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I. INTRODUCTION 

1. Tourette syndrome 

1.1. Symptoms 

Tourette syndrome (TS) is a developmental neuropsychiatric disorder with a peak 

onset around 3 - 8 years of age (Leckman, 2002), and with a prevalence between 0.6 % 

(Khalifa & von Knorring, 2003) and 3 % (Mason, Banerjee, Eapen, Zeitlin, & Robertson, 

1998) in European populations of school-age children. TS is characterized by both multiple 

motor tics and one or more vocal tics that have been present, although not necessarily 

concurrently. Tics should occur many times a day throughout a period of more than one year, 

as defined in the diagnostic classifications DSM IV (Association, 1994) and ICD-10 (WHO, 

1992). During this time period, there should not have been a tic–free period of more than 

three consecutive months (Association, 1994) (two months in the ICD-10 classification 

(WHO, 1992)). Motor tics are sudden semi-voluntary movements, which often start in the 

facial region, but which can involve other regions of the body as well and may present in a 

variety of movement intensities and motor patterns. Vocal tics have their peak onset later than 

motor tics, often around the age of 11 years (Leckman et al., 1998). Vocal tics frequently 

present initially by coughing, throat clearing or by the production of short and meaningless 

sounds. In the course of the disease, though, vocal sounds frequently worsen and extend into 

pronounced symptoms, such as iterating words or the more seldom symptom of involuntary 

cursing (coprolalia), the symptom for which the condition seems to have become 

predominantly known. Individuals with TS usually repeat movements and sounds in set 

patterns over a period of time. The symptoms are waxing and waning over weeks or months, 

but the condition often deteriorates until puberty. Vocal symptoms in particular can disturb 

social and academic activities. Many individuals with TS experience their tics as voluntary 

responses to sensory phenomena that frequently precede tic activity (Leckman, Walker, & 

Cohen, 1993). These phenomena have been termed “premonitory urges” and a lag of three 

years between the onset of tics and the initial awareness of these sensory phenomena has been 

reported in a large sample of children and adults with TS (Leckman et al., 1993). In many 

cases, symptoms attenuate during or after puberty (Pappert, Goetz, Louis, Blasucci, & 

Leurgans, 2003) and more than 40 % of individuals with TS lose their symptoms until the age 

of 18 (Leckman et al., 1998). The typical course of the condition with an improvement during 
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puberty may even suggest that the basis of the condition could be regarded as a developmental 

variant rather than a progressive disorder (Singer & Minzer, 2003).  

Treatment options for patients with TS can be improved by studying the nature of 

biological and environmental factors which influence the course of TS and which may lead to 

the decline of tics during youth. In particular, it is crucial to understand the mechanisms of 

how these factors specifically act on brain development in individuals with TS. Furthermore, 

understanding the governing principles during the neural development of individuals with TS 

may potentially also help to learn about general rules of brain development. The topics of this 

dissertation include measures of brain-morphometry and function in both children and adults 

with TS. Although this is no longitudinal study, certain implications of the characteristics of 

children versus adult populations still can be drawn from these cross-sectional data.  

1.2. Comorbidity 

Even though core TS symptoms, as listed in the classifications, appear to be of 

neurologic character, and the origin of the condition is assumed to be neuro-biological, 

individuals with TS often experience emotional and behavioral problems as well as high rates 

of psychiatric comorbidity. Due to these accompanying symptoms and the high rate of 

comorbidity with psychiatric conditions, treatment is usually provided in psychiatry, most 

frequently in child- and adolescent psychiatry. A gold-standard work-up for individuals with 

TS should involve a standardized diagnostic procedure in order to detect co-existing 

conditions such as Obsessive Compulsive Disorder (OCD), Attention Deficit Hyperactivity 

Disorder (ADHD) or Depression. A genetically mediated relation between TS and Obsessive-

Compulsive Disorder (OCD) has been established through population (Pauls, Raymond, 

Stevenson, & Leckman, 1991) and molecular genetic (State et al., 2003) studies. Moreover, 

complex tics and obsessive-compulsive symptoms are often difficult to distinguish. It has 

been suggested to term these typical motor or vocal patterns “obsessive-compulsive behavior” 

(OCB), referring to typical compulsive behaviors which often involve the “just-right” 

perceptions and which could be an intrinsic part of the TS symptomatology (Leckman, 

Walker, Goodman, Pauls, & Cohen, 1994). Rates of comorbidity with OCD (meeting the 

formal diagnostic criteria of OCD) in TS patients exceed 40 % in clinical samples of adults 

(King, Leckman, Scahill, & Cohen, 1999) and children (Termine et al., 2005). A recent 

prospective study reported that OCD symptom onset is significantly later than the onset of tics 

and that the manifestation of OCD symptoms correlates positively with IQ measures (Bloch et 
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al., 2006). Detecting manifest OCD is crucial for families and patients, as this condition often 

remains undetected and over years may disturb family interactions and child self-esteem. The 

education about potential OCD symptoms should thus be obligatory in the consultations of 

individuals with a new onset TS (Bloch et al., 2006).   

Comorbidity with ADHD is observed in 60 % of children with TS in clinical samples 

(Robertson, Banerjee, Eapen, & Fox-Hiley, 2002), yet the etiologic relationship between TS 

and ADHD remains controversial (Spencer et al., 2001). Patients with TS, striving with 

impulsivity control, as shown in American soap operas, may rather imply a comorbid ADHD 

condition than representing typical cases of TS. Several cross-sectional studies show that 

problems of social adjustment and externalizing symptoms are significantly higher in children 

with TS and a comorbid ADHD condition as compared to children with TS alone (Carter et 

al., 2000; Sukhodolsky et al., 2003), who rather exhibit internalizing symptoms (Carter et al., 

2000). Moreover, failure in academic settings could be attributable to problems primarily 

derived from the ADHD symptoms, such as distractibility and problems with executive 

functions (EF). Individuals with TS alone may not lack executive control and it has been 

suggested that early reports showing EF deficits in TS (as reviewed in (Como, 2001)) did not 

control sufficiently for comorbid ADHD condition (Verte, Geurts, Roeyers, Oosterlaan, & 

Sergeant, 2005).  

Other comorbid conditions involve Autistic Spectrum Disorders (ASD) and 

Depression (Robertson et al., 2002). Comorbid depressive symptoms can present as a 

biological condition independent of the TS condition, or in other individuals, the depression 

may be a consequence of the psychosocial disadvantages that TS children may experience in 

school or peer-settings. It should, however, also be noted that depression can be a side-effect 

of treatment with neuroleptic medication used to control tics behavior. 

1.3 Clinical diagnostics 

The diagnostic criteria for TS are clearly described in the current diagnostic manuals, 

and the diagnosis is clinically based on both the observation of the child and on information 

concerning the child’s symptoms as described by the child her/himself or her/his caregivers. 

However, parents often describe the startling absence of tic symptoms during medical 

consultations. This absence of symptoms in consultations may be due to the child’s 

excitement and concentration upon an unfamiliar situation which could trigger tic suppression 
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abilities in line with enhanced attention. Children with tics often are recognized in primary 

health care settings and should already early receive an assessment of their general psycho-

social situation and tic severity. The physician in charge should strive to get a complete 

picture as to which degree the child and her/his family suffer from tics. Another important 

aim of the first medical consultations is the exclusion of concurrent comorbid conditions.  

Tic severity can be assessed directly by a semi-structured interview (researcher 

dependent), e.g. by using the Yale Global Tic Severity Scale (Leckman et al., 1989) which 

since its first publication consistently has been used in major research studies. The YGTSS 

has been proven to be an appropriate instrument for assessing symptom changes and the 

impact of tic symptoms on other relevant variables. Tic symptoms may also be reported by 

patients themselves or by caregivers, using tables of registration for different specified tics 

e.g. the Tourette Symptom Self-Report (Cohen, Leckman, & Shaywitz, 1984) (sometimes 

referred to as the Tourette’s Syndrome Symptom list) .  

Patients and parents may need education in order to recognize recurrent behaviors as 

tic symptoms (Leckman 2002). Due to the high frequency of co-occurring compulsive- 

obsessive symptoms in children with TS and the nature of these disturbing symptoms that 

often lead to severe isolation and family problems (Thomsen, 2000), the physician should 

assure herself/himself specifically of the absence of OCD symptoms. A questionnaire e.g. the 

Child Yale-Brown Obsessive Compulsive Scale (Goodman et al., 1989) can be used for 

adequately covering this topic. Another frequent problem that may require attention is the 

occurrence of sleep disturbances (Rothenberger et al., 2001). Depending on the setting 

(primary care or specialist service), the diagnostic interview will often convey characteristics 

of a short or more thorough clinical medical history. The gold-standard, however, for the 

assessment of patients with tics is a mental health assessment with a structured clinical 

psychiatric interview (Coffey et al., 2000) ensuring that potentially important symptoms and 

conditions have been explored. Examples for these interviews are semi-structured interviews, 

such as the Kiddie-SADS (Kaufman et al., 1997)(used in the present study), or the CAS 

(Hodges, McKnew, Cytryn, Stern, & Kline, 1982), or structured other interviews, as e.g. the 

DAWBA (Goodman, Ford, Richards, Gatward, & Meltzer, 2000). Beyond the importance of a 

comprehensive clinical evaluation on an individual basis for every patient, the recent focus on 

genetic psychiatric research into mental disorders additionally increases the need for precise 

and standardized descriptions of symptoms or “phenotypes” and even “endophenotypes” 

(Gottesman & Gould, 2003). 
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1.4. Genetics 

The role of genetic factors that predispose individuals to develop TS has been 

confirmed during the last decades, mostly in twin and population based genetic studies (Pauls, 

2003). Originally, heritability was assumed to be a rare, autosomal dominant trait (Pauls & 

Leckman, 1986), yet more recently, the genetic influence is thought to be mediated through 

poly-or oligogenetic inheritance (Walkup et al., 1996). Genome-wide screening analysis 

efforts have implicated intervals on chromosomes (4, 5, 8, 11, 17), yet without identifying 

disease related mutations (The TSA International Consortium for Genetics, 1999; Merette et 

al., 2000; Paschou et al., 2004; Zhang et al., 2002). A recent and promising study (Abelson et 

al., 2005), however, could identify one frameshift mutation and sequence variants in Slit and 

Trk-like 1 (SLITRK1) gene on chromosome 13q31.1. in three of 174 unrelated probands, but 

in none of 3600 controls. 

