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Abstract: Associations between multicollinear accelerometry-derived physical activity (PA) data and
cardiometabolic health in children needs to be analyzed using an approach that can handle collinearity
among the explanatory variables. The aim of this paper is to provide readers a tutorial overview of
interpretation of multivariate pattern analysis models using PA accelerometry data that reveals the
associations to cardiometabolic health. A total of 841 children (age 10.2 ± 0.3 years) provided valid
data on accelerometry (ActiGraph GT3X+) and six indices of cardiometabolic health that were used
to create a composite score. We used a high-resolution PA description including 23 intensity variables
covering the intensity spectrum (from 0–99 to ≥10000 counts per minute), and multivariate pattern
analysis to analyze data. We report different statistical measures of the multivariate associations
between PA and cardiometabolic health and use decentile groups of PA as a basis for discussing
the meaning and impact of multicollinearity. We show that for high-resolution accelerometry data;
considering all explanatory variables is crucial to obtain a correct interpretation of associations to
cardiometabolic health; which is otherwise strongly confounded by multicollinearity in the dataset.
Thus; multivariate pattern analysis challenges the traditional interpretation of findings from linear
regression models assuming independent explanatory variables

Keywords: multivariate pattern analysis; multiple linear regression; multicollinearity; statistics;
cardiometabolic health; children; accelerometer; intensity

1. Introduction

There is irrefutable evidence about the favorable influence of physical activity (PA) on
cardiometabolic health [1]. However, this evidence is limited by sub-optimal handling of accelerometry
data. Such data is commonly reduced to a spectrum of time spent in only few gross intensities (sedentary
(SED), light PA (LPA), moderate PA (MPA), vigorous PA (VPA), and/or moderate-to-vigorous PA
(MVPA)). Most studies investigating associations between PA and cardiometabolic health have targeted
selected parts of this spectrum [1], partly because they rely on statistical methods that cannot handle
multicollinear data. The focus on selected parts of the spectrum leads to a loss of resolution and
thus information from accelerometry data. Hence, associations with metabolic health for the whole
PA intensity spectrum needs to be addressed using appropriate methodology to obtain a better
understanding of how PA relates to health [1–4].
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Dependency and strong multicollinearity between intensity variables across the PA spectrum,
represents a major limitation for common statistical methods such as ordinary least squares multiple
linear regression [5]. Thus, statistical approaches that can overcome this challenge are needed [2,4,6].
The dependency among explanatory PA variables has been sought solved by the application of several
alternative statistical approaches, including isotemporal substitution models [7,8], compositional data
analysis [9,10], and multivariate pattern analysis [3,11,12]. Both the isotemporal substitution model
and compositional data analysis take into account the closed structure of PA data, which means that
since the total time budget is fixed all behaviors increase (or decrease) at the expense of others and time
are therefore always reallocated among variables [4]. However, these approaches are special cases of
multiple linear regression and do therefore not solve the multicollinearity challenge and do not allow
for the analysis of more detailed descriptions of the PA intensity spectrum.

We have recently applied multivariate pattern analysis to examine associations for accelerometry
data with cardiometabolic health in children [3,11,12]. Multivariate pattern analysis is widely applied
in pharmaceutical [13] and metabolomics studies [14], in addition to other fields of biomedical
research, such as in treatment and diagnosis of diseases [15], with the objective of revealing patterns of
important biomarkers among hundreds or thousands of highly interrelated variables. As previously
called for [1,2,6], this statistical method can handle completely collinear explanatory variables by
combining the data into orthogonal latent variables [16]. Because multivariate pattern analysis solves
the multicollinearity challenge, it allows for analyzing higher resolution accelerometry data (i.e., using
a more detailed PA intensity profile than traditionally applied). Aadland et al. [3] applied 16 PA
intensity intervals between 0–99 and ≥8000 counts per minute (cpm) (vertical axis), and found that
intensities in the vigorous range (5000–7000 cpm) were strongest associated with cardiometabolic
health. Moderate intensity PA was weakly related to health, while SED and LPA were not related to
health. These findings can be further nuanced if using triaxial accelerometry [12], but we will not
emphasize these findings and the added complexity herein.

The finding that VPA was more strongly associated with cardiometabolic health than other
intensities [3], provide important information with regard to the development of PA guidelines.
However, the interpretation of multivariate association patterns or signatures might not be straightforward.
Specifically, the dose or duration of PA needed to achieve a certain health effect, which is obviously
important for guideline development, is not evident from the paper by Aadland et al. [3]. The method
used in the papers by Aadland et al. [3,11,12] was originally applied for biomarker discovery in
chemical spectral profiles. Therefore, a “selectivity ratio” (SR), calculated as each explanatory variable’s
ratio of explained to residual variance related to the predicted latent variable, was developed to reveal
the strongest associations with the outcome among a high number of variables [17,18]. However,
the SR is a statistical measure that is less known in the field of PA epidemiology, which challenges
interpretation of these findings. Moreover, contrary to linear regression, which treats explanatory
variables as independent to each other, multivariate pattern analysis determines how associations—in
a multivariate space—relates to a given outcome. Since the explanatory accelerometry PA variables
are strongly correlated [3], we regard this characteristic a strength of the method, but it also requires
that interpretation of such results is based on patterns or reallocation of time across all the related
explanatory variables that are important to the outcome. Since the derived variables have a closed
structure within a finite period of time, behaviors substitute each other [4]. If sleep is included, the
variables sum to 24 h; otherwise, variables sum to each individual’s accelerometer wear time (i.e.,
100%). Thus, interpretation of a specific variable’s association to the outcome, includes changes across
all explanatory variables. This covariation should be acknowledged as inherent in the data and a
statistical model must be able to account for this feature.

