
A Domain-Specific Language for
the Development of Heterogeneous

Multi-Robot Systems

Daniel Steen Losvik

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Bergen University College

Department of Informatics,
University of Bergen

June 2019

Abstract

Robots are becoming more advanced each year and will increasingly become a
bigger part of our lives. This thesis explores how model-driven software engineer-
ing can be used in the development of heterogeneous multi-robot systems where
you have different robots with different capabilities. Multiple robots can achieve
more complex tasks that are impossible to achieve for a single robot alone. This
thesis proposes a framework where simple actions are used as building blocks
to define larger tasks that require multiple robots with different capabilities to
achieve. The thesis explores how task distribution can be performed in such a sys-
tem and how the robot operating system can be utilized. The thesis also explores
how a user interface can be used to define multiple different missions for a team
of heterogeneous robots without the need for redeployment on each robot.

Acknowledgements

I would like to thank my supervisor Prof. Adrian Rutle for his continuous support
throughout my work. His guidance and feedback have been invaluable. I would
also like to thank Prof. Rogardt Heldal for his teachings on research in software
engineering. Finally, I would like to thank my family for their support throughout
my study.

Contents

List of Figures vi

Listings vii

List of Tables viii

1 Introduction 1

1.1 Background . 1

1.2 Challenges . 3

1.3 Motivation . 3

1.4 Research Questions . 4

1.5 Method . 4

1.6 Thesis Outline . 6

2 Systematic Literature Review 7

2.1 Introduction . 7

2.2 Previous Work . 8

2.3 The Need for a Review . 9

2.4 Review Protocol . 10

2.4.1 Review Questions . 10

2.4.2 Database Search . 11

2.4.3 Selection Criteria . 11

2.4.4 Data Extraction . 12

i

2.5 Results . 13

2.6 Discussion . 13

2.7 Conclusion . 17

3 Theoretical Background 18

3.1 Overview . 18

3.2 Model-Driven Software Engineering 18

3.2.1 What is Model-Driven Software Engineering? 18

3.2.2 Model-Driven Architecture 19

3.2.3 Pros and Cons of Using MDSE 20

3.2.4 MDSE in Robotics . 22

3.2.5 Domain-Speci�c Languages for Robots 22

3.2.6 How are the DSLs Developed? 23

3.3 Multi-Robot Task Allocation . 24

3.3.1 The Multi-Robot Task Allocation Problem 24

3.3.2 Problem Variations . 24

3.3.3 The ST-MR-IA Problem 26

3.3.4 Cost Function . 27

3.3.5 Solution Architectures 28

3.4 The Robot Operating System . 29

3.4.1 What is ROS? . 29

3.4.2 ROS Architecture . 30

3.4.3 Pros and Cons . 31

4 A Framework for Heterogeneous Multi-Robot Systems 33

4.1 Framework Architecture . 33

4.2 The Task De�nition Language 35

4.2.1 How is the Language Developed? 35

4.2.2 The Elements of the Language 37

4.2.3 Robot Model . 39

4.2.4 Task Model . 43

ii

4.2.5 The Generator . 45

4.3 The Task Allocation Module . 47

4.3.1 System Architecture . 47

4.3.2 The Task Allocation Algorithm 49

4.3.3 The Cost Function . 54

4.4 ROS Setup . 55

4.4.1 Why use ROS? . 55

4.4.2 A Publish-Subscribe Pattern 55

4.4.3 Launching The ROS Nodes 58

4.4.4 Using ROS Stacks and Algorithms 59

4.5 The Web Interface . 60

4.5.1 Why Use a Web Interface? 60

4.5.2 Lea�et . 62

5 Evaluation 64

5.1 Evaluation Method . 64

5.2 Simulation Setup . 65

5.3 Scenario . 65

5.4 Testing on Distributed Machines 69

5.5 Additional Evaluation . 70

6 Discussion 72

7 Conclusion 77

Bibliography 78

Primary Studies 83

Appendices 86

A Meta Model 87

iii

B Task De�nition Language Grammar 89

C User Manual 92

C.1 Eclipse Setup . 92

C.2 Simulator Setup . 93

C.3 Setup on Real Robots . 95

C.4 Maintainer Setup . 96

iv

List of Figures

1.1 Robocup. The Robot Soccer World Cup 2

1.2 The Design Science Research Process 5

2.1 Syntax of the Search String from the Mapping Study 8

2.2 Syntax of the Search String used to �nd Similar Literature Reviews 10

2.3 Search String used to �nd Additional Papers Published after 2015 11

3.1 The Model-Driven Software Engineering Process 20

3.2 Levels of Abstraction in Model-Driven Architecture 21

3.3 Multi-Robot Task Allocation Schemes 25

3.4 Utility Function . 28

3.5 Auction-based Architecture . 29

3.6 Example ROS Application. The Navigation Stack 31

4.1 Framework Architecture. Blue Boxes are Existing Technologies . 34

4.2 Modeling Spaces . 37

4.3 Task De�nition Language Meta Model 38

4.4 Kuka Youbot . 42

4.5 System Architecture . 48

4.6 ROS Nodes at and after Startup. 57