1.5. Pathophysiology: Neural mechanisms for the generation of tics and 

suppression of tics 

The generation and suppression of tics can be regarded as continuous interplay in the 

brain of patients with tics and with TS.  

The generation of tics is thought to arise from cortico-striato-thalamo cortical circuits 

(CSTC) and especially from the basal ganglia portion. This follows the symptom presentation 

of the condition as a movement disorder. The basal ganglia constitute the ”fine-tuning station” 

of the brain for movements and consist of five nuclei: the striatum (caudate nucleus + 

putamen), the subthalamic nucleus (STN), the globus pallidus (devided into the interna 

portion (GPi) and the externa portion (GPe)) and the substantia nigra (substantia nigra 

compacta (SNc) and reticulata (SNr)). The different portions of the basal ganglia interplay 

intricately with the cortical regions in cortical-subcortical circuits.  

All afferent fibres to the basal ganglia terminate in the caudate and the putamen, 

whereas all efferent fibers originate in the GPi (terminate in thalamic nuclei, which in turn 

project to the motor cortex, supplementary motor area, and prefrontal cortex) and the SNr 

(terminate mostly at the colliculi superior for eye-movement initiation). CSTC circuits include 

several largely parallel organized circuits that interconnect cortical and subcortical areas by 

directing information from specific cortical regions to the basal ganglia and the thalamus, and 

back again to the specific cortical regions (Alexander, DeLong, & Strick, 1986).  
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Although the number of cortical-subcortical circuits remains controversial, at least 

four circuits are recognized as critical: the motor, the oculomotor, the prefrontal (including the 

dorsolateral prefrontal and lateral orbitofrontal cortex), and the anterior cingulate circuits 

(Alexander, Crutcher, & DeLong, 1990). These frontostriatal circuits are implicated in self-

regulatory control in normal cognitive function (Marsh et al., 2006) as well as in the 

pathophysiology of several neuropsychiatric disorders (Sowell, Thompson et al., 2003; 

Spessot & Peterson, In Press). Each of the cortical-subcortical pathways has two different 

striato-thalamic pathways (Mink, 2001): first, a direct pathway passing from striatum to 

globus pallidus, pars interna to thalamus, with an overall excitatory effect and second, an 

indirect pathway that proceeds from the striatum to the globus pallidus pars externa to the 

subthalamic nucleus to globus pallidus interna to thalamus, with an overall inhibitory effect. 

The indirect pathway is thought to act as an intrinsic modulator on the direct pathway. The 

inhibitory output of the basal ganglia acts as a “brake” on motor pattern generators in the 

cerebral cortex and brainstem (Mink, 2001).  

Nevertheless, evidence converges on cortical regions being heavily involved in the 

pathophysiology of TS (Singer, 2005), particular in the suppression of tics (Gerard & 

Peterson, 2003). The prefrontal region is thought to mediate performance on tasks that require 

decisions of whether, when, and how to act across a time delay, as needed in working 

memory, behavioral inhibition, and go/no-go tasks (Fuster, 2002). In the case of tic 

symptoms, prefrontal cortices may inhibit across time a behavioral response to the 

somatosensory urge to tic, and they determine at the same time when to release the tic 

behavior from controlled suppression (Spessot, Plessen, & Peterson, 2004). Dysfunction of 

prefrontal regions in TS patients is therefore likely to impair their ability to inhibit tic 

symptoms (Peterson, Staib et al., 2001).  

1.6. Observations from neuroimaging 

Although other brain mapping and imaging modalities have also been successfully 

used in exploring biological correlates of Tourette syndrome, due to the topic of the thesis this 

overview is restricted to MR studies. 

1.6.1. Functional Magnetic Resonance Imaging 

The first functional Magnetic Resonance Imaging (fMRI) study of 22 adult individuals 

with TS examined how CSTC circuits contribute to the voluntary suppression of tic behaviors 
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(Peterson et al., 1998) by comparing neuronal activation in cortical and subcortical structures 

during tic suppression with a rest condition, when subjects were allowed to tic spontaneously. 

The magnitudes of signal change in the MR images were correlated with measures of tic 

severity. Significant increases in signal intensity were detected in both the prefrontal area and 

the caudate nucleus during tic suppression and correlated positively with each other. This was 

expected due to excitatory connections between cortical regions and nucleus caudate. At the 

same time, significant decreases in activity were observed in the putamen, globus pallidus, 

and thalamus. Increased activity in the caudate nucleus was in turn associated with greater 

decreases in activity of the putamen, globus pallidus, and thalamus, consistent with the known 

inhibitory projections from the caudate to these other subcortical nuclei. Moreover, the 

magnitudes of the decreases in signal intensity in the caudate, putamen, globus pallidus, and 

thalamus correlated inversely with the severity of tic symptoms outside the scanner. The 

clinical picture and the course of the condition suggest that there is a smooth transition 

between voluntary and involuntary tic suppression. The findings from this study could be 

assumed to be a demonstration of the tic suppression process, continuously taking place in the 

brain of patients with TS, even though the process remains unconscious most of the time. 

1.6.2. Anatomical MR-studies of basal ganglia regions 

Due to the hypothesized origin of tic generation in the basal ganglia, this region has 

been in focus since the early days of MR brain morphometry. The first volumetric imaging 

study of the basal ganglia in TS examined 14 adult patients with TS (Peterson et al., 1993) 

and 14 healthy controls and found the volume of the left lenticular nucleus (putamen and 

globus pallidus combined) decreased in the TS group compared to the HC group. The 

unilateral character of this finding raised the question, whether individuals with TS could 

exhibit an affection of lateralized parts of the CNS, since in normal right handed individuals 

the lenticular nucleus usually is larger on the left compared to the right side.  

The findings of a reduced size of the lenticular nucleus and a deviation of the 

physiological asymmetry were confirmed in a MR volumetric study in 37 children with TS 

and 18 control children (Singer et al., 1993), where boys with TS showed a trend towards a 

smaller lenticular nucleus and in both males and females the lenticular asymmetry was either 

reduced or reversed (right larger than left lenticular nucleus). In another study (Hyde et al., 

1995) basal ganglia were measured in 10 monozygotic twin pairs with discordance for tic 

severity (aged 9-31). Lenticular nucleus volumes did not differ between co-twins, but the 
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caudate nuclei of the more affected co-twin were smaller (on average 6%). The absence of a 

control group in this study design did not allow for a statement whether both identical twins 

may also have had a genetically determined reduction of caudate size, since the observed 

difference in size was due to non-shared environmental factors.  

Lastly, the so far largest anatomical MRI study of basal ganglia volumes in 154 

children and adults with TS and 130 healthy control subjects (Peterson et al., 2003), indicated 

that volumetric abnormalities did not affect all basal ganglia structures in the TS group, but 

that the abnormalities were specific to the caudate nucleus in both children and adults. 

Smaller volumes of the putamen and globus pallidus were found in adults but not in children 

with TS. The results of this anatomical imaging study have several implications for the 

understanding of the role of the basal ganglia in the pathophysiology of TS. First, the presence 

of significantly smaller caudate nuclei in both children and adults suggests that hypoplasia of 

the caudate nucleus may represent a trait morphological abnormality in persons with TS. 

Second, decreased caudate nucleus volumes that persist into adulthood imply that the caudate 

nucleus is not a prime target for plastic changes in response to the presence of tics, nor is it a 

likely the candidate for the cause of the normal attenuation of tic symptoms during 

adolescence. Moreover, in a subpopulation of this sample the size of the caudate nucleus in 

child age predicted significantly tic severity in adult age (Bloch, 2005), with a smaller caudate 

predicting more severe tic and OCD symptoms.  

1.6.3. Anatomical MR-studies of cortical regions 

Whereas anatomical and functional studies suggest that the caudate nucleus may be 

the locus of trait abnormalities in children and adults with TS, cortical portions of CSTC 

circuits are thought to be involved in the modulation of tic symptoms in individuals with tics. 

