Implementation and Evaluation
of a Fire Risk Indication Model

Sindre Stokkenes

Master's Thesis

Department of Computing
Western Norway University of Applied Sciences
Norway

June 3, 2019
Supervisor
Lars Michael Kristensen

Abstract

During the winter seasons there will often be a higher risk house fires due to
the dry climate as the result of cold weather. The fire department, and other
clients, would therefore have benefit of a fire risk indication system that can
help alert them regarding higher risk of fire.

The thesis questions the use of a mathematical model to indicate the fire
risk, as well as determining a suitable software architecture that can support
both deployment and evaluation.

The mathematical model gave accurate fire risk readings, indicating that it
can be used in real world situation to show the increase and decrease in fire risk
with the use of multiple data sources. With regards to the software architecture
it was feasible to find a software architecture that could both be used in the
evaluation of the model, but also as a basis for the application when put into
production.

ii

Acknowledgements

First, and foremost, i want to thank my supervisor, Lars Michael Kristensen,
for his continued support and guidance. The advice he has given me have been
helped tremendously throughout stages of this thesis.

I would also like to thank Torgrim Log for helping understanding the aspect
of the fire risk indication model that makes the foundation of the thesis.

iii

iv

Contents

[Abstract]

[Acknowledgements|

(1 Introduction|

[L.7 Summary of Results|00 .
[1.8 Thesis Organization|

2 Software Architecture for Distributed Applications|
[2.1 Representational States Transfer (REST)|

vi

[4 System Requirements and Design|
4. Analysis|
4.2 Requirements| L
4.3 Architecture Software Design|
IA,;E.]. I ilf: I;isl‘ Hf:h :;s:I !i!:f:l
[4.3.2 Data harvesting and collection |
4.3.3 Predictive Modellingl

4.4 Summary] e

[> Implementation and Deployment|

b1 External Servicesl
b.1.1 Frost Web Servicel

B.1.2 Met Web Servicel

5.2 Databases and Storage| oo
5.3 Implementationl L oL
[5.3.1 Functionality and Use Cases|
5.3.2 Front-End Implementation|
15.3.3 Back-end Implementation|
5.3.4 Program Flow|
5.4 Deployment| o oo

6 Evaluationl

6.4 Indicating Fire Risk for Historical Fires|
|6.5 Discussion of Storage Efficiency|
6.6 Discussion of Run time Efficiency|

(Bibliography|

[A Result of Calibrating Netatmo Stations|

25
25
26
28
28
29
30
30
30
31

33
33
34
39
40
46
48
48
49
51
o7
64

65
65
66
68
72
73
75

77
77
77
78
79
79
79
80
80
80

82

83

Chapter 1

Introduction

There has been a very long tradition in Norway of building houses using wood,
given the large amount available from forests. These houses can be extremely
susceptible to fire under certain weather conditions. These weather conditions
usually occur during the winter time when there are long periods of dry and
cold weather. When the air gets colder and drier, the water concentration in
the wood decreases, meaning there is a higher chance for the wood to catch fire.
As identified by Log[1], there is a period during December - January when the
weather is cold that have the highest fire frequency in Norway. In addition, this
is the time of the year where people light candles, and often use their fire place.
Combining the cold and dry weather conditions with the fact that people light
fires in their houses, contributes to many of these fires occurring.

1.1 A Fire Risk Indication System

In this project, we address the question of whether there is a way to reduce the
impact of fires by means of an early warning system that can for example warn
the local fire brigade that there will be a high fire risk in the coming days. This
would enable them to stay alert and be better prepared if a fire incident occurs.
In this thesis, an application has been implemented aimed at helping in this
regard. Our work relies on the research of Log[l] regarding the use of weather
stations in combination with a predictive mathematical model[I8] to find out
how the relative humidity in wood changes when the weather gets colder. The
application provides a service that can give fire risk indications that clients can
use for their needs. The system uses a mathematical model[18] developed based
on the research from Log[I], which is able to estimate the relative humidity in
wooden constructions by using weather data from local weather stations. The
model relies on a number of mathematical equations that enables us to model
the indoor climate of a house which can then be used to find the changes of
relative humidity in wood. This process can be divided in three stages.

The first stage involves finding and retrieving the relevant data that must
be provided to the model. As of now, the data supplied to the model consists
of the two weather elements of outdoor air temperature and outdoor relative
humidity. These weather elements may come from historically recorded weather

2 Chapter 1. Introduction

data, or they may come from predictive forecasts of the near future weather.
The reason for using temperature and humidity, and not looking at wind for
spread of fire, is that the model is still in its early stage of development and
focuses on the fire risk of a single wooden structure. The weather elements are
then used in equations for calculating certain outdoor weather conditions. In
the second stage of the model, the weather conditions from the first stage is
used to model the indoor climate based on the outdoor climate. The last stage
of the process involves determining whether the wood inside the house, takes
humidity from the surrounding area or releases humidity to the surrounding
area, and then presents the fire risk by indicating how long it would take until
the wood is in complete flash over in case it catches fire. This means that the
fire risk is quantified as the time to flash over which is normally in the order of
minutes.

When it comes to who the clients of the system are, the most relevant is
the fire department. A close second is anyone that deals with protecting older
wooden structures such as the old wooden churches and historical buildings
in Norway protected by ”Riksantikvaren”. It is also possible for any ordinary
person to use the system if requested.

1.2 Research Questions

This master project focuses on designing and implementing a cloud-based and
distributed prototype application that can indicate the fire risk of wooden struc-
tures. This system will use a mathematical model[I8] to calculate the fire risk
by using weather data as input. From the weather data, the application shall
produce data that can be used to create an indication as to whether there is
increased fire risk or not, and thereby quantify the fire risk.

There are numerous ways of creating distributed applications. Part of the
thesis is also to determine a suitable software architecture that can be used to
evaluate the mathematical model, but can also serve as a basis for the applica-
tions when put into production.

This thesis is concerned with the following research questions.

e R1: Can the Fire Risk prediction model of Log[I8] be used to give a
useful indication of fire risk? This research question has the following
sub-research questions:

— R1-A: Measured weather data versus weather forecast data. How
big is the difference in the computed fire indication when using mea-
sured weather data versus forecast data, and can the two be used in
combination?

— R2-B: With regard to measured weather data, how big is the differ-
ence between using weather data collected by the Norwegian Meteo-
rological Institute versus weather data collected from private weather
stations?

e R2: What is a suitable software architecture for collecting sensor data

1.3. Research Method 3

and provide a fire risk indication service? This research question has the
following sub-research questions:

— R2-A: Is there a software architecture that can support both de-
ployment and validation?

— R2-B: Can we create a software architecture that is both efficient
with regard to minimal storage of weather data and running time
for fire risk indications computations?

R1 and R2 are two primary research questions explored in this thesis.

The first research question, R1, aims to investigate whether the predictive
model of Log[I8] can be used in real world situations and accurately predict
the increase in fire risk of wooden house structures. That can be if the result
from calculating fire risk gives indications at a reasonable level which can be
attributed to the weather at the time. The fire risk is given in the amount of
minutes it takes for wood to be in complete flash over (Tf0), on a scale from
1-14 minutes. There are two sub-questions, R1-A and R1-B, derived from this
research question. These sub-question deals with the weather data supplied
to the mathematical model and how it is combined. The data can come from
different sources that focus on different ways of representing weather data.
This can be from historically recorded weather data and forecast weather data.
By using data from different sources, R1-A, aims to investigate whether it
is possible to use weather forecasts in order to indicate the fire risk or not.
The intention of R1-B is to investigate if it is possible to use consumer-grade
weather stations, bought from local stores, to indicate the fire risk and how
much it deviates from using professional data sources such as the Norwegian
Meteorological Institute weather stations.

The second research question, R2, has the purpose of finding a software ar-
chitecture suitable for providing weather data and elements to the mathematical
model, as well as creating a service that clients can use for their needs. This
again is split into sub- research questions R2-A and R2-B. R2-A has the main
responsibility of answering whether the software architecture can be used for
validation, with regard to this master thesis, and deployment of a production-
level application. R2-B is there to answer whether the software architecture
leads to an application that is both efficient with regard to running time when
calculating fire risk indications, as well as storage efficiency of the collected
weather data. It should not take to long when calculating fire risk, as that
may have repercussions for the fire risk indication. Storing weather data may
potentially accumulate to large amounts of data as time goes by. It is therefore
important to store as little weather data as possible but enough to give accurate
indications.

1.3 Research Method

We aim to solve the two research questions by creating a prototype application
that will implement a mathematical model that can be used for calculating the
fire risk.

4 Chapter 1. Introduction

In order to answer the questions from R1, the prototype application will col-
lect weather data in the winter period 2018/2019 in order to have an overview
of the fire risk during this period. Part of this collection process is to place a few
Netatmo stations as well so that it is possible to compare the fire risk calculated
from the Netatmo stations to the fire risk calculated from the Norwegian Mete-
orological institute sources (weather station). In addition to collecting weather
data in the winter period 2018-2019, there are several historical fires that are
taken into consideration to see if the model indicate high or low fire risk at the
time of fire.

We investigate R2 by looking at the different solutions that can be used to
create a distributed application. It is expected to have a prototype application
that implements the mathematical model and can be used for deployment and
validation purposes. The application should be able to supply the mathematical
model with weather data, from different sources, which is needed by the model
to estimate the indoor climate in order to indicate the fire risk of older wooden
structures.

Based on the outputs produced by the mathematical model for the different
scenarios, it is possible to validate and conclude whether the model is sufficiently
accurate to work in real world situations. It is also be possible to look at the
differences in the fire risk indication by using different types of weather data,
such as historical weather data and forecast data as well as a combination of
the two.

The system contains an application whose main functionality is to fetch
weather data from various sources and run it through the mathematical model.
On top of the application there is a web service that clients can use for their
own needs with regard to obtaining fire risk indications.

1.4 Software Technologies

Different technologies and architectural styles were used to create the Fire Risk
application (FR). The FRA application is a prototype that will end up having
some incomplete features. An important factor was therefore to create the
application in such a way that it would be easy to expand the different features
without having to significantly rewrite the code base. To achieve this, the
architectural style of micro-services was used.

By designing the application as several micro-services[9], the application will
be split into several components that each have one specific functionality to take
care of. This way, there will not be too much cohesion between the components,
and it will be easier to add or change the functionality of the component. Each
micro-service must then communicate with the other micro-services if needed.
This was achieved by use of REST[I7]. Each of the components can be seen
as a single small application that runs on its own process. This means that if
one component fails or stops working, the other components still work and can
provide functionality.

The FR application also uses external web services. These external web
services uses the RESTful architectural style, that relies on the standard HTTP

1.5. External Services and Data Sources 5

methods, such as GET, POST, PUT and DELETE to access the services. The
RESTful architectural style is a way of implementing web services that offers
platform independence. Since it uses HT'TP methods to communicate, it does
not matter how the web services is implemented since the data transmitted by
the service will be in the form of XML or Json data. As a result of this, any
RESTful web services are language independent and it does not matter which
programming language was used to implement it.

For evaluation purposes, a small web application was implemented as a
means of visualizing several scenarios related to the calculation of the fire
risk indication. This web application was implemented using JSF(Java Server
Faces)[2] which is a server-side component framework for building web applica-
tions with Java.

The Spark Java framework[19] was used to create the web service on top of
the application that handles communiation with the clients. This is a framework
that reduces the complexity of setting up RESTful web services.

One of the components that makes up the application uses Enterprise Java
Beans[2] (EJB) for creating schedulers in order to have continuous harvesting
of weather data. The EJBs also provide transaction control when dealing with
data storage for SQL databases.

1.5 External Services and Data Sources

Part of the FR application has the task of supplying weather data to the math-
ematical model for predicting the increase of fire risk. The FR application uses
three services to supply weather data from several sources. Two of the sources
provide historical weather data while the third one provides forecast weather
data to predict the fire risk in the near future.

1.5.1 Frost

Frost is a service[3] that supplies historical weather data recorded by the Norwe-
gian Meteorological Institute (MET). MET is a government agency, under the
Climate and Environment Department, and has a number of weather stations
placed around Norway that records and measures weather data. This weather
data can be freely used by the public. Users of the service must provide the
locations of where it shall retrieve weather data from. This can be done by
providing the identity of the source (station), or by giving the longitude and
latitude of a position and the service will then find the nearest station. Then
the user can retrieve weather elements of their choice.

1.5.2 Netatmo

The Netatmo service[6] deals with the same type of weather data as the Frost
service, but it relies on consumer grade weather stations that can be bought
in stores. The consumers then publish their weather data into a cloud-based
server. Through this cloud-base server, it is possible to retrieve the measured
weather data, that can then be used in the FR application. The Netatmo

6 Chapter 1. Introduction

stations come with a sensor fore measuring temperature and humidity. Wind
and rain gauge sensors must be bought separately if required.

1.5.3 MET API

The MET API[4] deals with current and predictive analysis of weather. It offers
resources that estimate how the weather will be in the near future, as well as
current weather data such as lowest and highest temperatures over a certain
period. The service is able to return the weather data for predictions of the
weather for a nine day period into the future. The first three and a half days
are provided as hourly measures. The next five and a half days are provided at
six hour intervals.

1.5.4 Fire Risk Indication Service

On top of the implemented application, there is as fire risk indication service
that users can interact with in order to communicate with the application and
its features. The fire risk service includes several features such as, the ability to
add locations, with longitude and latitude coordinates, where the application
should do continuous fire risk indications. Another feature is the ability to get
the fire risk for a specific time and place that is provided by the user. This
feature has four options as to how it can be used.

Option 1: See how a fire risk indication would have been between two dates
in the past.

Option 2: Look at the fire risk from a time in the past to the present time.

Option 3: Possibility of looking at the fire risk indication from the present
time and nine days into the future, by using weather forecast.

Option 4: Use a combination of the two previous options, by using a fire risk
indication from a date in the past to the present time and then adding
the fire risk indication based on the weather forecast.

This Fire Risk Indication Service also supports the validation of the mathe-
matical model by setting up different test cases that reads data from a database
and visualizes in the web application. These test cases includes looking at the
difference of using the Meteorological Institutes weather stations, compared to
Netatmo stations. It also considers the difference between a forecast fire risk
indication, and the corresponding historical fire risk indication. As the model
requires a few days of data to calibrate itself, the latter test case explores how
many days in the past must be included to get more accurate indications.

1.6 Weather Station Calibration

The consumer grade weather stations from Netatmo in use by the FR applica-
tion had to be calibrated in order to be able to use the measures of humidity

1.7. Summary of Results 7

in a reliable way. The process of calibrating the humidity sensors involved cre-
ating a controlled environment inside a plastic box. Previous experiments have
calculated the humidity that different salts releases when dissolved in water.
These salts were dissolved in small paper plates inside the plastic box to create
an environment with the humidity that the salts release. This was then left for
several hours to create an equilibrium inside the box, and the value of the mea-
sure was then recorded in order to find how much it deviated from the known
humidity of the salt. This was then used to create a correction curve that could
be used to correct the measured value in order for it to be more accurate.

1.7 Summary of Results

The result of comparing the calculated fire risk of measured weather data versus
forecast weather data indicates that the difference is minimal and it would be
possible to use the forecast weather data as a basis for fire risk calculations.

Concerning the use of Netatmo stations when calculating the fire risk it
would also indicated that the difference are within reasonable margin even when
using non calibrated stations.

The use of micro-services as an architectural style, combined with REST as
a communication form it made it possible to split the functionality two ways
with regard to the evaluation of the mathematical as well as the resources that
can be used by external clients.

In summary, the result regarding the run-time efficiency of the application
indicates that the bottleneck lies with the external services that are in use. The
amount of storage also shows that when working with few locations, the amount
of storage needed is minimal. There is the possibility that when there a many
locations that it can start to become an issue.

1.8 Thesis Organization
This thesis is organized into the following chapters:

Chapter 2: Software Architecture for Distributed Application gives
background information about several technologies that may be used to
implement distributed system. It discusses what the technology is, and
presents the main benefits of using that technology.

Chapter 3: Predictive Modelling of Fire Danger outlines the elements
that make up the mathematical model. It goes through the motivation for
creating the model and for what purpose it will be used. The first section
of the chapter introduces the elements of the model as well as going into
detail about the most important equations that make up the model at
the different stages. Finally it goes into detail about where the required
data comes from and the calibration process of the Netatmo stations.

Chapter 4: System Requirements and Design underlines an analysis of
the requirements for the prototype application. From the analysis, it dis-

8 Chapter 1. Introduction

cusses what a possible software architecture for the prototype application
may be, as well as the different components and parts that is needed to
make up the application.

Chapter 5: Implementation and Deployment goes into detail about the
external services that are used in the application and details how to use
them. It discusses the use cases and functionality of the application itself,
and describes the components that make up the application by providing
class diagrams. The Program flow is also presented via time sequence
diagrams that shows how the components interact with each other over
time.

Chapter 6: Evaluation presents the evaluation of the mathematical model
by providing results that show the differences between calculating the fire
risk using different sources of weather, as well as combining the sources
for creating fire risk indication. It will also demonstrate how the model
would have predicted the fire risk for historical fires that occured in the
past. Finally it gives an overview of the efficiency of the FR application
regarding storage and run-time.