The aim of the present paper is to provide readers a tutorial overview on interpretation
of multivariate pattern analysis models of associations between accelerometry-derived PA and
cardiometabolic health. We will specifically discuss how these models differ from commonly applied
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linear regression models and how association patterns from multivariate models can be used to inform
guidelines for PA in relation to cardiometabolic health.

2. Materials and Methods

2.1. Participants

The present study uses baseline data obtained from fifth-grade children in the Active Smarter
Kids (ASK) cluster-randomized controlled trial, conducted in Norway during 2014–2015 [19,20].
Sixty schools, encompassing 1202 fifth-grade children, fulfilled the inclusion criteria, and agreed to
participate. This sample represented 86.2% of the population of 10-year-olds in the county, and 95.2%
of those eligible for recruitment. Later, three schools declined to participate. Thus, 1145 (97.4%) of
1175 available children from 57 schools agreed to participate in the study.

Our procedures and methods conform to ethical guidelines defined by the World Medical
Association’s Declaration of Helsinki and its subsequent revisions. The South-East Regional Committee
for Medical Research Ethics in Norway approved the study protocol. We obtained written informed
consent from each child’s parents or legal guardian and from the responsible school authorities prior
to all testing. The study is registered in Clinicaltrials.gov with identification number: NCT02132494.

2.2. Procedures

We have previously published a detailed description of the study [19], and therefore provide only
a brief overview of the relevant procedures herein.

Physical activity. PA was measured using the ActiGraph GT3X+ accelerometer (Pensacola, FL,
USA) [21]. Participants were instructed to wear the accelerometer at the waist at all times over seven
consecutive days, except during water activities (swimming, showering) or while sleeping. Units were
initialized at a sampling rate of 30 Hz. Files were analyzed at 1-second epochs to capture low and high
intensity PA [11,22] using the KineSoft analytical software version 3.3.80 (KineSoft, Loughborough,
UK). Data were restricted to hours 06:00 to 23:59. In all analyses, consecutive periods of ≥60 min of
zero counts were defined as non-wear time [23]. We applied wear time requirements of ≥8 h/day and
≥4 days/week to constitute a valid measurement [24].

We created a dataset using 23 PA variables of total time (min/day) to capture movement in narrow
intensity intervals throughout the intensity spectrum (vertical axis only); 0–99, 100–249, 250–499,
500–999, 1000–1499, 1500–1999, 2000–2499, 2500–2999, 3000–3499, 3500–3999, 4000–4499, 4500–4999,
5000–5499, 5500–5999, 6000–6499, 6500–6999, 7000–7499, 7500–7999, 8000–8499, 8500–8999, 9000–9499,
9500–9999, and ≥10000 cpm [12]. This approach is similar to the approach used by Aadland et al. [3],
but extends the intensity spectrum in the vigorous intensity range. In addition, we used the Evenson
et al. [25,26] cut points of 0–99, 100–2295, 2296–4011, ≥4012, and ≥2296 cpm to determine SED, LPA,
MPA, VPA, and MVPA, respectively, and the proportion of children achieving the guideline PA level
(mean of ≥60 min MVPA/day), for descriptive purposes.

Cardiometabolic health. Aerobic fitness was measured with the Andersen intermittent running test,
which has demonstrated acceptable reliability and validity in 10-year-old children [27]. Children ran
as long as possible in a to-and-fro movement on a 20- meter track, touching the floor with a hand each
time they turned, with 15-second work periods and 15-second breaks, for a total duration of 10 min.
The distance (meters) covered was used as the outcome. Body mass was measured using an electronic
scale (Seca 899, SECA GmbH, Hamburg, Germany) with children wearing light clothing. Height was
measured using a portable Seca 217 (SECA GmbH, Hamburg, Germany). Body mass index (BMI)
(kg·m−2) was calculated. Waist circumference was measured with a Seca 201 (SECA GmbH, Hamburg,
Germany) ergonomic circumference measuring tape two cm over the level of the umbilicus. Systolic
(SBP) and diastolic blood (DBP) pressures were measured using the Omron HBP-1300 automated
blood pressure monitor (Omron Healthcare, Inc., Vernon Hills, IL, US). Children rested quietly for ten
minutes in a sitting position with no distractions before blood pressures was measured four times; we
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used the mean of the last three measurements for analyses. Serum blood samples were collected from
the children’s antecubital vein between 08:00 and 10:00 in the morning after an overnight fast. All blood
samples were analyzed for total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol
(HDL), glucose, and insulin at the accredited Endocrine Laboratory of the VU Medical Center (VUmc;
Amsterdam, the Netherlands). Low-density lipoprotein cholesterol (LDL) was estimated using the
Friedewald formula [28]. We calculated the TC:HDL ratio and homeostasis model assessment (HOMA)
(glucose (mmol/L) * insulin (pmol/L) / 22.5) [29].