In a sample of 155 children and adults with TS and 131 normal control subjects, cortical 

regions were determined by cortical parcellation and larger dorsal prefrontal volumes were 

detected in children with TS whilst smaller volumes were observed in adults with TS 

(Peterson, Staib et al., 2001). In addition, a higher proportion of white matter was found in the 

right frontal lobe in 11 boys with TS as opposed to 14 boys with comorbid TS-ADHD and 12 

with ADHD-only compared to 26 HC subjects (Fredericksen et al., 2002). Larger cortical 

volumes were significantly associated with fewer tic symptoms in both the orbitofrontal and 

parieto-occipital regions (Peterson, Staib et al., 2001).  
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These inverse correlations of prefrontal volumes with tic severity suggest that the 

larger volumes in children with TS could in some way be due to a compensatory or adaptive 

process in the brains of these children that helps to attenuate the severity of tics. This 

possibility gains further credence from the findings of the fMRI study of effortful tic 

suppression, previously described, in which broad expanses of prefrontal cortices activated 

robustly during the suppression of tics. The need to suppress tics at school and in other social 

settings would activate these prefrontal regions repeatedly (and frequently). This repeated 

activation could then induce activity-dependent, plastic hypertrophy of prefrontal cortices in 

children and adolescents with TS.  

Activity-dependent plasticity and hypertrophy within prefrontal regions would in turn 

help to attenuate the severity of tic symptoms by increasing inhibitory reserve and the 

capacity for self-regulatory control. This interpretation of the anatomical and fMRI findings in 

prefrontal cortices is consistent with the known role of the dorsoprefrontal region in 

subserving self-regulatory functions (Spessot et al., 2004). 

1.6.4. Antomical MR-studies of corpus callosum 

Ever since the early reports of abnormal brain lateralization in individuals with TS, the 

corpus callosum (CC) has been one of the brain areas of focus in the exploration of biological 

correlates of TS. The CC is thought to mirror brain asymmetry and hemispheral specialization 

(Banich, 2003b). The first study in 14 young adults with TS and 14 control subjects revealed a 

smaller CC area size in the TS group compared to the controls (Peterson et al., 1994), with a 

reduction of all callosal subregions. In a second study, the CC area size in 16 TS children was 

compared with the size in 21 children who had TS-ADHD and with 13 children who had 

ADHD-only as well as with 21 control children (Baumgardner et al., 1996). In this study the 

group with TS alone had on average a larger CC area size, the group with comorbid TS-

ADHD had an intermediate CC area size and finally the ADHD group had a reduced CC area 

size. In another study (Moriarty et al., 1997), CC area size of 17 adults with TS and 8 controls 

was compared, and an increased CC area size was found in the TS group.  

In order to evaluate the gender effect on CC area size on TS, one study included 10 

girls with TS, 9 girls with a comorbid TS-ADHD and a control-group of 22 girls (Mostofsky, 

Wendlandt, Cutting, Denckla, & Singer, 1999). The absence of differences in CC size across 

the diagnostic groups in this study was interpreted as a sign that CC differences in TS were 
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restricted to boys. All of these studies share the disadvantage of not having re-aligned 

midsagittal MR images prior to measuring the CC (Rauch & Jinkins, 1996). This may have 

lead to inter-individual differences in measurement due to differences in midline positioning 

of the subjects in the scanner.  

A survey of MRI studies thus suggests that anatomical and functional abnormalities in 

the caudate nucleus may predispose an individual to tics, while abnormal functioning of 

neural regulatory systems based largely within prefrontal cortices both may unmask this 

predisposition in individuals with TS and on the other side also may contribute to successful 

tic suppression in the greater majority of individuals with TS.  

1.7. Treatment 

In milder cases, information concerning the benign nature of tic symptoms to the 

child, the parents and the teachers is most important and often proves a sufficient intervention. 

Parents and children might, however, need help to get hold of the available information. 

Families may appreciate written information, e.g. handouts from the National Tourette 

Association (Norsk Tourette Forening: www.touretteforeningen.no) or information distributed 

by the National Competence Center for TS, ADHD and Narkolepsi in Oslo (Nasjonalt 

Kompetansesenter for AD/HD, Tourettes Syndrom og Narkolepsi: http://www.nasjkomp.no). 

Both are important sources for parents and individuals with TS, who wish to keep updated 

about research advances in the field or who wish to get into contact with other families in a 

similar situation. Also parents and children should be encouraged to educate their wider 

family, friends and peers about the condition, as this may help the child to feel more at ease in 

social situations.  

Since the condition usually is diagnosed in childhood already, the following paragraph 

predominantly deals with children, yet also adult individuals with TS may need help in 

adapting their professional life to the condition. For children with TS, it is desirable to assess 

the overall school situation by establishing contact to the teacher/s and even observing the 

child in a regular school situation, as parents often do not possess sufficient information 

concerning the every day life their child experiences at school. Children with TS have a 

higher percentage of learning difficulties, although, as mentioned earlier, this may partly be 

attributed to a comorbid ADHD condition (Abwender et al., 1996; Erenberg, Cruse, & 

Rothner, 1987). Children with TS should thus undergo neuropsychological testing, including 
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an evaluation of reading and writing skills, if there is any uncertainty concerning the child’s 

scholastic skills. Another domain that should be assessed at school is the interaction with 

peers, in order to detect any signs for mobbing at an early stage.  

Many parents and children with tics, however, have experienced major problems with 

school teachers, particularly if the teachers themselves do not regard the child’s tic symptoms 

as involuntary. Especially vocal tics easily can attract attention of the whole class and thus 

disturb the working atmosphere. Parents and therapists can help the child in the school 

situation by educating teachers and classmates concerning the involuntary nature of tics.  

Children with comorbid conditions, however, should be referred to a specialist, and 

the treatment of comorbid conditions should follow the usual international guidelines and 

should be prioritized, as tics may diminish after successfully treating comorbid conditions 

(Leckman, 2002).  

The treatment e.g. of a diagnosed comorbid OCD may even lead to an alleviation of 

tics, since the distinction of compulsive symptoms and complex and repetitive tic patterns can 

be difficult. The guidelines for the pharmacological treatment of a comorbid ADHD condition 

have, however, been object of controversy, since in several studies stimulants have been 

shown to increase the rate of tics (as reviewed in (Robertson, 2000)). This has resulted in a 

recommendation to avoid treatment with stimulants in TS patients with comorbid ADHD 

during the last two decades of the 20th century. A more recent understanding of the complex 

interaction between TS and ADHD suggests that stimulants, possibly in combination with an 

α 2 adrenergic agent, should be given whenever a child meets the formal criteria for an 

ADHD diagnosis and needs pharmacological treatment (Leckman, 2002). It is assumed that 

stimulant medication, by decreasing the stress level in both the child and the family, even may 

improve tic symptom severity.  

The importance of developing more standardized and validated methods for behavioral 

treatment of tics is acknowledged by all involved parties. This is particularly relevant as 

knowledge concerning the ability of self-regulation and tic suppression advances. In addition, 

the ability of older children with TS to monitor their “premonitory urges”, and thus being 

conscious about their physical signs preceding the tics could be an ideal onset for introducing 

behavioral treatment. It was, however, found, that the ability to suppress tics is not dependent 

on the awareness of premonitory urges (Banaschewski, Woerner, & Rothenberger, 2003), 
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which is important for younger children, who may not yet be aware of the specific sensory 

phenomena (Leckman et al., 1993). In general, individuals with TS tend to be aware of their 

ability to suppress tics for a certain period of time, the length of which may vary individually. 

While focusing on behavioral measures or encouraging the children to further develop their 

ability to suppress tics, it is important to find the right balance in conveying the children the 

feeling of mastering tic behaviour. The impression should be avoided that exhibiting tics is 

ostracised, which would attribute a form of stigmatization to the tics. Several specific 

behavioural techniques have been described in order to decrease tic severity such as 

relaxation, biofeedback techniques and habit reversal. Unfortunately, systematically collected 

evidence concerning the effectiveness of behavioural intervention is scarce (Leckman, 2002).     

As yet pharmacological treatment of tics is purely symptomatic. Moreover, the 

assessment of any therapeutic intervention proves difficult due to the waxing and waning 

nature of the tic symptoms. A close follow-up of every patient receiving therapy is thus 

crucial. The decision to treat children with TS with pharmacological agents should be based 

on the child’s own psychological strain as opposed to the environment’s concerns for the 

patient or as a result of insufficient resources in the academic system. If, however, tics are so 

severe that the child is not able to concentrate at school or if tics cause physical pain (as e.g. 

seldom may be the case in severe motor tics) or if the child itself experiences the tics as 

extremely disturbing in social settings, pharmacological treatment should be considered. 

In a recent overview (Singer, 2005), it has been recommended to start pharmacological 

treatment by using non-neuroleptic medications, especially in case of milder tics and rather 

reserve neuroleptic medications to suppress severe tic behavior. Typical non-neuroleptic 

drugs used in the treatment of tics are clonidine, guanfacine, baclofen and clonazepam. 

Neuroleptic drugs, such as D2 dopamine receptor antagonists, are effective tic-suppressing 

agents, yet may have numerous side-effects, which patients and families should receive 

information about. Newer, so- called atypical neuroleptics (as e.g. olanzapine, risperidone and 

quetiapine), in addition to being weaker D2 receptor antagonists have a greater affinity to 5-

HT2 receptors, which result in an improved profile of side-effects for the patients usually with 

less extra-pyramidal symptoms. Due to the side-effect profile and the dynamic symptom 

patterns in TS, pharmacotherapy should be evaluated closely and drug holidays for patients 

receiving medication may be an easy way to re-evaluate the indication of the drug.   

