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Abstract 

Fish species that exhibit sporadic recruitment, late maturity and that are long-lived, can be 

difficult to manage. The issue arises from the high variability in stock dynamics. Where there 

are significant interannual fluctuations in biomass, it is difficult to harvest the population in a 

sustainable manner, avoiding stock collapse while maintaining high yields and catch stability. 

The aim of this project was to inform the management of species with the above stock 

characteristics through computer simulation of two Harvest Control Rules (HCRs) using 

Management Strategy Evaluation (MSE). 

MSE is a method used to simulate the performance of different management strategies under 

different criteria. HCRs are the flexible management rules which convert biological 

information into catch advice. Both management tools have become increasingly common in 

fisheries management. Escapement HCRs are most commonly used for the conservation of 

the spawning population in short-lived species such as Atlantic salmon (Salmo salar). In this 

study, the utility of a Novel HCR, which reflected an Escapement HCR, was tested on a stock 

whose dynamics was informed by Greenland halibut (Reinhardtius hippoglossoides). The 

Novel HCR was formulated to conserve the biomass from spikes in recruitment of a long-

lived species, by exclusively targeting the fraction of biomass above a threshold biomass 

level. The performance of this Novel HCR was compared to a traditional ‘hockey-stick’ ICES 

HCR through MSE using the FLBEIA model in R software. 

The model results indicated that there were trade-offs between the two HCRs. The Novel 

HCR provided relatively high yields with low risk of stock collapse, but came at the cost of a 

high fraction of moratoria and high interannual variability in catches. Depending on the 

management objectives, the Novel HCR can be successfully used in the sustainable 

exploitation of long-lived species with sporadic recruitment. The results of this paper will 

help to inform the management of Greenland halibut in the Barents Sea. 
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Key terms and definitions 

Term Definition 

Management Strategy 

Evaluation 

MSE 

Tool used to find the most appropriate management 

strategy according to management objectives (Punt et 

al. 2014). 

Harvest Control Rule 

HCR 

Rule that converts stock information into management 

information (Eikeset et al. 2013). 

Recruitment Number of individuals entering the exploitable stock 

each year (ICES Advice 2012). 

SSB 

Spawning stock biomass 

The absolute weight of all sexually mature individuals 

in the stock (ICES Advice 2012). 

F 

Fishing mortality 

Instantaneous rate of fishing mortality (ICES Advice 

2012). 

Bpa An SSB precautionary reference point that provides a 

buffer zone above Blim and triggers management action 

(ICES 2007). 

Blim Limit reference point for SSB, below which 

recruitment is impaired/ stock dynamics are uncertain 

and therefore management action is triggered (ICES 

2007) 

Btrigger An SSB trigger level that prompts a management 

action (ICES Advice 2012). 

Ftarget Fishing mortality target that gives high yield with low 

risk (ICES 2007). 
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1. Introduction 

 

1.1. Brief history of and current trends in fisheries management 

 

In addition to the natural fluctuations in fish populations, stocks respond significantly to 

commercial harvesting. Numbers at age, total numbers and total biomass are impacted by 

fishing pressure (Haddon 2011). As a result, stock collapses and recruitment failures have 

been features, rather than bugs, of modern industrialised fisheries. Furthermore, commercial 

fisheries impact weight at age, recruitment, and age of maturation which manifest in fisheries 

induced effects such as growth overfishing, recruitment overfishing and ecosystem 

overfishing (Diekert 2012; Gullestad et al. 2013). Thus, it is critical to the management of 

fisheries to quantify these changes through mathematical and statistical descriptions, in order 

to more clearly understand the human impact on natural populations.  

Thomas Huxley once speculated that humankind can never seriously alter the number of fish 

in the sea, influencing the views of many generations. The “inexhaustibility paradigm” 

falsely predicted that stocks were never in any danger of depletion. In the past, perhaps this 

was the case (Haddon 2011). However, since Huxley’s days, technological advancements in 

steam engines, hydraulic winches, trawl nets, otter boards, more selective gear, acoustics etc. 

have cast humans in the role of a “superpredator”, where anthropogenic impacts can have 

ecosystem-scale alterations on marine species (Coll et al. 2008).  

With no limit to the unrestrained industrialisation of the fisheries sector, stock collapses have 

become commonplace since the 1970’s, such as in the case of Canadian populations of 

Atlantic cod, North Sea herring, Norwegian spring-spawning herring and Irish Sea cod 

(Myers et al. 1997; Dickey-Collas et al. 2010; Gullestad et al. 2013; Kelly et al. 2006). 

However, there is evidence of positive trends. Developments in fisheries management in 

more recent times have been implicated in the subsequent recovery of stocks such as Atlantic 

halibut, North Sea herring and Norwegian spring-spawning herring (Trzkinski and Bowen 

2016; Dickey Collas et al. 2010; Tjelmeland and Røttingen 2009). The cumulative increase in 

Spawning Stock Biomass (SSB) of commercial species is one indicator of the positive 

response of stocks to sustainable management (Figure 1).  
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Figure 1. Total spawning stocks of key Norwegian pelagic and groundfish species from 1985-2012 

(Gullestad et al. 2013).  

The effort to manage Norwegian fisheries with a focus on long-term sustainability was 

spurred on by the collapse of Norwegian spring-spawning herring in the late 1960s (Gullestad 

et al. 2013). Instruments such as Total Allowable Catch (TAC), reduction in subsidies and 

access restrictions have been the most common tools used to procure sustainable yields 

(Årland and Bjørndal 2002). As a result, Norwegian fisheries management has attained the 

highest compliance score with regards the UN Code of Conduct for Responsible Fisheries 

(FAO, 1995). Sustainable management objectives have been central in modern Norwegian 

fisheries management (Gullestad et al. 2013). 

Management objectives are management performance criteria that express the aims of 

management strategies, e.g. resource conservation (Mardle et al. 2002). They are often 

biomass and catch-based criteria, for example biomass limits that protect recruitment, or 

fishing mortality limits that keeps biomass above a threshold level (Kell et al. 2005).  In order 

to achieve effective management practices, compromises between unaligned, and often 

incompatible objectives are a common feature of fisheries management (Vinther and Eero, 

2013; Mardle et al. 2002). Management Strategy Evaluation (MSE) and Harvest Control 

Rules (HCRs) are common tools used to both achieve management objectives and evaluate 

trade-offs between objectives (Punt et al. 2014). 
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1.2. Achieving management objectives using MSE and HCRs 

 

MSE is used to compare the effectiveness of data collection methodology and analysis among 

different models and to find the most appropriate management strategy given predefined 

objectives (Punt et al. 2016). MSE was developed to address flaws in the traditional methods 

of managing stocks (Butterworth et al. 2010). It differs from ‘best assessment’ practices 

where confidence intervals and sensitivity analyses are used to provide management advice 

based on some HCR. MSE, in contrast, deals with the full range of uncertainty and the 

plethora of trade-offs involved in choosing a management action (Punt et al. 2016).  

Decision makers have been increasingly heeding advice from quantitative methods which use 

MSE to evaluate trade-offs in management strategies (Punt 2017). MSE is designed so that 

decision makers must clarify their objectives (Punt et al. 2016). The International Whaling 

Committee (IWC) spearheaded the use of MSE to limit catches on whales since the 1980s 

(Punt and Donovan 2007). MSE can also be used to select strategies for rebuilding stocks, 

such as in the case of Southern bluefin tuna (Thunnus maccoyii) (Polacheck et al. 1999). 

Frequently, management decisions must compromise between a set of unaligned management 

objectives with vastly different outcomes (Sainsbury et al. 2000). As mentioned previously, 

the criteria for success of management strategies are the management objectives. This means 

that MSE is operating at the interface of science and implementation of policy, informing 

managers of the possible trade-offs in managing a fishery (Punt et al. 2016).  

There are a number of steps in MSE. Firstly, the management objectives are identified, 

followed by environmental and management uncertainties, on which operating models of the 

population are based. The parameters of the model are then chosen, and candidate 

management strategies are introduced. Each of these candidate strategies is implemented for 

each model. The performance statistics are then interpreted and refined relevant to the 

competing management goals achievable (Butterworth et al. 2010; Punt et al. 2016). Though 

HCRs can be set independent of any framework, MSE can be used to inform HCR choice 

using simulation. The latter was the case in this project. 

The most widespread approach to reducing exploitation is reducing TAC, which has a 

varying impact on the recovery of the stock (Trzcinski and Bowen 2016). The TAC can be 

determined through many quantitative methods, including reference points and HCRs. 

Harvest strategies aim to produce management actions in line with management objectives. 
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They use reference points to inform decisions via a process of stakeholder engagement. 

Flexible rules (HCRs) are nested within these strategies (Dowling et al. 2008).  

