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Chapter 1

Introduction

Seafood is one of the cornerstones of the Norwegian economy, with a long and stor-
ied history. More than one thousand years after the first trade of fish started, the
seafood industry is still the second largest industry in Norway measured by gross
domestic product, and serves over 10% of the global fish market. The industry con-
sists of many different domains, including fishery, processing and aquaculture, each
employing thousands of people [76].

Due to the size, impact, and complexity of the industry, multiple Norwegian gov-
ernmental bodies are fully or partly dedicated to overseeing its operations. The Dir-
ectorate of Fisheries is the main body fully dedicated to governance, and provides
control and analysis of the most aspects of the industry. This includes governing
traditional vessel fisheries, fish farming, landing facilities, and surrounding infra-
structure. The Directorate of Fisheries consists of both a central office as well as
multiple regional offices. The central office provides regulation, statistical analysis,
and software development, and informs the industry of various events such as le-
gislative changes. The regional offices are the operative units, and collaborate with
the coast guard and police to uncover crimes.

The fleet of fishing vessels currently consists of 435 active vessels with a length over
15 meters [40]. All of these must report their operations using a system known as
the Electronic Reporting System, commonly referred to as ERS. A normal fishing trip
consists of three types of ERS reports: First, the vessel signals that it is commencing
a fishing trip when it leaves port and notes any fish already on board. Second, it
must report daily catch activities (DCAs), that include the quantities of all species
caught, the duration of the fishing operations performed, and the fishing gear used.
Finally, the vessel reports arrival to port. The report includes information on the
total quantities of fish on board and the quantities that are intended for landing.
Additional reports are needed when crossing borders to other countries’ waters.

In addition to ERS reports, vessels over 15 meters long must at all times report their
positions hourly. This is done through satellite-based GPS, known as the vessel mon-
itoring system (VMS). Many also choose to use the automatic identification system
(AIS), which uses land-based trackers to collect position data every five minutes.
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Positions are reported both to verify that the vessel is following legislation and as
a safety measure if the vessel should find itself in distress. The Directorate of Fish-
eries employs inspectors, who with the support of various other employees ensure
that vessels report correctly. The domain and work of the Directorate’s employees is
further described in Chapter 3.

1.1 The Problem

ERS reporting is done manually by vessels’ crews, and situations commonly arise
where the vessels forget to report daily, or send delayed reports. These situations
are by themselves breaches of regulation. Additionally, since ERS reporting is done
manually, opportunities arise for more nefarious activities. Vessels could report fake
fishing operations, deliberately report wrong values, avoid reporting, or otherwise
attempt to circumvent the regulations, and it is up to the Directorate of Fisheries’
employees to find out which vessels have just forgotten their daily report and which
are attempting to deceive. Though currently handled well, the number of reporting
vessels is rapidly increasing. As of 2018, there were 435 registered active Norwegian
fishing vessels with a length over 15 meters, meaning they are legally bound to re-
port positions and fishing operations to the directorate of Fisheries [40]. Over the
coming years, this is expected to increase to an ever-larger percentage of the close to
six thousand registered Norwegian fishing vessels [41]. This will strain the inspect-
ors and analysts that attempt to identify and understand the reporting infractions,
as they will need to validate the reporting of more and more vessels. There are cur-
rently few tools that increase the effectiveness of this process, and the Directorate’s
employees will need the help of such tools if they are to handle the influx of new
reports effectively.

1.1.1 Automatic Analysis

The modern-day problem of working with the massive amounts of collected data
has fostered the use of algorithms and statistical analysis as tools to gain insight
from large datasets. Fields such as data mining and machine learning have suc-
cessfully built algorithmic models for a variety of use cases, from identifying cancer
[39], over user analysis for e-commerce [10], to automatic video captioning [89]. Us-
ing such automatic methods could be a possible solution to the problem of increased
reporting, and the Directorate has recently started a working group called the ana-
lysis group to explore the possibilities found in the automatic analysis domain. The
analysis group is currently building a set of so-called indicators for inspectors. In-
dicators are values based on analysis of the data collected by the directorate that
provide indications of whether a vessel may have performed illegal activities and
may be worth investigating. The goal is to alleviate some of the work the inspectors
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have to do by filtering down the possible candidates for inspections and to identify
repeat offenders.

1.1.2 Issues in Automatic Analysis

Fully automatic analysis systems are not always a perfect solution, and have their
own challenges. Automatic data analysis used to replace human labor in sensitive
areas requires models and algorithms with special thought and consideration put
into the ethical ramifications the system might have [14]. The indicator project of the
Directorate’s analysis group is attempting such a replacement, as the results of an in-
spector interpreting indicators may lead to legal action. Developers of such systems
need to specifically consider how transparent and predictable the model’s results
are [14], as the analysis group’s decision to work on indicators as supplements to
inspectors exemplifies. This is a hard problem, and it may often be more suitable to
use automatic analysis as a supplement to humans instead of replacing them.

Another issue with fully automatic analysis systems is that they are usually highly
problem-specific, to the point where they only answer a specific question. In cases
where the specifics of the problem are hard to define, it is very difficult to create fully
automatic systems that function well. Further, the algorithms often require struc-
tured data, and problems where either some or all the data come from unstructured
sources, are currently hard to solve using fully automatic methods. When analyz-
ing vessel reports, unstructured data can provide a lot more insight than the reports
themselves show. For example, the vessel may have hit bad weather, and thus been
unable to report, or the reporting frequency may have been reduced due to technical
difficulties at a base station. Though it would be possible to encode such situations
into the fully-automatic model, it would quickly become very large and difficult to
understand, compounding the issue of transparency.

As fishery management will need both automation and human oversight during the
coming years, a combined approach must be considered instead.

1.2 VA-TRaC, a Visualization-Based Solution

For problems where automatic systems and people work in tandem, users must un-
derstand their results quickly and efficiently if the system is to provide benefits over
performing the labor manually. Having established that analysis of vessel reports
is best done as a collaboration between a human and a computer, one must choose
how to interface between the two. A system must communicate results from the data
and analysis to the user so that the user understands the data quickly and precisely.
In some cases, it may also be beneficial to allow the user to steer the automatic ana-
lysis to be more effective. Data visualization, from here on known as visualization,
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is a good candidate for interfaces with these traits. Computer-based visualization
"provides visual representations of datasets designed to help people carry out tasks
more effectively"[64], and is therefore well suited when the goal is to increase the
performance of human labor when collaborating with a computer.

This thesis presents VA-TRaC (Visual Analytics for Trajectory Analysis and Classi-
fication in Fishing Vessel Operations), a prototype visual analytics application for
identifying irregularities in the fishing fleet’s reporting of catch operations. The sys-
tem has three operational goals: First, it should identify fishing operations auto-
matically, and let a user compare these with real reports. Second, it should allow
analysts to refine the automatic models. Third, it should be scalable to thousands of
vessels, meeting the demands faced by the Directorate over the coming years.

VA-TRaC consists of two parts. Three indicators, in the vein of those in development
by the analysis group, identify and classify vessels’ catch operations automatically,
even when no operations have been reported. A series of visualizations display
the vessel data in a web frontend, allowing inspectors to verify and understand the
indicator’s results. Additionally, the system allows analysts to explore and refine the
parameters of the indicators, potentially increasing the quality of indications over
time.

1.2.1 Visual Analytics

VA-TRaC is a Visual Analytics system. Visual analytics is a relatively new subdo-
main of visualization concerning itself with the effective analysis of very large data-
sets by combining automatic methods, visualization, and human cognition. It con-
sists of elements from visualization, human-computer interaction, automatic ana-
lysis, and related fields (Figure 1.1 shows related fields and how they converge to
form an effective whole for data analysis). Though visual analytics started as a field
focused on national intelligence, the scope has broadened, and the term "visual ana-
lytics system" is today used for applications that combine the advantages of auto-
matic analysis and visualization to analyze large amounts of data.

Visual analytics design studies such as this thesis are the combination of applied
research and validation, and seek to build a knowledge base of visual analytics cap-
abilities based on the results of evaluations, as worded by Thomas and Cook [78].
A wide array of design studies showing the benefits of visual analytics have been
performed across many different domains, data types, devices, and user groups. Ex-
amples are as far-reaching as healthcare [83], financial markets [92], social networks
[46] and even music [8].

The scientific work done in the field has provided valuable insights into the devel-
opment and validation of VA-TRaC. Chapter 2 provides a report on related works
and the state of the art in visual analytics research.
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FIGURE 1.1: Related fields of visual analytics, by Keim et al. [55]

1.2.2 Challenges in Applying Visual Analytics

In domains such as fisheries management, where there are well-defined systems and
standards for data acquisition and storage, a major challenge is how to gain insights
using the data. As established, visual analytics systems give good results in these
kinds of environments. However, they are not without challenges, and the design of
visual analytics systems is an active field of research.

Each subdomain (see Figure 1.1) of a visual analytics system can be challenging on
its own, and the challenges are often very context-dependent. For example, in some
systems, the problem to be solved is very clearly defined, and the challenge is al-
gorithmic, for instance in how to performantly convert complex data to visual rep-
resentations on the screen. In other situations, the challenge may be designing novel
techniques of user interaction, for instance in systems with multiple simultaneous
users or novel display technologies such as virtual reality headsets. In the case of
fisheries management at the Directorate of Fisheries, three categories of challenges
were identified: Working alongside existing processes and governmental culture,
designing effective and understandable visualizations, and system validation.

Working in a Governmental Agency

A large and old governmental body such as the Directorate of Fisheries develops
processes for how work is performed, that over time become a deep part of the
agency’s culture. To successfully create analysis tools in such an environment, one
needs to understand the employees’ workflows. Building this understanding in-
cludes identifying the organizational structure and key stakeholders, analyzing the
workflows of users, and integrating the tool so that they do not need to alter their
current situation unnecessarily. Furthermore, a governmental agency is just one part
of the whole governmental body, where different agencies, offices, and institutions
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are interlinked and often depend upon one another, adding a layer of complexity
in reaching a good level of understanding. As an outsider in a large organization,
this proved a daunting task. Chapter 3 further explores the domain, organization,
and workflow in which VA-TRaC was built, while Chapter 6 shows how VA-TRaC
is used to help effectivize this workflow.

Designing Effective Visualizations

Just as the combinations of pitch, rhythm, and instrumentation can create practically
endless amounts of music, combinations of data, visual encodings, and interaction
can create endless possible visualizations [64]. Therefore, designing visualizations
that reduce this space into a set of effective encodings in the given context is a core
challenge in any visual analytics system. Compounding on that, data visualiza-
tion has traditionally not been employed much at the Directorate of Fisheries and
elsewhere in fisheries management, and the Directorate’s employees have varying
degrees of fluency in understanding charts and other visual encodings. Design-
ing a visual analytics system where the design space simultaneously is massive and
limited proved one of the major challenges in the development of VA-TRaC. Meth-
odology, design justifications, and a presentation of the system is found in Chapter
4, while Chapter 5 presents the system’s architecture and implementation details,
based on a discussion of the application’s non-functional requirements.

Validation

Related to the previous challenges, validating the system is a requirement for eval-
uating the efficiency of a design. Offering a structured and effective approach to
validation that includes the correct stakeholders, proved the final major challenge.
The validation approach, as well as validation results, are presented in Chapter 7.

1.3 Notable Terms

The following terminology is used throughout the thesis. As many of these terms
may have different meanings depending on context, this section clarifies their use.

• Validation: The act of ensuring that a given system is effective at its purpose,
and solves a valid problem [64]

• Design Study: A design study is a research project in which the researcher
attempts to solve a problem for a real-world user [64].

• Stakeholder: A person who needs or is interested in the visualization system
[75]. This can be a user, developer, or other interested parties.
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• Domain Expert: A person with specific domain knowledge about fishery and
vessel operations. Cases with a different domain are specified explicitly.

• Indicator: A value based on the analysis of vessel data that gives an indication
as to whether the vessel is performing illegal activities.

• Call Sign: An identifier for a vessel, in the form of four to six alphanumeric
values.
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Chapter 2

State of the Art

This chapter presents the research context in which VA-TRaC was built. It is split
into three main sections: Being a visual analytics application, the first section gives
an overview of the historical and current trends of visual analytics. The second
section provides a deeper look at VA-TRaC ’s niche, geovisual analytics for fisheries
management, by discussing common data types and previous work in the domain.
The third section discusses approaches to design study validation.

2.1 What is Visual Analytics?

Visual analytics is a broad field, integrating features of various other fields while at
the same time having evolved into a separate entity from both information visualiz-
ation and scientific visualization, the two other main subfields of visualization. The
following section contains the context and general components of visual analytics
research.

2.1.1 Defining Works

Visual analytics developed in the early to mid-2000s as a response to the increas-
ing pervasiveness and quantities of digital data across society. Though there were
earlier examples of publications, such as the September-October issue of IEEE Com-
puter Graphics and Applications in 2004 [86], the field is often considered to be first
described formally in the work Illuminating the Path: The Research and Development
Agenda for Visual Analytics by authors Thomas and Cook [78]. The authors define
visual analytics as the "use of visual representations and interactions to facilitate
faster, more focused, analytical reasoning tasks", which is still a commonly-used
definition. Evident already in this definition is the fact that visual analytics doesn’t
merely build on visualization, but also human-computer interaction research, re-
search into reasoning, and analytics.
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While the general focus of Illuminating the Path is on visual analytics for homeland
security, the authors present a research agenda for the field as a whole, along with re-
commendations to facilitate effective use of research and applications from a variety
of domains for visual analytics, including analytical reasoning, visualizations and
interactions, presentations and data processing. The research agenda, recommenda-
tions and the motivating "call to action" style of writing in the book have provided
ample grounds for visual analytics research, and the book continues to be one of the
most-cited works in visual analytics.

The early stages of visual analytics research focused on further refining the definition
of visual analytics, defining the boundaries of visual analytics, how visual analytics
is distinct from related fields, and analysis of use-cases and challenges. A notable
work of the period include Keim et al.’s paper Visual Analytics: Definition, Process,
and Challenges [55]. The paper presents one of the central ideas in the field, the no-
tion that visual analytics allows solving the problem of information overload from
massive data sets by turning it into an opportunity instead of a challenge, provides
a thorough overview of how visual analytics is its own sub-domain of visualization
and discusses a series of related fields.

Another early breakthrough was made in the form of a general model for the visual
analytics process. The model, shown in Figure 2.1, was formalized by Keim et al.
in Visual Analytics: Scope and Challenges [56]. The formalization builds on previous
descriptions of the model using less formal means and describes visual analytics as
a cyclical process of going from raw data to knowledge using both visualization and
models.

FIGURE 2.1: The Process of visual analytics by Keim et al. [57]

The paper also provides an extension of the famous information visualization man-
tra from Ben Shneiderman: “Overview first, zoom and filter, details on demand”
[73]. The extension, "Analyse first, show the important, zoom and filter, analyze
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further, details on demand", gives a concise description of how visual analytics dif-
fers from information visualization, again building the case for visual analytics as a
distinct field [56], and is repeated throughout the literature on visual analytics.

The early, defining works of visual analytics culminates in the 2010 book Mastering
the Information Age: Solving Problems with Visual Analytics by Keim et al. [57], which
distills the most important goals, challenges and definitions of visual analytics re-
search of the time, presents research goals and challenges in related fields such as
data mining, cognition, and infrastructure with regards to use in visual analytics,
and solidifies visual analytics as its own field.

2.1.2 The Components of Visual Analytics

Each chapter of Illuminating the Path describes a component, that when brought to-
gether with the other components describe visual analytics as a whole. The follow-
ing section describes the state of research for applying each component to visual
analytics.

Analytical Reasoning: Knowledge Discovery and Sense Making

Visual analytics attempts to construct an effective way of bridging human and auto-
mated analysis, and a primary interest is therefore how humans perform their ana-
lytical reasoning.

Sensemaking is the process of how people "structure the unknown" by creating
frameworks that allow them to comprehend and reason about the unknown, based
on knowledge articulation [2]. Considerable visual analytics research effort has gone
into the construction, evaluation, and discussion of models of knowledge discovery
and sensemaking. In the early days of visual analytics, these models helped distin-
guish factors of visual analytics when compared to information visualization [55].
More importantly, they can help understand a fundamental aspect of visual analyt-
ics, namely the integration of human understanding in the entire analytics process,
and can drive choices for interaction, analysis and visualization idioms [57].

A general framework for the sensemaking process in the context of analysis comes
from Pirolli and Card [65]. The framework, illustrated in Figure 2.2, separates sense-
making into two distinct loops, foraging and sensemaking. Foraging is the pro-
cess of reducing a large dataset into a manageable set of relevant information. This
is done by iteratively providing higher-precision queries into the data until one or
more high-precision sets of suitable size are found. The sensemaking loop, on the
other hand, is the process of turning this information into mental models for de-
cision making or hypothesis evaluation. The Pirolli-Card model is probably the most
commonly-cited model in discussions of sensemaking [37].
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An early and influential paper focusing on knowledge generation from the view-
point of visualization research is van Wijk’s The Value of Visualization [82], in which
the author describes a generic model for the visualization process, later refined and
concretized into the realm of visual analytics by Keim et al. [55]. Seen in Figure 2.3,
"The sensemaking loop of visual analytics", focuses on the user building knowledge
through the repeated process of creating a visualization from preprocessed data,
extracting knowledge from the visual representation, and using the newly gained
knowledge to drive further analysis and insight. The results can then be used to
create new visual representations of the data, in order to avoid favoring the specific
interpretation of the data provided by the first visualization.

FIGURE 2.2: The Sense Making Loop by Pirolli and Card [65]

FIGURE 2.3: The Sense Making Model by Keim et al. [55]
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The van Wijk-Keim sensemaking model differs from the Pirolli-Card model by fo-
cusing squarely on the system of visualization, without focusing too much on the
process of human reasoning. This is the criticism made by Sacha et al. [69], who
seek to marry the van Wijk/Keim sensemaking loop with Pirolli and Card’s model
by separating the processes performed by a human and the processes performed
by a computer. Their model is illustrated in Figure 2.4. Like Pirolli and Card, The
Sacha et al. model uses multiple subloops to describe the sensemaking process. The
computer-based portion of the model is somewhat similar to the Keim/van Wijk
model, but crucially includes the information visualization pipeline and the Know-
ledge Discovery and Data Mining (KDD) process. Ribarsky and Fisher have built
on this work by integrating principles from cognitive science [67], adding notions of
prior knowledge encoded in the computer as well as knowledge already available
to the user.