2. Brain lateralization and the corpus callosum 
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2.1 Brain asymmetry 

Structures of the humans’ physical body exhibit a high degree of symmetry, with an 

almost congruent mirror organization of the limbs and trunk. An even more salient feature is 

the gross anatomical surface similarity of the cortex of the right and left hemisphere, 

especially when taking into account the distinct differences in functional tasking (Hugdahl, 

2005). Although simplified, in most persons the left hemisphere is specialized for the 

processing of language stimuli, whereas the right side is specialized for processing stimuli 

dealing with spatial orientation and stimuli with emotional contents (Gazzaniga, 2000). The 

two hemispheres engage in a continuous dialogue that is mediated through the CC as well as 

through ipsilateral non-crossed cortico-spinal facilitating and inhibitory projections that e.g. 

accompany motor activity. Knowledge concerning the functional differentiation of brain 

asymmetry has been gained through experiments involving persons without a functional CC 

due to surgically splitting the callosal bundle of fibers in order to improve intractable epileptic 

seizures (Sperry, Gazzaniga, & Bogen, 1969) or due to congenital agenesis/dysgenesis 

(Lassonde, 2003). A congenital CC agenesis, however, results in remarkably few symptoms, 

probably due to compensatory pathways. Even though, the CC is the main and largest axonal 

cortical interhemispheric connection, other subcortical commisures have been described, such 

as the anterior commisure or the hippocampal commisure (Lassonde, 2003). 

Although the human body in general exhibits a symmetrical organization, several 

cortical and subcortical regions have an asymmetrical pattern. The right frontal lobe has e.g. 

been shown larger than the left, whereas the left temporal lobe is generally larger than the 

right (Crow, 1997). Asymmetry in the temporal lobe is closely related to another brain region 

that has been extensively studied, namely the planum temporale region located in the superior 

temporal gyrus including Wernicke’s classical speech area. This temporal brain region is 

larger in the left hemisphere (corresponding to its crucial role in processing language) 

(Geschwind & Levitsky, 1968), whereas it is not entirely clear whether such asymmetry exists 

in the primates (Gannon, Holloway, Broadfield, & Braun, 1998; Hopkins, Marino, Rilling, & 

MacGregor, 1998), and whether primates also may possess a differentiated form of language 

(Peters & Ploog, 1973). Moreover, a proof for the behaviour-function correlate in the planum 

temporale region is found in the smaller left-sided region in children with dyslexia as 

compared to age-matched literate controls (Heiervang et al., 2000; Hugdahl, Heiervang et al., 

2003).  
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2.2. The Dichotic Listening paradigm 

The functional significance of this asymmetry in the temporal lobe is tested by the 

WADA test (Wada & Rasmussen, 1960). The WADA test is applied prior to neurosurgical 

interventions in order to ensure the location of the the individual patient’s language center by 

examining in which hemisphere the patient processes language stimuli. A non-invasive test 

for language lateralization, however, is the dichotic listening task (DL). During the DL 

situation, subjects are presented with two different consonant-vowel combinations, one in 

each ear and are asked to report the syllable they hear. Numerous studies have shown a 

consistent right ear advantage (REA) in more than 70 % of healthy adult individuals 

(Hugdahl, 2003). The classic structural model (Kimura, 1967) assumes that the REA is the 

result of several interacting factors: first, that the auditory input to the contralateral 

hemisphere is more strongly represented in the brain. Second, that the left hemisphere is 

specialized for language in most individuals. Third, auditory information sent along the 

ipsilateral pathways seems to be suppressed or blocked by contralateral information. Finally, 

the REA may be the result of the fact that information reaching the contralateral right 

hemisphere has to be transferred across the corpus callosum to the language processing area 

in the left temporal lobe.  

The REA can be modified by instructing the individual to attend either to the right or 

left ear stimulus (Bryden, Munhall, & Allard, 1983; Hugdahl & Andersson, 1986), thus 

adding a “top-down” component in this originally “bottom-up” stimulus laterality effect. 

When focusing on the right ear stimulus (forced right condition), the REA is even increased, 

whereas it is less prominent or even absent when probands focus their attention on the left ear 

(forced left condition), thus creating a left ear advantage (LEA). Thus, DL can be regarded as 

both a measure of temporal lobe function (Spreen & Strauss, 1991) and, by adding the “forced 

attention” condition as an attentional measure of prefrontal executive function (Hugdahl, 

Rund et al., 2003). Moreover, the forced left condition also tests functionality of the CC. The 

correct report of syllables heard by the left ear is dependent on callosal transfer to the 

language center and has been shown to correlate positively with CC size (Reinvang, Bakke, 

Hugdahl, Karlsen, & Sundet, 1994). This has been confirmed in experiments with patients 

who have undergone commisurotomy and who subsequently have a complete or near-

complete extinction in the left ear channel (Milner, Taylor, & Sperry, 1968). DL thus is a 

relatively simple experimental test, which is easy to administer and which allows testing of 

different cognitive functions, that in turn can be correlated with specific brain regions in both 
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anatomic and functional MR scans or other brain mapping modalities (Hugdahl, 2005). The 

left hemispheric dominance for language processing is matched by a predominantly right 

hemispheric processing for musical stimuli (Hugdahl et al., 1999; Peretz & Morais, 1988) as 

well as a right hemisphere visuo-spatial processing (Thomsen et al., 2000), although 

hemispheral asymmetry in these tasks is present to a lesser degree than in tasks involving 

processing of language.  

2.3 The corpus callosum 

2.3.1 Morphology and function 

The CC is the main white fiber commisure in the brain that connects the two 

hemispheres and plays a key role for integration and segregation of interhemispheric 

information. It consists of more than 300 000 000 neuronal fibers that mature through 

myelination in line with cortical maturation. Generally, the callosal axons are thought to 

exhibit a topographical distribution with different CC regions serving different cortical 

regions (Pandya & Seltzer, 1986). Recent DTI investigations, however, show that cortical 

fibers spread widely into the CC , e.g. fibers originating in the frontal lobe nearly occupy 

100% of the genu and the anterior body of the CC (Huang et al., 2005). From studies of 

patients with partial callosal lesions it is known that the posterior regions of the CC rather 

transfer sensory information related to vision, audition and somatosensory information, 

whereas anterior regions of the CC transfer information concerning attentional and higher 

cognitive functions (Gazzaniga, 2005). The axons of the CC develop prenatally following a 

general anterior to posterior rule with a growth peak between the 19th  and 21th   week of 

gestation (Achiron & Achiron, 2001). Postnatally there is no evidence for the development of 

new axons, yet myelination and pruning of the CC axons take place parallel to the maturation 

of the cortical regions (Thompson, Narr, Blanton, & Toga, 2003). During the first month of 

postnatal life the CC is uniformly thin, but appears in its typical form around 8 months of age 

(Barkovich & Kjos, 1988). Further myelination of the CC takes a cranio-caudal growth, as has 

been demonstrated by age correlations in cross-sectional (Giedd et al., 1996) and partly in 

longitudinal studies by means of MR examinations (Giedd, Blumenthal, Jeffries, Rajapakse et 

al., 1999; Thompson et al., 2000). The CC continues to increase in size due to myelination 

until the early adult years (Giedd, Blumenthal, Jeffries, Rajapakse et al., 1999; Pujol, 

Vendrell, Junque, Marti-Vilalta, & Capdevila, 1993; Thompson et al., 2000). In animal 

models, cortical damage has been shown to result in a degeneration of callosal axons (Rosen, 
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Galaburda, & Sherman, 1989; Skoff et al., 2001). In humans, cortical damage has been 

proven to correlate with CC atrophy (Pantel et al., 1999; Yamauchi et al., 1996).  

2.3.2. Measuring the size of the corpus callosum 

The midsagittal area of the CC represents the bulk of crossing axons, and thus constitutes an 

indicator of the amount of cortical neurons that connect interhemispherally through crossing 

axons (Aboitiz, Scheibel, Fisher, & Zaidel, 1992) (see Fig. 1). Differences in the cross-sagittal 

size of the CC may have functional significance, as a larger total or partial callosal size 

reflects a higher number of crossing fibers (Aboitiz, Ide, & Olivares, 2003).  

When studying CC area size in vivo in 

MR images, it is important to remember that the 

CC can vary considerably in shape and size in 

healthy individuals. Thus it is essential that 

studies aiming at assessing differences in CC 

size across diagnostic groups utilize precise 

techniques. In order to avoid statistical Type II 

errors, one should also strive to recruit a high 

number of subjects. CC size as measured on T1 

weighted midsagittal MR images is dependent on 

the phenomenon of the CC fibers fanning out 

parasagitally. A recent study, however, revealed a transitional constriction some millimeters 

parasagitally in the anterior portions of the CC bundle of fibers (all portions with exception of 

the splenium) before fanning out to the sides (Luders et al., 2005). Local parasagittal changes 

thus may lead to measuring intra-individual changes of CC size that spuriously can be 

attributed to true changes of area, yet they may be the result of an oblique placement in the 

scanner. Hence, MR images should be re-aligned in the true midsagittal axis, in addition to 

following a reliable procedure of positioning the subject in the scanner. Midsagittal re-

alignment consists of reslicing the MR images by orientation towards prominent midsagittal 

landmarks (Rauch & Jinkins, 1996).  

Moreover, it has been shown that CC size varies dependent on the size of the whole 

brain (Holloway, Anderson, Defendini, & Harper, 1993). Hence, the importance of scaling 

factors, which are recognized for numerous regions of the brain, also applies for the structure 

of the CC (Gould, 1981). In statistical analyses that include measures of CC size, the variable 

 
Fig1.: Midsagittal T1 weighted antomical image with CC 
in midsagittal position. 
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should therefore be controlled for whole brain volume (Arndt, Cohen, Alliger, Swayze, & 

Andreasen, 1991; Peterson, 2003).  