4.7 Example Launch File Created by the Generator 59

4.8 The Web Interface . 63

5.1 Gazebo Simulator Setup with 4 Robots 66

v

5.2 Generated Files . 67

5.3 The Task De�nitions . 68

5.4 Two Teams of Robots Performing Different Tasks 69

5.5 Real System Setup . 70

A.1 Task De�nition Language Meta Model Large 88

C.1 Gazebo Simulator Setup . 95

vi

Listings

4.1 A Simple Action called moveForward. 40

4.2 An Example Composite Task. 45

B.1 Task De�nition Language Grammar. 89

vii

List of Tables

2.1 SLR General Data . 14

2.2 SLR Review Data . 15

viii

Chapter 1

Introduction

1.1 Background

As robots are becoming more complex and able to perform more complex tasks

they will increasingly become a bigger part of our lives. In the recent past robots

have mainly been used for repetitive tasks in manufacturing like building cars and

electronic components on fully automated production lines. These are relatively

easy tasks as the robots are placed in factories where no external forces can affect

them, hence they have no need for sensors measuring their surroundings or the

need for adaptive planning to deal with a dynamic environment. Still, these robots

have increased the ef�ciency of the work and the quality of the products and have

had a big economic impact. Today robots are becoming increasingly more used

to complete everyday tasks and assist humans, like house cleaning robots. These

types of robots are referred to as service robots and are more complex than indus-

trial robots as they have to deal with dynamic environments.

As robots are becoming more advanced it becomes more relevant to do re-

search on cooperative multi-robot systems. Applications which involves multiple

robots working together. Figure 1.1 shows the yearly robot soccer world cup.

Here you have multiple robots with different roles working together to achieve a

common goal.

1

Figure 1.1: Robocup. The Robot Soccer World Cup. Source [1].

Multi-robot systems have a number of advantages over single-robot systems.

Multiple robots can complete a more complex task which might be impossible

using a single robot. Multiple robots can also often complete tasks faster than a

single robot depending on the task that is being done. For example, search and

exploration tasks can be completed faster as the robots can work in parallel. Using

multiple robots are also more reliable in the way that if a robot failure occurs

another robot can replace the failed one. Multi-robot systems introduce multiple

additional challenges that need to be solved but have the potential to increase

automation and the ef�ciency of work in many sectors.

This thesis explores how model-driven software engineering can be applied to

simplify the development of heterogeneous multi-robot systems. In model-driven

software engineering, models are used in the development process to de�ne the

system and then the code is derived from the models. Model-driven software engi-

neering raises the level of abstraction and is well suited to deal with the complexity

of heterogeneous multi-robot systems.

The thesis proposes a framework for developing heterogeneous multi-robot

systems. The framework is made up of 4 components. A domain-speci�c lan-

guage used to model both the robots and tasks, a task allocation module used to

distribute the tasks amongst the robots, the robot operating system(ROS) used for

2

communication between the robots and advanced navigation, and a web interface

used to create missions for teams of robots.

1.2 Challenges

Heterogeneous multi-robot systems introduce two big challenges over single-robot

systems. The �rst is hardware heterogeneity between the robots. As differ-

ent robots often are built using different hardware(sensors, actuators, microcon-

trollers) they need to be programmed in different ways. If you are developing a

system comprised of multiple different types of robots that have different hard-

ware, you need to write a program for each robot independently using different

tools, libraries, and frameworks. This is highly inef�cient and requires the devel-

oper to do a lot of research.

The second challenge is the task distribution between the robots. If one has

multiple different robots with different capabilities and multiple different tasks,

how should the tasks be distributed amongst the robots? This problem is referred

to as multi-robot task allocation or MRTA [2]. This is an optimization problem

that has been studied a lot as it can be reduced to many similar problems outside

robotics, like multiprocessor scheduling.

