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I Abbreviation list 

2,3,7,8-TCDD 2,3,7,8-tetraklorodibenzo-p-dioksin 

A230/260/280 Absorbance with 230/260/280 nm 

AA Amino acid  

ABC ATP-binding cassette 

AGE Agarose gel-electrophorese 

AhR Aryl hydrocarbon receptor  

ARNT Aryl hydrocarbon receptor translocator 

ATP Adenosine triphosphate 

BaP Benzo(a)pyrene 

bHLH Basic helix loop helix 

bp Base pairs 

BFR Brominated flame retardants 

bw Blue whale 

CALUX Chemical activated luciferase gene expression 

cDNA Complementary DNA 

CFDA-AM 5-carboxyfluorescein diacetate acetoxymethyl ester  

CYP Cytokrome P450 

DBD DNA binding domain 

DDD Dichlorodiphenyldichloroethane  

DDE Dichlorodiphenyldichloroethylene   

DDT Dichlorodiphenyltrichloroethane 

DEHP Di(2-ethylhexyl) phthalate 

Dexa Dexamethasone 

DiDP Diisodecyl phthalate 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTPs Deoxynucleotides 

DRE Dioxin response element 

EC50 Effective concentration 50 

ED Endocrine disruptors 
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EDTA Ethylenediaminetetraacetic acid  

FBS Fetal Bovine Serum 

FICZ 6-formylindolo[3,2-b]carbazole 

Fwd Forward 

GST Glutathione-S-transferase 

GR Glucocorticoid receptor 

HAH Halogenated aromatic substances 

L DNA-Ladder 

LB Lysogeny broth 

LBD Ligand binding domain  

LRA Luciferase reporter gene assay   

MSA Multiple sequence alignment 

NAD(H)P Quinone oxidoreductase 1 

NRs Nuclear receptors  

ONPG Ortho nitrophenyl-β-galactoside  

OPFR Organophosphorus flame retardants 

PAS Per-ARNT-Sim 

PBS Phosphate-buffered saline 

PCB 153 2,2',4,4',5,5'-Hexachlorobiphenyl 

PCBs Polychlorinated biphenyls 

PCF Polychlorinated varieties of dibenzofurans 

PCDD Dibenzo-p-dioxins 

PCR Polymerase chain reactions 

pDNA Plasmid DNA 

PFAS Per fluorinated substances 

PMSF Phenylmethylsulfonyl fluoride 

POPs Persistent organic pollutants 

PPAR Peroxisome proliferated activated receptor 

PXR Promiscuous xenobiotic receptor (aka pregnane X receptor) 

rDNA Recombinant DNA 

Rev Reverse 

RNA Ribonucleic acid 

Rosi Rosiglitazone 
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RNA Ribonucleic acid 

rRNA Ribosomal RNA  

RTMIX Reverse Transcriptase reaction solution 

RXR Retinoid X receptor  

S Strand 

SOC Super optimal broth with catabolite repression 

T3 3,5,3´-triiodothyronine 

TBE Tris-borate-EDTA 

TCP 2,4,5-trichlorophenol 

THR Thyroid hormone receptor 

totRNA Total Ribonucleic Acid 

UAS Upstream activation sequence 

UGT UDT-glucuronosyltransferase 

XRE Xenobiotic response element 

β-Gal β-Galactosidase  
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III Abstract 

Baleen whales, such as blue whales (Balaenoptera musculus) and fin whales (B. physalus), two 

giants of the ocean are potentially being impacted by multiple stressors, including exposure to 

pollutants. They are exposed to a large variety of contaminants such as persistent organic 

pollutants (POPs). Both of these species are listed in threatened categories in the IUCN Red 

List of Threatened Species. Despite their conservation status, there is little information 

available regarding concentrations and potential adverse effects of persistent organic pollutant 

(POP). One-way POPs can affect these animals is through their endocrine system and their 

transcription factors. The health of marine mammals such as whales is generally dependent on 

a normal functioning immune system, endocrine system and energy metabolism. These 

processes are regulated by transcription factors such as nuclear receptors: e.g. glucocorticoid 

receptor (GR), thyroid hormone receptor beta (THRB) and the peroxisome proliferator-

activated receptor gamma (PPARG). Another transcriptional mediator of xenobiotic effects is 

the Aryl hydrocarbon receptor (AhR). To study the transcriptional activity of blue and fin 

whale, GR, THRB, PPARG, and AhR when exposed to legacy POPs, in vitro luciferase reporter 

gene assays were performed. AhR was cloned and sequenced, and a luciferase gene reporter 

assay was attemptably established without success so far. However, a multiple sequence 

alignment of blue whale AhR with several other marine mammals, including human and mice 

showed a high level of identity between the species, indicating that the receptor would respond 

in a similar way across species. The three nuclear receptors previously cloned were successfully 

studied in luciferase gene reporter assays, where the results indicated no agonistic effects of 

many of the tested toxic compounds (pp`DDT, pp`DDE, pp`DDD, DEHP, DINP and POPs 

mixture) that are abundant in whale blubber. Additionally, multiple sequence alignments 

showed strong conservation of the ligand binding domain of these receptors between blue and 

fin whales (identical), killer whales, white whales, polar bears and humans.  This Suggests a 

similar activation of the receptors in the different species. 

 

Additional studies would be advantageous to understand if the POPs detected in blue and fin 

whale blubber have antagonistic effects, in addition to conduct further agonistic studies of the 

POPs and contaminants mixtures not yet studied.  
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1 Introduction 

1.1. Our oceans today- affected by environmental contaminants? 

We live in a time were living standards and consumption are rapidly increasing. The increased 

usage of the world´s resources is creating a growing pressure on the planet and its ecosystems. 

This development is creating several new challenges and environmental issues for our society. 

One of the fastest growing problems is environmental contaminants. This is a classification of 

chemical substances that is quickly becoming frequently used in our society, and the awareness 

around them is increasing. In Europe alone there are over 22500 registered chemicals, and the 

majority of them can act as environmental contaminants (European Union, 2019; Lampa et al., 

2012). Environmental contaminants consist of a varied group of chemicals, where several (e.g. 

mercury, lead and asbestos) can be toxic even at low concentrations (Lanphear, 2017; Zahir et 

al., 2005). These contaminants often originate from various human activities, such as incorrect 

handling of human waste (garbage, fishing equipment etc.) effluent discharges, agriculture, in 

addition to marine and land industries (Bakke et al., 2013; Völkel, Mosch et al., 2009). These 

chemical substances may not only affect the area to which they are released, but also on a much 

wider scale. Ever since Rachel Carson’s first book “the sea around us” came out in 1951, and 

the acid rain in 1970 there has been a growing consciousness on long-range transportation of 

contaminants (Singh et al., 2008; Carson, 1951). Ocean and air circulation in addition to 

migrating organisms, rivers, and transpolar ice drift are the major transport routes than make it 

possible for environmental contaminants originally released by land-based industries, to end up 

in remote areas such as the Arctic and polar areas (Julshamn et al., 2013; Macdonald et al., 

2000; Rigèt et al., 2010). Since the Earth’s surface consists of more than 70% water (Gleick, 

1993) and the majority of the water masses are marine environments, most of the world’s 

contaminants end up in the ocean. The growing amount of different varieties of environmental 

contaminant in marine environments, results in increasing negative effects on marine organisms 

(Cole et al., 2011; Moore, 2008). Contaminants of high concern for marine ecosystems are 

persistent organic pollutants, oil pollution, emerging contaminants and plastic associated 

contaminants. Many of these compounds have been shown to biomagnify in the food web and 

thus end up at high concentrations in top predators.  For instance, research conducted on killer 

whales ( Orcinus orca) have shown alarmingly high concentrations of the environmental 

contaminants, persistent organic pollutants (POPs) in particular, making it one of the most 

contaminated species on earth potentially threatening some populations with extinction due to 

reproductive failure (Buckman et al., 2011; Desforges et al., 2018; Muñoz-Arnanz et al., 2019). 
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Marine litter is also of high concern to marine mammals such as whales. There have been 

several incidents of marine mammals with plastics in this digestive system, or wrapped around 

them e.g. “The plastic whale” (Cole et al., 2011; Derraik, 2002; Fossi et al., 2017, 2016; 

Lislevland, 2017; Moore, 2008).  

 

Among cetaceans (odontocetes=toothed whales, and mysticetes=baleen whales) particularly 

within mysticetes there is little knowledge concerning POPs contamination. Two baleen whales 

that are possibly affected by environmental contaminants are blue whales (Balaenoptera 

musculus) and fin whales (Balaenoptera physalus). Both species are widely distributed 

throughout the world’s oceans, and primarily due to the massive hunt during the whaling era 

they are both listed under the International Union for Conservation of Natures (IUCN) Red List 

of Threatened Species as vulnerable and endangered, respectively (Branch et al., 2007; 

Carwardine, 2002; Cooke, 2018; Hoyt, 2017; Hsu et al., 2013). As opposed to killer whales, 

which are toothed whales, blue and fin whales have baleen plates instead of teeth. This allows 

them to filter huge mouthfuls of water, making them filter feeders. One of the differences 

between the filter feeding blue and fin whales is their diet. Blue whales feed only on krill and 

other small crustaceans, while fin whales eat mostly fish (Haug, n.d.-a, n.d.-b; Sars, 1875). 

Because fin whales feed on a higher trophic level than blue whales, fin whales are expected to 

be exposed to higher concentrations of biomagnifying pollutants throughout the food chain in 

similarity with humpback whales (Metcalfe et al., 2004; Pinzone et al., 2015). Several studies 

have shown that baleen whales contain high levels of POPs, in their blubber, compared to e.g. 

humpback whales (Meganoptera novaeangliae) and southern right whales (Eubalaena 

australis) (Fossi et al., 2014a; Gauthier et al., 1997; Metcalfe et al., 2004; Muñoz-Arnanz et al., 

2019; Torres et al., 2015). 

 

1.2 Persistent organic pollutants (POPs)  

POPs are a group of chemical substances that are resistant to biochemical and physical 

degradation. Many POPs are nonpolar molecules and highly lipophilic, which enable them to 

accumulate in the fatty tissues of organisms (Shen et al., 2005; Macdonald et al., 2000; Rigét 

et al., 2010). Due to these physio-chemical properties, POPs remain in the environment for a 

long period of time and therefore have a high probability of bioaccumulating in organisms 

(Giesy & Kannan, 1998; Rigét et al., 2010; Sonne et al., 2014; Wilson et al., 2016). 

Bioaccumulation occurs if the organism’s detoxification mechanisms are unable to metabolize 
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and excrete the compound faster than it is absorbed from the environment, as illustrated in 

Figure 1 (Heindel et al., 2017). The concentration of POPs increases with higher trophic levels, 

which leads to a higher concentration in top predators (high trophic levels) than in prey (lower 

trophic levels), a process known as biomagnification (Martineau et al., 1987; Muir et al., 1992 

& 1996; Parkinson & Ogilvie, 2008). 

 
Figure 1. Illustration of biomagnification and bioaccumulation of lipophilic environmental 
contaminants in marine food webs. The vertical arrow illustrates the increase of lipophilic 
environmental contaminants in higher trophic levels, this is called biomagnification. The horizontal 
arrow shows the increase of lipophilic environmental contaminants within an organism over time, a 
phenomenon termed bioaccumulation. This leads to animals on top of the food chain and older 
individuals have higher concentrations of environmental contaminants than young individuals and 
organisms low in the food chain. Illustration source: modified from Alexander Klevedal Madsen 2016 
(Madsen, 2016). 
 
Due to their numerous negative effects on organisms, an increased awareness has led to several 

management actions to prevent further release of these contaminates into the environment. A 

result of these actions is the Stockholm Convention, which is a global treaty of strict regulation 

or elimination of POPs that entered into force in 2004  (Lallas, 2001; Stockholm Convention 

Secretariat United Nations Environment, 2017). This treaty contains the first twelve regulated 

POPs so called “the dirty dozen” (heptachlor, chlordane, chlordecone, dieldrin, 

hexachlorobenzene, toxaphene, Polychlorinated biphenyls (PCB), 

dichlorodiphenyltrichloroethane (DDT), endrin, mirex, aldrin, and polychlorinated 

dibenzodioxins and furans) in addition to new POPs which have been added later (Lallas, 2001; 

Stockholm Convention Secretariat United Nations Environment, 2017). 
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Many of the toxic chemicals present in biota today have previously been produced in very large 

quantities, for instance as pesticides and industrial chemicals. PCBs were used in many different 

industries due to their high chemical stability, low acute toxicity, and their ability to act as 

electric insulators (Borja et al., 2005). Another group, dioxins, were emitted to the environment 

through burning of waste produced by humans, and burning of fossil fuels (exhaust) (White & 

Birnbaum, 2009). In a factory in Seveso, Milan, Italy, the production of  2,4,5-trichlorophenol 

(TCP) in the 1970s made large amounts of the unfortunate by-product 2,3,7,8-

tetrachlorodibenzodioxin (TCDD) (Cattabeni et al., 1986). Within a few days many animals in 

the area died, and several hundred humans where affected with nausea, chloral acne etc. 

(Cattabeni et al., 1986). The Seveso accident is one of several incidents causing the usage of 

POPs to decrease (Andersson et al., 2004; Borja et al., 2005). Despite the decline in use, legacy 

POPs (POPs that have been and remain in the environment for a long period of time (Cabrerizo 

et al., 2018) in particular are still found in the environment today (Cabrerizo et al., 2018; karl 

et al., 2009; Mrema et al., 2013).  

 

1.2.1 Emerging contaminants 

An unfortunate consequence to the banning of several POPs, is the creation of new, and similar 

chemicals. The toxicological data on many of these new compounds is not yet complete, and 

several of them have a similar structure and properties to the already banned chemicals. 

Chemicals that are known to have negative effects on organisms (Flint et al., 2012; Kidd et al., 

2007), such as organophosphorus flame retardants (OPFR), brominated flame retardants (BFR), 

in addition to per fluorinated substances (PFAS), and phthalates (Barroso et al., 2019). 

Phthalates are widely used in several industries and are known to have adverse health effects 

on reproduction and respiration. They have also been associated with carcinogenic processes in 

humans (Ventrice et al., 2013) and will be studies further in this thesis in addition to three POPs.  

 

1.2.2 Endocrine disruptors 

All POPs are classified as toxic, where almost all, such as organochlorine insecticide DDT or 

PCBs used in electrical equipment etc. are also defined as endocrine disruptors (ED) (Bhandari 

et al., 2015; Godfray et al., 2019; Kabir et al., 2015; Nilsson, 2000). Endocrine disruption 

indicates that the chemical or chemical mixtures can interfere with normal endocrine function 

of an organism (Diamanti-Kandarakis et al., 2009; Kabir et al., 2015).  
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Originally, EDs were thought to exert their actions primarily through specific nuclear receptors 

(NR) such as oestrogen receptor or androgen receptor, but previous studies have shown that 

EDs are also able to act through several other NRs (e. g. glucocorticoid receptor (GR), 

peroxisome proliferated activates receptor (PPAR), thyroid hormone receptor (THR)) and the 

aryl hydrocarbon Receptor (AhR) in addition to other mechanisms (Diamanti-Kandarakis et al., 

2009; Goksøyr, 2006; Kabir et al., 2015). There has previously been shown a significant 

association between hormone levels and tissue concentrations of contaminants in marine 

mammals. For instance in polar bears (Ursus maritimus) and white whales 

(Delphinapterus leucas) there has been found an association between altered plasma thyroid 

hormone concentrations and pollutant exposure (Kabir et al., 2015; Kidd et al., 2012; Villanger 

et al., 2011). However, there is limited knowledge about the effect endocrine disruptors have 

on whales, and especially in large baleen whales such as the blue and fin whale. 

 

Several POPs that have been proven to have endocrine disrupting effects also act as 

carcinogens, and can cause damage to the immune system, such as 2,3,7,8-TCDD, PCBs, DDT, 

dichlorodiphenyldichloroethylene (DDE) and  dichlorodiphenyldichloroethane (DDD) (Figure 

2)(Bertazzi et al., 1998; Cedervall et al., 2012; Mostafalou et al., 2013; Mrema et al., 2013).  

 

 
 
 
 
Figure 2. Chemical structure of 2,3,7,8-tetrachlorodibenzodioxin (TCDD), polychlorinated 
biphenyls (PCBs) and dichlorodiphenyltrichloroethane (pp`DDT), 
dichlorodiphenyldichloroethylene (pp`DDE) and dichlorodiphenyldichloroethane (pp`DDD). 
Four POPs known to cause damage on organisms, chemical structures from chemspider.com 
 

As previously mentioned, a large amount of anthropogenic chemicals end up in aquatic 

environments for example through waste water, air currents, and general dumping of human 

waste (Gallo et al., 2018; Rhind, 2009). Organisms associated to aquatic environments, such as 

whales, are therefore susceptible to exposure of harmful chemicals (Houtman, 2010; Rasheed 

et al., 2019). Previous research suggest that baleen whales (e.g. blue and fin whales), along with 

TCDD pp`DDT pp`DDE pp`DDD 



  

 13 

other cetaceans (e.g. killer whales), are highly exposed to a large variety of POPs such as PCBs, 

chlorinated pesticides (e.g. pp`DDT), but also emerging environmental contaminants causing 

adverse health effects ( Fossi et al., 2014a; Fossi et al., 2010a; Muñoz-Arnanz et al., 2019). 

These POPS may particularly influence the endocrine system, immune system, and 

reproduction (Bossart, 2011; J.-P. W. Desforges et al., 2016; Yordy et al., 2010).  