HCRs can be considered algorithms that convert biological information on stock status into 

management action (Eikeset et al. 2013). They have been formerly referred to as harvest 

strategies, where there is a strategy that informs catch output corresponding to the stock 

status at that time (Hilborn and Walters 1992). HCRs have been important in modulating 

fishing pressure in Norwegian fisheries. They have notably been used for cod and capelin in 

the Barents Sea and Norwegian spring-spawning herring (Howell and Filin 2013; Tjelmeland 

and Røttingen 2009).  

Reference points, which can be biomass, catch or fishing mortality based, are alone not 

enough to make management actions, which is where HCRs create the structure to provide 

that scientific basis (Punt and Donovan 2007). Limit reference points express the risk of 

overfishing in terms of fishing mortality and biomass associated changes that impact long-

term sustainability (Dichmont 2017). Reference points are usually determined from stock 

assessment, indicating when the stock has crossed a threshold of risk. Blim generally indicates 

the biomass when there is a high risk of impaired recruitment, whilst Bpa and Btrigger are 

reference points defined based on corresponding limit reference points, that act as buffers in 

HCRs and implicate a reduction in fishing mortality (Eikeset et al. 2013).  These points are 

usually formulated ad hoc where stock-specific management strategies are needed. HCRs are 

setup to best achieve yields, informed by reference points.  

A shortlist of candidate HCRs can provide an alternative creation of the most sustainable 

yields from the fishery (Thorpe and De Oliveira 2019). Constant escapement, fishing 

mortality and catch along with adaptive versions of these, are the most common HCRs 

utilised (Deroba and Bence 2008). These HCRs have stock-specific reference points. For 

example, the historic HCR for Norwegian spring-spawning herring stipulated a maximum 

Ftarget of 0.125 and a minimum acceptable SSB of 2.5 million tonnes (Figure 2) (Tjelmeland 

and Røttingen 2009). These conditional rules are developed relative to the species’ life 

history. 

Constant escapement is a HCR commonly used for short-lived species. In the case of Atlantic 

salmon, Bescapement is used as a target, as the amount of biomass left to spawn, below which 

recruitment is deemed impaired (ICES 2017). NASCO plays a large role in the regulation of 
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these fisheries and advises that the precautionary principle is followed (Windsor and 

Hutchinson 1994). In this case, that means lowering the risk that SSB falls below Bescapement. 

 

 

Figure 2. Schematic representation of HCR used in the recovery of Norwegian spring-spawning 

herring (Tjelmeland and Røttingen 2009).  

Developing generic HCRs is an alternative to stock-specific strategies. Froese et al. (2010) 

presents an overview of overexploitation in European fisheries. The HCR in the paper was 

developed in response to the lack of adherence of international agreements in European 

fisheries management. It explores generic HCRs for stocks in Europe and generates one size 

fits all biomass-based HCR. Applied to North Sea herring, with Maximum Sustainable Yield 

(MSY) as the target, it is suggested that the 1970s stock collapse may have been 

avoidable. Froese et al. (2010) proposes the HCR under the premise that the precautionary 

principle has not been considered. 
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Figure 3. Generic HCR proposed for European fisheries reference points in accordance with MSY 

targets (Froese et al. 2010). 

Given that the stock is providing both socioeconomic and ecosystem services, it is important 

to develop management objectives as a framework for decision making. The management 

objectives of fisheries management are similar across states, for example the Common 

Fisheries Policy in the EU—‘rational exploitation on a sustainable basis’—and the 

Magnuson–Stevens Fishery Conservation and Management Act in the US, ‘Ensure a safe and 

sustainable supply of seafood’, share common goals in relation to policy (Mardle et al. 2002). 

There are many biological criteria of MSE performance. Year to year fluctuations in catch, 

total catch and risk of dropping below a biomass threshold are common indicators of 

performance of HCRs (Punt 2017). Simulation modelling of alternative HCRs using the MSE 

approach is therefore an effective method of evaluating the performance of management 

strategies. 

1.3. Simulation modelling in fisheries management 

 

In response to the threat of human overexploitation, fisheries and ecosystem models have 

been developed to approximate the dynamics of real populations. The first models described 

increases and decreases in a population according to recruitment, growth, mortality and 

migration of fish (Russell 1931). Density dependence was introduced into quantitative 

models of population growth and stock recruitment relationships by Beverton and Holt 

(1957). Further contributions to biological dynamics and strong considerations of uncertainty 

in modelling those dynamics followed (Ricker 1958). Since then, increased computational 

power has vastly improved quantitative methods for simulating stock dynamics in response to 

fleet dynamics (Agnew 1982; ICES 2013). The emergence of new, more advanced models 

has been slow. This is because modelling complex fisheries systems is fraught with 

inextricably sophisticated interactions that force trade-offs in realism versus simplicity when 

considering the choice of model (Sharp et al. 1983). Decisions in fisheries management rely 

on reliable models of the stock status. 

Reliable simulation models of stocks require many input parameters. These come from 

various sources. For example, in the case of natural mortality, most work in the field has been 

done on single species modelling where predator interactions are compressed into a natural 
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mortality parameter (Haddon 2011). Otherwise, the natural mortality parameter is often 

specified given life history parameters or assumed to be 0.2 (Powers 2014).  

Simulations of stock biomass into the future require age-structured data. Age-structured 

models are employed where information on recruitment and growth of cohorts are available 

to temporally differentiate biomass (Subbey et al. 2014). Age-structured population growth 

gives more accurate estimations of temporal changes in population (Haddon 2011). The 

development of age structured models both facilitated the management of fisheries using 

reference points and the projection of biomass into the future (Needle 2011). Corollary, this 

facilitated the development and implementation of HCRs.  

MSE was developed to simulate scenarios with robustness to uncertainties in stock dynamics 

(De Moor et al.2011). Many species have high uncertainties in their life history dynamics. 

Deep sea-species such as Greenland halibut (Reinhardtius hippoglossoides) are typified by 

their longevity, late maturity, sporadic recruitment and slow growth (Jorgensen et al. 2014). 

Many commercial deep-sea species (>500m) display this specific life history. This is of 

concern when considered that they are heavily exploited, and many are classified as 

endangered by the IUCN (Koslow et al. 2000; Devine et al. 2006; World Conservation Union 

2001). Thus, there is an imperative to develop HCRs that reduce the risk of overexploitation 

of these stocks. 

Long-lived species have complex life history dynamics and the results of management 

actions are therefore very uncertain. MSE critically examines the performance of these 

management actions through computer intensive simulation (Sainsbury et al. 2000). MSE of 

HCRs is thus an important tool for the sustainable exploitation of stocks with highly irregular 

life histories. 

1.4. Aims of this project 

 

This project attempts to address the utility of a Novel HCR in the management of species that 

have long lifespans and exhibit spasmodic recruitment. Ultimately, the Novel HCR was 

designed to inform the future design of a HCR for Greenland halibut management, which 

currently doesn’t specify any (ICES 2019a). The aim was to develop a Novel HCR that 

would only harvest the fraction of biomass above the Btrigger reference point. This HCR was 

developed to resemble the Escapement HCR used for short-lived species such as Atlantic 

salmon (ICES 2017). While it is used for conservation of the spawning population in salmon 
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management, it was considered as a method of conserving the sporadic spikes in recruitment 

in this study. Through MSE, the Novel HCR was compared to a more traditional ICES HCR 

using key performance criteria. The model setup, development of the two HCRs and the 

choice of performance criteria are all discussed in the next section. 

2. Materials and Methods 

 

2.1. Introduction to the model 

 

A simulation model called FLBEIA was used to evaluate the success of a novel HCR over a 

more traditional HCR of stock biomass. The model was used to compare the performance of 

the HCRs when harvesting a generic, long-lived species with irregular recruitment. 

Performance was judged based on the output from the FLBEIA model used. FLBEIA is a 

package in R programming software (R Core Team 2014) which uses FLR libraries to 

simulate real fisheries dynamics. FLBEIA is built to simulate the performance of HCRs using 

MSE and is composed of two interacting blocks: An Operating Model and a Management 

Procedure. The operating model simulates the real system dynamics. It has arguments for 

fleet, biological and covariable components. The fleet and biological components interact 

through catch and effort. The Management Procedure simulates the management of the 

fishery with arguments for data collection, the assessment model and management advice 

(Garcia et al. 2017). The performance and evaluation of the HCR depends on all three 

components. This characteristic of MSE distinguishes it from traditional assessment of 

management objectives (Punt 2014). As the fishery system tested in this project was fictional, 

no stakeholder engagement was acquired. Instead, generic outcomes were chosen as 

performance criteria. For example, a HCR was not considered if it led to stock collapse in an 

unacceptable number of model simulations, failing to adhere to the precautionary approach. 