Another method of exploring 

the characteristics of the CC is the 

measurement by Diffusion Tensor 

Imaging (DTI), which is a non-invasive 

method to investigate white matter fiber 

organization (see Fig.2). DTI is an MRI 

based technique to visualize white 

matter connectivity, with the aim to 

enhance the understanding of how 

information “flows” in neuronal 

networks that constitute the 

connectional brain anatomy (Ramnani, 

Behrens, Penny, & Matthews, 2004). 

DTI is based on visualizing the 

diffusion of water molecules, and is 

expressed as a measure of anisotropy 

that mainly reflects the organization and integrity of white matter substance. DTI differs from 

conventional MRI in that additional magnetic fields (gradients) are applied to the main 

magnetic fields (Basser, Mattiello, & LeBihan, 1994). The parameters of DTI differ between 

types of tissue, e.g. in the cerebro-spinal fluid, water molecules can move around relatively 

freely (isotropic) as compared to white matter tissue, with a preferential molecular diffusion 

along the longitudinal axis of fibers and myelin sheaths (anisotropic diffusion). It has been 

shown that DTI reliably detects white matter tracts and therefore can be used as a tool to map 

connectivity between cortical regions (Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; 

Pierpaoli et al., 2001). DTI reflects the tissue architecture on a microscopic level and can be 

expressed mathematically as a tensor. The parameter that has been used most widely, 

especially in clinical applications of DTI, is the “Fractional Anisotropy” (FA) index that 

ranges from 0 (total isotropic diffusion) to 1 (total anisotropic diffusion) (Pierpaoli & Basser, 

1996). FA is a measure for the magnitude of the tensor that can be ascribed to the anisotropic 

diffusion, and thus gives an equivalent to the directionality of the measured diffusity in a 

tissue on a voxel basis. FA seems to be less affected by noise than other anisotropy measures 

 
Fig. 2: Midsagittal and parasagittal slices showing databasis for the DTI  
analyses in a healthy control child. Red color codes left-right crossing fiber 
direction, green color  codes anterior-posterior fiber direction and blue color 
codes the rostral-caudal direction (and vice versa). 
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(Hasan, Alexander, & Narayana, 2004). FA has been shown to correlate with histological 

markers of myelination (Wimberger et al., 1995) in newborns and adults (Huppi et al., 1998), 

and with myelination in infants and toddlers (Hermoye et al., 2006; Klingberg, Vaidya, 

Gabrieli, Moseley, & Hedehus, 1999). Neural myelination is part of the neuroanatomical 

process of maturation contributing to the development of the brain by speeding up the 

exchange of neuronal impulses (Paus et al., 1999).  

In future investigations, the true midsagittal slice in DTI images could also be 

determined by a midsagittal re-alignment to ensure that FA values stem from the same 

midsagittal localization. In the majority of the present DTI studies, however, slice thickness 

still has produced gaps that do not allow for this procedure. Nevertheless re-alignment seems 

less crucial in the respect that the FA is measured voxel by voxel independently. Due to the 

FA being a measure on a single voxel level, it is not recommended to covary the anisotropy 

index measure with whole brain size (Schulte, Sullivan, Muller-Oehring, Adalsteinsson, & 

Pfefferbaum, 2005). Thus, a more direct measure of interhemispheric connectivity is applied 

by using DTI in addition to anatomical MR.     

2.3.3. Inhibitory and excitatory functions of the corpus callosum 

It has been discussed whether the CC executes a predominantly excitatory or 

inhibitory function on the respective contralateral hemispheres (Bloom & Hynd, 2005). Even 

though axons of the CC mainly act glutamatergic on a synaptic level, net inhibitory effects are 

thought to emerge through axonal CC endings on GABAergic interneurons (For a review on 

the cellular basis of callosally mediated inhibition (Saron, Foxe, Simpson, & Vaughan, 2003).   

A primarily excitatory function of the CC suggests that the CC takes an active part in 

integrating information between the two hemispheres, by e.g. updating and facilitating the 

contralateral hemisphere on ipsilateral activity. This observation is the basis for the benefit of 

callosotomy in patients with intractable epileptic seizures, where the surgical splitting of the 

hemispheres prevents spreading of excitatory epileptic activity (Roberts, 1999).  

A primary inhibitory function of the CC, on the other hand, means that the CC 

contributes to the inhibition of contralateral activity in order to allow for a more efficient 

intracortical processing. Hence, attention modulation may rely on callosal inhibition of the 

contralateral hemisphere that is assumed to be mediated through the small-diameter fibers 

(Hugdahl, 1998). Another example proving the inhibitory aspects of the CC is the observation 
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of physiological mirror movements in children during development. Mirror movements arise 

when one limb is moved deliberately and the contralateral limb starts to mimic the same 

movement (mirroring). Mirror movements are predominantly observed in small children and 

their persistence beyond the age of 9 years is regarded as a sign of a retarded maturation of 

the nervous system (Cohen, Taft, Mahadeviah, & Birch, 1967). The decrease in mirror 

movement activity during development has been described to correlate with the myelinisation 

of the CC and hence may give another clue to the importance of transcallosal inhibition 

(Mayston, Harrison, & Stephens, 1999).  

The microscopic composition of the CC, however, with different types of fibers, 

ranging from small diameter (mostly in the genu) to large diameter fibers (predominantly in 

the body) (Aboitiz et al., 2003) suggests distinctive functional specifications of the various 

callosal regions. Or, in other words, “rather than conceptualizing the callosum as a single 

cable, we might better consider it as a network of connection – multiple channels, if you will” 

(Banich, 2003a). 

3. Brain development and neuronal plasticity 

3.1. Development of the human brain 

Before touching upon general principles of neural plasticity it might be useful to 

shortly outline the general rules of brain development in humans, although the two processes 

are greatly overlapping. The first part of neural development takes place before birth and 

consists of predominantly genetically determined and precisely timed processes that involve 

both gross anatomical and cellular changes. The main principles involve neurulation 

(embryonic formation of the neural tube) and on the cellular level the proliferation, migration 

and differentiation of neurons – All of these histogenetic events that take place in utero 

(Webb, Monk, & Nelson, 2001).  

Neurons proliferate from early precursor cells that migrate radially from the 

ventricular zone perpendicular to the surface to establish the six-layered cellular architecture 

of the cerebral cortex. Migration is initiated from the deepest cortical layer and advances in a 

typical outward movement, during which the neurons “climb up” the radial glia cells. Once 

dendrites and axons have reached their target destination (about 16th fetal week), they arborize 

massively and form initial intercellular communications and synapses (Andersen, 2003). The 

vast overproduction of neurons is followed by selective and massive apoptosis (programmed 
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cell death), during which approximately 50% of neurons are eliminated shortly before birth 

(Monk, Webb, & Nelson, 2001).  

Huttenlocher suggested that postnatal cortical development could be divided into two 

phases: Phase 1 includes the first 12 postnatal months and is characterized by a decline in 

neuronal density, increase in synaptic density, increase in number of synapses per neuron, 

dendritic growth, and increasing cerebral volume. The second phase extends from the first 

year into adolescence and is characterized by a slow decline in both synaptic and neuronal 

density, increases in dendritic growth, and the decrease of synaptic density along dendrites 

(Huttenlocher, 1979).  

During late gestation and early postnatal brain development, synaptic density increases 

dramatically in all cortical layers and reaches its peak approximately two months after birth 

(Bougeois, 2001). Intra-uterine synaptogenesis is largely under genetic control, whereas the 

rapid pre- and postnatal synaptogenesis is modulated increasingly by experience. Timing of 

synaptic production and elimination of the postnatal human brain varies across various 

regions of the cortex, with the frontal cortex reaching the peak density of neurons at a later 

stage than e.g. the visual cortex (Huttenlocher, 1979). The amount of synapses remains stable 

on a high level between 2 to 3 years of age and until puberty, where about 40% of the existing 

synapses are eliminated (Huttenlocher & de 

Courten, 1987). This elimination is also termed 

“pruning” and refers to the largely environmentally 

regulated elimination of synapses per dendritic 

unit, however, without loss of the whole neuron. 

The peak in synaptogenesis between 2 and 3 years 

of age is concurrent with the peak production of 

pyramidal neuron dendrites and a massive axonal 

growth during this critical time period (Webb et 

al., 2001). Other prominent mechanisms during 

postnatal development include the modulation of 

neuronal activity through neurotransmission 

(Herlenius & Lagercrantz, 2004).  

Lastly, the enhanced axonal neural transmission through myelination is a process that 

coincides with cortical maturation (see Fig.3). In the CNS myelin consists of 

 

 
 
Fig.3: DTI fibertracking showing the 3 D distribution 
of  fibers originating from the corpus callosum in a  
developing brain of a child at 12 years of age. 
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oligodendrocytes, which are increasingly recognized as active participants in neural 

development (Bullock et al., 2005). This is opposed to the prior premise that regarded 

oligodendrocytes as merely ancillary cells (Bullock et al., 2005). Coincident with myelination, 

white matter structure of the developing brain increases in childhood, whereas gray matter 

volume decreases coincident with prominent neural pruning and elimination processes during 

childhood and adolescence (Sowell, Peterson et al., 2003). This pattern of white matter 

generation in the early years of childhood is congruent with a recent description of maturation 

of human neural circuits in infants and toddlers by DTI measures (Hermoye et al., 2006). 