Chapter 7: Conclusion and Future Work draws the conclusion from the
result presented in the evaluation by setting it up against the research
questions presented in the introduction. It also discusses what can be
improved on the application and presents what was completed and which
parts requires further work.

The source code of the application can be found in the following GitHub repos-
itory https://github.com/sinstok/master-project

https://github.com/sinstok/master-project

Chapter 2

Software Architecture for
Distributed Applications

There are certain requirements for the FR application that needs to be fulfilled.
The first and foremost is to have a prototype application that can validate the
use of the proposed mathematical model for calculating fire risk. The approach
to do this is to focus on a few locations around Norway, and observe how the
model performs on these locations. The prototype should be made in a way
such that it can easily be extended with additional locations and deployed in
mass scale without having to refactor large portions of the application.

The prototype application will consist of several parts, and the proposed
system architecture is to focus on dividing the parts into micro-services and
structuring it around a message-driven architecture. The FR application will
also access external services that are provided via REST APIs in order to re-
trieve weather data used in certain parts of the FR application.

The vision is that the FR application is to be hosted on a virtual machine in
the cloud that will run continuously, gathering data and calculating the fire risk.
Users will then be able to view the fire risk of the selected location, through a
web service, over the observation period. There will also be a few predefined
locations of previous known fires. These will serve as examples of what the
model concludes, based on the weather data from the previous days and the
day of the fire in these locations.

2.1 Representational States Transfer (REST)

REST[I7] is a main approach that allow software applications to offer web
services over the Internet. It is an architectural style of creating web services
that relies on the use of standard HTTP methods, most notably, GET, POST,
PUT and DELETE to specify operations on resources. REST is simple and
easy to use, and is very efficient given the scale of the Internet today. The
HTTP methods are used as follows:

e The GET method is used when requesting data from a server hosting a
RESTful service.

10 Chapter 2. Software Architecture for Distributed Applications

e The POST method is used for creating new resources.
e The PUT method is used for updating existing resources.
e The DELETE method is used for deleting specified resources.

REST involves using URIs (Uniform Resource Identifier) to identify the
resources on which operations are to be performed. One can think of this as
an URL which can be used in a web browser, to identify the resource that one
wants to access and manipulate. As mentioned earlier, REST uses standard
HTTP methods for determining what the web service will do when someone
makes a request to the web service. This means that if a person wants to get
some data from a web service, the HT'TP method GET would be used. If for
example a new resource will be created, the HI'TP method POST would be
used. From this, a normal REST request to get data could look like this:

https://api.met.no/forecast/longitude=60.5934&latitude=5.3546

which relies on MET having a web service where one can look up a forecast
by providing longitude and latitude as query parameters. Using the HTTP
method GET, and longitude and latitude coordinates, the service will then
fetch the forecast from this location and return it back to the requester. Since
REST supports different formats for the response data, the requester can specify
in the request whether the service should return for instance Json or XML
representation of the resource. If the web service has been implemented in
such a way that only one of them is possible, it will give a response where the
resources is represented with the default format.

Web services are based on platform independent technology such as HTTP,
XML, and Json. These technologies are supported by all major and smaller
platforms, and gives everyone the ability use the service. At the same time, a
web service should not be language specific, meaning that a web service written
in C++ should work with a web service client written in Java.

2.2 Micro-services

Micro-services is an architectural approach to building applications. It relies on
the idea that each component of the application should be its own autonomous
service[9], or in some cases many small web applications. The communication
between these services can be over the network using standard HTTP, it can
be through a RESTful API, or it can use Remote Procedural Call (RPC).

When working with traditional monolithic applications, the code base will
grow and grow as new features are added. As the application grows, it can be
quite hard to make changes as they can have an affect on the whole system.
There have been attempts at fixing this issue for quite some time, such as
Service Oriented Architecture (SOA)[9]. Micro-services is a modern inspiration
of SOA[20] and takes ideas from many different communities in an effort to find
a better way of partitioning a very large application into smaller domains, each
with their own functionality[§].

2.3. Message-Driven Communication 11

Some of the key benefits of using micro-services to build applications is that,
as stated above, each functionality have its own domain. When working with
a monolithic application that runs as a single process, the fault can cascade
through the application and everything will stop working. With micro-services,
since each functionality has its own domain and process to run on, a failure
will not cascade through the rest of the application and the other parts of the
application can remain operations. Another benefit of using a micro-service
architecture is that the different services do not have to be implemented with
the same technology. One can be implemented in Java, another in C4++ and
another with C# each of which can use its own database system of choice[8].

Building applications with micro-services in mind also makes it easier to
test and maintain. Since each micro-service runs its own domain, it can easily
extended without affecting other domains in the application. Deploying the
micro-services becomes easier, as it will not be necessary to re-deploy the whole
application when there is a one-line change in one of the micro-services. There is
also the case for re-usability since the functionality is split into different services
and can be used with different applications.

There are several tools that can be used for creating a micro-service archi-
tecture. This involves any frame work that can create web services. An example
is the JAX-RS API[2] that Java provides for making REST APIs.

2.3 Message-Driven Communication

Message-driven architecture is akin to micro services, but it uses messages to
connect different components or applications, with so-called MOM (Message
Oriented Middle-ware)[12]. There are different ways to achieve this goal, e.g.
using a publish-subscribe model, or a message queuing system[I1]. Given the
scale of distributed applications, a synchronous communication model makes
for a rigid and static application[I0], where the application has to wait before it
can communicate with a different application or component. An asynchronous
communication scheme is therefore better suited for the job as it does not rely
on timing, and can reach more applications and components faster[10].

In the case of a publish-subscribe model, it uses a broker that handles com-
munication between the publisher, which is the sender of the messages, and
the subscriber, which is the one receiving the messages. The broker has several
topics where the publishers can publish their messages. The subscribers are
then able to subscribe to their topic of choice and whenever new messages are
published to the broker, it sends the message to subscribers of that particular
topic.

This type of communication removes the synchronous communication from
the publisher[10], as it only has to publish to the broker, which in turn can make
it available for all the subscribers that want the message. With the publish-
subscribe model, each subscriber can subscribe to as many topics as they want.

A message queuing model is often intertwined with the publish-subscribe
model, as it solves the same issue as publish-subscribe but in a different way. It
uses message queues, often implemented as FIFO (First in first out), instead of

12 Chapter 2. Software Architecture for Distributed Applications

having a broker between the publisher and subscriber. The message is addressed
to a specific queue, and then the consumer can fetch the message from the queue
that was established to hold the message[10]. With the use of messages queues,
it can guarantee acknowledgement that the message was in fact received by the
consumer [11].

2.4 Communication Model

We have presented two possible communication models in this chapter, REST
and message-driven system. These are two different styles of communication
that has their own benefits and disadvantages. A choice had to be made in
regard to which communication model should be used for the FR application.
As stated, a message-driven communication model offers asynchronous commu-
nication that does not block operations by waiting for actions to finish. Using
a REST communication is the opposite as the application has to wait for oper-
ations to finish before it can move on.

Since this is a simple prototype application that interacts with very few
clients and is expected to handle small amounts of data transfer, the benefit of
having a asynchronous communication model is limited. It was therefore chosen
to use a synchronous communication model through REST as that would be
less problematic to set up and because most of the external services that is to
be used by the application rely on REST.

2.5 External Data services

The weather data for the FR application will be obtained from several external
services:

Frost is a web service[3] hosted by the Norwegian Meteorological Institute.
The Frost web service offers free, historically recorded, weather data. The
Norwegian Meteorological Institute has a large number of weather stations
placed at different locations around Norway that periodically measures
and store weather data.

The Met API[4] provides weather forecasts for the next nine and a half days.
This includes hourly weather predictions for the first three and a half
days, and then six hour weather predictions for the next six days.

Netatmo provides data collected from consumer grade weather stations that
are easily accessible. They also offer an API which lets the users retrieve
weather information from their own privately owned Netatmo station.

We will provide more technical detail, on these services later in the thesis.

2.6 Data Storage

The FR application interacts with three external services that provide weather
data, including Frost, Netatmo API and the Met API. Part of the evaluation

2.6. Data Storage 13

process is to compare the fire risk computed using weather data from different
sources. In order to have consistent data throughout the evaluation period, the
weather data from all external services is stored in a database. This allows the
model to use a consistent data-set if testing occurs at a later date, when the
model has been updated.

As data is collected and stored from the different services in order to have
the data available at a later stage, a choice was made to use the original format
as it was retrieved from the external services. This was done in order to achieve
a form of consistency in the data. Since most of the services sends data in
a Json representation, a traditional relational database did not suit this goal
as the data would have to be converted to a format suitable for relational
databases. It was therefor decided to investigate whether a noSQL database
would be better suited for the job. There exits several types of noSQL database
including: Key-Value Store Databases, Column-Oriented Databases, Document
Store Databases, Graph Databases and Object Oriented Databases.

Key-Value Store Databases[14][15] relies on assigning the stored data to a
key, which can then be used when retrieving the data. The data is stored
similarly to that of an object in an object oriented programming language.
Column-Oriented Databases[14][15] represents the data as tables, where each
table contains several attributes. Document Store Databases[14][15] store the
data in the format of Json, XML or BSON (Binary Json) documents. These
documents includes the same attributes and their values as found in the corre-
sponding formats. Graph Databases[15] represents the stored data as a graph.
The objects stored in the database correspond to that of a node in a graph
and the and an edge will be assigned as the relation between the nodes. There
are also properties related to the different nodes. In an Object-Oriented[I5]
Database the data is represented as objects, similarly to what is found in ob-
ject oriented programming languages.

After exploring different NoSQL database types[14], it was decided that a
document database[14] seemed most appropriate for storing the Json data[l4].

After establishing which database management system to use, a suitable
document database system had to be found. There are several document
databases available, such as MongoDB, Amazon DynamoDB and CouceDBJ[14].
As the FR application runs on a cloud platform, this was taken into consid-
eration when choosing the right document database. In the end the choice
was between MongoDB and Amazoon DynamoDB, as they both offers cloud
deployment. MongoDB ended up as the document database of choice as they
offer a free database[L3] for use below 512 mb of storage in the cloud. The esti-
mated amount of storage needed by FR application did not exceed the amount
of storage they offered for free.

14

Chapter 2. Software Architecture for Distributed Applications

Chapter 3

Predictive Modelling of Fire
Risk

This chapter introduces the mathematical model[I8] that underlines the fire
risk prediction application. The presentation is based on Log[I], supplemented
with the high level model[I§] for fire risk, developed as part of this thesis.

3.1 Fire Risk Prediction

In Norway there are a lot of houses made of wood and similar materials. This
can lead to a high fire risk in certain periods of the year when the weather
is dry. Log[l] investigated the use of mathematical modelling[l] to accurately
predict the relative humidity indoors.

The results showed that the air inside the older buildings are drier than
that of the newer houses by around 5 — 10%. But when the weather gets colder
and drier, a decay period of around 6 - 7 days were identified for the relative
humidity in the wood to stabilize in the older houses. At the same time, Log[I]
found that for some of the newer houses this decay period was around 3 - 4
days.

Based on the research of Log[l] a mathematical model[I8] was devised,
aimed at predicting the indoor climate, in wooden houses, derived from the
outdoor climate. Knowing the indoor climate makes it possible to determine
the concentration of water in the wood, which in turn makes it possible to
ascertain how long it would take before reaching complete flash over in case of
fire. Figure illustrates the equilibrium moisture content of wood which is
a period where the wood is neither loosing or gaining moisture. This happens
when the wood is exposed to the same humidity over longer periods of time
and it reaches equilibrium. Whenever the air gets dry, the humidity of the
surrounding area decreases. During this process moisture from the wood is
released. When the process goes the other way the wood attracts moisture from
the air, thus reducing the fire risk. Being able to predict the indoor climate is
of huge benefit as it is not always possible to have tools that can measure the
necessary requirements for indicating fire risk. Currently there are restrictions
as to which houses the model are able to predict the indoor climate for, and it

15

16 Chapter 3. Predictive Modelling of Fire Risk

can only be used for indicating fire risk for single structure buildings.

0.30

025 +
020 +

015 +

EMC

010 |

0.05 T

000

Figure 3.1: Wood Equilibrium Moisture Content (EMC)

In the process of modelling the indoor climate, certain outdoor weather el-
ements are needed. Currently the weather elements needed are the outdoor
air temperature, outdoor relative humidity and outdoor water concentration in
the air. The outdoor air temperature and humidity are obtainable by weather
sensors, whereas the outdoor water concentration can be acquired from a math-
ematical equation that takes the temperature and humidity as parameters. In
the future the model may be revised to include other parameters that can help
produce a better fire risk prediction, with regard to fire conflagration and other
house types. The most notable would be the wind speed and the wind direction.

3.2 High-level Prediction Model

With this information in mind, weather elements impact the fire danger at
different stages. Some of them are more crucial in the days before a fire happens,
and others are more crucial at the day of a fire. Figure[3.2]illustrates this process
by showing how crucial and at what stage the weather elements impact the fire.

When it comes to fire risk of a single building where the fire ignites indoors,
we can see that outdoor temperature has a greater impact than that of the
ambient water concentration and relative humidity in the previous days. On
the day of fire, these weather elements do not increase the risk of fire ignition
inside the house. When it comes to the indoor fire development, we see that
the outdoor temperature has a much greater role than when it comes to the
indoor ignition, and there are no weather elements that increase the risk on the
day of the fire.

From the three weather elements that are mentioned above, makes it is pos-
sible to estimate the indoor climate, which can be used to find the concentration

3.3. Outdoor and Indoor

Climate

Weather impacts on fire development

Weather
conditions

Single structure fire risk

Indoor ignition

Indoor fire development

Time frame
Previous days day of fire

Time frame
Previous days Day of fire

17

Outdoor
Moderate none High none

temperature
Outdoor water

. Low none Low none
concentration
outdoor
relative Low none Low none
humidity

Figure 3.2: Weather impacts on fire development

of water in the wood. This concentration is then used by the model to create
a quantifiable fire risk, known as the time to flash over, that can be used to
indicate the fire risk.

3.3 Outdoor and Indoor Climate

As mentioned above, outdoor air temperature, outdoor relative humidity and
outdoor water concentration of the air is required in order to model the indoor
climate.

3.3.1 Outdoor Climate

One of the necessary weather elements from the outdoors is the outdoor water
concentration, which unfortunately can not be measured directly, however it
can be calculated. In order to estimate the water concentration it is necessary
to know the water saturation vapour pressure. This can be obtained with the
following formulae:

17.2694%T¢

Pgot = 610.78 % ¢ Tex2373 (3'1)

The only parameter needed to calculate the water saturation vapour pres-
sure is the outdoor air temperature. When P;,; has been calculated, the outdoor
water concentration is obtainable with the following formulae:

Psat(Tc) * Mw

Cwa:RHout*(R*(T T K

) (3:2)

where RHy,; is the outdoor relative humidity, Ps,; which is the same as
equation[3.1)and takes T, (outdoor temperature) as a parameter. M,,(0.01801528)(kg/mol)
is the molecular mass of water, R(8.314.J/kmol) is the molar gas constant, and
K is the absolute temperature 273.15. Now that all the outdoor weather ele-
ments are available, it is possible to begin modeling the indoor climate.

18 Chapter 3. Predictive Modelling of Fire Risk

3.3.2 Indoor Climate

There are a few aspects that needs to be addressed when calculating indoor
climate. One is that at any given time there may be plants, people, animals
that releases humidity in a room, which provides a moisture supply. There has
been a lot of research on the average moisture supply from external sources in
houses[16], but we can not accurately come up with an average for a house.
Log[1] found that the moisture supply for the test house had a mean of 1.29 £
0.75g/m3, and an average recorded moisture supply that varied from 0.3 to
2.64g/m>. In Log[l8] an assumption is made that around 1kg of moisture is
released inside a house daily.

Another aspect to consider is the air change rate(ACR) of the house, which
is the rate at which inside air is replaced with outdoor air. In newer houses
the ACR usually follows the countries rules and regulations which puts the
ACH(air change rate per hour) at 0.5[I] for normal houses. The ACH may vary
from the construction of the house, as there are some construction methods
that have lower ACH than average. Older houses do not follow the same rules
and regulations, and may have not have taken the ACR into consideration when
constructed. As a result of this the indoor climate will be much dryer in a newer
house. Older houses also take longer time to react to changes in the weather
than newer houses. An estimate for what the ACH of older houses may be,
is half of what is considered balanced air today[18]. The ACH of older houses
may also vary depending on the temperature, and can then be calculated by
using the following equation:

ACH =~ % \/(1/To — 1/Tin)/ Ta (3:3)

This is a simplified formula that uses a known ventilation rate v instead of
calculating the ventilation rate itself. As the model at this stage focuses on older
buildings, this rate is set to 300h~! to reflect an ACH of 0.25. The ventilation
rate can be adjusted depending on the size of the house, and if there is prior
knowledge of the ACH. Newer houses that use forced ventilation, usually keeps
the same ACH at all times and can be used in the model if required. Ty, is the
ambient temperature (outdoor temperature), and T, is the indoor temperature.
It is also necessary to look at the changes in the concentration of air, air dilution,
when calculating the indoor climate. This can be done with knowledge of the
ACH and the following equation.