We calculated a composite score as the mean of six variables (SBP, TG, TC:HDL ratio, HOMA,
waist:height ratio, and the reversed Andersen test) by averaging standardized scores after adjustment
for sex and age. A higher score indicates increased risk, whereas a negative score indicates decreased
risk. A similar approach has been used previously [3,30]. These composite score was used as the
outcome in all models.

2.3. Statistical Analyses

Children’s characteristics were reported as frequencies, means, and standard deviations (SD).
We tested for differences in characteristics between boys and girls using a linear mixed model to
account for the clustering among studies. Models for PA and SED were adjusted for wear time.

Partial least squares (PLS) regression analysis [16] followed by target projection [31] was used to
determine the multivariate association pattern of PA with cardiometabolic health. We included all
PA variables as explanatory variables and the composite cardiometabolic health score as the outcome
variable, as shown previously [3]. PLS regression decomposes the explanatory variables into orthogonal
linear combinations (PLS components), while simultaneously maximizing the covariance with the
outcome variable. Thus, PLS regression is able to handle completely collinear variables [16]. Prior to PLS
regression, all variables were centered and standardized to unit variance. Models were cross-validated
using Monte Carlo resampling [32] with 1000 repetitions by repeatedly and randomly keeping 50% of
the subjects as an external validation set when estimating the models. For each validated PLS regression
model, a single predictive component was subsequently calculated by means of target projection [13,31]
to express all the predictive variance in the PA intensity spectrum related to cardiometabolic health
in a single intensity vector. SRs with 95% CIs were obtained as the ratio of this explained predictive
variance to the residual variance for each PA intensity variable [17,18]. The procedure for obtaining
the multivariate patterns is completely data-driven with no assumptions on variable distributions or
degree of collinearity among variables. These analyses were performed by means of the commercial
software Sirius version 11.0 (Pattern Recognition Systems AS, Bergen, Norway).

SR and alternative statistics. The SR was developed as a statistic to separate important from less
important information in mass spectral profiles acquired from cerebro-spinal fluid samples. The
profiles were described by several thousands of mass-to-charge (m/z) intensities [17,18], measured
as counts similar to accelerometry data. Thus, the development of SR was motivated by a need to
highlight the signals with strongest associations to the outcome variable(s) after taking into account the
noise level in the data. This measure, however, might be less informative for PA researchers and less
directly interpretable compared to more common measures of association or effect size. The choice of
statistic and its calculation and visualization is a matter of purpose. From the originally developed SR,
given as the ratio of the explained to residual variance related to the target-projected component [17,18],
several alternative statistics can be derived. In the present paper, we present four different alternatives:
(1) Instead of dividing by the residual variance, we divided by the total variance, giving a measure
of explained variance of each single explanatory variable, in a multivariate space, related to the
target-projected component. This measure has a range of −1 to 1 when multiplying with the sign of
the variable in the target-projected component. (2) Further, instead of relating this variance solely to
the target projected component (i.e., the total explained variance related to the predicted outcome),
we report a modified SR as the explained variance of the original outcome variable: SR * explained
variance in the outcome. This statistic, thus, provides the explained variance of each of the explanatory
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PA variables for the actually measured outcome (instead of the predicted outcome). (3) Furthermore,
by calculating the squared root of this statistic, we derived “multivariate correlation coefficients”,
which are comparable to Pearson’s bivariate correlation coefficients (r), except that they are derived
from the modelled part of the multivariate space. (4) As correlation coefficients are standardized to
1 SD, we finally weighted this correlation coefficient by each variable’s SD to obtain “unstandardized
multivariate correlation coefficients” or coefficients of covariance. Thus, the statistics derived in step 3
and 4 are analogous to, but different from, standardized and unstandardized regression coefficients in
linear regression. Using the latter (unstandardized) statistic allows for comparison of PA intensities’
importance for the outcome using actual units, that is, minutes per day. However, since the target
projected component does not include so-called orthogonal variation among the explanatory variables
and the outcome, these unstandardized multivariate correlation coefficients cannot be used directly
for prediction of the outcome. For the purpose of prediction, the orthogonal variation needs to be
accounted for in the model. Thus, the unstandardized multivariate correlation coefficients differ from
regression coefficients.

