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Abstract 

In shotgun proteomics, peptide and protein identification is most commonly conducted using 

database search engines, the method of choice when reference protein sequences are available. 

Despite its widespread use the database-driven approach is limited, mainly because of its static 

search space. In contrast, de novo sequencing derives peptide sequence information in an unbiased 

manner, using only the fragment ion information from the tandem mass spectra. In recent years, 

with the improvements in MS instrumentation, various new methods have been proposed for de 

novo sequencing. 

This review article proposes an overview of existing de novo sequencing algorithms and software 

tools ranging from peptide sequencing to sequence-to-protein mapping. We describe various use 

cases where de novo sequencing was successfully applied. Finally, we highlight limitations of current 

methods and discuss new directions for a wider acceptance of de novo sequencing in the 

community. 
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1 Introduction 

Nowadays, database searching is the most common approach to identify peptides and proteins in 

shotgun (bottom-up) proteomics workflows. With this computational method, experimentally 

acquired tandem mass (MS/MS) spectra are searched against a reference database that contains 

target protein sequences from the proteomes of interest [1-3]. This protein database is either 

tailored, containing mainly sample- or (at least) species-specific reference sequences, or more 

generic, covering a broad variety of potential candidates, as it is often the case for publicly available 

reference proteomes from UniProtKB [4] or NCBI RefSeq [5].  

The great benefit of targeting a specific reference can also be regarded the most critical issue since 

the ability of database search engines to identify peptides and proteins strongly depends on the 

availability and quality of appropriate reference sequences. As a consequence, the power of 

database searching is limited when the proteome reference is unavailable or incomplete, which is 

the typical case for organisms that have not yet been sequenced (e.g. for samples from non-model 

systems [6, 7] or microbial communities [8, 9]). Reference-based algorithms also have problems 

when the proteome reference is unreliable, which often occurs for splice variants [10], single amino 

acid variations (SAAVs) [11], or proteins with post-translational modifications (PTMs) [12]. In 

particular, sequence variation presents a major challenge when analyzing clinical cancer [13, 14] or 

pathogenic samples [15]. In these cases, tailored protein sequence databases are designed to 

capture biological variation. However, this creates an enlargement of the search space that 

decreases the discrimination power of search engines and consequently reduces their ability to 

identify peptides. Consequently, there is a need for complementary approaches that overcome 

these limitations.  

Two alternatives to the above-described method exist for peptide identification: (1) spectral library 

searching, which matches experimental MS/MS spectra against a collection of pre-recorded spectra 

using spectrum-to-spectrum comparison [16], and (2) de novo sequencing, which infers partial or 

complete peptide sequences from the spectra. Because of lower processing times [17] and 

potentially higher identification yields [18] in comparison with database searching, spectral libraries 

have become a promising alternative for peptide identification. The interested reader is referred to 

the review article of Griss [19], which provides an extensive overview with detailed descriptions on 

available algorithms and resources for spectral library searching in proteomics. However, these 

methods require a solid foundation of previously acquired and well-annotated MS/MS spectra to 

which experimental data can be compared. Thus, spectral library searching depends on available 

high-quality references for spectrum data as much as database-driven peptide identification on high-

quality sequence information. 



In contrast to database and spectral library searching, de novo sequencing works in a completely 

unbiased manner as it does not require any input based on prior knowledge on the sample, but 

solely uses information available in the experimental MS/MS spectrum to infer the peptide 

sequence. In general, de novo sequencing shows the best performance for high quality data. This is, 

when the peptide fragmentation is well reflected within the spectrum, with high mass accuracy and 

sufficient coverage of fragment ions. Therefore, the increase in resolution of modern MS 

instruments has opened the way to a potential ‘golden age’ of de novo sequencing.  

This review provides a detailed overview of state-of-the-art methods and software packages for de 

novo sequencing. We also review sequence-to-protein mapping, which can be combined with the de 

novo technique. In addition, we put particular emphasis on practical use cases, highlighting examples 

from previous proteomic studies that illustrate the effective application of de novo sequencing. 

Finally, we critically discuss shortcomings of existing methods and speculate on directions of 

improvement that may yield better performing tools and a wider acceptance of de novo sequencing 

in the proteomics community. 

 

2 Principle of de novo sequencing and overview of algorithms 

The objective of de novo sequencing is to determine the amino acid sequence of a peptide and 

associated modifications from a given MS/MS spectrum, precursor mass, and charge. As shown in 

Figure 1A, an MS/MS spectrum is essentially a bar plot, in which each fragment ion (acquired from 

the peptide fragmentation process inside the mass spectrometer) produces a signal peak at a 

specific mass-to-charge ratio (m/z), indicating its relative abundance (intensity). The key principle of 

de novo sequencing is that mass differences between pairs of fragment ion peaks are compared with 

the masses of the 20 standard amino acids (with matching mass values for leucine and isoleucine). 

The amino acids can be modified, either in vivo or during sample preparation resulting in additional 

mass shifts that need to be accounted for. The modifications can target specific amino acids, peptide 

or protein termini, or specific amino acids at termini. When modifications occur on the vast majority 

of possible modification sites (typically for chemical modifications with high yield), the modifications 

are considered as fixed or static and always accounted for. When less prevalent, modifications are 

considered variable or dynamic, requiring the algorithms to consider possible mass shifts at all 

modification sites. 

To infer sequences along with potential modifications from mass spectra, most modern de novo 

sequencing algorithms employ approaches based on graph theory that construct a so-called 

spectrum graph for each MS/MS spectrum as described originally by Bartels [20]. A spectrum graph 

consists of nodes and edges. MS/MS peaks are converted into nodes representing masses (i.e. m/z 

values) of partial peptides. Figure 1B shows a simulated spectrum with singly charged fragment ion 



peaks for convenience only. Based on this example, b-ion and y-ion spectrum graphs are illustrated 

exemplarily in Figures 1C and 1D, respectively. A full path in each graph is constructed iteratively by 

connecting the nodes: an edge is drawn when the mass difference between two peak nodes 

corresponds to the mass of an amino acid. The spectrum graph in Figure 1C shows that the b2 (at 

m/z 185.13) and b3 (at m/z 256.17) fragment ion nodes are connected since their mass difference 

corresponds to the mass of alanine (71.04 Dalton). From this example, it is clear that the longer the 

peptide, the more combinations the algorithms will have to take into account. This combinatorial 

explosion is further amplified when taking into account variable modifications. In addition, a 

spectrum graph is usually scored, for example, on the basis of m/z peak matching accuracy or peak 

intensity (not shown here). The best-scoring path through the graph (traversing from N- to the C-

terminus) is then used to de novo determine a candidate peptide sequence from the spectrum. In 

the example, b-ion (Figure 1C) and y-ion (Figure 1D) spectrum graphs are shown independently for 

the sake of simplicity, however, the information from both graphs is usually combined by de novo 

sequencing algorithms to obtain the sequence. 

