
A Domain-Specific Language for
the Development of Heterogeneous

Multi-Robot Systems

Daniel Steen Losvik

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Bergen University College

Department of Informatics,
University of Bergen

June 2019

Abstract

Robots are becoming more advanced each year and will increasingly become a
bigger part of our lives. This thesis explores how model-driven software engineer-
ing can be used in the development of heterogeneous multi-robot systems where
you have different robots with different capabilities. Multiple robots can achieve
more complex tasks that are impossible to achieve for a single robot alone. This
thesis proposes a framework where simple actions are used as building blocks
to define larger tasks that require multiple robots with different capabilities to
achieve. The thesis explores how task distribution can be performed in such a sys-
tem and how the robot operating system can be utilized. The thesis also explores
how a user interface can be used to define multiple different missions for a team
of heterogeneous robots without the need for redeployment on each robot.

Acknowledgements

I would like to thank my supervisor Prof. Adrian Rutle for his continuous support
throughout my work. His guidance and feedback have been invaluable. I would
also like to thank Prof. Rogardt Heldal for his teachings on research in software
engineering. Finally, I would like to thank my family for their support throughout
my study.

Contents

List of Figures vi

Listings vii

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Challenges . 3
1.3 Motivation . 3
1.4 Research Questions . 4
1.5 Method . 4
1.6 Thesis Outline . 6

2 Systematic Literature Review 7
2.1 Introduction . 7
2.2 Previous Work . 8
2.3 The Need for a Review . 9
2.4 Review Protocol . 10

2.4.1 Review Questions . 10
2.4.2 Database Search . 11
2.4.3 Selection Criteria . 11
2.4.4 Data Extraction . 12

i

2.5 Results . 13
2.6 Discussion . 13
2.7 Conclusion . 17

3 Theoretical Background 18
3.1 Overview . 18
3.2 Model-Driven Software Engineering 18

3.2.1 What is Model-Driven Software Engineering? 18
3.2.2 Model-Driven Architecture 19
3.2.3 Pros and Cons of Using MDSE 20
3.2.4 MDSE in Robotics . 22
3.2.5 Domain-Specific Languages for Robots 22
3.2.6 How are the DSLs Developed? 23

3.3 Multi-Robot Task Allocation . 24
3.3.1 The Multi-Robot Task Allocation Problem 24
3.3.2 Problem Variations . 24
3.3.3 The ST-MR-IA Problem 26
3.3.4 Cost Function . 27
3.3.5 Solution Architectures 28

3.4 The Robot Operating System . 29
3.4.1 What is ROS? . 29
3.4.2 ROS Architecture . 30
3.4.3 Pros and Cons . 31

4 A Framework for Heterogeneous Multi-Robot Systems 33
4.1 Framework Architecture . 33
4.2 The Task Definition Language 35

4.2.1 How is the Language Developed? 35
4.2.2 The Elements of the Language 37
4.2.3 Robot Model . 39
4.2.4 Task Model . 43

ii

4.2.5 The Generator . 45
4.3 The Task Allocation Module . 47

4.3.1 System Architecture . 47
4.3.2 The Task Allocation Algorithm 49
4.3.3 The Cost Function . 54

4.4 ROS Setup . 55
4.4.1 Why use ROS? . 55
4.4.2 A Publish-Subscribe Pattern 55
4.4.3 Launching The ROS Nodes 58
4.4.4 Using ROS Stacks and Algorithms 59

4.5 The Web Interface . 60
4.5.1 Why Use a Web Interface? 60
4.5.2 Leaflet . 62

5 Evaluation 64
5.1 Evaluation Method . 64
5.2 Simulation Setup . 65
5.3 Scenario . 65
5.4 Testing on Distributed Machines 69
5.5 Additional Evaluation . 70

6 Discussion 72

7 Conclusion 77

Bibliography 78

Primary Studies 83

Appendices 86

A Meta Model 87

iii

B Task Definition Language Grammar 89

C User Manual 92
C.1 Eclipse Setup . 92
C.2 Simulator Setup . 93
C.3 Setup on Real Robots . 95
C.4 Maintainer Setup . 96

iv

List of Figures

1.1 Robocup. The Robot Soccer World Cup 2
1.2 The Design Science Research Process 5

2.1 Syntax of the Search String from the Mapping Study 8
2.2 Syntax of the Search String used to find Similar Literature Reviews 10
2.3 Search String used to find Additional Papers Published after 2015 11

3.1 The Model-Driven Software Engineering Process 20
3.2 Levels of Abstraction in Model-Driven Architecture 21
3.3 Multi-Robot Task Allocation Schemes 25
3.4 Utility Function . 28
3.5 Auction-based Architecture . 29
3.6 Example ROS Application. The Navigation Stack 31

4.1 Framework Architecture. Blue Boxes are Existing Technologies . 34
4.2 Modeling Spaces . 37
4.3 Task Definition Language Meta Model 38
4.4 Kuka Youbot . 42
4.5 System Architecture . 48
4.6 ROS Nodes at and after Startup. 57
4.7 Example Launch File Created by the Generator 59
4.8 The Web Interface . 63

5.1 Gazebo Simulator Setup with 4 Robots 66

v

5.2 Generated Files . 67
5.3 The Task Definitions . 68
5.4 Two Teams of Robots Performing Different Tasks 69
5.5 Real System Setup . 70

A.1 Task Definition Language Meta Model Large 88

C.1 Gazebo Simulator Setup . 95

vi

Listings

4.1 A Simple Action called moveForward. 40
4.2 An Example Composite Task. 45
B.1 Task Definition Language Grammar. 89

vii

List of Tables

2.1 SLR General Data . 14
2.2 SLR Review Data . 15

viii

Chapter 1

Introduction

1.1 Background

As robots are becoming more complex and able to perform more complex tasks
they will increasingly become a bigger part of our lives. In the recent past robots
have mainly been used for repetitive tasks in manufacturing like building cars and
electronic components on fully automated production lines. These are relatively
easy tasks as the robots are placed in factories where no external forces can affect
them, hence they have no need for sensors measuring their surroundings or the
need for adaptive planning to deal with a dynamic environment. Still, these robots
have increased the efficiency of the work and the quality of the products and have
had a big economic impact. Today robots are becoming increasingly more used
to complete everyday tasks and assist humans, like house cleaning robots. These
types of robots are referred to as service robots and are more complex than indus-
trial robots as they have to deal with dynamic environments.

As robots are becoming more advanced it becomes more relevant to do re-
search on cooperative multi-robot systems. Applications which involves multiple
robots working together. Figure 1.1 shows the yearly robot soccer world cup.
Here you have multiple robots with different roles working together to achieve a
common goal.

1

Figure 1.1: Robocup. The Robot Soccer World Cup. Source [1].

Multi-robot systems have a number of advantages over single-robot systems.
Multiple robots can complete a more complex task which might be impossible
using a single robot. Multiple robots can also often complete tasks faster than a
single robot depending on the task that is being done. For example, search and
exploration tasks can be completed faster as the robots can work in parallel. Using
multiple robots are also more reliable in the way that if a robot failure occurs
another robot can replace the failed one. Multi-robot systems introduce multiple
additional challenges that need to be solved but have the potential to increase
automation and the efficiency of work in many sectors.

This thesis explores how model-driven software engineering can be applied to
simplify the development of heterogeneous multi-robot systems. In model-driven
software engineering, models are used in the development process to define the
system and then the code is derived from the models. Model-driven software engi-
neering raises the level of abstraction and is well suited to deal with the complexity
of heterogeneous multi-robot systems.

The thesis proposes a framework for developing heterogeneous multi-robot
systems. The framework is made up of 4 components. A domain-specific lan-
guage used to model both the robots and tasks, a task allocation module used to
distribute the tasks amongst the robots, the robot operating system(ROS) used for

2

communication between the robots and advanced navigation, and a web interface
used to create missions for teams of robots.

1.2 Challenges

Heterogeneous multi-robot systems introduce two big challenges over single-robot
systems. The first is hardware heterogeneity between the robots. As differ-
ent robots often are built using different hardware(sensors, actuators, microcon-
trollers) they need to be programmed in different ways. If you are developing a
system comprised of multiple different types of robots that have different hard-
ware, you need to write a program for each robot independently using different
tools, libraries, and frameworks. This is highly inefficient and requires the devel-
oper to do a lot of research.

The second challenge is the task distribution between the robots. If one has
multiple different robots with different capabilities and multiple different tasks,
how should the tasks be distributed amongst the robots? This problem is referred
to as multi-robot task allocation or MRTA [2]. This is an optimization problem
that has been studied a lot as it can be reduced to many similar problems outside
robotics, like multiprocessor scheduling.

1.3 Motivation

The goal of the thesis is to explore and acquire new knowledge on how model-
driven software engineering can be applied to simplify the development of hetero-
geneous multi-robot systems. As model-driven software engineering is often used
to raise the level of abstraction of complex systems, it is a good candidate to deal
with the complexity of heterogeneous multi-robot systems. The motivation of the
thesis is driven by the benefits of heterogeneous multi-robot systems. In hetero-

3

geneous multi-robot systems, the robots might have different capabilities and can
work together to perform more complex tasks. This allows a bigger variety of
tasks to be achieved than before.

1.4 Research Questions

The main focus of this thesis is the application of model-driven software engi-
neering in the development of heterogeneous multi-robot systems and how task
distribution can be performed in such a system. The research questions are cho-
sen accordingly.

Main research question of the thesis:
How can model-driven software engineering be used to simplify the development

of heterogeneous multi-robot systems?

Sub-questions:
How is model-driven software engineering applied to the development of

heterogeneous multi-robot systems in today’s research?

How can efficient and appropriate task allocation be achieved in different

heterogeneous multi-robot systems?

1.5 Method

The research is split into two parts. First, a systematic literature review is con-
ducted. This gives us an overview over existing research and related work. De-
sign science research is then used to gain new knowledge through the design and
evaluation of an artifact.

4

Figure 1.2: The Design Science Research Process. Source [3].

Design science is a research method often used in computer science. In design
science, the research revolves around the design and evaluation of a so-called
artifact[3]. The artifact can be an algorithm, framework, model, method, etc.
The research is conducted in iterations by designing the artifact, implementing it,
evaluating it, and then redesigning it and so on.

Figure 1.2 illustrates the process and is referred to as the three cycles of design
science research [4]. The research is done in cycles of developing, building, justi-
fying and evaluating. Evaluation of the artifact may lead to new knowledge which
can be added to the knowledge base of the field. Field evaluation of the artifact
in the appropriate environment is used to justify the relevance of the artifact in
real-world applications.

In this thesis, the artifact is the proposed framework. The framework defines
a process for how to design and implement a heterogeneous multi-robot system.
Evaluation of the framework is done using simulation software with the goal of

5

obtaining new knowledge on how model-driven software engineering techniques
can be used to design and implement heterogeneous multi-robot systems.

1.6 Thesis Outline

The rest of the thesis is structured as follows: In chapter 2 a literature review is
conducted to present related work. Chapter 3 provides some background in the
concepts and technologies used in the thesis. Chapter 4 presents the developed
framework and all of its components. In chapter 5 the solution is evaluated. In
chapter 6 the solution is discussed, and in chapter 7 the thesis is concluded.

6

Chapter 2

Systematic Literature Review

2.1 Introduction

In order to get an overview over existing work on the application of applying
model-driven software engineering methods in the development of heterogeneous
multi-robot systems, a systematic literature review(SLR) is conducted. The goal
of a SLR is to identify and evaluate all available research on a specific topic in a
systematic way using a well-defined methodology [5].

The method used will be based on Kitchenhams guidelines for conducting
SLRs in software engineering [5]. Here Kitchenham derives research methods
from other fields like medicine and adapts them to reflect the specific problems
of software engineering research. Since SLRs are often quite big and involve
multiple researchers, a light version will be used for this master thesis, proposed
by [6]. Being a single researcher also increases the chance of biased results, which
is a threat to validity. Conducting a literature review in a systematic way with a
defined protocol reduces this threat.

7

2.2 Previous Work

The SLR will be based on a previous systematic mapping study conducted in 2015
[7]. The mapping study is on the topic of model-driven software engineering for
mobile robot systems, which is a superset of the topic for this thesis: model-
driven software engineering for heterogeneous multi-robot systems. In the study,
they collected an initial set of 1681 papers from various digital libraries and by
using forward snowballing. They then applied inclusion and exclusion criteria
to exclude papers not related to software engineering or mobile robot systems.
The result was 69 papers which were then classified into categories based on the
type of publication, year released, type of research(evaluation research, solution
proposal, opinion paper, etc.), and type of contribution(tool, method, model, etc.).

(mobile OR drive* OR cruise* OR rover OR ground OR *water* OR aer*
OR fly* OR sail*)
AND
(unmanned OR self OR autonomous OR robot* OR vehicle*)
AND
(MDE OR MDD OR MDA OR MDSD OR meta model OR metamodel OR dsl OR
domain specific OR dsml OR model-driven OR model driven)

Figure 2.1: Syntax of the Search String from the Mapping Study.

The conclusion of the mapping study was that model-driven software engi-
neering methods are an increasing trend to use in mobile robot systems. Most
research solutions are focused on the development of domain-specific modelling
languages supported by tools that are mostly built ad-hoc. Fewer solutions are
based on UML and Eclipse-based tools. They also concluded that there are few
solutions that are validated through real-world projects which reflects that research
on this topic is still young. They also concluded that there is a weak presence of
studies on mobile multi-robot systems and that more research should be invested
on teams of mobile robots.