5 -7 — e*ACH*At/S’()’OOS (34)

ACH is the same as equation and At is the time interval in which the
calculation takes place. In our case, this will be every 720 seconds (12 minutes).
It is set to this interval in order to model the changes between every hour.

Now that the ACH and moisture supply have been taken into consideration,
the concentration of water in the air inside a house can be calculated by doing
one of the following. If this is the first calculation, then the following equation
will be used:

8.4. Humidity transportation in wood 19

Cmside = RHmside * Csat,in (35)

where RH;,si4e 1s a base relative humidity set to 40% as a starting point,
and Cyqtin is the same as equation without RHyy, and T, is 22 degrees
Celsius. If there are prior calculations the following formula will be used:

Tout

Cin = ((1 = B) * Cin—1 + B * Cuq * (T

At
))) + Ml loss/ Vv + ms * — (3.6)

where 3 is equation Cin_1 is the previous calculation of Cjpside; Cwa
is equation @ where T, is the outdoor temperature, Ty, and Tj, is the ab-
solute outdoor and indoor temperature, m,,,; which is the sum loss of water
concentration in the wall, volume is the volume of the room, ms is the moisture
supply which is m and At is the calculation interval at 720 seconds.

With the indoors concentration of water calculated, it is possible to find the
relative humidity using the following equation:

Cinside

RHmside = C (37)
sat,in

where Cinside 18 found using equation if it is the first calculation, or
equation if there are prior calculations. Csqy i is equation without RH
and T, is set to 22degec.

3.4 Humidity transportation in wood

The final stage of the calculations is to find the concentration of water in the
wood and from there find the fuel moisture content (FMC). The FMC can be
used to calculate the time to flash over which is used as a measure of the fire
risk .

The process of finding the concentration in the wood is based on the as-
sumption that the wood panels have a thickness of 0.012 m[I][I§]. These panels
are then divided into 10 layers, each with a thickness Ax = %, in order to
model the moisture transportation through the wood. These layers are orga-
nized as follows. The first layer, the middle layers (2 - 9), and the innermost
layer (10). The process of finding the concentration through the layers requires
three separate equations. For the first layer, the concentration is obtained by

using the following equation:

At {Dwﬂ
Ax Az " 6

(RH(yy — RH;(4)) Csat,22 deg c + %(Cz(t) - Ci)}
(3.8)
where C(;) is the concentration of the previous calculated concentration of
the first layer. A is the surface area that is drying, Az is the thickness of the
layers, Dy, is the diffusion coefficient of water in the air, Csut22dege is the
water concentration at 22 degc, D,, s is the diffusion coefficient of water in solid
material, and Cyy) is the previous calculated concentration in layer 2.

Ciie41) = Cipy +

20 Chapter 3. Predictive Modelling of Fire Risk

For the layers n = 2 through n = N - 1 the following equation was used:

Cl(t+1) = Oz(t) + Fo % (Cn—l(t) —2xC(n(t)) + Cn+1(t)) (3.9)
where Fo is given with the following equation:

D, s x At
Az?
and D, s is the diffusion constant of water in wood, which is set to 3.0E —
10m?2s~1.
For the layer N (innermost layer), it was assumed there is only moisture
exchange with layer N - 1[I8]:

Fo = (3.10)

Cn(t1) = Ongy + Fox (Co_y(t) — Cugry) (3.11)

Now that the water concentration in the different layers have been calcu-
lated, the next step will be to find the fuel moisture content that is used in the
final equation for finding the time to flash over. It follows the same procedure
as finding the water concentration, and it is divided into the same layers.

FMC = 100 x (C]s%“g“e) (3.12)
0

S0, Cn

FMC = 100 * gi]—{fg (3.13)

Cn

FMC = 100 % ——— 3.14
* R, (3.14)

Where Cgyr face is the water concentration at the first layer of the wood, Cy

is the water concentration of the inner most layer, and % is the average
water concentration of the layers between the surface and the inner layer. RH
is the base humidity inside the house which is set to 500%. Now that the
fuel moisture content is obtained, the time to flash over can be found by the
following formula.

tpo = 2 % 0 10+FMC (3.15)

Where FMC is the fuel moisture content which can be obtained by using
equation [3.12, equation [3.13] or equation By using the weather elements
mentioned previously and running all the calculation, the following graph can
be constructed which informs of the time to flash over from the different layers
over some time. The y-axis shows the time to flash over T0 of wood and the
x-axis is the time interval the Tf0 was calculated within.

3.5 Weather Stations

There are several means of supplying weather data to the model. Part of Log’s[I]
research was to investigate whether consumer grade weather stations were com-
parable to stations operated by the Norwegian Meteorological Institute. Log

3.5. Weather Stations 21

14

12 o

10 + -=-= 60% RH

= = 50% RH

Tro 8 __- ______________________ Surface layer T
(min.) —— Average

6 +

4 +

2 .

() s E— Emm— Ee— Ee— e Emm— Ee—— m——

-30 -20 -10 0 10 20 30 40 50 60

2016 (days)

Figure 3.3: Time to flash over[I]

used the weather station from Netatmo[l]. When looking at the specification
of the weather station, it claimed that it could read temperature at + 0.5°C
and the relative humidity at 3% RH.

In order to verify the information from the producer, an independent exper-
iment was conducted where the stations were tested against known humidity
from different salts dissolved in water. If the stations deviated from the cor-
rect humidity from the salts, a calibration curve could be calculated and used
to adjust the measurements from the stations. From this experiment, Log][I]
found that a few stations gave accurate readings within + 0.5°C and +3%RH,
but some of them had readings well above 10%RH then the humidity from the
salts.

Some of the stations used in this project are the same that Log[l] used in
his research, but some of them are new and have not been calibrated. To be
thorough, the stations from Logs research and the new ones used in this project
were calibrated. This way we could be sure that the correct calibration curve
is used when adjusting the measurements of Logs stations and the new ones.

The calibration process was the same as Logs[I] research, where a plastic
container with a lid was used to create a controlled atmosphere for the calibra-
tion. Figure [3.4] show the set up for calibrating the weather station. Most of
the equipment used, was the same as Log used in his research. In order to be
sure the sensors could handle different temperature, the sensors where first cal-
ibrated at room temperature and then at outdoor temperature later. Following
the process of Log]l], four sensors were placed inside the container, shown be-
low, at a time. The container was left to achieve equilibrium conditions and the
temperature and humidity measurements of the weather stations was noted.

22 Chapter 3. Predictive Modelling of Fire Risk

Figure 3.4: Plastic container used to create the controlled environment

It was advised to use salts that gave humidity below 50% as well as salts that
gave humidity above 50%. The salts used was LiCl, MgCl2) and NaCl. These
would give humidity equilibrium at 11.31 4+ 0.31, 33.07 £ 0.18 and 75.47 £ 0.14
% RH.

After the calibration process was finished, we got the same results as Log,
where some of the sensors gave accurate readings at certain humidity levels.
But at the same time could give readings with an error of 10%. From the
measurements of the weather station a linear correlation curve was created
that could be used to adjust the measurements. Using the correction curve
from the linear correlation, the stations gave measurements within the stated

3.5. Weather Stations

deviation from the producer at +3%RH.

23

24

Chapter 3. Predictive Modelling of Fire Risk

Chapter 4

System Requirements and
Design

This chapter analyses the requirements for the prototype application and presents
the design of the components that constitute the FR application developed with
the aim of validating the Fire Risk Indication model (FRI).

4.1 Analysis

There are several requirements that need to be fulfilled in order to have a work-
ing application that can be used in regard to evaluating the FRI model. As
mentioned earlier, the FRI model uses weather data to predict the indoor cli-
mate based on the outdoor climate. The weather data can come from many
sources, such as private weather sensors or more professional sensors operated
by larger institutes. Because of this, the application has to be able to support
weather data from several types of data sources. In addition, this can be histor-
ical recorded weather data as well as forecast weather data. Historical weather
data is data that has been recorded in the past based on measurements whereas
forecast weather data is a prediction as to how the weather will be some days
in the future.

The data may also come from different external services that do not nec-
essarily use the same protocol or data format. This has to be taken into con-
sideration when designing the application. For the sake of consistency of data
when testing, it has to be stored such that it can be assured that the data has
not been modified if validation needs to be performed again at a later date.
Another reason for storing the data is that if for any reason there are changes
to the FRI model later, it can be assured that it is applied and re-evaluated on
the same data-set that was used previously.

There are a lot of different weather elements that are not considered as the
FRI model focuses on single building fires in older wooden buildings. Eventually
when the application is expanded, these weather elements may be needed when
comparing to older fire risk computations. Because of this, even if the data is not
needed for now it will still be stored as a precaution. As of now, the application
only has a need for outdoor temperature and outdoor relative humidity. This

25

26 Chapter 4. System Requirements and Design

may later be expanded such that wind speed and also wind direction is required
in order to model the risk of the fire spreading.

The FRI model can be used with additional parameters to get better fire risk
for different situations such as, larger buildings, modern buildings and spread
of fire between buildings. Because of this, the application must be implemented
in such a way that it can easily be expanded or modified. This goes together
with the requirement that weather elements that are not necessarily used in
this application may be used later if and when the application is expanded
with more sophisticated FRI models.

Apart from different types of weather data and sensor sources, users have
to be able to interact with the Fire Risk application (FR) to specify what
operations they want to use. It can be that the user wants to know the fire
risk for a specific location at a specific time, or want to know the fire risk from
now on and some days in the future. Therefore there needs to be a front-end
that the users can interact with where they can view results and specify fire
risk locations.

Since the weather data comes from different sources it should be possible to
combine it when calculating the fire risk. This means that it should be possible
to combine historically weather data with forecast weather data to create a fire
risk indication. Note that it should also be possible to only use one of them for
fire risk indication. This means that it should be possible to only use historically
data to look at the accurate measurements to create a fire risk indication, and
also only use forecast weather data to create an indication.

Users should also be able to specify a location for where the FR application
should do continuous fire risk calculation. The idea of this requirement is that
a user may want to monitor a location continuously and observe the fire risk
overtime and not have to type date and time every time the user wants to look
at it. The FR application should then use a timer that regularly fetches the
weather data for that location and runs it through the FRI model to create the
fire risk indication.

Both the front-end and the back-end should be deployed to a cloud platform
for easy distribution and availability to the end-users. By this requirement, the
FR application should be accessible from anywhere and whoever want to use it
should be able to.

Weather data can quickly accumulate to large amounts of data. It is there-
fore important to limit the amount of data as much as possible by avoiding
to store any non-essential data values. Another aspect to have in mind is to
have as little waiting time as possible when calculating the fire risk for a given
location.

4.2 Requirements

Below we list the individual requirements derived from the above analysis. In
later sections, we will then refer back to these requirements, when presenting
the implementation of the FR application.
Requirement R1: Weather data sources.

4.2. Requirements 27

e This requirement states that the FR application should be able to fetch
weather data from different sources provided via web services.

Requirement R2: Common data format.

e This requirement state that the data from the external services that pro-
vides weather data should be converted to a common standard format
that can be used for the FRI model. Also, if there are any changes to the
FRI model at a later date the data should be stored in order to be able
to compare it with older versions of the FRI model.

Requirement R3: FRI model refinement.

e The FRI model that the FR application uses, focuses on single structure
fires for older wooden buildings and only relies on two weather elements.
The requirement states that the FR application should store all weather
data, even the ones that are not currently in use. This requirement is in
place in case the FRI model is expanded and as a consequence has use for
additional weather elements.

Requirement R4: Expendable Software.

e This requirement states that the components should be easy to expand
when adding new functionality.

Requirement R5: User interaction and service.

e Users must be able to interact with the FR application. This can be
through a user interface, or as a client with the use of a REST API that
provides fire risk indication data.

Requirement R6: Hybrid fire risk calculations.

e This requirement goes together with R2. Since the weather data is con-
verted to a common format it should be possible to combine historically
weather data with forecast data when calculating fire risk.

Requirement R7: Continuous data harvesting.

e If the user wants to monitor fire risk for a location, the FR application
should continuously collect weather data and calculate the fire risk.

Requirement R8: Cloud deployment.

e The FR application should have a software architecture that enables cloud
deployment in order to make the application widely accessible for different
types of clients.

Requirement R9: Storage and run-time efficiency.

e This requirement states that the application should have limited data
storage needs, as well as run efficiently in order to avoid slowing down
calculations.

28 Chapter 4. System Requirements and Design

4.3 Architecture Software Design

The prototype application is limited when it comes to calculating the fire risk.
According to R4 and R3, the FR application has to be implemented in a modu-
lar way that can support the expansion of the application as well as take in use
different weather elements that are currently not used in the FR application.

Figure shows the proposed software architecture which divides the func-
tionality into several components, which fulfils R4, each within their own pro-
cessing. The functionality has been split into three main components, where
the Fire Risk Prediction Model (FRP) component deals with the FRI model,
and the data harvesting and collection component (DHC) deals with collecting
weather data, both forecast and historical weather data. The third component
will act as a controller service that handles communication from the end-user
to the other two components. In this way all the functionality related to cal-
culating the fire risk will be in one component and all functionality related
to collecting and converting weather data is its own component. This way of
structuring the functionality gives a lot of flexibility and the two components
will not rely on each other. If there are any changes in one component, then the
other components should not be affected in a way that would require a rewrite
of the component. This way of structuring applications relies on the architec-
tural style of micro services, as discussed in section 2.2. As stated in R8, each of
the components will be hosted on a cloud platform for easy accessibility when
using the FR application.

Since the functionality is split in several components, the communication
differs somewhat from a traditional monolithic application. There are a few
different ways to achieve this. Two possible approaches would be to rely on
REST or message-based communication. Message-based communication offers
asynchronous communication where the application will not block while waiting
for an action to finish. Using REST to communicate may block the application
when working with large amounts of data, as it has to wait for each part to
finish before it can do another action. The FR application will use REST as
communication. It is therefore important to abide by R9 to avoid too much
blocking. Each component in the FR application will be implemented as a
RESTful service, each with their own resource.

Below we provide a more detailed discussion of the components that make
up the application.

4.3.1 Fire Risk Web Service

As stated by Rb, the user should have to be able to interact with the FR, appli-
cation. The fire risk web service will act as the front-end of the FR application
that the user will interact with. This web service contains all the available
actions that the user may perform. Depending on the action, the service will
communicate with the corresponding component that will execute the action
and send it back to the service, which in turn sends it back to the user.

There will also be a web application that will be used for evaluation pur-
poses. It is not intended for general use. This application will have a few

4.8. Architecture Software Design 29

Web Application External clients

Measur_ement Fire risk web service
semnice i
JSOMNXML [/
Data harvesting and t------ Fire Risk Prediction
Forecastsemwice ——JSONMML——>» Collection Madel
) {DHC) (FRP)

| Cloud platform

Weather Fire risk
data indication
database database

Figure 4.1: Proposed software architecture for the FR application

operations that will request weather data from different sources and display
it in graphs for better overview and analysis. This can for instance be how
accurate the forecast was versus the historical data recorded for that period.

4.3.2 Data harvesting and collection

As the name data harvesting and collection component (DHC) suggests, the
two primary tasks is to harvest weather data and collect it if requested. The
term weather data means both forecast and historical weather. The collec-
tion part will for the most part be necessary for evaluation of the FRI model,
and may not be applicable when the FR application is put into production.
However, harvesting of weather data will be required for both. From R1, it is
this component that will communicate with the external services that provides
forecast, and historical weather data. This data can then be used by the Fire
Risk Predictive modelling component. When the data is collected it will be
stored in a database, in accordance with R2. Whenever it fetches data, the
component will store all available weather elements that may be used, even if
unnecessary at the time being, in order to comply with R3. The component
will also implement R7, where it will continuously harvest data for a location

30 Chapter 4. System Requirements and Design

and run predictions on it by the help of a periodic timer that will run very 24
hour.

To achieve R9, the component will remove non-essential data that is part of
the return data from the external services in order to limit the amount of data
stored, and transferred in the FR application.

The component will have a resource available for the actions that a user may
perform, such as starting a new continuous harvesting of data for a location and
fetch weather data for a location in a given time span. It will then communicate
with the predictive modelling component to compute the fire risk. There is also
a few resources that will be available for evaluation purposes that fetches data
that is stored in the database.

4.3.3 Predictive Modelling

The main purpose of the FRP component is to get weather data from the DHC
and run it through the FRI model. Communication with this component will
happen in two distinct cases. It will either be from the DHC after it has fetched
data, or if a user wants to know about already computed fire risks. Whenever
it is given new weather data to compute a fire risk, the result will be stored in
the database. If a user wants fire risk indication for a specific location, it will
be possible to check the database to see if it has already been computed before
making a new request. This way it will be possible to decrease the number of
requests that will be made to the external services, which conforms to R9.