FIGURE 2.4: Sacha et al.’s knowledge discovery model [69]

As noted by Ribarsky and Fisher [67], no exisiting visual analytics system encodes
all aspects of their or Sacha et al.’s model, and the authors call for further evaluation
and research. However, the models provide a solid foundation for illuminating an
important and distinguishing aspect of visual analytics and a roadmap for further
research [37].

Data Representations and Transformations

The computational and automatic aspects of visual analytics are described by the
"Data Representations and Transformations" component. It consists of two sub-
components: automatic analysis for model building, and data considerations such
as storage, transformation, and transportation.
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The automatic analysis performed in visual analytics is, for the most part, some form
of data mining, applied using principles of KDD [57]. Due to the large variety of
data mining algorithms available, visual analytics applications have employed sev-
eral different, often domain-dependent, methods. In a recent state of the art report
on visual analytics and machine learning, Endert et al. [37] provide a classification
of different domains of data mining methods and how they have been incorporated
into visual analytics tools. Examples include statistical methods such as Bayesian
classification and regression models, dimensionality reduction methods such as sin-
gular value decomposition, unsupervised clustering algorithms, and classification
methods such as decision trees.

When working with sufficiently large data sets, it becomes impossible to load all
data into memory at the same time, and it may even become impossible to load all
the data onto a single hard drive at the same time. As one of the core promises of
visual analytics is the ability to effectively analyze very large data sets, challenges
of data scale are both important and common. A paper by Wong et al. [23] out-
lines such issues, and discusses the state of approaches to mitigate them. The need
for expensive, high-latency and low-throughput cloud providers to store extremely
large quantities of data is one issue, the lack of databases guaranteeing atomicity,
consistency, isolation and durability (so-called ACID-compliance) that support such
data quantities is another. The paper also points out the challenges of passing large
amounts of data over the network as a growing challenge, and discusses the need
for new algorithms that can efficiently process data without keeping all the data in
memory or other local storage.

Visual Representations

Visual analytics started in information and scientific visualization circles [56], and
as Thomas and Cook note, visual representations are crucial because they allow ex-
ploration, and through that give the analyst insight [78]. It is also fundamentally
different from automatic analysis: As noted by Keim et al. [56], visual represent-
ations don’t necessarily become better or more meaningful just due to increases in
computational power. Therefore, correct use of theory and empirical studies in visu-
alization and visual representations are a key factor for visual analytics systems to
be effective.

One of the most common general models of visualization is the visualization pipeline.
The model consists of a step-by-step process of transforming data into a suitable
visualization. It was first defined by Haber and McNabb in 1990 [47], who base their
model on the following steps, each describing the type of object that is contained
in the step: Raw data, derived data, abstract visualization objects, and images (see
Figure 2.5). Raw data is, as the name suggests, the data as received from the outside
world. Derived data contains the same data but enriched or enhanced, for instance



2.1. What is Visual Analytics? 15

by adding metadata or calculating attributes such as derivatives. Abstract visualiz-
ation objects are imaginary objects within the extents of space and time, containing
attributes such as position, geometry, texture, or reflectivity. Finally, the image is
the final representation of the abstract visualization objects on the screen. A visu-
alization is created by transforming data from one form to the next, for instance by
applying traditional techniques from computer graphics to turn an abstract visual-
ization object into an image [47].

FIGURE 2.5: Haber and McNabb’s visualization process [47]

Over the years, multiple extensions and refinements of the model have been pro-
posed. A prominent example comes from Chi [21], who presents the Data State
Model, shown in Figure 2.6. The model extends the work of Haber and McNabb
by introducing the concept of operators. Unlike transformations, operators change
values to another representation within the same level. For instance, operators on
the derived data, called analytical abstraction by Chi, may change the representation
from a grid to a data graph, which doesn’t create any visual abstractions.
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FIGURE 2.6: Chi’s Data State Model [21]

The field of visualization, as distinct from other branches of computer science, has
mostly focused on the last two steps of the visualization pipeline. In 1967, Bertin
defined a model for abstract visualization objects which has become a standard of
visualization analysis [64]. In this model, the object is described by two types of
attributes: The geometric representation, called the mark, and the attributes con-
trolling the geometric representation, called channels. Marks can encode specific
items, such as points, lines, and areas, or links between items. Channels can modify
the marks using for instance position, color, shape et cetera [64].

An advantage of marks and channels is that they can be analyzed and evaluated
indivdually, based on how effectively they are perceived and how expressively
they describe the underlying data [60]. Cleveland and McGill’s seminal 1984 art-
icle Graphical Perception: Theory, Experimentation, and Application to the Development of
Graphical Methods [26] evaluates the effectiveness of channels by applying a theory
of perception on experiments measuring response time and precision for different
chart types, and evaluates a series of common charts based on the results. The results
of Cleveland and McGill have provided the groundwork for ample research into the
effectiveness of visual encodings, such as Heer and Bostock’s use of crowdsourcing
to evaluate perception [48], Cleveland’s model of visual decoding [25] and Ware’s
thorough analysis of visual perception [84].

Interaction

Interaction can increase the effectiveness of visual representations, especially when
the data is multivariate [18], and early visualization research developed basic meth-
ods of interaction to unlock these effectiveness gains. A prominent example comes
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from Buja et al. [18], who describe focusing and linking as a scheme for effective
multivariate data visualization using multiple, simple views that can be interacted
with. Despite the early developments, visualization research has mainly focused on
representation, while interaction research historically has been grounded in the field
of human-computer interaction (HCI), with select techniques applied to visualiza-
tion [88].

Some notable interaction techniques have found success in information visualiza-
tion. Direct manipulation, in which changes the user does to the interface update
the computer system state without any intermediary steps for the user [72] is a com-
monly used principle, while information drill-down and hyperlinks, zooming, high-
lighting [30], brushing [54], and the aforementioned focusing and linking [18] are
well-known low-level interaction techniques. A taxonomy of such techniques and
principles is presented by Yi et al. [88]. Though the sets of interaction idioms for
visual analytics and information visualization have considerable overlap, Thomas
and Cook request greater research focus on interaction idioms in the context of visual
analytics. Notably, they recommend the development of a "science of interaction" as
a means to understand the steps the analyst takes to achieve insight [78]. Their sen-
timent is similar to that of Yi et al. [88], who further develop the case for a science
of interaction in support of visual analytics, and provide preliminary developments
towards such a science, by categorizing interaction techniques based on user intent
instead of user tasks or interaction operations.

In addition to the general techniques of interaction in information visualization,
there have been attempts to create new interaction principles and idioms to deal
with specific challenges posed by visual analytics. A notable example is semantic
interaction, developed by Endert et al [36]. In semantic interaction, interactions in a
visualization automatically change parameters for the automatic models generating
the visualization, which notably breaks the previously discussed direct manipula-
tion principle.

Production, Presentation and Dissemination & Moving Research into Practice

The final chapters of Illuminating the Path concern themselves with moving visual
analytics from a conceptual and theoretical field into a practical, widely adopted
one. Today, the success of visual analytics as a practical and useful field across both
research and industry is evident, exemplified by the earlier mentioned conferences
on visual analytics and the plethora of commercial visual analytics tools that have
sprung out from both academia and industry (a comprehensive, if somewhat out-
dated overview can be found in a 2012 paper from Zhang et al. [90]). Systems such
as Tableau [77] cover many of Thomas and Cook’s recommendations, for example
by letting the user select their own visual encodings and having an integrated envir-
onment for exploration and presentation of their findings [78].
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Though multiple industrial-strength visual analytics solutions have emerged, there
is still room for applied research in the field, for example by validating the effect-
iveness of solutions in specific domains. Thomas and Cook call upon researchers
to validate their works as a fundamental challenge of moving research into practice
[78], and approaches to validation of data, visualization, and the reasoning process
have been developed for this purpose. Validation heuristics have been a part of visu-
alization ever since Tufte’s Data-to-Ink Ratio and Lie Factor [80], though approaches
often have been somewhat informal. Modern heuristics are more structured, and
build on work in human-computer interaction, perception and cognition, exempli-
fied by Ware’s Information Visualization: Perception for Design [84]. Parallel with the
rise of visual analytics, wider-reaching frameworks and methodologies of visualiz-
ation validation have emerged, including Tamara Munzner’s nested model of visualiz-
ation design and validation [63], and Zuk et al.’s evaluation heuristics [93], which seek
to either integrate multiple previous methods of validation, extend validation to a
larger part of the visualization development process, or both.

An overview of the state of validation practices can be found in A Systematic Re-
view on the Practice of Evaluating Visualization. In the paper, Isenberg et al. [51] map
previous visualization research to different categories of evaluation methods. They
find that there has been too little focus on user experience, user performance evalu-
ations, reports of work practices, and discussions of how new visualizations help in
data analysis and reasoning, though there has been a gradual increase of such eval-
uations over the years. The authors also provide a set of considerations to take into
account when evaluating visualization systems.

2.2 Visual Analytics for Fishery Management

One of the earliest and most well-established application domains of visual analytics
is spatial and spatiotemporal data analysis, often called geovisual analytics [4]. Data
of this type has become increasingly common, as exemplified by the collection of
VMS, ERS and AIS data from fishing vessels. Visual analytics is well suited for the
task, as it can provide more general analysis solutions for a broader range of analysts
than what fully automatic solutions can [3, 5].

The earliest well-known academic exploration of geovisual analytics is Geovisual
Analytics for Spatial Decision Support: Setting the Research Agenda by Andrienko et
al. [3], published in 2007. The paper argues for understanding and taming the com-
plexity of spatiotemporal data by visualization and interaction methods, including
the use of multiple views and space-time cubes, scalability issues by path cluster-
ing, and automatic location extraction. Another early theme is the applicability of
geovisual analytics to satisfy the needs of various user groups [5], and geovisual
analytics for movement data analysis [6].
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As elsewhere in visual analytics, domain-specific research and design studies have
been common in geovisual analytics, with application domains ranging from eco-
logy [87], to sports [52], to taxi movement [49]. Maritime vessel movement is also
represented. For example, the Ph. D. thesis of Scheepens [70] presents research into
geovisual analytics for maritime situational awareness, such as analysis of vessel
traffic flows and glyph design for uncertainty in vessel data.

Previous works also present solutions for identification of patterns in vessel traject-
ory data. For instance, Enguehard et al. [38] present a system to uncover distinct
and interesting patterns in fishing vessel trajectories [38]. Their approach uses the
fractal dimension and velocity of trajectories to filter interesting regions in vessel
movement in time periods up to a month. The approach is generic across differ-
ent types of patterns, and can be used for other applications than merely identific-
ation of catch operations. However, due to how the model generalizes, it does not
take into account domain-specific data useful to catch operation analysis, such as
the specific movement patterns associated with different types of fishing operations
and earlier catch reports. Another approach, based on the classification of so-called
motifs found in the vessels’ movement patterns, is presented by Li et al. [59], though
their approach does not include any visualization techniques.

A commonality among existing systems for the classification of vessel movement is
that they are focused on the vessel itself, not individual catch operations, and thus
do not take into account data specific to the catch operations. When performing
catch operation analysis, this makes evaluation at the level of individual operations
difficult. Therefore, the approach of VA-TRaC may be advantageous for the specific
domain of catch operation analysis, as it includes available data on catch operations
and vessel metadata in the analysis, and focuses the visualization on operations in-
stead of vessels.

2.2.1 Characteristics of Spatiotemporal Data

As noted, geovisual analytics is underpinned by spatial and spatiotemporal data.
An abundance of research has been done on spatial data, exemplified by the bur-
geoning field of Geographical Information Systems (GIS), and though the temporal
dimension often has taken a back seat [5], recent work in visualization has focused
on the temporal aspect, such as Aigner et al.’s Visualization of Time-Oriented Data [1].
These resources provide an understanding of attributes and challenges specific to
space-time. The following sections describe the important attributes of spatiotem-
poral data in the context of geovisual analytics, based on the terminology of Tamara
Munzner’s "what-why-how" framework [64].
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Data Attributes

Space and time are both commonly represented as ordered, quantitative data. How-
ever, though data sets of recorded positions and times most often are quantitative,
in daily speech non-quantifiable measures of space and time are often used. For in-
stance, one cannot properly find the difference between one and two moments. In
analysis scenarios for future planning, time may also be represented as branching
instead of ordered [5].

The ordering of space and time varies depending on context. Space is often con-
sidered to be diverging around a point of origin, for instance in the case of latitude
and longitude, a common measure of space. Space can also be cyclic: The earth is
round, and by moving along the surface you will at some point end up where you
started. This causes issues for instance when creating maps, and multiple schemes
have been devised to project maps of the earth onto a two-dimensional surface [29].
The latitude and longitude coordinate system is also cyclic in that it specifies a point
as a pair of degrees where longitude can wrap around a full circle. In the same
manner as space, time can have different orderings, and it is common both to con-
sider time as sequential and moving forward, or as cycles such as days or years [1].
Furthermore, both space and time can be represented as either absolute or relative
values. Aigner et al. [1] note that time can be represented both as spans and in-
stants, where instants are a specific moment in time and spans are a time duration
that doesn’t necessarily have a specific start- and endpoint. Similarly, space can be
represented as both distance and locations, but due to the multidimensional nature
of space, areas and volumes are also possible representations.

An important distinction between space-time and many other types of data is that
both space and time are intuitively viewed at many different granularities [5]. The
default scale of spatiotemporal data varies depending on context, and can greatly
impact how the data is read. Moreover, users of such data often want to move
between different granularities in the same data set. The dynamicity, prevalence
of different granularities and domain dependence of the scales of space and time
lead to specific challenges that are not immediately obvious and must be considered
when visualizing such data [1]. Another distinction is the fact that both space and
time are subject to spatial dependence, meaning that data in closer proximity tend
to be more correlated [5]. Such dependencies are highly context-dependent, as what
constitutes proximate data items varies between domains, and may change depend-
ing on various real-world occurrences [5]. For example, proximity between fishing
vessel trajectories is dependent on both temporally changing weather conditions and
whether the trajectory is close to land or not.

Another distinction, though a difficulty for many types of data, is that dealing with
uncertainty is especially difficult when working with spatiotemporal data, due to
the challenges caused by moving between granularities [1, 5]. As an example, the
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period from 2005 to 2009 is four years, but the number of days in the period is inde-
terminate, as there is no way of knowing if the measurement started and ended on
the 1st of January, the 31st of December, or any other date.

2.3 Visualization Validation

The previously mentioned nested model of visualization validation [63] provided the
base of the validation methodology employed during the development of VA-TRaC.
The oft-cited paper presents a model based on the nested model of visualization
design (see Figure 2.7), where each level of the model contains threats to the validity
of the effectiveness claims of the visualization. Each threat is accompanied by one
or more validation approaches as mitigation. The major strength of such a model is
that it allows for intellectual separation of the design space of visualizations, making
it easier to consider and validate each step individually [63].

The model is separated into immediate and downstream validations. Immediate
validation can occur independent of other validations, while downstream valida-
tion is dependent on the validation that has been performed in previous levels. Ac-
cording to Munzner, immediate validation cannot offer anything more than partial
evidence of success, and one must therefore employ downstream validation as well
[64]. However, it is easier to perform immediate validation steps, and they may give
early insights into potential issues the system faces, increasing the chance of project
success. Studies in the field of software engineering have shown that up-front eval-
uation and analysis have a higher success rate [22], and Munzner mentions various
projects that have employed immediate validation methods successfully [63].

A note on terminology: Munzner describes validation as an extension of evaluation
that "is required for every level and extends beyond user studies and ethnographic
observation" [63], though this is not a universal definition. For instance, Sedlmair et

FIGURE 2.7: Munzner’s nested model of visualization design [64]
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al. [71] refer to "evaluation" as both "studies of already developed visualization tools
as well as attempts at evaluating work practices informing the design process of a
visualization tool", thus covering the same areas as Munzner’s "validation". To clear
up any confusion, the term validation is from this point on used in Munzner’s sense,
as a superset of evaluation. "Evaluation" will only be used in cases that discuss users
of VA-TRaC and their process of verifying the results of fishing operation analysis.

2.3.1 Additional Validation Approaches

Although the nested model of visualization validation provides recommendations
for validation approaches, the framework is general in nature, and more domain-
specific recommendations may be helpful for work in their respective domains. For
instance, a more domain-specific approach to validation is found in Information Visu-
alization Evaluation in Large Companies: Challenges, Experiences and Recommendations,
in which Sedlmair et al. [71] present challenges faced when working with applied
visualization research in large companies. The paper discusses two systems de-
veloped during the author’s stay at car manufacturer BMW, and provides descrip-
tions of their evaluation methodologies as well as recommendations for other re-
searchers working in similar domains. The Directorate of Fisheries, while not the
size of the company discussed in the paper, is still a large organization filled with
domain experts. The validation methodologies and recommendations of Sedlmair
et al. were therefore taken into account for the validation of VA-TRaC.

The set of recommended validation approaches presented with the nested model is
non-exhaustive, and how to carry out different validation approaches is intention-
ally left as an exercise to the reader [63]. Besides, the approaches that are presented
are done so briefly, without much discussion of advantages and disadvantages. Such
a discussion can instead be found in Patterns for Visualization Evaluation by Elmqvist
and Yi [33]. The paper presents a taxonomy of patterns of downstream validation
approaches, somewhat akin to software design patterns found in software engineer-
ing, that have been categorized based on the problem domain the pattern applies to,
as well as advantages and disadvantages.

Visual analytics solutions present an additional set of challenges for validation, due
to the interdisciplinary nature and relative youth of the field. Validation of visual
analytics systems is an open research challenge, with the visualization community
relying on mostly qualitative methods such as evaluation heuristics, and the auto-
matic data analysis community mostly focusing on quantitative methods such as
statistical validation [9]. Though recent work has been done to understand ways
one can unify validation in the two fields [9], the domain remains relatively under-
explored, leading researchers to base their validation approaches on one of the two
fields.
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The validation approach for VA-TRaC therefore comes from the visualization com-
munity, and is, as noted, based on Munzner’s nested validation model. The nested
model is supplemented by the framing of used methods in terms of the patterns of
visualization evaluation found by Elmqvist and Yi [33], to provide additional con-
text to the pros and cons of each method and to further increase comparability with
other design studies that may not be based on the nested model.
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Chapter 3

Domain Background

Chapter 1 introduced the Directorate of Fisheries and the work done there to ensure
legal vessel activities. This chapter expands on the introduction by describing the
regulations for fishing vessels, the types of employees that do work related to vessel
recognition at the Directorate of Fisheries, and the end goals of this work. The de-
scriptions are based on conversations with employees from the statistics and Control
Departments at the Directorate of Fisheries’ central office, as well as my own exper-
iences working at the Directorate as an operator in the Fisheries Monitoring Centre,
a department focused on monitoring of the Norwegian fishing vessel fleet.