Interpretation of multivariate pattern models. Since multivariate pattern analysis provides the
association pattern—the signature—of how the explanatory variables in a multivariate space relate to
the outcome, explanatory variables are not independent of each other. Thus, their separate association
with the outcome cannot be determined from this analysis, which is reasonable given their strong
interrelationships [3]. Furthermore, since time spent in each PA intensity replaces time spent in others,
a meaningful interpretation must also incorporate reallocation of time as a basis for interpretation [4].
To illustrate this concept, we performed an analysis based on prediction of change in the composite
cardiometabolic health score across sex-specific decentiles of PA using unstandardized multivariate
correlation coefficients (covariances). As explained above, this measure provides the association with
the composite score per 1 min/day change in a given intensity. For ease of interpretation, we merged
PA intensities into the following 12 categories for this analysis: 0–99, 100–999, 1000–1999, 2000–2999,
3000–3999, 4000–4999, 5000–5999, 6000–6999, 7000–7999, 8000–8999, 9000–9999, and ≥10000 cpm. Boys
and girls were separately categorized according to their age- and wear time-adjusted decentiles of
time spent in the VPA intensity strongest related to cardiometabolic health (7000–7999 cpm) and a
typical MPA (3000–3999 cpm) (40–43 children per group). These results are shown as the predicted
changes in the cardiometabolic score according to each decentile group’s time spent in these intensity
levels. To further simplify the understanding of patterns of change in PA across decentiles, we also
summed time spent in 2000–3999 cpm and ≥4000 cpm for all decentiles, which roughly corresponds
to the Evenson cut points [25] of MPA and VPA. Importantly though, since we show time use across
intensities per 1000 cpm, any combination of intensities can be summed.

3. Results

3.1. Children’s Characteristics

We included 841 children (50% boys) who provided valid data on all relevant variables (Table 1).



Metabolites 2019, 9, 129 6 of 14

Table 1. Children’s characteristics.

Overall (n = 841) Boys (n = 424) Girls (n = 417) p between Groups

Demography

Age (years) 10.2 (0.3) 10.2 (0.3) 10.2 (0.3) 0.803

Anthropometry

Body mass (kg) 37.0 (8.1) 36.8 (7.8) 37.2 (8.3) 0.641
Height (cm) 142.9 (6.7) 143.1 (6.7) 142.6 (6.8) 0.197
BMI (kg/m2) 18.0 (3.0) 17.9 (2.9) 18.1 (3.1) 0.218

Overweight and obese (%) 20.8 20.0 21.5 0.583
Waist circumference (cm) 61.9 (7.5) 62.2 (7.3) 61.6 (7.7) 0.169

Waist:height (ratio) 0.43 (0.05) 0.43 (0.05) 0.43 (0.05) 0.322

Indices of cardiometabolic health

Andersen test (m) 898 (103) 925 (112) 871 (85) <0.001
Systolic blood pressure (mmHg) 105.2 (8.4) 105.3 (8.2) 105.2 (8.6) 0.612
Diastolic blood pressure (mmHg) 57.7 (6.2) 57.4 (6.0) 58.1 (6.3) 0.180

Total cholesterol (mmol/l) 4.46 (0.69) 4.46 (0.70) 4.46 (0.68) 0.976
LDL-cholesterol (mmol/l) 2.51 (0.64) 2.50 (0.65) 2.53 (0.62) 0.570
HDL-cholesterol (mmol/l) 1.59 (0.35) 1.63 (0.34) 1.55 (0.35) 0.001

Total:HDL-cholesterol (ratio) 2.91 (0.71) 2.82 (0.66) 2.99 (0.74) 0.001
Triglyceride (mmol/l) 0.78 (0.38) 0.72 (0.31) 0.84 (0.42) <0.001

Glucose (mmol/l) 4.98 (0.32) 5.02 (0.31) 4.94 (0.33) 0.001
Insulin (pmol/l) 7.91 (4.29) 7.05 (3.48) 8.33 (4.83) <0.001
HOMA (index) 1.71 (0.98) 1.54 (0.83) 1.89 (1.09) <0.001

Composite score (1SD) * 0.00 (1.00) 0.00 (0.93) 0.00 (1.07) -

Physical activity

Wear time (min/day) 795 (56) 799 (59) 791 (54) 0.032
Overall physical activity (cpm) 708 (272) 754 (296) 660 (235) <0.001

SED (min/day) 597 (56) 593 (59) 601 (53) <0.001
LPA (min/day) 122 (22) 124 (23) 120 (21) 0.065
MPA (min/day) 37 (10) 39 (10) 35 (8) <0.001
VPA (min/day) 39 (15) 43 (16) 35 (12) <0.001

MVPA (min/day) 76 (23) 82 (24) 70 (19) <0.001
Guideline amount (%) 74 80 68 <0.001

BMI = body mass index; LDL = low density lipoprotein; HDL = high density lipoprotein; HOMA = homeostasis model
assessment; SED = sedentary time; LPA = light physical activity; MPA = moderate physical activity; VPA 0 vigorous
physical activity; MVPA = moderate-to-vigorous physical activity. * The composite score includes waist:height
ratio, systolic blood pressure, total:HDL ratio, triglycerides, HOMA, and the Andersen test. Intensity-specific PA is
calculated using the Evenson cut points [25]; The guideline PA levels is defined as a mean of ≥60 min of MVPA
per day.

3.2. The Multivariate Association Pattern Displayed Using Different Statistics

In sum, the 23 PA variables explained 17.0% of the variance in cardiometabolic health. Figure 1
shows the association pattern between PA and cardiometabolic health using different statistics. All
figures except the lower right figure, are based on standardized variables and are therefore virtually
identical. The lower right figure is weighted by the variables’ SD and therefore lend more weight to
higher intensities having a lower SD. As patterns were similar (r = 0.98), we merged boys and girls in
these analyses.
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Figure 1. The multivariate association pattern between physical activity and cardiometabolic health
reported using different statistics.

