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ABSTRACT 

 

Many planktivorous fishes are known to switch between feeding modes in response to changing 

environmental conditions. According to optimal foraging theory, the preferred strategy is the one that 

gives the highest net energy return. Experiments report that increasing prey density and decreasing 

light level and prey size encourage fish to switch from visual-based bite-feeding to filter-feeding. Still, 

few attempts have been made to formulate combined models for bite- and filter-feeding to investigate 

the mechanisms regulating switching. A mechanistic, individual-based model that compares net intake 

rate of the alternative strategies in a multi-prey system is here proposed, and the model is parametrised 

for two different scenarios: 1) Atlantic mackerel (Scomber scombrus) feeding in the Norwegian Sea 

and 2) pilchard (Sardinops sagax) feeding in experimental tanks. Bite-feeding is more efficient at low 

prey densities, but the fish is predicted to switch strategy when prey density reaches above the level 

where filter-feeding becomes more profitable than bite-feeding, which is limited by prey handling 

time. Switching occurs at lower prey density if vision is reduced by low irradiance. Interestingly, 

increasing the proportion of large prey will benefit filter-feeding more than bite-feeding unless the 

prey is too evasive. Since bite-feeding fish only accept the most profitable prey, while filtration 

efficiency for this prey usually is low, overall diet composition and predation pressure on different 

prey-types vary depending on the time allocated to each feeding mode. Modelling switching dynamics 

is therefore important to improve our understanding of how planktivorous fishes structure prey 

communities.  
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1 INTRODUCTION 

 

To switch or not to switch, that is the question that planktivorous fishes are continually asked, and the 

answer is of key importance to their own success in life as well as the survival prospects of their 

potential food. Many mid-trophic species of pelagic fish are able to switch adaptively between bite-

feeding and filter-feeding as environmental conditions change (Lazzaro, 1987; van der Lingen, 1994). 

Such flexibility in feeding behaviour allows them to exploit a wide range of food resources in 

environments characterised by spatial and temporal variability in light regime and prey density and 

composition. When fish forage by bite-feeding, they pursue individual prey items that they have 

detected visually and singled out to capture (Macy, Sutherland and Durbin, 1998). When ram filter-

feeding, they swim with their mouth agape to force water through the oral cavity, extracting plankton 

from the water in the process (Sanderson, S. L., Cech, J. J., Cheer, 1994). The relative profitability of 

each of these feeding modes varies with the external environment, and the one that results in the 

highest net energy gain in a given instance is expected to be the preferred strategy (Crowder, 1985). In 

this study, I have explored some of the underlying mechanisms regulating the switch in feeding mode.    

One of the main differences between bite- and filter-feeding is how the intake rate responds to changes 

in prey density. As prey availability increases, bite-feeding fish will spend more time pursuing and 

catching prey, which means that less time is left to search for new prey (Holling, 1959; Aksnes and 

Giske, 1993). The intake rate of bite-feeding is therefore not proportional to prey density. Instead, the 

rate of increase declines until the curve reaches an asymptote at high prey densities (Fig. 1). When 

saturated with prey, bite-feeding fish will spend all their time handling encountered prey. Thus, bite-

feeding conforms to the Type II functional response described by Holling (1959). In contrast, the 

intake rate of filter-feeding increases linearly with prey density, assuming that the fish do not satiate at 

the range of prey densities normally occurring in their natural environment (Pepin, Koslow and Pearre 

Jr., 1988; Macy, Sutherland and Durbin, 1998). Filter-feeding thus conforms to Holling’s Type I 

functional response (Fig. 1, Holling, 1959). 