The component will also convert the weather data from the sources to a
common format to be used by the FRI model. The DHC will remove unnec-
essary data values, but it will still be in the same format as it was retrieved.
The reason for converting it to the same format is to comply with R6, where
it should be possible to make a fire risk by using both forecast and historical
weather data.

4.3.4 Measurements Services

The measurements service offers historical weather data that can be used by
the predictive modelling component. The FR application will make use of two
services that offers historical data. One of them is from a reliable source that
have strict rules when measuring data. The other one uses weather data from
consumer grade weather stations which may be less accurate.

Part off the evaluation is to see how much the fire risk indication differs
depending on which data source is used for the calculations.

4.3.5 Forecast Services

Forecast services offers predictions about the weather in the future. The FR
application makes use of one such services that offers forecast data for around
into nine days into the future.

4.4. Summary 31

4.4 Summary

Table[d.T|shows a summary of the requirements and where they are implemented
in the FR application.

Requirement and Name Implementation

R1: Weather data source DHC communicates with several sources

R2: Common Data format Converts weather data gathered from DHC in FRP

R3: FRI model refinement All weather data stored in a database in DHC

R4: Expandable Software Structuring the application as micro-services

R5: User interaction and service Fire Risk Web Service API

R6: Hybrid Fire Risk Calculations Converted weather data in FRP can be used together

R7: Continuous Data Harvesting Timer in DHC harvest weather data

R8&: Cloud Deployment DHC, FRP and FR web service hosted on a virtual machine
R9: Storage and Run-time efficiency | Store as little as possible amount of data in DHC and FRP

Table 4.1: Summary of requirements and their implementation

32

Chapter 4. System Requirements and Design

Chapter 5

Implementation and
Deployment

This chapter provides details on how the software architecture derived in the
previous chapter has been implemented, including the components that imple-
ments the core functionality of the application.

5.1 External Services

As explained in Chapter {4l the application makes use of three different services.
These are the services that provides the weather data needed for the FRI model
in order to calculate fire risk. These services are provided as RESTful web
service. As mentioned in chapter [2] REST is an architectural way of structuring
web services that offers a lot of flexibility where one is not constrained by specific
languages when creating the web service.

Two of the external web services used is from the Norwegian Meteorological
Institute (MET), which is part of the Ministry of Climate and Environment of
the Norwegian state. MET offers free weather data from Norway.

The two services focuses on two distinct types of weather data. The Frost
web service[3] has a primary focus on weather data from the past. This service
gives access to all the stored data that the meteorological institute has recorded
since they started. It can offer data about climate normals and extreme records,
but also regular every day weather measurements such as temperature, wind,
and humidity. Then there is the MET API[4], which focuses on current weather
and predicting the future weather. It is mostly used for getting access to weather
forecast, but also offers lighting forecasts, where the hottest and coldest places
are, ocean forecasts, and aviation forecasts.

The Frost web service is more modern and updated from an old SOAP-based
web service and offers weather data represented as Json and XML format. The
MET API is not as new as the Frost web service, but offers weather forecasts
represented as XML and Json.

The most notable difference is that the Frost web service offers filtering of
the response data when making requests. The filtering mechanism means that
if provided, only the data that is specified will be returned. With the MET

33

34 Chapter 5. Implementation and Deployment

API web service, such a filter is not available. This means that the return data
contains unnecessary information that is not related to the weather data the
FRI model needs. One of the requirements, R3, of the application was to store
the return data from the web service in the database. The return data from
the Frost web service can be stored right away, as it only contains values for
the relevant weather elements. The return data from the MET API web service
contains a lot of information that will not be used now or in the future. The
return data from the MET API web service will be filtered in the component
that handles the weather data collection and then stored in the database.

The third external web service is from a private organization, Netatmol5],
that sells consumer grade weather stations.

5.1.1 Frost Web Service

The Frost Web Service offers free access to METs historical weather and cli-
mate data. The data includes quality controlled daily, monthly and yearly
measurements of temperature, precipitation, and wind data [3]. Metadata for
the weather stations are also available through the web service.

The Frost API is a RESTful api that gives access to a lot of different
resources about weather and climate data in Norway. In order to use the
API, proper authentication is needed. This is done by creating an account
on [frost.met.no. By creating an account, a client identification key will be
provided to the user, which again will be used when making request to the API
to make sure it knows who connects to the API.

After the account has been created and, a client identification has been pro-
vided, the user can use the API freely. There are, however, certain restrictions
on using the API. For instance, if a user has a large request this will have to
be split into smaller request in order to prevent a time out from the API. It
is also preferred to cache the data to avoid making unnecessarily large request
more than once.

The Frost API gives access to resources about locations, weather records,
observations, lighting, sources (weather station metadata), elements (weather
elements), climate normals, and frequencies. Not all of these resources will be
used by the FR application as they do not provide data required by the FRI
model. The ones that are used are, location, observation, and meta data about
the stations.

The location resources returns information about a location, such as name,
coordinates of the location, and gives a brief description of the location. This
information is obtainable by either providing a name of the place, or by pro-
viding longitude and latitude coordinates to find the nearest location. This can
be used to give a description to the user when selecting a station for fire risk
indication.

Sources are the entities that measures data. There are three different types
of sources: Sensor Systems (SN), Region Data-set (TR, GR, NR), and Inter-
polated Data-set. Of the three types of sources, Sensor Systems is the relevant
one in this case. This particular resource gives the metadata of the sources
(weather stations). The metadata contains which type of source it is, its lo-

frost.met.no

5.1. External Services 35

cation in longitude and latitude, its name, information about the place it is
located, its altitude, and from when it is valid and to when. To be able to fetch
weather data, the identification of a source must be provided. With the help of
this resource, it is possible to find the identification of the correct source for the
location that a user wants to find the fire risk. There are a few different ways of
finding the identification of the station. Most of them requires some previous
knowledge as to how and where they are placed. There is, however, one way of
finding a source identification by only knowing the latitude and longitude co-
ordinates. There is a parameter in the resource that is called geometry. This
parameter accepts a command of nearest(POINT (longitude latitude)). This
command will find the nearest station to the given coordinates. However, this
will give all registered stations in the area and the nearest one may not provide
the necessary weather data. A work around to avoid this problem is to use a
source that have been assigned a WMO (World Meteorological Organization)
ID. These sources will measure the relevant weather elements, and will provide
updateed measures every hour. It is then possible to specify that it should only
return sources that have a WMO identification. By using the above command
with the parameter that specifies which stations it should look for, the near-
est station should contain the relevant weather elements. It is also possible to
choose how many stations should be returned if that is necessary in the future.
An example of a URL for finding a source is as follows:

https://frost.met.no/sources/v0.jsonld?geometry=
nearest (POINT(5.3501755 60.3693299))&wmoid=1%

An example of return data from this URL can be seen in Figure In
this particular example, a user wants to find the nearest source with the lati-
tude and longitude coordinates of 60.3693299 and 5.3501755, respectively. The
identification of the nearest source can be found in the field labelled id. Since
this is a sensor system it has a prefix of SN followed by a number. Information
about the location is also present, as well as the distance from the station to
the requested coordinates.

36

Chapter 5. Implementation and Deployment

¥ data:
va:
@type: "Sensorsystem”
id: "SN50540"
name: "BERGEN - FLORIDA"
shorthame: "Bergen”
country: "Norge"
countryCode: "NO™
wmoId: 1317
¥ geometry:
@type: "Point”
¥ coordinates:
a: 5.3327
1: 60.383
nearest: false
distance: 1.79809751386
masl: 12
validFrom: "1949-11-28T00:00:00.000Z"
county: "HORDALAND"
countyId: 12
municipality: "BERGEN"
municipalityId: 1201
¥ stationHolders:
e: "MET.NO"
¥ externallIds:
a: "@1317"
1: "10.249.0.159"

wigosId: "8-20000-0-01317"

Figure 5.1: Return data for finding the nearest source

The observations resource, which is a part of the Frost API, is where the
FR application gets access to the weather data needed for the FRI model. The
observation resources are divided into five different sub resources, which will be
explained in greater detail below.

Available Time Series gives information about which weather elements
it measures as well as how often it measures specific weather elements.

Observation provides weather data from the presented weather elements
the users requests.

Meta data update count is not yet implemented

Available Quality Codes gives a brief description about the quality
codes from the observation.

Quality provides a more detailed information about the quality codes.
It is not properly implemented yet.

5.1. External Services 37

Available Time Series is a resource that can be used to find information
or metadata about what and how often a weather station measures. This will
be which weather element it measures, how often it is measured as well as
the identification of the weather element, the unit of measure of the weather
element, and a lot of additional information that describes the weather element.
This identification will be used later in order to find the measurements from
the stations. Some of the available time series for the source in Figure [5.1] can
be seen in Figure [5.2 The most important information from this data is the
weather element id, and the time resolution. The time resolution specifies how
often the data is measured, which in the case of the FR application has to
be every hour. In figure the weather element air_temperature has a time
resolution of "PT1H”, which means that it will measure air temperature every
hour of the day.

¥ data:
voa:
sourceld: "SN50540:0"
¥ level:

levelType: "height_above_ground”
unit: "m"
value: 2

validFrom: "1997-03-13T17:00:00.0007"

timeoffset: "PTOH"

timeResolution: "PT1H"

timeSeriesId: e

elementId: "air_temperature”

unit: "degC"

performanceCategory: "A"

exposureCategory: "1

status: "Authoritative”

b uri: "https://frost.met.noobse..ecategories=1&levels=2.0"
vi

sourceld: "SN50540:0"

validFrom: "1997-93-13T17:00:00.000Z"

timeoffset: "PTEOH"

timeResolution: "PT1H"

timeSeriesTd: 5]

elementId: "relative_humidity"

unit: "percent”

performanceCategory: "A"

exposureCategory: "1

status: "Authoritative”

Figure 5.2: Available time series for source SN50540

Observations returns the observed measures from a source. It is from this

38 Chapter 5. Implementation and Deployment

sub resource that the weather data can be found. There are a few parameters
that are required in order to retrieve the data. The first and most important is
the source identification, which can be found as was described above. Then, a
time interval must be specified. The time interval can be specified in two ways.
By specifying one date, it will retrieve data from the specified date to present
date of the request. The other way is to specify from one date in the past to
another date in the past. The last required parameter is the identification of the
weather elements that should be retrieved. If the source is known, it is possible
to use the available time series to find which weather elements are available.
However, in the case of the FR application, these parameters are hard coded
in the application, as it is unnecessary to check every time once it is known
which sources are used. There are some sources that measures weather data
at different time resolutions. Some of them do every hour, some do every 30
minutes as well as every hour. As the FR application is only concerned with
data every hour, it can specify a parameter that only data that is measured
every hour should be returned. There is also the case of unnecessary return
data that will not be used. The Frost API has a parameter called field, where
the requester can specify which return values should be sent back. To retrieve
weather data for a location for a specific time, the following URL may be used:

https://frost.met.no/observations/v0. jsonld?sources=[SOURCE_ID]
&referencetime=[FROM_TIME/TO_TIME]
4elements=air_temperature,relative_humidity
&timeresolutions=PT1H
4&fields=elementId,value,referenceTime,qualityCode

If the same user as above wants to find weather data using the source, SN50540,
that the user identified previously, it must be placed where SOURCE_ID is.
Then the user would have to pick a time, in this case it could be 2019-04-
20T10 00/2019-04-10T11 00. This will find all recorded weather that the source
SN50540 have recorded in the time span of April 20th at 10 am to April 21th
at 10 am. The return data of this request can be found in figure [5.3

5.1. External Services 39

¥ data:
vo:
referenceTime: "2019-04-10T10:00:00.000Z"
¥ observations:
vo:
elementId: "air_temperature”
value: 7

qualityCode: :]

elementId: "relative_humidity"
value: 36

qualityCode: -]

referenceTime: "2019-04-10T11:60:00.000Z"
¥ observations:

vo:
elementId: "air_temperature"
value: 7.2
qualityCode: e

vi:
elementId: "relative_humidity"
value: 39
qualityCode: -]

b2: {..}

Figure 5.3: Return filtered data from observation request

Available Quality Codes returns a list containing definitions for the dif-
ferent quality codes. The current quality codes used by the Frost service ranges
from 0-7 where 0 is an accurate measure and 7 is an unreliable measure. The
quality code informs about the quality of the observation and can be used to
inform about uncertainties in the data.

5.1.2 Met Web Service

As with the Frost web service, the MET web service offers free access to a
range of different weather resources, such as air quality, aviation forecast, light-
ing map, UV forecast, and location forecast. Most notable in this case is the
location forecast service. The location forecast service provides access to the
weather forecast for a specified location. Unlike the Frost web service which
required authentication, the location forecast does not. It has only one resource
available and that is to find the forecast of a location. This location must be
specified on the longitude and latitude format. The returned forecast will be
the weather every hour for the first tree and a half days, and every 6 hour up
to the 9th day. The location forecast can be obtained by the following URL:
https://api.met.no/weatherapi/locationforecast/1.9/.json?lat=LAT&lon=LON.

https://api.met.no/weatherapi/locationforecast/1.9/.json?lat=LAT&lon=LON

40 Chapter 5. Implementation and Deployment

An example of what will be returned if a user wants the forecast for a loca-
tion with the latitude coordinate 60.3693299 and longitude coordinate 5.3501755
can be seen in figure [5.4l For each of the fields in the returned data, it will
specify the return type, value and unit type.

va:
from: "2019-86-082T21:008:007"
to: "2019-26-02T721:08:0071"
¥ location:

¥ temperature:

unit: "celsius”
value: "15.0"
id: "TTT™
P windDirection: {1}
¥ cloudiness: Lt
¥ humidity:
value: "89.0"
unit: "percent”
¥ windSpeed: Lot
P highClouds: {7}
¥ mediumClouds: {]
P dewpointTemperature: {-)
P pressure: 1.}
longitude: "5.35@2"
P areaMaxWindSpeed: {3}
P fog: 1.}
altitude: "24"
P windGust: 1.}
latitude: "68.3693"
» lowClouds: 1.7
datatype: "forecast”
b1: 17
b2 {3

Figure 5.4: Return data for a weather forecast

5.1.3 Netatmo Web Service

The Netatmo web services uses privately owned weather stations for retrieving
historical weather data. These must be bought at a local store or at a web
store. The base package of the Netatmo weather station comes with an indoor
module, and an outdoor module. The indoor module measures temperature,
humidity, C0Oy and noise levels. The outdoor module measures temperature,
humidity, and air pressure. The indoor module requires an Internet connection
in order for it to send measured data to the Netatmo back-end cloud service.
The indoor module acts as a gateway controller for the outdoor module, where

5.1. External Services 41

the outdoor module sends measured data to the indoor module which in turn
sends it to the back-end server.

In order to use the Netatmo weather station, an account must be made,
either through their website (www.netatmo.com) or on the mobile phone applica-
tion available on both Android and iOS. In the mobile application or the web
site, there are instructions for how to install new weather stations and setting
up the network connection.

The Netatmo API offer different services based on the types of Netatmo
product the user has available. There are security products, energy products,
and the weather products. In the case of the FR application, only the weather
products are used. The base package for the weather products measures temper-
ature and humidity, but it is possible to buy extension modules that measures
wind speed and direction, and rain levels. For the weather products there are
three services available, but not all of them will be used. There is a service
for getting public data from all stations in an area, and this may be used in
the future, but for now it is not in use. The two services are split in a control
service, that handles authentication, and a data service, that enables the user
to fetch measurements and meta data of the Netatmo stations. The metadata
for the stations contains the identification of the indoor and outdoor module,
as well as general information about the stations such as battery life, up time,
location, and which modules are connected and what they measure. The iden-
tifications are used by the data service to retrieve measured weather data from
the outdoor module.

As with the Frost Web service, authentication is required for making re-
quests to their weather API. For authentication purposes, the control service
is used for creating access tokens that can be used to gain access to the data
service. This access token can be obtained by using a client identity and a
client secret. The client secret and identity can be found by navigating to the
developer page of Netatmol[5]. At this page, there is an option to create an app
and by creating this app, the user will be assigned a client identity and secret.
When the client secret and identity is obtained, it will be possible acquire the
access token required for retrieving measurements and station metadata. To
get the access token the following HT'TP POST must be made to the Netatmo
API

https://api.netatmo.com/oauth2/token
with these url parameters:

grant_type=password&clientId=YOUR_CLIENT_ID
&cleint_secret=YOUR_CLIENT_SECRET
&username=USERNAME&password=PASSWROD

This will retrieve the access token, as well as a refresh token. This refresh token
can be used to acquire a new access token later by replacing the user name and
password from the URL parameters with the following URL parameters:

grant_type=refresh_token&refresh_token=REFRESH_TOKEN
&client_ID=YOUR_CLIENT_ID
&client_secret=YOUR_CLIENT_SECRET

www.netatmo.com

42 Chapter 5. Implementation and Deployment

The return data for getting the access and refresh token can be seen in Figure
The access token has a limited duration before a new token must be as-
signed. In Figure there is a field named ezpires in that provides information
on how long the token can be utilized before a new one has to be issued. The
refresh token value in the return data can be used for retrieving a new token
instead of the user name and the password.