3.3. Prediction of Cardiometabolic Health across Decentiles of PA

The unstandardized multivariate correlations for the PA intensity variables when merging the
23 variables to 12 variables are shown in Table 2. The coefficients are averaged using data from the
lower right panel in Figure 1. The coefficients for 3000–3999 cpm (unstandardized r = −0.0453 min/day)
and 7000–7999 cpm (unstandardized r = −0.4857 min/day) were used to predict the change in the
cardiometabolic composite score across decentile groups for boys and girls separately. The pattern of
time spent across the 12 intensities are shown in Tables 3 and 4. Figure 2 and Supplemental Table S1
show the predicted sex-specific cardiometabolic health scores for children across decentiles according
to the difference between the time spent in 3000–3999 and 7000–7999 cpm and the group mean. For
3000–3999 cpm, it can be observed that the 10% least versus the 10% most active boys were predicted
to have a difference in the composite score of 0.38 and −0.52 SDs compared to the average PA level,
whereas the corresponding differences for girls were 0.44 and −0.26 SDs. For 7000–7999 cpm, it can be
observed that the 10% least versus the 10% most active boys were predicted to have a difference in the
composite score of 1.08 and −1.48 SDs compared to the average PA level, whereas the corresponding
differences for girls were 0.79 and −0.99 SDs.
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Table 2. Regression coefficients (unstandardized) obtained from the multivariate pattern analysis.

Physical Activity Intensity (cpm) Unstandardized Multivariate Regression Coefficients

0–99 0.0018

100–999 −0.0038

1000–1999 0.0068

2000–2999 −0.0034

3000–3999 −0.0453

4000–4999 −0.1005

5000–5999 −0.2070

6000–6999 −0.3337

7000–7999 −0.4857

8000–8999 −0.7040

9000–9999 −0.8522

≥10000 −0.0217

Coefficients represent a simplification of the pattern shown in the lower right panel of Figure 1 calculated by
averaging coefficients across intervals to reduce the number of PA variables from 23 to 12.

Table 3. Mean time (min/day) spent in PA intensities according to decentiles of time spent in
3000–3999 cpm.

Physical Activity
Intensity (cpm)

Decentiles of 3000–3999 cpm

1 2 3 4 5 6 7 8 9 10 Mean

Boys

0–99 660 628 624 604 583 590 564 566 566 545 593
100–999 60.5 65.2 65.8 69.0 69.7 73.4 71.4 71.9 77.2 77.8 70.2

1000–1999 34.0 38.8 39.5 42.5 43.1 44.1 46.1 46.7 50.9 52.7 43.9
2000–2999 19.6 22.7 24.1 26.3 27.6 28.3 30.3 32.2 35.4 38.6 28.5
3000–3999 12.2 14.5 16.2 17.7 19.0 20.6 21.9 23.8 26.6 32.0 20.5
4000–4999 7.3 9.1 10.3 11.4 12.1 13.4 14.2 15.6 16.7 21.2 13.1
5000–5999 4.6 5.8 6.5 7.4 7.7 8.6 8.9 9.7 10.1 12.4 8.2
6000–6999 3.4 4.2 4.8 5.5 5.5 6.2 6.3 6.9 7.2 8.2 5.8
7000–7999 2.28 2.74 3.14 3.66 4.06 4.06 4.14 4.36 4.62 5.04 3.77
8000–8999 1.45 1.69 1.91 2.31 2.27 2.46 2.61 2.65 2.83 2.91 2.31
9000–9999 1.05 1.19 1.37 1.67 1.61 1.73 1.91 1.86 1.99 2.03 1.64
≥10000 4.18 5.30 6.34 7.15 8.43 8.82 10.81 11.03 9.22 10.06 8.14

2000–3999 31.8 37.2 40.3 44.0 46.6 48.9 52.2 56.0 62.0 70.6 49.0
≥4000 24.3 30.0 34.4 39.1 41.7 45.3 48.9 52.1 52.7 61.8 43.0

Girls

0–99 653 630 615 616 598 585 600 576 584 555 601
100–999 62.2 65.0 65.8 72.8 65.1 67.7 71.9 73.9 74.0 75.7 69.4

1000–1999 33.6 35.6 38.6 42.0 39.7 42.1 43.3 46.0 46.1 48.3 41.5
2000–2999 17.9 20.2 22.4 24.6 24.8 27.2 27.9 29.6 31.2 34.1 26.0
3000–3999 10.9 12.8 14.1 16.2 16.6 18.2 19.8 21.6 23.2 26.3 17.9
4000–4999 6.5 7.9 8.5 9.8 10.2 11.0 11.9 13.0 14.1 16.2 10.9
5000–5999 3.9 5.0 5.3 6.0 6.2 6.7 7.0 7.7 8.1 9.3 6.5
6000–6999 2.8 3.7 3.8 4.4 4.4 4.7 5.0 5.4 5.5 6.3 4.6
7000–7999 1.81 2.41 2.59 2.99 2.87 3.05 3.29 3.47 3.61 3.94 3.00
8000–8999 1.12 1.51 1.61 1.90 1.78 1.87 2.03 2.13 2.25 2.43 1.86
9000–9999 0.82 1.09 1.17 1.35 1.28 1.34 1.48 1.54 1.61 1.72 1.34
≥10000 3.79 6.16 5.39 6.95 7.20 6.79 8.22 9.13 9.07 8.80 7.15