3.1 Regulations

There are four areas of regulations that determine whether a vessel’s fishing oper-
ations are illegal or not. As noted in the introduction, one of these is the duty to
report ERS and VMS messages correctly and on time. In addition, the vessel must
have the correct license and quota for the declared species of an operation, it must
have acceptable quantities of bycatch, and it must stay within legal geographical
regions.

The Directorate assigns fishing licenses to the registered Norwegian fishing vessels.
The license determines where and with what equipment the vessel can fish, in what
period the vessel can fish, as well as what quotas the vessel is eligible for. The quotas
determine how much and what species can be fished. The vessel must conform to
the limitations placed by its licenses and quotas, and as they are determined anew
every year, infractions may lead the vessel to receive reduced quotas or even no
license the following year.

Though the quotas specify which species the vessel is allowed to fish, it is in many
cases impossible to only catch that single species. Bycatch, fish the vessel has caught
that is not included in the quota, cannot exceed some percentage of the total catch
amount. If the amount of bycatch is too high, it indicates that the vessel either is
using an illegal equipment type for the quota, or that there have been changes in
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the species in the area, for example because schools of fish spawn are swimming
past it. If bycatch limits are exceeded due to changes in species, the Directorate may
temporarily close the area, making further fishing operations there illegal.

Additionally, licenses determine where the vessel can fish. For instance, a vessel
may have a license to fish in the waters between Norway and Great Britain, but not
in the northern parts of the North Sea. If the vessel then performs fishing operations
north of 62 degrees, the operation will be considered illegal.

Today, these regulations are only applicable for vessels with a length over 15 meters
and smaller vessels have their own set of regulations and reporting duties. The prob-
lem presented in the introduction stems from the fact that the regulations are being
extended to cover smaller and smaller vessels, eventually covering all Norwegian
commercial fishing vessels.

3.2 The Inspector

The inspectors are employees that control both Norwegian and foreign fishing ves-
sels and landing facilities to verify that they have stayed within the bounds of reg-
ulations. Inspectors work directly with the vessels and facilities, and either visit
the fishing vessels as they enter a port, use hired ships and submarines to visit the
vessels at sea, or in some cases join a fishing vessel for an extended period.

There are three categories of regulations inspectors verify: reporting errors, illegal
fishing activities, and access to specific fisheries.

Controlling reporting errors consists of verifying that all required reports have been
delivered and that the values correspond to real-world values. The inspectors will
often perform this at a landing facility, where they go through all reported messages
from the vessel’s last fishing trip. For vessels over 15 meters, this includes checking
that all required ERS and VMS reports have been sent and accepted by the Direct-
orate. They also verify that the values of the reports are correct. For instance, they
will check that the quantities of different species on board correspond to the ones re-
ported and that the ship arrived at port approximately when the vessel’s master has
specified. In cases where erroneous or missing reporting is found, they can check
a log of contact that has occurred between the vessel and the Directorate, to see if
the vessel has notified the Directorate of the problems. They will also verify that a
vessel’s quotas have not been exceeded.

The inspectors using hired vessels often look for illegal fishing activities. In closed
areas, vessels are either not allowed to fish for specific species or using specific
equipment. Inspectors will check the vessels for correct equipment types. Inspect-
ors will also verify that the vessel’s fishing operations are in accordance with their
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license. They also inspect quantities of bycatch, both to verify that they do not ex-
ceed the amount allowed and that the size of fish caught is sufficient. If they find
that this is not the case, they can recommend closing an area [42].

Some fisheries have special regulations that extend what is normally required. For
instance, fisheries of unusual species, such as fisheries for bluefin tuna, require ad-
ditional reporting of quantities on board and sales locations. Such fisheries require
an inspector to be on board each vessel at all times. The inspector will in these cases
live on board the vessel and verify that the regulations are followed.

Inspectors may work with vessel operation recognition to find vessels that should
be inspected. Due to their diverse work locations, inspectors may need to perform
such analysis both while on board vessels and while at land. The process is mostly
manual, and the data for each vessel’s reporting is validated by going through each
report. There are tools that assist in the process by displaying maps of vessel move-
ment (an example is BarentsWatch [7]), but to my knowledge, there are no tools that
automate or partially automate this process and that is available across different
work environments.

3.3 The Control Analyst

The control authorities at the Directorate of Fisheries is split in two. The regional of-
fices are the operative branch of resource control. The Control Department, housed
centrally, provides professional support for the operative units in the regions. The
control authorities’ goal is compliance to regulations, which for the Control De-
partment means handling regulations, creating tools that help the operative control
workflow, and refining procedures and guidelines for effective regulation of fish-
eries. Procedures include the use of inspections, but there is also work in other
directions: dialog with actors in the industry, helping develop an understanding of
regulations, and otherwise making it easier for actors to comply with regulations.

One of the main tools the Control Department provides for the operative units are
risk assessments of actors in the fishing industry, gathered into the National Strategic
Risk Assessment. The assessment for 2019 includes main risks such as lack of or
erroneous reporting, breaches of vessels’ duty to land all catch, and the negative
impacts of fisheries on ecosystems and ocean floor habitats [45]. Assessments are
performed together with the coast guard and the different fish sales organizations
and help operative units in the regions prioritize what goals and targets should be
followed. They are based on various sources, including analysis of vessel operations.

The Control Department is in charge of international collaboration and works on in-
telligence sharing between nations. It also receives and processes complaints where
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there have been disagreements about the assessments made by the operatives. Fi-
nally, the department works with other institutions such as the Food Safety Author-
ity, the Norwegian Customs, the Tax Administration and the Norwegian Metrology
Service to provide compliance across the entire industry.

3.4 The Statistician

The Statistics Department also resides in the central offices and performs data man-
agement for data produced by the Directorate. The work includes facilitating easy
data access, data documentation, and data quality verification. While not perform-
ing analysis of vessels themselves, the statisticians curate the data and generate
metadata about the vessels, and therefore have a vested interest in the results of
such analyses. A notable example of work done by the Statistics Department is the
categorization of vessels into license groups, which group vessels with similar licenses
into a set of ten categories.

3.5 The Analysis Group

A newly created, interdisciplinary group named the analysis group consists of mem-
bers from both the Control and Statistics Departments. Its primary mandate is assist-
ing the Control Department in their work, by developing models and tools that can
assist the risk assessment process, both centrally and by the operative units such as
inspectors. As of today, their main focus is exploring and developing various indic-
ators of misbehavior for use by inspectors, based on automatic analysis. They are at
the present the group most aligned with the work on VA-TRaC, and were therefore
the primary contributors during development.

3.6 Fisheries Management in Academia

Perhaps unsurprisingly, fisheries management as a scientific field is dominated by
articles about fish biology and fishing stocks [34], and works concerning data, auto-
matic analysis, and visualization in the field are largely related to that. However, the
integration of spatial data into models is recognized as an important component of
fisheries analysis [20]. For instance, in the early work Incorporating the spatial compon-
ent of fisheries data into stock assessment models Anthony J. Booth presents an example
of such an integration [12].

More recently, work that focuses on the use of vessel movement data for stock as-
sessment has become more commonplace. For instance, Duchame-Barth and Ahrens
of the University of Florida have worked on the subject, such as on uncertainty in
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automatic classification of fishing vessel movement for the purpose of determining
caught species [31], and using automatic data analysis of VMS data for evaluating
fish abundance in the Gulf of Mexico [32]. Chang and Yuan discuss the combination
of observations and VMS data, bringing in another data source into the mix [20]. In
a more foundational work, Bonham et al. describe the standard AIS movement data
format and discuss how one can use such data analyzing vessel operations in ports
[11].

As stated, the main focus of the field has been on evaluation and analysis of specific
or general fish stocks, and methods for identification of vessel catch operations with
the goal of regulation have not been much considered in the literature, with some
notable exceptions such as those presented in Chapter 2.
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Chapter 4

The VA-TRaC System

This chapter presents an analysis of the algorithms, data and tasks used by VA-
TRaC to augment the workflows presented in Chapter 3, as well as a rationale for
the choices of visual encodings and interaction idioms. Tamara Munzner’s "what-
why-how" framework [64] is used for the data and task analysis.

4.1 Chapter Terminology

As the analysis is framed in terms of the "what-why-how" framework, the termino-
logy used in this chapter is based on Munzner’s terminology in Visualization Analysis
& Design as much as possible. In cases where conflicting terminology is used, the rel-
evant source is referenced.

• Item: A single, uniquely identifiable data point. For instance, in a table, the
item is a single row.

• Attribute: A property of the dataset common across several data points. In a
table, this is the column.

• Value: The combination of a single item and attribute. In a table, a synonym
for value is pair.

• Static and dynamic datasets: Static datasets are available all at once when
starting an analysis session. In contrast, dynamic datasets may not be fully
available, and new items or attributes may emerge during execution.

4.2 Data Abstraction

Since the foundation of any visualization is data, the first step towards effective
visualization is data analysis. This is the "what" of the "what-why-how" model, as
illustrated in Figure 4.1. The data analysis in this phase includes the visualization
designer identifying and abstracting the properties of the data, in order to find the
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FIGURE 4.1: Munzner’s categorization of datatypes and attributes
[64]
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attributes that should be mapped to visual encodings. This is followed by assess-
ment of whether transforming the data into another structure may allow new ways
to visualize the data that may be more suited for the particular domain the designer
is working in. The following sections describe the data and data transformations
used by VA-TRaC.

4.2.1 Raw data

The two main datasets used by VA-TRaC are sets of electronic catch report (ERS)
and automatic identification system (AIS) data. ERS reports contain a multitude of
attributes, such as the name of the vessel’s master and the vessel’s call sign, gear
type, reported species caught and quantities on board, which port the vessel came
from and is going to, the report ID, the coordinated universal time (UTC) the report
was sent, and the vessel’s latitude and longitude. The included attributes for each
report are dependent on the type of report the item contains. For instance, DCA re-
ports, sent to describe the vessel’s daily catch activity (hence the name) may or may
not include catch operations. If they do, they have a set of mandatory attributes such
as start and stop of the catch operations that have occurred during the day. Similarly,
port arrival reports must include estimated time of arrival and a code identifying the
port [43]. Some attributes’ meanings change depending on the report type. For ex-
ample, in port departure reports the mandatory attributes latitude and longitude
indicate the position the vessel intends to commence fishing, while in DCA reports
they indicate the position where each catch operation was started [43].

Using the categorization of Figure 4.1, ERS data is sequential geometry. It is sequen-
tial in the sense that reports from a single vessel have strictly increasing IDs and
contain timestamps, and geometry due to the fact that positions are available for
most report types. In VA-TRaC, the ERS dataset is static, and contains the reports of
all Norwegian vessels over 15 meters during the last five years. However, ERS data
is usually dynamic, as new vessel reports are sent continuously. Due to the need
for analyzing vessel operations as they occur, the ERS dataset used in VA-TRaC was
treated as though it was dynamic for the purposes of visual abstraction. This allows
for extending the system to work with dynamic ERS messages if the system is to be
used outside of a prototype environment.

Since VA-TRaC is focused on analyzing fishing operations, the ERS dataset was
filtered to only include daily catch activity (DCA) reports. Each report in the filtered
dataset consists of a pair of items, one denoting the start of an operation and one
denoting that the operation is complete. Filtering the dataset to only include re-
ports containing fields for start-of-catch and end-of-catch removes the potential for
misunderstanding when working with fields with multiple meanings, such as lat-
itude and longitude. As mentioned in the introduction (Chapter 1), vessels oblige
to send DCA reports at least once every 24 hours while they are active in a fishing
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trip (meaning between a port departure and a port arrival report), which results in
the filtered dataset containing approximately 1.8 million items, derived from DCA
reports collected between 2014 and 2019.

In addition to the ERS dataset, VA-TRaC uses position data in the form of AIS mes-
sages. In contrast to ERS data, AIS data contains a more limited set of fields, with
no semantic differences depending on context. The AIS data available to VA-TRaC
does not contain all the data in the AIS data specification, but the following attrib-
utes were available:

• MMSI, an identifier unique to the vessel

• Navigation status, including whether the vessel is anchored or not

• The vessel’s speed in knots

• Longitude and latitude

• Course

• Timestamp

The AIS datasets available for use in VA-TRaC consist of all AIS messages sent by
Norwegian fishing vessels during 2017 and the first seven months of 2018. The re-
ports are sent in five minute intervals as long as the AIS transitter on board the vessel
is activated. The datasets contains approximately 24 million items in total.

In terms of Munzner’s model (Figure 4.1), the AIS data is identical to the ERS data-
set, as they both can be abstracted as sequental geometry. Like the ERS data, AIS
data is commonly dynamic. However, the AIS dataset in use by VA-TRaC is static,
since the system the Directorate is planning to use for dynamically requesting AIS
data is unfinished. Even so, like the ERS data, it was considered as dynamic during
development of VA-TRaC to ease an eventual transition into using dynamic data
sources.

In addition to the ERS and AIS datasets, two other datasets were used. One consists
of metadata for the vessels, including the vessel’s engine size, length, and license.
The other contains a hierarchical structure of equipment categories, from here on
referred to as the "gear hierarchy". Like the ERS and AIS datasets, they are stored on
disk as flat tables.

4.2.2 Data Features

When only the spatiotemporal attributes are considered, the Munzner model shows
that the ERS and AIS datasets are very similar in terms of data types, ordering, and
availability, and diverge only in the granularity of time when just the spatiotemporal
attributes are considered. Since both the MMSI of the AIS dataset and the call sign of
the ERS dataset uniquely identify a vessel, a mapping between the two was created,
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allowing the use of AIS data to get the locations between each DCA start and stop
for a vessel. By interpolating between these locations, one can derive the trajectories
of individual fishing operations, each trajectory thus becoming a continuous, non-
branching movement path.

Fishing operation trajectories have various constraints that determine their location
and spatiotemporal developments. The following specific features of fishing vessel
operations were identified through several discussions with members of the analysis
group:

• Certain operations cause distinct spatial patterns, often based on the gear type
used for the operation. An example is line fishery, which results in straight
trajectories with sharp, approximately 90 degree turns.

• As vessels must slow down to perform fishing operations, the development
of a vessel’s speed during a fishing operation causes distinct patterns when
fishery occurs.

• The habitats of various fish species are often located in specific regions, which
causes vessels’ fishing operation trajectories to be located in these regions. The
canonical example is the spring fishery for cod in Lofoten. Likewise, quotas
and licenses may contain limitations to where the vessel is allowed to fish, also
limiting the locations where the vessel’s fishing operations are performed.

• Fishery for certain species is limited in duration, commonly to a period of a
few months. This is due to the movement of fish throughout the year, and
for many species the additional constraint of regulations stating that fishery is
only legal within a certain timespan. For example, Greenland halibut fishery
is only legal in the spring and fall [44].

• Catch operations’ durations are influenced by the gear type used, and real
catch operations have a duration in tens of minutes to hours, not seconds.

• Some fisheries occur more frequently at certain times during the day. For in-
stance, shrimp fishery often occurs early in the morning, as the vessels want to
deliver fresh shrimp to customers during the day.

• The vessel’s spatiotemporal patterns during a fishing vessel operation are to
some degree dependent on the vessel’s size, engine, hull, and other features of
the vessel’s construction.

• Fishery requires at least some form of movement from the vessel, even if that
movement is only the vessel drifting due to sea currents and wind.

Vessels with similar characteristics, such as the aforementioned vessel size and gear
type, often have similar licenses and quotas. Licenses can therefore be used to group
the vessels based on the characteristics of their catch operations. Due to these char-
acteristics being similar across similar licenses, the statistics department has created
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license groups, allowing vessels to be classified based on other vessels with similar
attributes.

4.2.3 Indicator Algorithms

The mentioned discussions with the analysis group were held with the goal of identi-
fying potential indicators based on the data analysis of fishing operation trajectories
derived from the AIS and ERS datasets. They included an hour-long one-on-one ses-
sion with a member of the analysis group resulting in the choice of using patterns in
vessel speed and spatial movement as two indicators, and a so called "water cooler
talk" where another member suggested using position and date of earlier DCA re-
ports to verify whether a DCA report is plausibly correct. A presentation of these
potential indicators with the entire group resulted in their choice for VA-TRaC, and
further uncovered the need for different algorithm parameters for different vessels,
due to differences in expected patterns for different classes of vessels. Addition-
ally, the indicators were chosen to be based on analysis of 24 hours of data, as that
matches the period in which a vessel must report a DCA. This conveniently reduces
the quantity of data items needed for the analysis to an amount that can be repres-
ented in consumer computer memory without needing to be aggregated and filtered
further. Even so, since fishing necessitates movement, vessels that did not move in
the 24-hour period were exempt from the indicators, as they could not have been
fishing.

The indicators consist of three algorithms classifying whether fishing operations
have occurred for a vessel during the last 24 hours. The algorithms are as follows:
A threshold-based pattern recognition algorithm classifies whether a vessel’s move-
ment matches its movement during previously received DCA reports, and returns
both the gear and the duration of a similar catch operation. A k-Nearest Neighbors
model based on previous fishing operations provides the gear type, and a classifier
based on the vessel’s speed finds durations where the vessel was moving at a speed
that may indicate it was fishing. The operations found by the indicators resemble
a pair of start and stop DCA reports, and can therefore be combined with the AIS
data to derive the trajectory of the operation. The indicator-based operations contain
three attributes: The duration of the operation, the movement path of the vessel dur-
ing the operation, and the gear used. Since vessels with similar licenses often have
similar characteristics for their catch operations, the parameters of the algorithms
are modifiable for each license group.

4.2.4 Speed Classification

The speed classifier identifies catch operations based on the AIS dataset, in an ap-
proach similar to the classification of fishing operations done by Enguehard et al.
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[38]. An operation is derived by identifying all reports from the vessel’s AIS data
whose speed falls below a set threshold. For each group of sequential reports, the
timestamp of the first and last element forms the duration of a catch operation. The
speed classifier thus returns a set of durations, each indicating a potential fishing
operation.

4.2.5 kNN Gear Classification

The k-nearest neighbors classifier uses DCA messages reported over the last 5 years
to classify the a vessel’s gear type. Each message M = {m0, m1, ..., mn} is registered
with a x and y coordinate and a gear type. For each vessel group, the threshold T
is the maximal distance for which a point is considered to be within distance of the
vessel v. Distance is calculated as Euclidean distance:

dist(x) =
√
(vx −mx)2 + (vy −my)2

gear(v) = max(∀|g| ∈ G), G = ∑
mgear∈M

dist(v, m) < T

The kNN algorithm was run early in the development phase to look for good ini-
tial settings for VA-TRaC, which resulted in two domain-specific constraints being
added. Since different gear types for areas change over the course of a year, only
the DCA messages that occurred in the current month are used. In addition to in-
creasing the relative number of correct classifications, the number of data points are
reduced to 1/12th of the initial size, so the algorithm runs significantly faster. The
other constraint is an upper limit to the number of elements within distance the al-
gorithm considers. As illustrated in Figure 4.2, it was found during cross-validation
of the initial tests that any number of elements above 10 reduced accuracy, so the
value is set to 10.