 

1.2.3 POPs in whales  

As previously mentioned, a large amount of anthropogenic chemicals end up in aquatic 

environments (Gallo et al., 2018; Rhind, 2009), organisms associated to aquatic environments, 

such as whales, are therefore susceptible to exposure of harmful chemicals (Houtman, 2010; 

Rasheed et al., 2019). Blue and fin whales are of high interest in toxicological studies because 

they feed on different trophic levels, travel very large distances, their magnitude of 

bioconcentration processes as a result of the massive amount of prey that they consume and 

have long life spans (up to 90 years) (Aguilar et al., 2018; Muñoz-Arnanz et al., 2019; Sears et 

al., 2009). So far there are only a few studies that have reported POPs concentrations in blue 

and fin whales where DDT and PCBs dominate (Table 1) (Fossi et al., 2014a; Gauthier et al., 

1997; Metcalfe et al., 2004; Trumble et al., 2013). 

 
Table 1. overview of some POPs found in blue whale and fin whales outside of Svalbard between 
2014-2018. 

Compound Concentration (nM) 

Blue whale Fin whale 

DDD 75 92 

DDE 206 286 

PCB 138 33 57 

PCB153 51 80 

 

Only a few studies have been conducted on fin whale (to my knowledge non on blue whales) 

to investigate biomarkers (western blot of CYP1A1, CYP2B) of toxicological effects in relation 

to pollutant concentrations (Fossi et al., 2010a, 2014; Das et al., 2017; Muñoz-Arnanz et al., 

2019). Due to logistical challenges the collection of samples from a large number of individuals 

for correlative studies is difficult, therefore an alternative approach is to study how 

contaminants modulate the function of transcription factors involved in biotransformation, 

endocrine disruption, lipid metabolism- and hormone-receptors. Where one approach to better 
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understand how POPs influence e.g. marine mammals such as whales is through studying their 

biotransformation. 

1.3 Biotransformation 

Mammals have complex systems that are responsible for metabolizing and excreting 

endogenous and exogenous compounds, such as POPs. These systems consist of several 

enzymatic reactions, creating the “chemical defence mechanism” of the organism (Parkinson 

& Ogilvie., 2008). In biotransformation, a series of reactions modify and convert substances to 

excrete them more easily from the organism. Normally this results in more water-soluble and 

more polar compounds, but biotransformation may also produce more reactive by-products, 

which could be harmful to the organism. The processes of biotransformation are divided into 

three phases, each phase involves a series of different reactions, enzymes and transport proteins 

(Figure 3) (Dekant, 2009; Houtman, 2010; Sousa et al., 2018).The reactions in phase I includes: 

Oxidation, reduction and hydrolysis, where the three main catalysing enzymes are 

dehydrogenases, epoxide hydrolases, and cytochrome P450 monooxygenases (CYP). The 

combination of these reactions converts fat-soluble and non-polar substances into less fat-

soluble and polar substances. The following step is phase II, which is performed by conjugating 

enzymes such as quinone oxidoreductase 1 (NAD(H)P), UDP-glucuronosyltransferases (UGT), 

and glutathione S-transferases (GST), which further increases the substances polarity, water-

solubility and size by conjugating the phase I metabolites to endogenous compounds, or 

facilitated excretion. The last phase of biotransformation (phase III), is responsible for the 

transport of the water-soluble substances out of the cell. This often happens through ATP-

binding cassette (ABC) proteins that actively transport the metabolites out of the cell (Houtman, 

2010). The expression of all the proteins involved in biotransformation can be regulated through 

specific transcription factors. 
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Figure 3 The different phases of biotransformation. The three phases in biotransformation increase 
a chemicals polarity and water solubility through several reactions. This results on the chemical being 
transformed and excreted from the organism. 
 
 

1.4. Transcription factors 

Transcription factors are proteins that bind to DNA and facilitate the transcription of specific 

genes. In order to understand how organisms, respond to POPs it is important to study the 

receptors that are activated by xenobiotic compounds. Two important groups of transcription 

factors in regulating the chemical defence and endocrine system are: Nuclear receptors (NRs) 

and bHLH-PAS receptors (Aryl hydrocarbon receptor (AhR)) (Ma, 2008; Xu et al., 2010). The 

basic helix loop helix (bHLH) and a Per-ARNT-Sim (PAS) domain-receptors normally 

function as dimeric DNA-binding protein complexes, forming homo- or heterodimers (Crews, 

1998). Common for all the transcription factors mentioned above is that they recognize and 

bind to specific DNA-sequences, called the response elements. When the majority of the 

receptors bind to a ligand, they interact with the response element, and in many cases create a 

dimer that is important in the control of the expression of a gene e.g. nuclear receptors.  

 

1.5 Nuclear receptors  

Nuclear receptors are one of the largest receptor-super-families in vertebrates consisting of 

ligand-activated transcription factors. They have important roles in natural development, 

homeostasis, reproduction and metabolism in organisms (Ma, 2008; Xu et al., 2010; Sala et al., 

2018). In addition, they are often linked to pathologies such as cancer, metabolic diseases and 

inflammation (Sala et al., 2018). Ligand-activated NRs regulate transcription by binding of 

Phase I Phase II

 

Phase III 

Chemical 
Oxidation 
Reduction 
Hydrolysis 

 

Conjugation 

Excretion 

Metabolite 

Polarity 
Water-solubility 

Conjugated 
metabolite 
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small lipophilic endogenous compounds, which are further divided into seven subfamilies, 

NR0-NR6 (Zhao et al., 2015). Nearly all NRs (except two in NR0B) contain six functional 

domains (Figure 4) (Eide et al., 2018; Germain et al., 2006; Zhao et al., 2015). 

 

 

 

 
Figure 4 The six functional domains of NRs. 1 + 2 = Variable N-terminal regulatory domain, 3 = 
Conserved DNA-binding domain (DBD), 4 = Variable hinge regions,5 = Conserved ligand binding 
domain (LBD) and 6 = Variable C-terminal domains (Eide et al., 2018; Germain et al., 2006; Zhao et 
al., 2015). 
 

Previous studies have shown that diverse chemicals found in the environment such as 

pharmaceuticals, pesticides and other synthetic molecules can mimic the endogenous 

compounds that bind to LBD in NRs and mediate signals leading to toxic responses (Grün et 

al., 2006; Janošek et al., 2006). There are several examples where interactions with e.g. 

pesticides have led to birth defects, cancer and developmental neurotoxicity through NRs 

(oestrogen and androgen receptor)(Huang et al., 2011; World Health Organization, 2002). GR, 

THRB and PPARG are central in mediating endocrine responses, but little is known regarding 

how they are affected for POPs, as well as their importance for whales. I will in this thesis focus 

on the three important NRs: glucocorticoid receptor (GR), thyroid hormone receptor (THRB), 

and peroxisome proliferated-activated receptor gamma (PPARG). The three nuclear receptors 

are through heat-shock proteins tethered in the cytoplasm of the cell, and when a ligand binds 

to the receptors it leads to recruitment of coregulators before releasing the receptor from heat-

shock proteins. This enables them to translocate and dimerize to the nucleus where they can 

positively or negatively regulate gene expression (Sever, 2013; Surma et al., 2015).   

 

1.5.1 Glucocorticoid receptor (GR)   

The GR is a nuclear receptor that is expressed in every cell type (in humans) and may affect 

responses in different tissues such as adipose, skeleton muscle and dermal tissues (Akner et al., 

1994; Bellingham et al., 1992; Carson-Jurica et al., 1990; Seckl et al., 2004). In the nucleus GR 

homodimerizes, where the actions of glucocorticoids upon a target gene is determined by a 

macromolecular complex with specific coactivator and corepressor proteins. GR is important 

in numerous physiological possesses such as adaptation to stress, behaviour, immune function, 

energy metabolism and reproduction (Jenssen, 2006; Wingfield et al., 2003). The release of 

1 2 3 4 5 6 

Nuclear receptor 
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glucocorticoids alters an organisms physiological state in response to environmental conditions 

(Ricklefs et al., 2002; Wingfield et al., 2003). The receptor is known to be activated by several 

steroids (such as fluorotrisol, dexamethasone, and cortisol), in addition to POPs such as the 

methyl sulfonyl metabolites of PCBs (Akner et al., 1994; Johansson et al., 1998) 

 

1.5.2 Thyroid hormone receptor (THRB)      

The THRB is also an important nuclear receptor that is bound to DNA resided inside the 

nucleus, and highly expressed in adipose and skeleton muscle tissue (Ribeiro et al., 2010). 

Generally, it is heterodimeric with the retinoid X receptor (RXR). THRB is central in normal 

brain development in addition to being involved in maintenance and development of the 

endocrine system (e.g. the thyroid gland) etc. (Sever et al., 2013). Interestingly, THRB has 

previously been shown to be an unintended target for several contaminants that humans and 

animals are continuously exposed to such as phthalates, PCB, BFR and benzo(a)pyrene (BaP) 

(Zhao et al., 2015; Zoeller, 2005).  

 

1.5.3 Peroxisome proliferated-activated receptor gamma (PPARG) 

Similar to THRB, PPARG is bound to DNA resided inside the nucleus, heterodimers, and is 

bound to ligands in the same way (Sever, 2013; Surma , Zielinski, 2015). In previous studies 

PPARG has been found to be most abundantly expressed in adipose tissue, but also in skeletal 

muscle (Vidal-Puig et al., 1997). The receptor is essential in pathophysiological and 

physiological events such as cell differentiation, in addition to having an important role in 

adipocyte differentiation, and lipid homeostasis (Morais et al., 2006), which previously have 

been shown to be activated by environmental contaminants such as PCBs and organochlorine 

pesticides (Routti et al., 2016) and bis(2-ethylhexyl) phthalate (DEHP) (Ernst et al., 2014). 

 

1.6 Aryl hydrocarbon receptor (AhR) 

AhR on the other hand differs from the NRs because it is a cytoplasmatic ligand-activated 

transcription factor and belong to a separate gene family. It regulates the expression of a 

diverse set of genes, e.g. CYP1A through binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) (Beischlag et al., 2008; Hahn, 1998). The receptor is a member of a family of 

transcription factors who have a bHLH and a PAS domain. When AHR is activated by a 

ligand, it translocates into the cell nucleus from the cytosol, at the same time as the 

chaperones p23, HSP90 and XAP2 are released (Tsuji et al., 2014). Inside the nucleus AhR 
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couples up with its heterodimeric partner aryl hydrocarbon receptor nuclear translocator 

(ARNT), often referred to as the aryl hydrocarbon receptor complex (Abnet et al., 1999; 

Andreasen et al., 2002). ARNT is also a bHLH-PAS protein that is necessary for the gene-

regulating activity of AhR (Brunnberg et al., 2003). The formed AhR-complex recognizes and 

binds to a xenobiotic response element (XRE) on DNA, which then activates gene 

transcription (Tsuji et al., 2014) (Figure 5). The activation of the receptor complex by a ligand 

regulates the expression of many enzymes involved in both phase I (CYP superfamily 

CYP1A in particular), phase II (GSTA2, UGTA1 and UGT1A6) and phase III of 

biotransformation (Ma, 2008; S. Xu et al., 2010).  

Figure 5 Schematic overview of ligand induced AhR-activation. AhR is located in the cytoplasm in 
a complex with HSP90, XAP2 and p23. When a ligand binds to the receptor it is translocated into the 
nucleus, where the cofactors are released and AhR dimerizes with ARNT. AhR-ARNT binds to XRE 
located upstream from the target gene e.g. CYP1A and initiates the transcription of the gene. CYP1A is 
for instance very important in the bioactivation of benzo(a)pyrene to benzo(a)pyrene-7,8-dihydrodiol-
9,10-epoxide. Based on figure from Alexander Klevedal Madsen (2016)(Madsen, 2016). 
 

The AhR signalling pathway is known to be activated by many different exogenous and 

endogenous substances, where the most common ligands for AhR are dioxins and dioxin-like 

substances (Denison & Heath-Pagliuso, 1998). These are mainly a group of polychlorinated 

varieties of dibenzofurans (PCF), biphenyls (PCB), and dibenzo-p-dioxins (PCDD), which are 

all halogenated aromatic substances (HAH) with anthropogenic origin and have planar 

configurations (Figure 6). Two of the most potent ligands are 2,3,7,8-TCDD and 6-
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formylindolo(3,2b)carbazole (FICZ), which have often been used as control agonists in 

experiments with AhR  (Beischlag et al., 2008; Ehrlich et al., 2018). The AhR is often 

associated with an organism’s response to environmental contaminants e.g. POPs. This makes 

the research of AhR thus more important, in a world with increasing amounts of POPs.  

 

  

 

 
 
Figure 6 Compounds known to activate the AHR- signalling pathway. AHR is known to 
be activated by numerous ligands such as 6-formylindolo[3,2-b] carbazole (on top) and 
dioxin/dioxin-like substances (at the bottom). Chemical structures from chemspider.com 
 

1.7 Studies of ligand activation of nuclear receptors and AhR 

The three nuclear receptors studied in this thesis have previously been analyzed in e.g.  rodents, 

polar bears and Baikal seals (Pusa sibirica) (Crofton, 2004; Johansson et al., 1998; Kim et al., 

2002; Routti et al., 2016; Xu et al., 1999). In similarity with the NRs there are also several 

previous studies conducted on AhR and ARNT e.g. in fish, seals and some toothed whales (Kim 

et al., 2005; Wilson et al., 2005; Zhou et al., 2010), but to my knowledge this is the first study 

that investigate the effects POPs have on blue and fin whales NRs (GR, THRB and PPARG) 

and AhR (Lühmann, 2018). 

 
To study the ligand activation of transcription factors, an in vitro reporter gene assay is often 

used (Hansson et al., 2008; Karchner et al., 2005). In this study I used a luciferase reporter 

6-Formylindolo[3,2-b]carbazole 
 

2,3,7,8-Tetrachlorodibenzo-p-dioxin 3,3',4,5,5'-Pentachlorobiphenyl  
 

2,3,7,8-Tetrachlorodibenzofuran 
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assay, and for the NRs, a Gal4/UAS-based system was employed. In this system a fusion protein 

of the DNA binding-domain (DBD) from the yeast protein Gal4, together with the functional 

ligand binding domain of the desired transcription factor is used. Plasmids encoding species-

specific nuclear receptor, together with a reporter gene (luciferase) and a control plasmid 

encoding β-galactosidase are transfected into an eukaryote cell line with COS-7 cells. The 

expression of reporter gene is controlled by one or several upstream activation sequences for 

Gal4 (UAS). When a nuclear receptor binds to a ligand it causes the Gal4-DBD- receptor-LBD 

fusion protein to bind to UAS of the reporter gene plasmid. This induces an expression of the 

reporter gene and gives a dose dependent response (Figure 7). One of the advantages with this 

reporter gene assay is that it is independent from the receptor’s natural partner protein and 

response element. This luciferase gene reporter assay has previously also been used to 

characterize the ligand binding and activation of nuclear receptors in for example polar bears 

(Lille-Langøy et al., 2015; Routti et al., 2016, 2019). 

 

Figure 7.  In vitro luciferase reporter gene assay. When a ligand binds to a nuclear receptor it causes 

the GAL4-DBD-NR-LBD binder UAS to bind to UAS. This induces an expression of the Luciferase 

and gives a dose dependent transcription factor activity. 
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The first time AhR was discovered as a transcription factor and receptor protein was in the 

1970s, where 2,3,7,8-TCDD was shown to induce cytochrome P450 (later identified as 

CYP1A1) in several different organisms (Poland et al., 1973). In a study conducted by Poland 

and co-workers binding of radioactive 2,3,7,8 TCDD in liver cytosol was detected (Poland et 

al., 1976). The DNA- binding and ligand-binding mechanisms, translocating of the receptor, 

and transcription of target genes of AhR was later discovered by Denison et al. (1984)(Denison 

et al., 1984). After the receptor had been isolated (making it possible to determine parts of the 

amino acid sequence), the cDNA-sequence was cloned for the first time (in mice)(Bradfield et 

al., 1991; Burbach et al., 1992). To enable ligand binding and activation studies different 

reporter systems were developed. Where different cell lines containing parts of the promoter-

region of human CYP1A and a stabile transfected luciferase gene, often referred to as a 

CALUX-system (Garrison et al., 1996; Murk et al., 1996; Postlind et al. , 1993). This was a 

revolutionary method enabling quantification and detection of dioxin like and other chemicals. 

The system has been improved and is now able to detect very low concentrations (picograms) 

of e.g. 2,3,7,8,-TCDD (Brennan et al., 2015; He et al., 2011; Zhao et al., 2010). 

To study the activation of AhR a similar in vitro gene reporter assay was used. Also, in this 

assay a cell line of COS-7 cells were transfected with plasmids containing the luciferase 

reporter gene, together with species specific AhR and ARNT, and the reporter gene 

(pGudLuc6.1 with 4x DRE) is under control of one or more response-elements for AhR e.g. 

CYP1A.  

1.8 Study species 

The studied species in this thesis are blue whales and fin whales, the two largest animals in the 

world. One of the first scientists to describe blue whales was Georg Ossian Sars (Sars, 1875). 

The blue whale was originally believed to be between 25-33 meters long and have later been 

proven to become more than 27 meters long and up to 120 tons, while fin whales grow up to 

22 meters and 80 tons  (Sars, 1875). These two species are truly giants of the ocean, both species 

are widely distributed throughout the world’s oceans. As mentioned earlier blue and fin whales 

are baleen whales (Mysticeti) and part of the family Balaenopteridae. They are distinguished 

from right whales (Eubalanea glacialis) by their slender body, the dorsal fin being placed at 

the far back, in addition to their long narrow flippers. Blue whale`s reach reproductive maturity 

at age 5-15, while fin whale around 6-8 years of age. Little is known about fin whale’s 

reproduction biology and season, but blue whales are suspected to mate late fall through winter 
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(October-March in the northern hemisphere, May-August southern hemisphere). Blue and fin 

whales are rarely seen in groups but communicate with one another through loud vocalizations 

that can be heard over large distances. The blue whale has one of the world’s largest “calls” 

which can be heard up to 1600 km away and is believed to help them navigate in the deep ocean 

(Hsu et al., 2013; Sears & Perrin, 2009; Whale, 2006). Despite blue and fin whale’s global 

distribution, there is little toxicological data on these species, including POPs.  