2000–3999 28.8 33.0 36.5 40.8 41.4 45.4 47.7 51.2 54.4 60.4 43.9
≥4000 20.7 27.8 28.4 33.4 33.9 35.5 38.9 42.4 44.2 48.7 35.4

The variable in bold indicates the basis for construction of decentiles.
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Table 4. Mean time (min/day) spent in PA intensities according to decentiles of time spent in
7000–7999 cpm.

Physical Activity
Intensity (cpm)

Decentiles of 7000–7999 cpm

1 2 3 4 5 6 7 8 9 10 Mean

Boys

0–99 647 624 605 602 586 586 573 583 569 554 593
100–999 61.1 68.2 71.6 69.7 72.2 68.6 70.0 73.4 73.5 73.5 70.2

1000–1999 36.5 41.5 42.9 43.6 45.3 42.7 44.6 46.2 47.3 48.1 43.9
2000–2999 22.9 26.0 27.5 27.6 29.1 27.8 30.0 30.0 31.3 33.0 28.5
3000–3999 15.1 17.2 18.5 19.5 20.9 20.1 22.1 22.2 23.5 25.8 20.5
4000–4999 8.2 10.0 10.8 12.4 13.3 12.9 14.4 14.9 16.1 18.4 13.1
5000–5999 4.4 5.7 6.2 7.3 8.0 8.0 9.1 9.7 10.7 12.5 8.2
6000–6999 2.8 3.7 4.2 4.8 5.4 5.8 6.5 7.2 8.2 9.8 5.8
7000–7999 1.55 2.23 2.59 3.02 3.41 3.77 4.20 4.72 5.45 6.81 3.77
8000–8999 0.91 1.33 1.55 1.83 2.07 2.32 2.57 2.87 3.36 4.28 2.31
9000–9999 0.64 0.94 1.09 1.31 1.50 1.66 1.79 2.02 2.38 3.07 1.64
≥10000 2.83 4.21 5.80 6.57 8.33 8.59 8.29 9.72 12.16 14.97 8.14

2000–3999 38.0 43.2 46.0 47.1 50.0 47.9 52.1 52.2 54.8 58.8 49.0
≥4000 21.3 28.1 32.2 37.2 42.0 43.0 46.9 51.1 58.4 69.8 43.0

Girls

0–99 646 624 620 607 597 587 604 590 567 567 601
100–999 61.6 66.7 69.8 66.3 71.0 66.4 71.4 72.2 72.1 76.1 69.4

1000–1999 34.9 38.9 40.4 38.6 42.6 40.8 42.2 43.8 48.2 20.7 41.5
2000–2999 20.7 23.2 24.4 23.7 26.6 26.4 27.0 28.7 27.4 31.8 26.0
3000–3999 13.2 15.2 16.4 16.5 18.0 18.2 19.2 19.9 19.5 23.1 17.9
4000–4999 7.2 8.7 9.6 10.0 10.7 11.1 11.8 12.3 12.6 15.1 10.9
5000–5999 3.8 4.9 5.6 5.8 6.5 6.8 7.1 7.6 7.8 9.7 6.5
6000–6999 2.4 3.2 3.7 3.9 4.5 4.7 5.1 5.5 5.8 7.2 4.6
7000–7999 1.38 1.93 2.27 2.48 2.82 3.05 3.34 3.70 4.01 5.05 3.00
8000–8999 0.82 1.20 1.33 1.50 1.72 1.89 2.05 2.32 2.58 3.24 1.86
9000–9999 0.58 0.87 0.96 1.07 1.22 1.36 1.45 1.71 1.87 2.30 1.34
≥10000 2.50 5.01 5.06 4.84 7.16 6.47 7.15 9.49 11.50 12.22 7.15

2000–3999 33.9 38.4 40.8 40.2 44.6 44.6 46.2 48.6 46.9 54.9 43.9
≥4000 16.2 20.8 23.5 24.8 27.5 28.9 30.8 33.1 34.7 42.6 28.2

The variable in bold indicates the basis for construction of decentiles.
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4. Discussion

In the present study, we address challenges with regard to the interpretation of associations between
multicollinear accelerometry-derived PA variables and cardiometabolic health in children. Contrary
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to findings from commonly-applied linear regression models, where associations are interpreted as
independent of each other, associations from multivariate pattern analysis are derived from the joint
pattern of all explanatory variables and must therefore be interpreted differently. In the following
sections, we will discuss these differences and attempt to provide readers a framework of how findings
from multivariate pattern analysis can be applied to inform guidelines for PA.