The choice of criteria was informed by ICES guidelines and applied MSE procedures (ICES 

2013; ICES 2019b). In the next section, the design of the model to reflect the hypothetical 

stock dynamics is outlined.  
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Figure 4. Architecture of the FLBEIA model, displaying the interactions between the Operating 

Model, Management Procedure and the components of their blocks. Note: ‘Fish stocks’ will be 

referred to as the ‘Biological’ component (Garcia et al.2017). 

2.2. Designing the Operating model 

 

The Operating model was designed using input data for biological and fleet components. No 

covariates were included in the model. Long-lived species require longer time series for 

estimation of age structured biomass to encompass the growth of older cohorts (Ono et al. 

2014). Therefore, the model was created to reflect a time span of 100 years to facilitate the 

stabilisation of stock parameters and the projection of two generations of stock biomass. The 

first year of the model was composed of historical data which served as input for the 

biological and fleet parameters. The historical data was gathered from various sources to 

reflect the life history parameters of the hypothetical stock. The second year of the model was 

the beginning of the projection. All projections were set to take place in one season to 

eliminate variability due to seasonality. Fishing mortality began to be applied in the first year 

of the projection. The model is organised with a hierarchy of functions. FLBEIA is the first 

level function that calls the second level functions for each individual component of the 

model as arguments. For example, the stock recruitment argument, which had inputs for SSB 
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and recruitment per projection year, was stored in one object which was called by the 

FLBEIA function (Garcia et al. 2017). 

2.2.1.  Biological component of the Operating Model  

 

For the first year of the of the model (the historic period), biological parameters were 

designed to resemble a spasmodic, long lived species. There was a single stock active in the 

model. The stock was age structured, with an ASPG (Age Structured Population Growth) 

model chosen to simulate population dynamics. The ASPG function projected age structured 

populations one season ahead using the stochastic recruitment model and an exponential 

survival model for the age classes already in the model. All the individuals moved from an 

age class to the successive one on the 1st of January disregarding the season in which they 

were born. ASPG all occurred in one season to simplify the life history parameters of the 

hypothetical species. The population dynamics are written mathematically as: 

If s = 1, 

 𝑁𝑎,𝑦, =

{
 
 
 

 
 
 
 (𝜙𝑅𝐼𝑦=𝑦−𝑎0  )                                                 , 𝑎 =  𝑎0                                                                                    

(𝑁𝑖𝑎 . 𝑒
−
𝑀𝑖𝑎
2 − 𝐶𝑖𝑎) . 𝑒

−
𝑀𝑖𝑎
2                              , 𝑎0 <  𝑎 <  𝐴                                                                          

(𝑁𝑖𝐴−1 . 𝑒
−
𝑀𝑖𝐴−1
2 − 𝐶𝑖𝐴−1) . 𝑒

−
𝑀𝑖𝐴−1
2   +                                                                                                              

 

(𝑁𝑖𝐴 . 𝑒
−
𝑀𝑖𝐴
2 − 𝐶𝑖𝐴) . 𝑒

−
𝑀𝑖𝐴
2                             , 𝑎 =  𝐴                                                                                    

 

where 𝜙 is the recruitment function, RI the reproductive index, N the number of individuals, 

M the natural mortality, C the catch, a0 the age at recruitment, and a, y are the subscripts for 

age and year, where ia = (a-1, y-1), iA-1 = (A-1, y-1) and iA = (A, y-1). 

The reproductive index RI is given by: 

 

𝑅𝐼𝑦−𝑎0 =  ∑(𝑁 . 𝑤𝑡 . 𝑚𝑎𝑡 . 𝑓𝑒𝑐 . exp − (𝑀 .  𝑀𝑠𝑝𝑤𝑛 +  𝐹 .  𝐹𝑠𝑝𝑤𝑛 ))𝑎,𝑦−𝑎0
𝑎

 

where wt is the mean weight, mat is the percentage of mature individuals, fec is the fecundity 

parameter, Mspwn and Fspwn are the proportion of natural and fishing mortality, respectively, 

occurring before spawning (Garcia et al. 2012).  

To initiate the model, one year of historic input of numbers at age were needed. Input for the 

number of individuals at age one were selected to reflect figures for Greenland halibut from 

the report of the Arctic Fisheries Working Group (AFWG) (ICES 2007a). The successive age 
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classes were calculated where numbers at age two were 90 percent of the numbers of 

individuals at age one. The 10 percent drop off carried on until the maximum age of 40. All 

individuals in the year class matured at age 10, at which point fishing pressure was applied. 

There was no sex specific maturity. Weight at age for the historic year was calculated using 

the Von Bertalanffy Growth Function (VBGF) with input parameters from FishBase (Froese 

and Pauly 2019). The VBGF was used to calculate weight-at-age using L, K and t0 as inputs 

(Sparre and Venema 1998):  

𝑊𝑡 =  𝑐 .  𝐿∞
3.  [1 − 𝑒(−𝐾 .  (𝑎−𝑎0))]3 

gives the weight as a function of age where 𝑐 is the condition factor, L is the asymptotic 

length, K is the curvature parameter and 𝑎0 is the age at which the fish has zero length. The 

weight at age for the historic year was equal to the weight of the individual of the 

corresponding age for each year of the projection. 

The recruitment function used to simulate entrance to the population, was the Beverton and 

Holt model. The function is written mathematically as: 

𝑅 = 
𝛼 . 𝑆𝑆𝐵

𝛽 + 𝑆𝑆𝐵
 

where 𝛼 was the maximum asymptotic recruitment value and 𝛽 was the SSB that provided 

half the maximum recruitment (𝛼/2) (Garcia et al. 2012) (Figure 5). The recruitment input 

values were chosen to reflect numbers similar to Greenland halibut (ICES 2017a). 

There were three recruitment scenarios tested:  

1. Deterministic recruitment. 

2. Sporadic recruitment (SR).   

3. Erratic recruitment (ER).  

In the case of the deterministic projection model, 𝛼 and 𝛽 were constant for every year of the 

projection period, where recruitment varied only according to SSB. The deterministic model 

was used as to ensure stability of the stock dynamics when the HCR was applied to the 

biomass. The SR scenario was the one meant to most closely resemble the sporadic 

recruitment of the long-lived generic species. Finally, the ER scenario was used to test MSE 

on a species with erratic dynamics. This is done in real world MSE to view the robustness of 

HCRs in cases where there are high levels of uncertainty (ICES 2019b). In the case of SR and 
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the ER a multiplier was used on 𝛼 using a uniform probability distribution, where in each 10 

year projection period there was a 10 percent chance of a spike in recruitment. In the SR 

scenario,  

𝑖𝑓 𝑢 > 9,    𝛼′ =  𝛼  .  5.5 

𝑖𝑓 𝑢 < 9,    𝛼′ =  𝛼  .  0.5 

In the ER scenario: 

𝑖𝑓 𝑢 > 9,    𝛼′ =  𝛼  .  9.1 

𝑖𝑓 𝑢 < 9,    𝛼′ =  𝛼  .  0.1 

where u is a random number between 0 and 10 in a uniform probability distribution, 𝛼′ is the 

recalculated asymptotic recruitment value used in the Beverton and Holt stock recruitment 

model. In both recruitment scenarios, the expected average value of 𝛼′ was equal to  𝛼. 

 

Figure 5. Graphical representation of the Beverton and Holt stock recruitment relationship in 

response to SSB levels in the deterministic recruitment scenario. The dotted line shows the value of 𝛽. 
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2.2.2. Fleet component of the Operating Model  

 

The Operating Model was composed of a single fleet operating in a single season. The effort 

model used was a Simple Mixed Fisheries Behaviour (SMFB) model, which simulated the 

behaviour of the fleets. The function is season dependent and uses effort, catchability and 

catch threshold parameters as input. The catch production model calculated catch according 

to the SMFB and the Ftarget set in the HCR. There was a feedback between catch and effort, 

where catch is a product of effort and effort depends on the catch production model. The 

catch production model used was CobbDouglasAge where catch was calculated as: 

𝐶 =  ∑𝑞 

𝑎

. (𝐸. γ) . 𝑆𝑆𝐵𝑎   

where C is the catch, 𝑞 is the catchability of the fleet, a is the subscript for age, 𝐸 is the effort 

exerted by fleet f, γ is the proportion of effort exerted by fleet and B is the biomass (Garcia et 

al. 2012). A catch threshold (γ) of 0.9 was applied to prevent the whole population being 

caught in any one year of the projection. Parameters 𝑞 and 𝐸 were constant for each 𝑎 and 

year. The value of 𝐸 depended on the Ftarget applied in the iteration. 

