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Abstract

This thesis presents work on improving the predictive capabilities of a numerical model
by parameter optimisation. The numerical model is based on computational fluid dy-
namics (CFD) and predicts the consequences of industrial-scale gas explosions. CFD
models are, in general, approximate representations of real phenomena of interest; of-
ten, the agreement between model output and relevant experimental data can be im-
proved through optimising parameters in the model. In this work, the parameters con-
sidered for optimisation are contained in sub-grid models for turbulence and combus-
tion.

The doctoral project focuses on the gas explosion module of the commercial CFD
tool FLACS. Explosion predictions of the tool are utilised in risk management for safer
design of industrial facilities handling combustible gases. The challenge of simulating
gas explosions with the CFD tool is that the predictions have to be reliable for many
different explosion scenarios in extremely different large-scale geometries. This thesis
presents an optimisation approach that considers this wide application range of the CFD
model.

Four papers constitute the main part of the thesis; they propose a methodology for
formulating and solving the optimisation problem (Paper 1, 2 and 4) and present exam-
ples of application (Paper 3). Additionally, the thesis comprises scientific contributions
that have not been presented in the papers.

Amongst several candidates, suitable model outputs are identified as optimisation
targets. The problem has first been formulated as a least-squares problem (Paper 4);
this formulation did not appear to be appropriate for improving model predictions in
gas explosions. Thus, in Paper 2, a problem formulation is developed that assesses
under- and over-predictions as in model validation processes. This validation-based
formulation is shown to be closely connected to another formulation in which the solu-
tion is the maximum likelihood estimator in the case of log-normally distributed errors
in the measurements. It is shown that in contrast to a traditional least-squares problem
formulation, the validation-based formulation yields an overall better improvement of
the specific model outputs. The thesis presents three methodologies for selecting gas
explosion experiments to be included in one optimisation process.

Running simulations is time-consuming. To enable a practical optimisation run-
time, the model output is approximated by surrogates, which are fast to evaluate. Sur-
rogates are explicit functions representing parameter-output relations. In Paper 1, sur-
rogates based on neural networks are compared to polynomial response surfaces. Due
to the satisfactory overall approximation quality of the neural networks in this applica-
tion, these are employed as surrogates in subsequent optimisation processes. Further-
more, the smoothness of the surrogates allows for employing gradient-based optimisa-
tion routines; the resulting surrogate-based optimisation problem is solved by a trust
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region method embedded in a multi-start approach that has originally been intended
for non-linear least-squares problems. As the developed optimisation problem is not
a least-squares problem, the convergence of the routine for this problem with respect
to the first order necessary optimality conditions is proven in Paper 2. In the end, to
ensure that it is not a blind fit of the optimisation targets, but that characteristic physi-
cal phenomena of gas explosions are represented by the model, a comprehensive sanity
check of the model is performed after optimisation.

The optimisation approach is used for two purposes: i) to obtain optimal param-
eter values that lead to reliable predictions for a wide range of applications, and thus
can be implemented in the CFD tool; ii) to analyse physical models and detect their
strengths and limitations. In this thesis, the second purpose is illustrated by an exem-
plary analysis of a flame folding model; optimisation for the first purpose is examined
in more detail. In particular, the optimisation approach is tested and applied success-
fully to several versions of the CFD tool FLACS at different stages in the development
process: a version released for commercial use and an in-house development version.
The applicability of the optimisation approach is shown by testing it on the release ver-
sion in Paper 2 and Paper 4. The in-house development version comprises models that
have been updated recently with parameter values that have been set to an initial ‘best
guess’, and thus requires optimisation. The in-house development version comprises
updated models in which parameter values have been set to an initial ‘best guess’ and
thus requires optimisation. Optimising the development version in Paper 3 improves
the predictions significantly.

It is important to note that the optimisation process cannot compensate for mod-
els that do not capture the physical mechanisms of gas explosions. Thus, optimisation
processes cannot replace further efforts in CFD modelling. However, the optimisa-
tion process has proven to be highly useful for supporting modelling efforts (Paper 3);
analysing predictions of the optimised model may give information about the model’s
predictive capabilities, may suggest updated user guidelines, or may enable a discus-
sion on how to progress within the development of the physical models. Such conclu-
sions for recently updated model systems had been impossible to draw before model
parameter optimisation.



List of papers

1. Braatz, A.-L.* & Hisken, H. (2017). Response surfaces for advanced conse-
quence models: Two approaches. Journal of Loss Prevention in the Process In-
dustries, 49, Part B: 683–699.

2. Both, A.-L.*, Hisken, H., Rückmann, J.-J. & Steihaug, T. (2019). Surrogate-
based model parameter optimization based on gas explosion experimental data.
Engineering Optimization, 51(2):301–316.

Supplementary material.

3. Both, A.-L.*, Atanga, G. & Hisken, H. (2019). CFD modelling of gas explosions:
optimising sub-grid model parameters. Submitted to Journal of Loss Prevention
in the Process Industries.

4. Braatz, A.-L.*, Hisken, H. & Rückmann, J.-J. (2016). Surrogate-based optimi-
sation of model parameters for the improved modelling of industrial-scale gas
explosions. Proceedings 5th International Conference on Engineering Optimiza-
tion (EngOpt), 19–23 June 2016, Iguassu Falls, Brazil, Published by E-papers
Serviços Editoriais Ltda: 398–398. ISBN: 978-85-7650-548-8.

*The candidate changed her name from Anna-Lena Braatz to Anna-Lena Both in 2017.

List of papers not included in the present dissertation

1. Bau, U., Braatz, A.-L.*, Lanzerath, F., Herty, M. & Bardow, A. (2015). Control of
adsorption chillers by a gradient descent method for optimal cycle time allocation.
International Journal of Refrigeration, 56: 52–64.

2. Braatz, A.-L.* & Hisken, H. (2016). Response surfaces for advanced conse-
quence models: two approaches. Proceedings Eleventh International Symposium
on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE), 24–
29 July 2016, Dalian, China: 893–910. ISBN: 978-7-89437-165-2.



viii List of papers



Scientific environment

The work presented in this thesis was conducted as part of the PhD studies at Gexcon
AS and the Department of Informatics, University of Bergen. The doctoral project was
funded by the Research Council of Norway (RCN) through the Industrial PhD scheme,
grant number 246167, and Gexcon. The project period spanned four years, from which
three years were reserved for the doctoral study and one year for work assignments in
Gexcon. The candidate has been enrolled in the Research school in Information and
Communication Technology (ICT Research School) at the Department of informatics,
University of Bergen, and has been supervised by Professor Jan-J. Rückmann and Pro-
fessor Trond Steihaug (co-supervisor).

The candidate has been employed as a Research Engineer in the Research and De-
velopment (R&D) department at Gexcon since January 2015. Co-supervisors at Gex-
con have been Dr Michał Folusiak and Dr Helene Hisken. The R&D department of
Gexcon develops and maintains the computational fluid dynamics (CFD) solver Flacs
which is able to simulate gas dispersion, fires and explosions in large-scale realistic
geometries. Flacs is an integrated part of the commercial software product FLACS.

The doctoral study evolved from a previous study by Dr Helene Hisken at Gexcon.
In that study, Dr Helene Hisken worked with Dr Scott G. Davis from the Gexcon US
office who developed (together with co-workers) an optimisation technique for detailed
chemical kinetics models. Dr Helene Hisken applied it to parameter optimisation in
FLACS. As part of a summer intern ship 2014, the candidate contributed to this study.

During the doctoral study, the candidate has followed up the idea of parameter op-
timisation in FLACS. She developed and implemented an approach for optimising pa-
rameters in the model system in FLACS. Through the work as Research Engineer, the
candidate has optimised various development versions of the model system. Addition-
ally, she has contributed to the joint industry project (JIP) "Modelling Escalating Acci-
dent Scenarios and the Use of Risk-reducing technology for Explosion safety (MEA-
SURE)" (2013–2016). The candidate has also been involved in customer support in
2016–2017.



x Scientific environment



Abbreviations

AMF Approximation Management Framework
AMMF Approximation Model Management Framework
AMMO Approximation Model Management Optimisation
ANN Artificial Neural Network
BFETS Blast and Fire Engineering for Topside Structures
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
GP Gaussian Process
JIP Joint Industry Project
LES Large Eddy Simulation
MARS Multivariate Adaptive Regression Splines
MEASURE Modelling Escalating Accident Scenarios and the Use of

Risk-reducing technology for Explosion safety
MERGE Modelling and Experimental Research into Gas Explosions
MG Geometric Mean bias
MLE Maximum Likelihood Estimator
MLP MultiLayer Perceptrons
PDR Porosity/Distributed Resistance
PRS Polynomial Response Surface
QRA Quantitative Risk Assessment
RANS Reynolds-Averaged Navier–Stokes equations
RBF Radial Basis Function
RCN The Research Council of Norway
RSM Response Surface Methodology
RSNN Response Surface based on Neural Networks
SMF Surrogate Management Framework
SVM Support Vector Machines
SVR Support Vector Regression
VG Geometric mean Variance



xii Abbreviations



Contents

Preface i

Acknowledgements iii

Abstract v

List of papers vii

Scientific environment ix

Abbreviations xi

1 Introduction 1
1.1 Consequence modelling of hazardous accidental gas explosions . . . . . 1
1.2 Empirical sub-grid model calibration . . . . . . . . . . . . . . . . . . . 2
1.3 Need for parameter optimisation in a CFD tool . . . . . . . . . . . . . 2
1.4 Research literature and context . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Formulating the optimisation problem 9
2.1 Sub-grid models and their parameters . . . . . . . . . . . . . . . . . . 9
2.2 Relevant model responses . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Selecting gas explosion experiments . . . . . . . . . . . . . . . . . . . 11

2.3.1 Selecting experiments for improving modelling . . . . . . . . . 11
2.3.2 Selecting experiments for testing the optimisation approach . . 13
2.3.3 Experimental campaigns considered in this work . . . . . . . . 14
2.3.4 Covering a wide range of validation categories . . . . . . . . . 14
2.3.5 Experimental uncertainty . . . . . . . . . . . . . . . . . . . . . 15

2.4 Assessing over- and under-predictions . . . . . . . . . . . . . . . . . . 17
2.4.1 The validation-based problem formulation . . . . . . . . . . . . 17
2.4.2 The VG formulation – minimising the geometric mean variance 17
2.4.3 The statistical point of view – maximum likelihood estimator . . 18
2.4.4 Relation of the VG formulation to the validation-based formu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Weighting strategies and multi-objective optimisation . . . . . . . . . . 19
2.6 Outlier robust optimisation . . . . . . . . . . . . . . . . . . . . . . . . 20



xiv CONTENTS

3 Surrogate-based optimisation 23
3.1 Surrogate modelling – a general overview . . . . . . . . . . . . . . . . 23
3.2 Surrogates considered in this work . . . . . . . . . . . . . . . . . . . . 24

4 Solving the optimisation problem 27
4.1 Gradient-free vs gradient-based optimisation . . . . . . . . . . . . . . 27
4.2 Adaptive sampling vs one-shot solution . . . . . . . . . . . . . . . . . 28
4.3 Trust region optimisation with a multi-start strategy . . . . . . . . . . . 28
4.4 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Application to the CFD tool FLACS 31
5.1 Optimising the standard model within a single validation category . . . 31
5.2 Optimising the standard model across validation categories . . . . . . . 32
5.3 Optimising the development model across validation categories . . . . . 32

5.3.1 Testing different weights in the objective function . . . . . . . . 32
5.3.2 Testing the VG problem formulation . . . . . . . . . . . . . . . 35

5.4 Optimisation for analysing the flame folding model . . . . . . . . . . . 37

6 Concluding remarks and future work 39

Appendices 43

A Approximation quality of surrogates 45
A.1 Flame speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Pressure rising time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B Trust region algorithm 49
B.1 Without box constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.2 With box constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C Optimisation of the standard model for a wide range of experiments 53
C.1 Optimisation within validation categories . . . . . . . . . . . . . . . . 54
C.2 Optimisation for experiments across validation categories . . . . . . . . 55
C.3 The optimal parameter values . . . . . . . . . . . . . . . . . . . . . . . 62
C.4 Including outliers in the optimisation . . . . . . . . . . . . . . . . . . . 62
C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D Optimising the flame folding model 65
D.1 The Gaps project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
D.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
D.3 Optimal parameter values and validation results . . . . . . . . . . . . . 68

Bibliography 71

Papers 77



List of Figures

2.1 Experimental variability for the repetitions of the BFETS, Phase 3A,
series ‘Alpha’ and ‘Beta’. . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Overpressure-time histories for MERGE E with a propane-air mixture
for the development model optimised for different weighted sums. . . . 35

5.2 Validation of the development and optimised model for the VG problem
formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.1 Validation of surrogates for the flame speed of experiment MERGE B
with propane-air at several monitor points. . . . . . . . . . . . . . . . . 46

A.2 Validation of a surrogate for the pressure rising time of experiment
MERGE B with propane-air. . . . . . . . . . . . . . . . . . . . . . . . 46

A.3 Switch in the strength of the pressure peaks for varying parameter val-
ues from the uncertainty space for MERGE B with propane-air. . . . . . 47

C.1 Validation of the standard model optimised for validation categories
separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.2 Validation of the standard model optimised for all selected experiments
together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.3 Validation of the surrogates at the overall optimal parameter values. . . 56
C.4 Validation of the overall optimised model, separately for each campaign. 59
C.5 Maximum overpressure across the rig for BFETS Phase 2 experiments

for the standard and overall optimised model and experimental data. . . 60
C.6 Overpressure-time histories for BFETS Phase 2 experiments for the

standard model, overall optimised model and experimental data. . . . . 62
C.7 Validation of the standard model optimised for all selected experiments

together including outliers. . . . . . . . . . . . . . . . . . . . . . . . . 63

D.1 First order local sensitivities for DNV GL 182 m3 vented enclosure tests. 67
D.2 First order local sensitivities for Gaps project tests. . . . . . . . . . . . 68
D.3 Validation of the model optimised for flame folding for the DNV GL

182 m3 vented enclosure experiments. . . . . . . . . . . . . . . . . . . 69
D.4 Validation of the model optimised for flame folding for the Gaps project

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xvi LIST OF FIGURES



List of Tables

2.1 Functioning of the optimisation approach. . . . . . . . . . . . . . . . . 12

5.1 Optimal parameter values of the development model for different
weights in the aggregated objective function. . . . . . . . . . . . . . . . 34

5.2 Optimal parameter values for the development model for different
problem formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.1 Optimal parameter values for different optimisation cases for the stan-
dard model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

D.1 Experimental configurations for selected tests of the Gaps project. . . . 66
D.2 Optimal parameter values for different optimisation cases. . . . . . . . 69



xviii LIST OF TABLES



Chapter 1

Introduction

1.1 Consequence modelling of hazardous accidental gas explosions

An inherent part of risk analysis in industries dealing with combustible gases is to as-
sess the consequences of potential accidental gas explosions. According to Cant et al.
(2004), numerical models based on computational fluid dynamics (CFD) are increas-
ingly employed in consequence modelling to design safer structures. CFD models
solve partial differential equations for the conservation of mass, momentum, energy,
and fraction of chemical species.

Three main approaches can be distinguished: direct numerical simulation (DNS),
large eddy simulation (LES) and Reynolds-averaged Navier–Stokes simulation (RANS).
The approaches differ in defining the threshold of the scale below which the flow is as-
sumed to be isotropic, i.e., uniform in all directions independent from the geometry.
Turbulent flow below the defined scale, also called filter scale or grid scale, is de-
scribed by an isotropic turbulence model. Above the filter scale, the flow is assumed
to be geometry-dependent, and the Navier–Stokes equations are solved (Warnatz et al.,
1996). In DNS, the filter scale is set below the Kolmogorov scale (the size of the small-
est turbulence structures), and thus all scales are computed. As the scales in turbulent
flow may be small compared to laminar flow, the computational grid is required to be
relatively fine – invoking large computational times. An example can be found in (War-
natz et al., 1996). In contrast to DNS, in RANS the filter scale is implicitly assumed
as a large scale. Hence, turbulence models are employed for a wide range of scales. In
LES, the filter scale is placed in between the ones defined in DNS and RANS. Conse-
quently, the computational time is typically less than for DNS and more than for RANS.
A discrete solution obtained from DNS is the most accurate one. However, up to today,
only small systems and low Reynolds number flows can be simulated with DNS due
to limitations in practical simulation time and memory storage. In the context of sim-
ulating industrial-scale gas explosions as part of quantitative risk analyses (QRAs), the
solution is, in general, not required to be that detailed; thus, in commercial CFD tools,
RANS is employed most often (Skjold et al., 2018).

FLACS1 is a CFD tool that relies on a turbulence model based on RANS equa-
tions (Gexcon AS, 2019). Geometries are represented on the computational grid using
the porosity/distributed resistance (PDR) concept, cf. (Hjertager, 1986; Patankar and

1FLACS (FLame ACceleration Simulator) is a commercial CFD tool distributed by Gexcon AS.
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Spalding, 1974; Sha et al., 1982). According to the PDR concept, for each control vol-
ume cell and cell face, a volume and an area porosity value is assigned, respectively.
The porosity values lie between 0 and 1 and define the blockage of a cell or cell face by
geometry. Taking into consideration the detailed geometry layout, especially for sub-
grid geometries (smaller than the grid cell size), is a key requirement for estimating
explosion loads in medium- and large-scale gas explosions. The primary mechanism
for flame acceleration in congested geometries is the positive feedback between the
expansion of combustion products, turbulence generated in the un-reacted mixture, es-
pecially in shear and boundary layers from flow past obstacles and walls, and enhanced
combustion rates (Hjertager, 1984). Therefore, the success of the CFD tool FLACS de-
pends on the implementation of sub-grid models (Skjold et al., 2014) accounting for
under-resolved governing physical phenomena on scales smaller than the grid cell size.

1.2 Empirical sub-grid model calibration

Sub-grid models are, in general, less fundamental than the Navier–Stokes equations;
the latter are based on fundamental physical laws derived from first principles, while
sub-grid models are often phenomenological correlations (with little or no theoreti-
cal backing) based on measurements. Sub-grid models often contain constants called
model coefficients or parameters. In empirical studies, suitable observations are used
to determine the parameter values that have the maximum likelihood of being accurate
within an acceptable tolerance. This process is called model calibration or estimation.
An example is given by Bradley et al. (2013, 2011a) modelling the correlation for the
turbulent burning velocity. The correlation can be found in the Appendix of Paper 3. To
estimate parameters in the correlation, Bradley et al. (2013, 2011a) employed measure-
ments of the turbulent burning velocity during an implosion in a fan-stirred spherical
bomb. Several other examples for empirical model calibration for combustion mod-
elling are discussed by, e.g., Cant et al. (2004) and the references therein.

1.3 Need for parameter optimisation in a CFD tool

For the CFD tool to give accurate predictions, the sub-grid model parameters normally
require adjustments within their uncertainty ranges or physically allowable bounds.
This is mainly due to the following:

• Extrapolating beyond the validity of the sub-grid models might be necessary.
Sub-grid model calibration processes are mainly conducted for basic small-scale
experiments, in which the quantity of interest can be adequately measured. For
example, the bomb that was used to calibrate the correlation for the turbulent
burning velocity (Bradley et al., 2013, 2011a) was of 19 cm internal radius. The
CFD tool FLACS is used to predict gas explosion behaviour for a range of large-
scale accident scenarios. Thus, the experiments used for model calibration are
most often not relevant to the final application.

Furthermore, other assumptions or settings in the experiments from model cal-
ibration may not be fulfilled in the application scenarios of the CFD tool. The
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correlation for the turbulent burning velocity serves again as an example. Ex-
pressing the turbulent burning velocity as a function of the flow stretch rate and
the Markstein number presumably gives a correlation with a wide applicability
range (Bradley et al., 2011b). However, the derivation of the turbulent burning
velocity correlation itself is associated with considerable uncertainty. The ex-
perimental value of the turbulent burning velocity for specific flow and mixture
properties depends on how it is measured, such as the configuration of the ap-
paratus, which flame surface is used in the analysis, or how quench effects and
dynamic strain effects are accounted for (Bradley et al., 2011b). Additionally,
the modelled turbulence velocity and integral length scale (used to correlate the
turbulent burning velocity to the properties of the turbulent flow) likely is sig-
nificantly different from the quantities used to derive the correlation. Due to the
uncertainties, in this work, an uncertainty interval of a factor of 2 is found reason-
able for the proportionality constant in the turbulent burning velocity correlation,
cf. Equation (A.9) in Paper 3; see (Ciccarelli and Dorofeev, 2008) for a similar
conclusion. Consequently, model parameters require adjustments for large-scale
experiments relevant to the application area of the CFD tool.

• In gas explosion scenarios that are simulated with the CFD tool in a final applica-
tion, one physical mechanism of a gas explosion may most often not be isolated
from the other mechanisms. In this way, the application scenario differs from an
experiment used in model calibration. Thus, in the CFD tool, the sub-grid model
accounting for one single mechanism is embedded in the fundamental equations
in the PDR formulation and coupled with several other sub-grid models. Con-
sequently, parameter values from model calibration might not be optimal in this
context.

To overcome the subjective and time-consuming nature of trial-and-error methods of
manual parameter adjustment, an approach for systematic optimisation of model pa-
rameters is developed in this doctoral study. The objective is to obtain a better fit
between relevant experimental data and model output of the corresponding simulation.
The approach is based on surrogates that approximate the model output to accelerate
the optimisation process.

1.4 Research literature and context

In this section, a few words are given to place the present project in relation to other
works. Parameter optimisation appears in many applications. In particular, surrogate-
based parameter optimisation is widely employed to create efficient engineering de-
signs. Examples in the field of aeronautics and astronautics can be found in the work of
Forrester et al. (2006) and Queipo et al. (2005). Another example is given by Huang and
Li (2018). They improve the performance of a liquefied natural gas (LNG) hydraulic
turbine, simulated with a CFD tool, by optimising the shape of an impeller. Castelletti
et al. (2010) optimise the size and location of water quality rehabilitation technolo-
gies like surface mixers. When optimising design parameters or operating conditions,
numerical models are only utilised to simulate quantities incorporated in the objec-
tive function or the constraints; the optimisation does not change the numerical model.
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Changing model parameters and thus the models, however, is addressed in the present
doctoral study.

The term ‘model calibration process’ is not only employed for empirical calibration
of model constants as discussed in Section 1.2; it may refer to the optimisation of
parameters in models that are designed for a wide range of applications but shall be
used for a particular application context (Kennedy and O’Hagan, 2001). One example
is given by distributed rainfall-runoff models for predicting river discharges in large
drainage basins. Feyen et al. (2007) calibrate the model based on two years of measured
daily discharges in the Meuse catchment upstream of Borgharen in the Netherlands.

In the following, some examples of calibrating CFD models are given. Guillas et al.
(2014) present a calibration of a CFD tool for simulating airflow in a regular street
canyon against wind tunnel observations. They focus on constants in the standard k−ε

turbulence model and the uncertainties related to these values. The experimental data
for calibration originated from a wind tunnel experiment with two rectangular blocks
on both sides representing the buildings on the street. Edeling et al. (2014) calibrate
the Launder–Sharma k− ε model for 13 wall-bounded turbulent boundary layer flows
at a variety of pressure gradients. Morgut and Nobile (2012) calibrate a CFD model
to simulate cavitating flow around model scale propellers. In particular, they consider
models that regulate the mass transfer rate from liquid to vapour and back.

The main difficulties with simulating gas explosions with the CFD tool FLACS arise
from the vast range of applications with respect to both, possible accident scenarios,
and complex, large-scale geometries in which the explosions are likely to occur (Cant
et al., 2004). Consequently, it is not sufficient to optimise model parameters for a
specific single application as in the calibration processes mentioned above. Therefore,
the approach for parameter optimisation that is developed in the present doctoral project
considers the wide application range of the CFD tool.

1.5 Scope of the thesis

This dissertation focuses on the research question: "How can the predictive capabilities
of a numerical model for simulating gas explosions be improved by model parameter
optimisation?". The question is addressed in four scientific presentations, which are
further expanded on in this dissertation. The main contributions are summarised as
follows:

• A methodology is proposed for optimising model parameters in a CFD tool for
simulating gas explosions. The objective is to obtain a better fit between rele-
vant experimental data and model output of the corresponding simulation. Three
model outputs amongst several candidates are found suitable as optimisation tar-
gets. Furthermore, different methodologies are developed for selecting gas explo-
sion experiments to be included in an optimisation process.

• Paper 4 describes a least-squares problem formulation from an early stage of
this doctoral project. As the project proceeded, the first formulation did not ap-
pear to be appropriate for improving model predictions in gas explosions. Thus,
in Paper 2 a problem formulation is developed that assesses under- and over-
predictions as in model validation processes.
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The problem formulation is tailored with respect to the specifically targeted model
output. Thus, the optimisation problem is not formulated as a least-squares prob-
lem, but to account for assessing under- and over-predictions as in model vali-
dation. It is shown that this validation-based formulation is closely connected to
another formulation for which the solution is the maximum likelihood estimator
in the case of log-normally distributed errors in the measurements.