¥ access_token: "584abb4a29977e2e2f8c960a|34958ddc9ddc111d52efbbead8bfe51lc”
¥ refresh_token: "584abb4a29977e2e2f8c968a|3095c6e9748983294abl1966768Fbbfa"
¥ scope:
a: "read_station”
expires_in: 10500
expire_in: le360

Figure 5.5: access and refresh token

With the new acquired access token, the two services can be accessed. As
mentioned, the identification of the outdoor module is essential to find the
measures recorded by that stations. This is done by the service that retrieves
the metadata for the station. To do this, the MAC address of the indoor module
must be known. The address can be found in either the mobile application or
the web application. On the mobile application it will be under settings and
found by clicking the station name. On the web application, the station must
be selected and then click Manage my station. The station metadata can then
be obtained via the following URL:

https://api.netatmo.com/api/getstationsdata
7access_token=ACCESS_TOKEN
&device_id=MAC_ADDRESS

An example of the return data from the service is shown in Figure As
can be seen, there is a lot of information about the status of the weather station
itself. The most relevant information, in the case for the FR application, can
be found under the data type and modules field. The information inside these
fields can be seen in figure

Inside the data type field, one can find information about what weather
elements the station can provide measures for. Note that some of the weather
elements may be limited to one or more modules. For instance the indoor
module will not measure pressure and the outdoor module does not measure
COs levels. The commonality between the modules is the temperature and the
humidity. In the modules field, all the available modules will be listed such
as outdoor modules, rain gauges, and wind turbines. In this case only one
outdoor module is connected to the indoor module. It is possible to have more
than one outdoor module if that is necessary. As with the indoor module, the
identification field is the MAC address of the outdoor module that will be used
for identifying the correct outdoor module when fetching the measurements.

5.1. External Services

¥ body:
¥ devices:
va:

_id: "78:ee:50:17:81:b2"

P cipher_id: "enc:16:nvhwVwlLLvApnGdr5n..ndueAdTbzwXZiYKZV3S1dsm™
date_setup: 1446834974
last_setup: 1446834974
type: "NAMain™
last_status_store: 1559585951
module_name: "Indoor"
firmuare: 135
last_upgrade: 1448426223
wifi_status: 51
reachable: true
co2_calibrating: talse
station_name: “"Nr 18 L-M"

b data_type: [..]

P place: {1

P dashboard data: -1
read_only: true

P modules: [-]

P user: {-}

Figure 5.6: Metadata for the weather station

¥ data_type:
a: "Temperature”
1: "coz2t
2: "Humidity"™
3: "Noise"
4: "Pressure”
¥ place: {.}
¥ dashboard_data: {-}
read_only: true
* modules:
vo:
_id: "92:00:08:17:9b:bc”
type: "NAModulel™
module_name: "Outdoor”
¥ data_type: [..]
last_setup: 1446834940
reachable: true
» dashboard_data: Lt
firmware: a4
last_message: 1559505950
last_seen: 1559585985
rf_status: 84
battery wvp: 5726
battery_percent: 86

Figure 5.7: Data types and modules

44 Chapter 5. Implementation and Deployment

The process of getting measurements is much the same as with the obser-
vation service from the Frost web service. First and foremost, the access token
must be provided, so that the API can ensure that the correct person accesses
the station data. The identification of both the outdoor and indoor module is to
be provided. As with the Frost web service, the weather data is updated around
every hour, and it is possible to specify the time interval for the measurements
that should be returned. In this case it will be every hour. It is also possible to
specify dates. If none is provided it will return every recorded measurements
starting from the install date, with a maximum of 1024 measurements. There
is also a type field where it is possible to choose what weather elements should
be returned. Only temperature and humidity will be returned, as that is what
the base package of the Netatmo stations that are in use offers. The URL for
requesting the measurements is the following:

https://api.netatmo.com/api/getmeasure?access_token=[YOUR_TOKEN]
&device_id=[YOUR_DEVICE_ID]&modeule_id=[YOUR_MODULE_ID]
&scale=1hour

&date_being[START_DATE]&date_end [END_DATE]
&type=temperature,humidity

As a note, when choosing start date and end date it must be provided in
seconds from 1 Jan 1970 to the selected date. Data from this request can be
seen in figure The data states at what time and date the first measurement
is from, in seconds from 1 Jan 1970, as well as the step time between each
measurement in seconds. Then the measurement values are given as a list of
measurements for every hour from the start date until the end date as specified
in the request. The values themselves are ordered in the same way as specified
in the request URL.

5.1. External Services

¥ body:
vo:
beg_time:
step_time:
¥ value:

vo:

b 2:
LgEH
L/
b5
LH
b7
LE:E
L H
L [:H
b 11:
k132
L EH
Fi14:
b 15:
b 16:
r17:
b 18:
b 19:
Lgvi:H
b 21:
b 22:
b 23:

1554852600
3600

2.4
45

2.9

Lo T T e T s T e T e T e T e T e T e T e T e B e e T e B T T e B T T B

45

Figure 5.8: Return data for getting measurements from the outdoor module

46 Chapter 5. Implementation and Deployment

5.2 Databases and Storage

As discussed in section 4.2, two of the components use databases to store
weather data and location data. For each component there are two databases,
one relational database and one noSQL database, where the latter is a so-called
document database.

The data harvesting and collection component uses the database for storing
the weather data from the external services. It also stores the location of where
it should do continuous data harvesting from. Storing a location can be done in
three ways: one is using latitude and longitude coordinates for forecast data and
the corresponding Frost source. The Frost source is obtained in the same way
as described previously. It is also possible to add a Netatmo station by adding
the MAC address of the indoor and outdoor module. In the noSQL database,
this information is stored in Json format. While in the relational database it is
stored in its own table. An example of how the latitude and longitude is stored
in the different databases is shown in figure [5.9) and figure [5.10

id latitude longitude
[PK] bigint character varying(255) character varying(255)
1 3 60.3994 5.32e0
2 3 60.79497 10.8777
3 [559.390% 5.308%
4 7 £1.08485 T7.4%935

Figure 5.9: Table for latitude and longitude location in SQL

_id: objectTd("scefef791359bs8dagbaf785
Name: "Metlocations
~ locations: Arra)
~ @: Object
longitude: "5. 32682
~ 1: 0bject
latitude: "ea.732
longitude: "18.5
~ 21 Object
latitude: "s9.3383
longitude: "5. 3233
~ 3: 0bject
latitude: "&1.@335
longitude: "7.4935

Figure 5.10: Json document in the noSQL database

For the weather data, as long as it is in Json format, it can be stored di-
rectly in the noSQL database. To be stored in a relational database, it must be
converted to the corresponding entities in the application that will map it to a
table in the SQL database. There are libraries available that converts Json for-
mat to other programming language. Since the FR application is implemented
in Java, Gson[2]] is the library that has been used for this purpose. In order
to convert from Json to Java, a Java class with the corresponding fields and

O O T W

—_ =
N = O O

5.2. Databases and Storage 47

value types can be created. Gson will then map the fields and their values to
the same variables and types in Java Objects. These Java Objects can then
be mapped to tables and columns in databases with the help of other libraries,
such as the Java Persistence API[2] (JPA). The JPA will then create a table,
in the relational database, for that class where each row is a object variable
from the Java class. The entity in a Java class can be seen in the code example
below, and the corresponding table in the SQL database is seen in figure [5.11
It is also possible to use methods within gson that can represent the Json data
without having to map it to a Java Class.
@Entity
Public class FrostResponse implements Serializable {

Qld

@QGeneratedValue
private Long id;

private long responseDate;

@OneToMany (Cascade = CascadeType.PERSIST)
private List<FrostData> data;

private String sourceld;

private lastReferenceTime;

Listing 5.1: Entity in Java

id responsedate | lastreferencetime sourceid
[PK] bigint | bigint character varying({255) character varying({255)
1 k] 1544657400025 |2018-12-12T23:00:00.000Z 5M50340

Figure 5.11: Table in SQL database

When the fire risk indication is computed, it must be converted to Json in
order to store it in the noSQL database. As for the weather data, Gson is used
for this action. By having Java objects available it will create Json text from
the Objects that can be used to stored in the database.

48 Chapter 5. Implementation and Deployment

5.3 Implementation

Will now give a brief overview of the developed prototype application. The
prototype consists of a front-end and a back-end. The front-end handles how
the user interacts with service and uses the components from the back-end,
which in turn deals with calculating and fetching data.

5.3.1 Functionality and Use Cases

In chapter 4] we discussed the different requirements for the FR application.
R5 states that a user should be able to use a fire risk web service where they
can specify if they want to subscribe to a fire risk for a given location and time.
A second requirement was that they should be able to start a new continuous
fire risk calculation for a given location. These will be the two primary use
cases of the FR application.

The user has access to a web service that contains all the available resources
that can be used. These resources have certain parameters that must be filled in
by the user in order to retrieve the relevant fire risk indications. This includes
the longitude and latitude coordinates of the location for the fire risk indication
as well as a time frame (if required). If location has both a consumer grade
station and a station from the Norwegian Meteorological Institute, the FR
application chooses the nearest one. When starting a new continuous fire risk
indication, the type of station must be entered. This can be a Netatmo station,
by providing the MAC address for the indoor and outdoor modules. In the
case a Frost station is used, longitude and latitude must be provided for FR
application to find the one with the nearest location. Note that, if the Netatmo
station is not calibrated the measures may be inaccurate.

The use cases rely on different types of weather data. The use case that
runs continuously uses historically data, that can be from either the consumer
grade weather station, or the Norwegian Meteorological Institute. It will also
be possible to add a forecast to the fire risk indication if specified. The use
case that provide fire risk indication for a location and a time point can both
use historically data, but it can also use weather forecast data. If the time
provided is in the past, then it will use historically data. If a time point is not
provided and they want to know the fire risk in the coming days, the weather
forecast will be used for calculations. However, in order to have more accurate
indication when only using forecast data, some historical weather data will be
added on top of the forecast which can result in more accurate indications as
this will serve to calibrate the FRI model.

The main functionality of the application is to fetch weather data from the
external services and then run it though the FRI model for determining fire
risk for a given area. This functionality is split in two categories, depending on
what the user of the application wants.

e The first category is where the user specifies to get fire risk for a time
and location, where the location is on the longitude latitude format.
This choice can use both use historically weather data, and also forecast

5.3. Implementation 49

weather data. The user can input the location by typing in the longitude
and latitude of the location, and the time period for the weather readings.
This time period can be specified in four ways.

— The time period can be based on two dates in the past.
— The time period can be from a date in the past to the present date.

— The time period can be from a date in the past to the present date,
as well as specifying that forecast weather should also be added after
the present date.

— The time period is in the future and the data used can only be from
the weather forecast.

e The second category is when the user wants to start a new continuous
fire risk indication for a location. By using this option, the application
will begin collection data from the location provided by the user. This
data collection will happen every 24 hours, currently at 00:30 CET every
day. The user still needs to specify a location, same as the other category
with longitude and latitude. The application will then find the nearest
weather data source, as discussed in Section 5.2.3. The user is also given
an option to add their own station if they are from Netatmo.

The FR application uses a Java enterprise architectural style which is com-
prised of a client tier, web tier, business tier, and an enterprise information
tier. Each of these tiers take care of their own part of the system. The client
tier is usually a normal web browser communicating with the web application.
The web tier is the view, or the web pages the application generates to present
information on the screen to the user. The business tier is where the business
logic of the application is implemented, e.g. for communicating with databases,
or different components, or external services.

In the case of the FR application, the components can be placed in the
different layers. For instance, the fire risk web service has the responsibility of
communicating with the client and would be placed in the web tier and can be
considered the front-end part of the FR application.

For the two other components, they would be placed in the business tier
as they handle all business logic. The DHC component handles communica-
tion with the external services, whereas the FRP component handles the logic
responsible for creating the fire risk indication that the users retrieves via the
fire risk web service. These two components makes up the back-end of the FR
application.

5.3.2 Front-End Implementation

The front-end of the FR application consists of two parts. The controller service
that handles communication with the back-end services. It also has a web
application that is used for evaluation of the FRI model.

The controller service is implemented with the Spark Framework[19]. Spark
Java is an easy to use framework for setting up RESTful application services.

N O U R W N

50 Chapter 5. Implementation and Deployment

In order to use Spark Java, the Maven repository must be added to the POM-
file. Then, all that is required is to create a class with a Main method and add
GET, POST, PUT or UPDATE methods, as seen on line [5|in the code example
below. Spark Java comes with a built-in web server that will run when the
application is started. There exists several configuration options, however that
will not be necessary to cover more closely for simple use.

import statis spark.Spark.sx;

public class HelloWorld () {
public static void main(String[] args) {
get (7 /hello”, (req, res) —> ”"Hello_.World!”);
}

Listing 5.2: GET method in Spark Java

The web application created for visualisation and analysis of the results,
was built using JSF(Java Server Faces) and Facelets. JSF is a server-side
component[2] framework for building web applications with Java. JSF gives
access to an API[2] for representation of components and their states, handle
events, and server-side validation. It also has a tag library[2] to add compo-
nents to the web page and connecting the components to server-side objects.
JSF works with both JSP (Java Server Pages), but works best with the use of
Facelets.

Facelets is a lightweight[2], but at the same time powerful, page declaration
language that is used to build Java Server Faces using HTML style templates,
and for building the component tree. Facelets uses XHTML, which is a combi-
nation of XML and HTML structure, to build the web pages.

JSF uses a standard MVC (model, view, controller) architectural pattern,
which can be seen in figure This type of pattern splits the functionality in
three separate parts. The model, the view of the model, and the controller of
the view. The model represents the data that is passed through the application
or between the view and the controller. The view is the user interface that
is represented on the screen and can be displayed in the web browser. The
controller acts as an intermediary between the view and the model in order to
process the incoming request from the view and then to manipulated the model.
When the model has been manipulated, the controller interacts with the view
to render ab updated view based on the data that was manipulated.

5.3. Implementation 51

Client side Server side
Create and
Request . Controller , Manage
: (Servlet)
Browser Manipulate and 4 J MOBdel
(HTTP, WAP) redirect to (lavaBeans)
h 4
-
. View | Access
Response (JSP, template)

Figure 5.12: Java Server Faces architecture

To visualize data in the form of graphs, a library called PrimeFaces[22] was
used. This library has a wide variety of graph types available, but for the most
part line graphs will be used.

In the visualization application, the view would be the Facelet pages which
creates what is seen on the web page. Then ther is the Faces Servlet which acts
as the controller. And lasttly, the managed beans in JSF corresponds to the
model in the MVC architectural pattern.

5.3.3 Back-end Implementation

The back-end part of the application consists of two main components that
handle the logic for harvesting and collecting data and indicating the fire risk.
These components are written in Java and are also implemented as a RESTful
web service. This is achieved with the use of Java Enterprise Editions JAX-RS
service. The JAX-RS service is an API for Java that makes it possible to create
web services on the REST architectural pattern.

The back end also uses EJB (Enterprise Java Beans)[2] which is an API
that Java provides for handling business logic in Enterprise Applications. EJB
is a web container that provides security, Java servlet lifecycle, transaction
processing and timers. The FR application is mainly concerned about using the
transaction processing, but the DHCC will use timers as part of the continuous
harvesting of weather data.

Transaction processing is needed when working with databases in order to
ensure integrity of data. The main issue here is to ensure that consistent data
is stored in the databases. A transaction is a series of actions that have to
end successfully or else all actions are rolled-back. If transaction control is not
used, all changes that are successful, will be committed to the database. This
means that if two data-sets, that are dependent on one another, are stored
in the database, and one of them fails, the one that is successful will still be
added to the database. If the application wants to use the two data-sets later,
it will encounter an error because only on of the data-sets is to be found in
the database. This is what the transaction control will prevent from happening

52 Chapter 5. Implementation and Deployment

in the application. Instead of having one of the databases used succeed and
the other fail, it will fail both of them. The application will then be able to
try again until all actions are successful. The transaction will end in either a
commit, where all actions are successful, or in a rollback. If a rollback happens
one or more actions was not successful and the data will not be committed to
the database.

The timers from the EJBs is a scheduler that makes it possible to specify
when certain jobs should be executed. This can be once every 5 hour, every
Monday at 10 pm and so on. The code example below showcases a timer that
will execute every 24 hour at 00:30 am CST.

@Schedule (minute = 7307, hour = 7007, dayOfWeek = ”"sun—sat”
persistent = false, info = ”collectionTimer”, timezone = ”Europe/0Oslo”)

Listing 5.3: Timed schedule example

Class Structure

The class structure of the back-end components is shown below. Some of the
classes that make up the application are used by multiple components and will
only be shown once. These are usually utility classes that have operations
regarding conversion of data and setting up database connections, and model
classes used for representing the data. Figure [5.13illustrates the models used
for representing the weather data as well as the different sources that can be
used for retrieving weather data.