8

Since this was a broad mapping study we can be confident that it has captured
most relevant papers on model-driven software engineering for mobile robot-
systems which also includes papers on model-driven software engineering for
multi-robot systems. The SLR of this thesis will be conducted on the papers from
the mapping study which is concerned with model-driven software engineering in
multi-robot systems, not only heterogeneous systems as the research here is very
limited. The previous mapping study was conducted in 2015 which means that it
only contains papers released from 2000 - 2015. To identify papers released after
2015 a short database search will also be conducted.

2.3 The Need for a Review

The previously conducted mapping study concluded that the trend of using model-
driven software engineering in the development of robot systems is increasing.
This means that the use of model-driven software engineering is also increasing
in the development of multi-robot systems and is probably going to continue to
increase because of all the advantages of using model-driven software engineering
in complex systems.

A short database search is conducted to check if there already exists a SLR
on the topic of model-driven software engineering in multi-robot systems. The
search string shown in figure 2.2 is used to perform an automatic search in the
electronic database “Ieee Xplore” and index library “Scopus”. The result shows
that there does not exist a SLR on the topic.

9

("literature Review" OR "mapping study" OR "Survey" OR "SLR" OR "SMS")
AND
("robot")
AND
("multi" OR "team" OR "swarm")
AND
("model-driven" OR "domain-specific" OR "DSL" OR "MDA" OR "MDE" OR
"MDD" OR "MDSE")

Figure 2.2: Syntax of the Search String used to find Similar Literature Reviews.

2.4 Review Protocol

In this section we define the review protocol. This includes review questions,
database search strategy, study selection criteria, and data extraction strategy.

2.4.1 Review Questions

The overall review questions of the SLR are as follows:

How are MDSE methods and techniques applied in the development of

multi-robot systems?

What tools and frameworks exist to support the use of MDSE methods and

techniques to develop multi-robot systems?

To answer the questions some sub-questions are defined which focus on what
tools and frameworks are used, what type of solutions are developed, and how
model-driven software engineering techniques are applied(in the form of a
model, DSL, graphical tool, etc.).

10

RQ1: What types of tools and frameworks exist which support the development

of multi-robot systems using MDSE methods?

RQ2: How are MDSE methods applied (In the form of a model, a DSL, etc)?

RQ3: What type of problem does MDSE solutions solve (behavior,

communication, task allocation, etc)?

2.4.2 Database Search

To identify papers released after 2015 a short database search is conducted through
the digital databases “Ieee Xplore” and “scopus”. The search string shown in
figure 2.3 is defined to collect relevant papers. As this is a light review with
only one researcher the search string defined is more narrow than the one used by
the mapping study. The search is limited to only conference papers and articles
written in English.

("robot")
AND
("multi" OR "team" OR "swarm")
AND
("model-driven" OR "domain-specific" OR "DSL" OR "MDA" OR "MDE" OR
"MDD" OR "MDSE")

Figure 2.3: Search String used to find Additional Papers Published after 2015.

2.4.3 Selection Criteria

To be able to select relevant papers from the previous mapping study and the
database search a series of inclusion and exclusion criteria are defined. These

11

criteria are applied to the title and abstract of each paper and should be defined to
capture studies focusing on the use of model-driven software engineering in the
development of multi-robot systems. The criteria are defined as follows:

Inclusion criteria:

• Studies proposing MDSE methods or techniques that can be applied in the
development of multi-robot systems.

• Studies applying or evaluating MDSE methods or techniques used to
develop multi-robot systems.

Exclusion criteria:

• Studies not concerned with MDSE or multi-robot systems.

• Studies not concerned with software development (i.e., studies on robotic
hardware or mechanics).

• Not peer review studies.

• Studies published before 2015 (for the papers from the database search).

2.4.4 Data Extraction

The data extracted from each study should provide the necessary information
which can be used to answer the defined review questions.

Data extracted:

• Type of MDSE solution developed (model, DSL, graphical tool, etc.).

12

• Focus area(behavior, communication, task allocation, etc.).

• Tools used to develop the solution.

• Evaluation method used.

2.5 Results

From the mapping study, 8 papers were selected from the initial set of 69 using
the selection criteria. From the database search, 4 additional papers were selected
from a total of 31 produced by the search. The papers from the database search
capture additional studies published after the broader mapping study from 2015.
A total of 12 studies were selected [see table 2.1].

2.6 Discussion

On the topic of applying model-driven software engineering in the development
of mobile multi-robot systems we can see from table 2.2 that most studies focus
on the use of MDSE to create tools and DSLs that can be used to describe the
behavior of the robots on an abstract level while low-level platform-dependent
code is partly generated. This lets users create an application for a team of robots
easier and more efficiently.

In [S7], [S8], [S9] and [S10] DSLs with graphical tools was developed which
can be used to specify the behavior of the robots using finite state machines and
statecharts. While in [S4] and [S5] they showed how finite state machines can
be used to model a swarm of heterogeneous robots using RoseRT. Finite state
machines and statecharts are popular to use to model robot behavior as they are
good for capturing real-time requirements.

13

Id Author Date Name

[S1] D. D. Ruscio, I. Malavolta,
& P. Pelliccione 2014 A Family of Domain-Specific Languages for Specifying

Civilian Missions of Multi-Robot Systems

[S2] F. Ciccozzi, D. D. Ruscio,
I. Malavolta, & P. Pelliccione 2016 Adopting MDE for Specifying and Executing Civilian

Missions of Mobile Multi-Robot Systems

[S3] S. Dragule, B. Mayers,
& P. Pelliccione 2017 A Generated Property Specification Language for Resilient

Multirobot Missions

[S4] D. Quellet, S. N. Givigi,
& A. J. G, Beaulieu 2011 Control of swarms of autonomous robots using Model Driven

Development - A state-based approach

[S5] A. J. G, Beaulieu, S. N. Givigi,
D. Quellet., & J. T. Turner 2018 Model-Driven Development Architectures to Solve Complex

Autonomous Robotics Problems

[S6] C. Pinciroli & G. Beltrame 2016 Buzz: An extensible programming language for
heterogeneous swarm Robotics

[S7]

T. Amma, P. Baer, K. Baumgart,
P. Burghardt, K. Geihs, J. Henze,
S. Opfer, S. Niemczyk,
R. Reichle, D. Saur

2009 Carpe noctem 2009

[S8] H. Skubch, M. Wagner,
R. Reichle., & K. Geihs 2011 A modelling language for cooperative plans in highly

dynamic domains

[S9] A. Paraschos, N. I. Spanoudakis,
& M. G. Lagoudakis 2012 Model-driven behavior specification for robotic teams

[S10] E. M. Martinez, A. F. Caballero,
& J. M. G. Noheda 2012 Model-driven engineering techniques for the development of

multi-agent systems

[S11] P. A. Baer, R. Reichle, M. Zapf,
T. Weise, & K. Geihs 2007 A generative approach to the development of autonomous

robot software

[S12] P. A. Baer, R. Reichle,
& K. Geihs 2008 The spica development framework–model-driven software

development for autonomous mobile robots

Table 2.1: SLR General Data.

14

Id Type of solution Focus area Tool used Evaluation

[S1] DSL & UI Behavior EMF Real-world application

[S2] DSL & UI Behavior EMF Real-world application

[S3] DSL Constraints EMF Real-world application

[S4] Method Behavior RoosRT Simulation

[S5] Method Behavior RoosRT Simulation

[S6] DSL Behavior EBNF Simulation

[S7] Graphical Tool Behavior EMF Real-world application

[S8] Graphical Tool Behavior EMF Real-world application

[S9] Graphical Tool Behavior EMF Real-world application

[S10] Graphical Tool Behavior EMF Real-world application

[S11] DSL Communication EBNF Real-world application

[S12] DSL Communication EBNF Real-world application

Table 2.2: SLR Review Data.

15

In [S1] and [S2] they developed multiple DSLs together with a user interface
which lets the user specify the task for each robot on a map. The user interface was
designed for aerial vehicles, however. In [S6] on the other hand, they developed
a DLS which lets you specify the behavior of a swarm of robots using a textual
language and not state machines. In [S9] and [S10] they showed how agent-
based model-driven software tools could be applied to specify the behavior of a
multi-robot team. In [S3] they developed a DSL that can be used to define task
constraints. A constraint can, for example, be that a robot can only perform a
certain task if another robot is at a certain position.

Very few studies involve the use of MDSE to solve problems like communica-
tion, task allocation and coordination between the team of robots. These problems
are often solved using specific algorithms and are hidden from the user. [S11]
and [S12] were the only studies that proposed DSLs which lets you model the
communication infrastructure of the robot team. The DSLs can be used to de-
fine the messages and protocols the robots use for communication on a platform-
independent level. While in most other studies like [S1] and [S8] the communica-
tion is achieved using well-known middlewares like ROS and is not modeled by
the user.

However, most of the proposed solutions assume that low-level control func-
tions for each robot are provided. This is necessary because of the high amount
of different hardware and software libraries that are possible if any types of mo-
bile robots are going to be supported. To complete a specific task the robot might
need a function like "Moveforward(m/s)" which is implemented in very different
ways depending on the wheel configuration and what microcontroller the robot
use. The idea in most of the studies is that low-level control functions are defined
independently by robot specialists and then the mission of the robot team can be
specified by a non-specialist using the proposed language or tool.

Most of the proposed solutions are developed using the Eclipse Modelling
Framework. This is an advantage as different solutions developed using the same
framework are often easier to integrate and reuse.

16

2.7 Conclusion

Most studies on the topic of applying MDSE to develop mobile multi-robot sys-
tems are concerned with the ability to specify the mission or behavior of a team
of robots on a high level using finite state machines, statecharts or in some cases
a textual language. As there is a high amount of different hardware and software
libraries used on different robots the proposed solutions often assume low-level
control functions are provided for each robot before a mission can be specified.

There are few studies concerned with applying MDSE to model other fea-
tures of a multi-robot system like communication infrastructure, coordination and
task allocation. These features are often implemented using specific algorithms
and middlewares in the different solutions and are not modeled by the user. A
good amount of the proposed solutions are developed using the Eclipse Mod-
elling Framework. This indicates that EMF is starting to become mainstream in
the application of applying MDSE techniques to software development.

For future work, more research should be done to figure out how a mission for
a heterogeneous team of robots can be specified on a high level without the need of
a robot specialist implementing the low control functions for each different robot.
As most studies focus on the ability to define a mission using state machines and
domain-specific languages, there is also needed more research on how missions
can be specified at runtime by non-programmers using maps or user interfaces.

In this thesis, we propose a textual DSL for modelling the behavior of the
robots by using simple actions as building blocks to define tasks that involves
multiple robots. The user can specify a mission for a team of robots through
a web interface at runtime. As opposed to other solutions our solution allows
the user to define different missions without the need for redesigning the model,
regenerate code and redeploy the generated code to all the robots. The user can
also add new tasks and change the definition of existing tasks without the need for
redeployment.

17

Chapter 3

Theoretical Background

3.1 Overview

This chapter provides some background in the concepts and technologies used in
the thesis. Beginning with an introduction to model-driven software engineering
and MDSE in robotics. Then moving on to the multi-robot task allocation prob-
lem. Finally, an overview of the robot operating system is provided.

3.2 Model-Driven Software Engineering

3.2.1 What is Model-Driven Software Engineering?

Model-driven software engineering is a software development paradigm that fo-
cuses on the use of models in the software development process. In model-driven
software engineering, you often develop a high-level model of the application in-
stead of writing low-level code, the code is then derived from the model using
model-to-model transformation and code generation. The use of models allows
developers to work at a higher level of abstraction, thus reducing complexity and
improving the software quality [8].

18

Model-driven software engineering is based on the separation of the system
functionality being developed and the implementation of such a system for one
specific platform, i.e., to clearly separate the analysis from the implementation
details. Thus raising the level of abstraction and allowing the use of concepts
closer to the problem domain [9].

The concept of raising the level of abstraction to reduce complexity is nothing
new. Assembly can be seen as an abstraction over machine code, while high-level
programming languages can be seen as an abstraction over assembly again which
hides low-level machine-specific instruction by introducing higher-level abstrac-
tions such as variables that are translated into machine code by the compiler [8].

Figure 3.1 illustrates common elements used in model-driven software engi-
neering. At the top level is the metalanguage used to define the domain-specific
language. This could be Ecore, extended backus-naur form, or any language capa-
ble of defining another language. The domain-specific language can then be used
to define a model of the application that contains the functional requirements.
Transformation rules can be specified in a transformation language like ATL or
M2M. The model can then be transformed into another model or into application
code. And the application code usually uses a framework that conforms to an
architecture.

These components can be implemented by developers that have different roles
as described in [10]. You may want a domain expert and language engineer to
develop the language, transformation, and platform expert to implement the trans-
formation rules, and an application developer to develop and test the model.

3.2.2 Model-Driven Architecture

Model-driven architecture is a software development approach initiated by the
OMG (The Object Management Group) [11]. Model-driven architecture is often
referred to as a subset of model-driven software engineering. It provides a set of
guidelines for defining models and the transformations between them.

19

Figure 3.1: The Model-Driven Software Engineering Process. Source [10].