• To speed up the numerical optimisation process, surrogates are employed that
approximate the model output-parameter relations. Surrogates based on neural
networks are tested and compared to polynomial response surfaces. The satisfac-
tory approximation quality of the neural networks for the entire parameter space
is shown numerically. As the approximation quality of the neural networks is in
total better than for the polynomials, the neural networks are used as surrogates
in the optimisation.

• The resulting surrogate-based optimisation problem is solved with a trust region
routine from MATLAB ® (The MathWorks, Inc., 2015) embedded in a multi-start
approach. The optimisation routine has been intended for non-linear least-squares
problems and is based on the interior trust region algorithm for general non-linear
objective functions subject to bounds proposed by Coleman and Li (1996b). In
this doctoral project, the convergence of the routine for the present validation-
based optimisation problem with respect to the first order necessary optimality
conditions is proven.

• The approach is tested and applied successfully to several versions of the CFD
tool FLACS at different stages of the development process and for different exper-
imental data. The standard version that is released for commercial use is utilised
to test the applicability of the optimisation approach. The model parameter val-
ues have been tuned manually over years of model validation; hence, optimisa-
tion improves the predictions just moderately. An in-house development version
is optimised for various experiments together representing a wide range of phys-
ical phenomena. The in-house development version comprises models that have
been updated recently, with parameter values that have been set to an initial ‘best
guess’; optimisation improves the predictions significantly. The optimisation pro-
cess is highly useful for supporting modelling efforts; analysing predictions of the
optimised model may suggest updated user guidelines, and may enable the dis-
cussion on how to progress with the development of the physical models. Such
conclusions for recently updated model systems can only be drawn after model
parameter optimisation.

• The optimisation approach is not only used to obtain optimal parameter values
that can be implemented in the tool, but also for analysing strengths and limi-
tations of the sub-grid models in FLACS. In complex models, it is challenging
to investigate whether the models account for every aspect in every possible gas
explosion scenario. However, by optimising one sub-grid model and its parame-
ters for several experiments separately, the sub-grid models can be analysed. An
example is given in this thesis for modelling the flame folding around sub-grid
obstacles.
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• Extensive model validation against experimental data is required to ensure that a
gas explosion simulation tool can confidently be used for process safety. This is
outside the scope of the present dissertation. However, optimisation results are
analysed carefully in sanity checks. Through pressure-time histories, for exam-
ple, it is investigated whether the optimised model represents the physical mech-
anisms of gas explosions.

The usability of an optimisation process is, in general, limited by two factors: i) the
availability of experimental data and ii) the models itself: If sufficiently reliable and
relevant experimental data that covers a wide range of scenarios is not available, opti-
mal parameter values will not be of any practical use. Furthermore, it is important to
emphasise that only models that are able to capture the physical mechanisms of a gas
explosion can be optimised to give satisfactory predictions – with optimal parameter
values that can be implemented in the tool. Thus, the optimisation processes cannot
replace further efforts in CFD modelling.

1.6 Thesis outline

This section outlines the structure of this thesis.
Chapter 2 elaborates on the formulation of the optimisation problem presented in

Paper 2 and Paper 4. In particular, information about the model and parameters is sum-
marised. Furthermore, model responses that have been investigated but did not qualify
to be fitted in the optimisation process are introduced. The framework for selecting
experimental data for optimisation is extended to three methodologies. Moreover, the
validation-based problem formulation from Paper 2 is examined and justified with re-
spect to the following aspects: measuring the fit between model response and experi-
mental data, weighting the model responses, and handling of outliers.

A general overview of surrogate modelling and references to review articles are
provided in Chapter 3. Furthermore, the justification for the choice of the considered
surrogates presented in Paper 1 is strengthened.

Chapter 4 presents how the surrogate-based optimisation problem is solved in this
work. The literature review on commonly employed optimisation approaches is ex-
tended. Additionally, regularisation of ill-posed problems is addressed.

Various applications of the optimisation approach during the doctoral project are
summarised in Chapter 5. Optimising the standard model within a single validation
category presented in Paper 2 is reviewed; the work is extended in this chapter by
the optimisation across validation categories. Results for optimising the development
model are given in Paper 3. This chapter expands on the work considering testing differ-
ent weights in the objective function and testing another, related problem formulation.
Furthermore, this chapter gives an example of utilising the optimisation approach as a
tool to analyse sub-grid models; a model for flame folding around obstacles is analysed.

Chapter 6 contains the main conclusions of the scientific results and open questions
for future work.

Appendix A presents the approximation quality of two additional model responses,
and thus provides a basis for the decision on including or excluding them from op-
timisation. Appendix B provides background information on the trust region routine
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employed to solve the optimisation problem. Appendix C shows detailed results from
application of the optimisation approach to the standard model for experiments from a
wide range of validation categories; it supports the findings presented in Section 5.2.
Appendix D supports the analysis from Section 5.4; it provides results from optimising
a sub-grid model for flame folding around obstacles.

Finally, the four papers that are part of this thesis are given.



8 Introduction



Chapter 2

Formulating the optimisation problem

Paper 4 describes a problem formulation from an early stage of this doctoral project.
As the project proceeded, this first formulation did not appear to be appropriate for
improving the specific model predictions. Thus, the formulation was tailored to gas
explosion applications and presented in Paper 2. The main steps that are required for
formulating the optimisation problem are documented in Paper 1, Paper 2 and Paper 4.
The following sections expand on some concepts to provide a wider background.

The objective of the model parameter optimisation is to yield the best fit between
certain outputs of a CFD model, also called model responses, and corresponding ex-
perimental data.

2.1 Sub-grid models and their parameters

Within this project, several versions of the gas explosion module of the CFD tool
FLACS have been optimised – the standard version, which is released for commer-
cial use (referred to as the standard model), and an in-house development version (re-
ferred to as the development model), for which the sub-grid models for turbulence and
combustion have been updated recently. The development model arose from modelling
contributions in JIP MEASURE and has fundamentally different behaviour than the
standard model. The parameters that are considered for optimising the CFD tool be-
long to sub-grid turbulence and combustion models, cf. Paper 1 and Paper 3.

Eight parameters in the standard model are identified as candidates for optimisa-
tion. Paper 1 provides a detailed description. The development model comprises some
different parameters in updated sub-grid models. In total, eleven sub-grid model pa-
rameters are subject to optimisation. The model and the corresponding parameters are
described in detail in Paper 3. For each model parameter, physically allowable bounds
or uncertainty intervals have been set based both on previous experience and an exten-
sive literature review. Sensitivity analysis (Saltelli et al., 2008) is applied to determine
the effect of perturbing the parameters on relevant model responses. Only the parame-
ters with sensitivities above a certain threshold are included in the optimisation process.
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2.2 Relevant model responses

Model responses must be identified as suitable targets for the optimisation process.
This section revises briefly the model responses that are primarily employed in this
study. Besides, model responses are introduced that in the end did not qualify to be
considered in optimisation.

In Paper 2 and Paper 3, optimisation is mainly conducted for two model responses:
the maximum overpressure and the maximum pressure impulse at representative moni-
tor points. Optimising the flame speed has been studied additionally in Paper 2. Includ-
ing the flame speed may improve the ‘slope’ of a pressure-time curve – more than when
optimising exclusively for the maximum overpressure and pressure impulse. The term
‘slope’ is used to address, not the absolute pressure values of a pressure-time history,
but the pressure-rise and -fall during the entire explosion.

The model responses flame arrival time and time of the pressure peak should not
be employed in an optimisation process; the corresponding predictions of the CFD tool
FLACS often deviate significantly from experimental data. These model responses are
highly dependent on the ignition process and initial flame build up. Since the grid
cell size of a simulation is often much larger than the scales on which flame initiation
occurs, the initial phase of flame propagation is not resolved; a sub-grid model is used
instead. In this sub-grid model, the position of the numerical flame front is corrected
to agree with the expected volume and area of the region with combustion products.
The model is active until the numerical flame front is 2.5 control volumes thick. This
causes the deviations in the timing.

The model response pressure rising time has been studied additionally. The pres-
sure rising time at a representative monitor point is defined here as the time the pressure
needs to rise from 20% of the maximum overpressure to the maximum overpressure.
Investigating this model response is also motivated by the possibility to optimise the
slope of a pressure-time curve better. However, due to discontinuous behaviour, the
model response has not been found appropriate for including in the optimisation ap-
proach, cf. Appendix A.

The optimisation of parameters should ideally be performed for the output of sub-
grid models directly, e.g., the burning velocity, or at least for model outputs that are
physically more closely linked to the sub-grid model parameters than overpressure.
The overpressure depends significantly on the scale and the geometric configuration
of the experiment. A range of different physical mechanisms contribute to the flame
acceleration and the expansion of combustion products that generates overpressure; it
is not straightforward to analyse these contributions separately. Quantities such as the
burning velocity, a characteristic turbulence velocity fluctuation, or a measure of the
flame surface area in different locations during an explosion would, therefore, be bet-
ter candidates for optimisation targets. However, such measurements are difficult or
impossible to obtain and are thus not available for the large-scale experiments that are
relevant to the final application of the CFD tool FLACS. Most of the relevant experi-
ments only have reliable measurements of pressure-time histories in a limited number
of fixed locations, cf. Section 2.3. Therefore, the optimisation processes in this thesis
are mainly limited to the targets that are connected to the overpressure.



2.3 Selecting gas explosion experiments 11

2.3 Selecting gas explosion experiments

A key ingredient of an optimisation process is the selection of characteristic gas ex-
plosion experiments. The questions that arise are: "Which experiments can be chosen
from?" and "Which experiments to combine in one optimisation process?". Both ques-
tions are addressed in the papers connected to this thesis. For a better and broader
overview, important aspects are reviewed, summarised and expanded in this section;
some aspects that are added to this dissertation are new and have not been included in
the papers.

The experiments examined in this project are part of Gexcon’s model validation
database, which is organised in accordance with the model validation methodology pre-
sented by Skjold et al. (2013). That methodology focuses on identifying key physical
phenomena in validation experiments. Gas explosion experiments with similar geom-
etry layouts, scales, and fuel types are assumed to involve the same mechanisms for
flame acceleration and overpressure generation. Therefore, the validation data is pri-
marily organised according to the degree of congestion and the degree of confinement
in the experimental layout. Details about the validation categories can be found in Pa-
per 3. The methodology also includes the prioritisation of validation experiments; it
takes into account the availability and quality of data, in addition to the experiment’s
relevance to the final model application – essential criteria when selecting experiments
for parameter optimisation. In general, if optimisation was conducted on experiments
which are not reliable and relevant, the optimal parameter values could not be imple-
mented in the tool; if it was optimised for data of poor quality, the optimal parameter
values are not usable. A model optimised for irrelevant experiments would possibly
give good predictions for these, but most likely not for gas explosions in the final ap-
plication.

2.3.1 Selecting experiments for improving modelling

Three methodologies for improving modelling of gas explosions by parameter optimi-
sation are proposed in the following: Optimising i) for ‘single phenomenon’ experi-
ments separately, ii) for several experiments separately, and iii) for various experimen-
tal campaigns simultaneously. Depending on the number and type of experiments in-
cluded, the optimisation process can be used to analyse the model system or to find op-
timal parameter values of practical use, or both. Analysing the model system involves
investigating whether the sub-grid models are able to represent the desired mechanism
or whether there is a particular physical behaviour observed in the explosion that is not
captured by the model. To be of practical use means that the parameter values that
are found via an optimisation process give satisfactory results also for gas explosion
scenarios that were not part of the optimisation.

The concepts are visualised in Table 2.1. The third methodology is presented in
Paper 2 and employed for parameter optimisation in the CFD tool FLACS in Paper 3;
discussions about and application of the first and second methodologies are added to
this dissertation.
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Table 2.1: Functioning of the optimisation approach.

Use of optimisation approach

Choice of experiments find optimal parameter
values of practical use

analysing sub-grid
models

‘single phenomenon’
experiments

DIFFICULT DIFFICULT

several experiments
separately

NO YES

various experimental
campaigns together

YES NO

‘Single phenomenon’ experiments

The objective of optimising ‘single phenomenon’ experiments is to improve the sub-
grid models separately. A ‘single phenomenon’ experiment denotes an experiment in
which one particular phenomenon is the main driving component in (one phase of) the
gas explosion. Optimisation aims at fitting one or several parameters for the sub-grid
model that represents this phenomenon. This methodology is motivated by empirical
model calibration processes and poses the most ‘fundamental’ of the three methodolo-
gies. However, in contrast to empirical model calibration, the ‘single phenomenon’
experiments must be relevant to the final application of the CFD tool.

In theory, this optimisation approach allows for obtaining optimal parameter values
of practical use and gives insight into the predictive capabilities of the model system. In
practice, however, it is challenging to find suitable ‘single phenomenon’ experiments,
as it is extremely difficult to isolate some of the gas explosion phenomena. For example,
the overpressure in explosions within a highly congested enclosure is driven by the
flame folding around sub-grid obstacles; but, the turbulent burning velocity correlation
has a highly important effect as well. For such experiments, several sub-grid models
are active in a CFD simulation. However, optimal parameter values for one sub-grid
model cannot be found if another sub-grid model with fixed non-optimal parameter
values is active simultaneously. Due to the difficulties in finding ‘single phenomenon’
experiments, both, analysing the model system, and finding optimal parameter values
of practical use is defined as "DIFFICULT" with this methodology, cf. Table 2.1.

Several experiments separately

The idea of optimising for experiments separately – even though they do not represent
a single phenomenon – can still be employed to analyse the sub-grid models; however,
the optimal parameter values are not of any practical use, cf. Table 2.1. Optimisation
is performed for parameters of one sub-grid model for different relevant experiments
or experimental campaigns separately. If the sub-grid model is able to model every es-
sential physical aspect of the phenomenon it is intended for independently from gas
explosion scenarios and geometries, the optimal parameter values from different opti-
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misations will not differ significantly. Hence, comparing the optimal parameter values
and optimised predictions may allow for identifying limitations of the sub-grid models
and point to potential development improvements. An example of this usage of the op-
timisation approach is given in Section 5.4, where parameters for flame folding around
obstacles are optimised.

Various experimental campaigns

If ‘single phenomenon’ experiments are not available for some physical phenomena,
the optimisation process for the corresponding parameters or all model parameters may
be employed for experiments from various validation categories together. These ex-
periments must involve a wide range of physical phenomena. The methodology is
explained and followed in Paper 2 and Paper 3. As discussed in the supplementary ma-
terial of Paper 2, with this approach, analysing the optimised sub-grid models from the
optimisation results becomes a difficult task; in contrast to the previous approach, vary-
ing the value of one parameter that represents a particular physical phenomenon may
be compensated by variations in other parameter values. Hence, it can be concluded
that analysing the sub-grid models is, in general, not possible with this methodology,
cf. Table 2.1.

It should be noted that such an optimisation process compromises between the di-
verse experiments; it might thus not improve every single sub-grid model. However,
with this approach, the overall prediction quality of the CFD tool is improved for a
wide range of experiments representing the application variety. As this is the primary
objective of this thesis, the work conducted in the doctoral project focuses mainly on
this approach.

2.3.2 Selecting experiments for testing the optimisation approach

It is important to investigate whether the optimisation approach is applicable to gas ex-
plosion simulations; i.e., for example, whether optimising exclusively the maximum
overpressure and pressure impulse can lead to a model that represents the mechanisms
of gas explosions accurately, or whether the optimisation problem is adequately for-
mulated. Furthermore, it is interesting to analyse how much the predictions can be
improved by parameter optimisation. To be able to gain as much information as possi-
ble from the investigations mentioned above, it might be most convenient to optimise
all parameters for one single experimental campaign or for several experimental cam-
paigns that are assigned to the same validation category. The experiments in such a
selection are assumed to involve the same mechanisms for flame acceleration and over-
pressure generation, and the optimisation effect is much higher than when optimising
for experiments across categories. Note that this does not lead to parameter values of
practical use since a single experimental campaign cannot cover a wide range of gas
explosion phenomena and scenarios. Examples of the testing are given in Paper 4 and
Paper 2, cf. Section 5.1. How important the testing is, becomes evident in this doc-
toral study; the problem formulation from Paper 4 has not been found appropriate after
testing and has been changed in subsequent optimisation processes, cf. Section 2.4.
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2.3.3 Experimental campaigns considered in this work

Five experimental campaigns with medium- and large-scale geometries with high prior-
ity (following the model validation methodology by Skjold et al. (2013)) are considered
in this project and introduced in Paper 3:

• the project Modelling and Experimental Research into Gas Explosions (MERGE)
(Mercx, 1994; Popat et al., 1996),

• the project Blast and Fire Engineering for Topside Structures (BFETS), Phase 3A
(Al-Hassan and Johnson, 1998; Evans et al., 1999; Foisselon et al., 1998),

• the project BFETS, Phase 2 (Foisselon et al., 1998),

• experiments in the 64 m3 vented explosion chamber located at the FM Global
research campus (Bauwens, 2010; Chao et al., 2011), and

• the 182 m3 vented explosion chamber experiments conducted by DNV GL, lo-
cated at the Spadeadam test site (Tomlin et al., 2015).

The tests involve homogeneous fuel-air clouds, in which propane, methane, or natural
gas was the combustible component, congested geometries with a low degree of con-
finement, and vented enclosures with and without obstacles. Some campaigns consist
of much more tests than others, and the variability from one test to another is smaller.
To balance the impact that each campaign has on the optimisation only the most rel-
evant tests are selected for optimisation. In total, 37 core experiments are identified
as candidates for optimisation. Additional 30 tests are used for sanity checks of the
optimised model.

2.3.4 Covering a wide range of validation categories

As mentioned in Paper 3, to represent the wide application range, the optimisation
should ideally have been performed on a boarder range of validation categories than
covered by the five selected campaigns. However, there are no high priority experi-
ments assigned to further categories due to lack of reliable measurements or relevance
to the final applications. Two examples are added here for illustration:

• The model validation database includes small-scale experiments with detailed
information about measurements as well as repetitions of tests. For example, the
experimental campaign conducted by Hisken et al. (2015) comprised in total 42
propane-air gas explosion experiments in lab-scale (1.5 m × 0.3 m × 0.3 m)
and medium-scale (6 m × 1.2 m × 1.2 m) vented channels with various gas
concentrations. The gas explosion module of the CFD tool FLACS is designed for
large-scale scenarios (Gexcon AS, 2019). Therefore, despite the high reliability
of the data, these experiments are not found relevant enough to be included in the
optimisation process. They may be employed for the model validation after the
optimisation process.
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• Another example is the large-scale balloon experiments performed by Lind
and Whitson (1977). These experiments involve unconfined flame propagation
through an uncongested region and are therefore highly relevant for studying phe-
nomena such as the effect of intrinsic instabilities on flame acceleration over sig-
nificant distances. Explosion experiments were performed in hemispherical bal-
loons of 5 and 10 m radii with different fuel types premixed with air; the mixtures
were ignited at the centre of the balloons. Lind and Whitson (1977) reported the
flame position versus time for each test, extracted from video recordings. Several
issues related to using these experiments for model validation have been iden-
tified (Skjold et al., 2017). Some of the tests were performed with obstacles
placed in the hemispherical cloud; however, the investigators do not describe the
obstacle configurations in detail. Furthermore, the breaking of the plastic hemi-
sphere containing the mixture was not uniform between experiments. In some
tests, the mixture was ignited in several locations inside the balloon due to flame
acceleration and secondary ignition caused by an instrumentation channel. For
experiments with very low pressure levels (such as those recorded in this experi-
mental campaign), flame speeds are of primary interest. However, detailed results
(such as the raw video recordings) are not available for further analysis. Since the
uncertainty associated with the experimental results is likely significant, these ex-
periments are not considered suitable for model optimisation.

Thus, the optimisation is currently limited to the campaigns listed in Section 2.3.3.
Future optimisation studies, however, may include new campaigns, since the validation
database is continuously extended as soon as new experimental data becomes available.

2.3.5 Experimental uncertainty

In Paper 2 and Paper 3, the experimental uncertainty is mentioned, but it is neither
quantified nor further discussed. This section gives information about the experimental
uncertainty in the selected campaigns and discusses its implications for optimisation
and validation processes.

Measurements of physical quantities will most certainly contain errors. Since the
objective of the optimisation is to minimise the fit between model responses and exper-
imental data, the experimental uncertainty ought to be accounted for. In this doctoral
study, experimental uncertainty has been indirectly accounted for in the formulation of
the optimisation problem, cf. Section 2.4.3. When validating a numerical model against
experimental data, however, concrete information about the experimental uncertainty
can be valuable, as the model predictions cannot be expected to be more accurate than
the experimental uncertainty.

For the considered experimental campaigns (Section 2.3.3), only little concrete in-
formation about the experimental uncertainty of the overpressure – the most relevant
measured quantity – is reported. Thus quantifying the experimental uncertainty in
terms of a single number for the deviation from the mean is not straightforward. In
two experimental campaigns, efforts have been undertaken to assess the experimen-
tal uncertainty of the overpressure via the performance of nominally identical tests;
the experimental uncertainty is then derived from measurements in the repetitions. As
large-scale gas explosion tests are highly costly, only few repetitions were performed.



16 Formulating the optimisation problem

Evans et al. (1999) reported experimental uncertainty of the overpressure for the cam-
paign BFETS Phase 3A based on two series of repeated tests: The ‘Alpha’ and ‘Beta’
series consisted of five and six nominally identical experiments, respectively. The vari-
ations in overpressure measurements are illustrated in Figure 2.1. For most of the test
configurations of the FM Global 64 m3 vented explosion chamber tests, three nomi-
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Figure 2.1: Experimental variability for the repetitions of the BFETS, Phase 3A, series ‘Alpha’
and ‘Beta’.

nally identical tests were conducted (Bauwens, 2010). The experimental uncertainty is
reported as the highest deviation from the average value.

Incorporating the reported uncertainties for these two campaigns, it can be con-
cluded on the following rough uncertainty estimation: In 90 %, the over- and under-
predictions lie within a factor of 1.3, i.e., within 1/1.3 and 1.3. It should be noted that
this number is mentioned for illustrating the experimental variability in the present
campaigns; it has not been derived via any sophisticated statistical method and should
thus not be used for further calculations.
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2.4 Assessing over- and under-predictions

Formulating the optimisation problem includes determining how to measure the agree-
ment between model responses and experimental data. A widely applied strategy is to
formulate a least-squares problem, i.e., minimising the sum of the squared (relative) er-
rors between model predictions and experimental data (Aster et al., 2013). Paper 4 de-
scribes a least-squares problem formulation from an early stage of this doctoral project.
However, as the project proceeded, this formulation did not appear to be appropriate for
fitting the considered model responses; the formulation was tailored to gas explosion
applications, presented in Paper 2. This formulation is briefly stated in the following
section. Additionally, in Section 2.4.2, another, related problem formulation is intro-
duced. This formulation (as well as the least-squares formulation) can be derived from
a statistical point of view and has not been used in Paper 2, 3, or 4. In Section 5.3.2, it
is tested for the application presented in Paper 3.

2.4.1 The validation-based problem formulation

In the problem formulation developed in Paper 2, the agreement between model re-
sponses and experimental data is measured as in model validation for gas explosions;
over- and under-predictions of overpressure are assessed as multiplicative deviations
instead of percentage differences as in the relative errors of the least-squares formula-
tion.

Let ζi, i∈{1, . . . ,N}, denote one model response at one monitor point for one exper-
iment, and let bi be the corresponding experimental value. Let N denote the total num-
ber of model responses taken into account. The parameter vector kkk = (k1,k2, . . . ,kn)
gathers n sub-grid model parameters that are chosen for optimisation. The formulation
reads:

min
kkk

N

∑
i=1

φ

(
1− ζi (kkk)

bi

)
, (2.1)

subject to: k j ∈ [l j,r j], for j = 1, . . . ,n

with

φ(t) =

{
t2, if t ≤ 0,( t

1−t

)2
, if 0 < t < 1.

The intervals [l j,r j] denote the parameter’s uncertainty ranges. Note that all model
responses and experimental data are positive, and thus 1− ζi(kkk)

bi
< 1 for all kkk, such that

φ is well defined. This formulation is here referred to as the validation-based problem
formulation.

2.4.2 The VG formulation – minimising the geometric mean variance

An alternative to problem (2.1) is given by minimising the geometric mean variance.
For model validation purposes, Hanna et al. (1993b) developed standard objective
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quantitative means of evaluating the performance of a model. According to Model
Evaluation Group Gas Explosions (MEGGE) (1996), for a model predicting gas ex-
plosions, the most relevant of those statistical performance measures are the geometric
mean bias (MG) and geometric variance (VG). The geometric mean bias reports the
tendency of a model to systematically over- or under-predict relevant physical prop-
erties; the geometric mean variance gives a measure of the spread in predictions, i.e.,
the degree of scatter around a mean value (Duijm and Carissimo, 2002; Hanna et al.,
1993a). MG and VG for the present application are defined as

MG =

(
M

∏
i=1

ζi

bi

) 1
M

= exp

(
1
M

M

∑
i=1

ln
(

ζi

bi

))
and (2.2)

VG = exp

(
1
M

M

∑
i=1

[
ln
(

ζi

bi

)]2
)
,

respectively, where M is the total number of model responses for validation.
Minimising VG leads to the following problem:

min
kkk

N

∑
i=1

ln
(

ζi (kkk)
bi

)2

, (2.3)

subject to: k j ∈ [l j,r j], for j = 1, . . . ,n.

