for the system might be wrong or self-conflicting. Time-series data 
could contain noise, sometimes the noise is so distracting that the data become misleading. Structural 
information could also be wrong, or sometimes they are just guessed. Further improvements are 
therefore needed in response to this uncertainty of information reliability. 

More strategies to compare situations 

One feature of the modeling platform is a knowledge base consisting of previous models that could be 
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entirely or partly imported to generate a candidate structure. The selection of model is based on 
behavioral similarity. The method used for comparison is simple and can only compare time series. 
However, in the real world, similarity between situations is more complex and does not only have to do 
with numerical data, but also structural information. For example, a water sink and a bathtub are similar 
to each other because they are both connected with an inflow and an outflow. Such structural 
comparison, if made possible, would greatly help the algorithm to find a proper model to import by 
better identifying similarity between situations. 

This point also has to do with case-based reasoning, a popular method in strategic decision making. In 
cased-based reasoning, a previously solved case is retrieved to inform the policy making for a new case 
provided the two cases are similar enough. A process of four steps is formulated as “Retrieve, Reuse, 
Revise, and Retain” (Aamodt and Plaza, 1994), in which ‘Retrieve’ is based on relevance between cases. 
A study of case-based reasoning may be helpful to improve situation comparison in this research. 

More concepts to be understood by computer 

Concepts can help people remember, categorize, communicate, and create new concepts. Understanding 
of a concept has many levels: to have seen it is higher than to know its existence, and to have used it is 
higher than to have seen it. One may have seen a harmer but never used it, but once he/she has used a 
harmer, he/she will definitely have a better understanding of the concept ‘harmer’.  

In system dynamics modeling, concepts such as ‘stock’, ‘flow’, ‘function’, and ‘feedback loop’ help 
modelers to read and build models. Once thinking of a concept ‘negative feedback loop’, a modeler 
could see beyond the concept itself and recall things such as requirements for a feedback loop to be 
negative, typical negative feedback loops, behavior of a negative feedback loop, and that a negative 
feedback loop could be used to balance a positive feedback loop. Those that come to a modeler’s mind 
will altogether form his/her understanding of the concept ‘negative feedback loop’. In contrast, if a 
model that contains a negative feedback loop is stored in a computer, the computer will neither have 
the above thinking nor understand the concept of that loop, even though it physically stores it. 

“In 1968, the mathematician and philosopher Gian-Carlo Rota wrote, ‘I wonder whether or when 
artificial intelligence will ever crash the barrier of meaning.’ Here, the phrase ‘barrier of meaning’ refers 
to a belief about humans versus machines: humans are able to ‘actually understand’ the situations they 
encounter, whereas AI systems (at least current ones) do not possess such understanding.” (Santa Fe 
Institute, 2018) A model stored on hard disk has a barrier of meaning for a computer, but the barrier 
would supposedly become lower if the computer knows how to use the model. 

In this work, the proposed the algorithm is able to recognize a negative feedback loop by eliciting a 
chain of functions from it, and to use this chain of functions to create a new feedback loop which would 
generate a desired behavior. More importantly, these actions are guided by a purpose of getting better 
performance (measured by candidate structure’s likelihood) rather than stochastically – even a strong 
cat can wield a harmer but only a human can use it as a tool, because human has a purpose. In this case, 
the ‘barrier of meaning’ of the concept of negative feedback loop is lowered for the computer because 
it can use the concept to achieve a goal, though to a very limited extent. It is interesting to imagine how 
much better a computer will become at modeling if more concepts in system dynamics are 
operationalized and understood by it. And this is probably another direction to go down.  
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Appendix 1 

The software prototype developed for this project is an interactive modeling platform. 
 
A version pre-released for this submission could be found at: 
https://github.com/Rutherford1895/Stock-and-Flow-in-Python/releases/tag/0.9 
 

The latest repository of source code could be found at: 
https://github.com/Rutherford1895/Stock-and-Flow-in-Python 