Figure 3.2 illustrates the different layers of models in model-driven architec-
ture. As explained in [11] the models can be separated into 3 layers. The com-
puting independent model (CIM) defines the system specifications on the highest
level. It defines all the system functions without any technical specifications. The
platform-independent model (PIM) defines common platform-independent con-
cepts. The platform-specific model (PSM) uses the PIM and platform details to
generate the final source code. A single PIM is often used to create multiple
PSM‘s. Model to model transformations are used to convert the models down the
layers while model to text transformation is used to generate the final code from
the PSM.

3.2.3 Pros and Cons of Using MDSE

Model-driven software engineering can have many advantages over traditional
coding depending on the complexity of the system being developed. In [12] they
discuss some of the benefits with model-driven software engineering. It can in-

20

Figure 3.2: Levels of Abstraction in Model-Driven Architecture. Source [11].

crease the productivity of the developers as the use of models and code gener-
ation can lead to faster development. It can increased reusability over different
platforms as you often develop platform-independent models. It can increase the
quality of solutions since the use of models forces you to focus on the design of
the system and not implementation details. It can improve the communication
between developers as they can reason about high-level concepts instead of low-
level code. And it can improve communication with stakeholders as models hide
implementation details and are closer to the problem domain.

In [13] they conducted a twelve-month long empirical study to investigate
whether all the claimed benefits of model-driven software engineering is true or
not. They concluded that the use of model-driven software engineering does have
a positive effect on productivity and maintainability.

In [8] some of the problems of model-driven software engineering are dis-
cussed. It can increase redundancy as there are multiple representations of the
same artifact(generated files, generated documents, generated models, etc.) at
different levels of abstraction. If these are manually created then duplicate work
is required. Also the more levels of abstraction and the more models you have, the

21

more complex model relations you get. Changes in one model could propagate
and lead to unexpected changes in all related artifacts. Raising the level of abstrac-
tion also may lead to oversimplification and may hide important implementation
details from the developer.

3.2.4 MDSE in Robotics

One of the main problems with software development in robotics is due to the
hardware heterogeneity of different robots. Different robots are often built from
different types of sensors, actuators, and microcontrollers. All these components
can also be put together in many different ways. As a consequence different robots
need different code to be able to perform the same functions. This makes code
reuse difficult and one often has to start from scratch when developing a new
robotic system.

In [14] and [15] they conducted studies on research trends related to soft-
ware architecture in robotic systems. Both studies concluded that model-driven
architecture was one of the most popular and promising architecture to apply
when developing software for robotics systems. Since robotic systems often are
quite complex, raising the level of abstraction can be very beneficial. It also in-
creases reusability by introducing platform-independent models. By separating
hardware-specific and hardware-independent specifications we can create more
reusable robotic components.

3.2.5 Domain-Specific Languages for Robots

One of the core concepts in model-driven software engineering is that of a domain-
specific language or DSL. A DSL is a software development language specialized
for developing applications in a particular domain, for example robot applications,
or even more specific like robot perception. The language should make it easier

22

to develop an application for that particular domain by defining abstractions and
notations relevant to that specific domain.

As described in [16] a DSL usually contains only a restricted set of notations
and abstractions as compared to a general-purpose language or a general-purpose
modelling language like UML. This allows a DSL to highlight domain concepts in
the language itself, while in a general-purpose language the domain concepts have
to be implemented in the code and are more hidden. A DSL for robotic systems
should, therefore, highlight concepts and problems specific to the development of
robot applications.

There already exist many DSLs for robot development. In [16] they conducted
a survey on 41 DSLs. The DSLs usually only deals with a very specify function
like perception or control, which is the essence of a DSL as opposed to a general-
purpose language. There also exists larger model-driven toolchains like RobotML
[17], BRICS [18] and Smartsoft [19] which contains multiple DSLs to be used
together when developing the robotic system.

3.2.6 How are the DSLs Developed?

The survey conducted on 41 different domain-specific languages for robotic sys-
tems [16] showed that most of the domain-specific languages were developed us-
ing the Eclipse Modeling Framework (EMF).

The Eclipse Modeling Framework provides a toolchain for the development
of domain-specific languages and metamodels. It provides a large set of tools and
code generation facilities to support metamodelling. The metalanguage used in
EMF is called Ecore and is based on the MOF (Meta Object Facility) metalan-
guage defined by the Object Management Group.

After EMF most domain-specific languages in the survey were developed by
creating a custom toolchain or by using a general-purpose language. A domain-
specific language developed using a general-purpose language is called an internal
domain-specific language and is developed by extending the syntax of the host

23

language with domain-specific notations and abstractions.

3.3 Multi-Robot Task Allocation

3.3.1 The Multi-Robot Task Allocation Problem

One of the challenges in a multi-robot system is the problem of task distribution.
Given a set of robots and a set of tasks, how do we decide which robot should per-
form which task? The multi-robot task allocation (MRTA) problem is about how
a set of tasks should be distributed between a set of robots and is an optimization
problem. As the number of heterogeneous robots and different types of tasks in-
creases the problem becomes even more complex since heterogeneous robots may
have different capabilities and different strengths and weaknesses.

The problem of efficient task allocation has been an active research topic for
many years as the different variations of the problem can be reduced to many
similar problems, like multiprocessor scheduling [2]. In this section we will look
at some of the different variations of the MRTA problem, cost functions, and
solution architectures.

3.3.2 Problem Variations

In [2] they proved a taxonomy of MART problems and the different ways of clas-
sifying them. They explain how the problems can be classified along 3 main axes
as shown in figure 3.3.

Single-task robots (ST) vs multi-task robots (MT): ST means that each robot
can only perform a single task at the time, while ST means that there are some
robots with the ability to perform multiple tasks simultaneously.

24

Figure 3.3: Multi-Robot Task Allocation Schemes. Source [20].
.

Single-robot tasks (SR) vs multi-robot tasks (MR): SR means that each task
requires exactly one robot to achieved it, while MR means that there are some
tasks which require multiple robots.

Instantaneous assignment (IA) vs time-extended assignment (TA): IA means
that only Instantaneous allocation of tasks is allowed, while TA means that
planning for future tasks are allowed. For example, if there are more tasks than
robots you might want to create a schedule for each robot.

A specific MRTA problem is then referred to as for example ST-SR-IA. This
gives us 8 types of problems that require different approaches to solve. ST-SR-
IA is the simplest variation of the problems as you only have one-to-one relations
between the robots and the tasks with no future planning. As explained in [2] there
exist algorithms that are able to find the optimal solution to this type of problem,
like the Hungarian method [21]. While an instance of the ST-SR-IA problem can
be solved efficiently the remaining problem variations are all NP-hard and there
exist only approximation algorithms that find a sub-optimal task distribution [2].

25

Besides these 3 axes, there might be additional factors that change the prob-
lem. One thing that is done a lot of research on in multi-robot systems is task
constraints [22]. In [23] they list some of the most commonly used task con-
straints. For example, there might be tasks that need to be completed before a set
of other tasks can be started. Or there might be tasks that need to be completed
before a specific deadline. This again increases the complexity of the problem
and would require the task allocation algorithm to be much more advanced when
planning.

3.3.3 The ST-MR-IA Problem

The main focus of the thesis is on multi-robot systems where different robots with
different capabilities have to cooperate. This means that the problem can be seen
as an instance of the ST-MR-IA problem. As they explain in [2] when you have
tasks that require multiple robots working together to complete, the problem be-
comes significantly more difficult. This problem is often referred to as a coalition
formation problem where a coalition is a group of robots. The problem of dividing
a set of robots into coalitions for each task such that the cost of performing the
tasks is minimized can be reduced to the maximum utility set partitioning prob-
lem. The problem is NP-hard as finding the optimal solution would require going
over all possible task-collision pairs to find the solution with minimum cost [2].

They also mention in [2] that there has been a lot of studies on this type of
problem because its application in solving crew scheduling problems for airlines,
so there exist many good heuristics algorithms which can find suboptimal solu-
tions in a reasonable amount of time, like [24] and [25]. These, however, are not
directly applicable to MRTA problems as they are designed to solve crew schedul-
ing problems and are slightly different.

26

3.3.4 Cost Function

The MRTA problem can be looked at as an optimization problem since we are
trying to find the best distribution of tasks between the robots to optimize the
performance of the whole mission. Depending on the mission you may want to
optimize different performance metrics. If you have a time-critical mission you
might want to minimize the time of completing the slowest task so the whole
mission is completed as early as possible. If the robots are using fuel you might
want to minimize the sum of distances traveled by each robot to minimize fuel
usage. In [23] they refer to these as optimization objectives and list some of the
most commonly used ones.

What to optimize is expressed through what is called a cost function. For each
robot-task pair, a number is calculated based on what the cost is to perform the
task by the robot. The cost can be calculated by the distance between the robot
and the task or by how long time the robot needs to complete the task or some
other available variable based on what you want to optimize.

A cost function is necessary to be able to optimize, but what is called a quality
function is also common to use. For each robot-task pair, a number is then cal-
culated based on how well the robot is able to perform the task. This could be
based on the speed of the robot or the sensor accuracy or any available variable or
combination of variables.

We can then define the utility of the robot as the quality minus cost. The
robot-task pair with the highest utility is then paired. In [2] they define the utility
as shown in figure 3.4, where U is the utility value of the robot-task pair, Q is the
quality and C is the cost. Although there are multiple ways of defining the utility
this is one of the most used commonly used ones.

27

Figure 3.4: Utility Function. Source [2].

3.3.5 Solution Architectures

Multi-robot architectures can be classified into two main types as they explain in
[20].

Centralized architecture is when there is a single robot that acts as the central
unit. This robot runs the task allocation algorithm and allocates the tasks to the
other robots. The advantage of a centralized system is that it is easier and cheaper
to implement. The disadvantage of a centralized system is that it has a single
point of failure. It is also less scalable and robust than a distributed system.

Decentralized architecture is when there is no central unit, but each robot
communicates with other robots directly to collect data from each other, and each
robot decides on their own how to proceed based on the collected data. This type
of system is much more robust and flexible as it has no single point of failure.
The processing of data is more distributed which makes the system more scalable
as well. The disadvantage is that it is more difficult and expensive to implement a
decentralized system. Each robot also has less information about the whole
system, as this requires each robot to message all other robots.

Amongst the most popular types of multi-robot task allocation algorithms are
the auction and market-based algorithms [26]. Here each robot calculates a bid
on each task based on its utility function and then the central unit acts as the
auctioneer which allocates each task to the highest bidder. Figure 3.5 illustrates
an auction-based architecture.

28

Figure 3.5: Auction-based Architecture. Source [20].

3.4 The Robot Operating System

3.4.1 What is ROS?

ROS (Robot Operating System) is an open-source robotics middleware. It consists
of a collection of tools and frameworks for the development of robots. It is not an
operating system but provides services you would expect from an operating sys-
tem, including hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and package
management. It also provides tools and libraries for obtaining, building, writing,
and running code across multiple computers [27].

ROS has grown into one of the most popular middleware for robotics and it
does now contain a huge amount of packages implementing functions commonly
used in robotics like navigation algorithms. This allows developers to focus on
the logic of their application, while ROS provides finished implementations of
algorithms and other commonly used functionality.

29

3.4.2 ROS Architecture

A ROS application is made up of nodes. A node is a process that performs com-
putations and communicates with other nodes. A ROS node usually either process
sensor data from a single sensor, runs sensor data through an algorithm or controls
an actuator. The node structure makes the system loosely coupled and promotes
component-based development. The nodes can be running on the same computer
or on multiple different computers. ROS uses a publish-subscribe architecture for
communication between all the nodes. Nodes can publish data on topics or sub-
scribe on topics to receive data from other nodes. A node called ROS-master acts
as the broker which takes care of the coordination of the massages between all the
nodes.

A node is implemented by creating an executable and use the ROS client li-
brary to create and subscribe to topics. ROS has tools to launch all nodes at once
which starts up the application and starts the sensor processing and actuator con-
trol. A ROS application usually consists of a combination of nodes provided from
ROS repositories and nodes made by the developer to deal with the sensors and
actuators of the specific robot used.

Figure 3.6 illustrates a common ROS application called the navigation stack
[28]. Given a goal coordinate, the application will navigate your robot to the goal
while avoiding collision with obstacles. The blue nodes are platform-specific and
need to be implemented by the developer. One node reads and publishes laser data,
another publishes odometry data (i.e., position and orientation), another publishes
sensor transforms which is the position of the sensors on the robot which may
change over time, and one node subscribes on movement messages and drives the
robot.

The white nodes are provided by ROS. In this case there is a node called
"move_base" which is again made up of 5 nodes. This node subscribes on all
the topics that publish sensor data. The node can at any time be given a goal
coordinate and will then run all the sensor data through multiple algorithms to plan
a path to the goal and then publish movement messages that the base controller

30

Figure 3.6: Example ROS Application. The Navigation Stack. Source [28].

node can pick up to drive the robot correctly based on its wheel configuration.

3.4.3 Pros and Cons

Besides the operating system like services for heterogeneous computer clusters
provided by ROS, some additional advantages of ROS include its increase in code
reusability as modules are separated into different packages. ROS also provides a
large library of already implemented packages. Another advantage of ROS is that
it is language-independent [27]. Most of the libraries are implemented using c++,
python or lisp, but additional languages can be used. You can even use multiple
nodes written in different languages in the same application. This way you can,
for example, use python for object recognition as python has good support for
machine learning, and use c++ for driver controls. One of the disadvantages of
ROS is that it only runs on Unix-based platforms [27]. Many microcontrollers run
their own operating system and therefore cannot use ROS. ROS is also considered
difficult to learn.