The kNN classifier returns the most commonly occurring gear type of DCA reports
within the classifier’s radius. If no operations fall within the radius, the classifier
returns nothing.

4.2.6 1$ Pattern Recognition

The final classification algorithm is used for recognition of movement patterns. The
algorithm used for this is a modification of the 1$ Recognizer [85], created to recog-
nize finger gestures on smartphone screens. Since single-finger gesture patterns on
a phone screen have the same spatial characteristics as the movement trajectories
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FIGURE 4.2: The X-axis denotes the number of elements that the k-
NN algorithm considers (k), the Y-axis the Kappa coefficient.

made by a single vessel (a single start and endpoint, no branching paths, and con-
tinuity), the algorithm was considered to be a good fit. According to the original
authors, the 1$ recognizer’s accuracy is on par with other template-based pattern re-
cognition algorithms for paths, while the algorithm is easy to understand and com-
putationally cheap.

The modified 1$ recognizer works by comparing a set of path templates represent-
ing the catch operations of various gears with the trajectory of each vessel. By con-
volving the template along the vessel’s trajectory, one can compare the operation
to the vessel’s movement throughout its trajectory. At each point of comparison, a
piece of the trajectory is selected based on the duration of the catch operation in the
template. The piece is then normalized, scaled, and rotated to match the template as
closely as possible, after which a score is calculated based on the distance from each
point in the trajectory piece to the corresponding point in the template. This is done
for all templates, and each comparison score that passed a threshold is marked as a
potential catch operation. The method is similar to the one proposed by Li et al. [59],
whose algorithm also compares trajectory similarity with pre-set templates (which
they call motifs), though their approach is based on general movement patterns and
therefore focuses on the generation of templates. This was deemed unnecessary for
VA-TRaC, as templates could be extracted using the method described in the Data
Features subsection earlier in this chapter. Using the method, an initial set of tem-
plates were derived from all DCA reports, and assigned to the gear reported in the
DCA. Some examples are shown in Figure 4.3. As can be seen, operations using
gear types such as purse seine (1), line (2) and bottom trawl (3) often leave distinct
patterns, though there are cases where operation trajectories are harder to classify
based on shape alone (4, 5).

The pattern recognition classifier returns a set containing both the duration and gear
type of all recognitions that score above the threshold.
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FIGURE 4.3: Initial templates derived from DCA reports. (1) is a purse
seine operation. (2) is a line operation. (3) is a bottom trawl operation.
(4) is a bottom trawl operation with a short duration. (5) is a trawl

operation where the trawl type is undefined.

Verifying Indicators

In order to verify the performance of the indicators, sensitivity and fall-out is used.
The calculations are based on the temporal similarity of DCA reports and the poten-
tial catch operations from the indicators. Sensitivity for a single vessel is calculated
as Moverlap

MDCA
, where Moverlap is the total number of minutes from the indicated catch op-

erations that overlap DCAs, and MDCA is the total number of minutes in the DCA
reports. Fall-out is calculated as MDCA

Mall
, where Mall is the total number of minutes in

the indicated catch operations. These values are averaged across all vessels to get
a general sense of the indicators’ performance. High sensitivity is preferable, as is
low fall-out, though no fall-out is a sign of the indicators overfitting the data and
therefore not finding any potential operations outside the ones reported.

Since the k-Nearest Neighbors indicator does not return a duration, its results are
not used for the calculation of sensitivity and fall-out. Even so, calculating indicator
performance based on the durations of indicated operations was deemed a good
choice, as it is simple to gain an intuitive understanding of how the results change
due to parameter changes, even for inspectors not trained in statistical analysis.

4.3 Task Abstraction

As noted, Munzer’s framework (first presented by Brehmer and Munzer [15]), was
used for task abstraction. An overview of the framework of task abstractions is
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FIGURE 4.4: Brehmer and Munzner’s multi-level framework of task
abstractions [64]

found in Figure 4.4. In order to use the framework successfully, one must find user
needs that can be abstracted in the manner presented by the framework. As common
in software engineering [62], a traditional approach to requirement analysis based
on functional and non-functional requirements [24] was chosen for VA-TRaC, with
the functional requirements serving as the base for task abstraction.

The functional requirements were collected during the earliest days of the develop-
ment process, through a group interview with eight employees of the Directorate,
coming from the analysis group, the statistics department, the control department,
and the IT department. Unfortunately, the inspectors were not represented as they
are not located in the same city as the Directorate headquarters, though the inclu-
sion of members of the analysis group helped alleviate this somewhat, as their work
includes collaboration with the inspectors. The interview was conducted in an open
manner, where the question of how the participants envisioned either real or ima-
gined workflows for identifying illegal catch operations. As the question was dis-
cussed, talking points repeated by multiple participants were noted, and became
the basis for the functional requirements. The requirements were gradually refined
in conjunction with the identification of the indicator algorithms, through the in-
dividual interviews and informal discussions with members of the analysis group
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discussed during the section on indicators earlier in this chapter. The following sec-
tions describe each task abstraction. The first two tasks are based on existing work-
flows for catch operation analysis, while the last three are based on requirements to
VA-TRaC’s workflow.

4.3.1 T1: Identify Illegal Catch Operations

As discussed in Chapter 3, a catch operation is considered illegal if it isn’t reported
in a DCA report, if the DCA report lacks some of its required fields, if the opera-
tion takes place using non-licensed equipment or in a non-licensed location, or if it
occurs outside the allowed period of fishery for a species. DCA reports that lack
required fields are not accepted, and are therefore easy to identify using the exist-
ing systems at the Directorate. For operations that are contained in a DCA report,
the equipment, location, and period of an operation can be analyzed by deriving
the trajectory of individual operation in the manner discussed in the Data Features
section of this chapter, and the content of the report can be considered as more or
less plausible based on the features of fishing operation trajectories described in the
same section. Inspectors will currently analyze vessels in this manner to look for
infractions. However, for cases when the DCA report is missing, the inspector must
explore the reports and trajectories of vessels looking for the features specific to fish-
ing operation trajectories discussed in the Data Features section. If one is found, the
inspector must evaluate that the operation plausibly took place by using tacit know-
ledge such as whether the location of the operation is popular for fishing. Only
then do they know which vessels to target for inspections. This is a time-consuming
and tedious process, and inspectors are therefore often reduced to either patrolling
the ocean or responding to tips from the public to find illegal catch operations from
vessels that do not report.

Therefore, the core functional requirement of VA-TRaC was the automatic identific-
ation of illegal catch operations where no DCA reports have been sent. Given the
central position of this requirement, the indicator algorithms were chosen based on
their ability to solve this task. By using the indicators to automatically derive the
trajectories of fishing operations, analysis group analysts and inspectors can analyze
operations without a corresponding DCA report in a similar manner to those that
do have a report. In terms of the terminology from Figure 4.4, the system needs to
derive what it thinks is a fishing operation from the data by applying the previously
discussed indicator algorithms to the ERS and AIS datasets, as illustrated in Table
4.1. The result is, for each vessel, a set of trajectories that have been identified as a
potential catch operation. The data derivation step is done without visual feedback
to the user, as is common in many visualization applications generally [64], and
visual analytics in particular [56]. Once the derived data is ready, the user wants to
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explore the operations as described above, to identify the features (location, spatiotem-
poral patterns, gear) of each potential operation and compare it to tacit and explicit
knowledge of the vessel, to assess whether the operation is likely to actually have
happened.

Actions
Analyze Derive
Search N/A
Query N/A

Actions
Analyze Discover
Search Explore
Query Identify

Targets
Features

TABLE 4.1: Task 1: Identify Illegal Catch Operations.

4.3.2 T2: Explore Vessels’ DCA Reports

To find vessels that lack reporting, inspectors explore the reporting state of vessels
to find those that lack DCA reports for a given day, and then assess whether the
movement of those vessels correspond to a catch operation. Vessels that have sent
a DCA report in a given day have, at first glance, performed their required report-
ing, and the inspector can use this as a filter to find vessels that seem to be fishing
without sending reports. In the initial group interview discussions, the first thing
that was brought up was the possibility of seeing which vessels have reported catch
operations and which have not, to be able to filter vessels in this manner. It was also
mentioned that an overview of the vessels in a specific geographical region would
be useful as well, for instance if an inspector is in the area and wants to find the
reporting state of all vessels in their vicinity. Since these two types of overview have
different characteristics when abstracted into tasks, they have been separated into
two subtasks.

T2.1: Overview Based on Reporting State

The task abstraction of getting an overview based on reporting state is shown in
Table 4.2. Here, the user wants to discover which vessels have reported catch oper-
ations and which have not, in order to filter the set of vessels for which to further
analyze catch operations. The user is in this case looking for a known target, a vessel
with absent DCA reports, though the reporting state of each vessel is unknown, and
must be located. The goal is to reduce the number of vessels that are considered for
further analysis by creating a summary of the outlying vessels where no reports have
been received and where the indicators have found a potential catch operation. The
task may also involve filtering away vessels that have not reported, in cases where
the user wants to assess the legality of catch operations performed by vessels that
have sent DCA reports (see Chapter 6 for an example). In this case the outliers are
vessels that have reported instead of those that have not.
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Actions
Analyze Discover
Search Locate
Query Summarize

Targets
Outliers

TABLE 4.2: Task 2.1: Overview Based on Reporting State.

T2.2: Overview Based on Location

The task abstraction of seeing vessels in a specific region (see Table 4.3) is somewhat
different. In this case, the user still wants to discover vessels’ reporting states, but
they know the geographical location of the vessel and are looking for vessels in the
region that have not reported. They are therefore looking up specific vessels that they
consider suspicious based on the fact that the vessels are not reporting. The goal of
the task is to identify a specific vessel. The targets are once again outliers, vessels that
haven’t reported catch operations.

Actions
Analyze Discover
Search Lookup
Query Identify

Targets
Outliers

TABLE 4.3: Task 2.2: Overview Based on Location.

4.3.3 T3: Evaluate Indicated Operations

When a possible catch operation is found in T1, the user must evaluate the likelihood
of it being a real catch operation or not. In practice, this means comparing the res-
ults of the indicators to knowledge kept internally and externally by the user (such
as knowledge of good fishing areas and active regulations), and will therefore ne-
cessarily involve varying queries and searches depending on the user’s knowledge.
For every potential catch operation found by the indicators, all the features from the
discussion of data features earlier in this chapter can be evaluated by the user in an
attempt to verify whether the operation actually took place.

1. Distinct spatial patterns in a catch operation trajectory are evaluated by identi-
fying the shape of the catch operation as a plausible shape for the gear type
reported by the indicator. Such plausible shapes are found as tacit knowledge
among several members of the analysis group and elsewhere in the Director-
ate. Equivalently, temporal patterns are identified by the shape of the changes in
the vessel’s speed during the course of the operation.

2. The likelihood that fishery has occurred in the location of the catch operation
is evaluated by comparing the catch operation to earlier reports located close to
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the vessel, or by comparing the position to it’s geographical surroundings. The
likelihood that fishery has occurred based on date is assessed by comparing the
date with knowledge of regulations active at that date.

3. Assessing whether the duration of the operation is plausible is done by looking
up and identifying its duration. Similarly, the likelihood of an operation being
performed at a certain timepoint can be assessed by looking up and comparing
the start and end timepoint of the duration to the real catch operations of sim-
ilar vessels or real reports from the same vessel.

As seen in Table 4.4, the plausible methods of comparison differ in both search and
query actions, as well as targets. However, they have several commonalities. When
evaluating an indication, the vessel in question has already been identified and loc-
ated, and the user is interested in validating it’s catch operations. Thus the target for
search actions is known, leaving locate and lookup as the possible search actions. The
user either wants to identify or compare the operation’s attributes (note: comparison
with the user’s knowledge is the goal even in identification tasks). The targets are
either shape when identifying spatial and temporal patterns or the vessel’s geograph-
ical region, features (duration, date and timepoint of the operation) when evaluating
other temporal aspects of the operation, or similarity when comparing spatiotem-
poral patterns of operations to those of other vessels.

Actions
Analyze Discover
Search Locate, Lookup
Query Compare

Targets
Similarity, Shape, Features

TABLE 4.4: Task 3: Evaluate Indicated Operations.

4.3.4 T4: Evaluate Modifications to Indicator Parameters

Indicators are, as the name suggests, merely an indication of what can potentially
be a catch operation. Further, as discussed earlier in this chapter, the spatiotemporal
trajectory of a correct indication is dependent on various external attributes of the
vessels, such as license and size. The indicators take this dependency into consid-
eration by being applied with different parameters depending on the license group.
Due to changes (for instance gear changes, number of vessels, fish movement) in
active vessels for different fisheries, licenses and quotas, the parameters for a spe-
cific group may need to be modified periodically. The user therefore needs to see
whether such a modification increases the performance of the indicator for the cur-
rent vessels, which can be done by using the indicator evaluation scheme presented
earlier in this chapter.
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As seen in Table 4.5, the first step when evaluating changes to indicator parameters
is performing aggregation over vessels and calculating the effect on model accur-
acy caused by a parameter change, using the comparison of DCA reports and al-
gorithms. As with deriving the indicated catch operations, this is a step that needs to
happen before the user can get meaningful feedback, and is therefore done without
visual representation. Thus, the task is a chain starting with a derive task. After de-
riving new information about model accuracy, the user wants to compare the result
with previous results to see if the trends in model accuracy are positive.

Actions
Analyze Derive
Search N/A
Query N/A

Actions
Analyze Discover
Search Lookup (Browse)
Query Compare

Targets
Trends

TABLE 4.5: Task 4: Evaluate Modifications of Indicator Parameters

4.3.5 T5: Filter Vessels

When identifying illegal catch operations, the user is rarely interested in going
through potential catch operations for all vessels in the same analysis session. As
an example, an inspector may want to go straight to a vessel that previously has
been caught performing illegal operations, or they may want to only look at vessels
using specific gears that fish in highly regulated fisheries.

As seen in Table 4.6, the goal of all such filtering operations is to derive a smaller
summary of the original dataset that includes the vessels considered as relevant for
further analysis. Such a summary can include both a group of vessels with a com-
mon attribute, or a single vessel. The goal when filtering differs depending on the
filtering operation: When filtering by geographical region the goal is to browse un-
known vessels in a specific region. In the other cases, the goal is locating vessels of
unknown location based on a known attribute. The features the user is interested in
is highly-context dependent:

• Geographical region

• Whether the vessel is anchored

• Vessel license group

• Vessel name or call sign

• Reported or indicated gear types

• Reporting status
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A commonality between all filtering operations is that they are primarily based on
interaction and aren’t directly visualized. The already existing visual representa-
tions are used by the user to decide upon the filtering operation to perform, and the
operation shrinks the dataset, which is displayed in the same manner as before. To
be useful to the analyst, the filtering task must therefore be followed by other tasks
involving visual feedback, and the chosen interaction idioms should therefore facil-
itate this. Additionally, each filtering operation must be reversible, so the analyst
can start another series of analysis tasks on another subset of the vessels.

Actions
Analyze Derive
Search Locate, Browse
Query Summarize

Targets
Features

TABLE 4.6: Task 5: Filter Vessels

4.4 Visual Abstractions and Interaction Idioms

The final step of the "what-why-how" is the mapping of the abstract data and tasks
to effective visual encodings and interaction idioms. The choices for these encodings
and idioms were informed by a variety of sources. Obviously, Munzners Visualiza-
tion Analysis & Design was used, as it provides a comprehensive guide for which en-
codings are effective for specific combinations of data and tasks. Additionally, more
informal heuristics, principles, and recommendations from the visualization literat-
ure was used. Zuk’s Heuristics for Information Visualization Evaluation [93] provided
multiple general heuristics, including Shneiderman’s famous mantra ("Overview
first, filter and zoom, then details on demand"). The seminal works of visual ana-
lytics provided more specialized principles and recommendations suited to the data
quantities used for this project [57, 78, 5]. The following paragraphs describe the
general guidelines that were followed when choosing visual abstractions.

The ERS and especially AIS datasets are reasonably large (with 1,8 million and 24
million items respectively, and both consisting of 6 or more attributes), meaning ef-
fective visualization of individual elements in the complete datasets is very difficult.
Furthermore, the user is interested in evaluating the catch operations of individual
vessels, so techniques for aggregation of visual elements is not a good solution. In-
stead, the visual analytics approach of preprocessing and filtering as a means to
reduce data quantity before anything is displayed is a valid approach [3, 5]. A good
way to go about this is to reduce the number of loaded vessels by filtering on cer-
tain features, as recommended by Andrienko et al. [5]. For VA-TRaC, this is done
through the mentioned domain-dependent filters, including only using AIS mes-
sages for a single day and ERS reports for a single month, and removing vessels
that have not moved during the 24-hour period of the AIS data. Since VA-TRaC is
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focused on illegal catch operations, removing vessels that have reported DCAs was
also considered, but since T2.1, overview based on reporting state, requires both
vessels with and without reports, this idea was discarded.

No single visualization can effectively display several datasets with a large number
of attributes and attribute types simultaneously. Some, such as parallel coordinates
[50] and generalized scatterplot matrices [35], provide an opportunity to display
multivariate datasets within a single visualization but are unable to deal effectively
with spatiotemporal data. Another tempting approach is the use of a space-time
cube, which is presented as a useful visualization in early works on geovisual ana-
lytics [6]. The cube represents time and space as the X, Y and Z axis of a cube, in-
tegrating time as an equally important dimension to space. In a domain where time
is often presented as of secondary importance this is a valuable idea [5]. However,
space-time cubes suffer from the same problems as any other 3D visualization: It
increases the potential for occlusion, and may warp the perception of the user [64].
For task T3, in which the user compares personal knowledge of catch operations
with visual representations, on-screen comparisons are impossible. It is therefore
particularly important that the perceived attributes of the visualized catch operation
correspond to the underlying data and how the users envision the attributes. Since
the space-time cube is a less common visualization than regular maps and timelines,
it is less likely that inspectors have an intuitive understanding of how to read such a
cube. They will therefore have more difficulty comparing the displayed trajectories
with their personal domain knowledge.