1.3 Motivation

The goal of the thesis is to explore and acquire new knowledge on how model-

driven software engineering can be applied to simplify the development of hetero-

geneous multi-robot systems. As model-driven software engineering is often used

to raise the level of abstraction of complex systems, it is a good candidate to deal

with the complexity of heterogeneous multi-robot systems. The motivation of the

thesis is driven by the bene�ts of heterogeneous multi-robot systems. In hetero-

3

geneous multi-robot systems, the robots might have different capabilities and can

work together to perform more complex tasks. This allows a bigger variety of

tasks to be achieved than before.

1.4 Research Questions

The main focus of this thesis is the application of model-driven software engi-

neering in the development of heterogeneous multi-robot systems and how task

distribution can be performed in such a system. The research questions are cho-

sen accordingly.

Main research question of the thesis:

How can model-driven software engineering be used to simplify the development

of heterogeneous multi-robot systems?

Sub-questions:

How is model-driven software engineering applied to the development of

heterogeneous multi-robot systems in today's research?

How can ef�cient and appropriate task allocation be achieved in different

heterogeneous multi-robot systems?

1.5 Method

The research is split into two parts. First, a systematic literature review is con-

ducted. This gives us an overview over existing research and related work. De-

sign science research is then used to gain new knowledge through the design and

evaluation of an artifact.

4

Figure 1.2: The Design Science Research Process. Source [3].

Design science is a research method often used in computer science. In design

science, the research revolves around the design and evaluation of a so-called

artifact[3]. The artifact can be an algorithm, framework, model, method, etc.

The research is conducted in iterations by designing the artifact, implementing it,

evaluating it, and then redesigning it and so on.

Figure 1.2 illustrates the process and is referred to as the three cycles of design

science research [4]. The research is done in cycles of developing, building, justi-

fying and evaluating. Evaluation of the artifact may lead to new knowledge which

can be added to the knowledge base of the �eld. Field evaluation of the artifact

in the appropriate environment is used to justify the relevance of the artifact in

real-world applications.

In this thesis, the artifact is the proposed framework. The framework de�nes

a process for how to design and implement a heterogeneous multi-robot system.

Evaluation of the framework is done using simulation software with the goal of

5

obtaining new knowledge on how model-driven software engineering techniques

can be used to design and implement heterogeneous multi-robot systems.

1.6 Thesis Outline

The rest of the thesis is structured as follows: Inchapter 2a literature review is

conducted to present related work.Chapter 3provides some background in the

concepts and technologies used in the thesis.Chapter 4presents the developed

framework and all of its components. Inchapter 5the solution is evaluated. In

chapter 6the solution is discussed, and inchapter 7the thesis is concluded.

6

Chapter 2

Systematic Literature Review

2.1 Introduction

In order to get an overview over existing work on the application of applying

model-driven software engineering methods in the development of heterogeneous

multi-robot systems, a systematic literature review(SLR) is conducted. The goal

of a SLR is to identify and evaluate all available research on a speci�c topic in a

systematic way using a well-de�ned methodology [5].

The method used will be based on Kitchenhams guidelines for conducting

SLRs in software engineering [5]. Here Kitchenham derives research methods

from other �elds like medicine and adapts them to re�ect the speci�c problems

of software engineering research. Since SLRs are often quite big and involve

multiple researchers, a light version will be used for this master thesis, proposed

by [6]. Being a single researcher also increases the chance of biased results, which

is a threat to validity. Conducting a literature review in a systematic way with a

de�ned protocol reduces this threat.

7

2.2 Previous Work

The SLR will be based on a previous systematic mapping study conducted in 2015

[7]. The mapping study is on the topic of model-driven software engineering for

mobile robot systems, which is a superset of the topic for this thesis: model-

driven software engineering for heterogeneous multi-robot systems. In the study,

they collected an initial set of 1681 papers from various digital libraries and by

using forward snowballing. They then applied inclusion and exclusion criteria

to exclude papers not related to software engineering or mobile robot systems.

The result was 69 papers which were then classi�ed into categories based on the

type of publication, year released, type of research(evaluation research, solution

proposal, opinion paper, etc.), and type of contribution(tool, method, model, etc.).

(mobile OR drive* OR cruise* OR rover OR ground OR *water* OR aer*
OR �y* OR sail*)
AND
(unmanned OR self OR autonomous OR robot* OR vehicle*)
AND
(MDE OR MDD OR MDA OR MDSD OR meta model OR metamodel OR dsl OR
domain speci�c OR dsml OR model-driven OR model driven)

Figure 2.1: Syntax of the Search String from the Mapping Study.