 

1.9 Aim 

As mentioned there is still a lot of gaps in our knowledge concerning the effect environmental 

contaminants have on important mechanisms within organisms (e.g. biotransformation (AhR), 

immune system (GR), brain development (THRB), lipid metabolism (PPARG) etc.), and these 

gaps continue to grow as long as new chemicals are being developed. This knowledge is 

required to be able to guide regulatory authorities to where strict chemical regulation is 

required, in addition to indicate what action is needed to best protect marine organisms and 

wildlife.  

 

In this thesis the effect of POPs on nuclear receptors and AHR activation in blue whale 

(Balaenoptera musculus) and fin whale (Balaenoptera physalus) were further investigated. In 

addition to this, phylogenetic analyses were conducted to understand the level of 

identity/similarity of the different nuclear receptor between species. The overall aim was to 

better understand the impact environmental contaminants such as POPs may have on 

transcription factors in these marine mammals. 

This was done with the following sub-goals: 

• Cloning of the coding DNA- sequence of AhR in blue whale 

• Analyse and compare the blue whale AhR sequence to other species 

• Verify an in vitro luciferase gene reporter assay with blue whale GR, PPARG, THRB, 

and AhR-ARNT  

• Study the agonistic effect of 5 POPs abundant in blue and fin whale blubber, in addition 

to a synthetic POP mixture on the three NRs and AhR.  
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2 Materials  

2.1 List of chemicals 
 
Table 2. Chemical list 

Name Producer 

10X Loading buffer TaKaRa 

2-log DNA Ladder New England Biolabs 

5-CFDA-AM Thermofisher Scientific 

Agarose Sigma-Aldrich  

Ampicillin-sodium salt  Sigma-Aldrich 

ATP (Adenosine 5'-trifosfat)  Sigma-Aldrich 

Boric acid Sigma-Aldrich 

Chloroform Sigma-Aldrich 

Coenzyme A Fisher Scientific 

Dexamethasone Sigma-Aldrich 

DDT, DDE, DDD Sigma-Aldrich 

DINP Sigma-Aldrich 

DEHP Sigma-Aldrich 

D-Luciferine firefly Biosynth 

DMSO Sigma-Aldrich 

Dulbecco’s Modified Eagle’s Medium 

(high glucose, with phenol red) 
Sigma-Aldrich 

Dulbecco’s Modified Eagle’s Medium 

(high glucose, without phenol red) 
Sigma-Aldrich 
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EDTA (Ethylenediaminetetraacetic acid 

disodium salt dehydrate) 
Sigma-Aldrich 

EGTA (Ethylene glycol-bis(2-

aminoethylether)- N, N, N’, N’-tetra 

acetic acid 

Sigma-Aldrich 

Ethanol Sigma-Aldrich 

Fetal Bovine Serum (FBS) Sigma-Aldrich 

6-formylindolo[3,2-b]carbazole (FICZ) Enzo 

Formamide Sigma-Aldrich 

GelRed Botium 

Isopropanol Sigma-Aldrich 

ONPG (2-Nitrophenyl β-D-

galactopyranoside)  
Sigma-Aldrich 

Opti-MEM. I Reduced Serum Medium  GibcoTM  

PCB 101 Sigma-Aldrich 

PCB 118 Sigma-Aldrich 

PCB 153 Sigma-Aldrich 

Penicillin-Streptomycin Sigma-Aldrich 

Phosphate-buffered saline (PBS) 10X Sigma-Aldrich  

PMSF (Phenylmethanesulfonyl fluoride)  Sigma-Aldrich 

Rosiglitazone Sigma-Aldrich 

SOC Outgrowth media New England Biolabs 

Tris Borate EDTA (TBE) Sigma-Aldrich 

3,5,3´-triiodothyronine (T3) Sigma-Aldrich 

TransIT®-LT1 Mirus Bio LLC 

Tri reagent Sigma-Aldrich 

Trypan Blue solution 0.4% Sigma-Aldrich 

Trypsin-EDTA Solution 1X Sigma-Aldrich 

Trypton Merck 
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Yeast extract Fluka 

β-Mercaptoethanol Sigma-Aldrich 

 

2.2 Solutions 
 
Table 3. Lysogeny broth – LB medium/LB agar 

Component Concentration (g/L) 

Sodium chloride (NaCl) 10  

Trypton 10  

Yeast extract 5  

Deionized H2O - 

(Agar) (15) 

Components were dissolved in deionized water and autoclaved for 20 min at 121℃ , and to 

prevent microbial contamination 100U/mL of ampicillin was added to the growth media before 

use. Agar was only used for the agar-plate, and not for the media. 

 

Table 4. Tris borate EDTA (TBE) buffer 5X 

 

 

Table 5. TBE Agarose gel 

Component Concentration (g/L) 

TBE buffer (5X) 0.5 X 

Agarose 0.4-1% 

 

 

 
 
 

Component Concentration (g/L) 

Trizma base  0.45 M 

Boric acid 0.45 M 

EDTA 0.01 M 

H2O - 
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2.3 Ligand activation assays 

Table 6.  Lysis buffer (1X) 
Component Concentration 
Tris-PO4, pH 7,8  25 mM 
Glycerol 15% 
CHAPS 2% 
L-α-Phosphatidylcholine  1% 
Bovine serum albumin 1% 

 
Table 7. Reaction solution lysis 
Component Concentration 
Lysis buffer 1X 
EGTA 4mM 
MgCl2  8mM 
PMSF 0.4mM 
DTT 1mM 

 
Table 8. β-galactosidase base buffer (10X)  

 

Table 9. Reaction solution β-galactosidase 

 
Table 10. Luciferase base buffer (4X, pH 7.8) 
Component Concentration 
Tricine 80 mM 
(MgCO3)4 • Mg(OH)2 • 5H2O  4.28 mM 
EDTA 0.4 mM 
MgSO4  10.68 mM 

 
Table 11. Reaction solution luciferase activity 
Component Concentration 
Luciferase base buffer (4X, pH7.8) 1X 
ATP  0.5 mM 
DDT 5 
Coenzyme A 0.15 mM 
Sodium luciferin 0.5 mM 
Deionised H2O - 

Component Concentration 
Na2HPO4  60 mM 
NaH2PO4  40 mM 
KCl 10 mM 
MgCl2  1 mM 

Component Concentration 
β-galactosidase base buffer (10X) 1X 
β-Mercaptoethanol 52.9 mM 
ONPG 8.6 mM 
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2.4 List of kits and cell-lines used 

Table 12. List of kits used 
Kit Supplier 
NucleoBond® Xtra Mini & Midi plasmid 
purification kit  

Macherey-Nagel  

NucleoSpin® Gel and PCR Clean-up kit  Macherey-Nagel  
StrataClone Blunt PCR Cloning Kit Angilent 

 
Table 13. List of cell lines used 
Cell line Supplier 
COS-7 cells Eukaryote expression (African green 

monkey)  
StrataClone Solo Pack competent cells  Prokaryote cloning (E. coli)  

2.5 Primers and Primers 
Table 12. Overview of the primers used in the PCR amplifications. Primers were designed based on 

the minke whale AhR sequence 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Use Sequence (5’-3’) ID 

AhR 

Amplification of 

5´-segment 

(AhRstart) 

F: GGAAAGCTTATGAACAGCAGCAG MT1738 

R: CTTGTTGCATCATGGCATTC 

R: GGCCAATCTGCTCATGTTTC 

MT1781 

MT1782 

Amplification of 

3`- segment 

(AhRend) 

F: ATCCCAGTTCCCTCCTGAAT 

F: ATGTTGCACCAATGGGAAGT 

F: AGGATTCCCTCAATCCCAGT 

MT1783 

MT1784 

MT1785 

R: CCTCTCGAGTTACAGGAATCCAC MT1737 
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Table 13. Overview of the plasmids used in the luciferase gene reporter assays. 

 Concentration (ng/μL) A260/280 

pCMX_whale THRB 1027 1.86 

pCMX_whaleGR 1013 1.89 

pCMX_whalePPARG 1659 1.88 

pCMX_whaleAhR 765 1.84 

Human-Arnt 3388 1.93 

(MH100)x4 tk luc 2322 1.92 

pCMV_BGAL 2365/1497(AhR) 1.90 

ppGudLuc6.1  
 

1216 1.87 

 
Table 14. overview of the plasmid mixes created for the transfections in the luciferase gene 
reporter assays.       

Reactions 
 

Whale GR 1 1000   
  ca 

1:20 
Plasmid CpDNA 

(ng/μL) 
mpDNA       
(ng) 

VpDNA       
(μL) 

VpDNA       
(μL) 

 

 
(MH100)x4 tk luc 2322 48.75 0.021 20.99 

 
 

pCMV-BGAL 2365 48.75 0.021 20.61 
 

 
pCMX_whaleGR  1013 2.50 0.002 2.47 

 
 

100.00 0.044 44.08 
 

 
Add MQ-H2O 55.92 μL   

Total volume 100.00 μL  
Concentration 1000.0 ng/μL 

 
 

Whale THR 1 1000   

  ca 
1:20 

Plasmid CpDNA 
(ng/μL) 

mpDNA       
(ng) 

VpDNA       (μL) VpDNA       
(μL) 

 

 
(MH100)x4 tk luc 2322 48.75 0.021 20.99 

 
 

pCMV-BGAL 2365 48.75 0.021 20.61 
 

 
pCMX_whaleTHR  1027 2.50 0.002 2.43 

 
 

100.00 0.044 44.04 
 

 
Add MQ-H2O 55.96 μL   
Total volume 100.00 μL  

Concentration 1000.0 ng/μL 
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Whale PPARG 1 1000   

  ca 
1:20 

Plasmid CpDNA 
(ng/μL) 

mpDNA       
(ng) 

VpDNA       (μL) VpDNA       
(μL) 

 

 
(MH100)x4 tk luc 2322 48.75 0.021 20.99 

 
 

pCMV-BGAL 2365 48.75 0.021 20.61 
 

 
pCMX_whalePPAR 1659 2.50 0.002 1.51 

 
 

100.00 0.043 43.11 
 

 
Add MQ-H2O 56.89 μL   
Total volume 100.00 μL  

Concentration 1000.0 ng/μL 
  

Reactions 
  

Whale AhR 1 300   300 
1:10 Plasmid CpDNA 

(ng/μL) 
mpDNA       
(ng) 

VpDNA       
(μL) 

VpDNA       
(μL) 

  

 
GudLuc 1B 1216 30,00 0,025 7,40 

 
7,40  

pCMV-
BGAL 

1497 20,00 0,013 4,01 
 

4,01 
 

Human Arnt  3388 6,00 0,002 0,53 
 

0,53  
Whale AhR 765 3,00 0,004 1,18 

 
1,18  

pcDNA 2 1213 41,00 0,034 10,14 
 

10,14   
100,00 0,078 23,26 

 
23,26    

100,00 Add MQ-
H2O 

6,74 μL  6,74 
    

Total volume 30,00 μL 30,00     
Concentration 1000,0 ng/μL 1000,0 

2.6 Software and online tools 

Table 15. List of software and online tools 
Software Application Provider 
Clustal Omega Sequence alignments EMBL-EBI 
Ensembl Genome database (Cunningham et al., 2014) 
Excel version 16.28 Data treatment and statistics Microsoft 
Jalview Visualization of alignments (Waterhouse et al., 2009) 
Mega 7 Phylogenetic analyzes (Tamura et al., 2013) 
PowerPoint version 16.28 Figures Microsoft 
Prism 8 Figures GraphPad 
UniProt Protein database (Consortium, 2014) 
ExPASy Translate tool Sequence translation SIB Bioinformatics 

2.7 List of equipment 

Table 16. List of equipment 
Equipment Application Provider 
Bürker haemocytometer Cell counting Marienfeld  
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ChemiDocTM XRS+ 
System 

Gel scan Bio-Rad 

DOPPIO Thermal Cycler PCR Thermo Cycler VWR 
EnSpire 2300 Multilabel 
Reader 

Plate reader PerkinElmer 

G:BOX Gel doc imaging system Syngene 
HS 501 Digital Platform shaker IKA-Werke 
NanoDrop 1000 Spectrophotometer Thermo Scientific 
PowerPacTM HC High-current power supply Bio-Rad 
Thermomixer compact Heatblock Eppendorf 
Z 216 MK microliter 
centrifuge 

Centrifuge Hermle 

Chromato-vue TM-20 
transilluminator  

Agerose gel visualization UVP, San Gabriel 

 

2.8 Chemicals 
In this study nine different chemicals were used as ligands. PCB 153-101-118, 3,5,3´-

triiodothyronine (T3), dexamethasone, and rosiglitazone were purchased from Sigma Aldrich 

(St. Louis, Missouri), while pp´-DDT, pp´-DDE, pp´-DDD from Chem Service (West Chester, 

Pennsylvania). The test compounds were dissolved in dimethyl sulfoxide (DMSO), except 

dexamethasone (water). The final concentration of solvent (DMSO) in exposure solutions was 

0.5 % (v/v). The two phthalates DINP and DEHP were also purchased from Sigma-Aldrich. 

 

2.9 Synthetic mixture 
To be able to simulate the actual exposure situation in whales in the best way possible, a 

synthetic mixture was prepared. The mixture consisted of the 4 most abundant POPs (table17) 

(hexachlorobenzene, trans-nonachlor, PCB 153 and PCB 158) measured in blue and fin whale 

blubber. The POPs concentrations in the synthetic mixture were based on measured blubber 

concentrations from 28 blue and fin whales collected outside of Svalbard between 2014-2017 

(Tartu et al., in preparation 2019). 

 

 
Table 17. Chemical composition of synthetic POPs mixture(200X). 

Chemical Concentration (uM) 
Hexachlorobenzene 3840 
Trans-nonachlor 2760 
PCB-153 2280 
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3 Methods 

To enable ligand activation studies of blue whale and fin whale GR, THRB, PPARG and AhR, 

several preparatory steps were conducted (Figure 8). The result from each step was quality 

controlled, before continuing to the next step. In brief, RNA was extracted from blubber 

samples taken outside of Svalbard (2014-2018), concentrations of different contaminants were 

analysed in the blubber samples. Further, the AhR receptor was cloned from RNA and later 

used in a luciferase gene reporter assay and in sequence analysis. In addition, three previously 

cloned NRs were studied with a luciferase gene reporter assay, in order to investigate their 

transcriptional activity triggered by different ligands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 8. Workflow overview. Blue whale tissues were collected and homogenized. RNA was 
extracted and transcribed into cDNA by reverse transcriptase. The AhR encoding genes were 
amplified in two fragments by PCR, using the cDNA as template. Amplified genes fragments 
were then cloned by transforming E.coli cells. To confirm that the right genes fragments had 
been cloned a PCR screen and sequencing was conducted. The fragments were then ligated 
together. Successfully amplified plasmids containing the desired receptors, were then used in a 
luciferase-gene-reporter assay, to conduct activation analysis of different environmental 
contaminants in vitro. A cell viability assay was used to investigate if any of the tested 
chemicals had cytotoxic effects, at the concentrations used in the gene-reporter assays. 
Statistical analysis of the result was the finishing step of this study. 
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3.1 Biopsy sampling of blue whales 

Blue whale biopsies where collected in Isfjorden at Svalbard between August-October 2014-

2018. The samples were taken with a crossbow from approximately 20 meters or less away. 

The arrow had a hollow tip (biopsy needle) and a floating element attached to the end, with a 

rope connecting the top of the arrow to the crossbow, to prevent biopsy losses (Figure 9). The 

samples were removed from the tip of the arrow and divided into several pieces. These were 

then placed in individual tubes containing RNAlater. The tubes were kept at 4℃  for 

approximately 24 hours, before being stored at -80℃ until RNA extraction. 

 

 
 

 
Figure 9 Blubber sampling of blue whale. 18 blue whale and 12 fin whale samples were 
collected around Svalbard from August- September 2014-2018. The samples were taken with 
a biopsy arrow, with a rope attached to it. Photo: Karoline A. Viberg, Toxicphotos.com 

Karoline A Viberg Toxicphotos.com 

A 

B 

Karoline A Viberg Toxicphotos.com 
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3.2 RNA isolation  

In this study, we only used samples of blue whale blubber collected in 2018 for RNA extraction. 

RNA was extracted from blue whale biopsies (blubber and skin) using TRI-Reagent® (Sigma-

Aldrich) according to the protocol recommended by the producer. This method is an improved 

version of the original RNA extraction method developed by Chomczynski  in 1987 

(Chomzynski & Sacchi, 1987). TRI-Reagent® consists of isothiocyanate, phenol, and 

guanidinium, which denatures protein and dissolves biological material, while the RNA 

remains intact by inhibiting RNAse activity. The RNA used in this thesis was extracted from 

two homogenized blue whale blubber samples (Method 3.1). Sample #1 was mainly adipose 

tissue, sample#2 was a mix of adipose tissue and skin. In each sample 50µg blue whale blubber 

was homogenized with TRI-Reagent® and chloroform was added to phase-separate the 

samples, before being centrifuged at 12000g for 15 min at 4℃. The centrifugation creates three 

different layers containing RNA in the aqueous phase, DNA in the interphase, and proteins in 

the lower organic phase (Figure 10).  