Besides ROS, there are many other middlewares which all have their own ad-
vantages and disadvantages. Alternative middlewares include Player/stage [29],
Orocos [30], Miro [31] and many others. A full list of robotic middlewares can be

31

found in [32] where they conducted a survey on the most popular robotic middle-
wares.

32

Chapter 4

A Framework for Heterogeneous
Multi-Robot Systems

4.1 Framework Architecture

From the literature review, we saw some of the related work in applying model-
driven software engineering in the development of multi-robot systems. In this
thesis, we propose a framework where simple actions are used as building blocks
to define more complex tasks performed by multiple robots. The framework is
made up of 4 components. A domain-specific language used to model both the
robots and tasks, a task allocation module used to distribute the tasks amongst
the robots, the robot operating system(ROS) used for communication between the
robots and advanced navigation, and a web interface used to create missions for
multiple teams of robots.

The core part of the framework is the Task Definition Language (TDL) which
allows the user to define all the necessary elements of a multi-robot system and
also define the tasks which will be executed by the robots. The language is used
to define a set of composite tasks which may require multiple robots to perform.
The composite tasks are made up of sub-tasks that are performed by a single
robot. The sub-tasks are made up of a sequence of simple actions. This way

33

Figure 4.1: Framework Architecture. Blue Boxes are Existing Technologies.

complex tasks performed by multiple robots can be defined using simple actions
as building blocks. A robot engineer adds a robot to the framework by providing
an implementation of each simple action the robot is able to perform together
with any necessary ROS nodes. After all the tasks are defined and the robots are
added the model of the system is used to partially generate all of the components.
This includes the ROS files and task allocation module for each robot, and a web
interface that is used to connect to the robots and define a mission from the set of
available tasks.

Figure 4.1 provides an overview of the framework and its components. At the
top level is the task definition language which is defined in Xtext. Xtext is a lan-
guage used to create other languages by defining syntax and semantics. The task
definition language lets the user define a model of the system and all its compo-
nents at a higher level of abstraction. A code generator written in Xtend is used to
generate files for each robot based on the provided model. The generator uses the
model together with a partially finished web interface and task allocation module

34

to generate the final web interface and task allocation module and all necessary
ROS files for each robot. The web interface is used to define and start a mission
consisting of multiple tasks and robots. ROS takes care of the communication
between the robots while the task allocation module is responsible for distributing
the task appropriately.

4.2 The Task Definition Language

The task definition language is the core component of the framework. The task
definition language is a domain-specific language used to design and implement
a heterogeneous multi-robot system. It allows you to add any custom-built robots
capable of running ROS by providing an implementation of each “Simple Action”
that the robot is able to perform. The language is also used to create a model that
defines each task that a team of robots might need to perform by using the “Simple
Actions” as building blocks. In this section, we present the design of the language
and all its elements, how the language is implemented, and how the language is
used.

4.2.1 How is the Language Developed?

The Task Definition Language is implemented using Xtext. Xtext is a framework
for developing programming languages and domain-specific languages [33]. It
provides a language that can be used to specify the semantics and syntax of an-
other language. This way we can develop our own domain-specific language for
the development of heterogeneous multi-robot systems.

Xtext is not only used to develop a domain-specific language but after the
language is created Xtext generates the language components. This includes a
parser that is used to check that the input text conforms to the semantics and
syntax of the language. It provides the user with feedback if he misspells or has

35

the wrong structure on the input model. Xtext also generates all the java classes
for the object model. This lets us easily iterate through all the elements of the
input model which is necessary when generating code from the model. Xtext
also generates the editor where we can use the language, and all the additional
components which belong with a programming language.

Xtext is part of the Eclipse Modelling Framework(EMF). EMF is a modelling
framework and code generation facility for building tools and other applications
based on a structured data model [34]. From the literature review, we saw that
most of the other solutions had used EMF to developed their domain-specific lan-
guage. This is good as it makes different solutions more integratable and more
standardized.

The Task Definition Language is defined by creating a Xtext model using
Xtext’s grammar language. The Xtext model is transferred to an Ecore model.
Ecore is eclipse’s meta metamodel and is one of the core parts of the Eclipse Mod-
elling Framework used to describe different models. Figure 4.2 helps to illustrate
the different layers of models defined in model-driven architecture. Ecore is at
the top layer and is a M3-model which defines itself. The M3-model is the lan-
guage used to create M2-models. The Task Definition Language is a M2-model
and is a language used to create M1-models. M1-models represent real-world
objects(M0).

The Task Definition Language is a domain-specific language which means
it is used to create M1-models for a specific domain. In our case the domain
is heterogeneous multi-robot systems. This means the M1-models represents a
heterogeneous multi-robot system(i.e., the robots and the tasks performed by the
robots).

Now that we have seen how the Task Definition Language is made we can go
on to looking at the language itself and its elements and how it is supposed to be
used.

36

Figure 4.2: Modeling Spaces. Source [35].

4.2.2 The Elements of the Language

Figure 4.3 shows the metamodel of the Task Definition Language [A larger ver-
sion can be found in Appendix A]. The language can be divided into two parts.
One part for modelling the available robots, and one part for modelling the re-
quired tasks. The metamodel defines all the elements of the language. These ele-
ments should cover all the necessary concepts to enable the user of the language
to develop a fully functional heterogeneous multi-robot system. In the next sec-
tion, each element of the robot model and task model will be explained in further
detail.

37

Figure 4.3: Task Definition Language Meta Model.

38

4.2.3 Robot Model

The part of the language for modelling the robots is mostly platform-specific as
different robots need different code to perform the same action since they are
built from different hardware and have different configurations. Each robot has a
collection of “Simple Actions”. This is an implementation of a simple action that
the robot is able to perform. The simple actions should be as generic as possible
to support a large set of tasks. Each robot also has a collection of "ROS Nodes".
This is an implementation of a process that continuously runs on the robot either
processing sensor data or controlling actuators. A simple action can use multiple
ROS nodes to achieve the desired action. Each robot also has a list of "Published
Data". This is data that is shared between the robots and that is sent to the web
interface where it can be displayed to the user. Lastly, each robot also has an
initialization module containing imports and global variables.

Simple Action

A Simple Action is an implementation of an action the robot is capable of per-
forming. This part of the model is hardware dependent. The element contains a
python code block provided by the user which will be executed as part of a bigger
task. Listing 4.1 illustrates an example "Simple Action" called "moveForward".
The illustration shows how the action is implemented on a differential wheeled
raspberry pi based robot. But this implementation might look completely differ-
ent on another robot. This is the reason why the code has to be provided by the
user and why it is so difficult to make abstract models which the code can be de-
rived from or to make high-level libraries that can be used for all types of robots.

The core idea of the simple action element is to limit the user to only provide
the code that the robot needs to perform the action, but not provide any application
logic or any information about what task the robot will perform. Thus a simple
action is task-independent and can be used across multiple different tasks. A set

39

of actions can also act as a library for a specific type of robot which can be used
by others that have a similar robot.

simpleAction moveForward(time):

pi.set_PWM_dutycycle(leftMotorPmwPin , 150)

pi.set_PWM_dutycycle(rightMotorPmwPin , 150)

_time.sleep(time * 0.001)

pi.set_PWM_dutycycle(leftMotorPmwPin , 0)

pi.set_PWM_dutycycle(rightMotorPmwPin , 0)

Listing 4.1: A Simple Action called moveForward.

ROS Node

A ROS node can be thought of as a background process that is continuously run-
ning on the robot. A ROS node can either read sensor data, control actuators
or perform calculations on sensor data using complicated algorithms. The ROS
nodes are typically publishing data that can be accessed from a simple action
block, or a simple action can call a ROS node to help to execute the action. There
are two types of ROS nodes.

The first type is ROS nodes that interface with hardware such as sensors and
actuators. These are hardware-dependent and must be provided by the user. There
might however exist drivers for a particular robot-hardware pair that can be used.
The second type is ROS nodes performing calculation on sensor data but does not
interact directly with any hardware. These are provided by ROS and often contain
complicated state-of-the-art algorithms to perform for example path planning or
environment mapping from various sensor data.

A user-provided ROS node contains a python code block that will be launched
and executed as a process on the robot. As these nodes often contain much low-
level code no example is provided here. However, the implementations of these

40

nodes are necessary as the framework is built on top of ROS and needs to follow
the ROS architecture. Using ROS allows us to easier implement quite complicated
functions for our robots. Like navigation and arm manipulation which are required
to perform common actions. Sample files can be found in the Github repository
of the project under multi-robot-simulation/robots [36].

Parameter List

Each ROS node may have a list of parameters that describes the robot’s attributes.
This could be for example the robots radius or the maximum forward velocity of
the robot. These attributes are mainly used by ROS nodes to optimize the robot’s
behavior. By knowing, let’s say, the radius of a robot a node running a path plan-
ning algorithm can calculate a more precise path around objects. A robot typically
has one parameter list for each node. This is because some parameters are used to
describe how the node should run also. For example, the minimum distance away
from objects that the robot should be before reacting can be configured through
the parameter list. The path planning node will then adjust the algorithm it is
running.

Parameters are paramount when modelling robots as different robots often
have many different attributes that affect their behavior [see figure 4.4]. For ex-
ample, the distance between the wheels of a robot is part of deciding what velocity
each wheel must have to achieve a specific angular velocity for the whole robot.
Parameters are used a lot in ROS to configure algorithms and different processes,
and a robot usually has tens or even hundreds of parameters.

Right now parameters are used only by ROS, but may also be used by the task
allocation module in the future. You could, for example, have task requirements
when defining the tasks in the system. A task may only be doable for robots with
high enough velocity or a small enough radius. And the task allocation module
could make sure to only allocate tasks to robots that meet the requirements.

41

Figure 4.4: A Robot has Many Unique Attributes. Kuka Youbot. Source [37].

Published Data

A robot can publish data over a ROS topic which will be sent to the web interface
where it can be displayed to the user. It can also be used as a shared data pool
between the robots. Right now the published data element is mainly used to send
the position of the robots to the web interface so that the user can track the robots.

Initialization Module

The Initialization Module is just a module that will be executed at robot startup.
This is provided by the user and is just a python code block. It is where the user
can define imports and global variables accessible by all simple actions. Here the
user can also perform other setup functions if necessary.

42

4.2.4 Task Model

The Task Model represents the tasks that the robots can perform. The idea of
the task model is to be able to define a multi-robot task without providing any
information about what type of robots are going to performing the task. This
means that the task model is robot independent which makes it highly reusable. It
is also much easier to develop then the robot model as it does not require any skills
in robot engineering. The core idea is to use simple actions as building blocks to
define bigger tasks that involve multiple robots. The implementation detail of an
action is hidden. The user can then define which actions a task is composed of
and if there are any dependencies between actions across robots. The task model
contains the following elements.

Composite Task

A composite task is a set of tasks performed by a team of robots working together.
Each task that the composite task is made up of is performed by exactly one robot.
A composite task has a position provided by the user through the web interface.
A composite task can, for example, be to play ball at a football field or to paint a
house at a specific location.

Task

A task is defined as a sequence of simple actions that will be performed by one
robot. A task can, for example, be to perform a penalty kick. By using simple
actions as building blocks to define a task we can reuse the actions to define many
different tasks.

43

Simple Action Reference

A simple action reference is a reference to a simple action used when defining a
task. A simple action reference can be passed arguments. The user can also define
dependencies between actions across robots. Let’s say multiple robots needs to
lift a heavy object together you can specify that the lifting action must be syn-
chronized by using the "sync" keyword. Or if there is an action that must occur
after another action you can specify that by using the "after" keyword.

Listing 4.2 illustrates an example composite task. The composite task is called
“do a penalty shoot” and is made up of two tasks called “defend goal” and “shoot
ball”. The tasks are again made up of a sequence of simple actions. If the user
wants a team of robots to perform this composite task he just chooses a location
and the task allocation module takes care of distributing each task to the most
appropriate robot that has an implementation of each simple action.

44

compositeTask do_a_penalty_shoot(lat ,lng):

task defend_goal ():

goTo(lat ,lng):

locate(args=("Goal")):

moveTo(args=("Goal")):

faceObject(args=("ball"), id="defender_ready"):

task shot_ball ():

goTo(lat ,lng):

Locate(args=("Ball")):

moveTo(args=("Ball")):

aimAt(args=("Ball", "Goal")):

kick(args=("ball"), after("defender_ready")):

Listing 4.2: An Example Composite Task.

4.2.5 The Generator

The generator is the part of the framework that takes all the information from
the model and merges it with partly finished code files to create all the finished
code files for the system. This includes all the files for each robot (i.e., the task
allocation module and the ROS nodes) and the index file for the web interface [see
figure 4.1].

The generator is implemented using Xtend. Xtend is a programming language
that translates into Java source code. It is the language that is often used when
writing code generators in the Eclipse Modelling Framework and it works well
together with Xtext to generate application code from a model. Xtend allows us

45

to easily iterate over all the elements in the model and extract the user imple-
mentation of the simple actions and ROS nodes, and integrate the code with the
task allocation module and web interface. The development, code generation, and
deployment process are as follows:

Development Process:

1. The user adds the Task Definition Language plugin to Eclipse and creates a
new Eclipse project.

2. He then creates a .tdl(Task Definition Language) file for each robot where
he provides the implementation of each simple action that the robot is able
to perform. He can also provide implementations of ROS nodes and define
parameters.