 

Figure 1. A) The full MS/MS spectrum for the peptide ‘IAAQEVPIEIK’ is shown in blue. The spectrum 
has been obtained from the ProteomeTools project [21] and visualized with the mMass software 
[22]. The singly charged fragment ion peaks for b- and y-ions used to determine the sequence are 
highlighted in black and the corresponding amino acids between the fragments are presented at the 
top. B) An idealized spectrum for the peptide ‘IAAQEVPIEIK’, as generated with MS2PIP [23], is 
shown in red. In the bottom left corner, the full sequence with annotated b- and y-ions is provided. 
C) b-ion spectrum graph for the MS/MS spectrum in (A). Each singly charged b-ion peak is shown as a 
node, and nodes are connected by edges labeled with the corresponding amino acid symbol. Dashed 
nodes and edges represent peaks and mass differences that are not found within the spectrum, but 
suggested only by de novo sequencing algorithms. More complex versions of such a spectrum graph, 
which include other charge states, ion classes and noise, are commonly utilized by these algorithms. 
The evaluation of all possible paths through the graph can yield different alternative sequences; 
here, two inversions are highlighted in orange. Note that y0 and b0 determine the origin of the graph 
(and do not exist as peaks in reality). Below the graph the peptide sequence tag ‘AQEV’ is shown, 



which is flanked by unassigned masses of 185.13 Da and 580.35 Da. This reflects the typical output 
of sequence tagging algorithms. D) y-ion spectrum graph for the MS/MS spectrum in (A). This is 
analogous to the graph in (C), however, based on the singly charged y-ions. As shown in (B), the y-
ions are suffixes of the fragmented peptide. Therefore, the calculation and evaluation of the graph is 
reversed. 
 
Inferring a peptide sequence from an MS/MS spectrum de novo can be (and often has been) 

performed manually, by trained experts. This can still be useful, in particular with samples containing 

few peptides and when unusual PTMs or structures (e.g. cyclic peptides or disulfide bonds) occur. 

However, for complex mixtures, the massive amount of high-throughput data produced in current 

proteomic analysis workflows prohibits the manual approach. As a consequence, different 

algorithms for automatic de novo sequencing have been described, starting in the 1980s. One of the 

first computer-aided methods to tackle the de novo sequencing problem was the use of exhaustive 

search by Sakurai et al. [24]: in their pioneering approach, all potential amino acid sequences and 

corresponding theoretical spectra are generated for a given precursor mass. In a subsequent step, 

experimental spectra are matched against the generated theoretical spectra and a scoring function 

is applied based on the quality of the match. Finally, the best-scoring peptide sequences (based on a 

so-called “total reliability score”) are taken as candidates for identification. Later on, various sub-

sequencing approaches [25-27] were described for constraining the exponential growth of peptide 

sequences generated with increasing precursor mass. Since the 1990s, however, graph-based 

approaches [28, 29] have been increasingly utilized for solving the de novo sequencing problem. 

These methods are much more efficient as they circumvent the combinatorial explosion of 

evaluating all possible sequences. A host of further techniques have been employed for de novo 

sequencing to date, including integer linear programming [30, 31], dynamic programming [32-38], 

divide-and-conquer [39], hidden Markov models [40, 41], machine learning [41-44] and deep 

learning [45]. 

Beyond classical de novo sequencing algorithms that attempt to infer the complete peptide 

sequence (i.e. from N- to C-terminus) from the spectrum, sequence tagging methods [46-48] present 

another interesting algorithmic category: these algorithms derive so-called sequence tags, partial 

peptide sequences consisting of few amino acids surrounded by mass gaps. Figure 1C shows an 

example of the sequence tag ‘AQEV’ with the flanking, unassigned mass values of 185.13 Da and 

580.35 Da that could be derived from the corresponding MS/MS spectrum using a sequence tagging 

algorithm. Tag-based de novo sequencing was introduced by Mann and Wilm in 1994 as a 

complementary approach to database searching [49]. The idea of the tag-based approach is that, 

given the heterogeneous ion coverage in the spectrum, a series of few high-intensity fragment ion 

peaks can be used to extract well-resolved sequence fragments that can in turn be matched against 

a reference database. Any peptide containing the sequence tag along with the correct flanking 



masses is then considered an identification candidate. This step may also involve error-tolerant 

database searching: in this manner, peptides can be identified even when PTMs or SAAVs are 

present – accounting for variants that are not included in the reference database. 

Numerous algorithms and software tools have been described in the past 20 years for tackling the de 

novo sequencing problem. In 1997, Lutefisk [29] was proposed as a pioneering software package for 

de novo sequencing. It was meant to be an addition to existing peptide identification tools such as 

SEQUEST [2] or PeptideSearch [49], e.g. for processing samples from organisms that are 

underrepresented in protein sequence databases. Lutefisk was the first tool to implement the 

spectrum graph strategy by Bartels [20]. In 1999, the SHERENGA algorithm [28] introduced a couple 

of paramount, previously undescribed strategies that considerably improved the performance of de 

novo sequencing. Those included automatic parameter learning, robust spectrum graph application 

for incomplete peptide fragmentation, and better scoring methods, e.g. for analyzing fragment ions 

of unknown charge states. The PEAKS software [34], described in 2003, uses a preprocessing step to 

generate candidate de novo sequences and employs dynamic programming in combination with a 

probabilistic scoring scheme for peptide prediction confidence. PEAKS provides complete peptide 

sequences in conjunction with confidence scores for individual amino acid assignments. In 2005, in 

their seminal work on the PepNovo algorithm, Frank et al. [35] described a scoring method based on 

a probabilistic network model reflecting the physical and chemical properties of peptide 

fragmentation. Besides a default set of models for collision-induced dissociation (CID) 

fragmentation, new models (e.g. for different fragmentation types) can be created in a separate 

training step. In the same year, NovoHMM [40] was proposed as the first algorithm using a 

generative hidden Markov model for solving the de novo sequencing problem. This has the benefit of 

providing an exact estimation of Bayesian posterior probabilities for amino acids rather than 

arbitrary score values. In 2008, Tabb et al. released DirecTag [46], a fast tool to infer sequence tags 

from MS/MS spectra. Remarkably, it includes three different scoring mechanisms for evaluating the 

tags based on peak intensity, m/z accuracy, and ion complementarity. 

In 2010, with the advent of higher-energy collisional dissociation (HCD), pNovo [36] was proposed by 

Chi et al. and updated as pNovo+ [37] in 2013. The latter is able to process HCD and electron-

transfer dissociation (ETD) spectra jointly, with the aim of increasing sequencing accuracy and 

coverage. According to the authors, the numbers of attained correct full-sequence peptides using de 

novo sequencing in combination with pNovo+ were already comparable to database-driven 

identification at this point. While such conclusions should generally be drawn with respect to 

selected test data sets, they have unquestionably given promise for a new era of reliable high-

throughput de novo sequencing in proteomics. One of the most remarkable advances has been 



demonstrated with the recent development of the Novor algorithm, yielding a substantial increase 

in both processing speed (more than 300 MS/MS spectra per second on a normal laptop computer) 

and sequencing accuracy when compared with previously published approaches [42]. Open-pNovo 

[50] overcomes the issue of combinatorial explosion introduced by the consideration of multiple 

modifications by combining efficient de novo sequencing with large precursor tolerance for 

detecting peptides with arbitrary types of modifications. Finally, state-of-the-art deep learning 

techniques have shown first, promising results: DeepNovo [45], a recently described algorithm based 

on a deep neural network and local dynamic programming, shows a significant improvement of up 

to 64% higher accuracy at the full-peptide level in comparison with its competitors PEAKS, PepNovo, 

and Novor. It combines the recent improvements in convolutional and recurrent neural networks to 

train on features from MS/MS spectra, fragment ion information, and peptide sequence patterns. 