Note that the geometric mean bias is minimised simultaneously. This formulation is
referred to as the VG problem formulation.

2.4.3 The statistical point of view – maximum likelihood estimator

If considering the experimental data bi as imperfect measurements that include random
errors, the least-squares problem formulation, as well as the VG formulation, can be
derived from a statistical point of view. One approach is the maximum likelihood esti-
mation. Assume that the statistical characteristics of the data observations are known.
Applied to parameter optimisation, this approach focuses on finding the parameter val-
ues k j, j = 1, . . . ,n, such that the observed data points bi most likely arise from the
model given by ζi (kkk) , i = 1, . . . ,N, cf. (Aster et al., 2013).

Assume that the experimental data include additive, normally distributed errors with
0 mean and variance σ2

ζi (kkk)−bi = εi with εi ∼ N(0,σ2), for i = 1, . . . ,N.

Assume furthermore, that the observations are independent of each other. Then, the
maximum likelihood estimator (MLE) for the parameters kkk is the solution of the least-
squares problem

min
kkk

N

∑
i=1

(ζi (kkk)−bi)
2 .

A detailed derivation can be found in, e.g., (Aster et al., 2013).
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In this study, ζi denotes the maximum overpressure or pressure impulse, which are
always positive. In this particular case, multiplicative errors ε̃i are observed which are
log-normally distributed:

ζi (kkk) = biε̃i;

that is

ln
(

ζi (kkk)
bi

)
= εi with normally distributed errors εi ∼ N(0,σ2), for i = 1, . . . ,N.

Analogous calculations to the case with additive errors yield that the MLE for the pa-
rameters kkk is the solution of the VG problem formulation (2.3).

2.4.4 Relation of the VG formulation to the validation-based formulation

The objective functions of the problems (2.1) and (2.3) have the same characteristics
with respect to assessing over- and under-predictions. In particular, it holds

φ

(
1− ζi (kkk)

bi

)
=


(

1− ζi(kkk)
bi

)2
, if 1≤ ζi(kkk)

bi
,(

1− bi
ζi(kkk)

)2
, if 0 < ζi(kkk)

bi
< 1.

The terms 1− ζi(kkk)
bi

and 1− bi
ζi(kkk)

are the first order Taylor expansions of ln
(

ζi(kkk)
bi

)
and

ln
(

bi
ζi(kkk)

)
around unity, respectively, and ln

(
ζi(kkk)

bi

)2
= ln

(
bi

ζi(kkk)

)2
. In this project, both

problem formulations are employed for the same optimisation case to test to what extent
the resulting optima differ from each other; results are presented in Section 5.3.2.

2.5 Weighting strategies and multi-objective optimisation

To prioritise certain model responses in the objective function, the sum of the errors
between model responses and experimental data may be weighted accordingly. In the
present doctoral study, weights in the objective function have been selected as part
of each optimisation process. In the optimisation application in Paper 4, for example,
several weights are tested to find a suitable problem formulation; In Paper 3 the weights
are set equal to unity. The selection is based on a weighting strategy that is described
in this section. How the strategy has been utilised to find the weights in Paper 3, is
presented in Section 5.3.1.

Solving a weighted problem formulation can be understood as a multi-objective
optimisation approach. In multi-objective optimisation approaches, a collection of ob-
jective functions is optimised simultaneously in a systematic way. In the following,
some approaches are explained to introduce the present weighting strategy. A compre-
hensive survey of continuous non-linear multi-objective optimisation can be found in,
e.g., (Marler and Arora, 2004).

In the case that preferences of the objective functions are articulated before the opti-
misation, one of the most intuitive and common approaches is the weighted sum method
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(Marler and Arora, 2004); in a weighted sum, the different objective functions are com-
bined to one single objective function. A reason for prioritisation of objective functions
through higher weights can, for example, be higher quality or relevance of some mea-
surements. Other reasons are discussed in Paper 4. If preferences are not known a
priori, Pareto optimal parameter values may be generated systematically by varying
the weights. A point is Pareto optimal if no other point improves one or more objective
functions while retaining the other objective function values (Marler and Arora, 2004).

For optimising the gas explosion module of the CFD tool FLACS, no information
about the relative importance of the objectives is available. However, reporting several
sets of Pareto optimal parameter values to the user is both impractical and unnecessary;
simulating gas explosion scenarios for several optimal parameter values results first in
large running times and second in a large amount of simulation output. Finally, the user
has to report a single model prediction out of the large set of simulation output; this is
most probably difficult and time-consuming.

Hence, selecting weights in this doctoral study is based on a strategy that contains
the following steps: Several weighted sum problems are formulated using different
weights; the corresponding optimal parameter values are calculated; simulation results
for all optimal parameter values are studied. In the end, the weights leading to a set of
suitable optimal parameter values are selected. Note that the latter might be a subjective
assessment.

To ensure that the objective functions are of similar order and thus do not naturally
dominate the aggregated objective function, each is transformed before building the
weighted sum – such as Marler and Arora (2010) recommend. For a weighted sum
problem, Marler and Arora (2005) find the use of the lower-bound approach (Chen
et al., 1999; Koski and Silvennoinen, 1987) beneficial: An objective function Fi is
transformed to F trans

i

F trans
i =

Fi

Fo
i
,

employing its minimum Fo
i = min{Fi(x)| x in the feasable space}.

2.6 Outlier robust optimisation

In this doctoral project, a strategy for handling outliers is chosen. The strategy is (in-
tentionally) not applied in the optimisation cases presented in the papers, but in the
optimisation shown in Appendix C. This section gives background on outlier-robust
optimisation, the motivation for the chosen strategy, and reasons for its usage or igno-
rance.

For some explosion experiments and monitor points, CFD simulations significantly
over- and under-predict the considered physical properties. Reasons for this may be
errors in the experimental measurements or the fact that the underlying model system
is not able to predict accurately the behaviour of the explosion in those scenarios, or
both (Aster et al., 2013). Large over- and under-predictions produce high costs in the
objective function. When including discordant observations, also called outliers, in the
optimisation, the optimisation is pushed to improve especially those. To handle this
problem, the objective function is modified to robust error measurements.
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In literature, several ways of robust handling of outliers can be found: Errors be-
tween predictions and experimental data can, for example, be measured in the `1-norm
(Aster et al., 2013). Combinations of `2- and `1-norms can lead to an error measure-
ment function that is quadratic in the neighbourhood of zero error but grows more
slowly than a quadratic beyond a threshold. With such a function, outliers will influ-
ence the optimisation only moderately (Mazet et al., 2005). A widely employed exam-
ple is the Huber function for traditional least-squares problems (Guitton and Symes,
2003; Huber, 1964; Mazet et al., 2005).

In this doctoral study, two aspects speak against a (partially) linearisation of the
developed transfer function φ from problem (2.1):

• The outliers are severe over- or under-predictions, such that it is preferred to rather
exclude them totally from the optimisation than to reduce their influence. The
over- and under-predictions that are not severe occur so often that they should be
included in the optimisation.

• A linearisation of the developed transfer function (for over- and under-predictions
with a factor larger than a certain threshold) would retract assessing over- and
under-predictions as in model validation.

Hence, the strategy in this project is as follows: Model responses that are over- or
under-predicted above a certain factor by the standard model are excluded from opti-
misation; other predictions are treated as given by the transfer function. As typically
over- and under-predictions of the overpressure in gas explosions of a factor larger than
2 are not found to be acceptable, cf. Paper 3, excluding predictions above a factor be-
tween 2 and 2.7 has been found convenient.

In the study presented in Paper 2, it is not necessary to conduct special treatment of
outliers. Simulations for the considered experiments result in only very few outliers;
excluding outliers from optimisation does thus hardly have an effect. However, when
a wider range of experiments is considered, as in the study from Appendix C, robust
outlier handling is required for an unbiased optimisation, cf. Appendix C.4. For the
development model in which the parameter values are set to an initial ‘best guess’
a large number of severe over- and under-predictions is observed. Consequently, all
model responses are included in the optimisation of Paper 3. If model responses are
still highly over- or under-predicted after optimisation, optimisation may be conducted
a second time – excluding those model responses.
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Chapter 3

Surrogate-based optimisation

Surrogate-based optimisation has been shown to be an effective approach for optimis-
ing computationally expensive models; it refers to the idea of speeding up optimisation
processes by using surrogates for the objective or constraints functions (Forrester and
Keane, 2009; Queipo et al., 2005). Model responses of a CFD tool can be interpreted
as a function of a given set of model parameters. Those parameter-output relations
can be approximated by surrogates, which then can be incorporated in the optimisa-
tion problem formulation described in Chapter 2. Surrogates, often also referred to as
metamodels or response surfaces, are inexpensive to evaluate, and allow for the opti-
misation of problems with non-smooth or noisy responses (Queipo et al., 2005). Note
that surrogate-based optimisation can only find an approximate solution.

In this project, two different types of surrogates for the output of the CFD tool
FLACS have been investigated, compared, and presented in Paper 1. Paper 2, 3 and
4 present optimisation applications in which surrogates based on neural networks are
employed. This chapter gives a brief overview of surrogate modelling in general as
well as a motivation for the specific surrogates considered in this project.

3.1 Surrogate modelling – a general overview

Several surrogate approaches have been found to be efficient in the context of surrogate-
based optimisation. Surrogate modelling started with the polynomial response sur-
face methodology (RSM) and artificial neural networks (ANNs) and expanded in many
application areas from the 1990’s to a variety of approaches: radial basis functions
(RBFs), support vector regression (SVR), support vector machines (SVMs), kriging,
multivariate adaptive regression splines (MARS), Gaussian process (GP), to name a
few. A comprehensive overview of surrogate modelling for computer-aided engineer-
ing is given by, e.g., Gorissen (2010).

A large number of comprehensive review articles present the advances in surrogate
modelling in different optimisation applications. Each article gives an introduction to
several surrogate modelling methods, including references to the original works and
numerous examples of their applications. As a detailed description of the variety of
surrogate models is out of the scope of this thesis, a selection of relevant reviews is
given in the following:
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• Simpson et al. (2001b) examine approximation techniques in engineering design
optimisation: RSM, ANNs, inductive learning, and kriging.

• Surrogate modelling in aerospace systems is reviewed by Queipo et al. (2005).
They report on RSM, RBFs, kriging, and a more general non-parametric approach
called Kernel-based regression.

• In the field of electrical, chemical and aerospace engineering, and continuous-
state stochastic dynamic programming, Chen et al. (2006) give a review on surro-
gates for computer experiments to be used in optimisation processes. They report
on RSM, least interpolating polynomials, ANNs, RBFs, kriging, MARS, and re-
gression trees.

• Forrester and Keane (2009) present the recent advances in surrogate-based opti-
misation of aerospace design. They examine RSM, moving least-squares that re-
sults in standard polynomial regression, interpolation and something in between
the two, RBFs, SVR, and kriging.

• Razavi et al. (2012) give a review of surrogate modelling methods and appli-
cations to hydrological modelling and water resources management. According
to Razavi et al. (2012), the most commonly employed surrogates (from publica-
tions in water resource journals since 2000) are ANNs and RBFs; but also RSM,
SVMs, kriging, MARS, k nearest neighbours, and treed Gaussian processes can
be found.

• Additionally, the review by Simpson et al. (2008) presents a historical perspective
of the advancements on surrogate modelling in multidisciplinary design optimi-
sation.

Lately, an ensemble of multiple surrogates has been used as approximation model
(Goel et al., 2007; Viana, 2011). An application to the design optimisation of vehicle
roof structures is shown by Pan and Zhu (2011).

In general, it is not known a priori which surrogate modelling approach to select
for a specific application. Comparative studies have shown that a particular surro-
gate model can outperform other types depending on the problem under consideration
(Queipo et al., 2005; Wang and Shan, 2006), see, e.g., (Gong et al., 2015; Razavi et al.,
2012; Simpson et al., 2001a; Zhang et al., 2009).

3.2 Surrogates considered in this work

In this project, two different types of surrogates have been investigated – polynomial
response surfaces (PRSs) and response surfaces based on neural networks1 (RSNNs).
The polynomial response surface approach is inspired by the work presented by Davis
et al. (2004) optimising gas-phase and surface reaction kinetic models in chemical en-
gineering; the RSNNs are based on multilayer perceptrons (MLP). Details about both

1The terminology is changed from surrogate to response surface throughout this section to align it with the
work in Paper 1.
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types of surrogates can be found in Paper 1. In the following, the motivation for the use
of RSNNs is discussed.

The main motivation for employing RSNNs in this project is attributed to the uni-
versal approximation property: Leshno et al. (1993) prove that an MLP with one hidden
layer can approximate any continuous function to any desired degree of accuracy if and
only if the network’s activation function is not polynomial. Thus, failures in applica-
tions are due to inadequate learning, a stochastic instead of deterministic input-target
relation, or an inappropriate network architecture (Hornik et al., 1989). Indeed, finding
an appropriate network structure in applications is the main difficulty of neural network
surrogate modelling – at least for highly non-linear functions or many input parameters;
for setting up an MLP most often a trial-and-error strategy is employed (Simpson et al.,
2001b). Neural network surrogate modelling is widely used for function approxima-
tions and for modelling a variety of physical relationships (Chen et al., 2006; Gorissen,
2010); it has been employed successfully in optimisation processes in many industrial
applications, see for example (Pan et al., 2014; Sant Anna et al., 2017). Moreover,
RSNNs are smooth functions for the parameter-model relations; this allows employing
gradient-based optimisation routines, cf. Section 4.1.

In surrogate-based optimisation, a reliable optimum can only be obtained if suffi-
ciently accurate surrogates are employed. In the study presented in Paper 1, both types
of surrogates have been generated and extensively tested for the model responses of
the standard model: maximum overpressure and maximum pressure impulse at sev-
eral monitor points for relevant experiments in the validation database. It has been
observed that the RSNNs are more reliable than the PRSs; the RSNNs show a satisfac-
tory approximation quality for the entire parameter uncertainty space. Consequently,
the project has been continued with the use of neural networks as surrogates. In Ap-
pendix A.1, the validation of RSNNs for the flame speed is added.

As mentioned in Section 2.2, the pressure rising time has been investigated as an
additional model response. Appendix A.2 presents the validation of an RSNN for this
model response at one monitor point in the experiment MERGE B with a propane-air
mixture. It is observed that for this case, the pressure rising time is a discontinuous
function of the sub-grid model parameters; it cannot be approximated adequately with
a neural network. Hence, the pressure rising time is not included as a target in the
optimisation process.
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Chapter 4

Solving the optimisation problem

This chapter addresses the solving of surrogate-based optimisation problems. To place
the methodologies applied in this work in relation to other approaches, two basic con-
cepts – gradient-free vs gradient-based optimisation and adaptive sampling vs one-shot
solutions – are introduced in the first two sections. Then, the optimisation routine con-
sidered in this doctoral project is revisited briefly from Paper 2; some additional notes
are given. The last section addresses why regularisation of the problem has not been
required in the present applications.

4.1 Gradient-free vs gradient-based optimisation

An overview of solving surrogate-based optimisation problems is presented by Queipo
et al. (2005). They distinguish between two approaches: surrogate management
framework (SMF) and approximation model management framework (AMMF). The
AMMF approach was earlier introduced as approximation management framework
(AMF) (Alexandrov et al., 2000) and approximation model management optimisation
(AMMO) (Alexandrov et al., 2001).

The SMF approach is based on gradient-free optimisation (also referred to as direct
search or pattern search) and thus can be used where the objective functions are non-
differentiable. Gradient-free optimisation is less likely to be trapped in non-global
optima than traditional non-linear optimisation algorithms (Queipo et al., 2005). The
SMF approach is applied in several engineering applications, such as, e.g., (Boto et al.,
2018; Loshchilov et al., 2010; Poethke et al., 2018), and multi-objective optimisation
approaches in which evolutionary methods are employed, cf., e.g., (Gong et al., 2015;
Pilát and Neruda, 2013).

AMMF is typically associated with gradient-based optimisation methods. The sur-
rogates are trusted to yield sufficiently accurate predictions of good directions of im-
provement for the original function. As the AMMF approach inherits convergence
properties of the gradient-based method, convergence to a local solution is guaranteed.
The AMMF approach is for example employed in engineering applications by Neelin
et al. (2010), Davis et al. (2004) and Alexandrov et al. (2001).

In this project, the AMMF approach is chosen. Since the surrogates are smooth
functions (cf. Paper 1), a gradient-based optimisation approach can guarantee conver-
gence to a local optimum. Here, a trust region method, introduced in Section 4.3, is
coupled with a one-shot solution strategy, cf. Section 4.2.
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4.2 Adaptive sampling vs one-shot solution

The idea of adaptive sampling and one-shot solution approaches is briefly introduced
in Paper 4. In this section, more background is given to provide a better overview of
those basic concepts in surrogate-based optimisation.

Adaptive sampling refers to updating a surrogate model by including additional
sample points during the optimisation process. Only if satisfactory approximation qual-
ity of a surrogate is ensured, the optimum of a surrogate-based optimisation process is
a good approximation of the optimum of the original problem (Forrester and Keane,
2009). Therefore, in general, it is convenient to employ the iterative trust region opti-
misation approach developed by Alexandrov et al. (1998), (Forrester and Keane, 2009;
Queipo et al., 2005); in each iteration, the optimisation is conducted only in a region
around the current iterate in which the approximation is trusted to be a good represen-
tative to the original function (Nocedal and Wright, 2006). According to Alexandrov
et al. (1998), the trust region mechanism gives a measure of how well the surrogate
of the objective function predicts the improvement in the original objective function
and thus suggests criteria for changing or updating the surrogate for the next iteration.
Updating the surrogate by including new data points, also called infill points, can be
accomplished by, for example, merit functions (Queipo et al., 2005). In a so-called
efficient global optimisation approach, Jones et al. (1998) employ a merit function bal-
ancing low objective function values and uncertainty in the surrogate model; points
with a high expected improvement are added to the sampling. Alternative infill criteria
can be found in, e.g., (Iuliano, 2016).

If validation results let assume global accuracy of the surrogate models, the iterative
procedure can be reduced to a one-shot solution approach, i.e., optimisation in only one
single iteration with globally defined surrogates (Forrester and Keane, 2009; Queipo
et al., 2005).

In the present project, a one-shot solution approach is applied for the following two
reasons: (i) Up to 37 experiments can be considered in an optimisation process, cf. Sec-
tion 2.3. Including new data points for the surrogate generation, requires running CFD
simulations during the optimisation process. Due to simulation execution times of up
to several hours, an optimisation process incorporating adaptive sampling would ex-
ceed any practical time frame. (ii) The considered surrogates based on neural networks
generated for sufficiently large samplings are found to give satisfactory global approx-
imation quality of the selected model responses, cf. Paper 1 and Appendix A.

4.3 Trust region optimisation with a multi-start strategy

The surrogate-based optimisation problem is solved with a trust region optimisation
algorithm combined with a multi-start strategy for a global search. The trust region
algorithm is provided by a MATLAB® routine called lsqnonlin (The MathWorks Inc.,
2017), which is briefly described in Paper 2 and in more detail in Appendix B.

The routine lsqnonlin is tailored to solve non-linear least-squares problems. Hence,
when applying it to the validation-based optimisation problem described in Section 2.4,
it is crucial to investigate whether convergence to an optimum is achieved, i.e., whether
the first order necessary conditions are satisfied at the limit point of a converging se-
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quence of points generated by the algorithm. A convergence proof can be found in
Paper 2.

A few words are added here about Hessian approximations in the routine. The
routine exploits the specific structure of least-squares problems; computational time is
saved by neglecting the second term in the Hessian, cf. Equation (B.5) in Appendix
B. The Hessian of the validation-based objective function differs from the one of the
least-squares problem. However, the term that corresponds to the first term of the least-
squares’ Hessian also dominates over the others. Thus, the truncation of the Hessian is
equally appropriate for the validation-based problem formulation.

4.4 Regularisation

Ill-posed problems require stabilisation, also called regularisation, to obtain meaning-
ful solutions. To discuss whether regularisation of the presented optimisation problem
is necessary, we introduce the notion of inverse problems. A non-linear discrete in-
verse problem considers finding a parameter vector mmm such that a non-linear continu-
ous model function G evaluated at the parameter vector models the experimental data
vector ddd,

G(mmm) = ddd. (4.1)

An inverse problem is called ill-posed if noise in the data results in a significant change
in the estimated solution (Aster et al., 2013). A formal definition is for example given
by Rieder (2003): A problem is locally ill-posed for a solution mmm∗ of (4.1)

• if mmm∗ is not an isolated solution, i.e., in all neighbourhoods of mmm∗, Br(mmm∗), for
r > 0, there exists another mmmr with G(mmmr) = ddd

• or if mmm∗ is not continuously dependent on the data ddd.

In a regularisation process, the original problem is replaced by a closely related prob-
lem that can be solved in a stable way. Regularisation methods comprise amongst
others the Tikhonov regularisation and iterative methods, cf., e.g., (Aster et al., 2013;
Rieder, 2003). Discrete inverse problems are often derived by discretising ill-posed
continuous inverse problems, in which m and d are functions and G is an operator.
Typically, the discrete problem becomes ill-posed if the number of points of discreti-
sation increases (Aster et al., 2013). In the presented model parameter optimisation,
however, the number of parameters is relatively small (in the order of 10), such that
effects of ill-posedness are not expected to arise in practice. The studied optimisation
problems in Paper 2 and Paper 3 have been tested, and the solutions are found to be sta-
ble with respect to small changes in the experimental data. Thus, it can be concluded
that regularisation of these optimisation problems is not required.
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Chapter 5

Application to the CFD tool FLACS

In the present project, the optimisation approach has been applied to the gas explosion
module of the CFD tool FLACS. This chapter summarises briefly and expands on the
applications presented in Paper 2 and Paper 3. Two additional application cases are
presented in this dissertation in sections 5.2, 5.4 and appendices C, D.

As described in Section 2.1, different versions of the CFD model have been con-
sidered: the released standard model and an in-house development model. As part of
a continuous model development process, the development model has been optimised
several times at different development stages throughout the doctoral project. However,
to avoid repetition, results are only presented for one version.

Optimisation has been conducted for experiments within a single validation cat-
egory to investigate the applicability of the approach. To obtain optimal parameter
values that can be implemented in the CFD tool, the optimisation approach has been
employed for several experiments across a wider range of validation categories. More-
over, optimisation has been conducted for different experimental campaigns separately
to gain information about particular sub-grid models.

5.1 Optimising the standard model within a single validation category

In Paper 2, the applicability of the parameter optimisation approach to the standard
model is tested, cf. Section 2.3.2. It is investigated to what extent optimisation can
improve the selected model responses maximum overpressure and pressure impulse.
Therefore, the optimisation is first conducted for a single test series involving similar
physical phenomena. The results show that the optimised model predicts the maximum
overpressure significantly better than the standard model. Second, two other test series
from the same validation category are added to the previous optimisation case, yielding
an optimised model with satisfactory predictions. In a third optimisation, the flame
speed is added as optimisation target to the first optimisation case. Although the results
indicate that including the flame speed can improve the performance of the optimised
model, it is not included in subsequent optimisation processes when optimising for
several campaigns together. This is due to a lack of reliable flame speed data for the
considered experiments (cf. Section 2.3.3) aside from the campaign MERGE. Including
the flame speed only for one experimental campaign can result in an undesired biased
optimisation.
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5.2 Optimising the standard model across validation categories

An optimisation for several campaigns within a single validation category was con-
ducted successfully in Paper 2, cf. Section 5.1. The study can be seen as a proof of
concept, but the optimal parameter values are not of any practical use.

Finding optimal parameter values for the standard model by optimising for numer-
ous experiments across validation categories, cf. Section 2.3.1, is investigated addition-
ally; detailed results are included in Appendix C. It is observed that for most of the
campaigns the considered predictions after the overall optimisation show less deviation
from the experimental data. As expected, the effect of optimisation is not significant.

This study and the study in Paper 2 show that the laminar burning velocity is often
optimised towards the edge of its uncertainty range. To ensure that optimising the lam-
inar burning velocity does not compensate for insufficient representation of physical
phenomena that are not covered by the selected parameters, it was decided to exclude
the laminar burning velocity from subsequent optimisation (despite the uncertainty con-
nected with its value).