Since no single visualization can effectively encode all the attributes of the data and
the user must be able to intuitively compare the data to their own knowledge, a setup
using multiple views was applied instead. When employing multiple views, the de-
signer gets the opportunity to select visual encodings that are effective at showing
only parts of the data, and therefore displaying multiple datasets with a wide variety
of attributes becomes easier. Multiple views have become a common technique to
address issues with visualizing diverse data and is shown to be more effective than
individual visualizations in such cases [27]. The chosen views were all conservative
in the sense that they are commonly used visual representations of data. Users there-
fore have a higher chance of having encountered the representations before, which
increases their willingness to understand what the representation shows and how it
compares to what they already know [81]. Finally, since the system might be used
with dynamic data in the future, none of the chosen views feature visual encodings
that are degraded by the dynamic addition and removal of new items.

As mentioned, one of the preprocessing steps includes a filter that restricts AIS data
to 24 hours, bounded by the period from 00:00 to 23:59 in a single day. By restricting
the user from changing temporal granularities and showing all durations as linear
and sequential, one avoids the issues that can come from changing temporal gran-
ularities, discussed in Chapter 2. The choice is further justified by the fact that no
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tasks are based on seeing trends in the spatiotemporal data outside of the 24-hour
resolution.

4.4.1 Visual Abstraction in Practice

The "five-design sheet" methodology [68] was used to create the initial design of
VA-TRaC. In the methodology, the designer creates three very different potential
designs as paper mockups which are reviewed by domain experts. The reviews are
then used as the basis of a final design for the system.

The design of sheet 1 is based on the user selecting various linked views to display
at once, where no single view is more prominent than the others. This approach is
flexible, as the user can specify which views are most suited for the task at hand,
but requires the user to know which combinations of views are effective for solving
a particular task. Sheet 2 contains a more conservative design, where the visualiz-
ations are static and a map view is prominently featured. This is more similar to
the existing mapping systems in use at the Directorate than sheet 1. Both sheets
draw inspiration from various analysis systems for analysis of movement data of
both fishing vessels and other sources [11, 38, 87]. Common between the systems is
the use of a prominent map view overlaid with spatial trajectories, augmented by
charts and tables showing detail views of related data. Other commonalities include
a timeline view and widgets for tweaking model parameters.

The design sheets were shown to two domain experts at the Directorate as they were
created. After discussing the first two designs, it became clear that one of the design
sheets (seen in Figure 4.6) was preferred. The design from sheet 2 was therefore
chosen as the base for initial design of VA-TRaC.
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FIGURE 4.5: Design sheet 1 from the five-design sheet process

FIGURE 4.6: Design sheet 2 from the five-design sheet process
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4.5 Application Details

This section presents an overview of VA-TRaC, then presents an analysis of each
visual component by discussing how it addresses both the abstract tasks and more
concrete workflows given the available data. Additionally, interaction idioms and
the component’s relation to other components are discussed. As the names and call
signs of vessels are confidential, their occurrences in figures have been blurred.

FIGURE 4.7: Overview of VA-TRaC, with the Map View, Tabular View
and Timeline annotated.

4.5.1 Overview

Upon starting the application, the user is presented with the "main view", shown
in Figure 4.7. It consists of three visualizations, including a map, a timeline and a
tabular view. Additionally, there is a toolbar that lets the user filter the dataset in
various ways (T5), and access additional functionality. The additional functionality
is used to validate the individual indicators, as well as to modify their parameters.
An additional visualization in the main view, used for seeing trends of indicator
performance, can be enabled for situations where the user is performing T4, and
therefore modifying indicator parameters to increase performance.

Figure 4.8 illustrates the typical workflow of VA-TRaC in terms of the task abstrac-
tions. The workflow starts after the initial automatic analysis wherein indicators
are run and stationary vessels are filtered out, with the user identifying vessels that
may have been fishing without sending a DCA reports in the tabular view, possibly
filtering the vessels by name, gear or license group. The vessels are then selected
sequentially to analyze whether the indicators are correct for that vessel. The cur-
rently selected vessel is located in the map, which shows the trajectory the vessel
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has taken, and on the timeline, which shows the duration of catch operations and
the speed of the vessel over time. The time and position where the vessel is categor-
ized as fishing are highlighted using a consistent colorscheme in both the map and
the timeline, and superimposed on the displays of the vessel’s trajectory. Seeing the
actual events of the vessel together with the results of the automatic analysis, the
user can form an opinion on whether the vessel may have avoided reporting a real
catch operation, or whether the indicators were mistaken in their assessment. More
in-depth presentations of typical workflows are found in Chapter 6.

FIGURE 4.8: The user’s workflow based on abstract tasks. Yellow
tasks are mandatory, blue are optional. The flow of user operations is

denoted by arrows.

4.5.2 Color Choices

A recurring theme throughout the main views is the use of a categorical, red-green-
black colormap to represent the reporting state of a vessel. Red encodes vessels and
operations that have been identified by the indicators, green vessels that have repor-
ted a DCA and operations from DCAs, and black/white encodes vessels and traject-
ories where neither of the above are true. Encoding the reporting state in the color
hue channel provides a large degree of popout, the phenomenon where individual
items stand out among others immediately [84]. This makes discerning import-
ant vessels and operations, such as the ones mentioned in the previously described
workflow, a quicker process. Additionally, color hue can be combined with multiple
other channels, notably the ones encoding spatial regions or positions, which are the
most effective channels for both ordered and categorical attributes [64]. Finally, the
color hue is in itself an effective channel for categorical attributes. The mapping is
found in the right-most part of Figure 4.9, which shows the legend visible to users
of VA-TRaC.
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An important note is that though the colormap is categorical, the colors are ordered
by importance. This comes into play when more than one attribute of the vessel is
present at the same time. For instance, the vessel may have reported a DCA, but
is still categorized as fishing by the indicators. In this case, the green, representing
vessels that have reported DCAs, overrides both the other colors unless it is possible
to display both. In general, knowing whether a vessel has sent one or more DCA re-
ports is more important than whether the vessel falls within the other two categories
encoded by the colormap, since vessels that have reported DCAs are within the law.
Likewise, both the green and the red overrides the black, which are vessels that are
merely moving. In cases where the user may want to understand where the categor-
ies of reported DCAs and indicated fishing operations overlap, a hatched pattern of
red and green is used to show that both have occurred.

Green and red can be hard to separate by people with dichromatic color blindness
[84]. Even so, a red-green colormap was selected, based on Ware’s recommendation
of the unique hues yellow, green, blue and red for encodings of small symbols [84].
Of these colors, the green and red are distinct from the other colors of the map view,
notably the blue of the water. Additionally, the color scheme of green as something
positive and red as an alert is very common in Western culture, and is seen for in-
stance in traffic lights, so the choice makes it easier for users to identify the hues’
meanings. Finally, yellow and green are also difficult to separate for many dichro-
matically color blind (those that suffer from deuteranopia) [28], and lack the contex-
tual significance of red and green, while both green/yellow and red/yellow color
combinations have less contrast than red/green and are thus harder to distinguish
[84].

FIGURE 4.9: The legend. To the right, the green and red colormap.

4.5.3 The Map View

The map view, seen in Figure 4.10, shows the spatial dimension of the vessels su-
perimposed over a geographical map. Each vessel is marked by a dynamic glyph,
which when zoomed out is a dot, and when zoomed in is a triangle pointing in the
direction the vessel is currently going (seen in Figure 4.11). As shown by (1) in Fig-
ure 4.10, the glyphs are color-coded according to the colormap in Figure 4.9. The
glyphs use the ordering of importance in the colormap, with a white outline as a lu-
minance contrast boundary, increasing popout [84]. The green/red colormap on the
glyphs allow the user to visually filter vessels that have reported DCAs, those that
have been reported by the indicators, and those who are moving without any real or
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perceived operation. Hovering a glyph shows a popup of the vessel’s call sign ((3)
in Figure 4.14), allowing the identification of vessels. Being able to visually identify
the vessels’ categories and finding their identity solves T2.2 (vessel identification),
where the user looks for the reporting state of vessels with known locations.

FIGURE 4.10: Zoomed out view of the map. (1) shows vessels of
different reporting states. (2) shows the borders of various ocean re-

gions. (3) shows the minimap.

As discussed in Chapter 2, a major challenge when working with spatial data is
dealing with navigation between different granularities, and zooming in a map is
one type of such navigation. This type of interaction occurs a lot in VA-TRaC. To
alleviate occlusion and information overload, different glyphs are used depending
on zoom level. This increases the user’s perception of vessels, as the dot glyph is
horizontally symmetric regardless of rotation and is therefore easier to perceive even
at small sizes [13]. This comes at a cost of not being able to encode the direction of the
vessels, but when zoomed out this is not a concern, as one is interested in getting an
overview of the vessels’ reporting situations based on location (T2.2). Additionally,
the use of smaller glyphs alleviates occlusion, which would hinder the task of getting
an overview through the map. As the scale increases, fewer items are visible at
the same time and their positions are spaced further apart on the screen, reducing
the need for glyph symmetry, so additional data in the form of the vessel’s current
course is encoded by switching to an elongated triangle glyph. The "Overview first,
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FIGURE 4.11: A zoomed-in view of the map. (1) shows the triangular
glyph used for vessels at this zoom level. (2) shows a vessel trajectory.

(3) shows a catch operation.

filter and zoom, then details on demand" mantra encourages similar behavior, where
more attributes are shown as the number of visible items is reduced.

The map imagery comes from the company Mapbox, who provides map tiles that
are created by combining data from many sources, and that in their words give pre-
cise and comprehensive maps all over the globe [61]. Since maps may lack relevant
information depending on the granularity level set by the user [3], using map tiles
from a provider that advertises their maps as comprehensive and precise was con-
sidered a good choice.

When zoomed in, each moving vessel’s trajectory becomes visible on the map. Over-
laid on the trajectories are vessels’ movements during fishing operations, colored
according to the color map 4.9, letting the user identify the spatial component of real
and indicated catch operations. The hatched pattern shows overlaps of DCA and
indicator-identified trajectories, which is useful when the user wants to evaluate the
overlap of indicator classifications and reported DCAs to see how well the indicat-
ors match the real world. Other mapping solutions in use at the Directorate encode
the movement path as continuous, and the DCA reports as discrete points along that
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path. Though the data in the DCA dataset consists of discrete datapoints, the under-
lying activity is continuous, and the catch operations derived from the DCA reports
are therefore encoded as such.

In contrast to Enguehard et al.’s visual analytics system for fishing vessels [38],
which uses higher-order spline interpolation in trajectories, VA-TRaC uses linear
interpolation. Enguehard et al. use spline interpolation as it can increase accuracy
of trajectory displays for data with low temporal resolution [79]. However, their ap-
proach is based on VMS, which is a vessel position reporting system with a much
lower reporting rate than the AIS data VA-TRaC is based on. For Norwegian ves-
sels, VMS reports are sent every hour, while AIS reports are sent every five minutes.
The benefits to accuracy from using higher-order spline interpolation is therefore re-
duced substantially by using AIS instead of VMS reports, to an extent where the cost
of performing higher-order spline interpolation for every trajectory was deemed to
outweigh the benefits.

Akin to the display of vessel glyphs, the display of trajectories depends on the zoom
level. When too many vessels are displayed at the same time, the trajectories stop be-
ing useful as they occlude each other. Likewise, when evaluating an indicated catch
operation in the map, one is interested in the shape of the path, which becomes dif-
ficult to discern when zoomed far out [18]. The choice of displaying trajectories or
not is domain-driven: The interesting parts of a vessel’s trajectory in the described
use case is when it is fishing, which occurs in limited geographical regions. Further-
more, the user is most interested in seeing the vessels that have not reported their
daily catch. Therefore, trajectories of vessels that have reported a DCA are hidden by
default and must be explicitly enabled, to not occlude the trajectories for indicated
operations that are evaluated in task T3. As evident by comparing Figure 4.12 to Fig-
ure 4.13, occlusion from the trajectories of even two additional vessels can be quite
high, and seeing the trajectories of the vessels of interest becomes more difficult.

FIGURE 4.12: Dis-
playing all vessel tra-

jectories.

FIGURE 4.13: Hiding
trajectories of vessels

with DCA reports.

Figure 4.14 shows the map at a very close zoom level. At such a level, the thickness
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of the trajectory lines is increased to make both real and indicated fishing operations
more visible. It thus becomes slightly easier to understand the movement patterns
caused by indications of a specific vessel, and to solve the trajectory- and geography-
based subtasks of T3. In Figure 4.14, one sees that (1) a the vessel’s reported catch
operation overlaps the operation found by the indicators, and (2) that the indicators
have identified more than the reported operation as potential fishing. As illustrated
in Figure 4.8, T3 is completed after the user has filtered the dataset down to a single
vessel, and the user therefore avoids occluded paths even when the line thickness
increases. Since only a single vessel is rendered, the user will often enable render-
ing trajectories for all vessels when at this stage of analysis, to be able to analyze
trajectories even when the vessel has reported a DCA.

FIGURE 4.14: A closely zoomed view of a single vessel. (1) shows
the overlapping DCA-reported and indicated catch operation traject-
ories, (2) the indicated catch operation trajectory and (3) the tooltip of

the vessel’s callsign (blurred to anonymize the vessel).

The map view uses publicly available map data from the Norwegian Mapping Au-
thority to display borders of Norwegian waters (annotated as (2) in Figure 4.10. A
blue line represents the border between the territorial coast waters of Norway and
the ocean regions controlled by Norway. The ocean regions are overlaid with a trans-
lucent geometric shape, which is shaded slightly orange. The border view was ad-
ded at the request of domain experts at the Directorate of Fisheries, as many licenses
and quotas are very dependent on these borders, as discussed earlier in this chapter.
For example, some vessels are not allowed to fish outside coastal waters, and many
licenses disallow fishing in foreign waters.
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Finally, the map view displays a minimap (annotation (3) in Figure 4.10). According
to Cockburn et al. [27], overview and detail views such as minimaps allow users to
better orient themselves in a larger view. Combining overview and detail with zoom-
ing, the user can navigate to multiple granularities based on preference, while still
keeping the spatial orientation of the whole. Since a typical workflow in VA-TRaC
sees a lot of jumps in space, keeping the user oriented is helpful. Plumlee and Ware
[66] has showed that overview+detail outperforms zooming in cases where the user
must expend a lot of visual memory elsewhere, which may be the case in the map
view due to the number of marks and channels used to encode all the displayed
attributes.

4.5.4 The Timeline

The timeline (Figure 4.15) shows the duration of every vessel’s reported and indic-
ated catch operations in the 24-hour window being analyzed. It also shows the ves-
sel’s speed over time, and the timestamps of each AIS report received during the
period. It has two dimensions: The Y-axis is categorical, each category being a ves-
sel (annotation (5) in Figure 4.15). The X-axis is quantitative, displaying the time of
day. When the user wants to evaluate the temporal aspects of the indicated reports
as part of T3, they already know what vessel and attribute they are looking for and
are thus performing a lookup with the goal of comparison between different vessels
or between different points in time. According to Munzner, the canonical example
of an effective chart that fits such data and lookup tasks is the bar chart, which is
used as the base of the visualizations [64]. In addition to using the most effective
available channels, the bar chart is ubiquitous and is readily understood by the do-
main experts at the Directorate of Fisheries. The temporal axis in the timeline is
horizontally oriented to maximize the resolution devoted to it, as identification and
analysis of the temporal aspects of catch operations are more important tasks than
comparisons between vessels.

Annotations (1) and (2) in Figure 4.15 show bars displaying indicated catch opera-
tions. In contrast to a regular bar chart, the timeline positions each bar according
to the duration of a catch operation. The bars use the same colormap as elsewhere
in the application, and like the trajectories in the map view, use the red and green
hatched pattern to display periods where both algorithmic and reported catch op-
erations have occurred, as shown by annotation (3). Also, operations found by the
speed indicator and the 1$ pattern indicator are separated spatially, to allow the user
to discern how the system identified the vessel as fishing. Annotation (1) shows
results from speed indications, which are placed in the bottom part of the vessel’s
timeline. Annotation (2) shows results from 1$ pattern indication, which is placed
in the top part. DCA reports cover both regions, as they are not tied to either indic-
ator. The placement of the indicated operations is based on the gestalt principle that
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FIGURE 4.15: The timeline view. (1), (2) and (3) show bars of the vari-
ous catch operations. (4) shows the line chart showing vessel speed.
(5) shows the Y axis displaying vessel names (blurred to anonymize

the vessels).

marks in close proximity are seen as grouped [84], making it more obvious that a
catch operation can be seen as singular when it is indicated by both indicators in the
same period.

Annotation 4 in Figure 4.15 shows the line chart of the vessel’s speed during the
day, superimposed on the bar chart. The dots encode the timepoint and speed of
the vessel’s individual AIS data points. Time is encoded as position along the X-axis
using the same scale and labels as the catch operation bars, while speed is encoded
as position along the Y-axis. The goal of the line chart is three-fold. First, reductions
in speed can be caused because of fishing operations, so seeing the changes in speed
during the day can be used to verify that the indicated fishing operations are within
reasonable bounds. Second, it allows the user to get a deeper understanding of the
vessel’s entire trajectory, as it shows the rate of change in the vessel’s position over
time. Finally, the density of dots allows the user to understand the uncertainty of
the automatic analysis, as they can see the number of data points used as inputs to
the algorithms.

The Tabular View

The tabular view, shown in Figure 4.16, is a text table where each row is a vessel.
The attributes shown are the vessels’ reporting state, names and call signs, the gear
the vessel has reported using, and the ones recognized by the k-NN and 1$ pat-
tern indicators. The vessels’ states are encoded using the same colormap as in the
previous views, though in this case the precedence rules are applied. The view is
alphabetically sortable on a per-column basis. This allows for flexible on-the-fly
pseudo-filtering, aiding task T5. For instance, the user can sort by reported gear
type if vessels using a specific gear is of interest, or they may sort by reporting state.
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The use of a table to list the vessels was suggested by a domain expert as an intuitive
way to quickly identify vessels that have been recognized by the automatic analysis
(T1). Additionally, the table is used for T2.1, as the reporting state of each vessel is
one attribute visible in the chart. Text tables are good at precise information lookup,
and are familiar to many audiences [53]. A text table to encode the textual data
was therefore found suitable for vessel identification tasks where the user wishes to
locate the vessel spatially, but where the vessel’s reporting state is known. Further,
the analysis group members that may become users of VA-TRaC have an intuitive
understanding of table views, having used Excel as part of their daily work for a
long time.