Novel solutions with more specific use cases are being developed, such as Supernovo, a specific 

solution for de novo sequencing of monoclonal antibodies (mAbs) (proteinmetrics.com).  

Available algorithms for de novo sequencing and sequence tagging are summarized in Table 1 

together with the paradigms, corresponding references, license types, and websites. It should be 

noted that most of these tools are also listed (among many other software packages for omics 

analyses) on OMICStools [51] (omictools.com).  

Table 1. Currently available tools for MS-based de novo peptide sequencing. The list is sorted by 

publication year. 

Algorithm Paradigm(s) 
Reference 

(author/year) 
License  Project website 

Lutefisk spectrum graph 
Taylor and Johnson 
1997 [29]  

free hairyfatguy.com/lutefisk 

SeqMS spectrum graph 
Fernandez-de-
Cossio et al. 2000 
[52] 

free protein.osaka-u.ac.jp/rcsfp/profiling/Seqms/SeqMS.html 

PEAKS 
spectrum graph, 

dynamic programming 
Ma 2003 [34] commercial bioinfor.com/peaks-studio 

PepNovo 
spectrum graph, 

dynamic programming 
Frank et al. 2005 
[35] 

free proteomics.ucsd.edu/Software/PepNovo 

NovoHMM hidden Markov model 
Fischer et al. 
2005 [40] 

free www-huber.embl.de/users/befische/software/NovoHMM.zip 

DirecTag 
spectrum graph, tag 

generation 
Tabb et al. 2008 
[46] 

free medschool.vanderbilt.edu/msrc-bioinformatics/software 

pNovo+ 
spectrum graph, 

dynamic programming 
Chi et al. 2010 [36, 
37]  

free pfind.ict.ac.cn/software/pNovo 

ANTILOPE 
integer linear 
programming 

Andreotti et al. 
2012 [30] 

free openms.de 

UniNovo 
spectrum graph, 

dynamic programming 
Jeong et al. 2013 
[38] 

free proteomics.ucsd.edu/software-tools/uninovo 

Novor 
spectrum graph, 
machine learning 

Ma 2015 [42] free rapidnovor.com/download 

LADS machine learning 
Devabhaktuni and 
Elias 2016 [43] 

free github.com/adevabhaktuni/LADS 

https://www.proteinmetrics.com/
https://omictools.com/
http://www.hairyfatguy.com/lutefisk/
http://www.protein.osaka-u.ac.jp/rcsfp/profiling/Seqms/SeqMS.html
http://www.bioinfor.com/peaks-studio/
http://proteomics.ucsd.edu/Software/PepNovo/
http://www-huber.embl.de/users/befische/software/NovoHMM.zip
https://medschool.vanderbilt.edu/msrc-bioinformatics/software
http://pfind.ict.ac.cn/software/pNovo/
https://www.openms.de/
http://proteomics.ucsd.edu/software-tools/uninovo/
https://www.rapidnovor.com/download/
https://github.com/adevabhaktuni/LADS


Twister 
top-down sequencing, 

tag generation 
Vyatkina et al. 2016 
[53]   

free bioinf.spbau.ru/en/twister 

UVNovo 
hidden Markov model, 

machine learning 
Robotham et al. 
2016 [41] 

free github.com/marcottelab/UVnovo 

Open-pNovo 
spectrum graph, 

dynamic programming 
Yang et al. 2017 
[50] 

free pfind.ict.ac.cn/software/pNovo 

MRUniNovo 
spectrum graph, 

dynamic programming 
Li et al. 2017 [54] free bioinfo.hupo.org.cn/MRUniNovo 

DeepNovo 
dynamic programming, 

deep learning 
Tran et al. 2017 
[45] 

free github.com/nh2tran/DeepNovo 

pSite machine learning 
Yang et al. 2017 
[44] 

free pfind.ict.ac.cn/software/pSite 

 

While many algorithms have been published, we observed in a previous benchmarking study [55] 

that only few methods are (i) regularly updated to support data from modern MS instruments and 

different fragmentation modes (e.g. CID and HCD) and (ii) currently available as generic software 

packages or integrated in workflows. Among those, the most widely-used are PepNovo [35], 

DirecTag  [46], pNovo+ [37], and Novor [42]. To facilitate their use and integration, DeNovoGUI [56] 

provides a command line and graphical user interface for these tools. With a particular focus on 

usability, it enables researchers to inspect the de novo sequencing results in tabular form and also 

provides an interactive viewer application that annotates fragment ion spectra with amino acid 

predictions. The PEAKS tool suite [34] (bioinfor.com) is another powerful yet commercial software 

package for proteome analysis and includes a dedicated module for de novo sequencing. The relative 

performance of the different software solutions is a recurring matter of debate in the literature [55].  

The output of most de novo sequencing tools is a list of full or partial candidate peptide sequences 

along with modifications and a score indicating the sequencing quality. The next step therefore 

involves mapping the candidate peptides to protein sequences. This is generally achieved using 

secondary tools, of which we provide an overview in the next section. 
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http://pfind.ict.ac.cn/software/pNovo/
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3 Survey of tools for mapping peptides and sequence tags to the protein level 

As demonstrated in the previous section, the output of de novo sequencing tools is usually a list of 

candidate sequences, potentially including modifications and, frequently, mass gaps or ambiguous 

combinations of amino acids. Similarly, sequence tagging algorithms commonly output sequence 

tags of three to six amino acids. This makes it challenging for scientists to interpret the data in a 

meaningful way. To alleviate this issue, it is possible to aggregate the information at the protein 

level. This may be achieved by mapping the de novo peptides or tags to reference proteomes, for 

example from public databases such as UniProtKB [4] or NCBI RefSeq [5], or from custom and more 

tailored genome/transcriptome databases. Figure 2 depicts a typical MS/MS-based protein 

identification workflow that includes both de novo sequencing and peptide-to-protein mapping. 

Beyond de novo sequencing, the mapping of peptide sequences to reference proteomes is a crucial 

step in many proteomics workflows. Importantly, this does not have to happen only once: even 

when proteins have already been identified, the underlying 'raw' peptide sequences may be 

reconsidered by mapping them against a different reference proteome, which may contain novel 

sequences or sequence isoforms (e.g., when protein databases have been updated). It is also worth 

noting that algorithms for database searching and protein inference may introduce certain biases 

that one wants to avoid by remapping the peptides against the search database with the original 

references. The hybrid of de novo sequencing and protein mapping combines sequence tagging with 

database searches. The aim is to reduce overall processing time by filtering for potential candidate 

sequences using short sequence tags in the first step and performing a classical database matching 

on these candidates in the second step. 