Neuroimaging data of children support the brain development as outlined above and reveal 

that at the age of 6 years the brain has reached approximately 90 % of adult brain size (Giedd, 

2004). Macroscopic re-organization, however, continues throughout adolescence as confirmed 

by MRI studies (Giedd, Blumenthal, Jeffries, Castellanos et al., 1999; Sowell, Peterson et al., 

2003). 

Brain development thus is characterized of a largely genetically determined 

overproduction of neurons, axons and synapses with subsequent processes of elimination that 

partly underlie genetic control. As the child grows older, however, re-organization of the 

nervous system underlies sensory environmental input and other epigenetic factors. The 

genetic determination of early development is appreciated as a general rule; yet, the 

developing brain is highly susceptible to adverse environmental events or developmental 

pathologies at every stage of development, and the fascinating timeline and precision of 

maturation can easily be disturbed at every stage of the process. 

3.2. Plasticity in the developing brain 

The initial overproduction of synapses may be related to the functional property of the 

immature brain to allow for recovery and adaptation after focal injury or malformation and 

thus may impart plasticity (Huttenlocher, 1984). The view on plasticity has, however, been 

extended in recent years. Observations from animal research and basic sciences show that 

neurogenesis is not restricted to young organisms, but that neurogenesis is even observed in 

adult organisms (Gould, Reeves, Graziano, & Gross, 1999). Furthermore, an enriched 

environment augments the rate of neurogenesis in adult mammalian organisms (as reviewed 

by Kempermann ( 2002)). To date it is not yet sufficiently clear how hippocampal 

neurogenesis is related to learning processes and memory. The assumption that plastic 

recovery to neuronal damage is much more efficient in childhood (Kennard, 1938) still holds 
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true (Payne & Lomber, 2001), but needs modification in recognizing that prominent 

functional and structural alterations take place in the nervous system throughout life which 

may represent the basis for learning, memory and adaptation.  

Several factors mentioned above as mechanisms of action in the developing brain are 

not distinguishable from general principles of neural plasticity, such as the pruning of 

synapses and of axons. Experience helps to sculpture the brain, and thus development and 

plasticity may be viewed as two widely overlapping processes or rather as one single process.  

The basis for the “use it or lose it” hypothesis (Giedd, 2004), has been postulated half 

a century ago. This hypothesis regards activity dependent synaptic strengthening or 

elimination in childhood and adolescence as a main factor for guiding brain maturation. In 

1949 Hebb proposed the rule that coincident activity in two connected neurons leads to 

strengthening of their connection (Hebb, 1949). This observation was verified years later by 

the observation of long- term potentiation in the dentate area of the hippocampus in rabbits 

(Bliss & Lomo, 1973). Even though a simplification of the complex mechanisms involved in 

the development of brain circuits, Hebb’s principle is still appreciated as a general framework 

for relating behavior to synaptic organization (Seung, 2000). 

In order to distinguish various interactions between brain development and 

environmental factors, two distinct mechanisms have been described (Greenough, Black, & 

Wallace, 1987). “Experience-expectancy” characterizes the kind of experiences that are 

expected to occur in all humans, and which involve basic perceptions (e.g. development of the 

visual system is dependent on eye-function, in order to develop the neural basis for vision as 

such) (Hubel & Wiesel, 1965). “Experience-dependency”, on the other hand, refers to 

individual experiences which help to sculpture each particular central nervous system (e.g. 

training of specific muscles will lead to a broader region relating to the muscle group in the 

motor cortex) (Ungerleider, Doyon, & Karni, 2002). 

 3.3. Plasticity in the Corpus Callosum 

The perinatal exuberance of axons in the CC and the presence of “transient callosal 

axons” are recognized in different species. The final shape and size of the adult CC structure 

is thought to be achieved through a combination of competitive elimination, of axonal 

pruning, and of the ongoing axonal myelination in postnatal life (Innocenti, Aggoun-Zouaoui, 

& Lehmann, 1995). In rhesus monkeys, CC fibers of the infant outnumber the CC fibers of 
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the adult animal by at least 3.5 times (LaMantia & Rakic, 1990). The selection of callosal 

axons in strabismic cats during pruning is dependent on incoming sensory stimuli (Milleret & 

Houzel, 2001). The development of the human callosum through axonal pruning and 

myelination coincides with the attainment of cognitive prowess and cortical maturation, 

suggesting that development of the CC and the cerebral cortex mutually influence each other 

(Klingberg et al., 1999). Experience-dependent plasticity of the CC has been supported by 

positive correlations of CC size with duration of training in professional musicians (Schlaug, 

Jancke, Huang, Staiger, & Steinmetz, 1995). Moreover, abnormalities of the CC in conditions 

that are directly dependent and influenced by the quality of  perceptual experience during 

sensitive periods of development such as illiteracy (Castro-Caldas et al., 1999) and dyslexia 

(von Plessen et al., 2002) support the neuronal plasticity of the CC observed in animal studies. 

This assumption conflicts with a study that showed a high genetic influence on the midsagittal 

CC size (Scamvougeras, Kigar, Jones, Weinberger, & Witelson, 2003). Yet in the future 

studies will further elucidate the interaction between underlying genetic factors and the 

influence of environmental factors (Sur & Rubenstein, 2005).  
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II Objective of the study 

We aimed to explore the contributing effects of lateralization, attentional modulation, 

as well as structural and functional characteristics of the corpus callosum and 

interhemispheric connectivity for the understanding of the pathophysiology of TS. 

It was hypothesized that: 

1. the area of the corpus callosum would differ between the TS and Healthy 

Control (HC) group (Report I) 

2. the TS group would exhibit an absence of a normal functional brain 

asymmetry, the presence of the ability to actively shift attention towards the 

right ear stimulus and an impaired callosal transfer of information (Report II) 

3. the TS group would show reduced interhemispheral connectivity as measured 

by Diffusion Tensor Imaging (DTI) (Report III) 
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III Methods 

Data collection in this thesis was based on two separate substudies. The core 

instruments and applied techniques, however, were similar in both data collections and are 

thus described jointly.  

1. Subjects 

The TS subjects were recruited from the Yale Child Study Center in the US (Report I), 

the Department of Child-and Adolescent Psychiatry, Haukeland University Hospital, and 

from outpatient clinics in the greater Bergen area in the Hordaland County in Norway (Report 

II and III). Healthy controls (HC) were recruited by randomly contacting individuals from a 

telemarketing list with the same ZIP codes as subjects with TS (Report I) or by randomly 

contacting local schools in the same geographic areas as the subjects with TS (Report II and 

III).  

Individuals that were included in the TS groups all met DSM-IV criteria (Association, 

1994) for the condition. Healthy controls (HC) were matched for age and gender. Exclusion 

criteria for the control group were a lifetime history of Tic disorder, Obsessive Compulsive 

disorder (OCD), Attention-Deficit/-Hyperactivity Disorder (ADHD), or a current DSM-IV 

Axis I disorder. Additional exclusion criteria for both groups were epilepsy, head trauma with 

loss of consciousness, former or present substance abuse, or an IQ below 80 (Report I) or 70 

(Report II and III), as measured by WISC-III, WAIS or the Kaufmann-Brief Intelligence Test.   

Diagnoses were established by using the Kiddie-SADS (Kaufman et al., 1997) or the 

“Schedule for Tourette Syndrome and Other Behavioural Disorders” (which includes the 

Kiddie-SADS) (Pauls & Hurst, 1996) and a “best estimate consensus procedure” using all 

available information (Leckman, Sholomskas, Thompson, Belanger, & Weissman, 1982). 

OCD symptoms were quantified using the Yale Brown Obsessive Compulsive Scale 

(Goodman et al., 1989), and the severity of tics was rated by Yale Global Tic Severity Scale 

(YGTSS) (Leckman et al., 1989) (Report I) or in a Norwegian translation (Strand & Plessen, 

2004) (report II and III). Handedness was measured by the Edinburgh handedness inventory 

(Oldfield, 1971). 
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Use of medication was registered for all TS subjects. Healthy Controls did not use 

psychotropic agents. Socio-economic status (SES) was estimated in all participants either by 

using the Hollingshead Four-Factor Index (Hollingshead, 1975), or by using guidelines for 

estimation of SES as indicated in the Journal of the American Society for Child and 

Adolescent Psychiatry ((Journal of the American Academy of Child and Adolescent 

Psychiatry), 2005) (Report II and III).   

2. MR Scanning Procedure 

The MR scanning for the data reported in Report I was conducted by the staff at the 

Yale Child Study Center, USA. For Report II and II, MR data were collected by staff at the 

Department of Radiology, Haukeland University Hospital (including the doctoral candidate). 

For the data in Report II and III, the children and their families received thorough information 

concerning the MRI examination in the letter of invitation. During MR scanning, a situation 

as comfortable as possible was created for children and their families by first showing the MR 

scanner and briefly explaining scanner characteristics before starting the actual examination. 

During image acquisition the children were accompanied in the MR scanner room by the 

doctoral candidate. In addition, the use of mental techniques of relaxation helped to acquire 

high quality data in both groups. Series with movement artifacts were replaced. Several 

children with severe tics agreed to repeat the MR scanning in order to enhance data quality. 