2.3. Management Procedure 

 

2.3.1. The Observation Model 

 

The Management Procedure was run once per year, consisting of the observation model, the 

assessment procedure and management advice. Catch, biological data and abundance indices 

were used in the observation model. The PerfectObs function was specified to draw the data 

from the Operating Model without any error sources. With perfect knowledge, it returns an 

observation of the population without uncertainty (Garcia et al. 2012).  

2.3.2. The Management Advice 

 

Advice was based on perfect knowledge of stock dynamics from the observation model. The 

management advice model specifies the HCR to be used on the single stock. The different 

HCRs used reflected both traditional and novel rules. All HCRs that were introduced to the 

model were catch based methods, where the effort model in the fleets Operating Model 

aligned with the management advice i.e. effort was restricted by the catch quota using the 
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SMFB effort model. The ICES HCR was a default HCR in FLBEIA. The reference points 

that are defined in the ICES HCR: Btrigger initiates a level of F lower than SSB, Blim is the SSB 

level that corresponds with impaired recruitment and Ftarget was fishing mortality that leads to 

MSY. The ICES HCR aims to keep fishing at the Ftarget level defined in the function where 

TAC advice is aligned with the fishing mortality (Garcia et al. 2012). Blim is most commonly 

set based on stock assessment. In this case, it reflected the biomass that produced ~90 percent 

of the maximum recruitment. The ICES HCR was written mathematically as: 

    𝐹𝑡𝑎𝑟𝑔𝑒𝑡 =   {

0
𝐹𝑡𝑎𝑟𝑔𝑒𝑡
𝐹𝑡𝑎𝑟𝑔𝑒𝑡

.  
𝑆𝑆𝐵

𝐵𝑡𝑟𝑖𝑔𝑔𝑒𝑟
        

, 𝑖𝑓 𝑆𝑆𝐵 < 𝐵𝑙𝑖𝑚       
, 𝑖𝑓 𝑆𝑆𝐵 < 𝐵𝑡𝑟𝑖𝑔𝑔𝑒𝑟
, 𝑖𝑓 𝑆𝑆𝐵 ≥ 𝐵𝑡𝑟𝑖𝑔𝑔𝑒𝑟

                

 

Figure 6. Graphical representation of the ICES HCR and reference points, where B??? was zero SSB 

in the model and Fmsy was Ftarget (Garcia et al. 2012). 

2.4. Diagnostics 

Diagnostic output and plots were produced to assess the input parameter values. Input values 

for the ASPG, SMFB and other models in the Operating Model were examined to scrutinise 

the initiation of FLBEIA. Age structured data for weight, numbers, spawning time, mortality, 

landings retention, landings and maturity were accepted when they reflected the life history 

desired in the hypothetical species. The inputs that were used for the projection period were 

examined to ensure they were consistent with the time specified functions described in the 

Operating Model. The initial number of individuals at each age reflected the total numbers 

alive given a constant natural mortality of 0.1 applied to each cohort. Weight at age in tonnes 

followed the standard VBGF curve. Maturity of cohorts didn’t occur until age 10 when they 
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joined the SSB and were subject to fishing mortality. Finally, the landings retention curve 

confirmed that there were no landings of individuals below the age of 10 (Figure 7). 

 

Figure 7. Sample diagnostic plots for input parameters in the biological and fleet Operating Model.  

2.5. Tuning    
 

The model was tuned by varying input parameters and scrutinising the corresponding output 

response. Catch and effort were altered in order to predict the interactions between fleets and 

biological components of the Operating Model. TAC, effort and landings were scaled 

up/down by a specified fraction and the responses in SSB and catch were examined. Taking 

recruitment as an example, the fishing mortality was doubled and the projection was run. 

Output from catch and SSB were examined to inspect the fluctuations across time. Errors in 

the Operating Model were debugged using the above method, in order to tune the 

hypothetical data to FLBEIA.  
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2.6.HCR setup 

 

2.6.1. ICES HCR setup 

 

 

Figure 8. Graphical representation of the ICES HCR applied with Btrigger values of 1.1*Blim (a), 

1.4*Blim (b), 2*Blim, (c), 2.5*Blim (d), where the dashed line is Blim of 45000 tonnes. Ftarget in the above 

case was 0.1 for SSB > Btrigger. 

The ICES HCR used was the default function in FLBEIA (Figure 6). The ICES HCR is a 

“hockey-stick” model where there is a straight line from the origin to the Ftarget, followed by a 

horizontal line after Btrigger. Below the Btrigger threshold, there is a reduction of linear reduction 

in Ftarget (Figure 8). It was formulated according to the default function in the FLBEIA manual 

and described above (Garcia et al. 2012). The ICES HCR was applied with Ftarget values of 

0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4 for the ER scenario. In the case of SR, additional 

values of 0.15, 0.25 and 0.35 were included. Each recruitment, Ftarget and Btrigger combination 

was iterated 100 times and output was stored in summary objects. The mean catch, Realized 

F, risk of collapse, fraction of years with moratoria and catch variability were calculated from 

each summary object.  
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2.6.2. Novel HCR setup 

 

 

Figure 9. Graphical representation of the novel HCR applied with Btrigger values of 1.1*Blim (a), 

1.4*Blim (b), 2*Blim (c), 2.5*Blim (d), where the dashed line is Blim of 45000 tonnes. Ftarget in the above 

case was 0.1 for SSB > Btrigger. 

The Novel HCR was a modification of the default ICES HCR function in the FLBEIA model. 

The source code was changed so that Ftarget was only applied to the fraction of biomass above 

a precautionary level of biomass (Btrigger). This resembles a constant escapement strategy, 

where some proportion of the biomass is protected from harvesting altogether (Figure 9). 

Thus, Ftarget was only applied to SSB > Btrigger. The Novel HCR written mathematically is: 

𝐹𝑡𝑎𝑟𝑔𝑒𝑡 =   {
0

𝐹𝑡𝑎𝑟𝑔𝑒𝑡
         

, 𝑖𝑓 𝑆𝑆𝐵 < 𝐵𝑡𝑟𝑖𝑔𝑔𝑒𝑟

, 𝑖𝑓 𝑆𝑆𝐵 ≥ 𝐵𝑡𝑟𝑖𝑔𝑔𝑒𝑟
 

The Novel HCR was applied with Ftarget values identical to the ICES HCR. Each recruitment, 

Ftarget and Btrigger combination was iterated 100 times and output was stored in summary 
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objects (Table 1). The mean catch, Realized F, risk of collapse, fraction of years with 

moratoria and catch variability were calculated from each summary object. 

Table 1. The Ftarget and Btrigger combinations simulated and the number of iterations of each cell for 

both HCRs. Blue cells indicate scenarios that were iterated for SR but not ER. 

 Btrigger    

Ftarget 49500 

(1.1*Blim) 

63000 

(1.4*Blim) 

90000 

(2*Blim) 

112500 

(2.5*Blim) 

0.01 100 100 100 100 

0.025 100 100 100 100 

0.05 100 100 100 100 

0.075 100 100 100 100 

0.1 100 100 100 100 

0.15 100 100 100 100 

0.2 100 100 100 100 

0.25 100 100 100 100 

0.3 100 100 100 100 

0.35 100 100 100 100 

0.4 100 100 100 100 

 

2.7. Performance indicators and post-processing 

 

The summary files created from the FLBEIA model were stored and saved in objects that 

were downloaded and processed. FLBEIA summary output was then scrutinised so risk of 

SSB falling below Blim, mean total catch, catch stability and mean realized fishing mortality 

could be compared. The first predictor to be scrutinised was the risk of stock collapse, 

qualified as SSB falling below Blim. Risk is an indicator of the probability that SSB is below 

Blim in any given year. If SSB was below Blim for one or more of the final 10 years of the 

projection, it was qualified as a collapse for that iteration. If the risk was above 5% (>5/100 

iterations), the scenario was not viable for comparison across other criteria. This method of 

calculating risk is aligned with precautionary criterion for MSE (ICES 2019b).  The risk was 

recalculated for the erratically recruiting stock based on the Ftarget = 0 scenario. The risk 
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threshold was doubled according to the chance of the stock falling below Blim in the absence 

of fishing pressure, as per standard procedure for erratically recruiting stocks (ICES 2019b).  

Fraction of moratoria was calculated to assess the frequency of fishery closures. It was only 

used to assess the performance of the Novel HCR. The overall fraction of years that 

experienced closures was calculated as a percentage across all iterations. That is, the fraction 

of years where SSB was below Btrigger. No threshold was predefined given that the criteria 

was only examined for the Novel HCR. Regardless, there was utility in examining this as it 

was indicator of how often the fishery was closed. 

The average catch was calculated according to the mean in the final 10 years of the projection 

and median across the 100 iterations. The average Realized F was calculated in the same 

way. Average catch gave an indication of how successful the HCR was in maximising catch 

along the time series. Average Realized F was an indicator of the fraction of time that fishing 

was occurring above and below the Btrigger threshold. 