The conclusion of the mapping study was that model-driven software engi-

neering methods are an increasing trend to use in mobile robot systems. Most

research solutions are focused on the development of domain-speci�c modelling

languages supported by tools that are mostly built ad-hoc. Fewer solutions are

based on UML and Eclipse-based tools. They also concluded that there are few

solutions that are validated through real-world projects which re�ects that research

on this topic is still young. They also concluded that there is a weak presence of

studies on mobile multi-robot systems and that more research should be invested

on teams of mobile robots.

8

Since this was a broad mapping study we can be con�dent that it has captured

most relevant papers on model-driven software engineering for mobile robot-

systems which also includes papers on model-driven software engineering for

multi-robot systems. The SLR of this thesis will be conducted on the papers from

the mapping study which is concerned with model-driven software engineering in

multi-robot systems, not only heterogeneous systems as the research here is very

limited. The previous mapping study was conducted in 2015 which means that it

only contains papers released from 2000 - 2015. To identify papers released after

2015 a short database search will also be conducted.

2.3 The Need for a Review

The previously conducted mapping study concluded that the trend of using model-

driven software engineering in the development of robot systems is increasing.

This means that the use of model-driven software engineering is also increasing

in the development of multi-robot systems and is probably going to continue to

increase because of all the advantages of using model-driven software engineering

in complex systems.

A short database search is conducted to check if there already exists a SLR

on the topic of model-driven software engineering in multi-robot systems. The

search string shown in �gure 2.2 is used to perform an automatic search in the

electronic database“Ieee Xplore” and index library“Scopus”. The result shows

that there does not exist a SLR on the topic.

9

("literature Review" OR "mapping study" OR "Survey" OR "SLR" OR "SMS")
AND
("robot")
AND
("multi" OR "team" OR "swarm")
AND
("model-driven" OR "domain-speci�c" OR "DSL" OR "MDA" OR "MDE" OR
"MDD" OR "MDSE")

Figure 2.2: Syntax of the Search String used to �nd Similar Literature Reviews.

2.4 Review Protocol

In this section we de�ne the review protocol. This includes review questions,

database search strategy, study selection criteria, and data extraction strategy.

2.4.1 Review Questions

The overall review questions of the SLR are as follows:

How are MDSE methods and techniques applied in the development of

multi-robot systems?

What tools and frameworks exist to support the use of MDSE methods and

techniques to develop multi-robot systems?

To answer the questions some sub-questions are de�ned which focus on what

tools and frameworks are used, what type of solutions are developed, and how

model-driven software engineering techniques are applied(in the form of a

model, DSL, graphical tool, etc.).

10

RQ1: What types of tools and frameworks exist which support the development

of multi-robot systems using MDSE methods?

RQ2: How are MDSE methods applied (In the form of a model, a DSL, etc)?

RQ3: What type of problem does MDSE solutions solve (behavior,

communication, task allocation, etc)?

2.4.2 Database Search

To identify papers released after 2015 a short database search is conducted through

the digital databases“Ieee Xplore” and“scopus”. The search string shown in

�gure 2.3 is de�ned to collect relevant papers. As this is a light review with

only one researcher the search string de�ned is more narrow than the one used by

the mapping study. The search is limited to only conference papers and articles

written in English.

("robot")
AND
("multi" OR "team" OR "swarm")
AND
("model-driven" OR "domain-speci�c" OR "DSL" OR "MDA" OR "MDE" OR
"MDD" OR "MDSE")

Figure 2.3: Search String used to �nd Additional Papers Published after 2015.

2.4.3 Selection Criteria

To be able to select relevant papers from the previous mapping study and the

database search a series of inclusion and exclusion criteria are de�ned. These

11

criteria are applied to the title and abstract of each paper and should be de�ned to

capture studies focusing on the use of model-driven software engineering in the

development of multi-robot systems. The criteria are de�ned as follows:

Inclusion criteria:

� Studies proposing MDSE methods or techniques that can be applied in the

development of multi-robot systems.

� Studies applying or evaluating MDSE methods or techniques used to

develop multi-robot systems.

Exclusion criteria:

� Studies not concerned with MDSE or multi-robot systems.

� Studies not concerned with software development (i.e., studies on robotic

hardware or mechanics).

� Not peer review studies.