In figure the relation between the primary classes that make up the
DHC component is shown. This component uses a singleton class that sets
up the scheduler used for retrieving weather data periodically. The scheduler
class has relations to three facade classes that have the purpose of storing and
retrieving weather data. For each set of external services used there is a corre-
sponding facade class that has operations regarding the use of that particular
sets of weather data. In each of the facade class listed in figure there is a
variable MongoDbFacade, which can be seen in figure and is common for
all. The Mongo Database needed extra configuration in order to be operable.
This was done by creating a factory class that implements the java Object Fac-
tory, which is then used to create the Mongo Database instance used by several
of the classes.

5.3. Implementation

FrostResponse

- responseDate: long
- data: List=FrostData=

- sourceld: String

- lastReferenceTIme: String

1.7

FrostData

- referenceTime: String

- observations: List

ForecastData

- latitude: double
-longitude: double

- fromTimestamp: long
-toTimestamp: long
-responseDate: long
-forecastObservations: List

=ForecastObservation=

1.4

ForecasiObservation

=FrostObservation=

1.*

FrostObservation

- elementld: String

-value: double

-fromTime: long
-temperature: double
-windDirection: double

- humidity: double

- pressure: double

- dewPointTemperature: double
-windSpeed: double
-windGust: double

- areMaxWindSpeed: double
- cloudiness: double

-fog: double

- lowClouds: double
-mediumClouds: double

- highClouds: double

Locations

- sourceld: String
-metlocation: MetlLocation
- netatmoStation: NetatmoStation

- location: String

-

NetatmoResponse

- netatmoData: List<Netatmo-
Data=

- status: String

- timeExec: double
-timeServer: long

- responseDate: long

- deviceld: String

- moduleld: String

- lastTimeReference: String

1.4

NetatmoData

=NetatmoObservation=
- begTime: long

- stepTime: long

- netatmoObservations: List

1.%

MetatmoObservation

- humidity: int

- temperature: double

Classname

<=gonstructor== + Locations(sourceld: String, metLocation: MetLocaion,

netatmoStation: NetatmoStation, location:String)

-

- device_ld: String

- module_|d: String

Metlocation

1

FrostStation

- sourceld: String

- latitude:String

- longitude: String

93

Figure 5.13: Class diagram of the models used by multiple components in the

application

Figure

lists the utilities that are used by the application.

54 Chapter 5. Implementation and Deployment

JsonToJavaConverter HttpsRequest

A -q - String
+ convertToMNetatmoResponse(String): NetatmoResponse etbuffer. StringBufer

- postBuffer: StringBuffer

+ convertFrostResponseToJavaljson:String,srcs:List): List=FrostResponses=

+ makeHttps GetRequest{url:String.options:Strina}: boolean

+ makeHttpsPostRequest{url:String params:String, options:

XmiToJavaConverter

String} : boolean

+ returnJava(buffer:StringBuffer). ForecastData

MongoDbFacade

+mongoDB: MongoDB

+fmd: FrostMongoDB

+ getLastResponseDate(col:String): long

+findALIFrostMeasurments(): String

+ getLocations(): List

+ listForecastData(lat double lon:double): List
+findForecastFromTimestamps(flong,tlong lat double lon:double) ForecastData
+findFrostDataForForecast(long,long, String): List

+ getLocationFromSource(String): Locations

+ getFrostResponsesFromSource{source:String): List

+ getNetatmoDataFromlds(device:String, module:String): List

Figure 5.14: Class diagram of the utility classes used by the components of the
application

5.3. Implementation

1

FrostResponsefacade

+ mdf: MongoDbFacade
+em: EntityManager

+fmd: FrostMongoDB

+ addObsenvationFromFrostnewDate:Date)

=8iring=}. List=FrostResponse=

1 String
+ geil atestFrostUpdate():long
+findFrostStation(y:List<String=

getEntityManager().EntitManager

+ getFrostResponse{json:String,stations:List-

+ getLastReferenceTime(stations: List=String=) -

1

FrostMongoDB

+ mongoDB: MongoDB

+findFrostStations(): List=String=
+ geil asiReferenceTime(s:String[]): String

+ containsStation(String): boolean

1 1

<< Singleton>>MongoDB

+ mongoClient: MongoClient

+ getMongoClient(y: MongoClient

<= Singleton>>DataCollectionScheduler

- nrf. NetatmoResponseFacade
- marf: MetApiResponseFacade
-fif: FrostResponseFacade

- df: DateFormat

+init(}

+ atschedule(}

1

NetatmoResponseFacade

1

MetApiResponseFacade +em: EntityManager

+em: EntityManager +mdf: MongoDbFacade

+ mdf MongoDbFacade +nmd: NetatmoMongoDB

+mmad: MetMongoDB + getEntityManager(): EntityManager

getEntityManager(type). EntityManager + addNetatmoData(d:Date}

+ addForecastFromMet(d:Date) + gellatestNetaimoUpdate(): long
+ gelLatestMetUpdate(d-Date): lang +findNetatmoStations(): List<Netatmo
+findMetLocation(Date). List=MetLoca- Station=

tion= + toMearestHour(d:Date): Date

1

MetMongoDB

+ mongoDB: MongoDB

+ findMetLocations(): List=MetLocation=

1

NetatmoMongoDB

+mognoDB: MongoDB

+findNetatmoStations(): List<MetatmoStation=
+ getLastResponseDate(ns:NetatmoStation): long

+ getLastReference(ns:NetatmoStation): String

+ containsSiation(NetatmoStation): boolean

)

<<interface>>0bjectFactory

+ getObjectinstance(Object, Name, Context, Hashiable=?, 7=} Object

MongoClientFactory

+ getObjectinstance(Object, Name, Context, Hashiable=?, =) MongoClient

Figure 5.15: Class structure that makes up the DHC component

95

Figure displays the primary classes of the fire risk prediction compo-

nent. It is made up of several of the same classes shown in figures and
The most important class of this component is the Fire Risk Result class that
has the functionality of calculating the fire risks. It uses the same classes as
shown in figure to set up the Mongo Database instance. The observation
class in figure is used to convert the weather data to the same common

format, that is supplied to the Fire Risk Result Class.

56

FireRiskindication

- field: type

- sourceld: String

- tfAverage: List=double=

- tfSurface: List=double=

- dates: List=double>

- temperature: List=double=
- humidity: List<double=

- startDate: String

- endDate: String

- identification: String

Obsernvations

- date: Date
-temp: double

- humidity: double

Chapter 5. Implementation and Deployment

FireRiskResult

-field: Long]

-temp: Double[]

- Cast: Doublef]

- ach: Double]]

- airDilution: Double]]

- fmeSurface: Double]

- fmcAverage: Double]]

- fmelnner: Double]]

- Cinside: Double]]

- RHinside: Double]]

- EMC: Double]]

- EMC2: Double]]

- sumLoss: Double]

- RHwood: Double]]

- concentrations Surface: Double]]
- concentrationAverage: Doublell
- concentrationinner: Double]]

- fSurface: Double]]

- tfAverage: Double]]

- RHout: Double[]

- initiate(length:in}

+ compute{obsemnvations: List=Observations= iterations:int prevResultFireRiskResult)

MongoDbFacade

+ mongoDB: MongoDB

+ storeFireRiskindication(results:FireRiskResults sourceld:String, lat String,lon:String)

Figure 5.16: Class structure that makes up the fire risk prediction component

5.3. Implementation 57

5.3.4 Program Flow

The program flow is split in two parts, one that handles interaction with the
end users and one that handles validation of the mathematical model.

End User Program Flow

As discussed in the Section 5.3.1 on the use cases, there are several ways to
operate the FR application. Figure illustrates how a new location, to be
used for continuous harvesting, will be added to the location database. It starts
with a user that types a location that should be added to the database. The
controller service will then communicate with the DHC with a HTTP POST
request with a latitude and longitude parameters. The DHC will then make a
request to the Frost service and find the nearest source for that location. Then
the source identification and the coordinates of the location will be added to
the location database, both in the SQI and noSQL database.

"

Data harvesting and
Controller service collection Frost Service location database
component

Actor

newContinous
Harvestilat,

addHarvest(lat,
long)

findFrostSourcelat,

s

source storeLocation{sourceld,
lat, long)

Figure 5.17: Sequence diagram for adding new continuous harvest

58 Chapter 5. Implementation and Deployment

Figure [5.1§] illustrates the sequence the FR application goes through for
fetching weather data and creating fire risk indication by using only forecast
data. The user starts by providing the longitude and latitude coordinates for
the location. The fire risk web service will then transmit the request to the FRP
component that it wants a fire risk indication using forecast data. Since the
FRP does not have any forecast data available, it will ask the DHC component if
it can retrieve the data needed. Then the DHC component will make a request
to the MET API in order to retrieve forecast data for that location. When
the DHC components receives the data, it will convert and filter it and send
it back to the FRP component. The FRP component will then create a fire
risk indication based on the weather data it received from the DHC component
and send it back to the fire risk web service, which in turn gives it back to the
client.

Fire Risk Service F'redictiveﬂre_ risk Data col_lection External semvices
madel service service
Client
' |
getFireRiskilat, findFireRisk(source, o » o
lon) lat, lon) fetchForecastData(lat, lon)

getForecastData(lat, lon)

convert return forecast data
forecast data

return forecast data

createFireRiskifrostData)

)

return fire risk -|—

L return fire risk T indication
indication

Figure 5.18: Sequence diagram for creating fire risk indication with forecast
data

Figure shows the necessary steps fore creating a fire risk indication with
using only historical data. The user must still provide the coordinates for the
location of the fire risk indication, but also add the date range. As mentioned
previously, the date range in this case can be between two dates in the past or
from a date in the past to present date. The fire risk web service passes this
information on to the FRP component which in turn ask the DHC component
for the relevant weather data. The DHC component must first find the sources
located nearest to the coordinates, and then use the closest station to find the
weather data within the given time frame. The weather data is then converted
and filtered and sent back to the FRP component and the fire risk indication for
the weather data is computed. It is then sent back to the fire risk web service,

5.3. Implementation 59

and then passed on to the user.

Fire Risk Service F'redictiveﬂre_ risk Data col_lection External semvices
madel service service
Client
' |
getFireRisk(Lat, finFireRisk(lat, lon, o » »
lon, dateRange) dateRange) FetchHistoricalWeatherDataflat, findFrostStation(lat,
lon, dateRange) lon}
return station
getWeatherData(station,
dateRange)
convert historical i
data return Frost data
createFireRisk(frostData) return historical data
N return fire risk
return fire risk '|' indication “V
- indication

Figure 5.19: Sequence diagram for creating fire risk indications with only his-
torical data

Regarding the sue of both historical and forecast data, the process is mostly
the same as above. Figure presents the process which shows how it com-
bines the steps from both Figure and Figure [5.19

60 Chapter 5. Implementation and Deployment

Fire Risk Service Predictive ﬂre_ risk Data COl.lec“ on External semvices
maodel service service
Client T l
getFireRisk(Lat, finFireRisk(lat, lon, » »
lon, dateRange) dateRange) FetchHistoricalWeatherData(lat findFrostStation(lat,
lon, dateRange) lon)

return station

getWeatherData(station,
dateRange)
convert historical <
data return Frost data
return historical data I
fetchForecastData(lat, 7 >
lon) getForecastData(lat, lan)
convert forecast return forecast data]
o data
createFireRiskifrostData, <
forecastData) (return forecast data

> - L return fire risk -
return fire risk indication

indication

Figure 5.20: Sequence diagram for creating fire risk indication with historical
data and forecast data

Figure presents the interaction between the components when the
(DHC) component harvest new weather data. The harvesting is scheduled to
occur every 24 hours every day of the week. When the schedule is triggered, the
data harvesting component communicates with the location database in order
to find which locations it should find weather data for. Then it makes a request
to the services to find the weather data required. The DHC component can
then use a PUT method in the FRP component service in order to push the
data. At this point the FRP component service can create fire risk and store it
in the fire risk database.

5.3. Implementation

61

Data collection External F'r_edmtweﬂre - Fire risk
service sernices risk model Locaiton database
service
T
Sch eduIeJ retrieveLocations -
return
retrieveWetherData(Locations) ..:
return
putWeatherDatal) N |—
Create fire risk
indication Store fire risk
indication

Figure 5.21: Sequence diagram for continuous data harvesting

62 Chapter 5. Implementation and Deployment

Validation Program Flow

The program flow for the validation works with the data that is collected in the
winter period 2018 - 2019. There are several aspects that are validated such
as comparing the fire risk indication of a forecast with the corresponding fire
risk indication using historical weather data. It also enables comparison of the
Netatmo stations with the stations from MET.

The figures below presents the interaction between the components for re-
trieving the required weather data stored in the database for comparison. These
interactions are nearly identical to that of the sequence diagrams presented
above, the only difference is that instead of using the external services as a
source for the weather data it uses data stored in the database.

‘.'_"eb_ Fire Risk Service Predictive ﬂre_ risk Data col_lection Weather data
application model service senvice Database
getFireRisk(dev, findFireRisk(dev, > -

mod, source, mod, source, -

dateRange) dateRange) fetchHistoricalWeather >
Data(source, getWeatherData(station,
dateRange) dateRange)

convert historical return Frost data

data

return historical data

fetchNetatmoData(dev, g geNetaimoDataldev, > |
mod, dateRange) mod, dateRange) '
convert (return forecast data
create Metatmo data

FireRisk(frostData) ™

create
FireRisk{Netatmo) [;

< - return fire risk
return fire risk indications
L indications L L

return Netatmo data

Figure 5.22: Sequence diagram for retrieving and comparing the difference in
the fire risk calculations between Met and Netatmo stations

5.3. Implementation

Data collection
service

63

getFireRiskilat,
lon, source,
dateRange)

‘.'_feb_ Fire Risk Service Predictive ﬂre_ risk
application model service
1

findFireRisk(lat, lon,
source, dateRange)

createFireRiskifrostData,

forecastData) C:

|

fetchHistoricalWeather
Data(source,
dateRange)

convert historical
data

Weather data
Database

getWeatherData(station,

dateRange)

¥

return historical data

fetchForecastData(lat,
lon}

convert forecast
data

return Frost data

getForecastData(lat, lon)

return fire risk
indication

return fire risk
indication

return forecast data

b

return forecast data

Figure 5.23: Sequence diagram for retrieving and comparing the difference in
the fire risk calculations between Met stations and forecast data

64 Chapter 5. Implementation and Deployment

5.4 Deployment

The application is deployed on a server hosted on the Amazon web service
platform. The virtual machine used for hosting is running the 2018 edition of the
Windows Server operating System. Using this virtual machine gives the ability
to access the application from anywhere, and we are not constrained by using
local machines. It also gives the opportunity to verify that the application works
in a deployment environment. The virtual machine runs a TomEE[23] web
server, which hosts the different components of the application. The reason for
using the TomEE web server and not a light weight web server such as Tomcat
is that the component for collecting weather data uses database connections
that are not supported by the Tomcat web server.

The virtual machine needed some setup before it could be used. This had
mainly to do with the firewall for the virtual machine, which had to be con-
figured in order for outside communication to work. On the virtual machine,
the port 8080 is used for communication. In order for any outside parties to
connect to the web server on the virtual machine, this port had to be opened in
the firewall. The Amazon web service platform has a secondary firewall outside
the virtual machine, which also had to be opened in order for port 8080 to work.

The FR application uses two types of databases, where one of them is a
noSQL database and the other is a standard relational database. The relational
database is hosted on a server run by the Western University of Applied Science.
The noSQL database is provided by MongoDB and is hosted on the Microsoft
Azure cloud platform. The databases also had ports that were closed by the
virtual machine and these were also opened in both of the firewalls.

The different components of the application also uses Apache Maven[24] as
a build automation system. Maven keeps track of the necessary dependencies
of third party libraries and the structure of the application. By using Maven,
it is possible to make the application independent of what IDE is used when
developing as Maven stores the structure and the dependencies in what is called
the POM-file. Most IDEs can read this file and then automatically create the
work-space and download the necessary dependencies referenced in the POM-
file.

Part of the reasoning behind using TomEE server instead of Tomcat server,
is that TomEE offers different dependencies that do not require to download
them with Maven. However, there are some dependencies that TomEE does
not have available, but these are possible to get through Maven. Maven will
then automatically add these libraries to the TomEE web server in order to
enable the application to work properly. Whenever the web server starts, it
reads the POM-file of the application and it analyses which of the libraries are
provided with TomEE and which it does not provide. When the web server
finds a library it does not provide, the web server will download it from the
Maven repository and add it to the library folder of the web server which the
application can then make use of.

Chapter 6

Evaluation

During the winter period 2018 - 2019 weather data has been collected at four
different locations to get an overview of how the fire risk evolved during this pe-
riod. The locations are Bergen, Haugesund, Gjovik, and Laerdal. The collected
data includes weather data from Netatmo stations, placed at two locations,
MET stations, and weather forecasts. Part of the evaluation has been to inves-
tigate how the weather data from the different sources differs from each other
and how it impacts the computations of the fire risk indication.

This chapter presents the results from the evaluation of the collected data
by giving an overview of how the fire risk evolved at the four location that was
focused on. It also includes the results of the difference between calculating the
fire risk with Netatmo stations versus MET stations. Another result that is
presented is the difference in a fire risk calculated from forecast weather data
versus historical weather data collected in the same time period. There is also
the case of looking at historical fires to see how the FRI model would have
indicated the fire risk at the time of fire, and some days in the past leading up
to the fire. Finally the results regarding the run-time and storage efficiency is
explored.