Interannual Catch Variability (ICV) was used as another indicator of the stability of the 

hypothetical fishery. In real world commercial fisheries catch stability is often valued above 

high catch when income stability depends upon it. ICV was calculated as: 

|𝐶𝑦+1 − 𝐶𝑦−1|

𝐶𝑦−1
  

where C is catch and y is the year. The average ICV was calculated as the mean of the final 

10 years and the median over all iterations. 

3. Results 

3.1. Introduction 

 

Results of the simulations of all scenarios are presented in tables below. All results were 

taken from the last ten years of each iteration. Firstly, Ftarget and Btrigger combinations were 

screened for their risk of stock collapse. Mean catch, ICV and Realized F were then 

calculated for each scenario. These two steps were carried out for both the SR and ER 

scenarios. Corollary, the same performance criteria were used for the Novel HCR, with the 

addition of moratoria. The performance results that had an acceptable risk (<5%) were then 

scrutinised along all indicators to observe trade-offs between the two HCRs. This comparison 
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was then used to gain insight on the utility of the Novel HCR and implications were 

subsequently discussed based on the relevant management objectives. 

Risk was qualified differently for the ER condition, as discussed in the methods (Section 2.7). 

This was due to the inability of the stock to maintain biomass above Blim for <5% of iterations 

where a moratorium was put on fishing (Ftarget = 0). The average risk of collapse was 

calculated as 22%. This figure was doubled and used as the new acceptable risk of 44%. This 

is a standard procedure in MSE when dealing with stocks of species with unstable dynamics 

(ICES 2019b). 

3.2. Sporadic Recruitment 

3.2.1. ICES HCR 

 

Presented below are the performance results for the ICES HCR under the SR scenario. 

Table 2. Risk, Catch, ICV and Realized F for lower Ftarget values and SR for the ICES HCR. Green 

cells indicate risk below 5%, while red cells indicate risk above 5%.  

Ftarget Btrigger Risk Catch ICV Realized F 

0.01 1.1*Blim 0 1050.82 0.06 0.01 

0.01 1.4*Blim 0 1041.78 0.04 0.01 

0.01 2*Blim 0 1072.07 0.06 0.01 

0.01 2.5*Blim 0 1017.07 0.07 0.01 

0.025 1.1*Blim 0 2396.62 0.08 0.025 

0.025 1.4*Blim 0 2396.62 0.08 0.025 

0.025 2*Blim 0 2405.3 0.08 0.025 

0.025 2.5*Blim 0 2325.02 0.09 0.024 

0.05 1.1*Blim 19 3765.35 0.09 0.05 

0.05 1.4*Blim 0 3830.38 0.1 0.05 

0.05 2*Blim 0 3826.69 0.09 0.05 

0.05 2.5*Blim 0 3136.13 0.12 0.04 

0.075 1.1*Blim 28 4595.12 0.1 0.075 

0.075 1.4*Blim 26 4489.34 0.12 0.072 

0.075 2*Blim 0 4597.23 0.12 0.066 

0.075 2.5*Blim 0 4008.18 0.13 0.056 



25 
 

 

Table 3. Risk, Catch, ICV and Realized F for higher Ftarget values and SR for the ICES HCR. Green 

cells indicate risk below 5%, while red cells indicate risk above 5%.  

Ftarget Btrigger Risk Catch ICV Realized F 

0.1 1.1*Blim 70 4673.7 0.08 0.1 

0.1 1.4*Blim 62 4548.69 0.16 0.09 

0.1 2*Blim 38 4169.89 0.16 0.08 

0.1 2.5*Blim 7 3918.82 0.16 0.06 

0.15 1.1*Blim 84 5883.8 0.18 0.15 

0.15 1.4*Blim 84 5203.75 0.19 0.13 

0.15 2*Blim 68 5553.67 0.23 0.11 

0.15 2.5*Blim 49 4325.39 0.19 0.09 

0.2 1.1*Blim 99 5742.67 0.26 0.18 

0.2 1.4*Blim 95 5378.93 0.27 0.16 

0.2 2*Blim 90 5411.02 0.24 0.13 

0.2 2.5*Blim 89 5098.16 0.25 0.1 

0.25 1.1*Blim 99 5521.34 0.27 0.21 

0.25 1.4*Blim 100 5555.42 0.29 0.19 

0.25 2*Blim 100 5222.04 0.26 0.14 

0.25 2.5*Blim 93 5335.88 0.27 0.13 

0.3 1.1*Blim 98 5061.22 0.29 0.23 

0.3 1.4*Blim 99 5643.08 0.33 0.22 

0.3 2*Blim 98 5461.49 0.32 0.17 

0.3 2.5*Blim 100 5425.08 0.3 0.15 

0.35 1.1*Blim 100 6089.9 0.38 0.3 

0.35 1.4*Blim 100 5611.67 0.34 0.24 

0.35 2*Blim 100 5512.99 0.3 0.19 

0.35 2.5*Blim 99 5779.65 0.29 0.16 

0.4 1.1*Blim 100 5461.39 0.38 0.32 

0.4 1.4*Blim 100 5426 0.35 0.27 

0.4 2*Blim 100 5198.35 0.31 0.2 
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Figure 10. Matrix of colour-coded results for Ftarget and Btrigger combinations with catch and ICV 

using the ICES HCR under SR. White cells indicate results that had risk >5%. 

0.4 2.5*Blim 100 5575.69 0.32 0.18 
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Figure 11. ICES HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

SR scenario, Btrigger of 1.4 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 63000 (1.4 * 

Blim) and the dashed line shows the Blim of 45000. 
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Figure 12. ICES HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

SR scenario, Btrigger of 2 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 90000 (2 * 

Blim) and the dashed line shows the Blim of 45000. 

3.2.2. Novel HCR 

 

Presented below are the performance results for the Novel HCR under the SR scenario. 

Table 4. Risk, Catch, ICV, Realized F and Moratoria for lower Ftarget values and SR for the Novel 

HCR. Green cells indicate risk below 5%, while red cells indicate risk above 5%.  

Ftarget Btrigger Risk Catch ICV Realized F Moratoria 

0.01 Blim 0 744.86 0.09 0.01 0 

0.01 1.1*Blim 0 699.43 0.09 0.01 0 

0.01 1.4*Blim 0 776.44 0.11 0.01 0 
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0.01 2*Blim 0 432.74 0.19 0.01 12.5 

0.01 2.5*Blim 0 142.87 0.28 0.01 34.7 

0.025 Blim 0 1800.62 0.09 0.025 0 

0.025 1.1*Blim 0 1671.46 0.09 0.025 0 

0.025 1.4*Blim 0 1415.85 0.12 0.025 0 

0.025 2*Blim 0 739.72 0.24 0.025 17.5 

0.025 2.5*Blim 0 426.92 0.29 0.025 35.2 

0.05 Blim 0 2763.98 0.13 0.05 0 

0.05 1.1*Blim 0 2607.7 0.14 0.05 0 

0.05 1.4*Blim 0 2208.33 0.16 0.05 0 

0.05 2*Blim 0 1474.4 0.24 0.05 21.1 

0.05 2.5*Blim 0 1063.69 0.35 0.05 29.4 

0.075 Blim 0 3120.58 0.16 0.075 0 

0.075 1.1*Blim 0 2962.48 0.16 0.075 0 

0.075 1.4*Blim 0 2774.64 0.2 0.075 0 

0.075 2*Blim 0 1778.94 0.36 0.075 23.9 

0.075 2.5*Blim 0 993.52 0.39 0.075 41.1 

 

Table 5. Risk, Catch, ICV, Realized F and Moratoria for higher Ftarget values and SR for the Novel 

HCR. Green cells indicate risk below 5%, while red cells indicate risk above 5%.  