 

Figure 10. Schematic overview of a blue whale blubber sample post homogenization, 
centrifugation, and addition of Tri-Reagent®. The extraction process results in blue whale tissue 
being separated into three different phases. The first phase contains RNA, the interphase contains DNA, 
and the lowest phase contains proteins. 

To extract the RNA the supernatant was carefully removed into a new microcentrifuge tube, 

and added 0,5 mL isopropanol (100%), before subsequent centrifugation. The pellet created by 

the centrifugation was washed with ethanol (75%), placed sideways to air dry, before being 

resuspended in deionized water. The purity and concentration of the RNA was measured with 

a spectrophotometer (Method 3.3.1), and an agarose-gel-electrophoresis (AGE) (Method 3.3.2) 

was used to assess the integrity of the RNA. The RNA was then stored at -80℃ untill further 

use. 
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3.3 Quality control of RNA 

After the RNA had been extracted from the blue whale blubber samples, its quality was 

ensured through several steps. 

 

3.3.1 NanoDrop – Spectrophotometric Measurements  

The purity and concentration of DNA and RNA used in this study was measured with a 

Nanodrop1000 spectrophotometer (A260nm/A260/280-ratio, Thermo Scientific). DNA and 

RNA concentrations are found by measuring the ultraviolet absorbance at 260 nm. The purity 

of  DNA and RNA may be evaluated by the ratio between the absorbance at 260/280 nm, and 

230/260 nm (Okamoto & Okabe, 2000). An A260/280 ratio between 1.8-2.0 indicates a pure 

DNA or RNA, however the A260/280 ratio may also be influenced by the ionic strength and 

pH of the spectrophotometric solution, a low A260/230 value indicates a low contamination of 

phenol and proteins (Wilfinger, Mackey, & Chomczynski, 1997).  

3.3.2 Agarose gel electrophoresis  

After the concentration was measured and the purity established an agarose gel electrophoresis 

(AGE) was used to control the integrity of the RNA, this method was also used after several 

other steps later in this study. Depending on the number of nucleotides in the molecules, the 

agarose concentration in the gel in this study varied from 0,5% - 0,8% (2000-3000 nucleotides). 

To visualize the samples a colour substance (GelRed) was added to the gel, before being poured 

into the electrophorese chamber, and covered with Tris-borate-EDTA 0,5 buffer (TBE). Before 

the samples were loaded a 10x loading buffer was added. The loading buffer increases the 

density of the samples and makes them sink to the bottom of the well (not used for AGE of 

dreamTaq PCR, because the loading buffer is already in the PCR buffer). To know the size of 

the nucleotides a 2LOG DNA-Ladder (NEB) with a known size was used as a size reference. 

The gel was run for 35-45 minutes (depending on the size of the sample) at 110 volts.  A gel 

DocTM EZ imager (Bio-Rad) was used to photograph the gel, to visualize the different bands 

on the gel. 

3.3.3 RNA electrophoresis  

To measure the quality of the total RNA the AGE had to be specialized for RNA. The highest 

percentage of the RNA is ribosomal RNA (rRNA) (>80%), consisting of mainly 28S and 18S 

subunits, which are mainly what are visible on an agarose gel. The RNA quality was assessed 

by separating 200 ng of each sample (sample#1 & sample#2) totalRNA in a 0.75% agarose gel. 
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Next, deionized H2O, 10x loading buffer and formamide (50% formamide) were added to the 

samples. Formamide is added to disrupt secondary structures, and to denature the total-RNA, 

the samples were then heated in a water bath with 70℃ for 10 minutes, before being loaded on 

to the gel and run for 45 minutes with 110 volts. 

3.4 cDNA synthesis 

From the quality-controlled RNA blue whale-cDNA was synthesized by using the 

SuperScript® IV Reverse Transcriptase (Invitrogen) method. Blue whale-cDNA was later used 

as template in the polymerase chain reactions (PCR) (RNA- complimentary DNA) (Ochman et 

al., 1988). In the SuperScript® IV Reverse Transcriptase (Invitrogen) kit, there was used a 

reaction mix of dNTP, Oligo d(T)20 primer, mRNA (500ng) and nuclease free water (table18). 

Oligo d(T)20 primer are oligonucleotides made from thymine bases, who can hybridize to the 

poly-A tail of mRNA. The reverse transcriptase enzyme uses mRNA transcripts as template, 

and together with oligo d(T)20 primers the cDNA strands can be synthesized. The cDNA 

reaction solution was prepared according to table 13. Prior to addition of the enzyme, RNA was 

denatured by being heated for 5 minutes at 65°C using a Thermo Cycler (DOPPIO Thermal 

Cycler with dual 48 well blocks, VWR), then placed on ice for 1 minute.  

 

Table 18 Reaction solution for reverse transcription 

Component Concentration/Amount 

Total RNA 500 ng 

Oligo d(T)20 primer 500ng 

Deoxynucleoside triphosphate (dNTP) mix 0.5mM 

Nuclease-free water à13 µL 

 

The Reverse Transcriptase reaction solution (RTMix) was made accordingly to table 19 and, 

combined with the RNA-mix, the mix was then incubated for 30-60 minutes at 50°C, and 10 

minutes at 80°C in the Thermal Cycler. The cDNA was used immediately in a PCR reaction or 

stored at –20°C until further use. 
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Table 19 cDNA synthesis mix for reverse transcription 

Component Concentration/Amount 

5X SuperScript® IV Buffer 4 µL 

100 mM DTT 1 µL 

SuperScript® IV Reverse Transcriptase 1X (1 µL) 

  

3.5 Amplification of blue whale AhR by polymerase chain reaction (PCR)  

When the cDNA-template was successfully synthesized PCRs could be performed. In this 

thesis, PCR was used to amplify and isolate the genes encoding for blue whale AhR and ARNT. 

Every cycle included three steps:   

1 Denaturation; at 98°C to break any hydrogen bonds between the base pairs. 

2 Annealing; to allow the primers to anneal the template strands by forming hydrogen 

bonds the temperature was lowered. 

3 Extension; the temperature was then raised to the optimum temperature of the DNA- 

polymerase, to allow the primer sequences to facilitate the starting point of where DNA-

polymerase should assemble the dNTP 

The first fragment of AhR (AhR start=nucleotide 1-1551) had already been amplified by PCR 

using blue whale-cDNA as template. To complete the full blue whale AhR-sequence 

(AhRTotal=nucleotide 1-2563) an overlapping fragment AhR end (AhRendnucleotide 1542- 2563) 

consisting of an overlapping fragment of AhRstart & AhRend in addition to the remaining 

nucleotides. AhRend was amplified in the same manner AhRstart. 

 

The PCR reactions were set up and run in thermal cycles according to the producer’s 

instructions, using a Thermal Cycler (DOPPIO Thermal Cycler with dual 48 well blocks, 

VWR)(Table 20). 

 
Table 20 PCR thermal cycle program. 
Cycles  Temperature Duration 

 Initial denaturation 95°C 2 minutes 

35 

Denaturation 95°C 30 seconds 

Annealing 55°C 30 seconds 

Extension 72°C 1 minute/kb 

 Final extension 72°C 5 seconds 
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3.6 Purification of PCR products by gel extraction  

To make sure that the PCR resulted in the desired product, the PCR products were separated 

and analysed by AGE (3.3.2). The DNA fragments where made visible by using UV-light 

from a chromate-vue TM-20 transilluminator (UVP, San Gabriel). The bands of the expected 

size for the desired product was cut out of the gel and purified using NucleoSpin® PCR and 

Gel clean-up kit (Macherey-Nagel) according to the producer’s instructions. 

3.7 Molecular cloning  

To replicate large amounts of recombined DNA (rDNA) in vivo, a plasmids ability to replicate 

separately from bacterial chromosomal DNA was used to transform rDNA into a prokaryotic 

host cell. The rDNA was constructed in vitro by combining the PCR products with a cloning 

vector using StrataClone Blunt PCR cloning kit (Agilent), based on the producer’s instructions. 

 

3.7.1 PCR cloning 

The first step in the cloning process was to ligate the AhR fragments into the StrataClone Blunt 

PCR Cloning Vector with a Topoisomerase I ligase, forming phosphodiester bonds creating a 

linear vectororiAhR vectoramp/kan(Fig 7)(Table 21). 

 

 
Figure 11 Linear Strata Clone Blunt PCR Cloning Vector (pSC-Bamp/kan). The AhR PCR product 
is ligated into the cloning vector between two multiple cloning sites. Source: StrataClone Blunt PCR 
cloning kit (Agilent) Manual. 
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Table 21 StrataClone Blunt PCR cloning kit (Agilent) – Ligation mix 

Component Volume 

StrataClone Blunt Cloning Buffer 3.0 µL 

Purified PCR product 0.5 µL 

StrataClone Blunt Vector mix 1.0 µL 

 

The buffer and the vector mix were added together in a master mix, before the PCR template. 

This was then incubated at room temperature for 5 minutes and subsequently put on ice. 

 

3.7.2 Transformation of E. coli 

To transform the StrataClone solo pack competent Strataclone-E.coli, with the PCR products 

from the ligation mixture a heat-shock procedure was conducted. In this method, transformation 

reactions were heat-shocked 42°C for 45 seconds and then transferred directly on ice, causing 

changes in the fluidity of the cell membrane enabling bound DNA to be taken up in the cells. 

Prior to being used the StrataClone-E.coli cells had been treated with a salt solution to make 

them susceptible for extracellular DNA, they are also transiently expressing Cre recombinase, 

which mediates the recombination of the linear StrataClone Blunt PCR Cloning Vector (pSC-

Bamp/kan) into a circular plasmid (Figure 12). 

Figure 12 Circular StrataClone Blunt PCR cloning vector (pSC-B-amp/kan). Source: 

StrataClone Blunt PCR cloning kit (Agilent) Manual. 

 

The heat-shocked bacteria were added 150 µL pre-heated (42°C) SOC-media and incubated for 

1 hour at 37°C at 300 rpm, before being plated onto selective lysogeny-broth-agar (LB-Agar) 

containing ampicillin (0.1 mg/mL) in petri dishes. The plates were then incubated at 37°C for 
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24 hours. 

3.7.3 Identification of positive transformants by PCR screening  

After the plating and incubation of the transformed cells, single colonies were grown on LB-

media containing ampicillin to ensure that only the bacteria that had acquired recombined 

plasmid DNA from step 3.7.2. (and thus, containing the ampicillin-gene making the antibiotic-

resistant) survived. Even though the cells contained the plasmid, it is not certain that they 

contained the insert of interest. It is for instance possible that the vector re-ligated without the 

DNA. To control for this, a PCR screening of single colonies with primers that bind to the 

cloning vector of each side of the insert was conducted with DreamTaq DNA polymerase 

(Thermos Scientific) according to table 22. The colony PCR-products where evaluated with 

AGE (Method 3.3.2), and the colonies containing the cells with the desired DNA-fragment 

where selected and inoculated in liquid LB-media (with 0.1 mg/ml ampicillin) at 37°C for 24 

hours at 250 rpm, before the plasmids where purified (Method 3.10) and verified by sequencing 

(Method 3.11). 

Table 22 Reaction solution for PCR screening of colonies using DreamTaq DNA polymerase 

Component Concentration/Amount 

Template Appr. 1-2 colony 

dNTP 200 µM 

Forward and reverse primer 0.5 µM 

DreamTaq buffer 1X 

DreamTaq DNA polymerase  5 U/µL 

Deionized water à20 µL total volume 

The PCR screen was run in thermal cycles (table 23) using a Thermal Cycler (DOPPIO Thermal 

Cycler with dual 48 well blocks, VWR). 

Table 23 Colony PCR thermal cycler program 

Cycles  Temperature Duration 

 Initial denaturation 95°C 2 minutes 

35 

Denaturation 95°C 30 seconds 

Annealing 55°C 30 seconds 

Extension 72°C 1 minute/kb 
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3.8 Small-scale plasmid purification  

After the PCR cloning and before sequencing and construction of plasmids, a purification of 

plasmid DNA was performed according to the producer’s protocol. In this thesis, small-scale 

plasmid preparation (mini prep) was used (NucleoSpin® Plasmid easy pure kit). The cells 

where then lysed to destroy the cells and desaturate DNA. Further a neutralizing buffer was 

added to the lysate, to separate cell wall debris, and desaturated chromosomal DNA from the 

bacteria, and proteins from the plasmid-DNA (that has regained a double-twisted configuration 

making it possible to separate it from other cell components). To ensure the binding of plasmid-

DNA to the silica membrane, the membrane was washed with a buffer supplemented with 

ethanol (EtOH). This also removes leftover lysate and other impurities. The plasmidDNA 

(pDNA) was then released from the membrane and eluted by adding an elution-buffer. The 

concentration of the pDNA was then measured spectrophotometrically with Nanodrop1000 

(A260nm/A260/280-ratio, Thermo Scientific). 

 

3.9 Sequencing 

The cloned and purified plasmid DNA was then sequenced by the sequencing facility at the 

department of biological sciences, University of Bergen. This laboratory uses an automated 

Sanger DNA- sequencing with a 3730XL analyzer (Applied BiosystemsTM). The sequencing is 

based on amplifying the DNA of interest by using a mix of deoxynucleotides and fluorescence 

labelled dideoxynucleosides (dNTPs). The dNTPs lack a 3`-hydroxyl group required for 

elongation of DNA-molecule and insertion of dNTPs causes the polymerization to terminate. 

A random adding of dideoxynucleosides creates fragments of different sizes that are separated 

by electrophoresis and detected by using fluorescence. The dNTP finalizes every fragment, and 

the nucleotides position can be decided based on the size of these fragments. It is possible to 

sequence approximately 900 base pairs in each reaction, if the fragment is longer several 

primers had to be used. Before being delivered to the sequencing laboratory for further analysis, 

the purified plasmids from 3.8 where amplified according to the Big-Dye terminator v 3.1 

protocol described in table 24 and run in thermal cycles (DOPPIO Thermal Cycler with dual 

48 well blocks, VWR) (table 24 & 25). 
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Table 24 BigDye terminator v 3.1 protocol for DNA-sequencing. 

Component Concentration/Amount 

DNA template 200 ng 

Big-Dye sequencing buffer 1X 

Forward and reverse plasmid/fragment specific primers 3.2 pmol 

Big-Dye 3.1 1 µL 

Deionized water à10 µL total volume 

After the reaction 10 µL of deionized water was added to the reactions, before sequencing was 

performed. 

 
Table 20 Thermal cycle program for DNA-sequencing 

Cycle  Temperature Duration 

 Initial denaturation 96°C 5 minutes 

35 

Denaturation 96°C 10 seconds 

Annealing 50°C 5 seconds 

Extension 60°C 4 minutes 

 

3.10 Measuring activation of TFs by luciferase assay  

When the desired receptors had been successfully cloned and sequenced, I continued with 

measuring the transcriptional activation of AhR, GR, THRB and PPARG. A luciferase gene 

reporter assay was used to study all the different transcription factors, but there are a few 

differences between the assays used with AhR compared to the assays used with the NRs. 

 
3.10.1 Measuring activation of NRs by GAL4-UAS based luciferase assays  

To study blue whale GR, THRB, and PPARG ability to be activated by different environmental 

contaminants was tested in vitro in a COS-7 simian kidney cell line, with a UAS/GAL4-DBD 

based luciferase reporter gene assay. The COS-7 cells are co-transfected together with a 

luciferase reporter plasmid, that is further regulated by a thymidine kinase promoter together 

with a Gal4-Upstream activation sequence, in addition to the desired receptor (GR, THRB, and 

PPARG) (Paguio, Stecha, Wood, , Fan, 2010) (Figure 13). Luciferase activity was measured 

as luminescence and reflect the level of transcription activity induced by the test compounds 
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via the different nuclear receptors in the transfected cells. The amount of luciferase is thereby 

dependent by the degree of TF activation (Brasier et al., 1988).  

 

Figure 13 Schematic overview of the principle behind ligand activation experiments using the 
Gal4-DBD/UAS-system.  Plasmids with reporter-gene (luciferase) and receptor-gene (GR, THRB & 
PPARG) are transferred to COS-7 cells by transfection. The resulting fusion protein of GAL4-DBD and 
NR-LBD can be activated by ligand binding. Gal4-DBD binds to UAS located upstream from the 
luciferase-gene, which induces the expression of luciferase. Luciferase catalyses the transformation of 
luciferin to oxyluciferin, producing light that can be quantified. 

 
3.10.2 Measuring activation of AhRs by luciferase assays  

Unlike the Gal4 system where only the hinge and LBD of the desired NR is used, the AhR 

system uses the entire receptor. The reporter plasmid is also a bit different, instead of having a 

response element with an UAS (upstream activation sequence) that is recognized and binds to 

Gal4-DBD (DNA binding domain) the AhR- system contains a promotor with DRE-response 

elements, in addition to ARNT. Even though the Gal4-system is able to demonstrate 

activation of NRs, the AhR- system is closer to the in vivo situation due to its utilization of the 

entire receptor and not just the hinge-LBD. 

 

3.10.3 Cultivation of COS-7 cells 

The first step to establishing the luciferase gene reporter assays is to cultivate COS-7 cells. The 

cells used in this study had been stored in a freezing media in liquid nitrogen until used. After 

the cells were thawed, and 10mL growth media was added (DMEM-10% FBS, table 3) before 

they were centrifuged at 250xg for 5 minutes to remove dimethyl sulphoxide from the freezing 
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medium. Next, the excess media was removed, and the pellet resuspended in 10 mL growth 

media, and finally seeded out on to cultivation plates before incubation 37 °C in 5 % CO2. 
When the cells had a confluency between 70-80% they were split. The sub-culturing of the cells 

was done by removing the growth media, washing with 1X PBS (pH 7.4) twice, and treating 

the cells with trypsin-EDTA (0,05 % trypsin, 0,02 % EDTA) for 1 minute at RT. The trypsin 

was then removed, and the cells incubated at 37 °C in 5 % CO2 for 5 minutes. The trypsination 

dissociates the cells from the bottom of the petri dish enzymatically, this allowed us to 

resuspend the cells in fresh growth media and split them into new petri-dishes with the desired 

dilution, which in this study was 1:20 for GR, THRB and PPARG, and 1:20 for AhR. All 

handling of the COS-7 cell cultures were done implementing sterile techniques. 