6.1 Historical Weather Data

Four places were chosen as a means to measure the fire risk for places around
Norway. Two of the locations were at the west coast (Bergen, Haugesund), and
the two other were inland locations (Leerdal, Gjgvik). The reason for choosing
these locations is due to the varied climate. At the coast it will be a lot more
humid in the winter than in some of the inland locations which may also be a
lot colder during the winter. Since this is the case, the FRI model should give
a higher fire risk for places that are significantly colder than that of the coastal
cities that may have a warmer climate.

65

66 Chapter 6. Fvaluation

Location avg | std.div | max | min
Bergen 5.50 | 0.67 7.64 | 4.13
Haugesund | 5.70 | 0.63 7.589 | 4.32
Gjovik 4.48 | 0.90 8.02 | 3.32
Leerdal 4.77 | 0.74 7.57 | 3.56

Table 6.1: Fire risk information from four locations

Figure [6.1] explores this by visualizing the collected weather data in the
winter period 2018 - 2019. From the graph it can be seen that the FRI model
does precisely what it should do by reporting an expected higher risk of fire
because of the colder climate. Recall that a lower time to flash-over is what
indicates a higher fire risk. This can also be verified by table where it
indicates that the coastal cities have a higher average time to flash over which
means the overall fire risk is lower than that of the inner cities. The two lines
at the top of illustrates what the the time to flash over (Tf0) would be at
50 % and 60 % relative humidity. As the weather gets colder, the climate gets
drier which leads to wood panels releasing humidity to the environment. This
phenomenon was shown by the equilibrium moisture content in wood at certain
humidity levels discussed in chapter 3.

8 B Tf average SN50540, Bereen
Tf average SN12550, Gjovik
Tf average SN47260, Haugesund
W Tf average SN54110, LAfA1rdal

M| Ti0 at 50% relative humidity

TfO, in minutes

M| Ti0 at 60% relative humidity

18-12-01 19-01-01 19-02-01 19-03-01 19-04-01 19-05-01 19-06-01

Time and Date

Figure 6.1: Fire risk indication of the four location

6.2 Historical and Forecast Weather Data

Being able to predict the fire risk within the next few days is of huge benefit
for anyone involved in protecting against fires. Therefore, one of the validation
elements was to see how it would fair against historical weather data. Since
there exists no archive of forecast data, an important aspects of the winter
2018 - 2019 weather data collection was to store the forecast. This gives the
possibility to validate it with the same measured weather data from reliable
sources such as MET. Another aspect to consider is that the FRI model requires
a few days of self-calibration before it can accurately begin to indicate the fire

6.2. Historical and Forecast Weather Data 67

risk. If it does not have any previous fire risk indications to work with, the
first few days of the forecast data is used for calibrating which may end up give
inaccurate readings as it starts at a middle point and works towards the correct
fire risk. Therefore we investigated how to use historical weather data and add
it onto the forecast data in a way that the historical weather data was used to
calibrate the fire risk indication. This means that it should start indicating the
fire risk at a more accurate point when it comes to the forecast data. In order
to have daily information, forecast data was stored every 24 hour. The reason
for storing this is because forecast data is not available for retrieving when a
new one has been calculated by METSs services. Since the fire risk indication
is not stored in a database, the fire risk indication is computed every time it is
requested, by fetching the related data from the weather data database.

Tf0, in minutes

Tf average Bergen, Forecast
6
e ——— Tf average Bergen, Historical

0
19-01-1% 19-01-24 19-01-29 19-02-02

Figure 6.2: Fire risk indication difference between forecast and historical
weather data, without calibration

Figure [6.2] indicates this process where historical data has not been added
to the forecast data used to create the fire risk indication. The corresponding
fire risk indication by only using historical data is also visualized to show the
difference. In figure historical weather data is added on to the forecast data,
which is used for the calibration. As can bee seen from the figures, the fire risk
from the forecast follows roughly the same curve as the fire risk indication from
historical data in the first three and a half days. In this period of time, the
forecast works with weather data at hourly measures. After that period it starts
giving measures at a six hour interval. When it starts the six hour interval, the
FRI model has less data to work with and it has to model what it predicts the
fire risk will be until the next measure in six hours. For the most part it is
within reasonably limits to that of the historical fire risk, but there are certain
points where it starts varying a little more, but it still follows the same curve
as the historical fire risk indication.

Following the information from Table the visualization from figure [6.2
and figure [6.3] has been quantified in order to give a better understanding of
the differences. As Table indicates, the average difference between only

68 Chapter 6. Fvaluation

historical and forecast fire risk indication when additional data has not been
added for self-calibration is estimated to around 40.23minutes. The standard
deviation for the difference is at +0.21. The maximum difference between
forecast and historical when calibrated is 0.58 and when not calibrated is 0.62.

Tf average Bergen, Forecast

Tf0, in minutes

Tf average Bergen, Historical

0
19-01-0% 19-01-14 19-01-19 19-01-24 19-01-29 19-02-02

Time and Date

Figure 6.3: Fire risk indication with forecast and historical, with calibration

Location avg diff | std.div | max diff
Bergen (no calibration) | 0.26 0.24 0.63
Bergen (calibration) 0.12 0.18 0.58

Table 6.2: Fire risk information from four locations

6.3 MET stations and Netatmo stations

One goal of this thesis has been to investigate how the use of different sources
impacts the indication of the fire risk. The previous sections discussed the
result of using stations provided by the Norwegian Meteorological Institute, who
operates advanced historical measuring stations. It was therefore important to
explore sources that are more readily available and can be placed wherever is
needed. The sources in question are the Netatmo stations. These stations are
placed closer to the houses than that of the sources from MET. As has been seen
in Log’s research[l], it was found that with calibration they measured within
reasonable margins compared to that of the stations from MET.
Figures|6.4|and shows the difference between using a calibrated Netatmo
station and MET station for two locations. As can be seen in Figure the
station Netatmo station in Gjgvik follows almost the exact same curve as the
one based on the MET station. This indicates that the Netatmo station is
calibrated correctly since it is able to follow the MET stations measures.

6.3. MET stations and Netatmo stations 69

| Tf average Bergen, Frost

Tf average Bergen, Netatmo

TfO, in minutes

18-12-01 19-01-01 19-02-01 19-03-01 19-04-01 19-05-01 19-06-01
Time and Date

Figure 6.4: Difference between MET station and calibrated Netatmo station in
Bergen

In Figure the Netatmo fire risk indication from Bergen is not exactly
the same as the one from MET. The curve itself follows almost to the point of
what the MET fire risk indicates, which tells us that either the Netatmo station
is not correctly calibrated and measures temperatures higher then the MET,
station or it may be that the Netatmo station is placed at a location that has
a different climate than that of the Met station.

B T averaze Giovik, Frost
\ Tf average Gjovik, Netatmo

TfO, in minutes

18-12-01 19-01-01 19-02-01 19-02-01 19-04-01 19-05-01 19-06-01
Time and Date

Figure 6.5: Difference between MET station and calibrated Netatmo station in
Gjgvik

Table[6.3]shows the numerical differences between the us of Netatmo stations
and MET stations when computing the fire risk. At Gjgvik, the difference be-
tween the Netatmo stations and the Frost stations is almost negligible, whereas
the result from Netatmo and Frost Bergen is more varied for certain periods.
Still the overall difference is 0.5 minutes on average, and at most 1 minute.

70 Chapter 6. Fvaluation
Location | avg.diff | std.div | Max diff | Max TfO(F) | Min Tf0 | Max TfO(N) | Min Tf0
Bergen 0.53 0.28 1.06 7.09 4.13 7.28 4.72
Gjovik 0.07 0.07 019 6.14 3.32 7.25 3.31

Table 6.3: Difference between MET stations an Netatmo stations for selected
locations

The figures below illustrates the difference in fire risk indication when using
a non calibrated Netatmo station versus a MET station. As can be seen between
figures and [6.7] it is slightly more inaccurate when using a non calibrated
Netatmo station. However, when looking at the difference between figures
and [6.6] is is almost impossible to notice the difference. By looking at tables
[6.3] and [6.4] the difference between a non calibrated and a calibrated Netatmo
station in Bergen is minimal, whereas the difference in Gjgvik is a lot more
noticeable where the average difference goes from 0.07 to 0.35. The reason for
the minimal difference in Bergen is the fact that originally the station measured
humidity closely to that of the known humidity of salts during the calibration
process. Because of this, the calibration curve does minimal changes to the
measured humidity. The measured humidity during the calibration process can
be seen in Apendix A. The station from Bergen is the one listed as stasjon 11,
and the one in Gjgvik is listed as stasjon 15.

TfO, in minutes

18-12-01 19-01-01 19-02-01 19-04-01 19-05-01 19-06-01

19-03-01

Figure 6.6: Difference between MET station and a non calibrated Netatmo
station in Bergen

Tf average Bergen, Frost

Tf average Bergen, Netatmo

6.3. MET stations and Netatmo stations 71

Tf average Gjovik, Frost

Tf average Gjovik, Netatmo

o\
\' "-',\\\\-J‘_, ‘l/s::: Jﬁzf .

TfO, in minutes

-

0
18-12-01 19-01-01 19-02-01 19-03-01 19-04-01 19-05-01 19-06-01

Figure 6.7: Difference between MET station and non calibrated Netatmo sta-
tion in Gjgvik

Location | avg.diff | std.div | Max diff | Max TfO(F) | Min Tf0 | Max TfO(N) | Min Tf0
Bergen 0.59 0.26 1.10 7.09 4.13 7.33 4.81
Gjovik 0.35 0.17 1.10 6.14 3.32 7.25 3.34

Table 6.4: Difference between MET and non calibrated Netatmo stations for
selected locations

Another possible reason for the differences may be the placement of the
stations. For instance, the Netatmo station in Gjgvik is placed approximately
6.017km north west of the MET stations. The Netamtmo station in Bergen
is placed around 1.76km directly north east of the MET station. The MET
station in Bergen is located close to the water with an open fields surrounding
the station. The Netatmo station is located in a densely populated area with
lots of buildings surrounding it. It is also relatively close to the water but not
as close as the MET stations. The station in Gjgvik is located at opposite sides
of the lake Mjgsa, where the Netatmo station is located at a house in Gjgvik
and the MET station is located in Nedre Kise. Based on this information one
could come to the conclusion that the stations in Bergen would have the least
difference between the fire risk indication. However, as Table and Figures
and indicate, this is not the case. A reason that the stations in Gjgvik
have a closer result may be that, since they both are located closely to Mjgsa
the climate at both sides is closely related to each other. In Bergen, which is
a lot more densely populated than Gjgvik, the micro climate may vary to a
greater deal at closer distances than what it does in Gjgvik.

72 Chapter 6. Fvaluation

6.4 Indicating Fire Risk for Historical Fires

Another aspect in terms of validating the FRI model, is to consider fires in the
past. This way it is possible to determine how the fire risk was at the time of
the fire, and the period leading up to the fire. Then we can look at the same
period in the previous years and the years after to see if this in genera is a
period of very high fire risk, or if it was just normal conditions for that specific
period.

A recent fire that will serve as an example, is the one in Leerdalsgyri on
18th January 2014[26]. This is a place with many old wooden buildings, and
is located in a place that gets very dry during the winter period. The fire risk
estimated for that time is visualized in Figure During a period of around
12 days before the fire, the temperature started dropping which results in the
climate getting drier. In this dry period, the wood inside the houses released
humidity to the surrounding area. At the time of the fire at around 22:50 the
FRI model indicates that it would take around 3.8 minutes until complete flash
over. The fire department learnt about the fire at 22:53pm|[26], and the fire fire
truck was on scene at 22:59pm|[26]. At this time it was reported that the house
was in complete flash over. Since the FRI model indicate a complete flash over
in 3.8 minutes, the fire department did not have sufficient time to put out the
fire. It should also be noted that at the time, there was heavy winds in the
areal26] which would also contributes to higher risk of fire conflagration. The
FRI model does not take this aspect into consideration when indicating fire
risk. In the case of the Laerdal fire, it spread quickly to the surrounding houses
because of the wind. And these houses would have had equally high fire risk.

4 - 40

M| Tf average SN54110, LAfA| rdal

f0, in minutes

Afr Temperature SN54110, LAfA; rdal

12-26 13-12-31 14-01-05 14-01-10 14-01-15 14-01-20 14-01-25 14-01-30 14-02-04

Figure 6.8: Fire risk for the fire in Laerdal 18 January 2014

Another fire to consider is the one in Kongsberg, at 24th December 2017,
at a home care center[27]. The fire happened in the night of Christmas eve and
resulted in the loss of life. The fire risk indication for this period is visualized
in Figure During the December month of that year the time to flash over

6.5. Discussion of Storage Efficiency 73

average around 4.4 minutes. The result indicates the same as the fire risk
from the fire in Leerdal of 2014, that the time it takes for a complete flash
over is considerably lower than that of the required response time from the fire
department. Since this is a home care center, the fire department has special
laws, section 4-8 of Norwegian law, that states the required response time is to
be 10 minutes or less.

| Tf average SN28380,
Air Temperature SN28380,

Tf0, in minutes
Temperature

17-11-30 17-12-05 17-12-10 17-12-15 17-12-20 17-12-25 17-12-30 18-01-04
Time and Date

Figure 6.9: Fire at a home care center in Kongsberg 2017

Given these results, the FRI model could have warned the fire department
to be readily available at this period in time and it would also seem that the
required response time does not take into consideration dry periods. Based on
these results, the FRI model could have predicted that the fire department was
not ready for a fire that would flash over that quickly. The current minimum
response time that the fire department is expected to keep is way too high for
the dry periods of winter. Given the outdoor air temperature in these periods
of time, the FRI model will always give a low time to flash over in the period
from December through May.

6.5 Discussion of Storage Efficiency

As of now, the FR application has collected approximately five moths worth
of weather data. This includes forecast data and historical data from four
locations. It also includes weather data from two Netatmo stations placed at
two of the four places.

Each weather forecast stored in the database has a list of 87 objects contain-
ing weather information, such as temperature, humidity. There are currently a
total of 504 of these stored in a database. Some days are missing due to issues
early in the development of the FR application where it would not store the
forecasts correctly. It should be noted that a lot of data has been filtered out
so that the storage mostly contains data that can be used. The total amount of
storage that these forecasts use, amounts to 12.5Mb, with an average of around

74 Chapter 6. Fvaluation

25.4 kb. per forecasts.

The weather data from the Frost stations are stored in 24 hour intervals
and contains hourly recorded weather elements, mostly the same types as the
forecast. Currently, weather data is stored for each day since the collection
started, but some of the stations started later than the others. As with the
forecast data, unnecessary data have been filtered and thus minimal data have
been stored in the database. The collection in the database that stores historical
data contains 634 documents, each of these documents contains 24 hours worth
of weather data. The total amount of storage is 5.6 Mb of storage with an
average of 9.0 kb per document.

As of now there are only two Netatmo stations in use, where the one in
Bergen started collecting weather data in December of 2019. The station in
Gjgvik started around February 2019. The measurements from the Netatmo
stations are stored in the same way as the Frost stations, where each document
contains 24 hours worth of weather data. It takes substantial less storage space
than the other two. This is because it contains less information as it only have
humidity and temperature, where the forecast and MET stations have a lot
more weather elements attached. It is also filtered by the Netatmo web service
in order to minimize variables attached to the request when retrieving it. With
this in mind, the total number of documents containing weather data from
Netatmo totals at 336.7 kb of storage with a average of 1.3 kb per document.

The FR application performs continuous harvest of weather data every 24
hour. This amounts to all the data that is currently stored in the databases of
the FR application. This is mainly for evaluation purposes as the data has to
be consistent throughout the evaluation of the FRI model. Every 24 hours, the
FR application fetches historical weather data for the previous day, from MET
and Netatmo, and forecasts for the next nine and half days. These are stored in
the database for future use. This will not be the case when the FR application
is deployed in production and no longer used for evaluation. At that point, the
only necessary data that has to be stored is the fire risk indications, and maybe
the forecast data for the location. Whenever the FR application fetches new
historical weather data, it will take the previously calculated fire risk indication
and create an augmented fire risk indication for the new weather data, and add
it to the back of the previous one. By doing it this way, the storage efficiency
depends not on the weather data, but only on how many fire risk indications
are stored.

A fire risk indication for a 24 hour period at one location uses 61.6 kb of
storage. Given this information it is possible to calculate how much storage is
needed when doing continuous fire risk calculations for several locations. For
instance, if we have continuous fire risk calculations for 10 locations this will
amount to 616 kb of fire risk indications every day. For a whole year this will
total at 224.84 mb of storage. If there are now 100 locations, each with a
separate weather station as source, the total amount of storage for a whole year
is 2.24 gb.