Ftarget Btrigger Risk Catch ICV Realized F Moratoria 

0.1 Blim 0 3351.58 0.19 0.1 0 

0.1 1.1*Blim 0 3251.88 0.18 0.1 0 

0.1 1.4*Blim 0 3191.78 0.24 0.1 1.1 

0.1 2*Blim 0 2005.47 0.33 0.09 31.5 

0.1 2.5*Blim 0 1909.86 0.4 0.05 56.6 

0.15 Blim 0 4516.48 0.29 0.15 0 

0.15 1.1*Blim 0 3918.69 0.26 0.15 0 

0.15 1.4*Blim 0 3436.23 0.29 0.15 0 

0.15 2*Blim 0 2122.31 0.41 0.11 38.3 

0.15 2.5*Blim 0 1370.17 0.45 0.08 51.8 
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0.2 Blim 0 4877.77 0.39 0.2 0 

0.2 1.1*Blim 0 4884.68 0.42 0.2 0 

0.2 1.4*Blim 0 3303.22 1.09 0.2 1.7 

0.2 2*Blim 0 2091.79 0.49 0.11 51.8 

0.2 2.5*Blim 0 945.97 0.92 0.08 59.2 

0.25 Blim 2 4541.16 0.49 0.25 0 

0.25 1.1*Blim 0 4359.74 0.85 0.25 1.8 

0.25 1.4*Blim 0 4184.78 3.21 0.25 11.1 

0.25 2*Blim 0 2499.95 1.13 0.13 52.9 

0.25 2.5*Blim 0 883.79 0.28 0.08 65.3 

0.3 Blim 42 5338.96 1.13 0.3 9 

0.3 1.1*Blim 22 4993.01 1.23 0.27 13.7 

0.3 1.4*Blim 0 3348.11 3.45 0.21 30 

0.3 2*Blim 0 2726.48 2.2 0.15 54.6 

0.3 2.5*Blim 0 1123.5 1.88 0.12 63.2 

0.35 Blim 62 4838.77 1.27 0.28 21.1 

0.35 1.1*Blim 41 5559.68 1.63 0.28 22.9 

0.35 1.4*Blim 1 4385.51 47.05 0.21 40.4 

0.35 2*Blim 0 1744.14 0.37 0.105 65.2 

0.35 2.5*Blim 0 1547.27 1142.96 0.14 63.7 

0.4 Blim 79 5075.34 1.49 0.4 24.5 

0.4 1.1*Blim 58 5501.79 118.02 0.32 26.9 

0.4 1.4*Blim 10 4695.9 8.48 0.24 40.9 

0.4 2*Blim 0 2519.91 0.87 0.2 58.3 

0.4 2.5*Blim 0 1799.12 2.51 0.16 65.7 
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Figure 13. Matrix of colour-coded results for Ftarget and Btrigger combinations with catch, 

moratoria and ICV using the Novel HCR under SR. White cells indicate results that had risk >5%. 

Any ICV number >10 was collapsed to 10 in order to make the colour-coding visually useful. 
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Figure 14. Novel HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

SR scenario, Btrigger of 1.4 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 63000 (1.4 * 

Blim) and the dashed line shows the Blim of 45000. 
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Figure 15. Novel HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

SR scenario, Btrigger of 2 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 90000 (2 * 

Blim) and the dashed line shows the Blim of 45000. 

3.3. Erratic recruitment 

3.3.1. ICES HCR 

 

Presented below are the performance results for the ICES HCR under the ER scenario. 

Table 6. Risk, Catch, ICV and Realized F for lower Ftarget values and ER for the ICES HCR. Green 

cells indicate risk below 44%, while red cells indicate risk above 44%.  

Ftarget Btrigger Risk Catch ICV Realized F 

0 NA 22 0 0 0 

0.01 1.1*Blim 30 935.71 0.12 0.01 
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0.01 1.4*Blim 21 998.1 0.12 0.01 

0.01 2*Blim 24 1073.55 0.14 0.01 

0.01 2.5*Blim 27 862.29 0.14 0.01 

0.025 1.1*Blim 36 2293.22 0.14 0.025 

0.025 1.4*Blim 36 2277.2 0.14 0.025 

0.025 2*Blim 32 2162.84 0.15 0.023 

0.025 2.5*Blim 32 2045.64 0.15 0.021 

0.05 1.1*Blim 50 3325.55 0.19 0.05 

0.05 1.4*Blim 49 3279.23 0.19 0.05 

0.05 2*Blim 53 2867.13 0.16 0.04 

0.05 2.5*Blim 47 2533.91 0.17 0.04 

0.075 1.1*Blim 64 3913.56 0.19 0.071 

0.075 1.4*Blim 72 3956.32 0.18 0.063 

0.075 2*Blim 62 3723.71 0.22 0.057 

0.075 2.5*Blim 59 3014.23 0.2 0.047 

 

Table 7. Risk, Catch, ICV and Realized F for higher Ftarget values and ER for the ICES HCR. Green 

cells indicate risk below 44%, while red cells indicate risk above 44%.  

Ftarget Btrigger Risk Catch ICV Realized F 

0 NA 22 0 0 0 

0.1 1.1*Blim 85 3863.66 0.22 0.09 

0.1 1.4*Blim 68 4894.34 0.23 0.09 

0.1 2*Blim 74 3283.07 0.23 0.07 

0.1 2.5*Blim 61 4484.27 0.33 0.07 

0.2 1.1*Blim 96 4859.12 0.39 0.16 

0.2 1.4*Blim 96 4366.68 0.49 0.12 

0.2 2*Blim 96 4436.3 0.57 0.12 

0.2 2.5*Blim 88 5046.66 0.61 0.1 

0.3 1.1*Blim 100 3402.24 0.49 0.18 

0.3 1.4*Blim 100 4085.66 0.79 0.18 

0.3 2*Blim 100 4246.91 0.62 0.13 
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0.3 2.5*Blim 99 4439.04 0.6 0.11 

0.4 1.1*Blim 100 2933.59 0.75 0.2 

0.4 1.4*Blim 100 3008.32 0.88 0.16 

0.4 2*Blim 100 3985.45 0.79 0.17 

0.4 2.5*Blim 99 4245.88 0.64 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Matrix of colour-coded results for Ftarget and Btrigger combinations with catch and ICV 

using the ICES HCR under ER. White cells indicate results that had risk >5%. 
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Figure 17. ICES HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

ER scenario, Btrigger of 1.4 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 63000 (1.4 * 

Blim) and the dashed line shows the Blim of 45000. 
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Figure 18. ICES HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

ER scenario, Btrigger of 2 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 90000 (2 * 

Blim) and the dashed line shows the Blim of 45000. 

3.3.2. Novel HCR 

 

Presented below are the performance results for the Novel HCR under the ER scenario. 

Table 8. Risk, Catch, ICV, Realized F and Moratoria for lower Ftarget values and ER for the Novel 

HCR. Green cells indicate risk below 44%, while red cells indicate risk above 44%.  

Ftarget Btrigger Risk Catch ICV Realized F Moratoria 

0 NA 22 0 0 0 100 

0.01 Blim 28 601.81 0.17 0.01 16.7 

0.01 1.1*Blim 22 731.98 0.17 0.01 16.5 
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0.01 1.4*Blim 20 556.51 0.24 0.01 18.6 

0.01 2*Blim 14 367.34 0.3 0.009 30 

0.01 2.5*Blim 24 235.94 0.3 0.007 43.2 

0.025 Blim 23 2038.63 0.19 0.025 12.2 

0.025 1.1*Blim 21 1528.09 0.25 0.025 12 

0.025 1.4*Blim 27 904.22 0.26 0.025 25.5 

0.025 2*Blim 24 575.69 0.3 0.02 40.2 

0.025 2.5*Blim 24 423.91 0.39 0.015 43 

0.05 Blim 37 2481.17 0.27 0.05 20.8 

0.05 1.1*Blim 38 2134.89 0.32 0.05 24.3 

0.05 1.4*Blim 30 1965.12 0.36 0.045 27.8 

0.05 2*Blim 19 1354.89 0.36 0.04 35.5 

0.05 2.5*Blim 24 786.21 0.39 0.03 45 

0.075 Blim 41 3044.62 0.34 0.075 23.3 

0.075 1.1*Blim 36 3505.25 0.35 0.075 24.1 

0.075 1.4*Blim 35 1902.2 0.37 0.06 31.6 

0.075 2*Blim 27 1132.76 0.36 0.045 44.8 

0.075 2.5*Blim 25 488.09 0.34 0.03 57.9 

 

Table 9. Risk, Catch, ICV, Realized F and Moratoria for higher Ftarget values and ER for the Novel 

HCR. Green cells indicate risk below 44%, while red cells indicate risk above 44%.  