3.10.4 Cytotoxicity assay  

To make sure that the different compounds tested did not have cytotoxic effects on COS7 

membrane integrity and metabolic activity, cytotoxicity assays were preformed according to 

the method developed by Schreer et al. (Schreer et al., 2005). The membrane integrity was 

measured using fluorogenic dye 5-carboxyfluorescein diacetate (CFDA-AM, Sigma Aldrich), 

and metabolic activity was measured by the fluorescence indicator dye resazurin. As a positive 

control in the cell viability assay Triton X-100 a non-ionic detergent that solubilizes membrane 

proteins was used, a chemical known to be cytotoxic for mammalian cells. Three independent 

experiments with three replicates per chemical was performed. 

 

3.10.5 Luciferase reporter gene assay - seeding of COS-7 cells  

The COS-7 cells cultivated in 3.10.3 where harvested at 70-80% confluency through 

trypsinization as described above (3.10.3), before being resuspended in 10 mL fresh growth 

media. The cell density was determent by counting the cells in a hemocytometer (Marienfield) 

under a microscope (Leica DM IL inverted microscope). A mix of 100 µL trypan blue (an azo 

dye to colour the cells) and 100 µL cell suspension was loaded onto the hemocytometer to 

determine the cell density and the further dilution to obtain the desired number of cells (10000 

cells/well total). 100 µL of growth media with a known (0.1 cells/mL) cell density was added 

to each well in 96 well plates, and subsequently incubated at 37°C in 5 % CO2 for 24 hours. 

 

3.10.6 Luciferase reporter gene assay – transient transfection of COS-7 cells 

After the cells 24h incubation the desired plasmids were transfected into the cells. During a 

transfection exogenous DNA is introduced into a eukaryotic cell, but it is not incorporated into 
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the cell’s genomic DNA and will therefore only remain there for a couple of days. Due to this 

the luciferase reporter gene assay was terminated the second day after transfection. The 

transfections were performed essentially as described by the producer with the following 

adaptations: 

After the 24 hour incubation, the growth media was removed, and the cells where added a mix 

of reduced media (Opti-MEM I) and DMEM-10%FBS, in addition to plasmid (receptor-

plasmids used in this study were constructed by Lene Øygarden and Roger Lille-Langøy in our 

lab (Table 7)) and transfection reagent (TransIT-LT1 (Mirus Bio))(Table 21). The transfection 

reagent is made from a mix of proteins, lipids and polyamines that facilitate transport of 

plasmid-DNA over the cell membrane. The relationship between the receptor plasmid and 

reporter plasmid 1:20 (Table 7&8 overview of the plasmids used in the luciferase assays). The 

plasmid-DNA was added TransIT-LT1 reagent and diluted with Opti- MEM I, before being 

incubated for 30 minutes at room temperature, then added DMEM-10% FBS. After adding the 

transfection mix and the growth media the cells where incubated at 37°C in 5 % CO2 for 24 

hours. 

 
Table 21 Transfection mixture protocol using TransIT-LT1 
Component Amount per well (96 well plate) 

Opti-MEM I 9.0 µL 

Plasmid mix [1000ng/ µL] 0.1 µL 

TransIT-LT 1 0.2 µL 

Cell growth media (table 2) 92 µL 

The plasmid mix was created based on the relationships described above and the plasmids 
concentration (Materials Table 8). 
 
3.10.6.1 Reporter and control plasmids  

 In this study the reporter plasmids mh(100)x4 tk luc (GR, THRB, PPARG) and  PGudLuc6.1 

(AhR) was used (Azam et al., 1995) (table 7), in addition to the control plasmids (pCMV-β-

Gal). the reporter and control plasmids were prepared from glycerol stock solutions (kept at -

80 °C) of previously transformed E. coli cells. Overnight cultures were made, and plasmids 

purified the next day through midi-prep (3.10).   

 

3.10.7 Luciferase reporter gene assay – Exposure to test compounds 

The transfection was terminated (after 24 hours) by the removal of the transfection media and 

addition of exposure medium. All the different exposure medias consisted of test compounds 
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(Table 22 & 23) dissolved in DMSO and diluted by desired concentration in DMEM-10% 

csFBS (Charcoal stripped fetal bovine serum (has had non-polar materials removed 

Thermofisher, without phenol red). The concentrations of the control agonists for GR, THRB 

and PPARG are shown in table 22. 

 
Table 22 An overview of the different concentrations of the control agonists used in the exposure 
studies of blue whale GR, THRB, and PPARG.  The table represents a 96 well plate, three replicates 
of each known agonist were used. 
 GR THRB PPARG 

 Dexamethasone (nM) T3 (nM) ROSI (nM) 

 Rowà 1 2 3 4 5 6 7 8 9 

A 200 120 50000 

B 100 60 25000 

C 20.0 12 5000 

D 4.0 2.4 1000.0 

E 0.8 0.5 200.0 

F 0.16 0.1 40.0 

G 0.032 0.02 8.0 

H DMSO DMSO DMSO 

 

To dilute the ligands a dilution line A-G was made in a 96 well plate with five times dilution 

between each row. The last row (H) was used as a non-exposed control and contained only 

DMSO. Row A-H was made with a 2x concentration of the final concentration of ligand and 

DMSO. The 2X ligand solutions were diluted 1:1 in the wells of the culturing plates. The final 

concentration was made by adding 100 μL from row the dilution in row A to100 μL DMEM-

10% csFBS in every well on the cell plate. The cells where then exposed at 37°C in 5 % CO2 

for 24 hours. 

 

The concentrations of the different compounds and synthetic POP mixtures used in this study 

is listed in Table 23 and were based on chemical analysis of blue and fin whale blubber 

conducted by Tartu et al. (Tartu et al. in preparation, 2019). 

 
Table 23 An overview of the different compound-concentrations used in the exposure studies of 
blue whale GR, THRB, and PPARG.  Three replicates of each compound were used. 
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PP`DDT 

(nM) 

PP`DDE 

(nM) 

PP`DDD 

(nM) 

POPs-mix 

(nM) 

DEHP (nM) DINP (nM) 

50000 50000 50000 200 50000 50000 

25000 25000 25000 100 25000 25000 

5000 5000 5000 10 5000 5000 

1000 1000 1000 2 1000 1000 

200 200 200 1 200 200 

40 40 40 0.5 40 40 

8 8 8 0.1 8 8 

DMSO DMSO DMSO DMSO DMSO DMSO 

DMSO = 0mM of the test compound 

3.10.8 Luciferase reporter gene assay – Luciferase and β-galactosidase measurements  

After 24h the exposure media was removed, and 125 μL non-denaturation lysis reagent was 

added to the wells (table 7). The lysis solution inhibits protease activity, dissolves cell 

membranes, and stabilizes proteins. The well-plate was then incubated for 30 minutes at room 

temperature on a “shaker”, before 50 μL lysate was transferred onto two different 96 well plates, 

one transparent (NuncTM) and one white (NuncTM). The transparent plate was used to measure 

absorbance and the white plate for luminescence. The luminescence plates where added 100 μL 

luciferase-reaction solution (table 11) to each well, and luminescence measurements were 

carried out immediately using EnSpire 2300 Multilabel Rader (PerkinElmer). The plates used 

for absorbance were added 100 μL β-Gal-reaction solution (table 9) to each well and incubated 

at room temperature for approximately 20 minutes until the solution turned yellow, the 

absorbance in the wells were then measured at 420 nm were carried out immediately using 

EnSpire 2300 Multilabel Rader (PerkinElmer). 

3.10.8.1 Quantification of luciferase activity 

In this study the enzyme luciferase is utilized to help measuring the activity of the desired 

receptors. Luciferase is an enzyme that can be found in several places in nature, from fireflies 

to jellyfish (Jones, 1999; Oba et al., 2012). It is often used in in vitro cell experiments as a 

reporter gene. The luciferase enzyme used in this study catalyses the transformation of luciferin 

to oxyluciferin by using ATP and O2. The light (560nm) created by this reaction was measured 

luminometrically, by using an EnSpire 2300 Multilabel Reader (Perkin Elmer). In this study 
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the plasmids mh(100)x4 tk luc (GR, THRB, PPARG) and  PGudLuc6.1 (AhR) was used (Azam 

et al., 1995) (Table 13). 

 

3.10.9 Quantification of β-galactosidase  

To correct for differences in transfection efficiency between wells in the luciferase assays, the 

mh(100)x4tk luc and pCMX-GAL4-DBD-GR/THRB/ PPARG plasmids where co-transfected 

with pCMV-β-GAL- plasmids, which contains the gene encoding for β-galactosidase (β-Gal). 

The reaction catalysed by β-gal results in the cleavage of ortho-nitrophenyle-β-galactosidase 

(ONPG) into ortho-nitrophenol from and galactose, the latter of which has a yellow colour that 

can be quantified spectrophotometrically by measuring the absorbance at 420 nm. The 

measured values from the luciferase activity was normalized by dividing it on the absorbance 

from β-gal activity. 

3.11 Data analysis and statistics 

The values from the luciferase assays were normalized for each well by dividing the luciferase 

activities by the corresponding β-Galactosidase activities, this was done to account for 

differences in transfection efficiency. Furthermore, the fold activation value was calculated by 

dividing the normalized luciferase signal for each well, with the average of the control samples 

(containing only vehicle solution). By doing this the resulting value could be denoted as fold 

induction in ligand induced luciferase activity compared to the solvent control. GraphPad 

Prism8 was then used to visualize graphs displaying the difference in fold change in luciferase 

activity, caused by each tested ligand at different concentrations, also including the standard 

error of the mean. To calculate the significant fold induction in the means of the different test 

concentrations over the control means a paired T-test was used. 

3.12 Sequence analysis  

The coding nucleotide sequence for blue whale AhR was translated to the protein coding 

sequence by using the online translator ExPASy (“ExPASy - Translate tool,” n.d.) (Swiss 

Institute of Bioinformatics, Resource Portal). The protein sequence was then compared with 

other available species from Enseml and Uniprot (“Ensembl” n.d.; “UniProt,” n.d.), and to 

compare the different sequences Clustal Omega (“Clustal Omega -EBI,” n.d.; Thompson et al, 

1997 was used with standard settings. This website is an online internet-based program used 

for multiple sequence alignment and can be used to compare large dataset. To visualize the 

alignments and create phylogenetic trees JalView (3.12.1) together with MEGA 7 was used. 
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3.12.1 Construction of phylogenetic tree  

MEGA 7 was used to construct the phylogenetic tree in this study. Sequences were obtained 

and compared as described above (Method 3.12), before a neighbour-joined tree was 

constructed in MEGA 7. 

3.13 Student contribution 

I participated in the blue whale blubber sample field work at Svalbard in October 2018. I fixed 

the samples with RNA later before I performed the RNA extraction. I conducted all the steps 

described in the methods, (unless otherwise specified) except for the chemical analysis 

(conducted by Tartu et al.2019 in preparation, NILU) and the sequencing chromatography 

(conducted by the sequencing facilities at UiB). I conducted the statistical analyses and the 

multiple sequence alignments. Additionally, I made a poster of the key findings in this thesis 

and the project it is a part of at two conferences: NSFT (Norsk Selskap for Farmakologi og 

Toksikologi) Winter Meeting 2019, Beitostølen, January 2019 and PRIMO20 (20th Pollutant 

Responses in Marine Organisms Symposium), Charleston, SC, USA, May 2019. At PRIMO20 

I also gave a podium presentation of our work (See Appendix IV). At PRIMO2019 I also gave 

a podium presentation of our work. 
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4 Results  

In this chapter the results obtained in this thesis will be presented. The results are based on the 

methods described in chapter 3.   

4.1 Molecular cloning of blue whale AhR 

The first step to enable ligand activation studies of AhR is molecular cloning as described in 

the Methods 3.2-3.9.  

 
4.1.1 RNA isolation from blue whale blubber 

The quality and integrity of the RNA extracted from the blue whale sample appeared to be 

adequate, as both 28S and 18S ribosomal were present (Figure 14). The concentration of the 

total RNA was measured with Nanodrop1000 (A260nm, A260/280-ratio, Thermo Scientific) 

and listed/reported in Table 24. 

 

 

 

Figure 14 Assessing the integrity of blue whale RNA using agarose gel electrophoresis. 
Total RNA extracted from blue whale blubber tissue was separated on a 0.5X TBE 0.7% 
agarose gel stained with GelRed. The subunits for the different sedimentations are indicated at 
28S and 18S, the length on the DNA ladder L (standard 2log DNA ladder (50ng/µL)) is 
indicated at 3000 and 1000 base pairs, and the different blubber tissues are labelled.  
 
Table 24. Spectrophotometric measurements of extracted total RNA from blue whale adipose 
tissue. 
Sample Concentration (ng/ µL) A260/280 A260/230 

Blubber 1 377.6 1.94 1.61 

Blubber/skin 2 (with 

skin) 

714.3 1.98 1.60 

An A260/280 relationship of 1.94 and 1.98 indicates that the RNA-samples are free of 

contamination of proteins. An A260/230 relationship of 1.61 and 1.60 illustrates some 

contamination of phenol and chaotropic salts. Despite of this the RNA- samples were of 

sufficient quality so a downstream cDNA synthesis was conducted. 

18S 

28 S 

L rRNA #1 rRNA #2 

3000bp 

1000bp 
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4.1.2 cDNA synthesis and PCR amplification 

Parts of the AhR nucleotide sequence had previously been cloned and validated by Lene 

Øygarden in our lab. The remaining fragment of blue whale-AhR sequence (1870 to 2629 bp) 

was still unknown. The complete AhR sequence could not be amplified in one piece and was 

therefore amplified in two fragments (Methods 3.7). The two different fragments of blue whale 

AhR were amplified by PCR from the cDNA template and subcloned in E.coli (methods 3.9). 

An overview of the different fragments amplified is shown in Figure 15. 

 

 

 

 

 

 

Figure 15 The full sequence of blue whale AhR. Two fragments (blue and green) of blue 
whale-AhR were amplified separately, but with an overlapping part (pink) in the end of the blue 
fragment and in the beginning of the green fragment. The blue and pink part is further referred 
to as AhRstart, while the pink and green part is referred to as AhRend. 
 
 
Blue whale AhR was amplified by PCR (Methods 3.5) from cDNA (Methods 3.4) where the 

resulting PCR products were evaluated by AGE. As seen in Figure 16, the migration of the 

amplicons corresponded well to the expected size of the fragments (AhRstart 1881 bp, AhRend 

1012 bp) based on known AhR sequences from minke whale (NCBI accession number for 

minke whale AhR: XP_007164937, 2571bp (857kDa)).  

 

 

 

                                                   

 

 

 

Figure 16 Agarose gel electrophoresis of AhR fragments amplified from blue whale 
blubber cDNA. To visualize the DNA fragments an 0.5 TBE, 0.7% agarose gel, stained with 
GelRed was used. The expected lengths of the different fragments were AhRstart 1869bp, and 
AhRend= 1087. The ladder used was a standard 2log DNA ladder= L. On this gel 3 µL ladder 
(50ng/µL), and 2 µL PCR product was used.  
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4.1.3 Cloning of blue whale AhR and colony screening 

The gel extracted PCR products were ligated into a pSC-A cloning vector and transformed into 

competent E.coli cells. The single colonies that contained plasmid with products of the expected 

length (positive transformants) could be separated from those not containing the plasmid 

through two steps: 

1. Seeding the cells on an agar plate containing ampicillin, then incubating at 37°C overnight 

ensuring that presence of ampicillin.  

2. Positive transformant were identified by PCR-screen using vector specific primers (see 

Methods 3.7.3). The screening products were then separated by AGE, where some colonies 

appeared to hold pSC-A plasmids with AhR fragments (AhRstart>2000bp, AhRstart>1000bp)  

(figure 17). 

 

 

  

 

Figure 17 PCR screening of positive transformants containing AhR fragment 1 and 2. To 
visualize the colony PCR amplifications a 0.5 TBE, 0.7% agarose gel, stained with GelRed was 
used. The ladder in this AGE was a 2log DNA ladder = L, 150 ng ladder, and 2 µL PCR product 
or water was used.  
 

The colonies AhRstar1&2 and AhRend1&2 (Figure 17) were then extracted from the positive 

transformed bacteria by mini-prep (Methods 3.8), and further sequenced to verify insertion of 

the AhR fragments (Methods 3.9). The products from the sequence reactions were analysed by 

the sequencing facility at UIB, and the sequences showed that the PCR products contained AhR 

sequences, according to the minke whale (NCBI accession number Minke-AhR= 

XM_007164875, 5878 bp) found in NCBI database.  
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4.1.4 Sequencing and analysis  

The two blue whale-AhR-fragments were compared to minke whale AhR by multiple sequence 

alignment (MSA). The cloned blue whale AHR nucleotide sequences were translated into 

protein sequences in silico using ExPASy translate tool and were then aligned in Clustal Omega 

(EMBL-EBI). The sequences were then visualized in Jalview (Method 3.12. & 3.12.1) (Figure 

18). Minke whale sequence appear to be an incomplete sequence with two “X”, when compare 

to other species the “X” seems to be replaced by proline (Appendix III). All of the important 

amino acids for DNA binding and ligand binding of AhR in minke whale is conserved in blue 

whale. In addition to the identical AA the basic helix loop helix, PAS and ligand binding domain 

is conserved between the two species. There are also some differences in the sequence, six AA 

present in minke whale sequence, are not present in the blue whale sequence. These AA are 

outside the important domains, but their function is not yet known.  Due to the high level of 

identity between minke and blue whale, it is assumed that the cloning of blue whale-AhR was 

successful.  