Many studies in the field of PA epidemiology include only few of the many potentially important
accelerometry-derived PA variables. This practice substantially reduces the information about the
influence of various intensities on cardiometabolic health and it increase susceptibility to residual
confounding [1–3,12]. For example, most studies merge all intensities above MPA as MVPA, which
gives the same weight to brisk walking and fast running. Thus, we and others [1–4,12] argue that
associations with cardiometabolic health for the whole PA intensity spectrum should be addressed to
obtain a complete picture and facilitate a better understanding of how PA relates to cardiometabolic
health. Indeed, we have shown that the explained variance improves up to tenfold when adding higher
resolution data compared to traditionally applied overall summary measures (explained variance =

3.2, 4.8, 17.0, and 30.3% for overall cpm from the vertical axis, MVPA from the vertical axis, the whole
intensity spectrum from the vertical axis, and the whole intensity spectrum from triaxial accelerometry,
respectively) [12]. However, due to the strong multicollinearity between variables, which multiple
linear regression cannot handle [5], we need statistical methods that overcome this challenge [4,6].
Aadland et al. [3,11,12] have previously addressed the collinearity challenge of accelerometry-derived
PA data using multivariate pattern analysis, which can treat accelerometry-derived PA variables as
an intensity spectrum without limitations regarding the number and distributions of variables being
analyzed and without any transformation of data [13,15,16]. However, it complicates the interpretation
of associations, since the information about the outcome is derived from many explanatory variables
that must be treated jointly.

Our findings suggest all relevant information for the outcome can be accounted for by PA
intensities in the moderate to vigorous area. In such a case, including one variable—MVPA—as the
explanatory variable, means that its coefficient can be used directly to state that a change of 1 min/day
is associated with for example −0.3059 SDs change in the cardiometabolic composite score (i.e., the
mean of all unstandardized coefficients ≥2000 cpm from Table 2). On the contrary, a coefficient of
−0.4857 for 7000–7999 cpm differs substantially in terms of its interpretation. Spending 1 min/day
more in 7000–7999 cpm does not improve cardiometabolic health by approximately 0.5 SDs per se.
As seen from Table 4, differences across decentiles in one variable relates strongly to differences across
decentiles in other proximal variables. Thus, the difference in time spent in 7000–7999 cpm between for
example decentile 3 and 8 of 2.13 min/day for boys, is inseparable from the differences of 4.1, 3.5, 3.0, 1.3,
0.9, and 3.9 min/day for 4000–4999, 5000–5999, 6000–6999, 8000–8999, 9000–9999, and ≥10000 cpm. In
sum, the difference in VPA (≥4000 cpm) between these decentile groups amounts to 18.9 min/day (32.2
vs. 51.1 min/day). The coefficient for 7000–7999 cpm incorporates this pattern and is, in comparison
with the other (standardized) variable estimates, the variable strongest associated with cardiometabolic
health. An even more extreme example is the association of −0.8522 for 9000–9999 cpm, which means
spending 1 min/day more in this intensity relates to almost 1 SD improvement in cardiometabolic
health. However, the difference of 1.00 min/day for girls in decentile 2 versus 9 (Table 4) is inherently
part of a 13.9 min/day (20.8 vs. 34.7 min/day) difference in VPA in total (≥4000 cpm). In contrast to
using for example MVPA as a single variable that grossly captures all relevant information with regard
to the outcome, associations for variables from a higher resolution dataset are clearly not interpretable
separately because such models are strongly confounded by other proximal variables. The association
of −0.4857 for 7000–7999 cpm as analyzed using a simple linear regression model would clearly suffer
from severe residual confounding, which cannot be corrected, because the confounding variables are
intrinsically part of the same pattern and thus multicollinear to the focused explanatory variable. This
point is also illustrated by the non-addable nature of the coefficients; while the model in total explained
17.0% of the variation in the outcome, each variable between 6000 and 8999 cpm seemingly explained
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≥10% of the outcome (Figure 1, upper right panel) and all variables in sum explained >100% of the
outcome. Obviously, these contrasting interpretations is caused by the strong multicollinearity and
thus great redundancy of information among variables.