The gear names presented in the view come from the gear hierarchy, briefly dis-
cussed earlier in this chapter. There are no channels for categorical data not already
in use in either the map or the timeline that can encode 43 categories efficiently, so
text was chosen as the most suitable encoding for the names. A new visualization
for the gear categorization was considered, but the idea was ultimately rejected due
to lack of screen real estate in the main view. As the table already supports text
data well, it was chosen as the most suitable location to place the results of the gear
recognition. Another advantage of using text as the encoding is that the attribute
becomes searchable, using a standard search interface familiar to most people. The
search field is located in the top left corner of the main view.
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FIGURE 4.16: The tabular view. Vessel names and call signs have
been anonymized.

4.5.5 Secondary Views

The main views are focused on the core use case of VA-TRaC: investigating and ana-
lyzing trajectories and the results of automatic classification algorithms. As time
progressed and it became clear that model building also would be an important as-
pect of VA-TRaC, various extra views were added to give the user tools to control
parameters of the indicators. Tuning of indicators is mostly envisioned to be per-
formed by members of the analysis group, who work using desktop workstations
with multiple screens. To take advantage of this, all but one of the secondary views
are available as pop-up screens from the main menu. This gives the user control
over view positions, which views are open at once, and the size of the views, while
retaining the window handling experience that users are familiar with from working
with other desktop applications. The secondary views include settings and template
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selection for the 1$ pattern indicator, settings for the speed indicator and the k-NN
indicator, and a view for displaying additional, constructed templates available for
the 1$ algorithm, as well as a parameter evaluation viewer.

The Evaluation Viewer

When modifying parameters of the indicators, the user can enable the evaluation
viewer (seen in Figure 4.17), which places an additional chart in the main view. The
evaluation viewer uses the output from the indicator evaluation discussed earlier in
this chapter, by showing the sensitivity and fall-out as a line chart. The viewer is thus
VA-TRaC ’s solution to T4, evaluating modifications to indicator parameters. The Y-
axis encodes the relative sensitivity and fall-out, the X-axis encodes user interactions.
For each modification to a model parameter, sensitivity and fall-out are calculated
and added to the chart, allowing the user to see the global development of sensitivity
and fall-out as they tune the parameters. Vertical lines highlight the discrete nature
of the X-axis and hovering one of these lines will display the precise sensitivity and
fall-out at that change. To not crowd the line chart, changes that are more than 20
steps back in time are removed. The viewer is placed in the main view to highlight
the fact that the sensitivity and fall-out are not tied to a single indicator.

FIGURE 4.17: Sensitivity and fall-out developments as speed and pat-
tern indicator thresholds are modified.

The displayed line helps guide the user toward parameters changes that do not de-
grade indicator performance for the current AIS and ERS data. Keeping historical
context allows the user to evaluate the trends of parameter settings by verifying that
new changes are an improvement over ones that were done sometime earlier. In
the example session shown in Figure 4.17, the user has modified the thresholds of
the speed classifier. Most modifications haven’t caused much change to the overall
indicator performance, but the second-to-last change, an increase in the maximum
speed considered as a fishing operation for purse seine vessels, caused a marked
increase in the model’s fall-out as well as a visible increase in sensitivity. The user
can compare the modification with previous modifications, and thus see that the
sensitivity has not been this high earlier.
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Vessel Details

The vessel details view shows metadata about the currently selected vessel, includ-
ing engine size, length, and the license group of the vessel, and supplements other
views based on the principle that such details are not always needed. The view is
purely textual, as it only shows static values associated with a vessel. Additionally,
the view contains a button to flag the vessel, which is the mechanism used for noting
that the vessel may be worth further investigating.

Template Viewer

Seen in Figure 4.18, the template viewer is the main view for handling the manipu-
lation of templates and parameters for the 1$ pattern indicator. Exemplified by an-
notation (1), the view shows all templates the indicator is comparing to the vessel’s
trajectory, and highlights the templates that have been recognized. The view also
allows the user to select individual templates to build new, averaged templates, and
commit these to a database. Finally, there is a small toolbar with tools for easier
handling of multiple templates, a slider to tune the indicator’s threshold, and a
checkbox to swap between pre-calculated and constructed template sets.

The two most important uses of the view are to see which templates have been found
in the vessel’s trajectory and building new trajectories. Templates that have been
recognized are identified by a dot glyph in a yellow hue. As with the vessel glyphs
in the map, this increases popout by using a previously unused hue in a separate
spatial region [84]. Hovering over recognized templates will highlight them using
a yellow border, with matching colored highlighting in the timeline and the map,
allowing the user to assess whether the indicated operation is plausible, in line with
task T3. This workflow is shown in Chapter 6.

To build new patterns, the user can click on the templates he wants to include.
Shown by annotation (2) in Figure 4.18, this will highlight the template by chan-
ging the hue to green. A double-click gives the template additional weight when
computing the average path, and highlights the template in a blue hue. The hue
choices in the view are again based on Ware’s [84] recommendation of using the
unique hues if possible, and the fact that hue is the most effective unused categor-
ical channel [64]. The average template is displayed in a larger view (annotation (3)
in Figure 4.18), which shows translucent versions of paths of all selected templates,
with the average path highlighted in red.

Tuning the indicator’s threshold changes the score a template must reach to be con-
sidered as recognized. The threshold is changed using the slider in the toolbar of the
template viewer. Slider adjustments follow the principle of direct manipulation [72],
and immediately recalculate indications from the 1$ pattern recognizer.
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Finally, the view allows for changing template datasets. Once a sufficient number
of averaged templates have been created, using the averaged datasets will avoid the
overfitting of templates to the data that happens due to the pre-processed templates
being based on DCA reports individual vessels have submitted for the gear type.

FIGURE 4.18: The template viewer. (1) shows two example templates.
(2) shows templates used to build the average. (3) shows the average

template.

Speed Indicator Settings

The view for tuning the speed indicator parameters, seen in Figure 4.19, consists
of a table where each row is a license group. For each group, a histogram shows
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the speed of the group’s vessels in the current dataset during fishing operations, the
current maximum speed a vessel in the group may have to be considered fishing,
and a slider to change the threshold for that group. The histogram bar where the
currently selected vessel resides is highlighted using a hue and saturation shift. This
causes popout, and lets the user quickly identify the license group the vessel is in.

The histograms allow the user to get an idea of the distribution of speed in the fishing
operations for that license group, helping guide the user when setting the speed
threshold for that group, and allows comparing the currently selected vessel with
others in the group to assess whether it is an outlier. Since they are stacked vertically,
the histograms also allow for comparison of speed distributions between various
groups.

FIGURE 4.19: Speed indicator view

k-NN Settings

The k-Nearest Neighbors parameter window lets the user toggle visual display and
filtering of the data used by the k-NN identifier, as well as tweaking and displaying
the radius in which k-NN is applied to each license group. The view consists of a
tabular view of group names and sliders for adjusting the maximum radius of the
k-NN algorithm, and a toolbar. The toolbar contains radio buttons that toggle the
display of an overlay showing all reports used by the k-NN algorithm in the map
view, and a button to toggle displaying the radius of each vessel as defined by the
maximum distance for that license group.

Figure 4.20 shows a part of the map view with k-NN overlays enabled. As DCA
reports have inherent spatial information, they are displayed as dots on the map,
shown by annotation 2. Color hue encodes the gear type used for each report. The
color map chosen for encoding the gears was created using a twelve-bin categorical
color map from ColorBrewer [16], a tool which creates well-defined color maps for
cartography, and displayed in a legend overlaying the map (annotation 3 in Figure
4.20). The categorical color hues let the user evaluate whether the gear identified by
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the indicator is likely by comparing the location of the vessel with the gears used
during previous operations within the vessel’s proximity.

FIGURE 4.20: Visual representations of previous DCA reports and k-
NN distance radii in the map. Currently groups of gear types are

displayed.

Due to limitations to how many hues are discernable when encoding categorical
data [64], glyphs were considered for visual encoding. However, glyphs suffer from
the same issue of being difficult to discriminate, especially at small sizes, and do not
scale to more than roughly twelve categories unless their size increases [13]. Addi-
tionally, shapes are a less effective channel than color hue for categorical data [64].
Finally, overlapping glyphs are prone to erroneous identification, as the combination
of two glyphs’ shapes may correspond to that of another glyph [13]. This is an issue
with sufficiently large and spatially tightly packed datasets encoded by glyphs, such
as the DCA report dataset. Hue was therefore used in lieu of glyphs.

As it is infeasible to encode more than twelve categories using color hue [64], the user
can switch between different sets of categories by toggling between displaying the
reports encoded using the different groupings of the gear hierarchy. At the lowest
level, only gears within one high-level grouping are shown. This lets the user get a
full overview of the gears used in the area around a vessel, then drill down to see
more detailed information as desired.

The radius displays are shown as transparent circles around the center of each ves-
sel’s movement over the last day, with a line from the center point to the vessel. In
some cases, the vessel has moved quite far away from the average position, and this
line helps guide the user to see which circle corresponds to which vessel. As the
data the circles were based on are radii, the natural encoding is a circle. The circles
are used as a complement to the DCA report dots. To avoid occluding the DCA
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dots and to avoid confusion with other color choices, a translucent, non-attention
grabbing light grey, not used elsewhere in the map view, was chosen as the circle’s
fill.

Template Group Viewer

The template group viewer shows a small version of the saved average templates for
each equipment type and each license group, similar to the larger versions displayed
in the template builder. The versions are laid out in a matrix, the X-axis consisting
of gear types and the Y-axis of license groups. The template group viewer helps the
user decide if they should consider using average templates instead of templates
from individual vessels. If the user is satisfied with the number of templates avail-
able for a license group, they can switch to the averaged template dataset in the
template builder. Additionally, the view helps the user decide which new templates
may be worth constructing, by finding combinations of license groups and templates
that haven’t been identified before. A common workflow would be to identify a li-
cense group/gear pair one is dissatisfied with, open the template view on a second
monitor, filter the dataset to only include vessels of the chosen license group, and
go through each vessel in the tabular view until one find a suitable candidate for
constructing a template.

FIGURE 4.21: The Vessel Group viewer. The small red patterns show
the template assigned to that license group/gear combination.
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4.6 Summary

This chapter has presented the data used by VA-TRaC, and the tasks a user under-
takes in order to perform analysis of potentially illegal fishing operations. Addition-
ally, the views present in VA-TRaC have been presented, and for each a justification
for the choices of the visual encodings used has been provided. As shown, VA-TRaC
gives the user the ability to quickly assess the legality of fishing operations across all
active vessels, through the use of automatic analysis and multiple, linked visualiza-
tions. This allows inspectors and analysts at the Directorate of Fisheries to perform
such assessments in a timely manner, and thus improves on a task that has required
tedious and time-consuming manual labor. Instead of providing a generic solution
for vessel movement analysis, which existing visual analytics do, VA-TRaC focuses
solely on catch operation analysis, and can therefore use contextual data such as
catch reports and license information to provide indicators that are intuitive for the
Directorate’s employees, and that provide additional, relevant feedback such as the
gear type used. Additionally the specialized approach lets VA-TRaC provide tools
for changing the indicators’ parameters and evaluating their effectiveness. This al-
lows the system to be modified to be applicable across situations in a dynamic field
influenced by changing regulations and technological advancements, the weather,
and the movement of fish throughout the year.
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Chapter 5

Implementation

This chapter provides a description of the architecture and technologies employed
in VA-TRaC, and discusses the reasoning behind the choices.

5.1 Software Architecture

The web is a suitable platform for geospatial visual analytics systems [57]. Users
can access the system without needing to download additional software, and across
operating systems and devices. More importantly, visual analytics often requires
strong compute capabilities to process the data. Using the server/client architecture
of the web, one can offload heavy computations to the server, making the system
more responsive and available even on devices with low computational power. The
server can also handle large data sets without the user needing to download all the
data onto their hard drive, which can be a problem for sufficiently large data sets
and devices such as tablets [91].

A useful way to build a software architecture is to consider the flow the data should
take throughout the application. In the field of visualization, dataflow is often
modeled using the visualization pipeline, here exemplified by Chi’s data state model
[21], described in Chapter 2 and illustrated in Figure 2.6. An effective architecture
should follow a similar model for unidirectional data flow, as it makes reasoning
about the system simpler and more structured. In a sense, this is a generalization
of Munzner’s "what-why-how" framework, allowing the designer to focus on each
stage’s input and output data, tasks, and development idioms separately.

Figure 5.1 illustrates the architecture employed by VA-TRaC. It is a three-tier archi-
tecture, commonly used for web applications. In a three-tier architecture, a database
tier stores the data, a server tier, often called the application logic tier, performs com-
putations, and a client tier displays the results of the computations. The architecture
allows for separation of concerns, and maps nicely to the data state model. The
database tier stores values (with the value stage operator being any external data
processing). The server performs the data transformation, and the client performs
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How to read this chart
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FIGURE 5.1: VA-TRaC ’s architecture and data flow
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the visual transformation mapping, presents the view stage, and receives view stage
operations (such as user input). The analytical abstraction and visualization abstrac-
tion stages can be performed by either the server or the client, depending on applic-
ation needs. VA-TRaC moves as much as possible from these stages to the client.
The data API only performs the initial data transformation by querying the values
and fetching those that are relevant. All following stages, including analytical stage
operations, occur within the client, with the user providing view stage operations.
The reasoning for such a "fat client" approach is two-fold: First, since multiple users
may want to modify the indicator parameters at the same time, computing changes
locally reduces the potential for data races where two users modify the algorithm
parameters on the server simultaneously, which could cause unanticipated results
for subsequent runs of the algorithm. By keeping such analytical stage operations
local, one can be sure that one user’s parameter modifications don’t interfere with
those of others. Second, VA-TRaC may be used by inspectors while on board vessels,
where the internet connection can be sub-par. Using a fat client allows the inspect-
ors to open the application while in a location with a good connection, and as long
as the application is kept running, it will continue working even if the connection
falters.

The disadvantage of using a fat client is the increased requirements for computation.
However, as only a small, finite part of the total data (AIS items from a 24 hour
period) is ever received by the client, the needed processing power has an upper
bound. To further reduce the amount of computation that must be done by the
client, a suite of data processing scripts preprocesses and filters the data before it
enters the database, as described in the discussion of raw data in Chapter 4.

5.2 Technology Choices

When selecting programming languages, frameworks, algorithms and other tech-
nology for any substantial software project, it is important to assess the impact each
will have on the resulting project [62]. To avoid a solution with many useless de-
pendencies or one that is hard to understand and hard to change, an overarching set
of goals was identified, and each technology was validated based on their suitabil-
ity for reaching these goals. The following enumeration shows the criteria used for
VA-TRaC. At least one item must be true to allow the technology to be used, and the
more, the better. Listed in order of importance:

1. The technology must ideally be in use at the Directorate of Fisheries. If not, it
must be easy to integrate or replace.

2. The technology must be used in a production environment at multiple other
large institutions or companies.
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3. The technology must be suitable for the development of a visual analytics ap-
plication.

4. The technology must allow for rapid development.

The Directorate of Fisheries has a well-established IT and development department,
where the personnel is trained in using specific technologies. Since VA-TRaC may
see continued use, using technologies, languages, and libraries that the Directorate’s
developers are used to was considered a priority, based on the recommendations
of Sedlmair et al. [71]. There are, of course, cases where using existing techno-
logy choices is infeasible, especially when choosing technologies that are specific to
the domain of visualization and visual analytics, where the Directorate’s developers
have little to no prior knowledge. In these cases, choices have been made based
on online popularity and documentation quality, in the hope that these attributes
will help other developers get up to speed quickly. The other main stakeholders in
system development were the domain experts in the analysis group. Certain func-
tionality, such as the pre-processing of data, is done using tools requested by them,
as they wanted the possibility of adding more data sources later on and possibly
enhance the algorithms themselves without needing to rely on the developers in the
IT department.

Any long-running project benefits from stable, proven technologies [62]. VA-TRaC
may potentially fall into this category, if it ends up seeing extended development
and use. Making sure the underlying technologies are available and stable for the
foreseeable future helps facilitate extended use, as other developers will be able to
maintain the system without dependencies suddenly being unavailable or drastic-
ally changing. The approach to assessing the stability of a technology was to verify
that it was seeing production use in other large companies.

As noted earlier in this chapter, Keim et al. recommends using web technologies for
creating visual analytics systems [57]. The goal is to ease user setup and on-boarding
for the tool, as well as to make the tool available in a wider variety of settings. VA-
TRaC is built to be used in an office setting for model development or statistical
analysis, but also in a real-time regulatory setting by inspectors wanting to get a
fuller picture of the situation of a specific vessel. A web interface allows the same
underlying code to enable both use cases, and the use of a server/client architecture
provides a robust way to handle the separation of preprocessing and data filtering
algorithms and the user interface into independent parts.

Since the system was developed over approximately four and a half months of de-
velopment time by a single developer, technologies that facilitate rapid development
were necessary to get a result that solved the problem on time. While this was not
the primary concern, it was considered a plus when evaluating potential technology
choices.
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The following technologies are employed in the final version of the system, based
on the listed criteria:

• Programming Languages

– TypeScript

– JavaScript (node.js)

– R

• Major frameworks and libraries

– React (performant and lightweight user interface and web application de-
velopment)

– D3.js (low level and flexible vector graphics abstraction for the client-side
web)

– leaflet.js (map and cartography library for the client-side web)

– tidyverse (data processing framework for R)

– PlumbR (web server for R)

• Other tools

– SQLite

TypeScript, node.js, R, and React were chosen based on the explicit wishes of the
domain experts in the analysis group and the developers in the IT department. The
technologies are all stable, offer extensive ecosystems of libraries, and are in use or
are soon-to-be used by the Directorate. The other major libraries and frameworks are
very common for their respective use cases, and each one is substantially beneficial
in terms of development speed. D3.js and leaflet.js deserve a special mention, as they
provide the flexibility needed to create customized interactive visualizations while
retaining high performance. Both also have a wealth of documentation and usage
tutorials, which is important if maintainers are to expand upon the visualizations
without having much previous knowledge of the principles of effective visualiza-
tion. The use of these technologies also allows the system to be hosted online, thus
the user does not need to download specific software to use the system.