5.3 Optimising the development model across validation categories

Paper 3 reports on the application of the optimisation approach to the development
model. The optimisation is conducted for a wide range of gas explosion experiments
across validation categories, cf. Section 2.3.1. Analysing the optimised model shows
that the optimisation improves the predictions of the maximum overpressure and maxi-
mum pressure impulse significantly and that the physical mechanisms of gas explosions
are represented by the optimised model. The optimisation process has been very effi-
cient; manual searching for good parameter values does in general not lead to optimal
ones and can take several weeks or months. Furthermore, the optimisation is an im-
portant support in the modelling process. Analysing the predictions of the optimised
model suggests updated user guidelines and to exclude the quasi-laminar burning ve-
locity from optimisation, cf. Paper 3. Such conclusions for the recently updated model
have not been possible to draw before model parameter optimisation. It is important
to note that an extensive model validation against experimental data is required to de-
cide whether the development model can confidently be used for process safety; this is,
however, outside the scope of this dissertation.

Two aspects that have not been addressed in the paper are discussed in the following:
motivation for the choice of setting the weights in the objective function equal to unity,
and a comparison of optimising the validation-based and the VG problem formulation.
The comparison suggests that both problem formulations are applicable with similar
final results.

5.3.1 Testing different weights in the objective function

To motivate the equal weighting of all contributions in the objective function, the
weighting strategy from Section 2.5 is employed. Results are provided in the following.

The objective function can be understood as a weighted sum of two objective func-
tions; let Fpmax denote the objective function associated with the maximum overpres-
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sure, which is given by the sum over the transferred relative errors for all experiments
and monitor points, cf. Section 2.4. Similarly, let Fpimpmax denote the sum over the
transferred relative errors of the maximum pressure impulse. Note that here, the sur-
rogates are employed instead of the original model responses from the CFD tool. The
weighted sum of the two objective functions is transformed with the lower-bound ap-
proach (cf. Section 2.5) such that the aggregated objective function reads

wpmax
Fpmax

Fo
pmax

+wpimpmax
Fpimpmax

Fo
pimpmax

(5.1)

with

Fo
pmax =min{Fpmax(x)| x in the feasable parameter space} and

Fo
pimpmax =min{Fpimpmax(x)| x in the feasable parameter space}.

It can be assumed that Fo
pmax and Fo

pimpmax are both non-zero, as it is improbable that
there exists a set of parameter values such that the model responses coincide with the
experimental data.

Since preferences for Fpmax and Fpimpmax are not known a priori, the Pareto op-
timal parameter values are found by varying the weights wpmax and wpimpmax in the
optimisation process. Table 5.1 shows the two objective functions evaluated at default
parameter values, as well as at optimal parameter values for weights between 0 and 1.
Note that the parameter values are reported as the transformed values in the reference
interval [−1,1]. By setting one of the weights to zero, optimisation is exclusively con-
ducted for the maximum overpressure or the maximum pressure impulse. Setting both
weights to 0.5 reflects the same importance of both objective functions. The weights
wpmax = 0.866 and wpimpmax = 0.134 are chosen, as minimising (5.1) is then equivalent
to minimising

Fpmax +Fpimpmax,

where the weights of the untransformed formulation are equal to unity; this corresponds
to the optimisation case presented in Paper 3. For comparison, the opposite weighting,
wpmax = 0.134 and wpimpmax = 0.866, is also analysed.

Table 5.1 visualises that the optimal parameter values, as well as the evaluated ob-
jective functions Fpmax and Fpimpmax, change continuously when varying the weights
from ‘more weight to the maximum overpressure’ to ‘more weight to the maximum
pressure impulse’. The changes are not significant as long as the contribution of
the maximum overpressure in the weighted sum (5.1) is sufficiently large, i.e., here
wpmax > 0.134.

Figure 5.1 shows pressure-time histories of simulations for experiment MERGE E
with a propane-air mixture in the middle of the rig. The plot comprises simulations with
the different optimised models as well as experimental data. The experimental data is
filtered using a suitable Savitzky–Golay filter (Savitzky and Golay, 1964). The plot il-
lustrates that the pressure-time histories for different weights do not differ significantly
from each other.

In total, it seems possible that the maximum overpressure and the maximum pres-
sure impulse are so closely linked that they are optimised simultaneously, not highly
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Table 5.1: Optimal parameter values of the development model for different weights in the
aggregated objective function (5.1).

objective function evaluation

before optimisation
Fpmax Fpimpmax default parameter values,

chosen as zero15733.176 321,380

weights objective function evaluation optimal parameter values

wpmax wpimpmax Fpmax Fpimpmax Cα,ma Cgs Cλ a ...

1.0 0.0 153.897 28.706 0.1219 -1.0 0.8465 1.0 ...

0.866 0.134 154.315 27.792 0.1269 -1.0 1.0 1.0 ...

0.5 0.5 160.462 25.835 0.1270 -1.0 1.0 1.0 ...

0.134 0.866 185.324 24.286 0.0864 -0.997 1.0 1.0 ...

0.0 1.0 238.617 23.774 0.0993 -1.0 1.0 1.0 ...

weights optimal parameter values

wpmax wpimpmax ... Cql Kq Co γt Ct p,lim

1.0 0.0 ... -0.2676 0.7329 -0.7399 -0.6231 1.0

0.866 0.134 ... -0.2811 0.6502 -0.7770 -0.6108 1.0

0.5 0.5 ... -0.3137 0.5317 -0.8709 -0.5595 1.0

0.134 0.866 ... -0.3591 0.3521 -0.9312 -0.4904 1.0

0.0 1.0 ... -0.4041 0.2544 -1.0 -0.6098 1.0

dependent on the choice of the weights. The question that arises is: "Which weights
shall be chosen in the parameter optimisation process?". Following the study above,
the conclusion may be to set the weights wpmax and wpimpmax in the transformed for-
mulation equally. However, similar studies with a different splitting of the objective
function could lead to different weighs. Alternative multiple objective functions could
be defined, for example, as the sum over all model responses for each experimental
campaign, or at specific places in the rig relative to the ignition source. As no a priori
preferences of any of those multiple objectives are known in the present application,
the weights in the respective transformed formulations might also be set to equal val-
ues. However, these formulations would most likely differ from the one studied in this
section due to different minima Fo

∗ . Consequently, the weights for each error between
model response and experimental data (in the original objective function) would dif-
fer for different multi-objective studies. Thus, it has been found appropriate to set the
weights to unity in the original (untransformed) problem formulation.
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Figure 5.1: Overpressure-time histories for MERGE E with a propane-air mixture in the mid-
dle of the rig simulated with a default development model and optimised models for different
weighted sums.

5.3.2 Testing the VG problem formulation

In this section, the VG problem formulation (2.2) is tested for optimising the develop-
ment model; results are compared to the optimisation with the validation-based formu-
lation presented in Paper 3. Note that surrogates are employed for both formulations,
and that optimisation includes all selected experiments.

Table 5.2 presents the optimal parameter values for both formulations. The most
striking differences in the values can be found for the factor in the correlation of the
quasi-laminar burning velocity, Cql , the quenching limit for the turbulent burning ve-
locity, Kq, and the parameter accounting for turbulence production from sub-grid obsta-
cles, Co. Figure 5.2 shows scatter and parabola plots for the validation of the optimised

Table 5.2: Optimal parameter values for the development model for different problem formu-
lations.

Formulation Cα,ma Cgs Cλ a Cql Kq Co γt Ct p,lim

VG 0.1018 -0.9422 1.0 1.0 -0.5015 0.3984 -0.8406 -0.6232 1.0

validation-
based

0.1269 -1.0 1.0 1.0 -0.2811 0.6502 -0.7770 -0.6108 1.0

model for the VG formulation. Analogous plots for the validation-based formulation
can be found in Figure 4 of Paper 3. Both optimised models give excellent overall pre-
dictions; the predictions of the maximum pressure impulse are nearly the same. The
VG formulation leads to slightly more under-prediction of the maximum overpressure
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Figure 5.2: Maximum overpressure (upper panel) and maximum pressure impulse (lower
panel) simulated with the development and optimised model vs. experimental data for all se-
lected experiments (left) and corresponding values of the geometric mean bias and variance
(right). The model is optimised via the VG formulation.

than the validation-based formulation. However, as the differences in the predictions of
the optimised models are minimal, it can be concluded that both problem formulations
are appropriate for optimisation.

Different optimised predictions of the maximum overpressure are mainly observed
for the FM Global 64 m3 vented chamber experiments with overpressures below 0.1
barg, cf. upper left scatter plots of Figure 5.2 and Figure 4 of Paper 3. These over-
pressures are very sensitive to changes in Cql . Thus, the low value of Cql for the VG
problem formulation most likely causes the slightly more under-prediction for the FM
Global 64 m3 vented chamber experiments – without changing the other predictions
appreciably; in the other experiments, the different optimal parameter values seem to
compensate for each other such that the predictions from both optimisations are al-
most the same. This finding supports the discussion in Paper 3 about excluding the
quasi-laminar burning velocity from subsequent optimisation.
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5.4 Optimisation for analysing the flame folding model

As presented in Section 2.3.1, the optimisation approach can additionally be utilised to
analyse modelling strengths of sub-grid models individually. In this thesis, this usage
of the optimisation method is tested for a model accounting for flame folding around
sub-grid obstacles. The objective is to optimise parameters in the flame folding model
to gain information about how well the model represents flame folding in different gas
explosion scenarios. The CFD model that is considered in this study is a development
version of FLACS, similar to the development model examined in Paper 3, but con-
tains changes to some sub-grid models. The flame folding model, however, remains
unchanged; a description of the model and its parameters can be found in Paper 3.

Selected for optimisation are 15 tests in the DNV GL 182 m3 explosion vessel (see
Paper 3) and 4 tests from the Gaps project (see Appendix D.1). In those tests, the gas
explosions are mainly driven through the flame folding around sub-grid obstacles as
well as the turbulent burning velocity; the tests are thus not ‘single phenomenon’ ex-
periments for flame folding. When optimising for the flame folding model, the optimal
parameter values depend on the fixed parameter values in the turbulent burning veloc-
ity correlation. The latter are set to the values found in an overall optimisation of the
present development model. Therefore, optimal parameter values resulting from this
study should not be implemented in the tool.

The maximum overpressure and pressure impulse at relevant monitor points are
optimised with respect to two flame folding parameters with high sensitivities. Details
about the sensitivity analysis can be found in Appendix D.2. The optimisation approach
is employed for three cases: the selected tests of the DNV GL 182 m3 vented enclosure,
the selected tests of the Gaps project and for all selected tests together. The optimal
parameter values, as well as validation results of the overall optimised model, can be
found in Appendix D.3

The optimal parameter values for all cases are very similar. This indicates that the
flame folding model is able to predict the basic aspects of flame folding around sub-grid
obstacles independently from the gas explosion scenario and geometry. If the optimal
parameter values diverged, the gas explosions in the DNV GL 182 m3 vented enclosure
would be predicted best with a flame folding model that is different from the one that is
best for the Gaps project tests (due to different parameter values). This would point out
that different parameter values try to compensate for mechanisms in the flame folding
that are not captured by the model.
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Chapter 6

Concluding remarks and future work

The goal of this doctoral study was to improve the predictive capabilities of a CFD
model by parameter optimisation. The model predicts the consequences of industrial-
scale gas explosions. The parameters are contained in sub-grid models for turbulence
and combustion; their values were optimised to improve the agreement between rele-
vant experimental data and the corresponding predictions of the simulation tool. This
chapter summarises shortly the main results from the doctoral study and gives an out-
look for future work.

This thesis proposes a surrogate-based optimisation approach, in which the problem
was formulated to account for assessing under- and over-predictions as in model val-
idation processes. This validation-based problem formulation has been tailored to the
specific output in gas explosion simulations, and is shown to be more appropriate than
a least-squares problem formulation. It was shown that the validation-based formula-
tion is closely connected to another formulation for which the solution is the maximum
likelihood estimator in the case of log-normally distributed errors in the measurements.
Three model responses amongst several candidates were found suitable as optimisation
targets for the present application. Different methodologies for selecting gas explosion
experiments to be included in an optimisation process were developed. Surrogates were
employed for a fast evaluation of the model parameter-output relations. Surrogates
based on neural networks were compared to polynomial response surfaces. A satisfac-
tory approximation quality of the neural networks for the entire parameter space was
shown; thus, these surrogates were employed for subsequent optimisations. Because
of the smoothness and global approximation quality of the surrogates, a trust region
multi-start algorithm was used for solving the surrogate-based optimisation problem in
a one-shot solution technique. As the optimisation routine has been originally intended
for non-linear least-squares problems, not covering the validation-based formulation,
its convergence for this optimisation problem with respect to the first order necessary
optimality conditions has been proven.

The methodologies for selecting gas explosion experiments for one optimisation
process were developed to serve two different purposes: first, obtaining optimal param-
eter values that can be implemented in the tool, and second, analysing the predictive
capabilities of sub-grid models after optimisation and gain information about possible
improvements. The following paragraph elaborates on how the methodologies were
employed in this thesis.
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1. To serve the first purpose – obtaining optimal parameter values of practical use –
the quality of the predictions was improved directly via parameter optimisation.
Since it has not been straightforward to find ‘single phenomenon’ experiments,
which isolate single phenomena in gas explosions, this doctoral study focused on
optimising all sub-grid models together for various experiments that represent a
wide range of explosion phenomena. The optimisation was tested and applied
successfully to several versions of the CFD tool FLACS in different stages of
the development process; the standard model released for commercial use and an
in-house development model:

(a) The standard model was mainly utilised to investigate the applicability of
the optimisation approach. For this purpose, optimisation was tested for
experiments from one validation category first. Results demonstrate that on
the one hand, the approach is able to improve the predictions notably and on
the other hand that the characteristic physical mechanisms of gas explosions
are represented by the optimised model. Second, an overall optimisation for
experiments comprising a wide range of scenarios was conducted, resulting
in a model with improved and satisfactorily predictive capabilities for all
considered experimental test series. Due to already good model performance
before optimisation, the improvement was just moderately. In the end, it was
concluded that the approach is applicable to gas explosion simulations.

(b) To support modelling efforts, optimisation was also performed on a devel-
opment model, in which sub-grid models had been updated, and parameter
values had been set to an initial ‘best guess’. The optimisation was con-
ducted for various experiments representing a wide range of physical phe-
nomena; the improvement of the predictions was significant. The optimi-
sation process has been very efficient and important as support in the mod-
elling process; manual searching for good parameter values does in general
not lead to optimal ones and can take several weeks or months. Furthermore,
analysing predictions of the optimised model suggested updated user guide-
lines and enabled the discussion on how to progress with the development
of the physical models. Such conclusions for the recently updated model
would not have been possible to draw before model parameter optimisation.
It is important to note that an extensive model validation against experimen-
tal data is required to decide whether the development model can confidently
be used for process safety; this is, however, outside the scope of this disser-
tation. Nevertheless, optimisation results were analysed carefully in sanity
checks; by analysing pressure-time histories, it was shown that the physical
mechanisms of gas explosions are represented by the optimised model.

2. The second purpose – analysing sub-grid models to improve predictions – was
served by applying the optimisation approach to just one single sub-grid model.
A model accounting for flame folding around sub-grid obstacles was optimised
for two relevant experimental campaigns separately, and for both together. Since
the optimal parameter values for the three cases did hardly differ, it was concluded
that the flame folding model is able to predict the basic aspects of flame folding
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around sub-grid obstacles independently from the specific gas explosion scenario
and geometry.

It is important to emphasise that the optimisation process cannot compensate for
models that do not capture the physical mechanisms of gas explosions. Thus, optimi-
sation processes do not replace further efforts in CFD modelling.

The research presented in this thesis opens up different directions for future work.
In the following, two potential continuations are discussed.

Improving the predictive capabilities of a CFD tool is not finalised after the opti-
misation process. The steady progress towards models that predict the physics of gas
explosions better than the existing ones is addressed by many researchers in various re-
search projects. In particular, the results from new high-quality experiments may give
new insights into the physical behaviour of gas explosions. With the help of the op-
timisation approach, the predictive capability of a novel sub-grid model incorporated
in a CFD tool can be investigated in a quick and efficient way, and manual parameter
tuning is circumvented. Moreover, future experimental studies on gas explosions could
comprise ‘single phenomenon’ tests for a more fundamental optimisation of sub-grid
models.

Another topic for future work is research into including uncertainties in conse-
quence modelling. Aven (2014) highlights, for example, the importance of including
uncertainties in risk assessments. Traditionally, a CFD tool predicts the quantity of in-
terest with a single deterministic value, such as a certain maximum overpressure in a
gas explosion. The question is: "How uncertain is the model’s prediction?".

Uncertainties arise on the one hand from uncertain input parameters, e.g., the leak-
age rate of combustible gas in accidental gas explosions; on the other hand, the model
itself is uncertain. Quantifying how good the predictions of a model are (with given
input parameters) requires considering the experimental uncertainty of both the input
parameters as well as the quantity of interest (McGrattan and Toman, 2011).

To a certain extent, information about the quality of model output is given through
the model validation process. For example, it may be reported that the predictions are
within a particular factor of experimental measurements. Even more information and
confidence would be given to the user through a probability distribution of the quan-
tity of interest (McGrattan and Toman, 2011). In risk assessment, such a probability
distribution may be calculated by propagating entire probability distributions of input
parameters through the model (Coffey et al., 2019; Cordero et al., 2007). Alternatively,
uncertainties in the model, incorporating uncertainties in experimental measurements,
may be estimated and propagated. A relatively simple method to express model un-
certainties for complex numerical models such as CFD codes is for example given by
McGrattan and Toman (2011).

When model and experimental uncertainties are accounted for in the validation pro-
cess, results from the optimisation of model parameters can be quantified accordingly.
Additionally, it can be investigated to what extent model uncertainty might be reduced
by parameter optimisation.
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Appendices

This chapter contains four appendices. They either comprise background informa-
tion to the thesis or support studies from the thesis by presenting detailed results. An
overview is given in the following:

• In Appendix A, plots present the approximation quality of response surfaces
based on neural networks for two model responses of the standard model: flame
speed and pressure rising time. The plots provide a basis for the decision that the
flame speed may be included in the optimisation, but not the pressure rising time,
cf. 2.2, 3.2, and 4.2.

• Appendix B describes the basic idea of the trust region routine called lsqnonlin
from MATLAB. Thus, it provides background information to the introduction of
the routine from Paper 2 and Section 4.3.

• Appendix C provides detailed results from the optimisation case summarised in
Section 5.2; it presents the application of the optimisation approach to the stan-
dard model for experiments from a wide range of validation categories. Further-
more, Section 2.6 refers to this Appendix for the work on including outliers in the
optimisation.

• Appendix D supports the analysis from Section 5.4; it provides plots and ta-
bles presenting the results from optimising the sub-grid model for flame folding
around obstacles.
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Appendix A

Approximation quality of surrogates

In this section, the approximation quality of response surfaces based on neural net-
works, RSNNs, is analysed for two model responses of the standard model: flame speed
and pressure rising time. For illustration, the experiment MERGE B with a propane-air
mixture is considered. The neural networks are generated based on a Latin hypercube
sampling (McKay et al., 1979) of the parameter uncertainty space with 400 points. The
approximation quality is visualised via scatter plots comparing RSNNs evaluations to
the corresponding simulation output for a different Latin hypercube sampling of 250
points. In a perfect fit, the plotted points would all lay on the diagonal line.

A.1 Flame speed

The scatter plots of Figure A.1 visualise the ability of RSNNs to approximate the flame
speed predictions. The flame speed is calculated from flame arrival times between
monitor points 1–2, 2–3, 4–5, 5–6 across the rig and outside the congested region. Due
to the small scatter between the simulated flame speeds and the surrogate evaluations,
the flame speed is found appropriate to be approximated by RSNNs.

A.2 Pressure rising time

The scatter plot of Figure A.2 shows the validation result of an RSNN for the pressure
rising time, cf. 2.2, for the experiment MERGE B with a propane-air mixture at mon-
itor point 6. The approximation quality of the RSNN is not satisfactory. In particular,
the gap between the dots in the plot visualises that the pressure rising time prediction
for this experiment is a discontinuous function of the sub-grid model parameters. To
explain the discontinuity, Figure A.3 a) illustrates simulated pressure-time histories for
different model parameter values. The curves consist of two nearby pressure peaks.
There exist parameter values inside the uncertainty range such that the first peak is
the higher peak resulting in a short pressure rising time, cf. Figure A.3 b), and others
such that the second peak dominates resulting in a longer pressure rising time, cf. Fig-
ure A.3 c). It is observed that the pressure-time histories change only slightly with
small parameter perturbations. However, the pressure rising time will change signifi-
cantly, if a small parameter perturbation causes a switch in the highest pressure peak.
This results in a severe discontinuity in the pressure rising time-parameter relation such
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that it cannot be approximated with satisfactory quality. Therefore, the pressure rising
time is not included in the optimisation process.
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Figure A.1: Validation of RSNNs for the flame speed of experiment MERGE B with propane-
air, monitor point (a) 1–2 , (b) 2–3, (c) 4–5, (d) 5–6.
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Figure A.2: Validation of an RSNN for the pressure rising time of experiment MERGE B with
propane-air, monitor point 6.
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Figure A.3: Switch in the strength of the pressure peaks: a) for varying parameter values from
the uncertainty space, b) and c) for two specific sets of parameter values, for MERGE B with
propane-air, monitor point 6.
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Appendix B

Trust region algorithm

In this section, the basic idea of the trust region routine called lsqnonlin from MATLAB
is described (The MathWorks Inc., 2017). The routine is an iterative method and em-
ploys a two-dimensional subspace trust region method on a transformed, unconstrained
problem given by Coleman and Li (1996b). To obtain ’sufficient decrease’ in a step of
a subproblem iteration, a reflective path is followed as described in (Coleman and Li,
1996a).

The algorithm is described for the following general form of a minimisation of a
function f on Rn subject to lower and upper bounds li and ui, respectively:

min
x∈Rn

f (x),

subject to: li ≤ xi ≤ ui, for i = 1, . . . ,n. (B.1)

B.1 Without box constraints

Assume that no bound constraints are present. In each iteration of a trust region method,
a quadratic approximation to the objective function is minimised on a so-called trust
region with radius ∆k (Nocedal and Wright, 2006). The trust region subproblem in the
kth iteration reads

minimise: mk(p) =
1
2

p>Bkp+g>k p, (B.2)

subject to: ‖p‖ ≤ ∆k,

where Bk is an approximation to the Hessian and gk the exact gradient of f evaluated at
the iterate xk. ‖ ·‖ denotes the Euclidean norm. Let pk denote the approximate solution
of (B.2). If the step is accepted (with respect to certain criteria), the new iterate is set
to xk+1 = xk +pk, otherwise, the trust region is updated. In the following, subscripts
indicating the current iteration are omitted to simplify the notation.

According to Nocedal and Wright (2006), the subproblem (B.2) may be solved with
an iterative method based on the following theorem by Moré and Sorensen (1983).
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Theorem 1 The vector p∗ is a global solution of the problem (B.2), if and only if it is
feasible (‖p∗‖ ≤ ∆), and there exists a scalar λ ≥ 0 such that

(B+λ I)p∗ =−g, (B.3a)
λ (∆−‖p∗‖) = 0, (B.3b)

(B+λ I) is positive semidefinite. (B.3c)

The iterative method finds an approximation to p∗ and λ that are satisfying condi-
tions (B.3a)–(B.3c). If the initial guess (λ0 = 0,p0) satisfies (B.3c), (B.3a) and p0 is
feasible, the global solution is found. Otherwise, Newton’s method is applied to the
function of λ :

1
∆
− 1
‖− (B+λ I)−1g‖ .

The inverse of the matrix (B+λ I) is not calculated explicitly such that the main work
in each iteration lies in a Cholesky factorisation of the matrix. Since practical versions
of this method typically find an approximation to λ after 2 or 3 iterations, the iterative
method requires in total 2–3 matrix factorisations, which are costly in high dimensions
(Nocedal and Wright, 2006).

The trust region routine lsqnonlin employs therefore a two-dimensional subspace
method, which solves the subproblem (B.2) on a two-dimensional subspace S. The
subspace is spanned by g and s either satisfying the Newton system Bs = g or, if en-
countered, a direction of negative curvature, i.e.,

S = span[g,s], with Bs = g or s>Bs < 0. (B.4)

Then, the restricted subproblem is solved by the iterative method described above,
which is not costly due to the low dimension. Thus, the main work is reduced to
solving one large linear equation, Bs = g.

Moreover, the routine exploits the special structure of the least-squares objective
function:

f (x) =
1
2

m

∑
i=1

ri(x)2.

The gradient g and the Hessian H of f are given by

g(x) = J(x)>r(x) and H(x) = J(x)>J(x)+
m

∑
i=1

ri(x)∇2ri(x) (B.5)

with r(x) = (r1(x), · · · ,rm(x))> and J is the Jacobian of r. Near the solution the second
term of the Hessian is typically small, as typically ri(x) are either small or close to affine
and thus ∇2ri(x) are small. Finally, the subspace S is defined via the Gauss–Newton
direction s by

S = span[J(x)>r(x),s], with J(x)>J(x)s = J(x)>r(x) or s>J(x)>J(x)s < 0.