The participants met the same examiner during MR examination as in the clinical examination 

(Report II and III). Two individuals had to be excluded from the study due to motion artifacts 

in the MR imaging. The MR pre- and post processing procedures for DTI and for anatomical 

images are described in detail in the Method sections of Report I-III. 

3. Statistics 

For the description and for the testing of possible differences in demographical 

characteristics between the groups, a t-test or chi square test were used when applicable. 

Statistical analyses were performed using SPSS v. 13 (SPSS, 1999), R software (R DC Team, 

2003), SAS v. 8.2 (SAS Institute Inc., Cary NC) or Statistica (StatSoft, 2003). All p-values 

were of the two-sided type, and thresholded at p < .05.  

3.1 Report I 
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General linear regression was used to test group- and age-specific abnormalities in 

overall size of the CC in individuals with TS. Moreover, the effect of a TS diagnosis on the 

different regions of the CC was tested by using a repeated-measures analysis of variance 

(ANOVA), mixed-effects model.  

3.2. Report II 

In Report II, analyses of variance were performed to test the experimental hypotheses. 

A three-way ANOVA (Ear x Group x Attentional instruction) was used, since the groups were 

matched for age, gender and handedness. To follow-up the group effect, a separate two-way 

ANOVA (Group x Ear) was performed for the forced-left condition. 

3.3. Report III 

The influence of group specific changes on the FA values of the CC was tested by 

using a mixed-model regression analysis (PROC MIXED in SAS) with repeated measures, 

over a spatial domain (the five regions of the CC), with a first order autoregressive (AR1) 

model of the covariance structure.  

3.4. Controlling for potential confounding factors 

 In order to control for comorbidity, statistical analyses were repeated by subsequently 

excluding individuals with a comorbid ADHD or OCD condition, while keeping the HC 

sample at the same size. In addition, the presence of ADHD and OCD was included in the 

main analyses as a covariate if estimated reasonable from a statistical point of view and the 

influence of the comorbid condition was tested statistically (Report I). A similar strategy was 

used for individuals who received medication for their tics. Eventual effects of WBV on CC 

size were accounted for by covarying morphometrical measures of CC size with WBV, either 

by including the measure in the main analyses and or by controlling for WBV in analyses of 

correlation. IQ was controlled for by either using a conservative exclusion criterion (Report I), 

or by including IQ scores as covariates in the main analyses (Report III), or by testing 

correlations of IQ with measures of function (Report II). Age was controlled for by including 

age as a covariate. In addition, by including the square of age, we controlled for a possible 

curvilinear relationship of CC size with age (Giedd, Blumenthal, Jeffries, Castellanos et al., 

1999; Peterson, Feineigle, Staib, & Gore, 2001) in the study that included elderly individuals 

(Report I).  
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4. Ethical Considerations 

A written letter of invitation was sent to the parents of eligible children and further 

information was presented during the first interview. All MR images were evaluated by a 

neuro-radiologist in order to rule out pathologic conditions. If a condition that would require 

treatment was detected, the individual and her/his family were followed-up until in specialist 

care. Written informed consent was obtained from the parents and/or the participants and the 

study was approved by the human investigation committee at the Yale School of Medicine, 

New Haven, Connecticut in the US (Report I) or clarified in accordance with the Regional 

Committee for Medical Research Ethics, West-Norway and the Norwegian Social Science 

Services (NSD) (Report I and II; Number 8686 NSD). 
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IV Summary of papers 

Report I 

The corpus callosum is the major commissure connecting the cerebral hemispheres. 

Prior evidence suggests its involvement in the pathophysiology of Tourette syndrome (TS). 

The size of the corpus callosum was determined on the true midsagittal slices of 

reformatted, high-resolution MRI scans and compared across diagnostic groups in a cross-

sectional case control study of 158 subjects with TS and 121 controls, 5 to 65 years of age. In 

the context of increasing midsagittal corpus callosum area from childhood to age 30, children 

with TS overall had smaller overall corpus callosum size, whereas adults with TS on average 

had larger corpus callosum size, yielding a prominent interaction of diagnosis with age. 

Corpus callosum size correlated positively with tic severity. Corpus callosum size also 

correlated inversely with dorsolateral prefrontal and orbitofrontal cortical volumes in both the 

subjects with TS and the comparison subjects, but the magnitudes of the correlations were 

significantly greater in the TS group. The effects of medication and comorbid illnesses had no 

appreciable influence on the findings. Given prior evidence for the role of prefrontal 

hypertrophy in the regulation of tic symptoms, the current findings suggest that neural 

plasticity may contribute to the smaller corpus callosum size in persons with TS, which 

thereby limits neuronal trafficking across the cerebral hemispheres and reduces input to 

cortical inhibitory interneurons within prefrontal cortices. Reduced inhibitory input may in 

turn enhance prefrontal excitation, thus helping to control tics and possibly contributing to the 

cortical hyperexcitatibility reported previously in patients with TS.  

Report II 

We tested the hypothesis that children with Tourette Syndrome (TS) would exhibit 

aberrant brain lateralization compared to a healthy control (HC) group, and used an 

attentional modulation version of a verbal dichotic listening task with consonant-vowel 

syllables. The modulation of attention to focus on the right ear stimulus in the dichotic 

listening situation is thought to involve the same prefrontal attentional and executive 

functions that are involved in the suppression of tics, whereas performance when focusing 

attention on the left ear stimulus additionally involves a callosal transfer of information. In 
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light of presumed disturbances in transfer of information across the corpus callosum, we 

hypothesized that children with TS would, however, have difficulty modulating the functional 

lateralization that ensues through a shift of attention to the left side. This hypothesis was 

tested by exploring the correlations between CC size and left ear score in the forced- left 

condition. 

Twenty boys with TS were compared with 20 age - and handedness matched healthy 

boys. Results indicated similar performance in the TS and HC groups for lateralization of 

hemispheric function. TS subjects were also able to shift attention normally when instructed 

to focus on the right ear stimulus. When instructed to focus attention on the left ear stimulus, 

however, performance deteriorated in the TS group. Correlations with CC area further 

supported the hypothesized presence of deviant callosal functioning in the TS group. 

Report III 

Brain imaging studies have revealed anatomical deviations in the brains of individuals 

with Tourette syndrome (TS). Prefrontal regions have been found to be larger and the corpus 

callosum (CC) area has been found smaller in children and young adults with TS compared 

with healthy control subjects, and these anatomical features have been understood to reflect 

neural plasticity that helps to attenuate the severity of tics. CC white matter connectivity, as 

measured by the Fractional Anisotropy (FA) index from diffusion tensor images, was assessed 

in twenty clinically well-defined boys with Tourette syndrome and twenty age- and gender 

matched controls. The hypothesis that children with TS would show reduced measures of 

connectivity in CC fibers was confirmed for all subregions of the CC. There was no 

significant interaction of TS and region. Reductions in FA in CC regions may reflect either 

fewer crossing fibers or reduced axonal myelination. FA values did not correlate significantly 

with the severity of tic symptoms. Group differences in measures of connectivity did not seem 

to be attributable to the presence of comorbid ADHD or OCD, to medication exposure, or 

group differences in IQ.  

Our findings of reduced interhemispheral white matter connectivity add to the 

understanding of neural connectivity and plasticity in the brains of children with TS. 
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V Discussion 

The outset for the present thesis were previous reports of reduced structural brain 

asymmetry of the basal ganglia in TS patients, and the subsequent postulation by Sandra 

Witelson that the CC may be involved in TS (Witelson, 1993). The hypothesis of abnormal 

functional brain lateralization was not confirmed in this empirical study, since children with 

TS did not differ from the HC group on the DL measure of brain laterality. The reported 

findings of morphometric and functional deviations of callosal measures are, however, 

consistent with other reports of tic suppression in TS (Peterson et al., 1998; Peterson, Staib et 

al., 2001). Thus, the present findings can be interpreted in a new perspective, emphasizing the 

ability of TS patients to control tics.  

1. Neuronal plasticity in the CC involved in tic suppression 

The neuronal mechanisms thought to be involved in tic suppression are assumed to be 

located primarily in prefrontal cortical regions. Findings of prefrontal neuronal activation 

during tic suppression (Peterson et al., 1998), larger dorsoprefrontal volumes (Peterson, Staib 

et al., 2001), as well as increased white matter volume prefrontally (Fredericksen et al., 2002) 

in children with TS support this hypothesis. Positive correlations of CC size with tic severity 

suggest that the smaller CC area in children (Report I) could be a result of the TS brain’s 

continuous attempt to suppress tic severity. Stronger correlations of CC area with prefrontal 

volume in the TS group as compared to the control group (Report I) additionally suggest a 

relation between a deviation of the CC area and prefrontal self-regulatory control in tic 

suppression. However, continuous tic suppression usually takes place unconsciously and is 

most of the time not dependent on the individual’s own volition to suppress motor or phonic 

activity. The main finding in Report I thus provides evidence that the CC is smaller in 

children with TS. A deviation of the microstructural white matter interhemispheric 

connectivity was then found (Report III) in another sample of TS children who on average did 

not have a smaller CC area size. The absence of the prior described findings of a smaller CC 

area size could, however, be the result of the relatively small sample size. Finally (Report II), 

findings from anatomical and diffusion tensor MR imaging were confirmed in a functional 

task by revealing altered callosal transfer in the TS group as compared to the HC group. A 

finding of smaller CC size in the sample in Report II and III would have been desirable in  
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order to confirm the initial results. Nevertheless, the studies in Report II and III showed that 

interhemispheric deviations in individuals with TS are not solely dependent on CC size.  