SQLite is a lightweight database that is very easy to set up and work with on a
single machine. The Directorate runs an Oracle database for their data storage, to
which there was limited access during the development, so SQLite was chosen as an
alternative with many similar properties. As the Oracle database, it is a relational,
SQL-based database, and therefore eases the transition of the data into the main
database, if desirable.
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The indicators were also validated based on how well they fit the criteria for techno-
logy choices. Each indicator can be implemented in less than 350 lines of code, mak-
ing them easy to understand and integrate into existing solutions, even though they
are not currently in use at the Directorate of Fisheries. Further, k-Nearest Neighbors
classification is very commonly used, and the 1$ algorithm was developed in part
by Microsoft Research and thus has at least some degree of corporate backing. All
the indicators are also very fast to run, and therefore suitable for interactive systems
even when parameters are modified on the fly. Finally, high-quality and well doc-
umented libraries for both k-Nearest Neighbors and the 1$ recognizer are provided
for JavaScript, which allowed them to be easily modified and facilitated a faster de-
velopment process.
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Chapter 6

Workflows

In this chapter, the intended workflow of VA-TRaC is presented. As described in
Figure 5.1 in the previous chapter, the user performs tasks in three levels of oper-
ations, namely exploration and identification of interesting vessels, evaluation of
the correctness of indications for a particular vessel, and refinement of the indicat-
ors’ parameters. Though the levels build on one another, the refinement operations
are not mandatory for effective use of VA-TRaC, and can be performed separately.
The levels of identification and evaluation are intended to be used by inspectors
as a tool to verify the automatic identification of potentially unreported catch op-
erations, possibly in a setting where the inspector is constrained on time. On the
other hand, parameter refinement requires a deeper understanding of the underly-
ing models and therefore is intended to be performed by for instance the analysis
group, in contexts where time is not as much of a constraint and it is possible to go
through the task flow of VA-TRaC multiple times. Therefore, this chapter presents
two workflows, one based on identification and evaluation, and one on refinement.

6.1 Identifying Unreported Catch Operations

The following case study follows the workflow of an imagined inspector as they look
for vessels to investigate. The inspector has launched the application and loaded all
the data, and is about to start going through the vessels. Today, they are interested in
analyzing the coast fishery vessels, and has therefore filtered the vessels to the first
license group of coast fishery vessels: "Combined conventional and pelagic coast
fishery".

Their analysis starts by looking for vessels that haven’t reported at all during the last
day, and where the program has flagged a potential fishing operation. They sort the
list view by reporting status. Figure 6.1 illustrates the license group filter and the
use of color to encode the vessel’s reporting state. In this case, only vessels with a
red highlight are of interest.
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FIGURE 6.1: The inspector selects (1) the license group they want, and
(2) sorts the list to see all the vessels that haven’t reported DCAs, but

have been recognized by the indicators.

One of the combined conventional and pelagic coast fishery vessels has an interest-
ing movement pattern. The vessel has moved close to the coast, then looped around
and moved away again. The system has flagged this movement as a potential fishing
operation. The scarcity and irregularity of dots on the speed graph shows that the
AIS reports have been sporadic, except for the recognized pattern, as illustrated in
Figure 6.2. Due to the irregularity in the vessel’s AIS reporting, the inspector decides
to disregard the case, as the vessel may have technical difficulties and therefore has
a valid reason for not sending its daily DCA report.

FIGURE 6.2: The vessel’s timeline shows that there are lots of missing
AIS datapoints.
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Having iterated through each vessel in the first group, the inspector chooses the next
relevant license group: Conventional coast fishery vessels. Here, they spot another
interesting vessel. The vessel, seen in Figure 6.3, has moved around an island over
a period of a few hours. During the movement, the vessel has slowed down for a
period of time, and has therefore gotten flagged by the speed classifier, identified by
red marks in both the map and timeline. The inspector sees that the speed changes
of the vessel at the time could plausibly be a fishing operation. However, it would be
very uncommon for a vessel to fish that close to a city, and there are plenty of other
possible explanations for the behavior, such as the vessel washing its equipment.
The inspector decides not to further investigate the vessel.

FIGURE 6.3: The vessel has performed a fishing operation-like move-
ment. Due to the proximity to Kristiansund and the airport, the in-

spector decides this is a false positive.

The inspector finishes verifying all vessels without DCA reports, and moves to veri-
fying the DCA reports of the coast fishery vessels. In the pelagic coast fishery group,
they find a vessel that has been flagged by both the speed and 1$ recognition classi-
fiers for a duration, and where no DCA was reported at the time. Figure 6.4 shows
the point in the timeline where this occurs. They see that blocks for both speed and
pattern indications are present. In Figure 6.5, they check the template in question
and verify that it could plausibly look like a part of the pattern of a fishing operation
using a seine (a vertical fishing net placed to surround a shoal of fish). The inspector
finally checks the k-NN classifier to verify that the vessel probably has been using
a seine. They enable the display of fishing operations in the area. In Figure 6.6,
dots representing earlier fishing operations (a cluster is outlined with a circle) show
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that fishing using seines ("not" in Norwegian) is common in the vessels area. The
inspector chooses to flag the vessel for further investigation.

FIGURE 6.4: A change in the vessel’s speed suggests that an unrepor-
ted fishing operation has occurred.

FIGURE 6.5: Hovering the template in the template viewer highlights
the template in the timeline and map.
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FIGURE 6.6: The black circle shows a cluster of seine operations in the
area the vessel has been moving. Other seine operations are found

scattered around the immediate surroundings.

In the described use case, the inspector found two vessels that had performed po-
tentially illegal operations. Both cases would have been very difficult to identify
by looking at traditional maps of the vessels’ trajectories, and benefited from being
identified by automatic algorithms and verified using multiple views to explain the
vessel’s behavior. Due to the inspector’s knowledge of the area and different forms
of vessel behavior, the first vessel was deemed unworthy of further investigation.
This type of knowledge is hard to encode in automatic models, and the advantage
of having a human in the loop becomes apparent.

6.2 Building New Templates and Tuning Parameters

The other use of VA-TRaC is refining the indicators used for identifying vessels. In
the following section, the typical workflow for indicator enhancement is presented.
The analyst’s goal for the session is building a recognition template.

The analyst starts their session by opening the Template Group viewer, and looks
for license group and gear combinations that currently have no patterns assigned to
them. In this imagined situation, the currently available templates are the same as
in Figure 4.21. As can be seen in the figure, many license group/gear combinations
currently lack templates. The analyst sees that no groups contain templates for line
fishery gear, and decides to add one. By sorting the vessel list by reported gear, the
analyst finds vessels involved in line fishery. They then open the Template viewer.

The Template viewer displays a list of all the templates available for the vessel. The
analyst scrolls through the list, and searches for similar templates that describe the
movement during line fishery well. Based on the analyst’s knowledge of line fish-
ery, they avoid the templates that are very generic (in this case the short ones with
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FIGURE 6.7: Building a new template for line fishery. Two similar
patterns are chosen, and the average is displayed.

a single angle), and the ones with a very high fractal dimension. They find two
patterns that describe a typical line fishery operation. The movement patterns of
the operations are characterized by sharp, 90-degree angles and a blocky trajectory.
They click on the two candidates to add them to the current average, as illustrated
in Figure 6.7, and saves them by pressing commit. From the next line vessel in the
list, they decide to add a second template. They identify two patterns they want to
use. This time, the average path gets too rounded, and some of the 90-degree angles
disappear. To rectify this, they decide to add extra weight to one of the templates
by clicking on it an additional time. As can be seen in Figure 6.8, in this case the
weighting causes corners to get less rounded, and the sharp angles get preserved
better for some regions of the average path.

FIGURE 6.8: The blue template gets weighted more, and the average
retains more of its features compared to the other template.

Satisfied with the new patterns, the analyst moves to enhance the parameters of the
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speed classifier. Shown in Figure 6.9, they notice a vessel in the timeline that has
sent a DCA report for a period where the speed classifier looks too strict. They select
the vessel in the vessel list by searching for its call sign, then opens the speed viewer
(1). The vessel’s license group is identified by finding the red bar in the histogram
list. The analyst notices that many catch operations in the group occur at between
3.0 and 4.0 knots, so they increase the threshold from 3.1 knots. They can see the
recognitions update in real-time in the timeline (2), and due to the result decides
that 3.9 knots is a good threshold. Afterward, they verify in the evaluation viewer
that the algorithm performance across all vessels didn’t drop.

FIGURE 6.9: Tuning the speed threshold of a single group increases
the correctly identified regions of a catch operation.
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Chapter 7

Validation

The following chapter presents and discusses the validation methods employed dur-
ing the work on VA-TRaC. The methods are presented both in terms of Elmqvist et
al.’s evaluation patterns, giving an intuition to what was each method entailed in
practice, and Munzner’s nested model of validation, showing what each method
actually validated.

7.1 Description of Validation Measures

The following section outlines all the different measures that were taken to validate
VA-TRaC, grouped by time of occurrence. Where appropriate, the measures are
assigned to the corresponding pattern of Elmqvist et al. [33].

7.1.1 Early Stages

The first meetings with the Directorate of Fisheries were conducted as an informal
group interview attended by employees from several different areas of expertise,
including the Statistics Department, the IT Department, the Fisheries Monitoring
Centre, the Department of Regulations, and the analysis group. The meetings sought
to identify a feasible problem to solve. During the discussions, several data analysis
problems the Directorate had were mentioned, and the suitability of visualization-
based solutions to each one was discussed. Once possible problems had been defined,
they were further discussed with a visualization expert (the thesis supervisor), to
verify that they were well suited for a visualization-based solution. Based on these
discussions, identification and verification of illegal fishing vessel operations was
chosen as the best suited candidate.

The design phase consisted of more or less informal discussions of possible al-
gorithms (discussed in depth in the section on indicators in Chapter 4), which cul-
minated in expert reviews of several designs, developed using the "Five Design-
Sheet" methodology [68]. The reviews consisted of presenting the sheets separately
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to two people from the analysis group, who gave their comments. The comments
were then compared, and used as a basis for choosing the most suitable design. In
terms of Elmqvist et al.’s [33] patterns, the "Five Design-Sheet" methodology is a
paper baseline pattern. The researcher creates the designs on paper, letting the users
study and provide feedback on the design. The methodology also contains aspects
of the do-it-yourself pattern, since the researcher has the final word in creating a final
design.

An additional presentation of the system’s design, this time focused on architecture
and algorithm choices, was held for members of the analysis group and IT depart-
ment before development started. Each of the chosen algorithms was discussed,
with the goal of verifying that the algorithms were sound choices for fishing opera-
tion identification. Additionally, the meeting attendants discussed ways the system
could be integrated into the data pipeline at the Directorate, for instance by design-
ing for supporting dynamic data down the road.

7.1.2 Development Stage

Validation in the development phase consisted of continuous justifications of each
part of VA-TRaC ’s design. The justifications were done in an ad-hoc fashion, as
development progressed and new insights were found. The resulting justifications
are thoroughly discussed in Chapter 5.

Once the system’s design started to settle and initial development had taken place,
the system was presented again. The complete IT department and the most of the
Statistics Department each attended a walkthrough of each component of the tool,
and were encouraged to comment on the tool’s usage. Most attendants did not have
prior experience with the tool, though they possessed at least some degree of do-
main knowledge. Such a review by a larger audience is akin to the complementary
participants pattern [33], especially since the intent of the presentations were to un-
derstand how a generalized user, for instance an inspector, would react to the sys-
tem.

7.1.3 Post-Development Stage

Towards the end of development, one person from the analysis group was appointed
as the initial main user and maintainer of VA-TRaC, and various discussions with
this person resulted in extra measures taken to ease the transition, such as provid-
ing an API for running the indicators directly without the visualization interface.
While VA-TRaC was not deployed to production, two meetings with members of
the IT department were held to discuss system deployment at a later date, as well
as continued development. To simulate working with the deployed system, the pre-
viously mentioned person from the analysis group was engaged for a pair analytics
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session, where they controlled VA-TRaC under guidance, and attempted a regular
workflow. A similar session was held with another analysis group member that had
been central during the system’s design as well, though this did not include as thor-
ough a walkthrough of the system. Each session culminated in an interview where
the employees were asked about their thoughts on the system and the development
process. The interview notes are available in Appendix A.

A final presentation of VA-TRaC was held for five members of the analysis group.
The presentation was very hands-on, and sought to accurately display a typical
workflow using VA-TRaC, along the lines of the once upon a time pattern. The at-
tendees also had the opportunity to guide and direct the workflow through ques-
tions and comments, thus providing a close-to-interactive experience without the
system needing to be deployed. Finally, the Software Usability Scale (SUS) [17],
a quantitative scale of software usability, was employed, with four of the five at-
tendees responding. The results of the questionnaire are found in Figure 7.3, and are
discussed in-depth later in this chapter.

7.1.4 Employed Patterns

Table 7.1 lists each identified validation pattern in the previous description, and
places them in the categories identified by Elmqvist et al [33]. Note: Validation
patterns mean patterns intended for early confirmation of an evaluation study or
analysis scheme to avoid wasting time and resources. The term is not to be con-
fused with Munzner’s use of the term validation, whose meaning is otherwise the
one used.

Category Pattern Name Type Occurrences
Exploration Do-it-yourself Qualitative 1

Control Pair analytics Qualitative 2
Generalization Complementary participants Qualitative 2

(Expert review) Qualitative 1
Validation (Prototype) Qualitative 1

Presentation Once Upon a Time Qualitative 2

TABLE 7.1: The used patterns based on Elmqvist et al.’s taxonomy
[33]. Parentheses around an element means the pattern was not fol-

lowed in full.

The most common patterns of validation employed were once upon a time and com-
plementary participants. Both studies ease the burden on the domain experts that are
to use the system, as less contribution and active engagement on their part is needed
[33]. When working as a researcher in organizations where the domain experts have
existing workflows and workloads that need to be completed, reduction of disrup-
tions to their day-to-day work makes it easier to organize and conduct validation
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FIGURE 7.1: Munzner’s Framework of Visualization Design and Val-
idation [64]

sessions, as noted in Sedlmair et al.’s recommendation of limiting sessions with users
to one hour [71]. The disadvantage of the patterns is that they don’t maximize the
potential for feedback from the core users. In the case of developing VA-TRaC, the
advantages were found to outweigh the disadvantages.

All the patterns employed were qualitative in nature. This realization caused the use
of the System Usability Scale as an additional, quantitative form of validation. There
was also a lack of Validation patterns (Elmqvist’s use of the term), discounting the
fact that the entirety of VA-TRaC is a prototype.

7.2 Threats and Validations

The following sections frame the validation efforts in terms of The Nested Model of
Visualization Validation [64]. As shown in Figure 7.1, there are four categories of
threats to an effective visualization system. The threats not involving algorithm
choices are the main difficulties for the kind of applied research where the researcher
works in an external, large organization, as found by Sedlmair et al. Their challenges
working with BMW mostly stem from organizational and political issues having to
do with domain experts and their workflows in a large organization and little to do
with implementation issues [71]. My personal experience at the Directorate mirrors
this sentiment, as many of the challenges were similar to the ones found by Sedlmair
et al. and occurred due to difficulties with organizational structure and the innate
inertia of large organizations. Even so, at least one form of validation was performed
for each level during the study, as illustrated in Figure 7.2.
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FIGURE 7.2: The validations performed in each step of the nested
model. The color scheme follows the ones used by Munzner, as seen

in Figure 7.1

7.2.1 Domain Situation

The domain level threat is that of solving the wrong problem. Large organizations
have many groups of employees with different, often intersecting problems. Nav-
igating and mapping these problems to find specific issues where applied research
applications can deliver value can be a challenge [71]. Therefore, a group inter-
view to identify a problem that should be solved using visualization was performed,
to quickly identify multiple possible issues. The interview offered access to a di-
verse group of people, as recommended by Sedlmair et al.’s R3-Environment and R7-
OneHour recommendations. R3 states that you should identify sub-problems and
sub-targets to work with, R7 that you should not use more of the domain expert’s
time than necessary, as they more often than not have busy schedules [71]. The
disadvantage of the method was that it may have caused a more imprecise prob-
lem definition than what a more in-depth and personal problem validation process
could have created. For instance Sedlmair et al. got a lot of value out of specific dis-
cussions with domain experts [71]. In my case, more in-depth interviews with key
domain experts, possibly outside the analysis group, may have uncovered the fact
that no existing workflows for solving the problem addressed by VA-TRaC existed,
which in practice did not become fully apparent until some time into development.
Another issue with the method is that possible stakeholders that are less comfort-
able in group meetings may have stayed silent, making novel problem domains or
objections to the ones mentioned go unnoticed.
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Munzner recommends observing adoption rates as the downstream validation of
the domain situation. Due to time constraints and the fact that VA-TRaC did not
get deployed as a production system before the conclusion of the study made this
infeasible. Therefore, no downstream domain situation validation was performed.
However, the potential user base is quite small, and some of the potential users re-
sponded to the System Usability Scale. While the number of participants is too low
for meaningful statistical assessment, the above-average results of the statement "I
would like to use this system frequently" at least gives an indication that willing-
ness to adopt the system exists (the complete responses are presented later in this
chapter).

7.2.2 Data/Task Abstraction

The data and task abstraction threat is that wrong data and task abstractions are
chosen, making the system not solve the problem of the user as the generalized visu-
alization tasks don’t map to the real world tasks the user tries to solve. Validation of
the abstraction level can only occur after the system is at least partially implemented,
as the way to find out whether the system solves the user’s problem is to let the user
use the system for their work. Thus, there are no immediate validation approaches
suitable for abstraction validation, and all validations must occur downstream [64].
However, as a pointer to whether the task generalization was on the right track, the
reasoning behind the task abstractions underlying the design sheets was discussed
with the stakeholders.

Munzner recommends target user tests for downstream data/task validation. The
sessions using the once upon a time pattern were focused on such validation, by let-
ting users critique the system for the most common workflows. The sessions were
complemented by the pair analytics sessions, as once upon a time by itself gives a result
skewed by the narrative of the presenter [33].

The results for both validation types were quite positive, and responses were for the
most part focused on small usability improvements rather than fundamental issues
in the data and task abstractions. A recurring suggestion was the addition of more
data sources and classification algorithms. Due to time constraints and constrained
data access, this suggestion could not be followed through. However, the suggesters
specified that additional data sources would be an extension to the existing choices,
and the data and task abstractions were deemed sound.

The System Usability Scale provided anecdotal evidence of the system’s utility.
Users answered a questionnaire with ten generic statements about their perception
of the system, and responses were converted into a score (Appendix B contains a de-
scription of the scale and questionnaire). VA-TRaC received an average total score
of 73.125 from four respondents. As can be seen in Figure 7.3, the statements with
the best results were "I thought there was too much inconsistency in the system" and
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"I found the various functions in this system were well integrated", with respective
average scores of 9.375 and 8.75. The lowest scores were given to "I needed to learn a
lot of things before I could get going with this system", average score 5.625, followed
by "I felt very confident using the system" and "Most people would learn to use this
system very quickly", average score 6.25.

FIGURE 7.3: Results from all four responses of the System Usability
Scale. Individual responses are represented by different hues. The

thicker, black line denotes the mean.