The large linear systems are solved using the method of preconditioned conjugate gra-
dients.
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B.2 With box constraints

In the presence of finite bounds on x as given by the problem (B.1), the inequality
restrictions may be added to the quadratic subproblem (B.2). Instead, in this routine,
the subproblem is transformed by scaling as described in the interior-reflective Newton
method by Coleman and Li (1996a,b). The scaling strategy arises from examining the
first order necessary optimality conditions. Let the vector v(x) = (v1(x), . . . ,vn(x)) be
defined by

vi(x) =


xi−ui if gi < 0 and ui < ∞,

−1 if gi < 0 and ui = ∞,

xi− li if gi ≥ 0 and li >−∞,

1 if gi ≥ 0 and li =−∞,

for i = 1, . . . ,n.

The diagonal scaling matrix D(x) is based on the distance to the boundary of the feasi-
ble region. Its entries are given by

|vi(x)|−1/2, for i = 1, . . . ,n.

Then, the first order necessary conditions for x∗ to be a local minimiser of problem
(B.1) are equivalent to

D(x∗)−2g(x∗) = 0. (B.6)

Let xk denote a point in the interior of the feasible set F= {xxx∈Rn | li ≤ xi ≤ ui, for i =
1, . . . ,n}. When approximating the Hessian of f at xk with Bk, an inexact Newton step
to (B.6) is given by

(D−2
k Bk +diag(gk)Jv

k)dk =−D−2
k gk, (B.7)

where Dk = D(xk) and Jv
k is the Jacobian matrix of |vk| whenever it is differentiable

and 0 otherwise, cf. Coleman and Li (1996b). Then, a subproblem similar to (B.2) is
formulated employing Dk and Jv

k such that in the neighbourhood of a local minimiser,
its solution is given by the Newton step from Equation (B.7). The subproblem reads

minimise: m̃k(p) =
1
2

p>(D−1
k BkD−1

k +diag(gk)Jv
k)p+g>k D−1

k p, (B.8)

subject to: ‖p‖ ≤ ∆k.

The scaled subproblem (B.8) is solved analogously as described in Appendix B.1; in
particular the Newton system in Equation (B.4) is replaced by a scaled modified New-
ton system. After the scaled subproblem is solved, the solution, if necessary, simply
needs to be truncated into the interior of the feasible set F. Details about the trunca-
tion, when to accept a step in the trust region method, and how to update the trust region
radius can be found in Coleman and Li (1996b).
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Appendix C

Optimisation of the standard model for a wide
range of experiments

In this section, the optimisation approach is applied to the standard model, FLACS
v10.7, for experiments from a wide range of validation categories. The experiments
that are considered for optimisation and validation belong to the selected campaigns
from Gexcon’s validation database listed in Section 2.3.3 – MERGE A, B, C, C*, D,
and E experiments for methane and propane mixed with air; BFETS Phase 3A tests
1, 4, 16, 17, 24 (‘Alpha’), and 39 (‘Beta’); BFETS Phase 2 tests 6, 7, 13, 18, and
22; eight FM Global 64 m3 vented chamber experiments with and without obstacles;
and DNV GL 182 m3 vented enclosure tests 4, 12, 14, 22, 26, and 38. Details on the
experiments can be found in Paper 3, in which a similar optimisation and analysis is
studied for another version of the CFD tool FLACS. The optimisation is conducted
for the maximum overpressure and pressure impulse at key monitor points. For an
unbiased optimisation, all cases that are over- or under-predicted by the unoptimised
standard model with a factor larger than 2.7 (so-called outliers) are excluded from the
optimisation process, cf. Section 2.6. However, they are included in the validation
process. For comparison, results of an optimisation including outliers are presented in
Section C.4.

First, the optimisation approach is applied to two validation categories separately.
As discussed in Section 2.3.2, the resulting sets of optimal parameter values are not
of any practical use. Therefore, optimisation is also conducted for all experiments to-
gether (referred to as the overall optimisation). Separate optimisation processes give
inherently better results than the overall optimisation since the latter needs to compro-
mise between the two separate cases. The separate optimisation can be utilised as a ref-
erence; one criterion for the optimisation to be applicable across validation categories
is that the optimised model’s predictive capabilities should be close to the reference
case.

As part of each optimisation process, the optimised models are analysed in a sanity
check. Scatter plots visualise the deviation from the predictions of models to the ex-
perimental data. In parabola-plots, the corresponding geometric mean bias, MG, and
geometric variance, VG, are plotted, cf. Equation (2.2). To ensure that the optimisation
is not a blind fit of the selected model responses, plots for the maximum overpressure
at several distances across the explosion module, as well as pressure-time histories, are
analysed.
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C.1 Optimisation within validation categories

Optimisation is conducted for the selected experiments from two validation categories
separately – (i) category 1B with the MERGE and BFETS Phase 3A experiments and
(ii) category 3B with the experiments from BFETS Phase 2, the FM Global 64 m3

vented chamber experiments with obstacles, as well as the DNV GL 182 m3 vented
enclosure tests. Table C.1 presents both sets of optimal parameter values. The separate
optimisations result in two optimised models with different optimal parameter values
implemented. For simulating cases in categories 1B and 3B the respective model is
employed. In the following, for the sake of brevity, the ‘optimised model’ refers to
the two models interpreted as one. The FM Global 64 m3 vented chamber experiments
without obstacles are assigned to category 3A. For this category, optimisation is not
conducted separately, as only four experiments are available in this study, and a larger
number of experiments is necessary to obtain appropriate optimal parameter values.
Those tests are thus excluded from optimisation and validation in this section.

Figure C.1 visualises the performance of the unoptimised standard model and the
optimised CFD model. The left-hand side of Figure C.1 shows scatter plots; on the
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Figure C.1: Maximum overpressure (upper panel) and maximum pressure impulse (lower
panel) simulated with the standard and the optimised model vs experimental data for all se-
lected experiments from category 1B and 3B (left) and corresponding values of the geometric
mean bias and variance (right). Optimisation is conducted for selected experiments in valida-
tion categories 1B and 3B separately.
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upper and lower panel, the measured maximum overpressure and pressure impulse, re-
spectively, for the selected experiments at several monitor points are plotted against the
simulation output. On the right-hand side of Figure C.1, the corresponding geometric
mean bias and variance of the differences between simulation output and experimental
data are plotted. Note that both the scatter and parabola plots comprise results for sim-
ulations with the standard and the optimised model simultaneously. The experimental
data throughout this study is filtered using a suitable Savitzky–Golay filter (Savitzky
and Golay, 1964).

The plots show that the predictions with the optimised model are overall better
than with the standard model, which even holds for predictions at monitor points that
are excluded from optimisation due to a deviation larger than a factor of 2.7 before
optimisation. The predictions of the optimised model are less biased towards under-
predictions and contain less scatter around the mean bias. The improvement is more
significant for the maximum overpressure than for the maximum pressure impulse.

C.2 Optimisation for experiments across validation categories

To obtain optimal parameter values of practical use, cf. Section 2.3.1, optimisation
is conducted and analysed for experiments across validation categories. Table C.1
presents the optimal parameter values; Figure C.2 visualises the optimisation results.
The geometric mean bias for the predictions of the maximum overpressure and pres-
sure impulse for the overall optimisation differs only slightly from those for optimising
the categories 1B and 3B separately, cf. Figure C.1. However, the optimisation for all
experiments together leads to a slightly larger scatter of both model outputs. In the
following sections, a more detailed analysis of the overall optimised predictions is pre-
sented.

Validation of surrogates at the optimal parameter values

Although the surrogates for the selected output of the CFD tool have been tested ex-
tensively in Paper 1, it should be further investigated whether the optimum found using
the surrogate-based optimisation approach can be trusted to represent the optimum of
the original problem. In Figure C.3 the predictions of the optimised model are com-
pared to the surrogates (RSNNs) evaluated at the optimal parameter values. The small
differences between surrogate evaluations and model responses are found acceptable.

Separate validation of the overall optimised model

In this section, we investigate to what extent the overall optimisation improves the
predictions of the maximum overpressure and pressure impulse for each campaign.
Figure C.4 presents the validation results. Test cases that have not been employed
for optimisation are included in the validation to provide an impression of how the
optimised model performs on ‘new’ scenarios.

The optimised model predicts the maximum overpressure and pressure impulse with
less scatter than the standard model for all campaigns except for the FM Global 64 m3

vented chamber experiments. For most of the campaigns, optimisation leads to over-
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Figure C.2: Maximum overpressure (upper panel) and maximum pressure impulse (lower
panel) simulated with the standard and the optimised model vs experimental data for all se-
lected experiments (left) and corresponding values of the geometric mean bias and variance
(right). Optimisation is conducted for all selected experiments together.
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Figure C.3: Maximum overpressure (left) and maximum pressure impulse (right) simulated
with the optimised model vs evaluation of the surrogates at the optimal parameter set.

rather than under-predictions, which may be preferred in the field of safety. The predic-
tions of the maximum overpressure for the campaign MERGE are improved the most
with respect to bias and scatter, see Figure C.4(a). The maximum pressure impulse is
over-predicted with a factor of less than 1.3. For the BFETS Phase 3A experiments,
the overall optimisation reduces slightly the scatter of the deviations from simulation
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(a) MERGE
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(b) BFETS Phase 3A
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(c) BFETS Phase 2
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(d) DNV GL 182 m3 vented enclosure
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(e) FM Global 64 m3 vented chamber

Figure C.4: Maximum overpressure (upper panel) and maximum pressure impulse (lower
panel) simulated with the standard and overall optimised model vs experimental data for all
experiments of the respective campaign (left) and corresponding values of the geometric mean
bias and variance (right).

output to experimental data, see Figure C.4(b); the simulation output is over- instead
of under-predicted. Figure C.4(c) presents the results for the BFETS Phase 2 experi-
ments; the value of MG improves only slightly, whereas VG is reduced significantly.
Figure C.4(d) visualises that the predictions for the DNV GL 182 m3 vented enclosure
tests improve only slightly through the optimisation process. The FM Global 64 m3

vented chamber experiments pose the only campaign where the predictions deteriorate
after optimisation, see Figure C.4(e).

Maximum overpressure at several monitor points across the rig

To make sure that the predicted overpressure at monitor points excluded from optimi-
sation is not artificially high or low for the optimised model, it is analysed for sev-
eral points across the module. Figures C.5(a)–(e) show the maximum overpressure for
BFETS Phase 2 experiments at the lower deck for several distances from the front side.
Ignition in all tests, except Test 13, occurred in the front side of the rig; in Test 13 the
gas mixture was ignited in the centre. Optimisation is conducted for the monitor points
at the front side, in the middle and opposite end of the rig, i.e., 25 m from the front side.
The monitor points in between are neither included in the optimisation nor in the previ-
ous validation. With the optimised model, the behaviour of the maximum overpressure
at several distances from the front side is captured reasonably well or even better than
with the standard model for all tests, except Test 13, which is over-predicted, cf. Fig-
ure C.5(c). For Test 18 the optimised maximum overpressure is much lower than the
experimental data through the rig and increases at the end, cf. Figure C.5(d). Even if
optimisation is conducted exclusively for the experiments from BFETS Phase 2, the
trend of the experimental data cannot be captured, cf. Figure C.5(f).
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(b) BFETS Phase 2, Test 7
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(c) BFETS Phase 2, Test 13
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(d) BFETS Phase 2, Test 18
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(e) BFETS Phase 2, Test 22
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(f) BFETS Phase 2, Test 18

Figure C.5: Maximum overpressure at several distances from the front side of the rig for se-
lected tests of the campaign BFETS Phase 2 simulated with the standard and overall optimised
model and experimental data.

Pressure-time histories

Analysing pressure-time histories simulated with the optimised model forms a crucial
part of the optimisation approach. The plots in Figure C.6 show the overpressure over
time for tests of the campaign BFETS Phase 2 at monitor points 2 (black lines) and 10
(grey lines) for the standard model (solid lines), the overall optimised model (dashed
lines) as well as the filtered experimental data (dotted lines). Monitor point 2 and 10
are located at the front side and the middle of the rig, respectively. Even if the pressure
over time for Test 13 and Test 18 is over- and under-predicted, respectively, the shapes
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of the optimised curves are reasonable. In total, the pressure-time histories of all tests
are represented satisfactorily by the optimised model.
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Figure C.6: Overpressure-time histories for selected BFETS Phase 2 experiments at monitor
points 2 (black lines) and 10 (grey lines), simulated with the standard model, overall optimised
model and experimental data.

C.3 The optimal parameter values

The optimal parameter values obtained from the different optimisation cases are shown
in Table C.1. The parameters are named as in Paper 2. The optimal values differ sig-
nificantly from each other. During the present doctoral study, it has been observed
that different parameter values give similar good optimisation results. This indicates
that one parameter value may be compensated by variations in other parameter val-
ues. Therefore, it is difficult to analyse the optimal parameter values to gain additional
information about the model.

Table C.1: Optimal parameter values for different optimisation cases for the standard model.

Optim. case Co ul Cql a α β Kq C f l

Category 1B 0.2717 k0−0.02∗ 0.5k0
∗ 0.5∗∗ 1.0684 -0,373 1.2303 8.6103

Category 3B 0.3609 k0 +0.02∗ 1.1758k0
∗ 0.5∗∗ 1.1304 -0,4 1.0∗∗ 6.4779

Overall optim. 0.4278 k0 +0.02∗ 1.0731k0
∗ 0.5∗∗ 0.9722 -0,4 1.6202 7.3738

* k0 denotes the respective nominal, unoptimised value and is scenario-dependent.

** Parameter excluded from optimisation due to small sensitivities, default value shown.

C.4 Including outliers in the optimisation

Figure C.7 presents results for the overall optimisation including all outliers. As the
outliers comprise here mainly severe under-predictions, the optimisation process is
pushed to increase those model predictions – resulting in an overall over-prediction.



C.5 Conclusion 63

Figures C.7 and C.2 illustrate that the predictive capability of the optimised model is
significantly worse when including the outliers in the optimisation process.
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Figure C.7: Maximum overpressure (upper panel) and maximum pressure impulse (lower
panel) simulated with the standard and the optimised model vs experimental data for all se-
lected experiments (left) and corresponding values of the geometric mean bias and variance
(right). Optimisation is conducted for all selected experiments together including outliers.

C.5 Conclusion

The model parameter optimisation was first conducted for selected gas explosion ex-
periments from campaigns within certain validation categories separately. For the final
application of the CFD tool, however, it is highly impractical if there exists an op-
timal version for each validation category. Therefore, the optimisation was second
conducted for all campaigns together. Both optimisation cases result in models with a
similar, satisfactory overall predictive capability, which is better than for the standard
model. Thus, a detailed analysis was conducted for the overall optimised model only.
Note that this analysis served exclusively checking the parameter optimisation; it is not
a model validation process that is crucial to ensure that a gas explosion simulation tool
can confidently be used for process safety.

For most of the campaigns, the predictions of the maximum overpressure and the
pressure impulse after the overall optimisation show less deviation from the experi-
mental data measured in terms of the geometric mean bias and variance. The analysis
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comprised tests that optimisation was conducted for as well as additional tests. For the
BFETS Phase 2 experiments, it was shown that the maximum overpressure at several
points across the module was predicted satisfactorily after optimisation. Furthermore,
the optimised model predicted pressure-time histories at relevant monitor points well
– showing that the optimisation in this study is not a blind fit of the maximum over-
pressure and pressure impulse, but that the characteristic physical mechanisms of gas
explosions are represented by the optimised model.

In total, it can be concluded that the optimisation approach can be applied to gas
explosion experiments across validation categories with satisfactory results.



Appendix D

Optimising the flame folding model

This section presents detailed results from analysing a sub-grid model for flame folding
around obstacles, cf. Section 5.4. In the following, the Gaps project is introduced, and
results from a sensitivity analysis and the optimisation processes are presented.

D.1 The Gaps project

The Gaps project investigated so-called separation distances between two congested
regions. If two regions of congestion are located close to each other, a gas explosion
starting in one region may result in the same severe overpressure that is observed in a
combined large congestion region. If, however, the two regions are separated by a suf-
ficiently large gap, the overpressure of the explosion may not exceed the overpressure
of a single region of congestion. To design safe process plants with congested regions,
it is crucial to know about the recommended minimum distance between the regions
that prevents enhanced overpressures in the case of an accidental explosion.

The Gaps project was performed within the framework of JIP MEASURE (Skjold
et al., 2017). The tests were conducted by GL Noble Denton at the Spadeadam Test
site in Cumbria, UK on behalf of Shell Projects and Technology. The tests involved
large scale congested rigs of arrays of pipes (as the ones in the MERGE experiments,
cf. Paper 3) comprising different geometric configurations with varying obstacle size,
pitch between obstacles, and rig dimensions. Tests were conducted for two separated
rigs as well as for single rigs. In all cases, the congested region(s) were located within
a large polythene enclosure which was filled with a methane- or propane-air mixture.
For the present optimisation case, only tests with a single rig (5 m × 5 m × 2.5 m)
have been included. The ignition was either at the edge of the congestion or in the gas
cloud outside the congestion (far field ignition). Table D.1 summarises the experimental
conditions.

It is important to note that the project was performed with sponsors, and thus most
of the experimental data is confidential.

D.2 Sensitivity analysis

Three parameters are connected to the flame folding model: Cgs, Ceq,lim, and C f l,o; see
Paper 3 for more details. First order local sensitivities s̃i, cf. Paper 1, are calculated
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Table D.1: Experimental configurations for selected tests of the Gaps project.

Module Geometric layout Fuel type Ignition position

Rig 7
16 × 16 × 8 pipes with 76 mm diameter
and 342 mm pitch

methane at the edge of the
congested region,
far field ignition

Rig 8
8 × 8 × 4 pipes with 168 mm diameter
and 655 mm pitch

propane

for the maximum overpressure and maximum pressure impulse at relevant monitor
points. Three out of the five selected monitor points for the Gaps project tests lie inside
the rig, one at the edge, and one outside of the congested region. The positioning of
the monitor points for the DNV GL 182 m3 vented enclosure tests are described in
Paper 3. Figures D.1 and D.2 show sensitivities at relevant monitor points for the DNV
GL 182 m3 vented enclosure tests with different vent opening sizes and for the selected
Gaps experiments, respectively. The active parameters for the DNV GL 182 m3 vented
enclosure tests are identified as Cgs and Ceq,lim. Although Ceq,lim is not active for the
Gaps experiments, both parameters are optimised for all tests.
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Figure D.1: First order local sensitivities of maximum overpressure (left) and maximum pres-
sure impulse (right) for DNV GL 182 m3 vented enclosure tests.
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Figure D.2: First order local sensitivities of maximum overpressure (left) and maximum pres-
sure impulse (right) for Gaps project tests.

D.3 Optimal parameter values and validation results

The optimisation is conducted for the maximum overpressure and pressure impulse at
the selected monitor points with respect to the active flame folding parameters. Sur-
rogates based on neural networks are generated on the basis of 150 Latin hypercube
sample points in the two-dimensional uncertainty space. Three optimisation cases are
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considered: one for each campaign separately, and one for both together. The corre-
sponding optimal parameter values, as well as the initial values, are shown in Table D.2.
Note that the uncertainty ranges are transformed to the range [−1,1].

Table D.2: Optimal parameter values for different optimisation cases.

Optimisation case Cgs Ceq,lim

DNV GL 182 m3 0.1988 -0.9711

Gaps project 0.1717 -0.9570

all tests together 0.1830 -0.9597

initial values -1.000 -0.7154

Due to the small differences in the optimal parameter values, the predictions of the
optimised models do hardly differ form each other. Figures D.3 and D.4 present valida-
tion results for the DNV GL 182 m3 vented enclosure tests and the Gaps project tests,
respectively. The dots represent the selected tests and relevant monitor points. Please
note that due to confidentiality in the Gaps project, the axis values in the scatter plot of
Figure D.4 are removed. Optimisation improves the predictions for both campaigns.
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Figure D.3: DNV GL 182 m3 vented enclosure experiments: maximum overpressure (upper
panel) and maximum pressure impulse (lower panel) simulated with the dev. model and op-
timised model for flame folding vs experimental data (left) and corresponding values of the
geometric mean bias and variance (right).



70 Optimising the flame folding model

Max. overpressure [Pa], experiments

M
a
x.

 o
ve

rp
re

ss
u

re
 [

P
a
],

 s
im

u
la

ti
o
n

s

100

Geometric mean bias [-], max. overpressure

100G
e
o
m

e
tr

ic
 m

e
a
n

 v
a
ri

a
n

ce
 [

-]

Max. pressure impulse [Pa*s], experiments

M
a
x.

 p
re

ss
u

re
 i

m
p

u
ls

e
 [

P
a
*s

],
 s

im
.

100

Geometric mean bias [-], max. pressure impulse

100G
e
o
m

e
tr

ic
 m

e
a
n

 v
a
ri

a
n

ce
 [

-] opt. flame folding

dev. model

factor of 1.3

factor of 2

zero variance

Figure D.4: Gaps project experiments: maximum overpressure (upper panel) and maximum
pressure impulse (lower panel) simulated with the dev. model and optimised model for flame
folding vs experimental data (left) and corresponding values of the geometric mean bias and
variance (right).



Bibliography

Al-Hassan, T. and Johnson, D. M. (1998). Gas explosions in large scale offshore mod-
ule geometries: overpressures, mitigation and repeatability. In Seventeenth Interna-
tional Conference on Offshore Mechanics and Arctic Engineering (OMAE), Lisbon.
2.3.3

Alexandrov, N. M., Dennis, J. E., Lewis, R. M., and Torczon, V. (1998). A trust-region
framework for managing the use of approximation models in optimization. Structural
optimization, 15(1):16–23. 4.2

Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman, P. A.
(2000). Optimization with variable-fidelity models applied to wing design. 38th
Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. 4.1

Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman, P. A.
(2001). Approximation and model management in aerodynamic optimization with
variable-fidelity models. Journal of Aircraft, 38(6):1093–1101. 4.1

Aster, R. C., Borchers, B., and Thurber, C. H. (2013). Parameter Estimation and
Inverse Problems (Second Edition). Academic Press, Boston. 2.4, 2.4.3, 2.6, 4.4

Aven, T. (2014). Risk, Surprises and Black Swans. Routledge, London. 6

Bauwens, C. R. (2010). Effect of ignition location, vent size, and obstacles on vented
explosion overpressures in propane-air mixtures. Combustion Science and Technol-
ogy, 182(11–12):1915–1932. 2.3.3, 2.3.5

Boto, F., Manjarres, D., and Landa-Torres, I. (2018). Metaheuristic optimization of nat-
ural resources in thermal cracking process. In Proceedings 6th International Con-
ference on Engineering Optimization (EngOpt 2018), pages 1409–1419. Springer
International Publishing. 4.1

Bradley, D., Lawes, M., Liu, K., and Mansour, M. S. (2013). Measurements and cor-
relations of turbulent burning velocities over wide ranges of fuels and elevated pres-
sures. Proceedings of the Combustion Institute, 34(1):1519–1526. 1.2, 1.3

Bradley, D., Lawes, M., and Mansour, M. S. (2011a). Measurement of turbulent burn-
ing velocities in implosions at high pressures. Proceedings of the Combustion Insti-
tute, 33(1):1269–1275. 1.2, 1.3

Bradley, D., Lawes, M., and Mansour, M. S. (2011b). The problems of the turbulent
burning velocity. Flow, Turbulence and Combustion, 87(2):191–204. 1.3



72 BIBLIOGRAPHY

Cant, R. S., Dawes, W. N., and Savill, A. M. (2004). Advanced CFD and modeling of
accidental explosions. Annual Review of Fluid Mechanics, 36(1):97–119. 1.1, 1.2,
1.4

Castelletti, A., Pianosi, F., Soncini-Sessa, R., and Antenucci, J. P. (2010). A multiob-
jective response surface approach for improved water quality planning in lakes and
reservoirs. Water Resources Research, 46(6). 16 pages. 1.4

Chao, J., Bauwens, C. R., and Dorofeev, S. B. (2011). An analysis of peak over-
pressures in vented gaseous explosions. Proceedings of the Combustion Institute,
33(2):2367–2374. 2.3.3

Chen, V. C. P., Tsui, K.-L., Barton, R. R., and Meckesheimer, M. (2006). A review
on design, modeling and applications of computer experiments. IIE Transactions,
38(4):273–291. 3.1, 3.2

Chen, W., Wiecek, M. M., and Zhang, J. (1999). Quality utility – a compromise pro-
gramming approach to robust design. Journal of Mechanical Design, 121:179–187.
2.5

Ciccarelli, G. and Dorofeev, S. (2008). Flame acceleration and transition to detonation
in ducts. Progress in Energy and Combustion Science, 34(4):499–550. 1.3

Coffey, C., Gibson, R., and Christon, M. (2019). Uncertainty in explosion risk assess-
ment. Accepted for Hazards29 conference in Birmingham, UK, 2019. 6

Coleman, T. and Li, Y. (1996a). A reflective newton method for minimizing a quadratic
function subject to bounds on some of the variables. SIAM Journal on Optimization,
6(4):1040–1058. B, B.2

Coleman, T. F. and Li, Y. (1996b). An interior trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on Optimization, 6:418–445. 1.5, B,
B.2, B.2, B.2