  



 

Figure 2. A typical workflow involving de novo sequencing. MS/MS spectra are acquired by mass 
spectrometry, which, together with the databases themselves, serve as input (blue) for database 
searches. Any unidentified spectra (or even all, e.g. for non-model organisms) can be processed with 
de novo sequencing (orange). Resulting de novo peptide sequences are assembled to complete 
sequences (e.g., for antibody sequencing) or mapped to a protein database. The resulting protein 
identifications (green) can be aggregated to provide valuable information about a sample, such as 
protein coverage, protein families, taxonomic and functional distribution. 
 

Existing tools for mapping de novo sequencing data (full-length peptide sequences or peptide tags) 

to reference proteomes are summarized in Table 2. The popular BLAST [57] is widely used to 

compare sequences either at the genome or at the proteome level. However, it is clearly not the 

best choice for MS-based data, since the information from the spectra (e.g. precursor masses or 

fragment ion peaks) is not taken into consideration. For example, typical de novo sequencing errors 

such as inversions or mass ambiguities often occur due to missing fragment ion peaks within an 

MS/MS spectrum. This information is not considered when using BLAST, and erroneous query 

sequences may therefore lead to false assignments. BLAST has indeed been developed for whole-

gene and -protein sequence comparison and is therefore not meant to handle short de novo peptide 

sequences. In 2001, Shevchenko et al. introduced the web-based MS BLAST [58] as a tailored 

solution for processing candidate peptides from de novo sequencing. Similar to the original BLAST 

heuristics, this tool allows users to match sequences in FASTA format against a predefined set of 

protein databases using different similarity matrices (e.g. PAM or BLOSUM). MS BLAST was 

specifically designed to align short sequences such as peptides and also makes it possible to include 

LC-MS/MS-specific parameters. However, it does not consider spectrum information nor does it 

permit to choose a user-defined reference database. Consequently, with these points in mind, 

further software packages have been developed. For example, MS-Homology [59] from the 



ProteinProspector package allows for sequence tag searches using a user-defined protein database. 

Similarly, FASTS [60] uses multiple short peptide sequences for identifying proteins from any given 

protein database. Furthermore, the sequence tags output by DirecTag [46] can be used as input for 

TagRecon [61] to identify protein sequences containing unanticipated mutations. The TagRecon 

authors also propose general guidelines for validating such identifications. Corresponding 

acceptance criteria for PTM validation are found in an earlier study [62]. The basic principle shared 

by these guidelines is to discard unexpected (i.e. modified or mutated) peptide hits that fail to fulfill 

certain quality checks.  

Further tools have been proposed with the specific aim of detecting mutations or modifications in 

proteomics data sets. The InsPecT package [63] allows the user to search for unexpected PTMs 

without explicit parameterization of all variants, via an internal peptide tag generation procedure 

followed by protein database filtering. The commercial PEAKS software, which has been updated 

with a specific module for database matching with PEAKS DB [64], also includes SPIDER [65], an 

algorithm to perform mutation-tolerant protein identification using sequence tags. In a similar 

fashion, the BICEPS algorithm [66] combines de novo sequencing and sequence tag searching, with 

the latter allowing for mutations in the de novo peptides and also at the protein sequence level.  

Additional tools focus on data integration and visualization of results. PepExplorer [67] helps 

interpreting results from various modern de novo sequencing algorithms. The similarity-driven tool is 

that protein inference and false discovery rate (FDR) estimation are established by mapping the 

peptide sequences to a user-defined target-decoy sequence database. In addition, it provides a user-

friendly graphical interface and outputs reports based on the identified proteins. Consequently, the 

output of this de novo sequencing-based workflow can be readily interpreted, similar as the results 

from established database-driven protein identification search engines. A guided tutorial for using 

PepExplorer in proteomic studies can be found in [68]. The web-based Unipept [69] focuses on 

metaproteomics research. Users can enter peptide sequences derived from an MS/MS experiment 

that are then matched against an indexed peptide database derived from UniProtKB. Unipept 

provides useful features with respect to taxonomy-based analysis. For example, it displays an 

interactive circular tree map based on the inferred proteins from different species to give an insight 

into the biodiversity of a sample. Still, Unipept may not be the best option for processing 

(particularly low-quality) de novo sequencing data, as it performs exact string matching only and 

therefore does not account for potentially incorrect or incomplete de novo sequences. The recently 

published PeptideMapper [70] was specifically developed for the rapid mapping of full-length or tag 

peptides to a user-defined protein reference database (in FASTA format). PeptideMapper utilizes a 

highly efficient full-text substring index data structure [71] based on the Burrows-Wheeler transform 



that has already been used successfully for mapping next-generation sequencing reads [72]. This 

mapping algorithm has already been integrated into the user-friendly DeNovoGUI [56] and 

PeptideShaker [73] frameworks for post-processing results from de novo sequencing and database 

searching, respectively. While the previously mentioned tools are used to directly map de novo 

peptides to proteome references, Meta-SPS [74] follows a completely different approach: it seeks to 

obtain complete proteins de novo (e.g., with the goal to perform sequencing of whole antibodies, as 

explained further in the next section). To achieve this difficult goal, proteins need to be digested 

with multiple enzymes and peptides fragmented using different techniques such as HCD and ETD. 

 

Table 2. Currently available tools for mapping full-length and tag peptides from MS-based de novo 

sequencing to reference proteomes. The list is sorted by publication year. 

Algorithm Reference (author/year) License  Project website 

MS BLAST Shevchenko et al. 2001 [58]  free genetics.bwh.harvard.edu/msblast 

MS-Homology Huang et al. 2001 [59] free prospector.ucsf.edu 

FASTS Mackey et al. 2002 [60] free fasta.bioch.virginia.edu 

InsPect Tanner et al. 2005 [63] free proteomics.ucsd.edu/Software/Inspect 

SPIDER Han et al. 2005 [65] commercial bioinfor.com/peptide-mutations-homology-searching 

TagRecon Dasari et al. 2010 [61] free 
medschool.vanderbilt.edu/msrc-

bioinformatics/software 

PEAKS DB Zhang et al. 2012 [64] commercial bioinfor.com/peaksdb 

BICEPS Renard et al. 2012 [66] free software.steenlab.org 

Unipept Mesuere et al. 2012 [69] free unipept.ugent.be 

Meta-SPS Guthals et al. 2012 [74, 75] free proteomics.ucsd.edu/software-tools/metasps 

PepExplorer Leprevost et al. 2014 [67] free proteomics.fiocruz.br/software/pepexplorer 

DeNovoGUI Muth et al. 2014 [56] free compomics.github.io/projects/denovogui.html 

PeptideMapper Kopczynski et al. 2017 [70] free 
github.com/compomics/compomics-

utilities/wiki/PeptideMapper 
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4 Practical applications of de novo sequencing in proteomics 

Previous review articles [76-79] have already highlighted how de novo sequencing has been 

effectively used in the past for various use cases. Since then, however, improved MS 

instrumentation has made it possible to retrieve more data and achieve more complete peptide 

fragmentation. These improvements are reflected by high-intensity ion signals in the MS/MS scan. 