 

Figure 18 Sequence alignment of blue whale AhR and minke whale AhR. The encoding genes for 
minke whale AhR was retrieved from NCBI genome database (NCBI accession number minke-AhR= 
XM_007164875, 5878 bp). The sequences were visualized with Jalview (2.10.5), where blue whale and 
minke whale had a 99,2% identity. The conserved amino acids are marked in blue, and the division of 
the ligand binding domain (LBD), the PAS-domain and the Basic-helix-loop-helix domain was done 
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after (Andreasen et al., 2002). Amino acids that are important for DNA-binding are marked in orange, 
and amino acids important for ligand-binding of TCDD are marked in purple (Bacsi & Hankinson, 1996; 
Swanson & Yang, 1996).  

 

Figure 19 Multiple sequence alignment of AhR-LBDs. The encoding genes for the 
variousAhR-LBDs were retrieved from NCBI genome database (NCBI accession number 
minke-AhR= XM_007164875, Human-AhR= NM_001621.5, Mouse-AhR=NM_013464.4, Rat-
AhR= NM_013149.3, Polarbear-AhR= XM_008686532.1, White whale-AhR= 
XM_022587570.1, Killer whale-AhR= XM_004263467.2), or cloned from blue whale blubber. 
The conserved amino acids are marked in blue, and the amino acids important for ligand binding 
to TCDD are marked in red  (Bacsi et al., 1996; Pandini et al., 2009; Swanson et al., 1996).  
 

In mammalian AhR the amino acids P35, S36, K37, R38, H39, R40 have been shown to be 

essential for AhR to bind to the response element (Bacsi & Hankinson, 1996; Swanson & Yang, 

1996). These amino acids were conserved in all the different species that were compared 

(Figure 19). In the ligand binding domain, there are several specific amino acids that in previous 

studies have been shown to be important for ligand binding of TCDD. In mammals these are 

F40, H44, F48, F79, I80, and H81. In all the AhR-sequences that were analysed in this MSA 

the important amino acids for ligand binding of TCDD were identical (Bacsi & Hankinson, 

1996; Swanson & Yang, 1996). Because the important AA for ligand binding in AhR were 

identical between all the compares species it is expected that they would be activated in the 

same way. There are however also some differences between the ligand binding domain 

sequences. Most of the differences are between the marine mammals and mouse, rat and human. 
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The marine mammals have less differences in AA than e.g. human compared to the marine 

mammals. 

The sequences of GR, THRB and PPARG blue and fin whale LBD, had previously been 

determined by Lene Øygarden in our lab. The cloned sequences were in this study compared 

with other species in an MSA. GR was compared with minke whale (Balaenoptera 

acutorostrata scammoni), white whale (Delphinapterus leucas), human (Homo sapiens), mouse 

(Mus musculus), killer whale (Orcinus orca), rat (Rattus norvegicus), and polar bear (Ursus 

maritimus) (Figure 20). The alignment showed that the LBDs of blue and fin whale GR were 

identical, in addition to a high degree of evolutionary conservation when compared to other 

species. Blue whale and fin whale-GR was identical to minke whale, white whale and Killer 

whale, as well as showing a high similarity to white whale, human, polar bear, mouse and rat 

(99.6%, 96.0%, 95.6%, 94.0%, 95.2% identity, respectively) 

 
Figure 20 Multiple sequence alignments of GR LBD. The encoding genes for the various GR-LBDs 
were retrieved from NCBI genome database (NCBI accession numbers: minke whale (Balaenoptera 
acutorostrata scammoni)= XP_007194225.1, white whale (Delphinapterus leucas)= XP_022445700.1, 
human (Homo sapiens)= BAH02307.1, mouse (Mus musculus)= ABF57998.1, Killer whale (Orcinus 
orca)= XP_004280264.1, rat (Rattus norvegicus)= AAL66772.2, and polar bear (Ursus maritimus)= 
XP_008689674.1 ) or previously cloned by Lene Øygarden. The sequences were visualized with Jalview 
(2.10.5), where the LBD of fin whaleGR was identical minke whale, white whale and Killer whale. 
 

In similarity with blue and fin whale-GR, blue whale and fin whale-THRB LBD was also 

compared with minke whale (Balaenoptera acutorostrata scammoni), white whale 
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(Delphinapterus leucas), human (Homo sapiens), mouse (Mus musculus), killer whale (Orcinus 

orca) and rat (Rattus norvegicus) (Figure 21). Blue and fin whale-THRB were identical and had 

a 99.83% identity with minke whale, as well as killer whale, white whale and human. 

 
Figure 21 Multiple sequence alignments of THRB LBD. The encoding genes for the various THRβ-
LBDs were retrieved from NCBI genome database (NCBI accession numbers: minke whale= 
XP_007173928.1, white whale=XP_022410384.1, human=NP_001341644.1, 
mouse=XP_011243047.1, Killer whale= XP_012389258.1 and rat NP_001257783.1. The sequences 
were visualized with Jalview (2.10.5), where and blue whale (Balaenoptera musculus), fin whale 
(Balaenoptera physalus) had a 100% identity with Killer whale, white whale and human. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 56 

Unlike blue and fin whale-GR and blue and fin whale-THRB, blue and fin whale-PPARG LBD 

was identical to all the compared species, except for mouse and rat (Figure 22). 

 
Figure 22 Multiple sequence alignments of PPARG LBD. The encoding genes for PPARG LBD from 

Fin whale (Balaenoptera physalus) and blue whale (Balaenoptera musculus) were aligned with white 

whale (Delphinapterus leucas), human (Homo sapiens), mouse (Mus musculus), Killer whale (Orcinus 

orca), rat (Rattus norvegicus) and polar bear (Ursus maritimus).  The various PPARG -LBDs were 

retrieved from NCBI genome database (NCBI accession numbers: white whale XP_022418477.1, 

human NP_005028.4, mouse XP_006505800.1, Killer whale XP_004284335.1, rat NP_037256.1 and 

polar bear XP_008696091.1). The sequences were visualized with Jalview (2.10.5), where the LBD of 

fin and blue whale- PPARG was identical to all the compared species except for mouse and rat. 
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4.1.5 Phylogenetic analysis  

After conducting the MSA of the ligand binding domain of AhR from different mammalian 

species, a phylogenetic tree was constructed by the neighbour-joining tree method (Figure 23). 

As illustrated in figure 16 the identity between blue whale, minke whale and white whale AhR-

LBD are the ones that have from an evolutionary perspective changed the least compare to the 

remaining specie. 

 
Figure 23 Neighbour-joining tree of AhR encoding sequence. The analysis involved nine 

LBD-amino acid sequences and illustrates the evolutionary relationship between different 

mammalian AhR-LBD with zebrafish as an outlier. Blue whale and minke whale were identical, 

in addition to a high identity with white whale, polar bear and killer whale.  

 

Having conducted the phylogenetic analysis, I continued to study the transcription-factors 

through measuring their ligand activation trough luciferase gene reporter assays. 

4.2 Measuring ligand activation of transcription factors using luciferase reporter assays 

In this thesis the ligand activation of the different transcription-factors was quantified by 

measuring the luciferase expression in the gene reporter assay described in Method 3.12. 

Because blue and fin whales’ sequences proved to be identical in the three NRs, and are 
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therefore expected to be activated in the same way I only continued with luciferase assays for 

blue whale. 

 

4.2.1 Cytotoxicity 

To ensure that the different compounds tested in the luciferase assays did not affect the 

metabolic activity or the membrane integrity of the cells, a cytotoxicity assay was performed. 

In the assays 0.1% Triton X-100 was used as a positive control. Exposure to triton X-100 

decreased membrane integrity with 98%, as well as reduced metabolic activity by 95%. All the 

tested POPs were compared to the control with only DMSO (point 0 in Figure 22, and  neither 

of the test compounds and control agonists used in the luciferase assays showed any significant 

effect on membrane integrity or metabolic activity of the COS-7 cells (example of no cytotoxic 

effect of pp`DDT (Figure 24).  

 

 
Figure 24. Cytotoxic effect of one of the test-components (pp`DDT) used in the luciferase assays. 
0.1% Triton X-100 was used as a positive control in 3 independent cytotoxicity assays. It decreased 
membrane integrity with 98% and reduced metabolic activity by 95%. The different test compounds 
used in the luciferase assays did not show a cytotoxic effect. 
 
4.2.2 Measuring ligand activation of blue whale AhR, GR, THRB and PPARG 

Having established that none of the tested POPs had a cytotoxic effect on the COS-7 cells, I 

continued with the luciferase assays. Initially I performed ligand activation assays on the AhR-

ARNT but did not observe any increase in luciferase activity in cells exposed to the control 
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compound TCDD (Figure 25). Because of blue and fin whale sequences identity, I will further 

present the data as blue whale-NR (bw). Due to limited time for problem solving, the 

transcriptional activity of blue whale (bw) glucocorticoid (bwGR), thyroid hormone 

(bwTHRB), and peroxisome proliferated receptor (bwPPARG) 

 

 

Figure 25 Attempt to study in vitro activation of blue whale AhR by the known agonists TCDD. 
The effect of the known agonists on blue whale AhR was not measurable in a luciferase assay with 
COS-7 cells in this study. The graphs were made in Prism 8 (version 8.1.2) with the differences 
illustrated with standard deviation (SD), where the downfall is not statistically significant The dose 
response is relative to cells only exposed to the control DMSO. 

 

The ligand activation of Gal4-DBD-GR/THRB/PPARG was in this study quantified my 

measuring the expression of luciferase in the reporter gene assay described in method 2.7. 

 

4.2.3 Evaluation of plasmids for AhR, GR, THRB and PPARG LRA assays 

Before initialising the luciferase assays all the different plasmids used in the reporter gene 

assays (reporter plasmid ((mh100) x4 tk luc), reference plasmid (pCMV-β-Gal), Gudluc, 

AhR, GR, THRB, and PPARG) were quality controlled with an AGE. The plasmids were 

mainly in a supercoiled conformation and was therefore suitable for further use (Figure 26). 

The supercoiled conformation is needed for efficient transfection into the COS-7 cells. 
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Figure 26 Quality control of plasmids used in the luciferase reporter assays with NRs and AhR.  
The reporter plasmid ((mh100) x4 tk luc), reference plasmid (pCMV-β-Gal), Gudluc, AhR, GR, THRβ, 
and PPARG plasmid were separated on an AGE to ensure that the majority of the plasmids were double-
twisted and could be used further in the luciferase gene reporter assays. 200 ng of each plasmid were 
loaded together with a loading buffer, and a 2-log DNA ladder. 

4.2.4 Establishing positive controls for ligand activation of bwGR, bwTHRB, and bwPPARG 

To test the sensitivity of the luciferase activation assays, with bwGR, bwTHRB and bwPPARG, 

positive controls were established (Method 3.10.1). The measured luciferase activity was 

normalized against β-Gal- activity (Method 3.10.9), and ligand activation of Gal4-DBD-GR/ 

THRB /PPARƔ is described as a fold change in the expression of the receptor gene between 

the test compound exposed cells and those only exposed to solvent/DMSO. For this initial test, 

compound previously known to activate mammalian GR, THRB and PPARG were used. 

Dexamethasone (DEXA) is a known agonist for the human glucocorticoid receptor and as 

expected also activated blue whale GR strongly to a maximum activation at 26-fold at 20 nM 

and (Figure 27a). For thyroid hormone receptor β triiodothyronine (T3) was used as control 

agonist. T3 produced maximum activation was of 24.4-fold change at 120 nM. For PPARG 

rosiglitazone (ROSI) was used as a known agonist, here the maximum activation was at 17 at 

25 μM.  
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Figure 27 a 

 

Figure 27 b 

 

 

Figure 27c 

Figure 27 In vitro activation of blue whale GR, THRB and PPARG by known agonists. The effect 
of a known agonists on blue whale GR (a),THRB (b) and PPARG (c) measured in a luciferase assay 
with COS-7 cells. The graphs were made in Prism 8 (version 8.1.2) with the means are shown with 
standard deviation (SD). The dose response is relative to cells only exposed to the control DMSO. 

The EC50 values and the maximum fold change activation of blue whale GR, THRB and 

PPARG are summarized in table 25. This demonstrated that the luciferase gene reporter assay 
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worked, and could be used further for testing the agonistic abilities of the desired POPs (DDT, 

DDE, DDD, DEHP, DINP, POPs mix) 

Table 25 an overview over the maximum activation (in fold) and EC50 of GR, THRB, and PPARG 
in a luciferase assay by known agonists. The three known agonists Dexa (GR), T3 (THRB) and ROSI 
(PPARG) triggered transcriptional activity in all of the tested receptors, and the EC50 value was 
obtained from THRB and PPARG. THRB had not yet reached its top at the highest concentration, and 
the EC50 is therefore not conclusive. 

 

4.2.7 Transcriptional activation of whale GR, THRB and PPARG by POPs  

Having verified that the luciferase assay worked, I continued with test the activation of bwGR, 

bwTHRB and bwPPARG by selected test compounds and a synthetic mixture that mimics the 

POP content in whale blubber.  

 

4.2.7.1 Transcriptional activation of whale GR by POPs  

The five tested pops and the synthetic mix did not trigger transcription activity in bwGR. 

However, DDT, DDE, DDD, and the POPs mixture showed a decrease in luciferase activity, 

this may indicate that the three pops and the mix act as antagonists in bwGR (Figure 28). To 

verify this further analysis is necessary.  

 GR SD THRB SD PPARG SD 
EC50 12.90 12.24 8.48 

MAX Activation 25.80 6.89 24.48 5,66 16.93 5.62 
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Figure 28 Transcriptional activation of bwGR by different components and a mixture.  COS-7 
cells were transfected with pCMX-Gal4-bwGR and exposed to five selected compounds and a synthetic 
mixture at different concentrations for 24 hours. Each datapoint represents the average of three 
independent experiments (three replicates per experiment), with standard error for each point. The 
activation of Gal4-bwGR is shown as a fold change in relative normalized luciferase units, of cells 
exposed to the different test compounds, in comparison to cells exposed only to DMSO. 
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4.2.7.2 Transcriptional activation of whale THRB by POPs  

In similarity with bwGR the thyroid receptor was also not activated by the selected POPs and 

POPs mixture (Figure 29). However, the phthalate DINP caused a decrease in luciferase 

activity at the two highest concentrations, which may indicate it acting as an antagonist 

instead of an agonist. This cannot be said for certain without further investigation. 

 
Figure 29 Transcriptional activation of bwTHRB by different components.  COS-7 cells were 
transfected with -Gal4-bwTHRB and exposed to seven different chemicals at different concentrations 
for 24 hours. Each datapoint shows the average of three independent experiments, with standard error 
for each point. The activation of Gal4-bwTHRβ is shown as a fold change in relative normalized 
luciferase units, of cells exposed to the different test compounds, in comparison to cells exposed only 
to DMSO. 
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4.2.7.3 Transcriptional activation of whale PPARG by POPs  

In addition to bwGR and bwTHRB bwPPARG did also not show an induced transcriptional 

activation by the tested POPs (Figure 30). The POPs mixture however caused a slight decrease 

in luciferase activity, which may indicate that the synthetic mix may act as an antagonist instead 

of an agonist. 

 

 
Figure 30 transcriptional activation of bwPPARG by different components.  COS-7 cells were 
transfected with pCMX-Gal4-bwPPARG, and exposed to seven different chemicals at different 
concentrations for 24 hour. Each datapoint shows the average of three independent experiments, with 
standard error for each point. The activation of Gal4-bwPPARƔ is shown as a fold change in relative 
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normalized luciferase units, of cells exposed to the different test compounds, in comparison to cells 
exposed only to DMSO. 
 
4.2.8 Summary  

As seen above, none of the tested components triggered transcriptional activation of the tested 

nuclear receptors. Several gave a small decrease in luciferase activity (DDT, DDE, DDD, 

DEHP and DINP) (Figures 28-30 and table 26), but with a weak statistical significance. 

 
Table 26 In vitro activation of GR, PPARG, THRB and AhR by control agonists or environmental 
pollutants in a COS7-based luciferase reporter gene assay. Effects are presented as estimates of fold 
change at max exposure concentration.  

 

 

 

 

 

 

 

 

 

Max response in luciferase activity related to solvent treated cells   

 Control 

agonist SD 

DDT  

SD 

DDE  

SD 

DDD  

SD 

DEH

P  SD 

DINP  

SD 

POPs 

MIX  SD 

Receptor   

Concentrationà [20𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] 

GR 22.5  6.81 0.6  0.33 0.6  0.14 0.7  0.10 1.0  0.50 1.0  0.24 0.4 0.10 

Concentrationà [100𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] 

THRB 24.5 5.66 0.4  0.31 0.3  0.21 1.3 0.38 1.0  0.30 0.7 0.21 0.6  0.51 

Concentrationà [25𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] [50𝝁M] 

PPARG 12.3  5.62 0.7  0.13 0.6  0.10 0.6 0.09 0.9  0.14 0.8  0.21 0.5 0.12 
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5. Discussion  

In this thesis the main focus was to study the transcriptional activity of GR, THRB, PPARG 

and AhR in blue and fin whale when exposed to POPs. Due to identical NR sequences in blue 

anf fin whale, I only continued with blue whale after the MSA. The three nuclear receptors and 

AhR are known to be activated by numerous endogenous and exogenous compounds e. g. 

known environmental contaminants such as POPs, and thereby regulate the expression of 

important genes involved in biotransformation, adipogenesis, reproduction and brain 

development (Heitzer et al., 2007; Li et al., 2012; Oakley et al., 2013; Strömqvist et al., 2012; 

Tsuji et al., 2014; Zhang et al., 2000). Blue whale AhR has to my knowledge never been cloned 

from cDNA, nor have in vitro activation studies on these receptors in baleen whales been 

conducted before. Cloning and sequencing of AhR from animals (e.g. white whale and Baikal 

seals (Phoca sibirica)) and humans have increased the knowledge and understanding of how 

AhR works (Burbach et al., 1992; Emas et al., 1994; Kim et al., 2002). However, the functional 

and structural characteristics of AhR in marine mammals are still poorly understood. To 

validate the cloned gene sequence of blue whale AhR and to study the identity of GR, THRB 

and PPARG between different mammalian species phylogenetic analysis were carried out. A 

pairwise sequence alignment confirmed the identity between the cloned blue whale AhR and 

minke whale, and a multiple sequence alignment, together with a neighbour-joining tree 

confirmed the level of identity between blue whale and fin whale GR, THRB and PPARG, and 

other mammals. Further luciferase gene reporter assays were established and the transcriptional 

activation of the four receptors studies. The results obtained in this thesis will be further 

discussed here. 