Cordero, R. R., Seckmeyer, G., and Labbe, F. (2007). Evaluating the uncertainties of
data rendered by computational models. Metrologia, 44(3):L23–L30. 6

Davis, S. D., Mhadeshwar, A. B., Vlachos, D. G., and Wang, H. (2004). A new ap-
proach to response surface development for detailed gas-phase and surface reaction
kinetic model optimization. International Journal of Chemical Kinetics, 36:94–106.
3.2, 4.1

Duijm, N. J. and Carissimo, B. (2002). Evaluation methodologies for dense gas dis-
persion models. In Fingas, M., editor, The handbook of hazardous materials spills
technology. McGraw-Hill. 2.4.2

Edeling, W., Cinnella, P., Dwight, R., and Bijl, H. (2014). Bayesian estimates of pa-
rameter variability in the k–ε turbulence model. Journal of Computational Physics,
258:73–94. 1.4



BIBLIOGRAPHY 73

Evans, J. A., Exon, R., and Johnson, D. M. (1999). The Repeatability of Large
Scale Explosion Experiments. Offshore technology report. Great Britain, Health and
Safety Executive. Available at www.hse.gov.uk/research/otopdf/1999/oto99042.pdf,
accessed 04 April 2019. 2.3.3, 2.3.5

Feyen, L., Vrugt, J. A., Nualláin, B. O., van der Knijff, J., and De Roo, A. (2007).
Parameter optimisation and uncertainty assessment for large-scale streamflow simu-
lation with the lisflood model. Journal of Hydrology, 332(3):276–289. 1.4

Foisselon, P., Hansen, O. R., and van Wingerden, K. (1998). Detailed analysis of
FLACS performance in comparison to full-scale experiments. CMR report no. CMR-
98-F30058, Chr. Michelsen Research, Bergen, Norway. 2.3.3

Forrester, A. I. J., Bressloff, N. W., and Keane, A. J. (2006). Optimization using surro-
gate models and partially converged computational fluid dynamics simulations. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 462(2071):2177–2204. 1.4

Forrester, A. I. J. and Keane, A. J. (2009). Recent advances in surrogate-based opti-
mization. Progress in Aerospace Sciences, 45(1–3):50–79. 3, 3.1, 4.2

Gexcon AS (2019). FLACS v10.9 User’s Manual. Technical report, Gexcon AS,
Bergen, Norway. Information at www.flacs.com. 1.1, 2.3.4

Goel, T., Haftka, R. T., Shyy, W., and Queipo, N. V. (2007). Ensemble of surrogates.
Structural and Multidisciplinary Optimization, 33(3):199–216. 3.1

Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Dai, Y., Ye, A., and Miao, C. (2015).
Multi-objective parameter optimization of common land model using adaptive sur-
rogate modeling. Hydrology and Earth System Sciences, 19(5):2409–2425. 3.1, 4.1

Gorissen, D. (2010). Grid-enabled adaptive surrogate modeling for computer aided
engineering. PhD thesis, Ghent University (Belgium). AAI3416412. 3.1, 3.2

Guillas, S., Glover, N., and Malki-Epshtein, L. (2014). Bayesian calibration of the con-
stants of the k–ε turbulence model for a CFD model of street canyon flow. Computer
Methods in Applied Mechanics and Engineering, 279:536–553. 1.4

Guitton, A. and Symes, W. W. (2003). Robust inversion of seismic data using the huber
norm. Geophysics, 68(4):1310–1319. 2.6

Hanna, S. R., Chang, J. C., and Strimaitis, D. G. (1993a). Hazardous gas model eval-
uation with field observations. Atmospheric Environment. Part A. General Topics,
27(15):2265–2285. 2.4.2

Hanna, S. R., Strimaitis, D. G., and Chang, J. C. (1993b). Hazard response modeling
uncertainty (a quantitative method). Volume 2. Evaluation of commonly used haz-
ardous gas dispersion models. Technical report. 2.4.2

Hisken, H., Enstad, G., Middha, P., and van Wingerden, K. (2015). Investigation of
concentration effects on the flame acceleration in vented channels. Journal of Loss
Prevention in the Process Industries, 36:447–459. 2.3.4



74 BIBLIOGRAPHY

Hjertager, B. H. (1984). Influence of turbulence on gas explosions. Journal of Haz-
ardous Materials, 9(3):315–346. 1.1

Hjertager, B. H. (1986). Three-dimensional modeling of flow, heat transfer, and com-
bustion. In Handbook of Heat and Mass Transfer, chapter 41, pages 1303–1350.
Gulf Publishing, Houston. 1.1

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366. 3.2

Huang, N. and Li, Z. (2018). Hydraulic design and optimization of a lng hydraulic
turbine runner. In Proceedings 6th International Conference on Engineering Opti-
mization (EngOpt 2018), pages 115–121. Springer International Publishing. 1.4

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathe-
matical Statistics, 35(1):73–101. 2.6

Iuliano, E. (2016). Adaptive sampling strategies for surrogate-based aerodynamic op-
timization. In Iuliano, E. and Pérez, E. A., editors, Application of Surrogate-based
Global Optimization to Aerodynamic Design, pages 25–46. Springer International
Publishing, Cham. 4.2

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492. 4.2

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models.
Journal of the Royal Statistical Society B, 63:425–464. 1.4

Koski, J. and Silvennoinen, R. (1987). Norm methods and partial weighting in multi-
criterion optimization of structures. International Journl for Numererical Methods
in Engineering, 24:1101–1121. 2.5

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural Networks, 6(6):861–867. 3.2

Lind, C. D. and Whitson, J. C. (1977). Explosion hazards associated with spills of large
quantities of hazardous materials: Phase 2. Technical report. Report No. CG-D-85-
77. 2.3.4

Loshchilov, I., Schoenauer, M., and Sebag, M. (2010). Comparison-based optimizers
need comparison-based surrogates. In Proceedings of the 11th International Con-
ference on Parallel Problem Solving from Nature: Part I, PPSN’10, pages 364–373,
Berlin, Heidelberg. Springer-Verlag. 4.1

Marler, R. T. and Arora, J. S. (2004). Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26:369–395. 2.5

Marler, R. T. and Arora, J. S. (2005). Function-transformation methods for multi-
objective optimization. Engineering Optimization, 37(6):551–570. 2.5



BIBLIOGRAPHY 75

Marler, R. T. and Arora, J. S. (2010). The weighted sum method for multi-objective op-
timization: new insights. Structural and Multidisciplinary Optimization, 41(6):853–
862. 2.5

Mazet, V., Carteret, C., Brie, D., Idier, J., and Humbert, B. (2005). Background removal
from spectra by designing and minimising a non-quadratic cost function. Chemomet-
rics and Intelligent Laboratory Systems, 76(2):121–133. 2.6

McGrattan, K. and Toman, B. (2011). Quantifying the predictive uncertainty of com-
plex numerical models. Metrologia, 48(3):173–180. 6

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A comparison of three
methods for selecting values of input variables in the analysis of output from a com-
puter code. Technometrics, 21(2):239–245. A

Mercx, W. P. M. (1994). Modelling and Experimental Research into Gas Explosions.
Overall final report for the MERGE project. CEC contract STEP-CT-0111 (SMA).
2.3.3

Model Evaluation Group Gas Explosions (MEGGE) (1996). Gas explosion model
evaluation protocol. Technical report, version 1, EuropeanCommunities, Directorate-
General XII, Science Research and Development. 2.4.2

Moré, J. J. and Sorensen, D. C. (1983). Computing a trust region step. SIAM Journal
on Scientific and Statistical Computing, 4:553–572. B.1

Morgut, M. and Nobile, E. (2012). Numerical predictions of cavitating flow around
model scale propellers by CFD and advanced model calibration. International Jour-
nal of Rotating Machinery. 11 pages. 1.4

Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., and Meyerson, J. E. (2010).
Considerations for parameter optimization and sensitivity in climate models. Pro-
ceedings of the National Academy of Sciences, 107(50):21349–21354. 4.1

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York,
2nd edition. 4.2, B.1, B.1, B.1

Pan, F. and Zhu, P. (2011). Design optimisation of vehicle roof structures: benefits of
using multiple surrogates. International Journal of Crashworthiness, 16(1):85–95.
3.1

Pan, I., Babaei, M., Korre, A., and Durucan, S. (2014). Artificial neural network based
surrogate modelling for multi- objective optimisation of geological CO2 storage op-
erations. Energy Procedia, 63:3483–3491. 3.2

Patankar, S. V. and Spalding, D. B. (1974). A calculation procedure for the transient
and steady-state behavior of shell-and-tube heat exchangers. In Afgan, N. F. and
Schlunder, E. U., editors, Heat Exchangers: Design and Theory Sourcebook, pages
155–176. McGraw-Hill, New York. 1.1



76 BIBLIOGRAPHY

Pilát, M. and Neruda, R. (2013). Surrogate model selection for evolutionary multiob-
jective optimization. In 2013 IEEE Congress on Evolutionary Computation, pages
1860–1867. 4.1

Poethke, B., Völker, S., and Vogeler, K. (2018). Aerodynamic optimization of tur-
bine airfoils using multi-fidelity surrogate models. In Proceedings 6th International
Conference on Engineering Optimization (EngOpt 2018), pages 556–568. Springer
International Publishing. 4.1

Popat, N. R., Catlin, C. A., Arntzen, B. J., Lindstedt, R. P., Hjertager, B. H., Solberg,
T., Saeter, O., and Van den Berg, A. C. (1996). Investigations to improve and assess
the accuracy of computational fluid dynamic based explosion models. Journal of
Hazardous Materials, 45(1):1–25. 2.3.3

Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K.
(2005). Surrogate-based analysis and optimization. Progress in aerospace sciences,
41(1):1–28. 1.4, 3, 3.1, 4.1, 4.2

Razavi, S., Tolson, B. A., and Burn, D. H. (2012). Review of surrogate modeling in
water resources. Water Resour. Res., 48,W7401. 3.1

Rieder, A. (2003). Keine Probleme mit Inversen Problemen. Vieweg, Wiesbaden. 4.4

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., and Tarantola, S. (2008). Global Sensitivity Analysis. The Primer. John Wiley &
Sons, Ltd. 2.1

Sant Anna, H. R., Barreto, A. G., Tavares, F. W., and de Souza, M. B. (2017). Ma-
chine learning model and optimization of a PSA unit for methane-nitrogen separa-
tion. Computers & Chemical Engineering, 104:377–391. 3.2

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36(8):1627–1639. 5.3.1,
C.1

Sha, W. T., Yang, C. I., Kao, T. T., and Cho, S. M. (1982). Multidimensional numerical
modeling of heat exchangers. Journal of Heat Transfer, 104(3):417–425. 1.1

Simpson, T., Toropov, V., Balabanov, V., and Viana, F. (2008). Design and analy-
sis of computer experiments in multidisciplinary design optimization: A review of
how far we have come – or not. In 12th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Multidisciplinary Analysis Optimization Conferences,
Victoria, British Columbia Canada. 22 pages. 3.1

Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F. (2001a). Kriging models
for global approximation in simulation-based multidisciplinary design optimization.
AIAA Journal, 39(12):2233–2241. 3.1

Simpson, T. W., Poplinski, J. D., Koch, N. P., and Allen, J. K. (2001b). Metamodels
for computer-based engineering design: Survey and recommendations. Engineering
with Computers, 17(2):129–150. 3.1, 3.2



77

Skjold, T., Hisken, H., Atanga, G., Narasimhamurthy, V. D., Lakshmipathy, S., Storvik,
I. E., Pesch, L., and Braatz, A.-L. (2017). Modelling Escalating Accident Scenarios
and the Use of Risk-reducing technology for Explosion safety (MEASURE), final
report. Confidential. Technical report, Gexcon AS, Bergen, Norway. 2.3.4, D.1

Skjold, T., Pedersen, H. H., Bernard, L., Ichard, M., Middha, P., Narasimhamurthy,
V. D., Landvik, T., Lea, T., and Pesch, L. (2013). A matter of life and death: validat-
ing, qualifying and documenting models for simulating flow-related accident scenar-
ios in the process industry. Chemical Engineering Transactions, 31:187–192. 2.3,
2.3.3

Skjold, T., Pedersen, H. H., Narasimhamurthy, V. D., Lakshmipathy, S., Pesch, L.,
Atanga, G. F., Folusiak, M., Bernard, L., Siccama, D., and Storvik, I. E. (2014).
Pragmatic modelling of industrial explosions in complex geometries: review of the
state-of-the-art and prospects for the future. In Borisov, A. A. and Frolov, S. M.,
editors, Zel’dovich Memorial: Accomplishments in the combustion Science in the
last decade, volume 1, pages 70–74. Torus Press, Moscow. 1.1

Skjold, T., Souprayen, C., and Dorofeev, S. (2018). Fires and explosions. Progress in
Energy and Combustion Science, 64:2–3. 1.1

The MathWorks, Inc. (2015). MATLAB 2015b, Natick. 1.5

The MathWorks Inc. (2017). MATLAB Optimization Toolbox: User’s Guide. The
MathWorks, Natick, MA. Available at http://se.mathworks.com/help/pdf_ doc/opti-
m/optim_ tb.pdf, accessed 04 April 2019. 4.3, B

Tomlin, G., Johnson, D. M., Cronin, P., Phylaktou, H. N., and Andrews, G. E. (2015).
The effect of vent size and congestion in large-scale vented natural gas/air explosions.
Journal of Loss Prevention in the Process Industries, 35:169–181. 2.3.3

Viana, F. A. C. (2011). Multiple surrogates for prediction and optimization. PhD thesis,
University of Florida. 3.1

Wang, G. G. and Shan, S. (2006). Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design, 129(4):370–380.
3.1

Warnatz, J., Maas, U., and Dibble, R. W. (1996). Combustion: physical and chemical
fundamentals, modelling and simulation, experiments, pollutant formation. Springer,
Berlin. 1.1

Zhang, X., Srinivasan, R., and Van Liew, M. (2009). Approximating SWAT model
using artificial neural network and support vector machine. Journal of the American
Water Resources Association (JAWRA), 45(2):460–474. 3.1



78 Papers



Papers

This chapter contains the four papers of this dissertation.



80 Papers



Paper 1

Response Surfaces for Advanced Consequence Models: Two Ap-
proaches

Braatz, A.-L. & Hisken, H.

Journal of Loss Prevention in the Process Industries, 49, Part B: 683–699. (2017).



82 Papers



83

Response surfaces for advanced consequence models: Two
approaches

Anna-Lena Braatz a, b, *, Helene Hisken a, c

a Gexcon AS, R&D, P.O. Box 6015, 5892 Bergen, Norway
b Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
c Department of Physics and Technology, University of Bergen, Allgaten 55, 5007 Bergen, Norway

a r t i c l e i n f o

Article history:
Received 28 October 2016
Received in revised form
19 January 2017
Accepted 12 February 2017
Available online 16 February 2017

Keywords:
Response surfaces
Neural networks
Sensitivities
CFD modelling
Gas explosions
Optimisation

a b s t r a c t

This paper reports the approximation quality of response surfaces as metamodels for key results from
computational fluid dynamics (CFD) gas explosion simulations. The response surfaces constitute smooth
approximations to variations in the CFD output with respect to perturbing empirically determined sub-
grid model parameters. Two response surface approaches are tested e polynomial response surfaces
(PRSs) created from Taylor polynomials via finite differences of the model output, and response surfaces
based on neural networks (RSNNs) generated on the basis of Latin hypercube samplings. First, results for
selected examples of medium- and large-scale gas explosions are presented in detail. It was found that in
order to achieve the same approximation quality with RSNNs as with PRSs, a higher number of simu-
lations may be required. However, in contrast to the polynomial approach, the number of simulations
required for an RSNN can be adapted to the non-linearity of the model output. For the scenarios for
which a PRS approximates the model output poorly, an RSNN built from an increased number of sim-
ulations is found to yield a significantly more reliable approximation. Second, the paper investigates the
general applicability of the RSNNs for industrial-scale gas explosion simulations. Based on the results
from the detailed analysis, the extended analysis is only conducted for the RSNN approach, including 37
experiments from 5 experimental campaigns commonly used for model validation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Accidental gas explosions pose a severe hazard in industry e 11
of the 20 largest accidents in the hydrocarbon industries from 1972
to 2013 involved gas and vapour cloud explosions (Marsh, 2014).
The process industries undertake considerable efforts to manage
the risk of accidental explosions, and consequence analysis of ac-
cident scenarios is part of the overall risk analysis (Aven and
Vinnem, 2007). To predict the consequences of an explosion, a
computational fluid dynamics (CFD) simulation tool that solves the
time-dependent averaged Navier-Stokes equations for compress-
ible fluid flow is often used. Due to limitations in practical simu-
lation time and memory storage, the grid resolution needs to be
significantly larger than the scales on which chemical reactions
interact with the flow. Turbulence, as well as other governing
physical phenomena on scales smaller than grid cell size are

inherently under-resolved. The success of CFD tools for estimating
explosion loads in large-scale geometries consequently relies on
the implementation of sub-grid models to ensure representative
solutions (Skjold et al., 2014). Sub-gridmodels are less fundamental
than the Navier-Stokes equations and contain model parameters
estimated through theoretical or, more frequently, experimental
studies. Consequently, uncertainty is associated with the values of
the parameters.

The output of a CFD tool, referred to as the model response, can
be seen as a function of a given parameter set, which may consist of
user-defined input or model parameters. Even for coarse grids, CFD
simulations typically require a (single-core) CPU time ranging from
a few minutes up to several hours. Hence, model response evalu-
ation via direct simulation is time consuming. For some applica-
tions it is therefore convenient not to work with the model directly,
but to approximate the model response by an explicit function of
the parameter set, called a response surface. Evaluation of such a
function is cheap (order of seconds or less) and if appropriate,
sufficiently accurate.

In engineering in general, response surfaces as metamodels, i.e.
* Corresponding author. Gexcon AS, R&D, P.O. Box 6015, 5892 Bergen, Norway.
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models of models, find application in various fields like optimisa-
tion, uncertainty quantification, reliability analysis and model-
based prediction (Rutherford et al., 2006). The response surface
approaches comprise amongst others Gaussian processes and
kriging, radial basis functions, non-parametric regression, multi-
variate adaptive regression splines, polynomial response surfaces
and neural networks (Rutherford et al., 2006; Simpson et al., 2004).
Response surface approaches are widely used in the field of risk
analysis. Response surfaces may constitute the functional rela-
tionship between the size of a flammable gas cloud and the most
important dependent user-defined inputs, e.g. leak rate or wind
direction. In risk analysis, when performing Monte Carlo simula-
tions with millions of scenarios, the use of a response surface
instead of the model response obtained from simulations directly
significantly reduces computational cost (Huser and Kvernvold,
2000; Ferreira and Vianna, 2014). Vianna and Cant (2012) employ
response surfaces in a conceptual engineering design phase for a
fast evaluation of the maximum explosion pressure as function of
explosive cloud size and ignition location.

The present study constitutes the starting point for optimisation
of sub-gridmodel parameters to improve the predictive capabilities
of the CFD tool FLACS for simulating gas explosions (Gexcon AS,
2015). The optimisation problem can be formulated as a least-
squares problem to find the best fit between certain model re-
sponses and corresponding experimental values. Optimising this
problem directly requires numerous CFD simulations. In contrast, if
the model responses have been replaced by response surfaces, no
simulations are needed during optimisation, accelerating the
evaluation of the least-squares function and hence the optimisation
process significantly (Braatz et al., 2016).

In this work, response surfaces to model responses of gas ex-
plosions with respect to empirically determined sub-grid model
parameters are generated and validated against the CFD model.
Sensitivity analysis is applied to determine which model parame-
ters have the greatest influence on the model output (Saltelli et al.,
2008). This allows for reducing the amount of parameters the
response surfaces depend on. Two response surface approaches are
tested e (i) polynomial response surfaces (PRSs) created from
Taylor polynomials via finite differences of the model output and
(ii) response surfaces based on artificial neural networks (RSNNs)
generated on the basis of Latin hypercube samplings. The analysis
of the resulting approximations of both approaches is twofold. First,
the response surfaces are validated in detail against two experi-
mental campaigns with medium- and large-scale geometries e the
projects Modelling and Experimental Research into Gas Explosions
(MERGE) (Mercx, 1994; Popat et al., 1996), and Blast and Fire En-
gineering for Topside Structures (BFETS), Phase 3A (Al-Hassan and
Johnson, 1998; Evans et al., 1999; Foisselon et al., 1998). Results are
evaluated with respect to approximation quality and computa-
tional costs, i.e. the amount of simulations required to generate the
response surfaces. Second, an extended analysis is conducted for
the RSNN approach, as the approximation quality of the RSNNs is
found to outperform the one of the PRSs in the detailed analysis.
The general applicability of the RSNNs for industrial-scale explo-
sions is investigated by validation for 37 experiments from 5
experimental campaigns providing highly relevant validation data
for premixed combustion modelling.

It is important to note that in the present study, response sur-
faces are generated for parameters that affect the way physical
phenomena are represented by the model. To our knowledge,
response surfaces for CFD output as a function of model parameter
perturbations have not yet been studied for industrial-scale gas
explosions.

The paper is structured as follows. In Section 2, key sub-grid
model parameters are introduced. In Section 3, sensitivity

analysis, the polynomial response surface (PRS) approach and
response surfaces based on neural networks (RSNN) are formu-
lated. In Section 4, the experimental campaigns used to validate the
response surfaces are described. Validation results for the detailed
and extended analysis are presented in Section 5. Finally,
concluding remarks are given in Section 6.

2. Model system and parameters

2.1. General overview

The CFD tool FLACS (Gexcon AS, 2015) solves the three-
dimensional Favre-averaged conservation equations for mass,
momentum, enthalpy h, mass-fraction of fuel Yf , mixture-fraction x,
turbulent kinetic energy k, and rate of dissipation of turbulent ki-
netic energy ε on a structured Cartesian grid. Turbulence is
modelled by the ‘standard’ k� εmodel for turbulence (Launder and
Spalding, 1974). The equations are closed by invoking the ideal gas
equation of state. Boundary layers are not resolved, instead wall-
functions are used to compute turbulence production and drag
forces for objects that are on-grid, i.e. larger than the size of a
computational cell. Each three-dimensional grid cell represents a
control volume with volume Vcv and surface area Acv. Geometry is
represented on the computational grid using the porosity/distrib-
uted resistance (PDR) concept (Patankar and Spalding, 1974; Sha
and Launder, 1979; Sha et al., 1982; Hjertager, 1986). A volume
porosity bv, denoting the ratio of open volume to the total volume of
each computational cell, is computed prior to the simulation.
Similarly, the area porosity bj is defined as the ratio of the projected
unoccupied area between two neighbouring cell centres to the total
area of the respective control volume face in the jth direction. In the
following, bj is excluded from the Einstein summation convention
in the partial differential equations.

Using the finite volume approach, the conservation equation for
a general variable F (representing either 1, uj, h, k, ε, Yf or x) is
integrated over the porous part of the control volume. The flux
terms in the conservation equation for F are weighted with the
area porosity bj. The general equation on integral form reads

Z
Vcv

v

vt
ðbvrFÞdV þ

Z
Acv

nj
�
bjrFuj

�
dA

¼
Z
Acv

nj

 
bjGF

vF
vxj

!
þ
Z
Vcv

bvðSF þ RFÞdV ; (1)

where r is the fluid density, uj is the fluid velocity in the jth di-
rection, nj is the vector normal to the control volume surface
pointing outwards in the jth direction, GF is the effective turbu-
lence diffusion coefficient, SF is the source term for F, and RF
represents additional resistance, additional mixing and/or addi-
tional heat transfer caused by solid obstructions in the flow. Sub-
grid models are applied for modelling the terms SF and RF (cf.
Hjertager, 1982, 1986).

Table 1 summarises the sub-grid model parameters investigated
in the present study. The parameters are related to turbulence
generation and premixed combustion. The table includes brief
descriptions of the sub-grid model process, references to the sub-
grid models associated with the parameters and the parameters'
uncertainty intervals within which the parameter values may vary.
A detailed description of the parameters and the corresponding
sub-grid models can be found in Appendix A. The uncertainty in-
tervals of the parameters are based both on previous experience
and an extensive literature review. Although the sub-grid model
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parameters represent specific physical processes or chemical
properties, the determination of their uncertainty ranges is not
straightforward. As physical phenomena involved in industrial-
scale gas explosions are inherently under-resolved in typical CFD
simulations (Skjold et al., 2014), sub-grid models often represent a
lumped effect of many un-resolved processes. However, the un-
certainty intervals in Table 1 are assumed appropriate for investi-
gating the applicability of the response surface approaches.

The model system employed in the present work is a develop-
ment version of the standard release of FLACS v10.4r1 (Gexcon AS,
2015), in which the nominal values of the studied parameters are
modified, i.e. set to the centre of the respective uncertainty ranges,
to facilitate sensitivity analysis and response surface generation.
Furthermore, some of the sub-grid model settings in the present
version differ from those in the standard release FLACS v10.4r1.