3. He then creates a .tdl file containing the definition of all the tasks that the
robots may need to perform.

4. The generator then goes through each robot file. For each robot, the gen-
erator extracts the simple actions and merges them with the task allocation
module. A python file is created for each ROS node, and a ROS .yaml
file containing the parameters. A ROS launch file is also generated which
starts the application. All of the generated files for each robot must then be
deployed to the appropriate robot.

5. The generator then goes through the file containing the task definitions and
merges them with the .html file. This way all the available tasks and their
definitions are available through the web interface.

6. When the generated .html file is opened it will connect to the robots through
a server and the user can see the connected robots and start to define mis-
sions.

46

New robots can be added to the system at any time by creating additional .tld
files without having to restart the other robots. This can be important for long
missions where you might want to add new robots without stopping the whole
mission.

4.3 The Task Allocation Module

4.3.1 System Architecture

The second component of our framework is the Task Allocation Module. The Task
Allocation Module is responsible for distributing the tasks between the robots.
Our solution uses an auction-based architecture where each robot bids on tasks
based on a cost function. One of the robots is chosen to be the auctioneer and is
using a task allocation algorithm to decide which robot should perform which task
based on the bids. Figure 4.5 illustrates the architecture of the system. The list of
steps performed when the user sends a mission through the web interface are as
follows:

List of steps:

1. Auctioneer is chosen: One of the robots is chosen to have the role as the
auctioneer.

2. Tasks are received from user: A mission / set of tasks are sent to the auc-
tioneer from the user using a web interface.

3. Auction begins: The tasks are distributed to all other robots.

4. Bidding begins: Each robot goes through all the tasks to check whether
they are able to perform the task and then calculates a bid on it using a cost
function.

47

Figure 4.5: System Architecture.

5. Auction finished: After some time has passed the auctioneer distributes the
tasks to available robots(i.e., robots not currently performing any task).

6. Task Execution Starts: Each robot starts executing its allocated task.

The reason for using an auction-based architecture is due to their popularity
[26]. Auction-based solutions have been getting a lot of attention because of their
advantages. In [23] they list some of the advantages of an auction-based solution.
Simplicity is one of them as the idea behind most auction-based protocols is sim-
ple and intuitive. Another is fault tolerance as the auctioneer can keep track of
sold tasks and their execution status he has the ability to reallocate a task if the
robot performing it fails. As we are using an auction-based solution we have a
centralized algorithm as it is the auctioneer who ultimately decides which robot
will perform which tasks based on all the received bids.

48

4.3.2 The Task Allocation Algorithm

The problem of multi-robot task allocation was discussed back in chapter 3.3. As
we discussed the problem can be classified in multiple ways depending on the
system, how the tasks are defined, how the robots are performing the tasks, what
assumptions are made, and what task constraints are used. What algorithm we
need to able to optimize a specific type of system depends on how the system is
defined and what assumptions are made. We can say that the problem space is
large as the solution depends on many variables. This makes it difficult to design
an algorithm that fits for all types of multi-robot systems. It also makes it more
difficult to reuse algorithms designed in other solutions.

This is why we have decided to design our own algorithm which fits our sys-
tem. We identify our specific instance of the problem by defining the system and
assumptions about the system. We use the 3 main axes from [2] and some addi-
tional axis from [38], like demand and available resources.

System Definitions

Task
There is a set T = t1, t2, ..., ti of tasks. A task is performed by a single robot.

Composite-Task
There is a set C = c1, c2, ..., ci of composite-tasks. A composite-task is a task
performed by a team of robots. Each composite-task contains a set of tasks and
has a geographical position.

Robot
There is a set R = r1, r2, ..., ri of robots. Each robot has a set A = a1, a2, ..., ai
of actions representing their capabilities to perform certain tasks.

49

Coalition
There is a set F = f1, f2, ..., fi of coalitions. A coalition is a team of robots
working together on one composite task.

System Assumptions

Single-task Robots
A robot can only perform one task at the time and can only be part of one
coalition at the time.

Multi-robot Tasks
A composite task may require multiple robots to achieve it.

Instantaneous Assignment
There may be more tasks than robots, but the tasks will only be distributed as
long as there are robots without tasks. No future planning will be made.

Unit Demand
A task is required to be executed exactly one time and not repeated.

Limited Resources
There may be more tasks than robots. This means that we can’t complete all
tasks in the first iteration of task distribution since we don’t plan for future tasks.
So we have to choose the best subset of tasks which minimizes the cost.

Variable Profit
The profit is the revenue minus the cost of performing a composite task by a
coalition. We assume each composite task gives equal revenue(i.e., each
composite task has equal priority) but coalitions have different costs of
performing different composite tasks.

50

Central Decision Making
We assume that there is a central unit(the auctioneer) which is able to collect
information from all the robots in the system and distribute tasks based on this
information.

Based on these definitions and assumptions we can design an algorithm that
fits our system. The goal is to create a coalition for each composite task which
minimizes the cost of performing all the composite tasks.

We design a centralized greedy coalition formation algorithm that chooses the
highest bidder in each iteration. In our case, each composite task is made up of
a set of sub-tasks which will be performed by a single robot. In each iteration of
the algorithm, the coalition-task pair with minimum cost will be chosen. The cost
of coalition-task pair is calculated by taking the sum of the highest bid on each
sub-task. After the best coalition-task pair is found the task is marked as sold and
the chosen robots are marked as unavailable. Then the second-best coalition-task
pair is calculated and so on until no more tasks can be allocated.

The algorithm uses instantaneous assignment as opposed to time-extended as-
signment which means that tasks are assigned to robots only when the robots are
available. If a robot is in the middle of a task while new tasks arrive from the
user the robot will not be allocated any of the new tasks before it has finished
the current task. An algorithm supporting time-extended assignment would plan
the execution of future tasks by creating a schedule for each robot if there are
more tasks than there are robots available. The pseudo-code for the algorithm is
provided below. The list of steps taken by the algorithm is as follows.

Algorithm Steps:

1. While there are more unallocated doable composite-tasks do the following.

2. For each composite-task do the following.

51

3. For each sub-task in the composite-task pick the robot with the highest bid
on the sub-task that is available. If the sum of bids of performing all the sub-
tasks in the composite task is higher than the current highest composite-task
bid mark this composite-task as new best.

4. Allocated the group of robots that bidded highest on the best composite-
task to the appropriate sub-tasks that each of them bidded on and mark the
composite-task as sold. If there are no more doable composite-tasks mark
“more doable tasks” as false.

Algorithm 1 Task Allocation Algorithm
1: procedure DISTRIBUTE_TASKS(Mission_table)
2: more doable tasks mdt← True
3: while mdt == True do
4: best composite task bct← None
5: best composite task value bctv← None
6: for all ct ∈ composite_tasks(Mission_table) do
7: if ct.is_Sold == False then
8: composite task is doable ctid← True
9: composite task value ctv← 0

10: for all st ∈ sub_tasks(ct) do
11: highest bidder hbr← None
12: highest bid hb← None
13: for all bid ∈ bids(st) do
14: if bid.value > hb then
15: if bid.robot.is_available == True then
16: hbr← bid.robot
17: hb← bid.value
18: end if
19: end if
20: end for
21: if hb 6= None then
22: st.robot← hbr
23: st.robot.is_available← False

52

24: ctv← ctv+hb
25: else
26: ctid← False
27: end if
28: end for
29: if (ctid == True) and (ctv > bctv or bct == None) then
30: bct← ct
31: bctv← ctv
32: end if
33: for all st ∈ sub_tasks(ct) do
34: st.robot← None
35: st.robot.is_available← True
36: end for
37: end if
38: end for
39: if bct 6= None then
40: bct.is_sold← True
41: for all st ∈ sub_tasks(bct) do
42: highest bidder hbr← None
43: highest bid hb← None
44: for all bid ∈ bids(st) do
45: if bid.value > hb then
46: if bid.robot.is_available == True then
47: hbr← bid.robot
48: hb← bid.value
49: end if
50: end if
51: end for
52: st.robot← hbr
53: st.robot.is_available← False
54: end for
55: else
56: mdt← False
57: end if
58: end while
59: end procedure

53

4.3.3 The Cost Function

As the task allocation algorithm is designed to optimize the utility of the system
we need to define utility. As we discussed back in chapter 3.3 utility can be
defined in multiple ways. The utility can be reward minus cost where each task
has a reward associated with completing the task and each robot has a cost of
performing the task. If the system is to support task prioritization then reward can
be used where the tasks with higher prioritization give a higher reward. Another
way of defining utility can be fitness minus cost where each robot has a fitness for
how well the robot can perform the task.

In our solution, we have chosen to only use the negative value of the cost of
performing the task. The cost is defined as the distance between the gps coordi-
nates(in latlng) of the robot and the task. A large distance between the robot and
the task will evaluate to a large negative value which is a low bid. If a robot is not
able to perform the task at all because it lacks the required actions it will not send
in a bid at all to the auctioneer.

Bid =

−cost If robot is able to perform the task

0 Else

In our solution, we have chosen to use distance to calculate the cost, but there
are many other ways it can be defined. It can be the distance to the task, time
used to complete the task, resource usage, etc. How to define cost often depends
on the task and robots used which makes it difficult to design one solution which
works well for all types of multi-robot systems. However, we have chosen to use
distance in our solution. Assuming all the robots have approximately equal speed
it also minimizes the time of the mission which is often the goal in most situations.
It does, however, require that each robot has a gps and knows its own location.

There are also multiple ways we can minimize the cost. We can minimize
the sum of the cost over all the robots. This would minimize the total distance

54

traveled by all robots if the distance is used as cost. We can minimize the cost
of the worst robot which leads to the solution with minimum timespan. We can
minimize the average cost per task which leads to each task being completed ap-
proximately equally fast. In [23] they refer to the different ways of optimizing as
the optimization objective and they explain the pros and cons with each in more
detail. In our solution we have chosen to minimize the total sum of cost over all
robots(minSum).

4.4 ROS Setup

4.4.1 Why use ROS?

The Framework is built on top of The Robot Operating System (ROS). It uti-
lizes the publish-subscribe pattern implemented by ROS which can be used to
send messages between processes(nodes) running on different machines over a
network. It also provides the user with many libraries and advanced robotics al-
gorithms that can be used to implement advanced robot behavior. In this chapter,
we explain how the nodes in the system are implemented and launched and how
communication between them is achieved. We also explain how ROS libraries
and algorithms can be used to implement different actions.

4.4.2 A Publish-Subscribe Pattern

ROS implements a publish-subscribe service. This fits our auction-based archi-
tecture where we have one auctioneer and multiple bidders sending messages in a
one-to-many fashion. In ROS you often have many nodes running on each robot
which sends messages between each other over different topics. This makes the
different components of the system loosely coupled and results in a component-
based architecture.

55

When using a publish-subscribe pattern we need a broker to organize the topics
and messages between publishers and subscribers. In ROS the broker is referred
to as the ROS master. The ROS master runs as a ROS node and is the first node
which needs to be launched as all other nodes won’t start running before they have
registered with the master.

As described on the official ROS page the ROS Master provides naming and
registration services to the rest of the nodes in the ROS system. It tracks publishers
and subscribers to topics as well as services. The role of the Master is to enable
individual ROS nodes to locate one another. Once these nodes have located each
other they communicate with each other peer-to-peer [39]. This means that all the
messages between the different publishers and subscribers do not go through the
master, but directly between the nodes in a peer-to-peer fashion. The nodes only
connect to the master to get the addresses of all the publishers for the topics they
are subscribing on.

In our system the first robot that connects to the server will be told to startup
a new ROS master node. The server will store the ip address of the robot running
the master. When a new robot connects to the system it will get the ip address
of the robot running the master node from the server. The robot can then set the
“ROS_MASTER_URI” variable which is all that is required by ROS before the
nodes on the robot can start communicating with the master node and find all the
other nodes in the network.

Figure 4.6 illustrates the nodes on each robot in the system at and after startup.
Once a robot has the ip address of the robot running the master node all the nodes
on the robot will launch and connect to the master node where they will get the
address of all the nodes publishing data on topics they are interested in. After that,
the nodes will only send messages to each other peer-to-peer and not through the
master node.

In ROS, standard names are often used on topics. A node that is reading laser
data from a laser scanner publishes this data on a topic called /scan. Other nodes
that use laser data to let’s say build a map of the robot’s environment expect laser

56

(a) Nodes at Startup (b) Nodes after Startup

Figure 4.6: ROS Nodes at and after Startup.

data to be published on /scan. These nodes are often developed by others and
are available through the ROS package repository. So to avoid name crashing of
topics the framework takes care of remapping the topics using namespaces for
each robot. This is done by the generator when generating the launcher file. This
way we avoid nodes picking up sensor data from other robots and nodes will only
communicate with other nodes on the same robot.

The only node not running in a namespace is the node containing the task
allocation module. This node contains the simple action implementations and the
bidder module which contains all the logic to bid on tasks and start executing
actions. The leader robot will additionally run a sub-module called the auctioneer
module. Messages will be sent between the auctioneer and all the bidder nodes
running on other robots. The messages sent between the auctioneer and bidders
are in the form of json objects containing mission information, task bids, which
robot won which task, task execution status and so on.

57

4.4.3 Launching The ROS Nodes

A launch file is what is commonly used in ROS to startup all the nodes in a ROS
application. Our generator creates a launch file for each robot that needs to be
deployed on the robot together with all the nodes. Figure 4.7 illustrates a shorted
down launch file. Here three nodes are launched. One called “odometry_source”
which is a node typically written by the user that publishes the position and ori-
entation of the robot based on sensors like wheel encoders. This node is different
for each robot based on the robots wheel configuration which is why it has to be
provided by the user in the robot model.