 

Report II and III thus validated the findings in report I in a broader sense by extending the 

results to microstructural measures of interhemispheric connectivity and to CC function.   

Based on the findings presented in this thesis, a smaller CC area (as reported in Report 

I) corresponds to reduced structural and functional interhemispheric connectivity (Report I, II 

and III). Furthermore, based on correlations with tic severity it is assumed that reduced 

interhemispheric connectivity leads to reduced inhibition of prefrontal neurons, and thus 

facilitates tic suppression. The facilitation of tic suppression is most likely mediated through 

prefrontal cortical fibers that ultimately control motor activity through CSTC circuits. As 

reviewed in Part I, the CC has inhibitory functions and the reduction of such inhibitory 

influences may result in increased cortical excitation (Ziemann, Paulus, & Rothenberger, 

1997). In children, the inhibitory influence of the CC may be best observed in the 

disappearance of mirror movements in childhood that parallels the maturation of the CC 
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Fig.4: Suggested model for the interplay of prefrontal and callosal changes i. o. to enhance tic suppression. 
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(Mayston et al., 1999). The inhibition of contralateral limb movements has been confirmed 

neurophysiologically to depend on transcallosal inhibition (Duque et al., 2005), which is 

mediated via GABAergic interneurons (Carr & Sesack, 1998). We suggest that the 

neurophysiological mechanisms of experience-dependent axonal and synaptic pruning are 

more pronounced in the CC of those individuals in the TS population who successfully have 

developed the ability to suppress their tics (see Fig.4).  

2. Children versus adults with TS 

As described in the Introduction, children with TS experience a considerable decrease 

of symptom severity during and after puberty. Adults with persistent tic symptoms, who have 

stayed in touch with a specialty clinic over the years (Report I) may thus be regarded as a 

selection of individuals with TS who either from the onset of the condition may have suffered 

from a serious form of the condition, or alternatively who may not have been able to 

sufficiently adapt to successful tic suppression strategies. The latter interpretation was 

supported by Report I, showing that subjects with TS in adult age had significantly higher 

scores for tic severity, and in addition that adults with TS on average had larger CC area size 

compared to the age-matched HC group. This is also in concordance with another study 

reporting interaction with age in samples including an age-spectrum from childhood to late 

adulthood, indicating opposing findings in children and adults for prefrontal cortical regions 

(Peterson, Staib et al., 2001). Moreover, the observation that adults with persistent tics could 

be a selected subgroup of all individuals with TS, is relevant with respect to functional (fMRI 

and PET) neuroimaging studies, that typically only included adult subjects with TS. 

Restricting neuroimaging studies to adult populations leads to deriving results that stem from 

a subgroup which does not show the phenomenologically and clinically well documented 

adaptation to tic behavior and increasing ability for tic suppression with age (Bloch et al., 

2006; Leckman et al., 1998; Pappert et al., 2003). Thus results concerning adults alone, 

cannot be applicable to the general population of children with tics in clinical care; 

nevertheless they still are important for the understanding of the pathophysiology in TS (Stern 

et al., 2000).   

3. Gender 

TS occurs more frequently in boys than in girls. Hence most studies strive to include 

girls in order to achieve representative samples. In the first Report, girls were included in the 
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sample and the results showed that girls with TS on the average also had smaller CC area size, 

in line with the findings from the male group. This is different from a prior report (Mostofsky 

et al., 1999), which did not find deviant CC areas in girls with TS compared to controls. The 

mentioned study suffered, however, from small sample size which could be the reason for not 

detecting underlying differences (increased probability for a Type-II statistical error). Such an 

outcome would be in line with what may be proposed based on the findings of CC size in 

Report II and III. In addition, in the mentioned study a simplified measurement of brain size 

(intracranial area on the midsagittal slice) (Witelson, 1993) was used to control for scaling 

effects, and midsagittal slices were not realigned before measurement.  

As a consequence of fewer girls with TS in the general and in clinical populations, it 

was not possible to recruit enough girls for the studies in Report II and III. In addition, the 

two girls that were recruited had such severe tics that their MR images were of inferior quality 

and could not be used for further morphometric purposes. An increase of movement in one 

subgroup could of course be of interest in itself and a topic for future studies. Hence it was not 

possible to examine gender aspects in the two studies in Report II and III.  

4. Correlations of CC with cortical volumes 

Prefrontal function was not the primary topic of this thesis, but several of our findings 

touch upon self-regulatory control that emerges during childhood and which is closely related 

to fronto-striatal pathways (Marsh et al., 2006), as large parts of the anterior CC connect 

prefrontal and frontal cortical regions (Huang et al., 2005). Changes in callosal size seem thus 

closely connected to changes in frontal brain regions. An earlier study, reported larger 

dorsoprefrontal cortical volumes in children with TS (Peterson, Staib et al., 2001) (that were a 

subsample of the present study in Report I). Given the larger prefrontal volumes, a larger CC 

size could have been expected in children with TS, if following scaling effects in the brain. 

Yet, on average a smaller CC area size was found in the TS children. In addition, 

dorsoprefrontal cortical volume correlated inversely with CC area size, whereas motor 

cortical volume correlated positively with CC area size and the volume of the orbitofrontal 

cortex correlated inversely with callosal size in the TS group. The stronger inverse 

correlations of prefrontal (gray and white matter) volumes with CC area size in the TS group 

suggest a deviant callosal connectivity in the TS group, which was further confirmed in the 

DTI study (Report III).  
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5. IQ 

As previously mentioned, the findings in Report I were based on data acquired at the 

Yale Child Study Center, USA, which has special expertise for tic disorders. On the basis of a 

large data collection, individuals with an IQ lower than 80 were excluded. Such a 

conservative exclusion criterion for IQ was chosen to ascertain that the groups did not differ 

significantly in IQ. For the samples in Report II and III a less conservative IQ criterion was 

adopted (excluding all individuals with full IQ score < 70) in order to maintain a reasonable 

sample size. This resulted in a significant difference of IQ for the TS and HC group. Thus, by 

covarying (Report II) and correlating (Report III) with IQ measures, the potential confounding 

influence of IQ in the statistical analyses was controlled for.  

6. Comorbidity and medication 

Comorbidity of TS with ADHD and OCD is well documented and described in part I. 

In the samples presented in this thesis, comorbidity with both ADHD and OCD was present in 

a sub-set of the subjects. In consequence of having three diagnostic groups (TS only, TS + 

ADHD, TS + OCD), comorbidity was controlled for in the statistical analyses. When 

exploring underlying factors in TS. It thus arises the question whether to examine “pure” 

groups and “lose” statistical power, or to include patients with and without comorbidities in 

the statistical analyses. By including all subjects, statistical power will be gained, but for the 

prize that findings may be obscured by combining concurrent pathologies. This could be 

critical when exploring several regions of the brain, e.g. the prefrontal regions. Children with 

TS have larger prefrontal volumes (Peterson, Staib et al., 2001) whereas children with ADHD 

have smaller volumes (Sowell, Thompson et al., 2003). Such opposing effects may seriously 

confound results, when including individuals that suffer from several comorbid conditions. 

Comorbidity was controlled for by retesting the stability of the findings when excluding 

subjects with comorbid ADHD and OCD symptoms (Report I-III). In Report I the sample was 

large enough to additionally include comorbid diagnoses as covariates in the statistical 

analyses. Medication is another potentially confounding factor and was controlled for in the 

same way as outlined for comorbid diagnoses.     

7. Clinical Implications 
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Neural plasticity in brain development could contribute to the understanding of the 

typical course of TS, with an attenuation of tic-symptoms during puberty and early adult age. 

For the clinician it is important to emphasize the possible positive outcome of TS in the sense 

that the brain of children is able to self-regulate and to adapt to adverse conditions. The 

present thesis attempts to further unravel the complex mechanisms that accompany the 

clinical observation of an attenuation of tics during and after puberty. It could be more helpful 

for families and clinicians to emphasize the dynamics of brain plasticity and self-regulatory 

control than focussing on pathological findings, such as the disturbed interhemispheric 

transfer. A consequence of the present findings is that physicians, therapists and caregivers 

should try to facilitate the child’s own capacity of self-regulatory control. We describe 

compensatory processes in the brains of children with TS, yet without approaching the 

important question of the factors, which could contribute to facilitate such positive effects and 

which factors impede such development (as assumed in the adult group in Report I). This has 

not been the object of the present thesis and the formal testing of these factors would require a 

longitudinal study design. Individuals with TS often experience the tics as ego-synton (Sacks, 

1992) and estimate the tics to be semi-voluntary responses to preceding sensory phenomena 

(Leckman et al., 1993). Emphasizing the individual’s own capacity of self-regulation will 

further strengthen the ability of children with TS to cope with unwanted tic behaviour.  

8. Future outlook 

In the extension of this thesis, it should be tested how medication and other forms of 

treatment influence the development of self-regulatory control and ultimately the 

development of compensatory neuronal pathways in individuals with TS. Longitudinal studies 

that include children with TS from population based samples could enhance the understanding 

of the biological bases for tics. Moreover, designing clinical studies i.o. to test, whether 

children with tics could profit of interventions that have the potential to enhance plasticity in 

the context of other neurological conditions (Hummel & Cohen, 2005) could potentially 

improve treatment options.  
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