3. Methods

3.1. Parameter transformation and sensitivity analysis

To assure that different scales of model parameter values do not
affect the approximation quality of the response surfaces, it is
convenient to transform each uncertainty range to a reference in-
terval. Then, the transformed parameter xi denotes the deviation of
the model parameter ki from its nominal, unperturbed value ki;0,
with respect to its uncertainty range ½ki;0 � Ri; ki;0 þ R�i. In the
present study, the linear transformation

xi ¼
ki � ki;0

Ri
; i ¼ 1;…;n (2)

is employed (Box and Draper, 2006). According to Equation (2), the
parameter xi is 0 if the corresponding parameter ki is unperturbed,
and xi equals �1 and 1 at the lower or upper boundary of the un-
certainty range, respectively. The parameter set of all vectors
x ¼ ðx1; x2;…; xnÞ therefore forms an uncertainty hypercube in n
dimensions, where each side is of length 2.

Sensitivity analysis investigates the effect of perturbing input
parameters on the output of a model (Tur�anyi, 1997). Knowing this
effect is especially important when parameters are poorly defined
or feature a large range of variability (Gant et al., 2013). Performing
sensitivity analysis is useful for any system for which the number of
parameters involved, combined with the complex behaviour of the
system, hinders the understanding of how certain parameters in-
fluence the results of interest. The Navier-Stokes equations coupled
with sub-grid models as considered in Section 2 constitute such a
complex system. Local sensitivity analysis quantifies the influence a
single input parameter has on a model response. The local, relative,
first order sensitivity si of a model response z to a parameter ki can

be expressed as

si ¼
vlnðzÞ
vlnðkiÞ

����
ki;0

¼ vz

vki

����
ki;0

ki;0
z
�
ki;0
� ; i ¼ 1;…;n;

where n is the total number of parameters. As the local relative
sensitivities si do not account for the different uncertainty ranges,
in the present study, modified sensitivities ~si are calculated via

~si ¼ si
Ri
ki;0

¼ vz

vxi

����
0

1
zðx ¼ 0Þ; i ¼ 1;…;n: (3)

If ~si exceeds a threshold value, which is set depending on the
situation, the corresponding parameter ki is called active in the
process that generates z. When generating response surfaces, tak-
ing only active parameters into account reduces the dimensionality
of the parameter space and hence the amount of simulations
required.

3.2. Polynomial response surface

The polynomial response surface (PRS) approach is inspired by
the work presented by Davis et al. (2004). They employed poly-
nomial response surfaces in the development and optimisation of
gas-phase and surface reaction kinetic models in chemical engi-
neering. The model response, understood as a function of a set of
model parameters, can bewritten in terms of its multivariate Taylor
series around the nominal values. Truncating after terms of a
certain order and approximating derivatives with central finite
differences leads to the polynomial approximation of the model
response applied in the present study.

The truncated Taylor series of the model response z, called the
Taylor polynomial h, is an explicit function in the parameters x and
reads e.g. for third order

h xð Þ ¼ zð0Þ þ
Xn
i¼1

vz

vxi

�����
0

xi þ
1
2

Xn
i¼1

v2z
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�����
0
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þ
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i¼1
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j¼1
j> i

v2z

vxivxj

��������
0

xixj þ
1
6

Xn
i¼1

v3z
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�����
0

x3i

þ1
2

Xn
i¼1

Xn
j¼1
jsi

v3z

vx2i vxj

��������
0

x2i xj þ
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i¼1

Xn
j¼1
j> i

Xn
k¼1
k> j

v3z

vxivxjvxk

��������
0

xixjxk:

(4)

The coefficients are denoted by a0; ai; ai;j and ai;j;k, respectively. If
the curvature of h is too large to be described by Equation (4), a

Table 1
Model parameters investigated for model responses of gas explosion simulations.

Parameter Description of the model process Reference Uncertainty range

Co Turbulence production from sub-grid objects Eq. (A.4) ½0:25;1:0�
ul Laminar burning velocity Appendix A.3 ½0:905k0;1:095k0�a

Cql Quasi-laminar burning velocity Eq. (A.6) ½0:5k0;1:5k0�a
a Eq. (A.6) ½0:25;0:75�
a Turbulent burning velocity Eq. (A.7) ½0:58;1:31�
b Eq. (A.7) ½�0:39;�0:23�
Kq Quenching limit of turbulent burning velocity Appendix A.5 ½0:5;2:0�
Cfl Flame folding due to sub-grid geometry Eq. (A.8) ½3:0;12:0�
a k0 denotes the respective nominal, unperturbed value and is scenario dependent.
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response surface based on the logarithmic model response lnðzÞ
may be more suitable (Davis et al., 2004).

The zeroth order coefficient in Equation (4) is the nominal
response value a0 ¼ zð0Þ. Using central finite differences, the first
order coefficients may be expressed as

ai ¼
z
�
xðþtÞi

�� z
�
xð�tÞi

�
2t

; i ¼ 1;…;n; (5)

where xð±tÞi is a vector of parameters, whose elements are all
0 except for the ith parameter, which is perturbed by ±t. Approx-
imations to higher order coefficients can be found by applying
central finite differences (several times) to the first order derivative
approximations from Equation (5). Hence, calculating the second
order coefficients and the third order coefficients, ai;i;i and ai;i;j,
requires additional simulations for perturbed parameters
xð±t;±tÞi;j and xð±2tÞi, respectively, using analogous notation. To
keep the computational costs low, the third order coefficients ai;j;k
with isjsksi, which require a larger amount of additional sim-
ulations, are treated separately later. In total, computing the co-
efficients of a polynomial up to partial third order, including ai;i;i
and ai;i;j, requires 2n2 þ 2nþ 1 simulations for n parameters. Fig. 1
illustrates the case n ¼ 2 in which the model response has to be
simulated for a set of 13 parameter values.

In order to include higher order dependencies between pa-
rameters, a partial fourth order polynomial can be constructed.

With an additional amount of
	
n
3



23 simulations the third order

coefficients ai;j;k with isjsksi, and the fourth order coefficients
ai;i;i;i, ai;i;j;j and ai;i;j;k, with analogous notation as before, are deter-
mined via central finite differences. Polynomials of an order higher
than partial fourth are not considered in this study, since higher
order terms are likely to be of the same magnitude as the errors
made by applying central finite differences, resulting in no signif-
icant increase of accuracy.

3.3. Neural networks

Artificial neural networks, commonly called neural networks
(NNs), are computational models inspired by the architecture of the
human brain and the way it performs tasks. Consequently, learning
processes, also called training, in NNs are loosely based on how a
nervous system develops to adapt to its surrounding environment
(Haykin, 1998).

A variety of designs of an NN and of learning algorithms find
application in such diverse fields as model building, time series
analysis, signal processing, pattern recognition and classification
and control (Haykin, 1999; Hudson and Postma, 1995). However,

the focus of this work lies on the ability of an NN to represent a non-
linear function from a set of inputs and desired responses (targets).
For this purpose, most commonly, the multilayer feed-forward
network with supervised learning, also referred to as multilayer
perceptron (MLP), is chosen (Haupt et al., 2008).

3.3.1. General overview
A multilayer perceptron is often presented as a set of

information-processing units, called nodes or neurons, which are
arranged in an input layer, one or more hidden layers and a final
output layer. The nodes are connected through directed lines
feeding signals from input to output. The lines hold numerical
weights symbolising each connection's strength. The structure of
an MLP with n input nodes, one hidden layer with m nodes and k
output nodes is shown in Fig. 2. To illustrate the basic operation of
an MLP, we consider one specific output node as shown in Fig. 3.
According to Haupt et al. (2008), each output node can be described
mathematically by an explicit function of the signals xi of input
nodes and the weights wi;j and vj of the connection of input node i
and hidden layer node j and the hidden layer node jwith the output
node, respectively. The so called transfer functions f and j evalu-
ated at weighted linear combination of signals build the core of the
function, which reads

yðx;W;vÞ ¼ j

0
@Xm

j¼1

vjf

 Xn
i¼1

wi;jxi � bj

!
� b

1
A:

Adding the biases bj and b has the effect of increasing or lowering
the net input to the transfer function (Haykin, 1998). A popular
choice for f is a symmetric sigmoid function, e.g. the logistic
function fðxÞ ¼ 1

ð1þe�axÞ with slope parameter a2ℝ, or the hyper-

bolic tangent function fðxÞ ¼ tanhðxÞ, whereas j commonly is
chosen as identity function. Training constitutes the process, where
weights and biases are adjusted in order to minimise the difference
of output of the network for given input data and the provided
target values (Masters, 1993). In an MLP, training usually is per-
formed with a back-propagation algorithm.

The performance of the NN, i.e. generalisation beyond data used
in the generation process, can be improved by partitioning the set
of known input-target pairs for learning into three sets e training,
validation and test set. Training iterations are performed on the
training set. Between each iteration, the generalisation ability is
measured using the validation set. To avoid overfitting, this set may
additionally be used to stop the training as soon as generalisation
stops improving (Haykin, 1998). Finally, the performance of the
generated network is measured independently on the test set.

Fig. 1. Parameter set to be simulated to generate a partial third order polynomial
response surface for n ¼ 2.

Fig. 2. Structure of a neural network with n input nodes, one hidden layer with m
nodes and k output nodes.

A.-L. Braatz, H. Hisken / Journal of Loss Prevention in the Process Industries 49 (2017) 683e699686



87

Well-developed recommendations for how to generate an NNmost
suitable for a respective application do not exist. Validation of
generated networks may be used to identify a suitable structure of
the NN with an appropriate amount of hidden layers and nodes,
connectivity of nodes, transfer functions and training algorithms.

3.3.2. Neural network generation in this study
In the present study, multilayer perceptrons are applied to

approximate the model response to model parameter perturba-
tions. The output of an MLP is written in terms of a non-linear,
smooth function which is in the following referred to as the
response surface based on a neural network (RSNN). The MLPs are
constructed with the Neural Network Toolbox ™ from MATLAB®

(2015b, The MathWorks Inc.). They are generated on the basis of a
maximin Latin hypercube sampling (McKay et al., 1979) of the
transformed uncertainty space and the corresponding model re-
sponses. The advantage of the maximin Latin hypercube sampling,
for which the minimum distance between points is maximised, is
that no value of a parameter is repeated. Due to the transformation
of uncertainty ranges, further normalising of the input data
(Haykin, 1999) is not necessary. The MLPs are structured in one
input layer with 5 or 6 nodes, representing the active parameters,
one hidden layer with 10 nodes and one node in the output layer,
representing the model response. The logistic function is chosen as
transfer function. Back-propagation with a Levenberg-Marquardt
optimisation routine is used as training algorithm, as suggested
by MATLAB's Neural Network Toolbox User's Guide (Beale et al.,
2015). The set of known input-target pairs for learning is divided
into training, validation and test sets with 70%, 15% and 15% of the
data, respectively. As some of the experiments let assume that the
selected model responses are highly non-linear functions of the
parameters, 20 hidden layer nodes are used in the overall analysis
and the data is divided into 80%, 10% and 10%.

4. Experiments

In the present study, the response surfaces described in the
previous section are applied to gas explosion experiments with
homogeneous fuel-air clouds, with near-stoichiometric mixtures,
where either methane, propane or natural gas was the flammable
component. The experiments are part of Gexcon's model validation
database, organised in accordance with the model validation

methodology presented by Skjold et al. (2013). This methodology
focuses on identifying the key physical phenomena in the valida-
tion experiments, and assessing how the model represents each of
these phenomena. Hence, for gas explosions, the organisation of
validation data is primarily according to the degree of congestion,
the degree of confinement and the spatial scale of the experiments.

For the detailed analysis of the response surfaces, cf. Section 5.1,
experiments from two experimental campaigns with medium- and
large-scale geometries are employed, MERGE and BFETS Phase 3A,
involving congested geometries with a low degree of confinement.
Both campaigns are highly relevant for realistic accident scenarios
in complex geometries and provide key validation data for pre-
mixed combustion modelling in FLACS (van Wingerden, 2013). For
the extended analysis, cf. Section 5.2, experiments from three
additional experimental campaigns involving medium- and large-
scale vented enclosures are included.

4.1. Modelling and experimental research into gas explosions
(MERGE)

The experiments of the project Modelling and Experimental
Research into Gas Explosions (MERGE) (Mercx, 1994; Popat et al.,
1996) involved a single array of pipes contained in a homoge-
neous gas cloud, enclosed in a polythene tent. Fig. 4a) illustrates the
geometry layout. The flammable mixture was ignited in the centre
of the rig, at ground level. The present study is limited to four
medium-scale (4 m� 4 m� 2m) and two large-scale (8 m� 8 m�
4 m) experiments of the campaign, comprising six different geo-
metric configurations with varying obstacle size, pitch between
obstacles, rig dimensions, volume blockage and fuel reactivity. In
this paper, response surfaces are analysed in detail for the experi-
ment MERGE C* with a propane-air mixture. The geometry of this
experiment consists of pipes with diameter of 82 mm and 384 mm
spacing between pipe centres in each orthogonal direction, leading
to a 10% volume blockage. The model responses selected for the
detailed analysis were recorded by pressure transducers 2, 5 and 6
located inside the gas cloud 0.8, 3.1 and 4 m from the ignition point
in the centre of the congested region, respectively. Pressure trans-
ducer 6 is located just outside of the congested region.

Fig. 3. Visualisation of the operation of a neural network with one output node and transfer function f.
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4.2. Blast and fire engineering for topside structures (BFETS), Phase
3 A

The second campaign, the project Blast and Fire Engineering for
Topside Structures (BFETS), Phase 3A (sponsored by the Health and
Safety Executive, HSE), included 45 experiments with natural gas in
offshore modules of dimensions 28m� 12m� 8m (Al-Hassan and
Johnson, 1998; Evans et al., 1999; Foisselon et al., 1998). The
investigated parameters include the degree of congestion (equip-
ment density), degree of confinement (vent area), ignition location,
repeatability, and the effect of various water deluge layouts. Fig. 4b)
illustrates the congestion and confinement type of Test 4, for which
response surfaces are analysed in detail in the present study. Test 4
comprises a relatively densely congested geometry with a fully
confined roof and fully open walls, representing a realistic offshore
module. The present study includes in total 6 tests (none involving
water deluge). Initial turbulence was assumed present in the fuel-
air cloud, and the low hill located nearby the module has been
included in the simulations (Hansen and Johnson, 2014). The
ignition point is located close to one end of the module, allowing
the flame to propagate through the full length of the rig. The model
responses selected for the detailed analysis were recorded by
pressure transducers 6, 8 and 10 located inside the gas cloud 0.5, 14
and 27.5 m from the ignition point on the lower deck, respectively.

4.3. Additional experiments

The BFETS Phase 2 project comprises 27 tests with natural gas
performed in offshore modules of dimensions 25.6 m � 8 m � 8 m
or 28 m � 12 m � 8 m (Foisselon et al., 1998). The investigated
parameters included equipment density, vent area, ignition loca-
tion, gas concentration, and the presence of water deluge. The
present study focuses on 5 experiments from BFETS Phase 2, all
performed in the smaller module, without water deluge. Fig. 5a)
shows the geometry for a representative test.

Bauwens (2010) and Chao et al. (2011) describe explosion ex-
periments involving stoichiometric methane- and propane-air
mixtures, performed in a vented explosion chamber of di-
mensions 4.6 m � 4.6 m � 3.0 m, located at the FM Global research
campus. Bauwens (2010) and Chao et al. (2011) investigated the
effect on explosion overpressures from varying the vent size, igni-
tion position, and inserting 8 square obstructions spanning the

vertical direction of the explosion chamber, see Fig. 5b). The pre-
sent study focuses on four experiments, all with a vent area of
5.4 m2, where ignition occurred either in the centre of the chamber
or at the back wall, opposite of the vent opening.

Tomlin et al. (2015) describe a series of large-scale experiments
conducted by DNV GL in a 182 m3 vented explosion chamber,
located at the Spadeadam test site (cf. Fig. 5c)). The campaign
comprised 38 stoichiometric natural gas-air explosions with vary-
ing vent area and degree of congestion. The congestion level was
varied by placing 180 mm diameter polyethylene pipes within the
explosion chamber, providing different volume- and cross-
sectional area blockages. In the present study, 6 tests with
different congestion levels are included.

5. Results and discussion

The methods introduced in Section 3 are applied to relevant
model responses from simulations of the experimental campaigns
described in Section 4. The simulations are performed with the CFD
tool FLACS. Relevant model responses are the maximum over-
pressure zpmax and the maximum pressure impulse zpimpmax at
representative monitor points. The pressure impulse is the integral
of the pressure-time curve and hence a function of both the dura-
tion of the overpressure peak/peaks and its/their magnitude, and
may therefore respond differently to parameter perturbations than
the maximum overpressure. In a simulation, monitor points are
defined spacial points for which physical properties are saved and
correspond to pressure transducers in the experiments.

In order to quantify the approximation quality of a response
surface, i.e. how accurately the response surface reproduces the
model response of the CFD tool, the response surface is validated
for a large amount of simulations, M, with parameters varying in
their uncertainty ranges, cf. Table 1. For the detailed analysis of
response surfaces for MERGE and BFETS Phase 3A campaigns in
Section 5.1, several thousand simulations are included. Due to
limitations in practical simulation time, only 250 simulations are
included in the analysis of the general applicability of the response
surfaces based on neural networks in Section 5.2. It is worth to note,
that in some applications, it may not be convenient to perform a
large amount of simulations to validate the response surfaces.
However, in order to get an adequate impression of the

Fig. 4. a) A MERGE geometry, b) the module used in BFETS Phase 3A, Test 4.

Fig. 5. a) The BFETS Phase 2 module, b) the FM Global 64 m3 vented explosion chamber, c) the DNV GL 182 m3 vented explosion chamber (courtesy of DNV GL).
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approximation quality, validation can be performed for the simu-
lations used to generate the response surfaces. In the RSNN
approach it is therefore crucial to divide the learning data in a
training and a testing set.

The approximation quality is visualised by scatter plots
comparing response surface evaluations with the corresponding
model responses from simulations. Furthermore, the geometric
mean bias and the corresponding geometric mean variance are
plotted to quantify systematic bias and to provide a measure of the
consistency of over/under-prediction, respectively, cf. (Model
Evaluation Group Gas Explosions (MEGGE, 1996). In the present
context, the geometric mean bias (MG) and variance (VG) of the
differences between a response surface h and a model response z

for parameter variations xi, i ¼ 1;…;M, are defined as
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respectively. Values of MG and VG are presented in log-log plots
together with a zero variance curve denoting a zero arithmetic
variance. The geometric mean bias and variance are only defined
for positive values. However, both approximation approaches may
return negative values for certain parameter combinations. As
negative values for the maximum overpressure and pressure im-
pulse should not occur in the studied explosion scenarios, it is
convenient to set negative approximation output to a fixed small
positive value and use the resulting truncated approximation in the
respective application. This methodology is employed in the pre-
sent paper.

To provide amore complete picture of the accuracy of the RSNNs
in the extended analysis, the approximation quality is measured by
several metrics. In addition to MG and VG, the normalised root
mean square error (NRMSE) given by

NRMSE ¼
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and the maximum normalised error (NEmax)
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are calculated.
The definition of a satisfactory response surface depends on the

respective application. It should be noted that in this paper, the

approximation quality of the response surfaces is analysed with
respect to parameter optimisation.

5.1. Detailed analysis of response surfaces

In this section, results from the sensitivity analysis and response
surface validation are shown in detail for the experiment MERGE C*
with propane-air and Test 4 in BFETS Phase 3A.

5.1.1. Sensitivity analysis
In order to facilitate the response surface approaches, each pa-

rameter's uncertainty range, cf. Table 1, is transformed to the
reference interval ½�1;1� via Equation (2). Sensitivity analysis is
conducted as described by Equation (3).

Fig. 6 shows the local sensitivities ~si of zpmax (left) and zpimpmax

(right) for the experiment MERGE C* with propane-air in three
monitor points. Themonitor points in the simulations are located in
accordance with the pressure transducers of the experiments.
Although the sensitivities are somewhat higher for the maximum
overpressure than for the maximum pressure impulse, they occur
in similar order when ranked according to size. Fig. 7 shows the
local sensitivities ~si of zpmax (left) and zpimpmax (right) for Test 4 in
BFETS Phase 3A in three different monitor points.

In both tests, due to the low degree of confinement, the over-
pressure is mainly generated by the acceleration of the flame front
through the turbulent boundary layers and unsteady wakes of the
obstructions. As the flow in both experiments becomes turbulent
relatively shortly after ignition, some of the parameters governing
the turbulent burning velocity, a, ul, together with the parameter Cfl
accounting for flame folding around sub-grid objects produce high
sensitivities for the maximum overpressure. The sensitivities for Co
in Test 4, BFETS Phase 3A, indicate that flame acceleration is in
addition effectively enhanced by promoting the sub-grid turbu-
lence production.

According to the sensitivities obtained for experiments in the
MERGE and BFETS Phase 3A campaigns, the active parameters in
the detailed analysis, and thus the ones included in the response
surface approaches, are chosen to be a, b, Cfl, Kq, ul and Co. However,
the parameters a and Cql produce higher values of sensitivities for
other geometries in particular for explosions in empty vented en-
closures, cf. Section 5.2.

5.1.2. Validation of polynomial response surfaces
Polynomial response surfaces of second, partial third and partial

fourth order are constructed according to the approach defined in
Section 3.2. Thewidth of the central finite differences as e.g. used in
Equation (5) is characterised by t, chosen as either 0.25, 0.5 or 0.75.
Generating partial third and partial fourth order polynomials for 6

Fig. 6. First order local sensitivities of maximum overpressure (left) and maximum pressure impulse (right) for MERGE C*, propane-air, in monitor points 2, 5 and 6.
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parameters requires 85 and 245 simulations, respectively. Due to
inaccuracy of the Taylor series further away from the value which it
is derived from, the PRSs can only be trusted in a smaller region.
Hence, validation of the PRSs is performed for a reduced uncer-
tainty space spanned by narrower ranges than the assigned un-
certainty intervals. In the following, the reduced uncertainty space
denotes the hypercube spanned by ½�0:6;0:6� in all directions.
Scatter plots and values of MG and VG are based on 3072 parameter
perturbations within the reduced uncertainty space.

Testing several MERGE and BFETS Phase 3A experiments shows
that, in general, PRSs generated for t ¼ 0:5 or t ¼ 0:75 show better
approximation quality than those for t ¼ 0:25. Furthermore, the
approximation quality increases with increasing order of the

polynomials. The model responses for the MERGE experiments can
be approximated in a satisfactory way with partial third order
polynomials, whereas the model responses for some of the exper-
iments in the BFETS Phase 3A campaign cannot be reproduced with
a PRS with satisfactory accuracy. Results for the experiments
MERGE C* with propane-air and Test 4 in BFETS Phase 3A are
presented in the following.

Fig. 8 visualises the ability of the PRSs to approximate zpmax at
monitor point 2 for the experiment MERGE C* with propane-air
predicted by FLACS. The PRSs of second and partial third order
predict the model response well when calculating finite differences
with t ¼ 0:5 or t ¼ 0:75 and their approximation quality is similar.
It is worth mentioning that when evaluating the PRSs at points

Fig. 7. First order local sensitivities of maximum overpressure (left) and maximum pressure impulse (right) for BFETS Phase 3A, Test 4, in monitor points 6, 8 and 10.

Fig. 8. PRSs for maximum overpressure vs. FLACS for MERGE C* with propane-air, for t ¼ 0:25; 0:5 and 0:75, validated for the reduced uncertainty space. The upper and the lower
panel show the second and the partial third order PRS, respectively.
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further away from the expansion point of the Taylor polynomial,
the approximation quality of higher order PRSs may becomeworse,
as for the partial third order PRS with t ¼ 0:25 in Fig. 8 (left). The
partial fourth order PRSs do not produce better results but require
160 additional simulations and are therefore not shown here.
Similar results are obtained for zpimpmax.

For Test 4 of the campaign BFETS Phase 3A the PRSs approximate
the model responses zpmax and zpimpmax in the reduced uncertainty
space best when generated for t ¼ 0:75 and t ¼ 0:5, respectively.
The validation of the PRSs for monitor point 6 with second, partial
third and partial fourth order, as well as of those based on the
logarithmic model response are shown in Figs. 9 and 10. Fig. 11
presents the corresponding values of MG and VG for zpmax (left)
and zpimpmax (right). As mentioned, truncated response surfaces
without negative output are taken into account. In model valida-
tion, Test 4 constitutes a challenging test case and is therefore
chosen for the detailed analysis. The response surfaces for Test 4
show the largest scatter to the corresponding model responses for
the investigated campaigns. The maximum overpressure is best
reproduced by a PRS of partial fourth order. The scatter plots in
Fig. 10 might give the impression that the maximum pressure im-
pulse is as well best represented by the PRS of partial fourth order
for the original model response. However, the partial fourth order
PRS based on the logarithmic model response shows a higher
approximation quality in terms of MG and VG. This is due to the fact
that the geometric mean normalises the ranges being averaged,
such that it is affected by relative and not absolute changes of the
model response.