� Studies published before 2015 (for the papers from the database search).

2.4.4 Data Extraction

The data extracted from each study should provide the necessary information

which can be used to answer the de�ned review questions.

Data extracted:

� Type of MDSE solution developed (model, DSL, graphical tool, etc.).

12

� Focus area(behavior, communication, task allocation, etc.).

� Tools used to develop the solution.

� Evaluation method used.

2.5 Results

From the mapping study, 8 papers were selected from the initial set of 69 using

the selection criteria. From the database search, 4 additional papers were selected

from a total of 31 produced by the search. The papers from the database search

capture additional studies published after the broader mapping study from 2015.

A total of 12 studies were selected [see table 2.1].

2.6 Discussion

On the topic of applying model-driven software engineering in the development

of mobile multi-robot systems we can see from table 2.2 that most studies focus

on the use of MDSE to create tools and DSLs that can be used to describe the

behavior of the robots on an abstract level while low-level platform-dependent

code is partly generated. This lets users create an application for a team of robots

easier and more ef�ciently.

In [S7], [S8], [S9] and [S10] DSLs with graphical tools was developed which

can be used to specify the behavior of the robots using �nite state machines and

statecharts. While in [S4] and [S5] they showed how �nite state machines can

be used to model a swarm of heterogeneous robots using RoseRT. Finite state

machines and statecharts are popular to use to model robot behavior as they are

good for capturing real-time requirements.

13

Id Author Date Name

[S1]
D. D. Ruscio, I. Malavolta,
& P. Pelliccione

2014
A Family of Domain-Speci�c Languages for Specifying
Civilian Missions of Multi-Robot Systems

[S2]
F. Ciccozzi, D. D. Ruscio,
I. Malavolta, & P. Pelliccione

2016
Adopting MDE for Specifying and Executing Civilian
Missions of Mobile Multi-Robot Systems

[S3]
S. Dragule, B. Mayers,
& P. Pelliccione

2017
A Generated Property Speci�cation Language for Resilient
Multirobot Missions

[S4]
D. Quellet, S. N. Givigi,
& A. J. G, Beaulieu

2011
Control of swarms of autonomous robots using Model Driven
Development - A state-based approach

[S5]
A. J. G, Beaulieu, S. N. Givigi,
D. Quellet., & J. T. Turner

2018
Model-Driven Development Architectures to Solve Complex
Autonomous Robotics Problems

[S6] C. Pinciroli & G. Beltrame 2016
Buzz: An extensible programming language for
heterogeneous swarm Robotics

[S7]

T. Amma, P. Baer, K. Baumgart,
P. Burghardt, K. Geihs, J. Henze,
S. Opfer, S. Niemczyk,
R. Reichle, D. Saur

2009 Carpe noctem 2009

[S8]
H. Skubch, M. Wagner,
R. Reichle., & K. Geihs

2011
A modelling language for cooperative plans in highly
dynamic domains

[S9]
A. Paraschos, N. I. Spanoudakis,
& M. G. Lagoudakis

2012 Model-driven behavior speci�cation for robotic teams

[S10]
E. M. Martinez, A. F. Caballero,
& J. M. G. Noheda

2012
Model-driven engineering techniques for the development of
multi-agent systems

[S11]
P. A. Baer, R. Reichle, M. Zapf,
T. Weise, & K. Geihs

2007
A generative approach to the development of autonomous
robot software

[S12]
P. A. Baer, R. Reichle,
& K. Geihs

2008
The spica development framework–model-driven software
development for autonomous mobile robots

Table 2.1: SLR General Data.

14

Id Type of solution Focus area Tool used Evaluation

[S1] DSL & UI Behavior EMF Real-world application

[S2] DSL & UI Behavior EMF Real-world application

[S3] DSL Constraints EMF Real-world application

[S4] Method Behavior RoosRT Simulation

[S5] Method Behavior RoosRT Simulation

[S6] DSL Behavior EBNF Simulation

[S7] Graphical Tool Behavior EMF Real-world application

[S8] Graphical Tool Behavior EMF Real-world application

[S9] Graphical Tool Behavior EMF Real-world application

[S10] Graphical Tool Behavior EMF Real-world application

[S11] DSL Communication EBNF Real-world application

[S12] DSL Communication EBNF Real-world application

Table 2.2: SLR Review Data.