Ftarget Btrigger Risk Catch ICV Realized F Moratoria 

0 NA 22 0 0 0 100 

0.1 Blim 60 2758.61 0.41 0.08 30.1 

0.1 1.1*Blim 46 3381.71 0.41 0.09 30.3 

0.1 1.4*Blim 42 1694.19 0.41 0.07 39.7 

0.1 2*Blim 31 1567.79 0.44 0.055 48.2 

0.1 2.5*Blim 26 1310.49 0.39 0.05 54.8 

0.2 Blim 83 4021.95 0.42 0.12 47.3 

0.2 1.1*Blim 82 3207.91 1.4 0.12 46.6 

0.2 1.4*Blim 61 2162.32 0.89 0.1 52.8 
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0.2 2*Blim 42 2847.55 0.57 0.1 53.9 

0.2 2.5*Blim 29 364.71 0.26 0.02 70.8 

0.3 Blim 99 2972.24 0.48 0.12 62.2 

0.3 1.1*Blim 95 3803.95 4053.58 0.15 54.3 

0.3 1.4*Blim 79 4481.62 1.51 0.15 55.4 

0.3 2*Blim 40 2003.52 0.55 0.12 66 

0.3 2.5*Blim 34 1402.38 0.26 0.09 71.6 

0.4 Blim 97 3182.28 6967.54 0.16 61.7 

0.4 1.1*Blim 98 2984.67 0.51 0.16 64.9 

0.4 1.4*Blim 90 3413.64 3.29 0.14 61.5 

0.4 2*Blim 47 1467.46 1.23 0.12 70.5 

0.4 2.5*Blim 41 285.21 0.21 0.08 74.1 
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Figure 19. Matrix of colour-coded results for Ftarget and Btrigger combinations with catch, moratoria 

and ICV using the Novel HCR under ER. White cells indicate results that had risk >5%. Any ICV 

number >10 was collapsed to 10 in order to make the colour-coding visually useful. 
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Figure 20. Novel HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

ER scenario, Btrigger of 2 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 90000 (2 * 

Blim) and the dashed line shows the Blim of 45000. 
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Figure 21. Novel HCR projection graphs with examples of 5 iterations for each scenario. The results 

of catch (tonnes), SSB (tonnes) and Realized F are for the final 40 years of the projection under the 

ER scenario, Btrigger of 2 * Blim and low Ftarget values of 0.01, 0.025, 0.05 and 0.075. The figure 

portrays a time series equal to the maximum age of the stock and shows the final 10 years from where 

performance indicators were taken. The thick horizontal line indicates the Btrigger level of 90000 (2 * 

Blim) and the dashed line shows the Blim of 45000. 

 

4. Discussion 

 

4.1. Introduction 

 

MSE is a method used to test multiple HCRs against certain performance criteria to 

determine the most effective one according to the objectives of the fishery. The final choice 

of HCR is made by the fisheries managers, the role of scientists to make the performance and 

trade-offs of the various rules explicit. This manuscript provides details of the trade-offs 

implied in the use of two competing HCRs: an ICES HCR and a Novel HCR. They were 
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compared in two recruitment scenarios: SR (somewhat erratic recruitment) and ER (highly 

erratic recruitment, with the unfished stock naturally falling below Blim). The results of these 

criteria and their trade-offs are presented and interpreted below. These trade-offs are provided 

as a reference for the further use of the model Novel HCR developed. The management 

implications of using each HCR are also explored. 

4.2. Comments on results 

4.2.1. Moratoria 

 

An additional column was added to the Novel HCR results to reflect the number of moratoria 

on fishing. Similar to, but more severe than ICV, moratoria are generally an undesirable 

consequence for commercial fisheries. However, in some cases they may be necessary for 

rapid stock rebuilding and increased yield. Temporary moratoria on North Sea herring and 

Norwegian spring-spawning herring together with HCRs facilitated the rebuilding of these 

stocks (Sparholt et al. 2007). However, a high fraction of moratoria is generally suboptimal. 

This was of particular importance when examining the Novel HCR, where the reduction of 

biomass below the Btrigger point prompted a moratorium by design. In contrast, the Btrigger 

point in the ICES HCR triggered a continuous reduction in Ftarget, until SSB declined to zero 

and thus avoids fishery closures. For the Novel HCR there was a positive relationship 

between the level of Btrigger and fraction of moratoria that was accentuated at high Ftarget 

values. There were many scenarios that had good yield, acceptable risk and relatively low 

ICV, but had a high fraction of moratoria (Table 4). At lower Btrigger points, the Novel HCR 

leads to a smaller fraction of closures. It’s not until Ftarget is increased to 0.25 where there is a 

stark increase in the fraction of moratoria (Table 5). They also increase substantially at a 

Btrigger of 1.4*Blim. It appears that there is a trade-off here between a lower risk of stock 

collapse (SSB < Blim) and higher fraction of moratoria (SSB < Btrigger) in the choice of the 

Novel HCR over the ICES HCR. It’s important to re-emphasise here that these observations 

were made with an FLBEIA model running with perfect knowledge. The addition of noise is 

likely to add an extra stress on reference points and provide a more accurate measure of HCR 

robustness to moratoria. 
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4.2.2. Reference points and risk 

 

The most important reference point in this study was Btrigger. Btrigger in this study was 

triggering the reduction of Ftarget at two very different rates in the two competing HCRs. The 

Btrigger point in the ICES HCR initiated a linear reduction in Ftarget. If there was SSB available 

to harvest, there was catch output as a result. The Novel HCR has a constant Ftarget and was 

applied to the difference between SSB and Btrigger. Below Btrigger, fishing was halted. Btrigger is 

equivalent to a precautionary biomass reference point (Bpa), where the precautionary point is 

conservative and aiming to reduce risk (ICES 2012). This is how it is used in escapement 

strategies (e.g. conserving salmon spawners via escapement), as was discussed earlier (ICES 

2017b). The Btrigger point is a parallel of the Bescapement reference point for Atlantic salmon, 

conserving the biomass above and reducing the risk of falling below the Btrigger threshold. 

The Btrigger reference points were chosen to examine a wide range of scenarios. The lower the 

Btrigger break point, the higher the fluctuations in average catch, ICV and risk were among 

Ftarget values. This non-linearity is a known feature in MSE arising from break points in HCRs 

(ICES 2019b). The 1.1*Blim reference point was very low but was an interesting point to 

explore in reference to the robustness of the novel HCR. Blim was also included as a trigger 

point in the Novel HCR (Table 4). Although this is not standard procedure, it provided useful 

information on the performance of the Novel HCR when a large fraction of SSB was 

available. However, if error was added to the stock dynamics, perhaps Blim would not be a 

robust point in the control rule. This error can come in the form of process error on stock 

inputs or observation noise from a full assessment for the hypothetical species (ICES 2019b). 

SSB remained above Btrigger for most of the projection period using the Novel HCR in most 

scenarios with SR (Table 4; Table 5). It only fell below Blim in scenarios where Btrigger was 

low and Ftarget was high (Table 9). The ICES HCR in comparison spent most of the time in 

the buffer zone between Btrigger and Blim, unless Btrigger was very low (Figure 11). 

The higher Btrigger points provided a low fraction of SSB available for use in the Novel HCR. 

This was reflected in the low results for average ratch (Table 4). There were low catches in 

both HCRs at higher Btrigger points, but it was more pronounced in the Novel HCR where 

catches were considerably lower. Where recruitment was erratic, the Novel HCR appeared 

much more responsive to the Btrigger point, reflected in the decrease in risk with higher Btrigger 

values (Table 9). This was not observed to the same extent with the ICES HCR (Table 7). In 

both HCRs the higher Btrigger points reduced the percentage risk of falling below Blim. Thus, 
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the Btrigger point offered a trade-off between risk and total yield. There was a difference 

between both HCRs with regards risk also. 

The Risk of the SSB falling below Blim was related to both the recruitment scenario and HCR 

used. In the case of the ICES HCR, risk was high for Ftarget values above 0.1 for SR (Table 3). 

For ER, acceptable risk was only found at the low end of the Ftarget range (Table 5). The 

Novel HCR Ftarget can be pushed much higher before risk becomes unacceptable (Figure 13). 

For higher Btrigger values, the Novel HCR has a relatively low risk, even in the case of ER.  

4.2.3. Catch and Realized F 

 

Catch was generally higher for the ICES HCR in the SR scenario, but the Novel HCR gave 

higher catch on the erratically recruiting stock (ER). Catch had a gradual decline in the Novel 

HCR until it reached Btrigger, below which fishing was halted. As only the fraction above 

Btrigger was targeted, the Novel HCR was less influenced by the sporadic recruitment patterns, 

following the magnitude of SSB more closely (Figure. In comparison, the ICES HCR catch 

was much more reactive to recruitment spikes (Figure 12). catch is the primary marker of the 

performance of the fishery. Given acceptable risk, high yields are one of the most desirable 

consequences when employing a HCR.  

Realized F was the fishing mortality output from the model for every year of the projection. 

The output from any year was a function of the Ftarget, Btrigger and biomass, and was calculated 

according to the relevant HCR. Realized F is important only as an indicator of the time spent 

fishing above and below the Btrigger point. At the higher Ftarget values, Realized F was 

averaging at much lower values for all scenarios. There were generally lower Realized F 

values for the ICES HCR at higher Btrigger levels (Table 3). At higher Ftarget levels this was 

especially pronounced where there was a much smaller Realized F value than the Ftarget used 

in the HCR. 

In contrast, the Realized F for the Novel HCR was generally approximately equal to the Ftarget 

specified in the code (Table 4). Only at higher Btrigger levels the Realized F dropped. Above 

Btrigger, the Realized F was always equal to the Ftarget input (Table 5).  
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4.2.4. ICV 

 

The ICV was much higher for the Novel HCR. The ICV increased with higher Ftarget values 

(Table 5). ICV was much lower for the ICES HCR, reflecting the relative stability in Catch 

over time, as a result of the gentle reduction in fishing pressure at low stock sizes (Table 3). 