For example, in HCD data, prominent b- and y-ion series with high coverage are typically available. 

Consequently, more accurate methods and novel developments in the recent past enabled 

researchers to apply de novo sequencing for their purposes. At the same time, the lack of suitable 

reference proteomes has rendered the de novo technique the only viable option in many recent 

studies. This section focuses on applications of de novo sequencing in the field with a particular focus 

on recent studies and developments. 

 

4.1 Antibody sequencing 

Antibodies, also commonly known as immunoglobulins, are Y-shaped proteins produced mainly by 

plasma cells that are used by the immune system to cope with pathogens (e.g. bacteria or viruses) or 

cancer cells. In the field of immunotherapy, monoclonal antibodies (mAbs) are heavily used as 

molecules engineered to interact with the immune system and redirect immune responses. Overall, 

mAbs are very promising drug candidates, as they are more specific and have fewer side effects than 

conventional small-molecule drugs. In the pharmaceutical industry, determining the amino acid 

sequence of a monoclonal antibody is an essential step when discovering new drug candidates and 

innovator products for biosimilar development [80]. The challenge with this is that antibody 

sequences are (and need to be) highly diverse, as a result of gene recombination and somatic 

hypermutation events. In the pharmaceutical context, this is added to by further events occurring 

during the manufacturing process or storage [81]. On the proteome level, the diversity of antibodies 

manifests itself in sequence mutations, PTMs (e.g. varying glycosylation patterns), as well as terminal 

amino acid additions [82]. For example, it is known that glycosylation has strong effects on both 

antigen specificity and function of immunoglobulins [83]. Detailed knowledge about the sequence of 

a given antibody is critical for understanding the relationship between its structure and function, as 

well as for evaluating its efficacy and safety when used as a drug. Commonly, to obtain the sequence 

of an antibody with unknown variable regions, cDNA from the source hybridoma cell line is produced 

and sequenced. However, the previously mentioned post-DNA level modifications remain invisible in 

this manner, and sometimes hybridoma cells may be entirely unavailable. For these reasons, 

appropriate reference templates for antibodies are lacking, which renders the application of 

database-driven identification methods practically impossible. Since classical Edman degradation, as 

one possible alternative, is very time-consuming and provides low throughput only, efforts have 



been made to directly sequence antibodies using the MS-based de novo approach. In 2006, Pham 

and colleagues at Genentech pioneered in the application of de novo sequencing for characterizing a 

full-length mAb by combining complementary digestion methods, MS-based analysis and Edman 

degradation [84]. Two years later, Bandeira et al. were the first to describe a dedicated workflow 

making it possible to sequence an antibody within 72 hours [85], much faster than Edman 

degradation. In their approach, so-called spectral contigs, as an equivalent to sequence contigs in 

genome sequencing, are first obtained in de novo manner. Reference antibody sequences are then 

used for ordering the contigs and, finally, for sequence mapping. The 95-99% coverage reported in 

this study translates into a performance superior to the classical Edman technique.  

In recent years, different studies have described direct antibody sequencing based on the de novo 

technique with or without assisting databases. In 2016, Tran et al. proposed an integrated system for 

assembling antibody sequences [86] that combines de novo sequencing peptides (derived from 

PEAKS DB [64]), quality scores, and information from databases, using a weighted De Bruijn graph. 

They report unprecedented performance, with 100% coverage and 96-100% accuracy for three 

complete monoclonal antibody sequences. In a different study, the same authors also applied their 

DeepNovo algorithm for sequencing the heavy and light chains of a mouse antibody and reported 

coverage and accuracy values in the same range [45]. Further, Bogdanoff et al. combined mass 

spectrometry and crystallography to determine the protein sequence, structure and glycosylation 

pattern of the Fab fragment of a human astrovirus-neutralizing mAb [87]. In their study, they used 

the commercial Byonic software [88] and employed the so-called wild card search to determine the 

missing sequence gaps and unanticipated modifications. In 2017, Guthals and colleagues extended 

the application of de novo sequencing to characterize polyclonal antibodies directly from donor 

blood plasma [89], without genome-sequencing any peripheral B cells from the same donor. Savidor 

et al. have recently proposed a database-independent workflow for full-length protein and antibody 

sequencing [90] in which non-enzymatic microwave-assisted acid hydrolysis is used for semi-random 

cleavage, followed by solid-phase extraction, peptide de novo sequencing and contig assembly. Two 

commercial software developments for antibody sequencing, namely PEAKS AB 

(bioinfor.com/peaks-ab-software) and Supernovo (proteinmetrics.com/products/supernovo), 

underline current market needs for professional platforms. Although de novo sequencing of full-

length proteins is still challenging, the rapidly increasing interest in therapeutic human antibodies 

has undoubtedly already led to the development of better and faster algorithms. 

 

  

http://www.bioinfor.com/peaks-ab-software
https://www.proteinmetrics.com/products/supernovo/


4.2 Application to non-model organisms and cross-species identification 

Despite many ongoing sequencing efforts worldwide, most organisms have not been sequenced to 

date. Particularly non-model organisms are still hard to analyze on the proteome level because 

appropriate reference sequences for database searching are lacking [6]. A good example is the 

recent study by Saha et al. [91] on the coconut palm, whose genome sequence is still largely 

undetermined. Therefore, a combination of conventional database searching with MASCOT [92] and 

manual de novo sequencing was used to eventually determine twelve proteins responsible for 

coconut pollen allergies with MS BLAST [58]. A similar study by Bordas-Le Floch et al. [93] evaluated 

the allergens of the house dust mites Dermatophagoides farinae and D. pteronyssinus and included 

transcriptome sequencing of the two species. Subsequently, database searches and de novo 

sequencing were performed with PEAKS [34] to determine peptide and protein sequences. Out of a 

test cohort, 42% of patients reacted positively to the newly discovered allergens. Both of these 

studies support a similar workflow to detect allergens in non-model organisms. A related research 

topic is the study of microbial consortia. Such are found almost anywhere on Earth and are also 

essential to human health. The relatively novel field of metaproteomics deals with the analysis of 

these microbial communities at the proteome level. The main difference to conventional proteomic 

studies is that large numbers of different organisms are contained within the samples of interest [94, 

95]. This leads to several challenges on the experimental side, and arguably even more severe ones 

on the computational level. In particular, this refers to missing proteome references and an inflated 

search space [96]. Since de novo sequencing makes it possible to obtain full or partial peptide 

sequences on the basis of high-quality MS/MS spectra from organisms without sequenced genomes, 

it has already been used in different metaproteomics studies. For example, a study by Cantarel et al. 