15

In [S1] and [S2] they developed multiple DSLs together with a user interface

which lets the user specify the task for each robot on a map. The user interface was

designed for aerial vehicles, however. In [S6] on the other hand, they developed

a DLS which lets you specify the behavior of a swarm of robots using a textual

language and not state machines. In [S9] and [S10] they showed how agent-

based model-driven software tools could be applied to specify the behavior of a

multi-robot team. In [S3] they developed a DSL that can be used to de�ne task

constraints. A constraint can, for example, be that a robot can only perform a

certain task if another robot is at a certain position.

Very few studies involve the use of MDSE to solve problems like communica-

tion, task allocation and coordination between the team of robots. These problems

are often solved using speci�c algorithms and are hidden from the user. [S11]

and [S12] were the only studies that proposed DSLs which lets you model the

communication infrastructure of the robot team. The DSLs can be used to de-

�ne the messages and protocols the robots use for communication on a platform-

independent level. While in most other studies like [S1] and [S8] the communica-

tion is achieved using well-known middlewares like ROS and is not modeled by

the user.

However, most of the proposed solutions assume that low-level control func-

tions for each robot are provided. This is necessary because of the high amount

of different hardware and software libraries that are possible if any types of mo-

bile robots are going to be supported. To complete a speci�c task the robot might

need a function like"Moveforward(m/s)"which is implemented in very different

ways depending on the wheel con�guration and what microcontroller the robot

use. The idea in most of the studies is that low-level control functions are de�ned

independently by robot specialists and then the mission of the robot team can be

speci�ed by a non-specialist using the proposed language or tool.

Most of the proposed solutions are developed using the Eclipse Modelling

Framework. This is an advantage as different solutions developed using the same

framework are often easier to integrate and reuse.

16

2.7 Conclusion

Most studies on the topic of applying MDSE to develop mobile multi-robot sys-

tems are concerned with the ability to specify the mission or behavior of a team

of robots on a high level using �nite state machines, statecharts or in some cases

a textual language. As there is a high amount of different hardware and software

libraries used on different robots the proposed solutions often assume low-level

control functions are provided for each robot before a mission can be speci�ed.

There are few studies concerned with applying MDSE to model other fea-

tures of a multi-robot system like communication infrastructure, coordination and

task allocation. These features are often implemented using speci�c algorithms

and middlewares in the different solutions and are not modeled by the user. A

good amount of the proposed solutions are developed using the Eclipse Mod-

elling Framework. This indicates that EMF is starting to become mainstream in

the application of applying MDSE techniques to software development.

For future work, more research should be done to �gure out how a mission for

a heterogeneous team of robots can be speci�ed on a high level without the need of

a robot specialist implementing the low control functions for each different robot.

As most studies focus on the ability to de�ne a mission using state machines and

domain-speci�c languages, there is also needed more research on how missions

can be speci�ed at runtime by non-programmers using maps or user interfaces.

In this thesis, we propose a textual DSL for modelling the behavior of the

robots by using simple actions as building blocks to de�ne tasks that involves

multiple robots. The user can specify a mission for a team of robots through

a web interface at runtime. As opposed to other solutions our solution allows

the user to de�ne different missions without the need for redesigning the model,

regenerate code and redeploy the generated code to all the robots. The user can

also add new tasks and change the de�nition of existing tasks without the need for

redeployment.

17

Chapter 3

Theoretical Background

3.1 Overview

This chapter provides some background in the concepts and technologies used in

the thesis. Beginning with an introduction to model-driven software engineering

and MDSE in robotics. Then moving on to the multi-robot task allocation prob-

lem. Finally, an overview of the robot operating system is provided.

3.2 Model-Driven Software Engineering

3.2.1 What is Model-Driven Software Engineering?

Model-driven software engineering is a software development paradigm that fo-

cuses on the use of models in the software development process. In model-driven

software engineering, you often develop a high-level model of the application in-

stead of writing low-level code, the code is then derived from the model using

model-to-model transformation and code generation. The use of models allows

developers to work at a higher level of abstraction, thus reducing complexity and

improving the software quality [8].

18

Model-driven software engineering is based on the separation of the system

functionality being developed and the implementation of such a system for one

speci�c platform, i.e., to clearly separate the analysis from the implementation

details. Thus raising the level of abstraction and allowing the use of concepts

closer to the problem domain [9].

The concept of raising the level of abstraction to reduce complexity is nothing

new. Assembly can be seen as an abstraction over machine code, while high-level

programming languages can be seen as an abstraction over assembly again which

hides low-level machine-speci�c instruction by introducing higher-level abstrac-

tions such as variables that are translated into machine code by the compiler [8].