The difference in ICV can be explained by the behaviour of the two HCRs in relation to the 

SSB. The ICES HCR was designed to return Catch at any SSB level. The Novel HCR was 

purposely omitting a fraction of SSB from harvesting and so the Catch fluctuated from zero 

below Btrigger to much higher numbers above Btrigger (Figure 15). 

4.3. MSY and trade-offs 

 

The Maximum Sustainable Yield (MSY) for all scenarios is defined as the highest yield 

obtained when risk was acceptable as defined for the two recruitment scenarios. The Novel 

HCR had the highest MSY for both recruitment scenarios, but also a much higher ICV level 

in both cases.  

For SR, the Novel HCR MSY was 4884.68 tonnes with an ICV of 0.42 (Figure 13). The 

second highest level of Catch was 4516.48 tonnes with an ICV of 0.29, which sacrifices 

7.54% Catch for 30.95% less catch variability. The MSY for the ICES under SR was 4597.23 

tonnes with an ICV of 0.12 (Figure 10). The next option is catch of 3826.69 tonnes with an 

ICV of 0.09. This offers a trade-off of a loss of 16.76% catch, with 25% lower catch 

variability. 

The ICES HCR MSY for ER was 2293.22 tonnes with an ICV of 0.14. This was the best 

performing option across all criteria (Figure 16). The Novel HCR with ER had an MSY of 

3505.25 tonnes with an ICV of 0.35 (Figure 19). The alternative highest catch was 2481.17 

tonnes with an ICV of 0.27, where 29.22% of catch can be sacrificed for a reduction in ICV 

of 22.86%. In each scenario above a high catch stability can be obtained at the cost of 

lowering yield and vice versa. 

The performance of the HCRs are presented in this study without reference to any specific 

management objectives. The stock and fleets simulated were hypothetical. The decision to 

use a HCR is dependent on the fishery objectives, stakeholders, trade-offs etc. It is a political 

decision that can be informed through the simulation results. Given the acceptable risk of 

collapse, managers may favour stability in yields over maximum overall yield. In “Olympic-
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fisheries” with open access and little regulation, there is an incentive to fish for higher yields 

at the expense of stability (Petursdottir et al. 2001). In the case of some species moratoria are 

acceptable if yields are high enough when the fishery is open. In other cases, catch stability 

may be valued over high catches. 

Management advice is dependent on stakeholders, management objectives and real-world 

stock dynamics, which were all beyond the scope of a masters project. The purpose of this 

project is to present the options and trade-offs involved to managers and stakeholders of the 

relevant fishery. Although this is an academic exercise, the results here will help inform 

choices in the forthcoming Greenland halibut MSE. 

4.4. Experimental design 

 

The FLBEIA model was user friendly with regards the development of the Operating Model 

and the simulation of the projection. However, due to the structure of the FLBEIA-specific 

arguments, it proved difficult to alter the source code for the Novel HCR. As the model was 

designed to incorporate multiple fleets and economic metrics, there was much work involved 

in understanding how to design the hypothetical stock to be compatible with FLBEIA. 

The ER was included as an extreme test case where there were extreme fluctuations between 

low recruitment and peak recruitment years. ICES has two standards for evaluating risk: one 

for stocks that don’t collapse more than 5% of the time and another for those that do (ICES 

2019b). We designed and ran simulations covering both of these scenarios. This served as an 

interesting scenario for the robustness of the HCRs to high stochasticity in biomass. In these 

scenarios the Risk of collapse was high among all the Ftarget and Btrigger scenarios in the case 

of both HCRs. Even in the case of Ftarget = 0 the risk was above the ICES accepted threshold 

of 5%. This reflected the highly spasmodic recruitment programmed into the generic stock. 

To account for this pattern, risk was recalculated as discussed in the methodology (ICES 

2019b). The recalculation of risk made available many scenarios for both HCRs for 

comparison under the performance criteria. 

The grid of simulation cells was designed prior to any simulations being run. It is common in 

MSE design to formulate the scenarios prior to the computer work. This was the case in 

North Sea MSE, where some unnecessary scenarios were included (ICES 2019b). However, 

with hindsight it would have been better to begin with the lower Ftarget values and work up to 

avoid spending time computing many simulations with unacceptable risk levels. 
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The new generation of MSE modelling tools, such as FLBEIA, are flexible and powerful. 

They are more computer intensive than the previous generation of MSE tools due to both 

their complexity and the use of the R programming language. These factors were important in 

the ease of designing and implementing the scenarios presented above (ICES 2013). The 

major limitation that this imposed was that these scenarios were all run assuming perfect 

knowledge in implementation of the HCRs. This was due to time restrictions for the running 

of all scenarios. Given more computer time, the runs would have been extended to include 

process error and observation noise as per standard procedure (ICES 2019b). 

The major caveat of this study is the use of hypothetical species dynamics. The growth, 

recruitment and mortality were all generated to reflect a stock with spasmodic recruitment 

and high longevity. However, the recruitment was entirely random, not correlated with any 

interacting variable. Real stocks must have some causal factor for spikes in recruitment, even 

if unknown to researchers. It is certain that at some level recruitment must be reduced and the 

simulations allow for the stock to recover from very low stock sizes. Real stocks have shown 

this ability to recover e.g. Norwegian Spring Spawning Herring and thus modelling at low 

SSB is difficult. For this theoretical study we have avoided this level of complexity. The 

desirable HCRs avoid reducing the stock to low SSB levels, and the ability to model the 

recovery from here is of secondary importance (Tjelemend and Røttingen 2009). So long as 

the HCR can avoid driving the stock to low stock sizes and the projection begins well above 

Blim, then detailed modelling of the low stock state is not required (ICES 2018). 

Despite the limitations, this project provides insight into the performance of HCRs in 

achieving conflicting goals. Performance on risk, MSY, ICV and moratoria are in conflict, 

and the prioritisation of MSY come at the cost of stability (ICV). Likewise, maximising catch 

(MSY) may lead to more closures over time. This project explores the exact trade-offs 

inherent in the choice between HCRs. 

The recruitment variability (even when mean recruitment remained the same) changed both 

how the given HCR performed and the relative difference between HCRs. For example, the 

risk of collapse for ER was much higher than in the SR scenario for both HCRs, but also 

between these HCRs, the Novel HCR had lower risk values than the ICES HCR. This is why 

variability is so important to model, and why we use MSE simulations rather than mean 

levels in the choice of HCRs to meet key objectives. 
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This project has tested out the flexibility of one of the new generation of MSE tools, 

validating that it is flexible enough to set up unusual stock structures and HCRs, and is 

therefore a viable basis which the Institute of Marine Research in Bergen can use to run 

future real-world MSEs. It has provided a framework which can be expanded upon when 

ICES run a real MSE for a species with similar characteristics to the one modelled here 

(which is currently scheduled for prior to the 2023 AFWG stock assessment). 

4.5. Further research 

 

As discussed before, the FLBEIA simulation was run assuming perfect knowledge of the 

fishery. There was no addition of noise to the data. This was a practical limitation given 

constraints on development time and computer power for this masters thesis. Ideally, the 

stock dynamics would have been iterated with the addition of error in the Operating Model. 

This is a standard procedure that would provide an even more realistic response of the 

hypothetical stock to the two HCRs. The aim would be to identify how their performance 

degrades under increasing levels of noise. Such an addition would be required before the 

results here could be translated into actual management. However, the work conducted here 

does give insight into the how the different HCRs behave under different recruitment 

variability. 

Alternative formulations of the Novel HCR may be another avenue of inquiry which could be 

of interest. Above Btrigger, explorations of multiple patterns of Ftarget application were 

considered. Expert opinion from MSE specialists was taken onboard in one meeting at the 

Institute of Marine Research, Bergen. Again, unfortunately this is a matter for future concern 

due to time constraints regards formulation of the Novel HCR and computer power. Grid re-

design would allow a more in-depth look at scenarios of interest also. 

There are practical uses for the MSE performed in this study. The stock dynamics mirrored 

the Greenland halibut’s longevity and spasmodic recruitment and so, the performance of the 

candidate HCRs on the hypothetical stock is likely to be applicable. As Greenland halibut 

does not currently have a HCR, the results of this project will inform the process of 

developing a HCR in two ways (ICES 2019a). Firstly, it presents a candidate HCR for full 

MSE following ICES guidelines (ICES 2019b). Secondly, it will provide a framework within 

FLBEIA for building a robust model for this MSE. This MSE work is currently scheduled for 

2022/2023 for use in 2023 advice. 
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