[97] demonstrated that information could be gained when using de novo sequencing additionally to 

conventional reference-based methods. The authors combined the de novo peptide predictions of 

PepNovo and PEAKS, thereby identifying more than 8,000 additional peptides. In a benchmarking 

study on intestinal metaproteomes [98], de novo sequencing was also evaluated for being 

complementary to database searching. PepNovo could on average recover 23% of the peptides that 

were obtained using database searching. Recently, Speda et al. made use of de novo sequencing for 

a metaproteomics-guided selection of targeted enzymes from mixed microbial communities [99]. 

Interestingly, they found that the mutation-tolerant SPIDER algorithm could identify more proteins 

with a different function than the ones identified by PEAKS, suggesting that allowing for sequence 

mutations might be very useful in this context. However, the authors also encountered the common 

difficulty of unambiguously linking identified peptides to the correct complete sequence entry, as de 

novo sequence tags rarely cover an entire protein sequence. While this also applies to conventional 



database searches, the weak spot of insufficient de novo sequence coverage is worsened by the 

protein inference problem [100]. The proper validation of de novo sequencing hits in 

metaproteomics settings is still an active field of research. 

Single amino acid variations between evolutionarily related organisms strongly affect the success of 

protein identification. In fact, peptides without an exactly matching reference sequence will remain 

unidentified using classic database search methods. In contrast, if a reference from a (closely or even 

distantly) related organism is available, homology searching on the basis of de novo sequencing 

results can be employed to alleviate this issue [77]. In 2004, Habermann et al. first evaluated this 

strategy using the MS BLAST protocol [58] for cross-species identification [101]. In another study 

[102] on a non-human primate species for which database information was limited, de novo 

sequencing and homology searching was successfully used with PEAKS [34]. The BICEPS software 

[66] makes use of de novo sequencing internally, while being tailored to overcome species 

boundaries in peptide identification. In benchmarking, it showed a similar performance on reference 

data from remotely related organisms when compared with database search algorithms running on 

the respective sample-specific database. Very recently, Welker conducted a computational 

paleoproteomics experiment [103]. Human bone protein samples are searched against three 

different databases containing sequences with increasing evolutionary distances, from human, 

chimpanzee and orangutan. Albeit using PEAKS and the mutation-tolerant SPIDER [65], the results of 

this study confirm that the identification rate decreases with increasing evolutionary distance, and 

that there is a bias towards conserved sequences. Importantly, a considerable loss in protein hits 

was observed despite using error-tolerant methods. Overall, this issue can strongly affect the 

outcome of proteomics studies and, if not anticipated, may lead to incorrect divergence dating and 

invalid comparisons between samples.  

  

4.3 Venom-based studies 

As venoms are causing a noteworthy amount of deaths and injuries worldwide, their 

characterization from tissues of various toxic animals is an important field of research. Strikingly, the 

World Health Organization (WHO) has started to consider snake bites a form of Neglected Tropical 

Disease (NTD) in 2017 [104]. Snake venoms are mixtures of mainly polypeptides and carbohydrates, 

with proteins being the main component in terms of venom dry weight. To understand the 

pathogenic processes triggered by venoms and develop efficient treatments, it is essential to study 

these proteins. Since almost no reference databases exist, de novo sequencing has proven useful to 

this end. In a recent study, de Oliveira et al. were able to discover multiple isoforms of crotapotin in 

the venom of the South American rattlesnake (Crotalus durissus terrificus) using de novo sequencing  



[105]. Further recent studies have applied the technique other organisms, including snails [106, 107], 

ants [108], scorpions [109-111] and spiders [112].  Mainly PEAKS [34] and manual de novo 

sequencing were used to evaluate the MS data in these studies. The manual approach was shown to 

enhance the detection of peptide and protein modifications. Trevisan-Silva et al. used multiple 

proteases and dissociation techniques in conjunction with the Meta-SPS pipeline [74] to characterize 

the venom of the brown spider (Loxosceles intermedia) [112]. Conotoxins are oligopeptides found in 

cone snails and have been the subject of multiple studies. The work of Figueroa-Montiel et al. [107] 

surveys the utilization of conotoxins with antimycobacterial activity as a potential M. tuberculosis 

treatment. Specifically, the results of the sequencing of the venom gland transcriptome of 

Conasprella ximenes were used as a database for proteomic identification with MASCOT [92], 

ProteinPilot (SCIEX) and PEAKS. In combination with manual de novo sequencing of the produced 

MS/MS spectra, fragmented in two complementary modes, reliable characterization of the 

conopeptides could be achieved. Abdel-Wahab et al. used de novo sequencing for the structural and 

biological characterization of pn3a and pn4c [106], which are conopeptides originating in the venom 

of Conus pennaceus. The analyses of ant venom (Pachycondyla striata) by Santos et al. [104] 

revealed a complex mixture of venom proteins, allergenic and bioactive peptides. In this study, 

spectra produced by MALDI-TOF/TOF and ESI-Q/TOF experiments were sequenced with PEAKS, after 

searching against the UniProtKB [4] and NCBI [5] databases.  

Beside snake bites, scorpion stings present another serious health threat. A study of the venom of 

Thorellius atrox by Romero-Gutierrez et al. [110] consisted of an RNA-seq analysis of the venom 

gland transcriptome followed by bottom-up LC-MS/MS analysis. The latter study included database 

searching with SEQUEST [2] and de novo sequencing with PEAKS. This combination yielded a detailed 

description of the venom composition. Miyashita et al. were able to define new antimicrobial 

peptides in the venom of Isometrus maculatus [109] using de novo sequencing based on two types 

of MS with different peptide fragmentation modes. Finally, Amorim et al. used de novo sequencing 

to investigate hyaluronidase rTsHyal-1 from the Tityus serrulatus venom [111]. In conclusion, de 

novo sequencing is as a powerful tool in the field of venom research. 

 

4.4 Glycomics and miscellaneous studies 

The above-listed studies only cover a fraction of the use cases that have been examined with MS-

based de novo sequencing so far. Further topics reach beyond classical proteomics applications, for 

example, into the related field of glycomics. This is concerned with the systematic study of all 

oligosaccharide structures, so-called glycans, of a given cell type or organism [113]. Glycans 

constitute a large part of the observed protein modifications and are of high biological relevance. 



Also, in the context of personalized medicine and diagnostics, glycoproteins are considered 

interesting candidates for biomarker discovery, as changes in protein glycosylation are associated 

with disease states [114, 115]. Since dedicated experimental setups are thus far required to analyze 

these carbohydrate structures, the determination of glycan sequences directly from MS/MS spectra 

has become an important matter of research. Since glycans form complex, branched molecules, 

dedicated algorithms have to cope with a combinatorial explosion of possible structures. Therefore, 

de novo glycan sequencing is considered a challenging and computationally hard problem that has 

only been addressed by few research groups to date [116-118]. Although different sophisticated 

algorithms and tools were proposed more recently [119-123], more development concerning 

efficient glycan structure determination is required. Overall, glycomics will strongly benefit from 

improvements in both MS instrumentation and de novo sequencing algorithms.  