Figure 3.1 illustrates common elements used in model-driven software engi-

neering. At the top level is the metalanguage used to de�ne the domain-speci�c

language. This could be Ecore, extended backus-naur form, or any language capa-

ble of de�ning another language. The domain-speci�c language can then be used

to de�ne a model of the application that contains the functional requirements.

Transformation rules can be speci�ed in a transformation language like ATL or

M2M. The model can then be transformed into another model or into application

code. And the application code usually uses a framework that conforms to an

architecture.

These components can be implemented by developers that have different roles

as described in [10]. You may want a domain expert and language engineer to

develop the language, transformation, and platform expert to implement the trans-

formation rules, and an application developer to develop and test the model.

3.2.2 Model-Driven Architecture

Model-driven architecture is a software development approach initiated by the

OMG (The Object Management Group) [11]. Model-driven architecture is often

referred to as a subset of model-driven software engineering. It provides a set of

guidelines for de�ning models and the transformations between them.

19

Figure 3.1: The Model-Driven Software Engineering Process. Source [10].

Figure 3.2 illustrates the different layers of models in model-driven architec-

ture. As explained in [11] the models can be separated into 3 layers. The com-

puting independent model (CIM) de�nes the system speci�cations on the highest

level. It de�nes all the system functions without any technical speci�cations. The

platform-independent model (PIM) de�nes common platform-independent con-

cepts. The platform-speci�c model (PSM) uses the PIM and platform details to

generate the �nal source code. A single PIM is often used to create multiple

PSM`s. Model to model transformations are used to convert the models down the

layers while model to text transformation is used to generate the �nal code from

the PSM.

3.2.3 Pros and Cons of Using MDSE

Model-driven software engineering can have many advantages over traditional

coding depending on the complexity of the system being developed. In [12] they

discuss some of the bene�ts with model-driven software engineering. It can in-

20

Figure 3.2: Levels of Abstraction in Model-Driven Architecture. Source [11].

crease the productivity of the developers as the use of models and code gener-

ation can lead to faster development. It can increased reusability over different

platforms as you often develop platform-independent models. It can increase the

quality of solutions since the use of models forces you to focus on the design of

the system and not implementation details. It can improve the communication

between developers as they can reason about high-level concepts instead of low-

level code. And it can improve communication with stakeholders as models hide

implementation details and are closer to the problem domain.

In [13] they conducted a twelve-month long empirical study to investigate

whether all the claimed bene�ts of model-driven software engineering is true or

not. They concluded that the use of model-driven software engineering does have

a positive effect on productivity and maintainability.

In [8] some of the problems of model-driven software engineering are dis-

cussed. It can increase redundancy as there are multiple representations of the

same artifact(generated �les, generated documents, generated models, etc.) at

different levels of abstraction. If these are manually created then duplicate work

is required. Also the more levels of abstraction and the more models you have, the

21

more complex model relations you get. Changes in one model could propagate

and lead to unexpected changes in all related artifacts. Raising the level of abstrac-

tion also may lead to oversimpli�cation and may hide important implementation

details from the developer.

3.2.4 MDSE in Robotics

One of the main problems with software development in robotics is due to the

hardware heterogeneity of different robots. Different robots are often built from

different types of sensors, actuators, and microcontrollers. All these components

can also be put together in many different ways. As a consequence different robots

need different code to be able to perform the same functions. This makes code

reuse dif�cult and one often has to start from scratch when developing a new

robotic system.

In [14] and [15] they conducted studies on research trends related to soft-

ware architecture in robotic systems. Both studies concluded that model-driven

architecture was one of the most popular and promising architecture to apply

when developing software for robotics systems. Since robotic systems often are

quite complex, raising the level of abstraction can be very bene�cial. It also in-

creases reusability by introducing platform-independent models. By separating

hardware-speci�c and hardware-independent speci�cations we can create more

reusable robotic components.

3.2.5 Domain-Speci�c Languages for Robots

One of the core concepts in model-driven software engineering is that of a domain-

speci�c language or DSL. A DSL is a software development language specialized

for developing applications in a particular domain, for example robot applications,

or even more speci�c like robot perception. The language should make it easier

22

to develop an application for that particular domain by de�ning abstractions and

notations relevant to that speci�c domain.