The other node in the figure is called “move_base” and is available through the
ROS package repository. This node contains multiple advanced algorithms used
for navigation. The node works by subscribing to odometry and laser data from
other nodes, running the data through path planning algorithms and publishing
movement commands. This way the node can be used to navigate the robot to a
goal location.

The last node in the figure is the task allocation module which contains logic
for task distribution, bidding, and running actions. This node is created by the
generator. It is not launched in a namespace so the node can communicate with
all other nodes running the task allocation module on other robots. Nodes with
the package name “multi_robot_simulation” are the ones provided by the user or
created by the generator while other nodes are provided through existing ROS
packages.

Only a part of a launch file is shown here. Typically there are many nodes
running on one robot. Nodes that read laser data, odometry data, path planning
nodes, nodes controlling the motors and different actuators and so on. Depending
on the complexity of the robot and the number of sensors and actuators a robot
may run tens of nodes.

The Launch file does not only contain information about namespaces, name,
and location of nodes, but also the location of parameters. The parameters for the
robot provided by the user is stored in yaml files by the generator. Using yaml files

58

Figure 4.7: Example Launch File Created by the Generator.

is the standard way of storing parameters in ROS. When the launch file is executed
ROS fetches the parameters and stores them on what is called the parameter server
which is managed by the ROS master. Here all the parameters can be dynamically
accessed by all the nodes in the system and used to optimize the behavior of the
robot.

4.4.4 Using ROS Stacks and Algorithms

ROS is not only used for the communication between the robots and to achieve a
component-based architecture, but also to provide the user with tools and libraries
which can be used to implement the robot’s actions. ROS provides tools for vi-
sualization, simulation, debugging, and monitoring of topics and messages sent
between nodes.

ROS also provides multiple stacks(collection of packages) that the user can
use to implement the different actions. Some example stacks are the navigation
stack and Movelt. The navigation stack consists of many nodes working together
to achieve navigation. The stack can be called like a service from a simple action
to move the robot to a goal position. This way the stack can be used to implement

59

a “goTo” action that moves the robot to a location on the map or to an object.
Similarly, Movelt is a stack used for arm manipulation and can move a robot arm
to a goal location and can also be invoked like a service. This stack can be used
to implement actions where the robot interacts with objects.

To sum up, ROS is used to achieve a publish-subscribe based communication
system between the robots that fit our auction-based architecture. It also provides
the user with tools, libraries, and algorithms to help implement different actions.
The implementation of advanced generic actions is the key to achieve reusable
components that can be used as building blocks to define big complex tasks. Ac-
tions like “move forward” and “raise arm” are too simple and rarely used to define
commonly required tasks. While actions like “move to ball” and “defend goal”
are too specific and cannot be reused easily. The framework works best when
we have generic and relatively advanced actions available like “move to (object)”
which can be reused to define many different tasks. The framework is built on
top of ROS as ROS libraries and stacks make it easier to implement these actions.
The framework could have been built on top of other popular middlewares such as
Orocos [30] or Miro [31], but ROS was chosen as it is currently one of the most
popular ones.

4.5 The Web Interface

4.5.1 Why Use a Web Interface?

The web interface is the last component of the framework. The web interface
allows the user to define a mission from the set of available tasks. The web inter-
face can also be used to monitor the mission and the robots. From the conducted
literature review it seems like there are few solutions using a web interface. [S1]
and [S2] were the only other solutions using a web interface, and the solutions
were mainly targeting aerial vehicles. Most other solutions let the user define a

60

graphical model of the system often in the form of a state machine representing
the different states the robots can be in and the conditions for when the robots
should transitions from one state to another. The state can be “chase ball” or “de-
fend goal” and are usually provided by the user similar to what we have defined as
simple actions. However in most other solutions if you want the robots to perform
another activity then they are currently doing you have to redesign the model,
generate new application code and deploy the new code on the robots. The robots
also have to be placed at the right location like a football field before starting the
system.

In our proposed solution we try to avoid the need for redeployment by using
the web interface. Definitions of the tasks are stored in the web interface. The
robots do not possess any application logic only the implementation of reusable
actions. The definition of a task is sent to the robot from the web interface at
runtime when the user wants the task performed. The task allocation module
checks whether the robot can perform the task based on the task definition and
what actions the robot has available, and it takes care of executing the actions.

This way the robots can perform one activity like playing ball one day and
another activity the next day without any redeployment. New tasks can be added
and old tasks redefined without any redeployment or without even restarting the
system. The web interface allows you to control what tasks or activities the robots
should perform at a given time amongst all the tasks they are able to perform. By
using a web interface with a map the solution also works better for systems where
you have multiple teams of robots over different locations.

The problem however with using maps for ground robots is that it is difficult
to navigate robots outdoor over large distances. Our solution requires the robots to
have a gps and a “go to” action which lets the robot navigate to a global position
on the map. This is required or else it is not possible to define different tasks at
different locations, and a cost function based on distance is not possible.

61

4.5.2 Leaflet

The web interface provides the user with a satellite map over the robot’s location.
The map is loaded using Leaflet, an open-source javascript library for interactive
maps [40]. Leaflet lets us load maps from different providers. In our case, we use
a satellite map from Esri. Leaflet maps are also highly customizable and allow us
to place markers at different locations. Figure 4.8 shows a screenshot of the web
interface.

At the right side, you have all the defined composite tasks from the task model.
After you have placed some tasks at different locations you can start the mission.
The tasks are sent to the server and then to the robots and the bidding process
starts. The task allocation module takes care of distributing the tasks only to
robots that have all the required actions to perform the task. The user only decides
what task should be performed and where, not what sub-tasks and actions they are
made up of as this is defined in the task model.

An example composite task could be to play ball at a football field. Another
could be to paint a house at some location. Two teams of robots would be created
and they would start navigating to the target location. Each robot in the teams
would then start performing their sub-tasks. The sub-task might be catch ball,
defend goal, measure house, paint wall, etc. All based on how the composite
tasks are defined.

The web interface is partly based on a previous project where a multi-robot
mission planner was designed [41]. The mission planner could be used on vehicles
running an autopilot software called Ardupilot. And the vehicle could mainly be
used to fly from one point to another and to search an area. In that solution, the
vehicles are restricted to those who can run the autopilot software. And only three
types of tasks were supported. While in our solution there is more focus on the
ability to add any type of robot and define any type of task.

62

Figure 4.8: The Web Interface.

63

Chapter 5

Evaluation

5.1 Evaluation Method

To evaluate the developed framework we use simulation software. Performing
simulation is one of the most common methods to use for evaluation in robotics
as it can be quite expensive and time consuming to use real robots. Using sim-
ulation software greatly reduces the time and cost of testing the solution and its
viability. While the use of simulation has many benefits it has some drawbacks
also. Simulation software may not capture all external factors which can affect
the behavior of the robots in the real world. Therefore there is no guarantee that
the robots will act exactly the same in the real world as in the simulator. In our
case, the communication between the robots is difficult to validate using simula-
tion since the simulator runs on a single computer. To deal with this the framework
will additionally be tested between multiple distributed machines.

Simulation software is used to perform functional testing and to create a sce-
nario that demonstrates the usage of the framework. The simulation software that
is used is called Gazebo. Gazebo is very popular to use together with ROS. In [42]
they performed a survey on different simulation software for robotics. The survey
showed that Gazebo is the most popular simulator. It can be integrated with mul-
tiple different physics engines but default uses the Open Dynamic Engine (ODE).

64

It also supports multi-robot simulations and the use of ROS messages and services
to control the simulated robots.

5.2 Simulation Setup

To quickly set up a simulation environment we use Gazebos model repository.
This gives us access to ready to use models of various robots and objects, saving us
a lot of time defining the physical and visual properties of the robots. A screenshot
of the simulated world can be seen in 5.1. It contains 4 robots(one turtlebot, one
pioneer 3at, and two youbots) and a football field with some objects. The robots
have simulated sensors like laser scanners which makes them able to detect and
navigate around objects in the simulated world like they would in the real world.

Gazebo allows us to control the robots directly by using the ROS messages
received from the different ROS nodes running in the system. This allows us to
implement the control of the robots much faster than on a real system. The devel-
oped framework is also heavily dependant on gps data as this is used to distribute
tasks and to show the position of the robots in the web interface. To solve this the
coordinates of the simulator are mapped to real-world gps coordinates by mapping
the center of the football field in the simulator to the center of a football field in
the real world showed in figure 5.1.

5.3 Scenario

To demonstrate the usage and utility of the framework a scenario is created using
the simulated environment. Let’s say we want two of the robots to entertain the
humans on the side of the field and two robots to play ball and do a penalty shot.
The process is as follows. We start by creating a new Eclipse project where we add
the tdl plugin found in the Github repository of the project [36]. We then create

65

Figure 5.1: Gazebo Simulator Setup with 4 Robots.

a file with the extension tdl for each of the robots. In these files, each action that
the robots are able to perform is implemented together with any necessary ROS
nodes and parameters. These files can get quite big depending on what actions
are implemented so they are not shown here. A full version of each robot file can
be found at the Github repository under multi-robot-simulation/robots [36]. We
implement the following actions for each robot:

• goTo(lat, lng)

• moveForward(time)

• moveBackwards(time)

• turnLeft(degrees)(time)

• turnRight(degrees)

• moveToGoal()

• moveToBall()

66

Figure 5.2: Generated Files.

• kickBall()

Some shortcuts are used when implementing the actions. Like the action
“moveToBall” teleports the robot to the ball as an actual implementation would
require object detection and fine-tuned navigation. Shortcuts are used to quickly
get a set of sample actions we can use for demonstration and testing. After the
actions are implemented the generator will create a folder for each robot contain-
ing all the generated files [see figure 5.2]. On a real system, these files would
need to be deployed on the robots, but when we use a simulator we can just move
them into a ROS project. Together with the generated files is a launch file used
to startup each robot. This will start up the ROS nodes and the task allocation
module which again will connect to the server and then the ROS master and start
to listen for tasks to bid on.

After the robots have been added we can define the tasks we want the robots
to perform. We create a file called tasks.tdl [see figure 5.3]. Here we define the
tasks by using simple actions. After the file is saved an index file is generated.
This file opens the web interface and connects to the server. Figure 5.4 shows a

67

Figure 5.3: The Task Definitions.

screenshot of the simulator with the web interface on the left side. Through the
web interface, we can define a mission by placing tasks on the different locations
on the map. The robots will divide the tasks amongst themselves and form groups
and then start executing their actions.

The simulator is mainly used to perform functional testing of the framework
and its components. This lets us validate that the framework meets all of its func-
tional requirements and that it works as intended. For example that the correct
actions are performed as defined in the task model, that robots are only allocated
tasks that they have the ability to perform, that a composite task is distributed to
the closest group of robots, and so on.

68

Figure 5.4: Two Teams of Robots Performing Different Tasks.

5.4 Testing on Distributed Machines

In addition to the functional testing with the simulator, the framework is also tested
on real distributed machines. This allows us to test that the communication works
as intended and that it works on a real system and not only in the simulator. One
robot and two computers are used for the testing. The robot used is a raspberry pi
based rover running ROS while the computers are using virtual machines to run
ROS. We add the robot and computers by creating a tdl file with some actions.
The rover has some moving action while the computers have actions that prints
text to the console. The rover and computers are also publishing fake gps data as
they don’t have a GPS. The setup is shown in figure 5.5. In our case the laptop to
the left is running both the server and web interface and is also the team leader,
but either of them could have been the leader. We can then perform testing and
validate that the framework works on a real distributed system.

69

Figure 5.5: Real System Setup.

5.5 Additional Evaluation

So far we have mainly performed functional testing of the framework using simu-
lation software. This includes testing that the developed language and its generator
produces the correct code and that the task allocation module and the communica-
tion between the robots works as intended, and that the framework meets all of its
functional requirements. What has not been evaluated is the usability of the lan-
guage. One of the main purposes of a domain-specific language is that it should
simplify the development of a particular application in a particular domain. Since
the framework takes care of the communication setup and the task allocation be-
tween the robots and also provides the user with a ready to use web interface,
the design and implementation of a specific multi-robot application should be a
bit faster and easier when using the framework rather than doing it from scratch.
This is however not validated.

The usability of the language can be evaluated by having test subjects first im-
plement a particular multi-robot application without using the language and then
by using the language, and then comparing the time or lines of codes used. The
problem, however, is that while the language is designed to simplify the develop-
ment process it is still quite difficult and time-consuming to implement the actions

70

for the robots and develop a proper multi-robot application. This requires that the
test subjects need to know robotics and preferably ROS. This makes it difficult
to find participants and also it would be very time consuming for the participant
to test it properly as it is quite complicated to develop any type of multi-robot
application. The evaluation of the usability of the language is left for future work.

Another possibility for future evaluation could be to test the system with a
higher number of robots. For now, the simulator is using very few robots as each
robot takes a lot of computer resources. Future evaluation could include testing
the system using cloud services to be able to run many more robots at once and to
test how the system performs with many teams of robots.

71

Chapter 6

Discussion

In this thesis, we have looked at how model-driven software engineering can be
applied in the development of heterogeneous multi-robot systems. In such a sys-
tem you may have different robots with different capabilities able to perform dif-
ferent tasks. By working together the robots are able to perform more complex
tasks than a single robot can perform alone. In such a system there are additional
challenges that need to be solved. Like how tasks should be distributed amongst
the robots and the fact that different robots often are built from different hardware
which means that they need different code to perform the same action.