From the responses, it is clear that the main issue of VA-TRaC is learning to use
it and how the underlying algorithms work. For deployment, care must be taken
to ensure the users understand the system’s workflow, capabilities, and limitations,
and that new users are trained to gain confidence in how to navigate and understand
the workflows. This prompted additional interactions with the person appointed to
be the initial user, to make sure their understanding of the system and the indicators
were solid. On the other hand, the respondents seem to think the system is concise
and integrated, without many complexities. This bodes well for a system built to
let users work together with automatic algorithms, as it hints at the choice of visual
encodings and interaction idioms that allow for an effective workflow once learned.

7.2.3 Visual Encoding/Interaction Idiom

The idiom level is threatened by idioms that insufficiently communicate the desired
abstraction [64], meaning that users cannot effectively perform the tasks they want
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to, even though they have been correctly assessed and generalized by the researcher.
Immediate validation of visual encoding and interaction idioms means justifying
choices with regard to their effectiveness for the data and task at hand [64]. Chapter
4 contains such a justification for VA-TRaC, which will therefore not be repeated
here.

Downstream validation of the idiom level was done through the once-upon-a-time,
pair analytics, and especially paper prototype and complementary participants. The paper
prototype, in the form of the "Five Design-Sheet" method, was used early to validate
the initial choices of visual encodings encodings. In contrast to the once-upon-a-time
and pair analytics sessions, the use of complementary participants allowed for feedback
from people that had not seen the system before, and therefore were neutral to the
chosen encodings at the beginning of the session.

An advantage of using feature presentations such as the once upon a time and comple-
mentary participants sessions in lieu of static images for validating visual encodings
is that they allow validation of interaction idioms. For a system such as VA-TRaC,
that involved exploration of the data through interaction, this is paramount to give
the users a full understanding of the system. Each widget in the system was ad-
dressed individually, to encourage a more focused discussion of the idioms used for
that specific widget, similarly to how analysis of still images would have occurred.
Another advantage of the approach is that it brings some of the benefits of Wizard-of-
Oz testing [33], in that the researcher can give feedback on what the results of certain
interactions would be even though they are yet unimplemented.

The pair analytics sessions, though performed after the main development phase was
concluded, uncovered weaknesses in both the visual encoding and the interaction
idiom. For example, it was found that there was a need for more filtering options,
as seeing all vessels at the same time was unnecessary for some tasks, cluttered the
views, and reduced performance, leading to the addition of license groups not just
as metadata for the indicators, but also as a user-enabled filter. Iterating through the
vessel list using textual search was also found insufficient, so additional modes of
navigation, through clicks on the vessel list, were added. Similarly, legends for the
line charts in the timeline view were added based on these sessions.

7.2.4 Algorithm

As mentioned, the algorithm level was the least rigorously validated. Even so, it is
important to keep a high level of interactivity in visual analytics systems, even in the
presence of complex automatic algorithms and large amounts of data, lest the user
becomes annoyed and loses focus [64]. A heuristic was therefore used: As the span
of a single task in a point-and-click system is approximately ten seconds, results
should be displayed within that time window in order to not impose delays that de-
grade the user experience [19]. For VA-TRaC, the heuristic was applied by selecting
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algorithms that are fast enough to run to completion within the aforementioned ten-
second window instead, both for visualization presentation and for the indicators.
The heuristic took the place of the recommended immediate validation for the al-
gorithm level: algorithm complexity analysis [64]. This simplified implementation,
giving more time for other work, such as validation of the other levels and system
development. As the system was created as a relatively full-featured prototype in
a new domain, it was deemed the correct trade-off to focus on exploring the design
space and presenting the domain experts with the possibilities of a visualization
solution instead of verifying the complexity of the employed algorithms.

Munzner notes time and memory measurements as the ubiquitous form of down-
stream validation at the algorithm level. The approach is common enough that it is
nearly mandatory for novel algorithms [64]. In addition to the mentioned 10-second
heuristic, an additional heuristic stating that memory should not exceed what can
reasonably be expected on a regular work laptop was defined. The memory limit for
VA-TRaC was therefore set to one gigabyte. Both heuristics were informally valid-
ated regularly during development.

The other downstream approach is the validation of algorithm correctness. When
developing systems that may provide grounds for legal action, it goes without say-
ing that algorithm correctness should be considered essential. This applies even in
the development of prototype applications. As noted by McConnell [62], prototype
applications run the risk of being put into real-world use, and developers should
strive to get it right the first time. Effort was therefore put into validating that the
algorithms were correct, by analyzing still images and interactions of the system and
comparing them to the values found in the raw data, using the do-it-yourself pattern.
Do-it-yourself was chosen since there were no stakeholders that had much insight
into both the visual encodings and the inner workings of VA-TRaC, and therefore
did not know exactly what to look for.

As Munzner notes, algorithm correctness is notoriously difficult to get right [64]. A
case where this became very evident was the discovery that parsing of DCA mes-
sages into fishing operation time ranges was incorrect. This led to what seemed like
a lack of reporting for the vessel and caused false positives in the recognition sys-
tem. The discovery occurred during a presentation of idiom choices when one of the
domain experts pointed out that fishing activities in the area the vessel was located
usually are reported very diligently, and found it odd that this vessel seemed to not
have reported anything. The error would probably have gone undiscovered if the
meeting hadn’t taken place, and highlights the fact that do-it-yourself solutions to
algorithm correctness validation can be insufficient.
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7.3 Takeaways from Validation

Using Munzner’s model to independently reason about validation at separate layers
turned out to be very helpful for the project, as levels where issues were found or
where validation was lacking could be handled in a more focused manner, saving
time both for myself and, more importantly, for the stakeholders who oftentimes
had a busy schedule. Being able to hold shorter design validation sessions while
still getting the wanted feedback meant more sessions could be held. Longer and
more thorough approaches such as full-day workshops [58] would in this context
be infeasible. Again, this mirrors the findings of Sedlmair et al. and their recom-
mendation to keep sessions short [71]. I also found that for this project, the nested
model worked well as a guideline for the chronological ordering of when to perform
a certain validation, even though Munzner specifies that this is not the intent of the
model [63].

Catch operation analysis, which was initially thought to be a area of work for in-
spectors relatively well-supported by digital tools, turned out to not have much
support, and VA-TRaC thus became part of the greenfield work in the Directorate’s
nascent data analysis endeavors. The fact that the domain hadn’t been explored in
much depth earlier could have been uncovered faster if more thorough immediate
domain validation had been employed, which may have helped guide the design
process early on.

The gradual change in which stakeholders took part in the development and val-
idation process, with gradual identification of domain experts who were interested
in the system, was a success. The initial group interviews provided both an oppor-
tunity to get a wide range of potential users involved and let the domain experts
who considered the project as outside their field of interest to get a cursory over-
view of the system. They could then decide whether the system was of interest
to them and whether they would want to contribute their time to it. As the pro-
ject’s design, requirements, and features got more focused and cemented, so did
the group of interested parties. For instance, while most of the IT Department only
attended the first, large meeting, some individuals got further involved in the devel-
opment process and asked for regular updates on how the system was performed,
while commenting on technical choices. An example: while most members of the
IT Department only attended the initial presentation, some got involved in how to
successfully transfer the code base to their department. This led to the two meetings
with IT department members which discussed project deployment and continued
development. Hopefully, these meetings will help foster VA-TRaC’s continued ex-
istence and ease the transition to new maintainers.

Two takeaways were found for validating algorithm correctness: First, conferring
with the domain experts was critical in the validation. As the earlier example shows,
domain experts can identify algorithm errors that look normal to the researcher. This
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sort of tacit domain knowledge is difficult for the researcher to obtain [71], and close
collaboration with the domain experts can help offset this knowledge gap. This was
also evident during the pair analytics sessions. Second, the occurrences where the
algorithms were found to be incorrect happened when validation at another level
was taking place. There were some attempts at directly presenting some of the al-
gorithms, but as the domain experts involved were not used to thinking in terms of
algorithms, these presentations didn’t amount to any real discussions of algorithmic
correctness. However, when the domain experts were presented abstractions and
idioms, there seemed to be more engagement, as these levels were more intuitive,
and this caused the issues at the algorithm level to surface as well.
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Chapter 8

Conclusion

This thesis has presented VA-TRaC, a visual analytics tool built to let users visually
identify and evaluate fishing operations found by applying automatic algorithms
to vessels’ trajectories. VA-TRaC provides the Directorate of Fisheries with a new
tool to assist in the timely completion of catch operation analysis, and thus helps
solve the challenge of regulating fishing vessel activity, which is becoming more and
more difficult due to increasing numbers of vessels expected to follow regulations.
Though some earlier research has been done on the use of visual analytics for ana-
lysis of catch operations, it remains a domain without much scientific research. In
contrast to other tools, VA-TRaC uses not only positional data in the form of AIS,
but also additional data sources such as ERS reports, and places more weight on the
visual encoding of individual catch operations, which eases the identification and
evaluation of operations for both the user and the automatic algorithms. VA-TRaC
also lets the user modify the parameters of the automatic algorithms, allowing the
algorithms to be strengthened even by users without programming knowledge.

VA-TRaC was developed in collaboration with domain experts in the analysis group
at the Directorate, who work to implement similar algorithms, called indicators, de-
signed to give the Directorate’s inspectors data-driven indications on whether a ves-
sel is performing illegal activities. It was designed using Tamara Munzner’s "what-
why-how" framework to generate task abstractions, and effective visual encodings
were chosen based on analysis of data, tasks, and workflow. It was implemented as
a web application, following the recommendations of early works on visual analyt-
ics and the wishes of the personnel at the Directorate. VA-TRaC was validated using
a combination of qualitative validation approaches such as group interviews, once-
upon-a-time presentations, and paper mockups. Preliminary validation showed that
VA-TRaC was a success, and was considered to provide a well-integrated and con-
sistent tool for identifying, evaluating and refining the results from the available
indicators.
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8.1 Recommendations

During the development and validation of VA-TRaC, several impressions were formed
about the process of building a visual analytics tool for domain experts in a large or-
ganization. The following section presents the main recommendations based on my
work at the Directorate. They are by no means applicable to every situation, but
could be useful when working in similar domains.

• Using a validation framework such as the nested model of visualization valid-
ation made it easier to verify the effectiveness of the system at all times. This
includes the period before the system was being designed: thinking about sys-
tem validation using the nested model even during the initial meetings helped
guide the search for a valid domain problem, by making me consider the
downstream implications of a specific problem. Furthermore, structured valid-
ation efforts allowed me to speak with more confidence during system present-
ations, and made it easier to understand what the short-term goals should be
during the development phase.

• Validation should be extended to successive design iterations. For the design
of VA-TRaC, validation of design iterations after the initial one were much
more ad-hoc than the initial, five-design sheet based one. My experience work-
ing in a greenfield project such as VA-TRaC is that such an approach is quite
brittle and that one has less confidence in the ad-hoc design iterations than the
the structured one. Software engineering methodologies such as "agile" could
be employed to strengthen the design iteration workflow. One can envision
changes to the five-design sheet methodology where the layout and content of
each sheet is kept, but only a single sheet is created at regular intervals such as
a "sprint", incorporating the successes of the last design with any updates to
requirements or insights obtained since the last one.

• There are vast amounts of tacit knowledge the Directorate, as is common in
large organizations [74]. Being only a single researcher on a limited schedule
meant that there was no time to learn every detail of the domain. Instead,
I learned the high-level components of fishery analysis, and let the domain
experts provide feedback on the suitability of approaches and algorithms dur-
ing the various meetings and presentations. As an example, one early stake-
holder recommended adding a classification algorithm based on the vessel’s
speed, and others recommended extending this classification to work on dif-
ferent groups of vessels, as size and engine power has implications on speed
during fishing operations. These kinds of detail are very hard to come by as
an independent researcher from another domain, so letting the domain experts
deal with details of fishery analysis meant my time was freed to work on my
area of expertise, the design and implementation of visualization software.
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• In the Directorate of Fisheries, there are a myriad of different domain experts
that may be interested in projects such as visualization design studies. How-
ever, many domain experts are not able to contribute in meaningful ways even
though they would like to, as they have obligations elsewhere. Furthermore,
changes in personnel happen from time to time, and it is therefore necessary
to continuously be on the lookout for relevant stakeholders. For example,
I initially believed that the IT Department would inherit the project. How-
ever, some time into VA-TRaC’s development, a newly employed member of
the analysis group was appointed as the main user and maintainer instead.
Sedlmair et al. recommend spending time identifying the correct stakeholders
as well [71], which strengthens the case that the recommendation holds gener-
ally for large organizations. In my experience, being aware and taking steps to
verify stakeholder involvement when changes happen is crucial for ensuring
that the development process is as valuable as possible for both the researcher
and the organization.
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Appendix A

Appendix: Interview notes and
validation results

The following sections contain the notes taken from the interview parts of the pair
analytics sessions.

A.1 Interview questions

The following listing contains the interview questions. As the interviews were
loosely structured, they followed the direction the domain expert wanted to take
the conversation. The questions were therefore not always phrased as below during
the actual interview, but similar questions were asked.

A.1.1 System

• Usefulness (Data/operation abstraction):

– Do you think the system is useful?

– Do you think the system can be made useful? (Data/operation abstrac-
tion)

– Will you keep using the system?

• Usability (Encoding/interaction)

– Was the system hard to use? Were there any specific features you struggled
with?

– Do you think seeing the visual representations made it easier to gain in-
sight?

– What would you change in the system?

– Did you lose focus while using the system (slow performance etc.)?
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A.1.2 Process

• Do you think you’ve had opportunities to influence the direction of the sys-
tem? Did you feel you have enough knowledge of both technical and domain
issues to adequately guide the process?

• Have you received adequate updates on the development process?

• In what ways would you like to see the project continue?

A.2 Interview with main stakeholder

Date: 17. June 2019

A.2.1 Agenda and purpose

• Pair analytics/Case Study: Assess quality of algorithm results for a single ves-
sel, evaluate parameters for clustering.

• System walk through: Explain all widgets and functionality: Feedback on us-
ability, intuitiveness, possible extensions, difficulties, missing features.

A.2.2 Notes

• Missing legends for certain marks/channels, e.g. speed and AIS precision.
Important to focus on the minutae in addition to the big picture

• Displays of certain vessel information in popup views (license groups in speed
popup) are missing/could be clearer

• Likes map widget, as it is easy to understand and contains lots of information
while being clear

• Finds the kNN map overlays intuitive and useful (both viewing radii and dif-
ferent groups of gears)

• Likes the consistent color scheme, especially how it works with vessel list wid-
get

• System too difficult to use for inspectors or other end users, requires some
knowledge of algorithm choices in addition to domain knowledge about fish-
ing vessel activities

• Timeline widget hard to understand without detailed explanations, may be
unclear
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• Likes the use of different views to maximize information so that both temporal
and spatial aspects are nicely displayed

• Nice-to-have: Automatically set distances

Discussion of choices for algorithm parameters and pre-processing steps: k-value
choice, template pre-filtering

Walkthrough of data and architecture

Discussion of use cases and potential for system in the Department of Fisheries:

• Include aspects in existing systems in development for inspectors

• Take inspiration from layout and widgets

• Will probably not the system wholesale "in production", as both IT department
and domain experts would be needed to improve and control system. Too
many stakeholders to keep development going without specific users driving
development

• Possibly use results of parameter choices for evaluation of other algorithms

• Discussed use of visual encodings and data/algorithm changes needed to add
support for streaming data

A.3 Interview with stakeholder from analysis and statistics
department

Date: 21. June 2019

A.3.1 Agenda and purpose

Informal interview to collect anecdotal evidence of utility and discuss future usage
areas:

A.3.2 Notes

• What do you think of the development process? Has enjoyed being a part
of the process, and thinks the project has been a success. Happy with the
new ideas that come from having students/people with other backgrounds
in the daily work. Also thinks it was a major advantage that I had domain
knowledge beforehand, making it easier to let me work by myself (Elmqvist’s
Do-It-Yourself is less of a risk, though still risky).
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• Asks Do you think you got adequate feedback? I answer: All-in-all, yes,
though it sometimes has been difficult to explain and get relevant feedback on
a greenfield application and research field in a large and well-established or-
ganization. We discuss the inherent inertia in such organizations, he feels that
things haven’t been moving slower than they usually do in the organization.

• Feels like there has been enough presentations of progress, and crucially that
the presentations have involved the right people, that while they often are very
busy have gotten some understanding of the project. I could have done a little
more more to identify and include key actors. Could also have done a little
more to add more interactivity to presentations, and explain the systems in
less formal/rigid/academic terms (even though I tried).

• Do you see future potential for the application? Discussed indicators of ves-
sel/master/shipping company/landing facility for inspectors, how the thesis
project could be integrated to provide indicators for missed reporting and
visual representations of indicators. Also thought it might be helpful to put
more indicators into the thesis system, not only other way around. We also
discuss potential visual representations for other indicators.

• Do you think a visualization approach has provided any benefits over auto-
matic methods? The stakeholder is a statistician, jokes that "Graphics are for
cowards". Does see the use of visualization to see developments over time and
space, especially the use of maps. Thinks the problem of validating results
from automatic methods becomes easier with the use of visualization. We dis-
cuss the use of visualization to help inspectors do their job while keeping them
accountable for their actions is easier than other approaches, and that training
and decision-making may be simpler.

• Other notable points The stakeholder feels there has been tremendous value
in the "extra-curricular activities" I have engaged in, such as the project present-
ations to a variety of groups over the course of the implementation period, the
knowledge transfer meetings and discussions of data abstraction and visual-
ization approaches for marginally relevant projects has been fundamental in
maximizing the probability that the thesis project will be used in the future,
either as inspiration to similar tools, or as a partial or wholesale solution.
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Appendix: System Usability Scale
questionnaire

The System Usability Scale (SUS) was used as part of the validation process, and the
questionnaire and scoring rules are included here for reference.

B.1 Questionnaire

The questionnaire consists of the following ten statements.

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex to use.

3. I though the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in the system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

For each statement, the user specifies whether she "strongly disagrees", "strongly
agrees", or somewhere in between, using a five-point scale:

Strongly
disagree

Strongly
agree

1 2 3 4 5
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B.2 Scoring

The Software Usability Scale gives a total score between 0 and 100. Each item can
get a score from 0 to 10. To calculate the score for an item, convert the answer for
the item to the corresponding number. For items 1, 3, 5, 7 and 9, subtract 1 from the
number, and multiply by 2.5. For items 2, 4, 6, 8, and 10, subtract the score from
5, then multiply by 2.5. The total score of the questionnaire is the sum of all the
individual items’ scores.
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