A last use case of de novo sequencing worth mentioning is the study of bioactive neuropeptides and 

cyclic peptides. Since such endogenous peptides have various (both beneficial and detrimental) 

functions in physiological systems and act as transmitters for cells, they can be used as markers for 

disease detection. De novo sequencing is an important tool here, too, as accurate sequence 

references may be lacking and the peptides are often chemically modified. In their study [124] 

Knickelbine et al. were able to obtain twelve bioactive neuropeptides that are expressed in the 

nematode Ascaris suum using de novo sequencing. Ogrinc Potočnik et al. [125] successfully applied 

the technique in determining endogenous neuropeptides via matrix enhanced secondary ion mass 

spectrometry. Untypically shaped peptide molecules are another interesting use case, such as cyclic 

peptides: Narayani et al. [126] used manual de novo sequencing for analysis of so-called cyclotides 

from the plant Viola odorata. Cyclotides are cyclic peptides with cysteine bonds, for which 

conventional database searches cannot be used. In this case, de novo sequencing enabled the 

authors to discover three new cyclotides (vodo I1, vodo I2 and vodo I3). The abovementioned 

studies only constitute few examples for a wide area of application for de novo sequencing in various 

omics-driven fields. It can be expected that, with ongoing and future improvements, in particular 

with respect to better automated algorithmic solutions, more researchers will be able to use the 

technique in their studies.   

  



5 Challenges of current methods and novel promising avenues  

So far, we have given an overview of the available methods, software tools, and typical use cases for 

de novo sequencing that have been described in the literature. Although many contributions and 

efforts have been made by various research groups in the past, de novo sequencing is still not being 

widely used within the proteomics community. In the following, we discuss intrinsic limitations of 

the approach and highlight potential solutions that have been developed to overcome these 

barriers. Finally, we indicate ideas for future directions that may help the technique to step out of its 

hitherto exotic niche.  

To some extent, the low level of adoption of de novo sequencing throughout the proteomics 

community can be attributed to limitations of the algorithms themselves, leading to insufficient 

peptide-level accuracy and low coverage when mapping de novo peptides to protein references. 

There are several classical challenges for de novo sequencing arising from mass ambiguities: for 

instance, in low mass accuracy data, algorithms cannot distinguish between glutamine or lysine nor 

between oxidized methionine and phenylalanine [77]. While better instrumentation may readily 

solve some of these typical issues, algorithms also need to be extended by parameters fully 

accounting for higher mass accuracy. Medzihradszky and Chalkley [127] further encourage 

developers to better understand the biological, chemical, and physical experimental constraints 

behind the data. Many well-known fragmentation rules are not incorporated into algorithm scoring 

methods. For example, a neutral loss of 64 Da from the precursor and/or product ions typically 

occurs in CID for peptides containing oxidized methionine [128], but various algorithms ignore such 

distinct fragmentation pathways and predict phenylalanine instead. It is also important to 

acknowledge that more information can be obtained when specific fragment ion types are available 

as parameters for the algorithms. Prominent examples are typical satellite fragment ions (due to the 

loss of NH3 or H20) or immonium ions (as markers for specific amino acid modifications) [129], but 

more fragment ion types and rules can be found across different fragmentation techniques [127]. 

Further, even when considering all these points, MS/MS spectra still frequently contain significant 

amounts of peaks that are difficult to interpret or non-interpretable. These signals may originate, for 

example, from chemical noise or side chain cleavages [130]. The complex mechanisms of peptide 

fragmentation have been explained in various publications in the past. For instance, peptide 

fragmentation was described using the ‘mobile proton model’ that provides a general framework for 

understanding and predicting peptide dissociation in the gas phase [131]. When mobile protons are 

not available, poor fragmentation may occur that causes uneven fragmentation patterns, which may 

lead to ambiguous sequence predictions. It was also shown that the position of residues within 

peptides can also have a significant influence on the peak intensities of fragment ions [132]. The 

interested reader is also referred to a review article by Paizs and Suhai [133] that summarizes 



dissociation chemistry and fragmentation pathways of protonated peptides. Chemical noise, 

unexplainable peaks and missing signals in MS/MS spectra are critical issues for de novo sequencing, 

as they cause ambiguities and make it very difficult to obtain a resolved peptide sequence in many 

cases. In this context, Zhang published several works describing a mathematical model that extends 

the ‘mobile proton’ framework and considers fragmentation as a series of chemical reactions [134-

136]. Importantly, algorithms for automated de novo sequencing benefit from such established 

models: for example, certain features in Novor [42] were inspired by previously published spectrum 

and fragment ion intensity prediction methods [134, 137].  

Another inherent difficulty of de novo sequencing is amino acid permutation complexity: the number 

of residues that potentially match increases with peptide mass, leading to decreased accuracy values 

for longer peptides in general [55]. In this context, it is further problematic that prediction 

algorithms often generate different peptide candidates that vary in few residues only for the same 

spectrum. For example, inversions of two subsequent amino acids frequently occur when the 

determining fragment ion peak is not available. Consequently, these predictions carry similar or 

equal confidence scores and can hardly be distinguished or ranked properly due to marginal 

differences. For many MS/MS spectra, it is very difficult (or even impossible) to establish a common 

score threshold above which predictions are accepted [98]. This is an example for the more general 

problem that there is no search space restriction when generating de novo sequence candidates, 

leading to high amounts of false positives. It should be noted here that increased resolution (and 

higher mass accuracy) of modern MS instruments can counteract these detrimental effects. 

Nevertheless, mass tolerance windows in the low parts-per-million range are still used more often at 

the MS rather than at the MS/MS level in most studies. Therefore, the benefit of modern 

instrumentation might not have been fully exploited so far, although many tools provide the 

parameter settings to do so. In this context, the choice of fragmentation mode also plays a role: for 

example, it could be found that the accuracy of de novo sequencing is significantly increased for HCD 

in comparison with CID spectra [36], but is still limited when compared with database searching [55]. 

In addition, the overall coverage of de novo sequencing is not sufficient so far [79]. Despite past and 

ongoing improvements, issues concerning accuracy and sensitivity in combination with missing 

control of the false discovery rate (similar to the target-decoy approach for database searching 

[138]) can still be regarded as the main caveats concerning the validity of the results of de novo 

sequencing. As a consequence, proper quality control mechanisms are required for evaluating the 

results of de novo sequencing prior to downstream analysis. Still, establishing such strategies 

remains challenging and will require more development work. 