 

5.1 PCR amplification of blue whale AhR 
 
In this study amplifying a full-length blue whale AhR was not possible. One of the explanations 

to why the amplification of AhR didn’t work could be suboptimal PCR conditions. This 

depends on a number of different factors such as a good template, the temperature in the 

annealing-step of the reaction, and primer design. The template used in the PCRs was cDNA 

synthesised from extracted RNA from Blue whale blubber samples. A challenge with cloning 

long transcripts is to synthesise a complete cDNA (Hawkins et al., 2003). However, an AGE 

later confirmed the integrity of the full length AhR this indicates that a complete cDNA had 

successfully been constructed and used in the PCRs. Another important factor to obtain a 

successful PCR is primer design. When designing a primer there are many factors to take into 
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consideration: when used in a PCR the primers should be between 18-25 nucleotides long, they 

need to be specified from 5´to 3´end, the 3´and need to end with cytosine or guanine etc. Quite 

a few primers (12 pair) were used in this study in order to find the pairs that gave the desired 

results. Several primer pairs were able to amplify two smaller fragments of the AhR, 

demonstrating that the primers used recognize and binds whale AhR and suggests that, when 

combined correctly, they should be able to amplify the full length AhR. Despite of this it was 

in this study not possible to amply the complete AhR reading frame. In addition to the primers 

being an important factor to successfully amplify the full length AhR, the annealing temperature 

is also essential to obtain a specific primer-binding. Several different temperatures around the 

primers «theoretically optimal temperature» were tested, with successful results for the two 

smaller fragments of AhR, but not with the full length AhR. This may imply that there are other 

reasons in addition to temperature, template and primers to why the amplification of the full-

length blue whale-AhR was unsuccessful so far. The length may be one of the issues why the 

full length AhR proved difficult to amplify, where the polymerase used might not be optimized 

for the size of the full length AhR. In this study both Dreamtaq (Thermo Scientific™) and 

Phiusion polumerases (Thermo Scientific™) were used. In addition the AhR sequence has a 

relatively high GC level, which may lead to a higher melting point that can create stable 

secondary structures, that terminate the PCR (Mamedov et al., 2008). However, the complete 

blue whale AhR was in the end successfully amplified by Roger Lille-Langøy in our lab, and 

could be used further in luciferase assays, and phylogenetic analysis. 

 

5.2 Sequence analysis and phylogeny  

AhR is from an evolutionary perspective a very interesting transcription factor, because it is 

well represented in all vertebrate groups (Hahn, 2002), and AhR homologues have also been 

characterized in several invertebrates e. g. sea anemone N. vectensis (Reitzel et al., 2014). 

however, some AhR orthologs seem to be functionally different. The invertebrate homologues 

are unlike vertebrates AhRs not able to bind beta naphthoflavone or 2,3,7,8-TCDD (Butler et 

al., 2001; Reitzel et al., 2014). This might be because the important amino acids in several 

mammals found in the multiple sequence alignments (Figure 19) are only partly conserved in 

invertebrates. The main function of AhR in invertebrates is in the development of the organism. 

In similarity with invertebrates, the AhR in mammals and other chordates also has an important 

physiological (both in development and other processes) role, in addition to being a xenosensor 

(Nebert, 2017). This may indicate that the receptor started as a physiological regulation protein, 
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and then evolved as a receptor and gene regulator for several exogenous compounds 

(Pohjanvirta, 2011).  

 

AhR may vary in length between different species, bwAhR had a coding sequence of 2241bp 

which encoded a protein of 747 AA. Compared to minke whale-AhR with 2571bp (857 AA) 

the bwAhR is only a few amino acids smaller. In the multiple sequence alignment of the 

functional regions of bwAhR and minke whale-AhR, both the PAS and bHLH- domain showed 

a high degree of identity between the two species. This was expected seeing that these parts of 

AhR are important for dimerizing with ARNT, XAP2, p23, and HSP90, DNA-binding, and 

ligand binding. The MSAs also showed a high level of conservation of amino acids known to 

be of importance when the receptor binds to a ligand or to DNA (in mice). The deletions in the 

blue whale sequence (Figure 18), were not located in areas important for ligand or DNA-

binding and are thus not likely to affect the protein function. The high conservation and level 

of identity between the different species may indicate that the receptors have similar functions 

and respond to ligands in a similar way. From a toxicological perspective, this indicates that 

both humans and blue whales’ response to POPs through AhR would be similar, and the 

research conducted on one the two species is applicable to the other as well. 

 

The MSA of the ligand binding domain of GR, THRB and PPARG conducted in this study 

have shown a 100% identity in each receptor between blue whales and fin whales (blue whale-

GR=fin whale-GR etc.) (Figure 20-22 in the Results), and a very strong conservation between 

the compared species including white whale, human, mouse, killer whale, rat and polar bear. 

This finding is in accordance with the notion the LBD of nuclear receptors are generally well 

evolutionary conserved between species (except for e.g. PXR) (Gronemeyer et al., 2004). When 

compared to other species the LBD of blue and fin whale-GR was identical to two toothed 

whales, killer whale and white whale, and another baleen whale, minke whale. It also showed 

a 94-96% identity to human, polar bear, mouse and rat. The LBD of blue and fin whale-THRB 

in similarity to blue and fin whale-GR alignment showed a high identity to several of the 

compared species, and was identical to killer whale, polar bear, human and white whale. Only 

one amino acid in THRB was substituted in minke whale, rat and mouse. The function of this 

amino acid is to my knowledge not known. Blue and fin whale-PPARG had fewer differences 

of AAs in the LBD sequence (than GR and THRB) and was identical with all the compared 

species except for mouse and rat. Because of the high level of identity between the compared 
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species, it is likely that the receptors are not very receptable for evolutionary change in addition 

to responding to ligands in similar ways, like previously also assumed for AhR.  

 

To study ligand activation of transcription factors in blue whales a modified version of CALUX 

luciferase gene reporter assay was the best option due to its ability to illustrate transcription 

activation through luciferase activity.  

 

5.3 Functionality of the luciferase gene reporter assay 

 
The reporter-system used in this study is a well-established system for measuring ligand 

activation of nuclear receptors, due to its reduction of cross talk of nuclear receptors and low 

risk of cross- reactivity caused by other cellar pathways (Routti et al., 2016; Lümann, 2018), 

but has to my knowledge not been frequently used with AhR. When conducting studies using 

the Gal/UAS-system to detect possible agonist of NRs is crucial that the sensitivity is high, to 

detect weak agonists at low concentrations. A limitation with the luciferase gene reporter assay 

in this study is that that only the LBD and the hinge was used from the different NRs, not the 

whole sequence. Minor conformational changes in the LBD can therefore not be excluded 

(Raucy  et al., 2013). Another factor that may affect this type of experiment, such as exposure 

time. In this study an exposure time of 24 hours was used, but in other studies a shorter exposure 

time have shown higher activation (GAL4-DBD-AhR in rats (Backlund et al., 2004)). 12 hours 

exposure of 2,3,7,8-TCDD in a CALUX system adapted to dioxins, gave a higher activation 

than a 24-hour exposure in rats. Another study have also shown a higher activation with a 

shorter exposure, here with B(a)P, where 6 hours gave a higher activation than 24hours of 

exposure (Pieterse et al., 2013). Seeing that uptake etc. may vary depending on each chemical, 

it can be advantageous to optimize the exposure-time for different chemical groups. 

Another factor that may affect the results is the choice of cell line. This may be important to 

obtain maximal ligand activation and sensitivity. The COS-7 cells used in this study have 

previously been used for receptor-characterization of PXR, PPARA and PPARG from different 

species using the Gal4/UAS-system (Bainy et al., 2013; Chamorro-García et al., 2012; Lille-

Langøy et al., 2015). Despite the fact that the COS-7 cell line is known as an suitable method 

when studying nuclear receptor activation (Bainy et al., 2013), it was in  2004 demonstrated by 

Backlund et al that the activation of Gal4-DBD-rat-AhR by 2,3,7,8- TCDD varied between 

H4IIE and HEA1-C12 cell lines (Backlund et al., 2004). Using H4IIE from rats they observed 
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a 22-fold activation, while in HEPA1-C12 from mice only a 3-fold activation was observed 

(both hepatoma cells). Seeing that ligand binding and activation of AhR is dependent on several 

co-factors (e.g. p23, HSP90 and XAP), it is possible that inefficient binding of these co-factors 

present in the COS-7 cells could affect the result. “Wrong” choice of cell line may also be the 

case in this study, where the construction of a blue whale-AhR luciferase assay with FICZ and 

TCDD as known agonists, has not yet been successful. However, there are a few differences 

between these two studies. Backlund et al. (2004) used a different assay where AhR in fusion 

with Gal4 and ARNT-plasmids were not used, making the assay even more dependent on the 

cell line compared to the luciferase assay used in this study (Backlund et al., 2004). Unlike with 

AhR a successful luciferase assay was established for GR, THRB and PPARG but no activation 

of the studied NRs by the tested environmental contaminants was observed. One of the 

explanations may in similarity with AhR be the choice of cells used. However, previous studies 

conducted on chicken, ring necked pheasant and Japanese quail AHR1 with COS-7 cells have 

proven successful (Farmahin et al., 2012). Therefore, it seems unlikely that the choice of cell 

line would affect the results of now significant agonism on the three NRs by the tested POPs. 

The last factor that may have an impact on the ligand-binding is incubation-temperature. In 

previous studies it has been shown a higher activation at temperatures lower than what was 

used in this thesis. Zhao et al. (2010) observed a higher activation of AhR where the COS7-

cells were exposed at 33ºC to 2,3,7,8-TCDD compared to the cells exposed at 37 ºC (245 +/-24 

at 33 ºC, 17 8+/-1 at 37 ºC) (Zhao et al., 2010). The difference may be due an increase in AhR 

activity at lower temperatures compared to at high temperatures (37 ºC), which can be explained 

by the reporter gene (luciferase) having a higher activation at lower temperatures (Zhao et al., 

2010). This implies that the temperature used in this study may also be a contributing factor to 

why no activation was seen in the AhR-LRA. However, the luciferase assays used to study GR, 

THRB and PPARG appear to be functioning at an incubation-temperature of 37 ºC, questioning 

the importance of a lower temperature, to obtain a successful AhR assay. In addition to the 

temperature question, ARNT may be a contributing factor, in this thesis a human ARNT was 

utilized. Because of the high level of identity between human ARNT and blue whale ARNT 

this shouldn’t be a problem (appendix V) but may in total act as a contributing factor. When 

combining the factors mentioned above (exposure time, cell-line, incubation-temperature and 

species specific ARNT), it is apparent how many parameters that may affect how well different 

gene reporter systems work, and what need to be taken into consideration when conducting 

studies utilizing such systems. 
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5.3.1 Ligand activation assays of blue whale GR, THRB and PPARG. 

The ligand activation studies of blue whale GR, THRB and PPARG constructs in vitro allowed 

the assessment of both single POPs and a synthetic mixture of POPs of their abilities to 

agonistically activate the three studied nuclear receptors.  

 
In a luciferase gene reporter assay COS-7 cells were used together with the desired receptor 

(GR, THRB, PPARG, or AhR) and a reporter gene. In this study such an assay was not 

successfully established for AhR, but was successfully validated and utilized for bwGR, 

bwTHRB and bwPPARG.  

 

However, no agonistic effect was observed in the three NRs by the five test components 

(pp´DDT, pp´DDE, pp´DDD, DINP and DEHP) and the POPs mix tested. Even though the 

concentration magnitudes of the tested POPs were higher than the levels previously measured 

in blue and fin whale blubber from different locations (Fossi et al., 2014b; Metcalfe et al., 2004; 

Muñoz-Arnanz et al., 2019; Tartu et al. 2019). The three blue whale NRs have also previously 

been studied in our laboratory by Lühmann et al. (2019)(Lühmann et al., 2019). Here the 

luciferase gene reporter assay was established, and agonistic and antagonistic effects of several 

legacy POPs were tested. Lühmann et al. observed low agonistic and antagonistic effects on 

blue whale and fin whale GR, THRB, and PPAR, but the effect was only observed on level 

higher than those measured in the blue and fin whale blubber samples (Lühmann et al., 2019). 

 

Previous studies conducted on a mammalian (using U2OS cells from human) reporter gene 

assay with human-GR also showed no activation by different POPs (including pp`DDE (see 

Wilson et al., 2016)), however pp`DDE was found to decrease GR activity by 72% (Wilson et 

al., 2016). A study conducted by Li et al. (2012) also indicates that the studied NRs can act as 

sensor molecules for exogenous compounds (Li et al., 2012). An explanation to why increased 

transcriptional activity was not detected may be that the ligands tested act as antagonists instead 

of agonists. As seen in figure 28 in the Results pp´DDE, pp´DDT, pp´DDD and the POPs mix 

caused a small decrease of luciferase activity at the highest concentrations, indicating that they 

may function as antagonists in blue whale-GR. The same was found for THRB (Figure 29) with 

DINP, and with PPARG (Figure 30) and the POPs mix.  

 

In a previous study conducted by Routti et al. (2016) pp´-DDE was shown to act as an antagonist 

to PPARG, in addition to this Lühmann et al. (2019) demonstrated a low antagonistic effect on 
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THRB of few POPs (PCB 101&138, op`DDE and oxychlordane)(Lühmann et al., 2019; Routti 

et al., 2016). Moriyama et al. (2002) also studied antagonistic behaviour of human-THRB in a 

luciferase gene reporter assay, where T3 was used as an agonist to test the antagonistic abilities 

of Bisphenol A (Moriyama et al., 2002). To understand if the three POPs and two phthalates 

tested in this study act as antagonists to bwGR, bwTHRB and bwPPARG such an experimental 

set up could be a promising approach (Moriyama et al., 2002). Similar non activated agonistic 

PPAR results were also found by Söderstrøm (2017), also here none of the tested POPs 

triggered activation of cod PPARs (Söderström, 2017). These findings are in line with the 

results found in this thesis, although further investigating would be advantageous. 

 

No activation of the three NRs by the tested POPs might also be the case for other marine 

mammals such as killer whales or polar bears. Because the ligand binding domain of the three 

tested nuclear receptors were identical to e.g. killer whales, it is expected that the nuclear 

receptors will have similar activation patterns. The concentrations used in the in vitro studies 

were therefore compared to concentrations previous studies have measured in another marine 

mammal: the polar bear. Fat tissue samples taken from polar bears have shown PCB 

concentrations on up to 10.3 µM. This exceeds the highest concentration used in this thesis, in 

addition to previous studies conducted by Lühmann et al. (2019) and McKinney et al. (2011) 

where week agonistic effects were observed at concentrations lover than 10 µM (Lühmann et 

al., 2019; McKinney et al., 2011). Previous studies from the pacific ocean have also shown a 

positive correlation of PCB concentrations and the expression of THR in killer whales, 

implying that POPs may impact thyroid hormone homeostasis (Buckman et al., 2011). Which 

indicates that the negative effects of POPs on marine organisms not only affects the exposed 

individual, but also possible offspring through maternal exposure (Buckman et al., 2011). 

 

As mentioned earlier there are large knowledge gaps in how environmental contaminants affect 

marine mammals. There is little knowledge on in vivo feedback mechanisms in marine 

mammals that are triggered by the change in transcription activity. This restricts the in vitro 

data from this study to be extrapolated into in vivo effects. In vitro data can be used to study 

specific steps e.g. transcriptional activation, but it is challenging to use in vitro data to simulate 

a living organism, since several processes are intertwined with one another. 

 

Another issue that appears when studying free-ranging organisms, is that they are not only 

exposed to a single chemical at a time, but a mixture of many chemicals. This problem was 
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addressed in previous studies (Desforges et al., 2017; Routti et al., 2016) where Desforges et 

al. (2017) extracted contaminants from blubber were utilized in in vitro experiments using 

immune cells, and Routti et al (2016) extracted contaminants from polar bear tissue also in in 

vitro experiments (Routti et al., 2016). This type of experiment provides more realistic exposure 

scenarios but is difficult to conduct on baleen whales due to the amount of blubber needed to 

prepare a sufficient amount of extract (Desforges et al., 2017 used 30g blubber, while Tartu et 

al 2019 used 0.1-0.5g). Other studies have also shown sex-related, and physiological state 

related differences in contamination levels, indicating that the levels on which the synthetic mix 

was made is not always accurate depending on the sex and physiological state the animal is in 

(Muñoz-Arnanz et al., 2019; Pinzone et al., 2015). Synthetic mixtures are often applied at 

different concentrations, which may minimise the differences in contaminant levels between 

animals. The synthetic mixture used in this study was created based on the measured levels of 

contaminants, found in blue and fin whale blubber. Despite the levels of contaminants varying 

between individuals, the composition often remains the same, thus making the synthetic 

mixture more accurate.  