To explore how model-driven software engineering can be applied in the de-
velopment of heterogeneous multi-robot systems the following research questions
were formulated.

Main research question of the thesis:
How can model-driven software engineering be used to simplify the development

of heterogeneous multi-robot systems?

Sub-questions:
How is model-driven software engineering applied to the development of

heterogeneous multi-robot systems in today’s research?

72

How can efficient and appropriate task allocation be achieved in different

heterogeneous multi-robot systems?

To answer the first sub-question a systematic literature review was conducted.
The conclusion of the review was that most of the studies focused on the modelling
of the behavior of the robots through the use of textual DSLs with graphical tools
enabling the user to create finite state machines and statecharts describing the
robot’s behavior on a high-level [S7], [S8], [S9], [S10]. Low-level control code
for each robot is often assumed to be provided by the user beforehand. There
were also some solutions defining textual DSLs to specify the behavior of the
robots [S6]. Only two studies were concerned with modelling the communication
of the robots rather than the behavior [S11], [S12]. The communication is rarely
addressed and are often taken care of by a middleware. [S1] and [S2] were the
only studies proposing the use of a user interface with a map to define a mission
for a team of robots. The user interface was designed for aerial vehicles, however.

In this thesis, we have proposed a framework for modelling the behavior of
the robots by using simple actions as building blocks to define tasks that involves
multiple robots. As opposed to other solutions our solution allows the user to
define different missions without the need for redesigning the model, regenerate
code and redeploy the new code on all the robots. The user can also add new
tasks and change the definition of existing tasks without the need for redeploy-
ment. The proposed framework consisting of 4 components. A domain-specific
language used to model both the robots and the tasks. A task allocation module
used to distribute the tasks amongst the robots. The robot operating system used
for communication between the robots and to achieve advanced navigation and
robotic behavior. And a web interface used to create missions for teams of robots.

The developed domain-specific language called Task Definition Language al-
lows the user to create a model of the robots and a model of the tasks that the
robots are going to perform. The task model uses simple actions as reusable
building blocks allowing the user to define many different tasks using the same

73

set of actions. While the task model is platform-independent and highly reusable,
the robot model is platform-specific and can contain a lot of low-level control
code which implements the different actions that a specific type of robot can per-
form. This can be difficult and time-consuming. Unfortunately, there is no way
around this problem if we want the framework to support any type of custom-built
robot. As different robots often need different code to perform the same action,
the implementation of the actions must be provided by the user for each robot.

One of the main ideas of the thesis is that there exists a set of core actions
that are often used in most physical tasks. Even if there exists a huge number
of more random like actions like “moveForward”, “turnAround”, “raiseArm” and
so on, these are too simple and rarely used to define useful tasks. On the other
hand actions like “locate(“object”)”, “moveTo(“object”)”, “pickUp(“object”)” are
actions that are used in a huge number of different tasks. So the theory is that if
the user is able to implement a few of these core actions he has the possibility to
reuse them to define a large number of different tasks.

This is however difficult to validate as these types of actions are difficult to
implement. The ability to locate specific objects requires the robot to have a depth
camera with image recognition. While the ability to move to an object or pick
up an object can be implemented using ROS libraries, like the navigation stack or
Movelt.

To answer the second sub-question we explored how task allocation can be
achieved in such a system. As we saw in [2], [20] and [23] there are multiple
variations of this problem. As we are mainly concerned with systems where you
have tasks that require multiple robots to be achieved we can classify our problem
as an ST-MR-IA problem, or a coalition formation problem. Unfortunately, this
problem again has many variations based on how we define our system, what
assumptions are made, if task constraints are used, and so on. The problem space
is large as the solution depends on many variables. This makes it difficult to design
an algorithm that fits for all types of multi-robot systems.

In this thesis, we have proposed an algorithm that fits our system. We have

74

designed an auction-based centralized greedy coalition formation algorithm that
chooses the highest bidder in each iteration. In our solution, the bid on a specific
task is based on the distance between the robot and the task.

We have also explored how the Robot Operating System can be utilized in the
development of a heterogeneous multi-robot system. The developed framework
uses the publish-subscribe pattern implemented by ROS to achieve the one-to-
many communication between the auctioneer robot and the bidder robots. We
have also shown how ROS can be used to implement a “goTo” action for the
robots. ROS can also potentially be used to implement additional actions.

We have also shown how a web interface with a map can be used to define a
mission at runtime. The use of a map to specify and monitor a mission is com-
monly used in drone systems. In [S1] and [S2] they also used a web interface to
define missions for aerial vehicles. In this thesis, however, we propose the use of
a web interface to define a mission for any type of robot. The use of a web inter-
face allows us to define multiple different missions without having to redesign the
model and redeploy the new generated code to the robots. This way the robots can
perform one task one day and another task the next day without any redeployment.
This is possible because the robots do not possess the definitions of the tasks, only
the implementation of the actions they are able to perform. The definition of a task
is sent to the robot when the user starts a new mission. New tasks can be added
to the task model or old tasks can be modified. Then when the newly generated
index file is opened it will connect to the server and the new tasks with the new
definitions will be available.

This means that our system is good for long missions where you might need to
add new robots or new tasks dynamically. By using a map our system is also good
for when you have multiple teams of robots over different geological locations.
The drawback, however, is that the robots need to be able to navigate outdoor
over large distances which is difficult to achieve with today’s robots.

We evaluated our proposed framework by using simulation software. We cre-
ated a simple scenario where two teams of robots performed different tasks to

75

demonstrate the utility of the framework. However, the implemented actions were
very simple. To really validate whether a sequence of simple actions can be used
to perform complex tasks a much more complicated scenario with proper actions
will need to be tested.

76

Chapter 7

Conclusion

In this thesis, we have explored how model-driven software engineering can be
applied in the development of heterogeneous multi-robot systems. We have pro-
posed a framework where simple actions are used as building blocks to define
larger tasks that are performed by multiple robots. The idea is to use simple ac-
tions as reusable components to be able to define many different tasks.

The biggest problem in a heterogeneous multi-robot system is the robot het-
erogeneity. As different robots need different code to perform the same action the
user must provide an implementation of each action for each robot. In the future,
there might be general-purpose robots with high-level libraries which allows you
to perform different actions. This might solve the problem of having to provide
an implementation of each action for each robot. The ability to support any type
of custom-built robots may not be necessary and is difficult to achieve.

In this thesis, we have also looked at how to perform task allocation in such a
system and we have proposed an auction-based centralized greedy coalition for-
mation algorithm that chooses the highest bidder in each iteration. Where the bid
on a specific task is based on the distance between the robot and the task. We have
also looked at how the robot operating system can be utilized in such a system for
the communication between the robots and the implementation of different ac-
tions. We have also shown how a web interface can be used to define a mission

77

for a team of robots at runtime. By sending the task definitions to the robots at
runtime we remove the need for redeployment each time we want the robots to
perform a different activity.

For future work, more research should be done on how to easier be able to
add new robots and their action implementations as this is the main problem of
the framework. The language can also be extended to support nested composite
tasks. Also, the possibility to generate tasks from a set of available actions can be
explored.

The task allocation algorithm can also be improved to support additional fea-
tures such as task constraints. The ability to define task requirements at runtime
could also be useful. For example, the task of painting a house that is 3 meters
tall requires a robot with a minimum of 3 meters reaching distance. The height of
the house might not be known at design time so the user should have the ability to
set requirements for a specific instance of the task through the web interface. The
task should then only be allocated to a robot that meets the requirements.

The web interface can also be improved in many ways. The user should be
able to have more control over the robots and receive more information about the
mission status. The user should also have the ability to provide task inputs. For
example, if the task is to paint a house the robots need to know which color they
should use. Often in complex tasks, there are a lot of choices to make which
cannot be specified beforehand. This information could be provided through the
web interface.

To sum up, there is a lot of useful functionality which can be provided through
a web interface in such a system that gives the user more control over the robots
and their actions. In this thesis, we merely provide the bare bones of a proper
web interface. There is also a lot of further research which can be done on how
to apply model-driven software engineering in the development of heterogeneous
multi-robot systems.

78

Bibliography

[1] “Robocup.” https://www.sporttechie.com/
robocup-robots-practicing-2050-human-vs-robot-soccer-tournament/.
Accessed: 2019-05-22.

[2] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” I. J. Robotics Res., vol. 23, pp. 939–954,
2004.

[3] A. Hevner, A. R, S. March, S. T, P. , J. Park, R. , and S. , “Design science in
information systems research,” Management Information Systems Quarterly,
vol. 28, pp. 75–, 03 2004.

[4] A. Dahanayake and B. Thalheim, “Enriching conceptual modelling practices
through design science,” Lecture Notes in Business Information Processing,
vol. 81, pp. 497–510, 01 2011.

[5] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[6] Z. Stapic, E. García López, A. García, C. Luis De, M. Ortega, and
V. Strahonja, “Performing systematic literature review in software
engineering,” In CECIIS 2012-23rd International Conference, 2012.

[7] G. L. Casalaro and G. Cattivera, “Model-driven engineering for mobile robot
systems: A systematic mapping study,” Master’s thesis, Malardalen
University, Vasteras, Sweden, 2015.

79

https://www.sporttechie.com/robocup-robots-practicing-2050-human-vs-robot-soccer-tournament/
https://www.sporttechie.com/robocup-robots-practicing-2050-human-vs-robot-soccer-tournament/

[8] B. Hailpern and P. L. Tarr, “Model-driven development: The good, the bad,
and the ugly,” IBM Systems Journal, vol. 45, pp. 451–462, 2006.

[9] V. García Díaz, E. Núñez Valdez, J. Espada, B. Pelayo García-Bustelo,
J. Cueva Lovelle, and C. Marín, “A brief introduction to model-driven
engineering,” vol. 18, pp. 127–142, 04 2014.

[10] J. D. HAAN, “Roles in model driven engineering,” 2009.

[11] S. Roubi, M. Erramdani, and S. Mbarki, “A model driven approach for
generating graphical user interface for mvc rich internet application,”
Computer and Information Science, vol. 9, 04 2016.

[12] R. Picek and V. Strahonja, “Model driven development-future or failure of
software development?,” Proc. 18th Int’l Conf. Information and Intelligent

Systems, pp. 407–413, 01 2007.

[13] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical
assessment of MDE in industry,” p. 471, 2011.

[14] C. Pons, R. Giandini, and G. Arévalo, “A systematic review of applying
modern software engineering techniques to developing robotic systems,”
Ingeniería e Investigación, vol. 32, pp. 58–63, 04 2012.

[15] A. Ahmad and M. A. Babar, “Software architectures for robotics systems:
A systematic mapping study,” Journal of Systems and Software, vol. 122,
pp. 16–39, 2016.

[16] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling, and

Programming for Autonomous Robots, vol. 8810, 10 2014.

[17] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a
domain-specific language to design, simulate and deploy robotic
applications,” in SIMPAR, 2012.

80

[18] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. K.
Kraetzschmar, L. Gherardi, and D. Brugali, “The brics component model: a
model-based development paradigm for complex robotics software systems,”
in SAC, 2013.

[19] C. Schlegel, T. Hassler, A. Lotz, and A. Steck, “Robotic software systems:
From code-driven to model-driven designs,” in 2009 International

Conference on Advanced Robotics, pp. 1–8, June 2009.

[20] A. M. Khamis, A. Hussein, and A. M. Elmogy, “Multi-robot task
allocation: A review of the state-of-the-art,” in Advances in Social Media

Analysis, 2015.

[21] H. Kuhn, “The hungarian method for the assignment problem,” Naval Res.

Logist. Quart., vol. 2, pp. 83–98, 01 1955.

[22] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of tasks
with temporal and precedence constraints to a team of robots,” in 2016 IEEE

International Conference on Simulation, Modeling, and Programming for

Autonomous Robots (SIMPAR), pp. 197–202, Dec 2016.

[23] A. R. Mosteo and L. Montano, “A survey of multi-robot task allocation,”
2010.

[24] K. Hoffman and M. Padberg, “Solving airline crew scheduling problems by
branch-and-cut,” Management Science, vol. 39, pp. 657–682, 06 1993.

[25] A. Atamturk, G. Nemhauser, and M. W. P. Savelsbergh, “A combined
lagrangian, linear programming and implication heuristic for large-scale set
partitioning problems,” Journal of Heuristics, vol. 1, pp. 247–259, 1995.

[26] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
pp. 1257–1270, July 2006.

81

[27] “What is ros?.” http://wiki.ros.org/ROS/Introduction. Accessed:
2019-05-06.

[28] “Setup and configuration of the navigation stack on a robot.”
http://wiki.ros.org/navigation/Tutorials/RobotSetup.
Accessed: 2019-05-06.

[29] R. B Rusu, A. Maldonado, M. Beetz, M. Kranz, L. Mösenlechner,
P. Holleis, and A. Schmidt, “Player/stage as middleware for ubiquitous
computing,” Proceedings of the 8th Annual Conference on Ubiquitous

Computing (Ubicomp 2006), Orange County California, September 17-21,

2006, 05 2019.

[30] H. Bruyninckx, “Open robot control software: the orocos project,” vol. 3,
pp. 2523 – 2528 vol.3, 02 2001.

[31] H. Utz, S. Sablatnög, S. Enderle, and G. K. Kraetzschmar, “Miro -
middleware for mobile robot applications,” IEEE Trans. Robotics and

Automation, vol. 18, pp. 493–497, 2002.