Fig. 12 shows further validation of the PRSs approximating
maximum overpressure for points within the entire uncertainty

space, i.e. 1449 additional points in ð½�1:0;�0:6�∪½0:6;1:0�Þ6. As all
of the polynomials show poor approximation quality, the PRSs can
only be trusted inside the reduced uncertainty space spanned by
½�0:6;0:6� in all directions.

5.1.3. Validation of response surfaces based on neural networks
Response surfaces based on neural networks are generated ac-

cording to the approach described in Section 3.3. While the order of
the PRSs determines the amount of simulations used for con-
struction, the number of simulations required to generate a suffi-
ciently accurate RSNN has to be investigated by numerical
experiments. If the RSNN is not evaluated at the entire uncertainty
space, it is convenient to generate it for a reduced uncertainty
space, as a given number of points fill a smaller space more densely.

This leads in general to better generalisation of the RSNN (inside
the reduced space). For evaluation at the entire uncertainty space,
the networks are constructed for Latin hypercube samplings
distributed over the entire uncertainty range, since RSNNs show
poor extrapolation properties. The concept is visualised in Fig. 13.

Validating RSNNs generated for experiments of the campaigns
MERGE and BFETS Phase 3A shows that the approximation quality
increases with increased amount of Latin hypercube sampling
points, as expected. In general, zpmax and zpimpmax of the MERGE
experiments and zpimpmax of the BFETS Phase 3A experiments can
be approximated in a satisfactory way when generated from
around 150 sampling points. To represent zpmax accurately enough
for the BFETS Phase 3A experiments, around 400 sampling points
are required. Results for the experiments MERGE C* with propane-
air and Test 4 in BFETS Phase 3A are presented in the following.

For the experiment MERGE C* with a propane-air mixture the
RSNNs for zpmax and zpimpmax are constructed from different
amounts of Latin hypercube sampling points,
lhs ¼ 100; 150 and 250, distributed over both the reduced and the
entire uncertainty space. Validation is performed for 3072 points in
the reduced uncertainty space. As expected, the RSNN for the
maximum overpressure generated from a certain amount of sam-
pling points distributed in the reduced uncertainty space shows a
better approximation quality than the RSNN generated from the
same amount in the entire uncertainty space. Validation for the
former (cf. type a) in Fig. 13) for monitor point 2 is shown in Fig. 14.
The approximation quality of the RSNN generated from 100 simu-
lations exceeds the one of the third order PRSs, cf. Fig. 8, requiring
only 15 additional simulations. The approximation quality in-
creases when a larger amount of simulations is used. Similar results
are obtained for the maximum pressure impulse.

The RSNNs for zpmax and zpimpmax for Test 4 in BFETS Phase 3A
are generated on the basis of Latin hypercube samplings with
different sizes distributed over the reduced and entire uncertainty
range, i.e. lhs ¼ 150; 250 and 400. The RSNNs for zpimpmax gener-
ated on the reduced uncertainty space show better approximation
behaviour than the ones on the entire uncertainty space, as for
MERGE C*. Validation for RSNNs generated on the reduced uncer-
tainty space (cf. type a) in Fig. 13) for monitor point 6 is shown in
Fig. 15. The RSNN generated from 150 sampling points shows a
higher approximation quality than the best PRS which requires 245
simulations, cf. Fig. 10. The approximation quality can be increased
when using a larger amount of simulations. In contrast, the RSNN
for zpmax generated from a certain amount of sampling points

Fig. 9. PRSs for maximum overpressure vs. FLACS for BFETS Phase 3A, Test 4, t ¼ 0:75. From left to right, the second, partial third and partial fourth order PRSs are shown, validated
for the reduced uncertainty space.
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distributed over the entire uncertainty space shows better
approximation quality than the RSNN generated from the same
amount in the reduced uncertainty space. This indicates a more
complex behaviour of the maximum overpressure to model
parameter perturbations. Scatter plots for both cases are presented
in Fig. 16. All tested RSNNs generated for the entire uncertainty

space approximate the maximum overpressure on the reduced
uncertainty space (cf. type b) in Fig. 13) better than the PRSs. The
approximation quality of the RSNNs increases to a satisfactory
level if 400 sampling points within the entire uncertainty space are
used for generation.

Moreover, the RSNNs generated from a sufficient amount of

Fig. 11. Geometric mean bias and variance of truncated PRSs vs. FLACS for BFETS Phase 3A, Test 4 for a) maximum overpressure, t ¼ 0:75 and b) maximum pressure impulse,
t ¼ 0:5, validated for the reduced uncertainty space.

Fig. 10. PRSs for maximum pressure impulse vs. FLACS for BFETS Phase 3A, Test 4, t ¼ 0:5. From left to right, the second, partial third and partial fourth order PRSs (upper panel) and
those for the logarithmic model response (lower panel) are shown, validated for the reduced uncertainty space.

A.-L. Braatz, H. Hisken / Journal of Loss Prevention in the Process Industries 49 (2017) 683e699692



93

simulations may be trusted, i.e. evaluated, in the entire uncertainty
space (cf. type c) in Fig. 13), as visualised in Fig. 17 for the maximum
overpressure. This is of interest when employing response surfaces
for optimisingmodel parameters within their uncertainty ranges to
improve the predictive capability of a CFD tool. If PRSs were
applied, several iterations of optimisation may be required to
converge to the optimum. In each iteration, the parameter uncer-
tainty space has to be reduced to a space around the current iterate
on which the polynomials are trusted. Applying RSNNs with global
accuracy allows for a single iteration optimisation, accelerating the
optimisation procedure significantly.

5.2. Extended analysis of the applicability of the RSNNs

As the RSNNs outperform the PRSs for the examples in the
detailed analysis, cf. Section 5.1, the general applicability of
response surfaces for industrial-scale gas explosions is investigated
exclusively for the RSNNs in an extended analysis in this section. In
the extended analysis, the RSNNs are generated and validated for
the maximum overpressure zpmax and the maximum pressure
impulse zpimpmax at 3e5 relevant monitor points for all experi-
ments described in Section 4. This includes the tests studied in the
detailed analysis. However, a newer development version of FLACS
v10.4r1 is employed and the uncertainty ranges of some parame-
ters are adapted accordingly. As the changes do not affect the
quality of the response surfaces, the conclusions drawn from the
detailed analysis in Section 5.1 remain valid.

To gain a more complete overview over the approximation
quality of the RSNNs, it is measured by several metrics, i.e. MG and
VG, NRMSE and NEmax defined in equations (6)e(8). Tables 2 and 3
summarise the results for RSNNs for the maximum overpressure
and the maximum pressure impulse, respectively. The tables pro-
vide additional information about the considered tests, the active
parameters and the size of the Latin hypercube sampling of the
entire uncertainty space used to generate the RSNNs. All RSNNs are
validated on a Latin hypercube sampling with 250 parameter
values distributed over the entire uncertainty space, cf. type c) in
Fig. 13. The values for MG and VG are the geometric mean bias and

Fig. 14. RSNNs for maximum overpressure vs. FLACS for MERGE C*, propane-air, for lhs ¼ 100; 150 and 200, generated and validated for the reduced uncertainty space.

Fig. 13. Visualisation of generation and validation of RSNNs; a) generated and vali-
dated for the reduced uncertainty space, b) generated for the entire, validated for the
reduced uncertainty space, c) generated and validated for the entire uncertainty space.

Fig. 12. PRSs for maximum overpressure vs. FLACS for BFETS Phase 3A, Test 4, for t ¼ 0:75. From left to right, the second, partial third and partial fourth order PRSs are shown,
validated for the entire uncertainty space.
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variance taken over all RSNNs for the respective model response,
i.e. for all tests andmonitor points. The values given for NRMSE and
NEmax are the average of the NRMSEs of all RSNNs and the largest
NEmax of all RSNNs, respectively.

Tables 2 and 3 show that all RSNNs for zpimpmax are more ac-
curate approximations e in all three metrics e than the ones for
zpmax. As the RSNNs for the MERGE campaign with propane-air,
called MERGE-propane in the following, show a high accuracy in
the detailed analysis, the error measurements for those RSNNs
from Tables 2 and 3 are taken as reference values. The RSNNs can be

divided into three quality classes. The classification of the RSNNs is
not dependent on the choice of the metric employed to measure
the approximation quality, and in most cases, the RSNNs for zpmax

and zpimpmax can be assigned to the same quality class. The first
class comprises the RSNNs for the FM Global and MERGE-propane
experiments which show the highest approximation quality. The
RSNNs for the MERGE-methane and DNV GL experiments build the
second class. Their approximation quality is only slightly worse
than the one of the RSNNs from the first class. However, it is worth
mentioning that generating some RSNNs for the DNV GL

Fig. 16. RSNNs for maximum overpressure vs. FLACS for BFETS Phase 3A, Test 4, for lhs ¼ 150; 250 and 400, generated from points in the reduced (upper panel) and entire (lower
panel) uncertainty space, validated for the reduced uncertainty space.

Fig. 15. RSNNs for maximum pressure impulse vs. FLACS for BFETS Phase 3A, Test 4, for lhs ¼ 150; 250 and 400, generated and validated for the reduced uncertainty space.
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experiments requires 800 (instead of 400) sampling points to gain
good results. The RSNNs for the BFETS Phase 3A experiments
approximate zpimpmax much better than zpmax. The difference be-
tween the quality of the RSNNs for both model responses is
significantly larger than for the other tests. Whereas the RSNNs for
zpimpmax can be assigned to the second class, the RSNNs for zpmax

must be assigned to a third quality class. The third class also
comprises the RSNNs for the BFETS Phase 2 experiments, as they
show the worst approximation quality for both model responses.
For zpmax and zpimpmax, the NRMSE is 2.8 and 5.2 times as large as
for MERGE-propane, respectively. However, the values might still
be acceptable, depending on the final application. It should be
noted that for all BFETS experiments 800 sampling points were
employed to generate the response surfaces.

The results confirm the impression gained in the detailed
analysis, cf. Section 5.1, that for the realistic geometries of the BFETS

campaigns the selected model responses are more complex func-
tions of the model parameters as the ones for the idealised, sym-
metric modules from the other campaigns.

6. Conclusion

The main objective of this study was to present the approxi-
mation quality of response surfaces as metamodels for key model
responses from CFD gas explosion simulations. The response sur-
faces were constructed to reproduce the maximum overpressure
and the maximum pressure impulse at selected monitor points
from gas explosion simulations as a function of sub-grid model
parameters. The present work was motivated by the application of
response surfaces in optimisation of sub-grid model parameters to
improve the predictive capabilities of the CFD tool FLACS. Two
response surface approaches were presentede a Taylor polynomial
response surface (PRS) and a response surface based on neural

Table 2
Approximation quality of RSNNs for the maximum overpressure.

Experimental campaign Tests Active parameters Sampling size MGa, VGa NRMSEb NEmaxc

MERGE, methane-air A, B, C, C*, D, E a, b, Cfl , Kq , ul , Co 400 0.9972, 1.0061 0.0206 0.2136
MERGE, propane-air A, B, C, C*, D, E a, b, Cfl , Kq , ul , Co 400 0.9988, 1.0009 0.0180 0.2362
FM Global, 64 m3, empty, methane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 1.0001, 1.0008 0.0147 0.2951
FM Global, 64 m3, empty, propane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 0.9995, 1.0005 0.0116 0.1347
FM Global, 64 m3, with obstacles, methane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 1.0012, 1.0011 0.0166 0.2043
FM Global, 64 m3, with obstacles, propane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 1.0005, 1.0004 0.0096 0.1407
BFETS Phase 3A Alpha, Beta, Test 1, Test 4, Test 16, Test 17 a, b, Cfl , Cql , ul , Co 800 0.9857, 1.1096 0.0254 0.3130
BFETS Phase 2 Test 6, Test 7, Test 13, Test 18, Test 22 a, b, Cfl , ul , Co 800 1.0306, 1.4833 0.0498 0.5533
DNV GL, 182 m3 Test 4, Test 12, Test 14, Test 22, Test 26, Test 38 a, b, Cfl , Cql , ul , Co 400 or 800 1.0004, 1.0029 0.0266 0.2730

aTaken all RSNNs into account, baverage of the NRMSEs of all RSNNs, clargest NEmax of all RSNNs.

Table 3
Approximation quality of RSNNs for the maximum pressure impulse.

Experimental campaign Tests Active parameters Sampling size MGa, VGa NRMSEb NEmaxc

MERGE, methane-air A, B, C, C*, D, E a, b, Cfl , Kq , ul , Co 400 0.9995, 1.0016 0.0096 0.1508
MERGE, propane-air A, B, C, C*, D, E a, b, Cfl , Kq , ul , Co 400 1.0000, 1.0000 0.0067 0.0989
FM Global, 64 m3, empty, methane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 0.9996, 1.0001 0.0063 0.1007
FM Global, 64 m3, empty, propane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 1.0001, 1.0001 0.0046 0.0429
FM Global, 64 m3, with obstacles, methane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 0.9995, 1.0001 0.0066 0.0695
FM Global, 64 m3, with obstacles, propane-air Back ignition, Central ignition (5.4 m2 vent) a, b, Cql , ul , Co 400 0.9994, 1.0001 0.0046 0.0390
BFETS Phase 3A Alpha, Beta, Test 1, Test 4, Test 16, Test 17 a, b, Cfl , Cql , ul , Co 800 1.0013, 1.0020 0.0091 0.1186
BFETS Phase 2 Test 6, Test 7, Test 13, Test 18, Test 22 a, b, Cfl , ul , Co 800 0.9405, 1.4069 0.0345 0.4562
DNV GL, 182 m3 Test 4, Test 12, Test 14, Test 22, Test 26, Test 38 a, b, Cfl , Cql , ul , Co 400 or 800 1.0003, 1.0004 0.0130 0.1138

aTaken all RSNNs into account, baverage of the NRMSEs of all RSNNs, clargest NEmax of all RSNNs.

Fig. 17. RSNNs for maximum overpressure vs. FLACS for BFETS Phase 3A, Test 4, for lhs ¼ 150; 250 and 400, generated and validated for points in the entire uncertainty space.
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networks (RSNN). Simulations were performed with the CFD tool
FLACS. The analysis was performed in two stages. The results can be
summarised to 5 main findings. In the first part, the response
surfaces for experiments from two experimental campaigns were
analysed in detail.

i) It was demonstrated that the model responses for single gas
explosion experiments can be approximated with sufficient
accuracy by a PRS of up to partial fourth order. The main
advantage of the PRS approach is the low amount of simu-
lations needed to generate the response surface. However, if
a model response was highly non-linear, a PRS was not able
to approximate the model response with desired accuracy.

ii) For the model responses that could be approximated well by
a PRS, generating an RSNN with same accuracy required
more simulations than the PRS. However, it was found that
the approximation quality of the RSNNs increases with
increased amount of simulations used to generate the RSNNs.
Therefore, more accurate RSNNs could be constructed.
Furthermore, for the model responses that could not be
approximated with sufficient accuracy by a PRS, RSNNs with
high approximation quality were generated.

iii) Provided that the additional cost of a larger amount of sim-
ulations is feasible in the respective application, the RSNNs
generated from those simulations can be trusted on the
entire uncertainty space, allowing for e.g. a more efficient
parameter optimisation procedure. It was found that the
PRSs should in general not be trusted on the entire uncer-
tainty space.

Second, the general applicability of the response surfaces was
investigated for the RSNNs in an extended analysis, as they showed
better results for the experiments in the first analysis. The RSNNs
were generated for 37 tests from 5 different experimental cam-
paigns. The approximation quality of the RSNNs was measured by
three different metrics e all leading to the same conclusions.

iv) It was found that generating RSNNs for tests with large-scale
geometries and non-homogeneously distributed obstacles
requires larger Latin hypercube samplings to obtain the
desired accuracy than for tests with more idealised, sym-
metric modules.

v) Taking the approximation quality of the RSNNs for the
MERGE experiments with propane-air as a reference value,
the RSNNs for all studied tests, except for BFETS Phase 2,
showed highly satisfactory results. The approximation
quality of the RSNNs for the BFETS Phase 2 experiments was
slightly worse, but may still be good enough for applications
such as model parameter optimisation in CFD tools.

In general, based on our findings we conclude that the PRS
approach may be preferred if the model response is a less complex
function of the parameters, cf. (Davis et al., 2004), or if the
respective application does only allow for a low amount of simu-
lations, accepting a lower approximation accuracy, cf. (Vianna and
Cant, 2012). Otherwise, as when applying response surfaces in
optimisation of sub-grid model parameters to improve the pre-
dictive capabilities of CFD tools, the RSNNs constitute more reliable
response surfaces and should be preferred.
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Appendix A. Model system and parameters

In the following, the parameters from Table 1 in Section 2 and
the corresponding sub-grid models for turbulence generation and
premixed combustion are presented.

Appendix A.1. Turbulence production from sub-grid objects

FLACS solves conservation equations for the turbulence kinetic
energy k and its dissipation rate ε according to the standard k� ε

model (Launder and Spalding, 1974). On differential form, the
conservation equations read

v

vt
ðbvrkÞ þ

v

vxj

�
bjrkuj

�
¼ v

vxj

 
bjGk

vk
vxj

!
þ bvPk � bvrε; (A.1)
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(A.2)

where Pk and Pε define the production of k and ε, respectively
(represented by SF in Equation (1)), and C2;ε is a model constant.
The production term Pk is given by

Pk ¼ Gs þ Gw þ Gb þ Go; (A.3)

where Gs, Gw, Gb and Go are terms representing turbulence gen-
eration due to fluid-shear, wall-shear, buoyancy and sub-grid ob-
structions, respectively. The production Pε of dissipation rate ε in
Equation (A.2) is set proportional to Pk. Following Sha and Launder
(1979), Go in Equation (A.3) can be expressed as

Go ¼ Cobvrj u!ju2j dj; (A.4)

where Co is a constant specific to FLACS, and dj is a parameter that
depends on the sub-grid object. A physical interpretation of Go

relates it to energy loss due to sub-grid drag in the momentum
equation (Popat et al., 1996). The model parameter Co in Equation
(A.4) is important for modelling flame acceleration in congested
geometries with sub-grid obstructions, as the turbulence model
provides input to the combustion model.

Appendix A.2. Combustion modelling

Premixed combustion in FLACS is modelled by the conservation
equation for the fuel mass fraction YF according to

v

vt
ðbvrYFÞ þ

v

vxj

�
bjrYFuj

�
¼ v

vxj

 
bjGYF

vYF
vxj

!
þwF : (A.5)

The sink term wF in Equation (A.5) represents the Favre-averaged
consumption rate of reactants, producing combustion products by
chemical reaction. According to the analysis of Arntzen (1998), wF

and the effective diffusion coefficient GYF
are modelled such that

the numerical flame zone propagates with a certain input burning
velocity ug. Empirical correlations relating the burning velocity ug
to the flow regime and mixture dependent variables are needed to
close Equation (A.5). Burning velocity correlations are defined for
laminar, quasi-laminar and turbulent flow conditions.

Appendix A.3. Laminar burning velocity

The burning velocity in all flow regimes incorporates the
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laminar burning velocity ul, which can be regarded as a funda-
mental property of the mixture, representing its reactivity, diffu-
sivity and exothermicity (Ranzi et al., 2012). FLACS uses a library of
laminar burning velocities to represent ul.

Ranzi et al. (2012) present recent values for the laminar burning
velocity for a range of mixtures. For example, methane and propane
mixed with air, with an equivalence ratio (ER) of 1.1, burning at
atmospheric pressure and an ambient temperature of 298 K, show a
scatter of approximately ±0:02 m/s for methane and ±0:01 m/s for
propane, using data from (Vagelopoulos and Egolfopoulos, 1998;
Bosschaart and De Goey, 2004; Jomaas et al., 2005; Gu et al.,
2000; Hassan et al., 1998; Rozenchan et al., 2002; Park et al.,
2011; Halter et al., 2010). In the development version of FLACS
used in the present study, the laminar burning velocity values from
(Law et al., 1988) are applied for both methane and propane. These
data sets are associated with a somewhat higher scatter than the
more recent measurements listed above (Ranzi et al., 2012).

Appendix A.4. Quasi-laminar burning velocity

For an initially laminar, outwardly propagating flame, hydro-
dynamic (Darrieus,1938; Landau,1944) and thermo-diffusive flame
instabilities (Barenblatt et al., 1962; Sivashinsky, 1977) will lead to
the appearance of a cellular flame surface at a critical flame radius.
The transition into a cellular regime of flame propagation is asso-
ciated with an increase in flame surface area and a corresponding
increase in the overall burning velocity (Bradley, 1999). By
assuming that the flame surface in the cellular regime follows a
fractal patternwith a fractal dimension of D ¼ 7 =

3 (Gostintsev et al.,
1988; Bradley, 1999), the burning velocity in the cellular regime is

found to increasewith the flame radius as Rf
1 =

3. Values for the flame

radius exponent ranging from 1 =3 to 1 =6, depending on the mixture
composition and experimental configuration, have been measured
later (Gostintsev et al., 1999; Pan and Fursenko, 2008; Bauwens
et al., 2015).

To model the regime of cellular flame propagation, a so-called
quasi-laminar burning velocity uql on the form of

uql ¼ ul
�
1þ CqlR

a
f

�
(A.6)

is applied in FLACS, where Cql is a mixture dependent model con-
stant, Rf is the flame radius and a is a general model constant. Based
on experiments (Arntzen, 1998), the radius exponent a was set to
0.5.

Appendix A.5. Turbulent burning velocity and its quenching limit

A range of expressions relating turbulence variables to the
combustion rate in turbulent premixed flames have been proposed,
see e.g. (Lipatnikov and Chomiak, 2002). There are significant un-
certainties associated with such simple correlations (Verma and
Lipatnikov, 2016) and with Reynolds-averaged Navier-Stokes
equations (RANS) modelling of premixed turbulent combustion in
general (Poinsot and Veynante, 2011).

In standard FLACS v10.4r1, the turbulent burning velocity cor-
relation presented by Bray (1990) is used. Bray (1990) correlated
the 1650 separatemeasurements of turbulent burning velocities for
premixed gaseous mixtures consolidated by Abdel-Gayed et al.
(1987), and expressed the turbulent burning velocity ut in terms
of the Karlovitz stretch factor K according to

ut
u0

¼ aKb; K ¼ CK

	
u0

ul


2	u0lI
n


�0:5

; (A.7)

where CK ¼ 0:157, u0 is the turbulence velocity fluctuation, n is the
kinematic viscosity, and lI is the integral length scale of turbulence.
Bray (1990) set the constants a and b to 0.875 and �0.393,
respectively. Bradley et al. (1992) derived a correlation from the
same data set on the same general form, also incorporating the
Lewis number Le according to

ut
u0k

¼ aðKLeÞb:

Bradley et al. (1992) set a ¼ 0:88 and b ¼ �0:3 and replaced u0

with an effective turbulence velocity fluctuation u0k representing
the part of the turbulence spectrum that acts on the flame kernel,
tending towards u0 as the flame propagates. Bradley et al. (2011,
2013) give updated correlations on the form of Equation (A.7),
where a and b are explicitly expressed in terms of the strain rate
Markstein number Masr of the mixture. There are additional un-
certainties associated with the evaluation of Masr .

At high values of the Karlovitz stretch factor K and the Reynolds
number Re ¼ Ul=n, where U is the flow speed and l is a characteristic

length scale, quenching of the turbulent flame brush commences.
In standard FLACS v10.4r1, the limit for ut increasing with u0 is set
when K exceeds Kq ¼ 1:0, i.e. the turbulent burning velocity ut is
kept constant for K >1:0 (Arntzen, 1998). Meanwhile, findings from
direct numerical simulations (Poinsot et al., 1991) suggest that the
quenching limit may be located around Kz25, near the border
between the thin reaction zones and distributed reaction zones
regimes of Peters (2001), where the smallest turbulence eddies
start to penetrate the reaction zone. Bradley et al. (2013) demon-
strated that the critical stretch rate for flame quenching depends
significantly on the local Markstein number. In summary, there are
considerable uncertainties associated with the use of a quenching
limit for turbulent premixed combustion.

Appendix A.6. Sub-grid flame folding

Through the modelled turbulence parameters in the burning
velocity correlation of Equation (A.7), sub-grid geometry influences
the rate of combustion. In addition, the flame front folding around
objects will increase the flame surface area, and thereby enhance
the mass burning rate further. For sub-grid objects this effect is not
resolved, and must therefore be modelled. Arntzen (1998) argues
that the additional flame surface area from sub-grid obstructions,
DA, will increase with the size of the obstruction and the distance
the flame front is transported downstream before the wake behind
the obstruction is burned out. The analysis by Arntzen (1998) re-
sults in

DA
A

¼ Cfl
ffiffiffiffiffiffi
Uc

p
4iCTi; (A.8)

where Uc is the normalised downstream flow velocity, 4i is a di-
rection vector, and CTi denotes the total surface area of the “ending
walls” of the sub-grid obstructions for flow in the ith direction. In
Equation (A.8), Cfl is a model parameter, determined by validation
against experiments.
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