 

One of the challenges with drawing solid conclusions on whether the tested contaminants 

trigger agonistic or antagonistic effects in free ranging animals, is that the physiological state 

of the animal is not known, the level of contaminants could vary depending on age and sex etc. 

where sex can be particularly important because female marine mammals transfer pollutants 

from heir blubber to their offspring during lactation (Butterworth, 2017), in addition to the 

challenges with deciding what contaminants to put in the mixture.  Because of these limitations 

the effects that the tested compounds may have on transcriptional activation of NRs remain 

incompletely understood, especially considering emerging contaminates and mixture effects. 

However, in Desforges et al. (2017) study the complex mixture showed a lower effect level 

compared to the single compounds. This may also be the case in our study, since the single 

compounds had no agonistic effect it might be expected that the mixture wouldn’t ether. On the 

other hand there are several studies proving that a mix of compounds have a greater effect than 

the compounds alone known as the cocktail effect (Cedergreen, 2014; Celander, 2011; Shaw, 

2014). 

 

Disruptive effects by POPs on bwGR, bwTHRB and bwPPARG could negatively affect the 

adaptation to stress, maintenance and development of the endocrine system, lipid homeostasis 

and metabolism, thermoregulation as well as reproduction. In this thesis it has been shown that 
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blue whale bwGR, bwTHRB and bwPPARG can be activated by known agonists, 

demonstrating that blue and fin whale bwGR, bwTHRB and bwPPARG, which have identical 

LBD sequences, are ligand-activated. This may indicate that the studied NRs can act as sensor 

molecules for exogenous compounds, in similarity to what has been shown in previous studies. 

However, the results from this study indicates that agonistic effects on the transcriptional 

activity of blue and fin whale-GR, blue and fin whale-THRB, blue and fin whale-PPARG by 

the tested contaminants in free ranging blue and fin whale is unlikely.  
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6 Conclusion  

In this thesis AhR from blue whale was cloned and sequenced, the coding sequence was made 

up of 2241bp which encoded a protein of 747 AA. The AHR proved to be difficult to amplify 

in full length, due to structural, PCR, primer, temperature difficulties etc. The translated coding 

sequence of bwAhR proved to be well evolutionary conserved when the LBD was compared to 

other species, where important amino acids involved in ligand and DNA binding were identical 

between blue, fin, and minke whale, as well as rat, mouse, human, polar bear and white whale. 

Based on the cloned sequence a gene reporter assay was developed, but this has so far not been 

responsive to typical AhR agonists such as TCDD or FICZ.  

The nuclear receptors GR, THRB and PPARG had previously been cloned and sequenced in 

the lab. Here, a multiple sequence alignment was conducted to compare the blue and fin whale 

sequences of GR, THRB and PPARG to other species. The MSA showed that blue and fin 

whales’ sequence are identical, in addition to high level of identity between the other compared 

species (blue, fin, and minke whale, as well as rat, mouse, human, polar bear and white whale). 

Because of the high conservation of the LBD of GR, THRB and PPARG. The results obtained 

in this study, may also be relevant for other species, thus the receptors are expected to act in the 

same way.  

A gene reporter assay was then verified for each of the different NRs. The assay demonstrated 

that blue whale and fin whale- GR, THRB and PPARG are functional proteins that have the 

ability to bind and be activated by a ligand in vitro. In the gene reporter assays the receptors 

were activated by a known agonist for each receptor (dexamethasone, T3, and rosiglitazone, 

respectively). The tested POPs detected in blue and fin whale blubber did not trigger a 

significant activation of the three NR in this study, and so far, antagonistic effect have not yet 

been investigated. But because of GR, THRB and PPARGs ability to be activated by known 

agonist and upregulate transcription of several genes that are important in many physiological 

processes (e.g. metabolism, development and the immune responses), further analysis would 

be advantageous, to understand to what extent the NRs have a role as xenosensors. 
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7 Future work 

It was in this thesis shown that blue whale GR, THRB and PPARG can be ligand-activated and studied 

in vitro with a gene reporter assay. A gene reporter assay for bwAhR was on the other hand not 

successfully established. To be able to study bwAhR further work needs to be conducted, and then 

investigate bwAhRs ability to bind and be activated by different ligands.  

To better understand the NRs role in addition to what amino acids and structures that are responsible for 

ligand activation in the three NRs modulation may be a good approach. It has in previous studies on 

AhR been shown that modulation of the ligand binding domain can be used to better understand the 

ligand binding abilities of a receptor (Bisson et al., 2009). This together with mutation-studies may 

prove useful, when attempting to understand what amino acids and structures that decide the receptors 

ligand binding abilities. It may also be interesting to develop a ligand binding/structure-model as a useful 

tool to understand what factors that are central for activation and binding in NRs.  

In this thesis it was proven that the Gal4/UAS- system can be used to study ligand-activation of bwGR, 

THRB and PPARG. Due to the variables discussed earlier there are three main factors that may improve 

the Gal4/UAS- system: Choice of cell line, temperature, and exposure time. It may be of interest to 

optimize these parameters to obtain a Gal4/UAS- system with higher activation and sensitivity, in 

addition to detection of weak agonists. Antagonism would also be very interesting to investigate, seeing 

that none of the tested environmental contaminants gave any significant agonistic effect.  

Further studies on agonistic and antagonistic abilities of the POPs detected in blue whale and fin whale 

blubber (both single compounds and mixtures), in addition to cell-studies could also help build a better 

understanding of what mechanisms that are involved in regulation of biotransformation and other 

processes. In a study conducted by Fossi et al (200) fibroblast cell lines were used in an alternative in 

vitro method to study contaminants effect on several cetaceans (e.g. fin whale)( Fossi et al., 2000). Such 

a cell line is currently under development in our lab and could serve as a natural progression to this 

study. 

These future studies can increase our knowledge of how defence and sensory systems in different 

organisms work and have evolved over time, and  help us understand how blue and fin whales respond 

to environmental contaminants within the animal and in their habitat, which can prove to be vital 

knowledge to best conserve and manage these giants. 
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 Appendix I 

Table 37 overview of environmental contaminants found in blue and fin whales by Tartu 
et al. in preparation 2019 

 Blue nM   Fin nM     
Compound Median Min  Max  Median Min  Max    
HCB 96 31 142  116 44 146    

a-HCH 4 2 6  6 3 7  
compounds >50 
nM  

b-HCH 17 5 37  19 5 28    
g-HCH 2 1 3  2 1 3    
oxy-chlordane 16 5 40  23 6 40    
t-chlordane 0 0 0  0 0 0    
c-chlordane 9 2 15  8 5 15    
t-Nonachlor 60 20 154  85 27 143    
c-Nonachlor 23 8 61  32 10 56    
Mirex 2 1 7  3 2 4    
           
o,p'-DDT 38 10 154  51 17 128    
p,p'-DDE 34 8 121  23 11 30    
o,p-DDT 28 11 79  36 18 63    
o,p-DDE 75 23 258  92 32 162    
p,p'-DDD 11 8 19  11 5 15    
o,p-DDD 206 66 657  286 92 581    
           
PCB 28 0 0 0  4 4 4    
PCB 52 24 6 63  43 14 81    
PCB 99 16 5 45  27 9 47    
PCB 101 21 5 45  36 10 65    
PCB 105 4 3 7  7 3 8    
PCB 118 24 7 66  40 14 71    
PCB 138 33 12 102  57 22 113    
PCB 153 51 20 156  80 30 162    
PCB 180 14 6 53  21 10 57    
PCB 183 3 2 10  4 2 12    
PCB 187 14 5 49  19 9 48    
PCB 194 4 4 4  6 6 6    
           
Toxaphenes:           
#26 28 7 73  45 17 82    
#32           
#38           
#40 19 5 45  32 17 55    
#42 61 12 83  58 32 110    
#50 62 13 202  114 41 232    
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Appendix II 

 
Table 31 & 32 An overview of the different concentrations used in the exposure studies of 

blue whale GR.  Each table represents a 96 well plate, there were used two 96 plates for each 

receptor in this study, three replicates of each ligand were used. 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 200 50000 50000 50000 

B 100 25000 25000 25000 

C 20.0 5000 5000 5000 

D 4.0 1000.0 1000.0 1000.0 

E 0.8 200.0 200.0 200.0 

F 0.16 40.0 40.0 40.0 

G 0.032 8.0 8.0 8.0 

H DMSO DMSO DMSO DMSO 
 

DEXA (nM) DDT (nM) DDE (nM) DDD (nM) 

 

Table 32 second 96 well plate for GR 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 200 50000 50000  

B 100 25000 25000  

C 10 5000 5000  

D 2 1000.0 1000.0  

E 1* 200.0 200.0  

F 0.5 40.0 40.0  

G 0.1 8.0 8.0  

H DMSO DMSO DMSO  
 

POPs mix DEHP (nM) DINP(nM)  

 

 

Table 33 &34 An overview of the different concentrations used in the exposure studies of 

blue whale THRβ Each table represents a 96 well plate, there were used two 96 plates for each 

receptor in this study, three replicates of each ligand were used. 
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  1 2 3 4 5 6 7 8 9 10 11 12 

A 120 50000 50000 50000 

B 60 25000 25000 25000 

C 12 5000 5000 5000 

D 2.4 1000.0 1000.0 1000.0 

E 0.5 200.0 200.0 200.0 

F 0.1 40.0 40.0 40.0 

G 0.02 8.0 8.0 8.0 

H DMSO DMSO DMSO DMSO 
 

T3 (nM) DDT (nM) DDE (nM) DDD (nM) 

 

Table 34 second 96 well plate for THRB 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 200 50000 50000  

B 100 25000 25000  

C 10 5000 5000  

D 2 1000.0 1000.0  

E 1* 200.0 200.0  

F 0.5 40.0 40.0  

G 0.1 8.0 8.0  

H DMSO DMSO DMSO  
 

POPs mix DEHP (nM) DINP(nM)  

 

 

Table 35 & 36 An overview of the different concentrations used in the exposure studies of 

blue whale PPAR𝜸.  Each table represents a 96 well plate, there were used two 96 plates for 

each receptor in this study, three replicates of each ligand were used. 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 50000 50000 50000 50000 

B 25000 25000 25000 25000 

C 5000 5000 5000 5000 

D 1000.0 1000.0 1000.0 1000.0 



  

 101 

E 200.0 200.0 200.0 200.0 

F 40.0 40.0 40.0 40.0 

G 8.0 8.0 8.0 8.0 

H DMSO DMSO DMSO DMSO 
 

ROSI (nM) DDT (nM) DDE (nM) DDD (nM) 

 

Table 36 second 96 well plate for PPAR𝜸 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 200 50000 50000  

B 100 25000 25000  

C 10 5000 5000  

D 2 1000.0 1000.0  

E 1* 200.0 200.0  

F 0.5 40.0 40.0  

G 0.1 8.0 8.0  

H DMSO DMSO DMSO  
 

POPs mix DEHP (nM) DINP(nM)  
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Appendix III 

 

 

Figure 37 MSA of invertebrate (fruit fly) and blue &minke whale. A comparison of the 
amino complete sequences of AhR was conducted to investigate if the important amino acids 
marked in the results are also conserved in invertebrates as well as mammals. Amino acids that 
are important for DNA-binding are marked in orange, and amino acids important for 
ligandbinding are marked in purple (Bacsi & Hankinson, 1996; Swanson & Yang, 1996).  
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Figure 38 MSA of AhR in marine mammals. A comparison of the amino acid sequences of 
AhR was conducted to investigate if the “Lost” amino acids in minke whale marked in purple 
are identical in the other compared species. The lost amino acids in the incompleate Minke 
whale sequese appear to be a P. 
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744
749
750
750
750
749
750
751

843
845
846
847
846
850
851
857

THGLNP E S T T V S PQACYAGAV S L YQCQP E P P P S S VARMP YDPA - - - - - - - - - - - AA PQAF L NK F QNGGVLNE T Y PA E L NN I GNTQTTTHLQAL HHP S EAR P F - PDL T S SGF L
RHGLNPQSA I VT PQTCYTGAV SMYQCQP EAQH SHVAQMQYNP TV - - - - - - - - - - PGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP T THL - - - - HP S E AR P F - SDL T S SGF L
RHGLNPQSA I L T PQTCYAGAV SMYQCQP EAQH SHVAQMQYNP TM- - - - - - - - - - PGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP T THL - - - - HP S E AR P F - SDL T S SGF L
RHGLNPQSA I E T PQTCYAGAV SMYQCQP EAQH SHVAQMQYNP TV - - - - - - - - - - PGPQAF L NK F QNGGVLNE T Y PA E L NS I NDTQP TAHL - - - - HP S E AR P F F PDL T S SGF L
K HGLNPQSA I VT PQTCYTGAV SMYQCQP EAQH SHVAQMQYNP TM- - - - - - - - - - PGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP TAHL - - - - HP S E AR P F - PDL T S SGF L
K HGLNPQSA L L T PQTCYAGAV SMYQCQP EAQH SHVAQMQYNP TMPGP T - - - - - MPGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP TAHL - - - - HP S E AR P F - PDL T S SGF L
K HGLNPQSA L VT PQTCYAGAV SMYQCQP EAQH SHVAQMQYNP TMPG - - - - - P T VPGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP TAHL - - - - HP S E AR P F - PDL T S SGF L
K HGLNPQSA L VT PQTCYAGAV SMYQCQP EAQH SHVAQMQYNP TMPGP TMPGP T VPGPQAF L NK F QNGGVLNE T Y PA E L NS I NNTQP TAHL - - - - HP S E AR P F - PDL T S SGF L

 

Baikal seal- AhR 
White whale – AhR 
Killer whale – AhR 
White sided dolphin -AhR 
Sperm whale – AhR 
North atlantic rhight whale – AhR 
Humpback whale – AhR 
Minke whale - AhR 
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Figure 39. Poster from PRIMO 20 Charleston 2019 

The image part with relationship ID rId13 was not found in the file.

The image part with relationship ID rId13 was not found in the file.

In vitro modulation of transcriptional activity in nuclear 
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What? Nuclear receptors, such as thyroid hormone receptor beta
(THRβ), glucocorticoid receptor (GR) and the peroxisome proliferator-
activated receptor gamma (PPARG), are important mediators of
endocrine disruption. Another transcription factor involved in xenobiotic
responses is the Aryl hydrocarbon receptor (AHR).

How? Levels of pollutants in blue and fin whale feeding in arctic
waters were analyzed in blubber samples. THRB, GR, PPARG and
AhR were cloned and sequenced from blubber RNA. To study the
transcriptional activity of blue and fin whale THRB, GR, PPARG, and
AHR when exposed to legacy POPs, GAL4-UAS based in vitro
luciferase reporter gene assays were performed.

Nuclear receptors response to environmental contaminants

Future research

?

Material & methods

Luciferase-
gene reporter 

assay

Key findings
v Blue and fin whale GR, PPARɣ, THRβ and AhR sequences were obtained and 

GAL4-based luciferase assays were established
v Sequence alignments indicated only minor differences between the species
v No or weak agonistic effects of contaminants found in blubber of blue and fin 

whale were observed in the reporter assays with GR, PPARɣ and THRβ
v Further studies are being performed with blue and fin whale AhR

Comparison of blue and fin whale to other species, in relation to their habitat

POPs Endocrine disruption

Why? Blue whales (Balaenoptera
musculus) and fin whales (B. physalus), 
are potentially being impacted by multiple 
stressors  and  pollutant  mixtures.  Despite 
being listed as threatened on the IUCN Red List 
of  Threatened  Species,  there  is little  information 
available  regarding  persistent organic pollutant (POP) 
concentrations   in   their   blubber,    and the    potential
toxicological    effect s   of pollutants    in    these    animals.

Chemical 
analysis to obtain 

contaminant 
concentrations 

levels in blue and 
fin whale blubber.

No or weak agonistic effect of environmental contaminants found in blue whale blubber on transcriptional 
activity of PPARɣ and THRβ were observed. No detected effect on GR.

Cloning

Sequence analysis

18  blue  whale  and  12 fin 
whale blubber-samples were 

taken with a cross bow around 
the Svalbard archipelago between 

2014-2018.    jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Known agonists for GR, PPARɣ and THRβ Fold increase in luciferase activity related to solvent 
treated cells [max]

Receptor
Known 
agonist

DDT
[50!M]

DDE
[50!M]

DDD
[50!M]

DEHP
[50!M]

DINP
[50!M]

POPs MIX
[200x]

GR 43,1 1,0 1,0 1,0 0,9 1,0 0,9

THRb 288,1 0,9 1,1 1,2 1,7 1,2 1,3

PPARɣ 31,5 1,1 1,1 0,9 1.1 1.1 0,9

Figure 1 In vitro activation of blue whale GR, PPARɣ, THRβ and 
AhR by known agonists. The effect of two known agonists on blue 
whale GR and THRB, measured with a luciferase assay on COS-7 
cells. 

Table 1In vitro activation of GR, PPARɣ, THRβ and AhR by known agonists or 
environmental pollutants in a COS7-based luciferase reporter gene assay.
Effects are presented as estimates of fold change at max consentration exposhure

Figure 2 multiple sequence alignment of the ligand binding domain (LBD) in 
different mammals. Only minor differences were found in the LBD between blue 
and fin whale, human, mouse, minke and beluga whale.
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Figure 40 MSA of Blue whale ARNT with other species. A comparison of the amino 
complete sequences of ARNT was conducted to investigate if the identity of amino acids from 
different mammal species.  