[32] A. Y. Elkady and T. M. Sobh, “Robotics middleware: A comprehensive
literature survey and attribute-based bibliography,” J. Robotics, vol. 2012,
pp. 959013:1–959013:15, 2012.

[33] “Language engineering for everyone!.”
https://www.eclipse.org/Xtext/. Accessed: 2019-05-06.

[34] “Eclipse modeling framework (emf).”
https://www.eclipse.org/modeling/emf/. Accessed: 2019-05-06.

[35] D. Djuric, D. Gasevic, and V. Devedzic, “The tao of modeling spaces,”
Journal of Object Technology, vol. 5, pp. 125–147, 01 2006.

82

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/navigation/Tutorials/RobotSetup
https://www.eclipse.org/Xtext/
https://www.eclipse.org/modeling/emf/

[36] “Task-definition-language.”
https://github.com/95danlos/Task-Definition-Language.
Accessed: 2019-05-31.

[37] “Kuka youbot kinematics, dynamics and 3d model.”
http://www.youbot-store.com/developers/

kuka-youbot-kinematics-dynamics-and-3d-model-81. Accessed:
2019-05-06.

[38] H. C. Lau, “Task allocation via multi-agent coalition formation: Taxonomy,
algorithms and complexity,” in ICTAI, 2003.

[39] “Ros master.” http://wiki.ros.org/Master. Accessed: 2019-05-06.

[40] “Leaflet.” https://leafletjs.com/. Accessed: 2019-05-25.

[41] “Multi-robot-mission-planner.”
https://github.com/95danlos/Multi-Robot-Mission-Planner.
Accessed: 2019-05-06.

[42] S. Ivaldi, V. Padois, and F. Nori, “Tools for dynamics simulation of robots:
a survey based on user feedback,” CoRR, vol. abs/1402.7050, 2014.

83

https://github.com/95danlos/Task-Definition-Language
http://www.youbot-store.com/developers/kuka-youbot-kinematics-dynamics-and-3d-model-81
http://www.youbot-store.com/developers/kuka-youbot-kinematics-dynamics-and-3d-model-81
http://wiki.ros.org/Master
https://leafletjs.com/
https://github.com/95danlos/Multi-Robot-Mission-Planner

Primary Studies

[S1] D. D. Ruscio, I. Malavolta, and P. Pelliccione, “A family of
domain-specific languages for specifying civilian missions of multi-robot
systems,” in MORSE@STAF, 2014.

[S2] F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adopting mde
for specifying and executing civilian missions of mobile multi-robot
systems,” IEEE Access, vol. 4, pp. 6451–6466, 2016.

[S3] S. Dragule, B. Meyers, and P. Pelliccione, “A generated property
specification language for resilient multirobot missions,” in SERENE,
2017.

[S4] D. Ouellet, S. N. Givigi, and A. J. G. Beaulieu, “Control of swarms of
autonomous robots using model driven development - a state-based
approach,” 2011 IEEE International Systems Conference, pp. 512–519,
2011.

[S5] A. J. G. Beaulieu, S. N. Givigi, D. Ouellet, and J. T. Turner,
“Model-driven development architectures to solve complex autonomous
robotics problems,” IEEE Systems Journal, vol. 12, pp. 1404–1413, 2018.

[S6] C. Pinciroli and G. Beltrame, “Buzz: An extensible programming
language for heterogeneous swarm robotics,” pp. 3794–3800, 10 2016.

[S7] T. Amma, P. Baer, K. Baumgart, P. Burghardt, K. Geihs, J. Henze,
S. Opfer, S. Niemczyk, R. Reichle, D. Saur, et al., “Carpe noctem 2009,”

84

[S8] H. Skubch, M. Wagner, R. Reichle, and K. Geihs, “A modelling language
for cooperative plans in highly dynamic domains,” Mechatronics, vol. 21,
pp. 423–433, 03 2011.

[S9] A. Paraschos, N. I. Spanoudakis, and M. G. Lagoudakis, “Model-driven
behavior specification for robotic teams,” in AAMAS, 2012.

[S10] E. M. Martinez, A. F. Caballero, and J. M. G. Noheda, “Model-driven
engineering techniques for the development of multi-agent systems,”
2012.

[S11] P. A. Baer, R. Reichle, M. Zapf, T. Weise, and K. Geihs, “A generative
approach to the development of autonomous robot software,” in Fourth

IEEE International Workshop on Engineering of Autonomic and

Autonomous Systems (EASe’07), pp. 43–52, March 2007.

[S12] P. A. Baer, R. Reichle, and K. Geihs, “The spica development framework
– model-driven software development for autonomous mobile robots,” in
Intelligent Autonomous Systems 10 – IAS-10, pp. 211–220, jul 2008.

85

Appendices

86

Appendix A

Meta Model

87

Figure A.1: Task Definition Language Meta Model Large.

88

Appendix B

Task Definition Language Grammar

grammar org.xtext.tdl.Tdl with org.eclipse.xtext.common.Terminals

generate tdl "http :// www.xtext.org/tdl/Tdl"

Model:
compositeTasks += CompositeTask*
robots += Robot*

;

CompositeTask:
"compositeTask" name=ID "(lat ,lng):"
BEGIN

tasks += Task*
END

;

Task:
"task" name=ID "():"
BEGIN

simpleActions += SimpleActionReference*
END

;

SimpleActionReference:
name=ID
(

"(" (("id="id=STRING","?)? ("sync("sync=INT")"?","?)? ("
after("after=STRING")"?","?)? ("args=("arguments +=

89

Argument*")"?","?)?) ("):" | ")):")
|

positional="(lat ,lng):"
|

"():"
)

;

Argument:
name=STRING ","?

;

Robot:
"robot" name=ID ":"
BEGIN

publishedData = PublishedData?
initializationModule = InitializationModule?
simpleActions += SimpleAction*
rosNodes += RosNode*

END
;

InitializationModule:
"setup:"
BEGIN

codeBlock = CodeBlock
END

;

SimpleAction:
"simpleAction" name=ID ("("(parameters += Parameter *)"):" |

positional="(lat ,lng):" | "():")
BEGIN

codeBlock = CodeBlock
END

;

Parameter:
name=ID ","?

;

RosNode:
(
"rosNode" name=ID "():"
BEGIN

90

codeBlock = CodeBlock
END)
|
("rosNode" name=ID "(" nodeType=STRING "," nodeName=STRING (","

nodeArgs=STRING)? "):"
(
BEGIN

parameterList = ParameterList
END
)?
)

;

ParameterList:
"Parameters:"
BEGIN

codeBlock = CodeBlock
END

;

PublishedData:
"PublishedData:"
BEGIN

topics += Topic*
END

;

Topic:
name = ID ":" topic = STRING

;

CodeBlock hidden ():
(ID | WS | INT | STRING | ML_COMMENT | SL_COMMENT | ANY_OTHER | "(" | ")

" | "):" | "()" | ":" | "’" | "," | "))" | CodeBlock_2)*
;

CodeBlock_2 hidden ():
BEGIN

CodeBlock
END

;

terminal BEGIN: ’synthetic:BEGIN ’;
terminal END: ’synthetic:END’;

Listing B.1: Task Definition Language Grammar.

91

Appendix C

User Manual

Here we will explain how to setup the project in Eclipse, how to setup the
simulator, how to deploy on real robots, and how to setup the project for further
development. The project can be found at
https://github.com/95danlos/Task-Definition-Language.

Setup on simulator requires Linux with ROS installed. Setup on real robots
requires Linux with ROS installed on each robot and each robot must have a gps.

git clone https://github.com/95danlos/Task-Definition-Language.git

C.1 Eclipse Setup

Install Xtext and Xtend:

In the Eclipse menu bar click –> help –> Eclipse Marketplace and search for
Xtext and Xtend.

Add the Task-Definition-Language Plugin:

In the Eclipse menu bar click –> help –> install new software –> add –> local –>

92

https://github.com/95danlos/Task-Definition-Language

select the plugin folder in the cloned project, if the plugin is not listed uncheck
"Group item by category" –> install the plugin and restart Eclipse.

Create a new project:

In Eclipse click –> new project –> general –> project.

Create a new folder call it src, here you can add a file for each robot and one file
describing the tasks.

To add a new robot create a new file under src with the extension .tdl. Click yes
when asked to convert to Xtext project.

A robot file should contain an implementation of each simple action that the
robot is able to perform, and can also contain implementations of ROS nodes and
parameters. See the ROS tutorials for information on how to write ROS nodes
http://wiki.ros.org/ROS/Tutorials.

Create a new .tdl file and define each task that the robots should perform.

Example files for task definitions and simulated robots can be found under
multi-robot-simulation/robots.

C.2 Simulator Setup

Setup on simulator requires ROS. Follow the ROS setup tutorial at
http://wiki.ros.org/ROS/Installation.

Install the Gazebo simulator by following the steps at
http://gazebosim.org/tutorials?tut=ros_installing.

Move the gazebo models from
Task-Definition-Language/multi-robot-simulation/gazebo-models over to
~/.gazebo/models.

Create a catkin workspace by following the steps at
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment.

93

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/ROS/Installation
http://gazebosim.org/tutorials?tut=ros_installing
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

Create a new ROS package called multi-robot-simulation by following the steps
at http://wiki.ros.org/ROS/Tutorials/CreatingPackage.

Build the package by following the steps at
http://wiki.ros.org/ROS/Tutorials/BuildingPackages.

Copy the files from the folder called multi-robot-simulation in the cloned project
over to the newly created package.

Make the src files executable:

chmod +x -R ~/catkin_ws/src/multi-robot-simulation/src

Install python websocket client:

pip install websocket_client

Start the server:

python ~/catkin_ws/src/multi-robot-simulation/server.py

Launch the simulation:

roslaunch multi-robot-simulation multi-robot-simulation.launch

Open the index file in ~/catkin_ws/src/multi-robot-simulation.

94

http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/BuildingPackages

Figure C.1: Gazebo Simulator Setup.

C.3 Setup on Real Robots

Setup on real robots requires all of the robots to have ROS installed. Follow the
ROS setup tutorial at http://wiki.ros.org/ROS/Installation.

Create a catkin workspace:
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment.

Create a new ROS package called multi-robot-simulation:
http://wiki.ros.org/ROS/Tutorials/CreatingPackage.

Build the package: http://wiki.ros.org/ROS/Tutorials/BuildingPackages.

Add a .tld file for each robot and one for the tasks as described under the Eclipse
Setup section above.

Change the SERVER_IP_ADDRESS variable in each generated setup file and in
each generated task allocation module file under src-gen to the ip address of the
machine that is going to run the server.

95

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/BuildingPackages

Move the src-gen folders for each robot to
~/catkin_ws/src/multi-robot-simulation/src on the appropriate robot.

Run the startup files on each robot, then start the server and open the index file.

C.4 Maintainer Setup

Import to Eclipse:

In Eclipse click –> File –> Import –> Existing Projects into Workspace –>
Browse –> select the Task-Definition-Language-Project folder.

Install Xtext and Xtend:

In the Eclipse menu bar click –> help –> Eclipse Marketplace and search for
Xtext and Xtend.

The project org.xtext.tdl contains six files used for development found under
src:

Tdl.xtext contains the grammar for the task definition language written in Xtext.

TdlGenerator.xtend contains the generator which is used to take information
from the robot and task files to create the index file for the web interface, and the
task allocation module, launch file, startup file, and ROS files for each robot.

HelperMethods.java contains methods used by the generator to format generated
files.

index.html contains the web interface and task definitions.

server.py connects the web interface with the robots and the robots with each
other.

task_allocation_module.py is used to distribute tasks amongst the robots and
execute actions.

96

	List of Figures
	Listings
	List of Tables
	Introduction
	Background
	Challenges
	Motivation
	Research Questions
	Method
	Thesis Outline

	Systematic Literature Review
	Introduction
	Previous Work
	The Need for a Review
	Review Protocol
	Review Questions
	Database Search
	Selection Criteria
	Data Extraction

	Results
	Discussion
	Conclusion

	Theoretical Background
	Overview
	Model-Driven Software Engineering
	What is Model-Driven Software Engineering?
	Model-Driven Architecture
	Pros and Cons of Using MDSE
	MDSE in Robotics
	Domain-Specific Languages for Robots
	How are the DSLs Developed?

	Multi-Robot Task Allocation
	The Multi-Robot Task Allocation Problem
	Problem Variations
	The ST-MR-IA Problem
	Cost Function
	Solution Architectures

	The Robot Operating System
	What is ROS?
	ROS Architecture
	Pros and Cons

	A Framework for Heterogeneous Multi-Robot Systems
	Framework Architecture
	The Task Definition Language
	How is the Language Developed?
	The Elements of the Language
	Robot Model
	Task Model
	The Generator

	The Task Allocation Module
	System Architecture
	The Task Allocation Algorithm
	The Cost Function

	ROS Setup
	Why use ROS?
	A Publish-Subscribe Pattern
	Launching The ROS Nodes
	Using ROS Stacks and Algorithms

	The Web Interface
	Why Use a Web Interface?
	Leaflet

	Evaluation
	Evaluation Method
	Simulation Setup
	Scenario
	Testing on Distributed Machines
	Additional Evaluation

	Discussion
	Conclusion
	Bibliography
	Primary Studies
	Appendices
	Meta Model
	Task Definition Language Grammar
	User Manual
	Eclipse Setup
	Simulator Setup
	Setup on Real Robots
	Maintainer Setup