Although the signature of PA associated with cardiometabolic health primarily is characterized
by VPA, which clearly informs PA guideline development with regard to the importance of higher
PA intensities for improved health, the question regarding how much time children optimally should
spend in diverse PA intensities is not easily answered. By deriving unstandardized coefficients, we
can directly compare different intensity variables’ strengths of association to health. We previously
reported that time spent in VPA (5000–7999 cpm) was 5 times more important for cardiometabolic
health than MPA (2500–3500 cpm) using 16 PA spectrum variables and 10-second epoch data [3]. In the
present study, using 23 PA spectrum variables and 1-second epoch data, we show that unstandardized
associations (per 1 min/day) for 7000–7999 cpm (coefficient −0.4857) are 10 times stronger than for
3000–3999 cpm (coefficient −0.0453) (means for any summation of data can be calculated from Table 2).
However, as these associations, as discussed in the previous paragraph, must be interpreted with the
whole spectrum of intensities as the backdrop, it is still impossible to obtain a clear understanding about
how duration of single PA intensities relates to health (or other outcomes). In an attempt to clarify this
aspect, we categorized and compared children across decentiles of MPA (3000–3999 cpm) and the VPA
intensity strongest associated with cardiometabolic health (7000–7999 cpm). Worth noting, contrary to
what should be expected from the difference in coefficients, the influence on cardiometabolic health
of change in MPA and VPA (on average −0.08 and −0.21 SDs per decentile, respectively) differ only
2–3 times in favor of VPA. However, this smaller difference is caused by incomparable differences
in time spent across decentiles for MPA and VPA; for example, while the difference in time spent in
the most extreme decentiles for boys is 19.8 min/day for 3000–3999 cpm, it is only 5.26 min/day for
7000–7999 cpm. Nevertheless, because children (or adults) do not exercise in narrow intensity intervals,
further simplification using gross intensity zones is necessary to inform and message guidelines. Based
on the associations given in Table 2, it is evident that a 1 min/day higher PA level in 7000–7999 cpm is
associated with an approximately 0.5 SD lower cardiometabolic health composite score. Spending
1 min/day more in 7000–7999 amounts to approximately 10 min/day more in VPA in total (9.1 and
10.0 min/day in boys and girls, respectively) and approximately 15 min/day in MVPA in total (13.0
and 15.5 min/day in boys and girls, respectively). Thus, our results suggest that increasing VPA by
10 min/day, or if further simplification is warranted; MVPA by 15 min/day, relates to an approximately
0.5 SD improved cardiometabolic health score in 10 year old children.

Strengths and Limitations

The main strength of the present study is the use of a dataset with a large sample of children,
which allowed for determination of robust and stable association patterns and comparisons across
decentile groups. Furthermore, an important strength of our approach using the whole PA intensity
spectrum is that application of pre-defined accelerometer intensity cut points is not necessary. Because
cut points vary considerably between studies [33], they hamper the interpretation of results regarding
the different PA intensities’ importance for health. If, for example, we consider two influential studies
in the field; Andersen et al. [30] defined MVPA above 2000 cpm and Ekelund et al. [34] defined MVPA
above 3000 cpm. Such variation might easily confuse findings and comparability among studies. Thus,
using the whole intensity spectrum provide a more nuanced and robust picture of the associations
between PA and cardiometabolic health.

Because our analyses were restricted to cross-sectional associations, a limitation of our study
is that we could not infer causality from our findings. Moreover, as only one dataset of relatively
active Norwegian children and one outcome (although a composite score of cardiometabolic health)
were used for the analysis, future studies are needed to extend our work using a similar analytic
approach applied to other datasets including various samples and outcomes. Although we have
shown previously that the multivariate PA intensity signature of PA is rather similar for adiposity,
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cholesterol, lipids, insulin sensitivity, and aerobic fitness [3], evidence of associations with other
outcomes, for which the association pattern might be different, are warranted. Moreover, association
patterns corresponding to those shown herein should also be established using accelerometry data
obtained from other placements, for example the wrist, and for raw acceleration data, which circumvent
the challenge of brand-specific interpretation of accelerometer “counts”. Because the placement of
the accelerometer will affect which activities that are captured at a certain acceleration or count
level, association signatures might differ across placements, consistent with our findings for triaxial
accelerometry, where different axes captures different characteristics of PA [12].

Finally, although objective monitoring of PA by means of accelerometry has lead to significant
progress in the field, such measurements have some limitations. Many activities, for example
swimming, upper body movements, and cycling, are poorly captured by the accelerometer [35,36].
Moreover, there are great individual variation in the intensity level at a given count level, especially
at high intensity/count levels. For example, Evenson et al. [25] found SDs of 2328 and 4280 cpm
for running at 6.5 km/h (mean 4700 cpm) and jumping jacks (mean 9496 cpm), respectively. The
physical effort of children performing these activities will obviously also differ largely depending
on their physical fitness level. Nevertheless, the PA intensities most strongly associated with health
(7000–7999 cpm) herein, which based on Evenson et al.’s [25] findings is placed between running
and jumping jacks, would clearly be vigorous intensities (oxygen consumption 26.5–28.1 mL/kg/min;
7.6–8.0 metabolic equivalents [25]), which is also supported by Trost et al. [26], concluding that cut
points of approximately 4000 cpm provide the best classification accuracy of VPA. Thus, consistent
with our simplified public health message above, our results suggest children should perform activities
that involve running and jumping to improve cardiometabolic health.

5. Conclusions

Multivariate pattern analysis has the ability to model simultaneously multiple highly correlated
variables. As applied to accelerometry data, it uses and treats all available information together, resulting
in stronger and stable models of patterns of associations between PA variables and cardiometabolic
outcomes [3,11,12]. In this paper, we aimed to provide a tutorial overview and discussion of how
such association patterns can be reported and interpreted, with specific emphasis on the meaning
of multicollinearity of higher resolution accelerometry data. Although a certain level of prior
statistical knowledge may help in understanding this approach, we have focused our discussion on
the conceptualization of such data as a pattern of inseparable explanatory variables. Still, a meaningful
translation of findings using such methodology is necessary to inform PA guidelines, because guidelines
are not messaged based on narrow intensity intervals and high-resolution data. We have suggested one
approach to meet this goal, but further research is warranted to extend our findings and perspectives.
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