As described in [16] a DSL usually contains only a restricted set of notations

and abstractions as compared to a general-purpose language or a general-purpose

modelling language like UML. This allows a DSL to highlight domain concepts in

the language itself, while in a general-purpose language the domain concepts have

to be implemented in the code and are more hidden. A DSL for robotic systems

should, therefore, highlight concepts and problems speci�c to the development of

robot applications.

There already exist many DSLs for robot development. In [16] they conducted

a survey on 41 DSLs. The DSLs usually only deals with a very specify function

like perception or control, which is the essence of a DSL as opposed to a general-

purpose language. There also exists larger model-driven toolchains like RobotML

[17], BRICS [18] and Smartsoft [19] which contains multiple DSLs to be used

together when developing the robotic system.

3.2.6 How are the DSLs Developed?

The survey conducted on 41 different domain-speci�c languages for robotic sys-

tems [16] showed that most of the domain-speci�c languages were developed us-

ing the Eclipse Modeling Framework (EMF).

The Eclipse Modeling Framework provides a toolchain for the development

of domain-speci�c languages and metamodels. It provides a large set of tools and

code generation facilities to support metamodelling. The metalanguage used in

EMF is called Ecore and is based on the MOF (Meta Object Facility) metalan-

guage de�ned by the Object Management Group.

After EMF most domain-speci�c languages in the survey were developed by

creating a custom toolchain or by using a general-purpose language. A domain-

speci�c language developed using a general-purpose language is called an internal

domain-speci�c language and is developed by extending the syntax of the host

23

language with domain-speci�c notations and abstractions.

3.3 Multi-Robot Task Allocation

3.3.1 The Multi-Robot Task Allocation Problem

One of the challenges in a multi-robot system is the problem of task distribution.

Given a set of robots and a set of tasks, how do we decide which robot should per-

form which task? The multi-robot task allocation (MRTA) problem is about how

a set of tasks should be distributed between a set of robots and is an optimization

problem. As the number of heterogeneous robots and different types of tasks in-

creases the problem becomes even more complex since heterogeneous robots may

have different capabilities and different strengths and weaknesses.

The problem of ef�cient task allocation has been an active research topic for

many years as the different variations of the problem can be reduced to many

similar problems, like multiprocessor scheduling [2]. In this section we will look

at some of the different variations of the MRTA problem, cost functions, and

solution architectures.

3.3.2 Problem Variations

In [2] they proved a taxonomy of MART problems and the different ways of clas-

sifying them. They explain how the problems can be classi�ed along 3 main axes

as shown in �gure 3.3.

Single-task robots (ST) vs multi-task robots (MT):ST means that each robot

can only perform a single task at the time, while ST means that there are some

robots with the ability to perform multiple tasks simultaneously.

24

	List of Figures
	Listings
	List of Tables
	Introduction
	Background
	Challenges
	Motivation
	Research Questions
	Method
	Thesis Outline

	Systematic Literature Review
	Introduction
	Previous Work
	The Need for a Review
	Review Protocol
	Review Questions
	Database Search
	Selection Criteria
	Data Extraction

	Results
	Discussion
	Conclusion

	Theoretical Background
	Overview
	Model-Driven Software Engineering
	What is Model-Driven Software Engineering?
	Model-Driven Architecture
	Pros and Cons of Using MDSE
	MDSE in Robotics
	Domain-Specific Languages for Robots
	How are the DSLs Developed?

	Multi-Robot Task Allocation
	The Multi-Robot Task Allocation Problem
	Problem Variations
	The ST-MR-IA Problem
	Cost Function
	Solution Architectures

	The Robot Operating System
	What is ROS?
	ROS Architecture
	Pros and Cons

	A Framework for Heterogeneous Multi-Robot Systems
	Framework Architecture
	The Task Definition Language
	How is the Language Developed?
	The Elements of the Language
	Robot Model
	Task Model
	The Generator

	The Task Allocation Module
	System Architecture
	The Task Allocation Algorithm
	The Cost Function

	ROS Setup
	Why use ROS?
	A Publish-Subscribe Pattern
	Launching The ROS Nodes
	Using ROS Stacks and Algorithms

	The Web Interface
	Why Use a Web Interface?
	Leaflet

	Evaluation
	Evaluation Method
	Simulation Setup
	Scenario
	Testing on Distributed Machines
	Additional Evaluation

	Discussion
	Conclusion
	Bibliography
	Primary Studies
	Appendices
	Meta Model
	Task Definition Language Grammar
	User Manual
	Eclipse Setup
	Simulator Setup
	Setup on Real Robots
	Maintainer Setup