The component that handles collection of weather data in the FR appli-
cation used two databases: one SQL database and one noSQL database. The
two databases are widely different in how they store the data. For the SQL

6.6. Discussion of Run time Efficiency 75

databases, the weather data had to be converted from either XML or Json,
depending on what the external service offered, to the format of the program-
ming language used. The noSQL document database operates with documents
of Json data, meaning that in theory if the data from the external service is
provided in Json format it could be stored directly in the database without
having to do any conversions. As we wanted as little data stored as possible,
this was not the case and it had to be converted to the programming language
and then back to JSON. Therefore the benefit of using the noSQL database
when storing weather data is lost as it creates more steps for both storing and
retrieving data back from the database. Because of this, it would almost be
exactly the same as using a SQL database. However, for unknown reasons,
the SQL database had problems halfway through the collection period where it
stared to throw exceptions and would not store data in the database. Whenever
the FR application attempted to communicate with the database the exception
was thrown, and the collection component would have to be restarted. In an
attempt to not corrupt or delete data from the database, the SQL database was
disconnected and only the noSQL database was used for storing data.

Despite this fact, there would not be that much of a difference between
using a noSQL database and a SQL database for storing weather data in the
FR application as it would have to be converted in some form or another before
dispatching it to other components.

6.6 Discussion of Run time Efficiency

In order to find the execution time of the steps it takes to create a fire risk
indication, the Java method System.nanoTime() was used. In order to find
the execution time, the nano time method is called right before and after the
actions are executed to find the elapsed time.

With regard to runtime efficiency, it took 0.07 seconds to compute a fire
risk indication for a full year. Note that this excludes the time it takes to
retrieve the weather data from the external services and the time for converting
the data. If all steps are included for creating a fire risk for a whole year, it
takes 4.1 seconds to retrieve the weather data, another 0.2 seconds to convert
it. Then it is passed on to the FRI component which add another 0.6 seconds
for conversions and it takes 0.07 seconds to compute the fire risk. The total
time elapsed for creating a fire risk indication with weather data for a full years
amounts to 5 seconds.

If the same was done for half a year, the time is halved to 2.5 seconds. Where
2.36 seconds was used to fetch the data, and 0.04 seconds used for converting
and computations. The rest of the time is spent communicating between the
components.

It must also be specified that the time it took to create the fire risk indication
was only calculated using the external services from MET. The reason for not
using the Netatmo service is that it only returns a maximum of 1024 elements
of data per request whereas Frost and the Met API returns all data with one
request. This means that a total of 8 requests have to be made to the service

76 Chapter 6. Fvaluation

in order to be able to elapsed time of a fire risk indication for a whole year.
With this in mind, the bottleneck of the FR application would not be local
one, but rather related to the external services that supplies the weather data.

Chapter 7

Conclusion and Future Work

In this chapter we revisit the research questions of the thesis by linking the re-
sults obtained, and presented in the previous chapter to the research questions.
We also outline areas where our work can be improved and provide directions
for future development of the FR application.

7.1 Predictive mathematical model for fire risk in-
dication

The primary research question, R1, aimed to answer whether the FRI model of
Log[18] is sufficient enough to give a useful fire risk indication.

7.1.1 Conclusion

Based on the result of the fire in Leerdal and Kongsberg, it is possible to conclude
that the FRI model can give accurate fire risk indication regarding how long it
takes for the fire to be in complete flash over. Information gathered from the
fire department in Bergen, stated that they had a minimum requirement of 10
minutes response time to certain buildings. This included hospitals, nursing
homes, historical buildings and shopping centres. With the result regarding
the Leerdal and Kongsberg fires, many of the fire departments around Norway
would not have sufficient time to respond to fire when the time to flash over is
low during the winter period.

Based on R1, two sub-questions where asked regarding the use of different
types of weather data from different sources. In chapter 6 the result of com-
bining historical weather data and forecast weather data were discussed. The
research question were related to investigating whether it would be possible to
use only forecaste weather data as a means to create a fire risk indication, or
would the result be out of margin compared with the use of historical recorded
weather data. As seen in Chapter 6 it is possible to only use forecast weather
data, but the best possible option is combine it with the use of historical data
to properly calibrate the FRI model and then use the forecast data on top. It
should also be noted that the last few days of the forecast can be inaccurate
at times, but for the most part it is within realistic margins compared to the

77

78 Chapter 7. Conclusion and Future Work

historical measured fire risk indications. There are a few instances where the
differences in time to flash over reaces 1 minutes, but overal the difference is
lower.

In Chapter 6, the result and comparison of the different sources were dis-
cussed. In the case of using Netatmo stations versus MET stations, related to
R1-B, it can be concluded that they can be used as a source of weather data. As
seen in the examples in chapter 6, the Netatmo station in Bergen had humidity
measurements within reasonable margins before applying the calibration curve.
The station in Gjgvik did not have the same margins, bu the result when not
using the calibration curve was still within reasonable limits. Based on this
we can conclude that it is possible to use Netatmo stations without a calibra-
tion curve, but as seen from the result in appendix A the measurements varies
widely from station to station. It would therefore be advised to calibrate the
station before using it as a source of fire risk calculations.

Based on the result of indicating the fire risk of the four locations, we can
identify a period from the start of January to the middle of February as the
period with the highest fire risk. After this period the fire risk reduces steadily
with a few periods where it goes up again before it starts to decrease during
middle of April. It is at this point the climate gets warmer, but that does not
necessarily mean that the fire risk will be lower. The reason for this is because
of the dry grass and nature that can easily catch fire. This may also have an
impact on the fire risk for later periods of the year.

7.1.2 Future Work

One major issue regarding the use of the FRI model for fire risk indication is
that it only works for colder climates. One of the current issues is that whenever
the temperature goes above a certain point, it stops working properly. For that,
reason there were certain period around April - May where the temperatures
were to high. This is noticeable in some of the figures in Chapter 6. This is one
area where the the FRI model will have to be refined in order to be applied to
warmer periods throughout the year.

Another aspect that may be improved in the future is to involve more pa-
rameters when calculating the fire risk. This could be done by including more
weather elements, such as wind to get a more accurate result regarding con-
flagration risk. There is also the possibility of combining the wind with a
parameter that may indicate how densely the houses are located.

There is also the possibility of expanding the FRI model to look at other
means for fire risk indication for other periods of the year. Mainly the ones
dealing with high temperatures and dry nature as pointed out above. The
current FRI model may give a low fire risk during a heating period since it only
looks at the house. It is possible that during this period there may in fact be a
high fire risk due to greater risk of heather fires.

7.2. Software Architecture 79

7.2 Software Architecture

Research question R2 asks whether there is a suitable software architecture
for collecting sensor data and a Fire risk indication service provider. This
question is split into two sub-questions, R2-A and R2-B. Question R2-A asks if
there there is a software architecture that can be used both for evaluation and
deployment.

7.2.1 Conclusion

As the external services used in the FR application is based on RESTful web
service it seemed most appropriate to structure the FR application in a similar
manner to avoid complications. Because of this, the fire risk web service offered
by the FR application was also implemented as a RESTful web service. The
use of a micro-service architecture also complemented the use of REST as the
components can also use it to communication between each other. Since there
is only one specific form of communication in the FR application, it limits the
miscommunication between the components of the FR application as it does
not have to combine several forms of communication.

Chapter 5, which details the implementation of the FR application, includes
the program flow of the whole FR application. This flow is split in two, where
one handles the validation part and the other handles communication with the
clients. Based on this, we have shown that it is possible to have a software
architecture that can both be used as part of validation, but also as a part of
the deployment of the finished FR application. By splitting the FR application
into several components, as dictated by the micro-service architecture, and
using REST as communication made it easy to set up test functionality and
the functionality aimed at the clients.

7.2.2 Future Work

As of now, the communication between the components is synchronous and
based on REST. An idea for the future would be to see if it possible to convert
to an asynchronous communication FRI model by the use of a messaging-driven
system. This can be in the form of a message queuing system or a topic based
system. An example can be with the use of JMS[2] or CloudMQTT[25].

It will also be a possibility to further improve the implementation of the
FRI model for fire risk indication with the hopes of making it more efficient
than it is at the moment. However, the time it takes to compute the fire risk is
very low, and for that reason it would be more applicable to spend more time
to see if it is possible to reduce the time it takes to retrieve data from external
services possibly by using some form of background fetch of the data.

Another aspect to look into is the possibility of different client sides, with
regard to mobile phones and other platforms.

80 Chapter 7. Conclusion and Future Work

7.3 Storage and run-time efficiency

The seconds sub-question, R2-B, focuses on whether the software architecture is
efficient with regard to storage and run-time computation of fire risk indications.

7.3.1 conclusion

The total amount of storage for the winter 2018/2019 comes back to 18.42 Mb
from various sources of weather data. With regard to storage efficiency, the
FR application uses very little storage and we can conclude that the software
architecture has adequate storage efficiency. Furthermore it has been shown
that it does not accumulate large amount of weather data data. The state of
the FR application does not store the fire risk indication, therefore the fire risk
indication has to be computed every time it is requested by fetching weather
data that is stored in the database.

With regard to the run-time efficiency of creating fire risk indications, most
of the time was spent fetching data from the external services. The time it takes
to compute a fire risk indication was negligible, even when using weather data
for a whole year. This indicates that the implementation of the FRI model is
adequate regarding the run-time efficiency. The most time consuming operation
of the FR application was the conversion of weather data from the request. As
seen in chapter 6, the time it took to convert the data from the request was
0.2 seconds for the whole year which can be considered to be within reasonable
time.

7.3.2 Future Work

There are certain aspects of the FR application that may be improved in the
future. One of them have to do with how the weather data is stored. As stated,
the Netatmo and MET data is stored in bulks spanning 24 hour intervals. It
would be of interest to investigate if it would be more efficient and easier to
handle by storing them as single entities containing only the weather data?
The same question can be asked regarding storing the fire risk indication in an
efficient manner.

A possible aspect to consider, would be to look at a better method for
converting the weather data from the request to the format of the related pro-
gramming language used.

Bibliography

[1] T. Log, ”Building and Environment,” Indoor relative humidity as afire risk
indicator, Sciencedirect, pp. 238 - 248, 10 September 2016.

[2] Oracle, Java Enterprise Edition 7, docs.oracle.com/javaEE, https://docs.
oracle.com/javaee/7/JEETT.pdf, Septermber 2014

[3] Meterlogisk Institutt, Historical Observer Weather, www.met.nol, https://
frost.met.no/reference#!, 15 Mars 2018

[4] Meterlogisk Institutt, Weather Forecast, www.met.no, https://api.met.no/
weatherapi/locationforecast/1.9/documentation#/, 20 Mai 2014

[5] Netatmo, Weather stations, www.netatmo.com,
[6] Netatmo, Historical Weather data, api.netatmo.com/api/

[7] Tutorialspoint, JSF Architecture, www.tutorialspoint.com, https://www.
tutorialspoint.com/jsf/jsf_architecture.html, (Accessed 23 August 2018,

[8] IEEE, Microservices, https://ieeexplore.ieee.org/abstract/document/
7030212 Jan. -Feb 2015, ()

[9] Building Microservices, Designing fine-grained systems, S. Newman, 2015

[10] Patrick TH. Eugster, Pascal A. Felber, Rachid Guerraoui, Anne-Marie
Kermarrec, The Many Faces of Publish/Subscribe, ACM Computing Surveys
volume 35 issue 2, pp 114-131, June 2003

[11] Message-Oriented Middleware, Middleware for communication, E. Curry,
2004

[12] Guruduth Banvar, Tushar Chandra, Robert Strom, Daniel Sturman, A
case for Message Oriented Middleware, ACM Symposium on the Principles
of Distributed Computing, 1999

[13] MongoDb, Document Database cloud, https://www.mongodb.com/cloud/
atlas/pricing, (access 20 November 2018)

[14] Jing Han, Haihong E, Guan Le, Jian Du, Survey on NoSQL database,
2011 6th International Conference on Pervasive Computing and Applications,
IEEE, 26-28 October 2011

81

docs.oracle.com/javaEE
https://docs.oracle.com/javaee/7/JEETT.pdf
https://docs.oracle.com/javaee/7/JEETT.pdf
www.met.no
https://frost.met.no/reference#!
https://frost.met.no/reference#!
www.met.no
https://api.met.no/weatherapi/locationforecast/1.9/documentation#/
https://api.met.no/weatherapi/locationforecast/1.9/documentation#/
www.netatmo.com
api.netatmo.com/api/
www.tutorialspoint.com
https://www.tutorialspoint.com/jsf/jsf_architecture.html
https://www.tutorialspoint.com/jsf/jsf_architecture.html
https://ieeexplore.ieee.org/abstract/document/7030212
https://ieeexplore.ieee.org/abstract/document/7030212
https://www.mongodb.com/cloud/atlas/pricing
https://www.mongodb.com/cloud/atlas/pricing

82 Chapter 7. Conclusion and Future Work

[15] Ameya Nayak, Anil Poriya, Dikshay Poojary, Typeof NOSQL Databases
and its Comparison with Relational Databases, nternational Journal of Ap-
plied Information Systems (IJAIS), Volume 5-No.4, March 2013

[16] Jenssen JA, Geving S, and Johnsen R, ” Assessments on Indoor air Humid-
ity in Four Different Types of Dwelling Randomly Selected in Trondheim,
Norway” In: Proceedings of the 6th Symposium on Building Physics in the
Nordic Countries, Trondheim, Norway, 17th-19th June, 2002, pp 729-735

[17] Fielding RT, Architectural styles and the design of network-based software
architectures, 2000

[18] T. Log, Modeling Moisture Content and Time To Flashover as a Proxy for
Wooden Home Fire Risk in Cold Climates, Work in progress

[19] Spark, Micro framework for creating web application in java with minimal
effort, www.sparkjava.com

[20] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zaraFabrizio Montesi, Ruslan Mustafin, Larisa Safina, Microservices: yester-
day, today, and tomorrow, 20 Apr 2017

[21] Google, https://github.com/google/gson, (Accessed November 2018)
[22] Prime Faces, https://www.primefaces.org, (Accessed 23 January 2019)
[23] Apache TomEE, https://tomee.apache.org/

[24] Apache Maven, https://maven.apache.org/

[25] CloudMQTT, Globally Distributed MQTT broker, https://www.
cloudmgtt.com/, (Accessed 20 may 2019)

[26] Farid Ighoubah, Simon Solheim, (2014), Slik var de fgrste meldingene om
Laerdalsbrannen, nrk.no, 20 Januar, (Accessed 5 May 2019)

[27] Carina Hunshamar, Irene Rgnold, Gordon Andersen, Martha Holmes,
(2017), Brann i Kongsberg: En person funnet dgd, vg.no, 26 December,
(Accessed 7 May 2019)

www.sparkjava.com
https://github.com/google/gson
https://www.primefaces.org
https://tomee.apache.org/
https://maven.apache.org/
https://www.cloudmqtt.com/
https://www.cloudmqtt.com/

Appendix A

Result of Calibrating Netatmo
Stations

Qutdoor

Stasjon6 |Stasjon7 |Stasjon1l |Stasjon13 |Stasjon14 |Stasjon12 |Stasjon15 |Stasjon 16
Reference RH oes |err |oBs [err |oBs |err |oBs [er |obs |er |oBs |emr |oBs |err [oBs |err
11,314 0,31 (LiCl) 14 16 16 17 27 26 26 29
33,074 0,18 (MgCl2) 36, 35 37, 3g, a6 47 a6 49
75,471 0.14 (Nacl) 75 78 77 76 80 84 82 83

Figure A.1: The humidity measured by Netatmo stations with known humidty

by salts

83

	Abstract
	Acknowledgements
	Introduction
	A Fire Risk Indication System
	Research Questions
	Research Method
	Software Technologies
	External Services and Data Sources
	Frost
	Netatmo
	MET API
	Fire Risk Indication Service

	Weather Station Calibration
	Summary of Results
	Thesis Organization

	Software Architecture for Distributed Applications
	Representational States Transfer (REST)
	Micro-services
	Message-Driven Communication
	Communication Model
	External Data services
	Data Storage

	Predictive Modelling of Fire Risk
	Fire Risk Prediction
	High-level Prediction Model
	Outdoor and Indoor Climate
	Outdoor Climate
	Indoor Climate

	Humidity transportation in wood
	Weather Stations

	System Requirements and Design
	Analysis
	Requirements
	Architecture Software Design
	Fire Risk Web Service
	Data harvesting and collection
	Predictive Modelling
	Measurements Services
	Forecast Services

	Summary

	Implementation and Deployment
	External Services
	Frost Web Service
	Met Web Service
	Netatmo Web Service

	Databases and Storage
	Implementation
	Functionality and Use Cases
	Front-End Implementation
	Back-end Implementation
	Program Flow

	Deployment

	Evaluation
	Historical Weather Data
	Historical and Forecast Weather Data
	MET stations and Netatmo stations
	Indicating Fire Risk for Historical Fires
	Discussion of Storage Efficiency
	Discussion of Run time Efficiency

	Conclusion and Future Work
	Predictive mathematical model for fire risk indication
	Conclusion
	Future Work

	Software Architecture
	Conclusion
	Future Work

	Storage and run-time efficiency
	conclusion
	Future Work

	Bibliography
	Result of Calibrating Netatmo Stations