Due to the growing number of possibilities, the impact of these challenges on sequencing results is 

even higher when including variable modifications. De novo sequencing with multiple modifications 

therefore results in both longer processing times and reduced discrimination power between 

candidate peptides. In addition, for machine learning based algorithms, modified peptides present 

the additional issue that the amount of data available for training can be limited, especially when 

considering combinations of different modifications. For database-driven identification, new 

promising algorithms [147, 148] were recently proposed that perform so-called ‘open’ searches with 

a large precursor mass tolerance window to capture peptides with unexpected modifications [12]. In 

contrast, sequencing algorithms are rarely benchmarked for their ability to identify modified 

peptides – in some tools modifications are not even supported. Recently, the open-search paradigm 

was adapted for de novo sequencing in an efficient manner presenting an interesting option for 

discovering unanticipated modifications [50]. Multiple modifications can however easily be used to 

fill mass gaps, and it is not uncommon to see multiple modifications stacked at the termini of 

sequences inferred by sequencing or database matching algorithms in order to match the precursor 

mass. Modified peptides therefore require very careful quality control, ideally including the 

verification that modified residues are unambiguously flanked by fragment ions. 

At this point, different strategies have been proposed either to increase the accuracy or to validate 

the results of de novo sequencing. Approaches for accuracy improvement include combining 

complementary fragmentation techniques by applying different dissociation strategies, such as CID, 

HCD, and ETD to the same precursor [37, 38, 75, 139-141], or using overlapping complementary 

protein digestion methods [84, 112, 142]. Another recently proposed method employs differential 

chemical labeling of peptides [143] and, on the basis of experimentally disambiguated fragmentation 

spectra, features a dedicated algorithm for de novo sequencing with improved sensitivity and 

accuracy, particularly for longer peptides, in comparison with previously published algorithms [43]. 

These are useful strategies for improving the performance of de novo sequencing, however, they 

come with more complex workflows and lowered acquisition rates when spectral acquisition cannot 

be parallelized. To decrease the number of false positives and increase overall confidence in the 

results obtained, the combination of different de novo sequencing methods was suggested recently 

[144]. The proposed workflow combines three different algorithms and led to a three-fold increase 

of peptide identifications at 5% FDR compared to the single best performing algorithm. This 

combination strategy however requires a robust integration of data, as previously established for 

database search algorithms. Another downside is that executing multiple algorithms naturally leads 

to higher overall execution runtimes. Concerning the use of different algorithms, Gorshkov et al. 

[145] conducted a study for evaluating the impact of mixture fragmentation spectra on de novo 



sequencing performance. Since co-isolated peptides often increase spectrum complexity, a proper 

deconvolution strategy is required. The authors propose a mixture spectra deconvolution method, 

tested on four different de novo sequencing algorithms, and found more correct sequence 

predictions when using deconvolution processing. Notably, however, some peptides were only 

correctly identified using unprocessed data, suggesting that the deconvolution strategy still needs to 

be improved. Tschager et al. [146] recently suggested a new scoring model for de novo sequencing, 

in which the algorithm minimizes the symmetric difference between explained and measured 

masses. In proof-of-concept experiments, they used synthesized peptides to demonstrate that the 

approach has a better performance than methods that maximize the shared peaks count. While 

results on synthetic data are promising, further evaluation on real-world proteomics data sets is 

required. Very recently, a so-called false amino-acid rate was proposed, defined as the number of 

incorrectly predicted residues divided by the number of all reported amino acids [44]. This generic 

confidence measure can be applied to validate the results from different algorithms.   

Recently, the large amounts of available experimental proteomics data in public repositories and the 

significantly increased computational power available (e.g. via CPU- or GPU-cluster computing) have 

led to the application of machine and deep learning algorithms to enhance both accuracy and speed 

of de novo sequencing. In this context, DeepNovo [45] and Novor [42] stand out as flagship examples 

for application of state-of-the-art machine learning. In this context, the ProteomeTools project [21] 

(proteometools.org) presents a highly valuable resource for both researchers and developers, with 

data for more than 330,000 tryptic peptides from the human proteome that have been synthesized 

and analyzed. 

While de novo sequencing has often been considered highly time-consuming, this is clearly not the 

case anymore when using the most recent tools, as we have recently shown in a dedicated 

benchmarking study [55]. Further, various efforts have been made to make the technique more 

popular among researchers by developing software tools with graphical user interfaces. For 

example, such integrating command line-based algorithms (e.g. DeNovoGUI [56]) with dedicated 

visualization features, or such offering advanced post-processing features for peptide-to-protein 

mapping and FDR estimation (e.g. PepExplorer [67]). In a similar fashion, the useful mapping of 

peptide identifications into genome browser visualizations has become increasingly important, and 

various proteogenomics tools have been proposed [149-151]. It is the responsibility of the developer 

community to foster such user-friendly developments that go beyond the execution of algorithms in 

command line to become accepted and applied by those researchers that lack expertise and 

infrastructure in bioinformatics.   

  

http://www.proteometools.org/


6 Concluding remarks 

Computational methods for automated de novo sequencing have been constantly improved over the 

last decades, and its application rate and breadth has increased. For an overview, we have 

summarized the most significant improvements of the technique in a timeline diagram in Figure 3. 

 

Figure 3. The most significant milestones in the development of de novo sequencing. The timeline 
(blue) indicates the publication year of each milestone publication (grey textboxes). 
 

Despite these advances, de novo sequencing is still commonly regarded slow and inaccurate, and 

therefore not used in most proteomics projects. As discussed above, on the one hand, this can be 

attributed to the use of overly simplistic scoring methods and algorithms. On the other hand, low 

accuracy and coverage may also arise from insufficient quality of MS/MS spectra, which has its 

origins in the error-prone process of peptide fragmentation associated with experimental 

procedures and instrumentation. In particular, spectral noise and missing fragment ion peaks still 

render the de novo sequencing problem highly difficult. Despite all this, we expect the performance 

of the approach to further increase in the near future, for the following reasons: 

1. Improved mass spectrometers with higher mass accuracy and resolution should lead to 

further increased overall performance, given that the corresponding algorithms are 

continuously adapted. 

2. Multi-protease and multi-dissociation strategies will evolve further and, once they reach the 

critical point of being time and cost efficient enough to enable analyses in high throughput, 

may be routinely applied to enhance de novo sequencing results. 



3. Algorithmic developments, particularly sophisticated dynamic programming and machine 

learning approaches, should also lead to a further performance increase. The most 

important factors driving these developments are: 

a. the increased availability of proteomics data in public repositories 

b. benchmarking studies performing independent comparisons between algorithms 

c. data standards that provide for a better integration with other peptide identification 

approaches, such as database and spectral library searching 

Joint efforts of the bioinformatics and analytical proteomics communities will be necessary to 

overcome limitations, for instance, by means of improving the understanding of peptide 

fragmentation in order to develop more appropriate scoring models. The primary effect of better 

performing methods should be an increased application of de novo sequencing in all kinds of 

proteomics studies, instead of only those cases where database searching cannot be readily applied. 

At the same time, the integration with reference-based methods will become more and more 

important. A practical scenario would be that de novo sequencing is executed as an obligatory 

second step to detect unexpected protein sequence variations, which would remain undetected in 

database-only workflows. Overall, with further algorithmic and technical improvements, the ‘golden 

age’ of de novo sequencing may be just around the corner. Eventually, the technique should be 

clearly superior to database search engines, not only in niche applications, thanks to its speed and 

unbiased way of obtaining sequence information. 
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