 

 

 

Fig. 1. Functional responses characterising the feeding modes. The intake rate from filter-feeding increases 

linearly with prey density (Type I functional response), whereas for bite-feeding the intake rate levels off at 

higher prey densities (Type II functional response). 
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Numerous experimental studies investigating the switching response have been conducted, and they 

generally report that the fish shift from bite- to filter-feeding when prey density exceeds some 

threshold level, or when prey-size relative to the predator is sufficiently reduced (Leong and 

O’Connell, 1969; O’Connell, 1972; O’Connell and Zweifel, 1972; Janssen, 1976; Gibson and Ezzi, 

1985, 1992; Pepin, Koslow and Pearre Jr., 1988; James and Findlay, 1989; van der Lingen, 1994; 

Garrido et al., 2007). Experimental studies testing the behavioural effect of changing light intensity 

have documented that filter-feeding becomes more common with decreasing light level (Holanov and 

Tash, 1978; Batty, Blaxter and Libby, 1986; Batty, Blaxter and Richard, 1990; Macy, Sutherland and 

Durbin, 1998). Members of the same school have been found to display some individual variation in 

feeding response, and the switch in strategy may also involve a transitional phase that represents an 

intermediate between the two distinct feeding modes (Janssen, 1976).    

Crowder (1985) proposed that the choice of feeding behaviour could be predicted based on cost-

benefit analyses. He demonstrated that in several experimental studies, feeding mode shifts occurred at 

approximately the prey densities or sizes where the two modes yielded equal energetic return per unit 

time (Leong and O’Connell, 1969; O’Connell, 1972; O’Connell and Zweifel, 1972; Janssen, 1976; 

Crowder and Binkowski, 1983; Crowder, 1985). This line of reasoning corresponds with the 

evolutionary logic of optimal foraging theory, which maintains that if a population exhibits variation 

in heritable behavioural traits influencing foraging success, traits that enhance fitness through 

optimisation of energy acquisition should be selected for (Emlen, 1966; MacArthur and Pianka, 1966; 

Pyke, 1984). It does however not imply that organisms are optimal, only that adaptive behaviours can 

be predicted based on optimality analyses that also consider constraints and trade-off dilemmas 

(Stearns and Schmid-Hempel, 2006).  

Little effort has so far been made to combine formulations of bite- and filter-feeding into one coherent 

mechanistic model, but a few models have been developed that compare the profitability of the 

alternative feeding modes at varying prey densities (Crowder, 1985; Hoogenboezem et al., 1992; 

Lovvorn, Baduini and Hunt, 2001). Of these, the model of underwater feeding in shearwaters by 

Lovvorn et al. (2001) is the most advanced, which also examines the effect of light on foraging 

success. Currently, no attempts have been made to formulate unified models for bite- and filter-

feeding in multi-prey systems, where variations in prey composition influence feeding behaviour. Nor 

do existing models treat bioenergetics associated with swimming kinematics and filtering mechanics 

or identify optimal swimming speeds.  

In this study, I have developed a mechanistic model that describes how fish capable of both bite- and 

filter-feeding switch strategy in response to changing environmental factors. The model explores how 

multiple influences and behavioural adjustments interact to determine the relative profitability of the 

alternative strategies when faced with different prey assemblages and light conditions. Key factors 

considered here are swimming behaviour, handling time, catchability, predator-prey size ratio, 

selectivity, filtration efficiency and energetic costs. The main objective is to improve our 

understanding of the processes regulating the pattern of switching observed among planktivorous 

fishes. The model is individual-based and deterministic, and following the example by Lovvorn et al. 

(2001), it consists of two submodels that calculate the intake rate from bite-feeding and filter-feeding, 

respectively. The fish feeds on a mixture of prey-types, and the effects of changing the three principal 

parameters ambient irradiance, total prey density and relative density of different prey-types are tested. 

Besides switching, two other behavioural responses intended to optimise foraging are also considered: 

Swimming speed is optimised for the varying conditions, and the bite-feeding fish chooses selectively 

the most profitable of the available prey.  
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To determine which feeding mode the fish will employ under different conditions, I have adhered to 

the optimality principle that the preferred strategy is the one that entails the greatest fitness advantage 

in terms of highest net specific energy intake per unit time (Crowder, 1985). This measure of fitness 

considers both the benefits (energy gained from food consumption) and costs (energy expended in 

metabolism) of the alternative strategies, and the feeding mode that maximises the difference between 

these represents the optimal solution. The model is intended to be generally applicable to all fishes 

capable of switching. In this study, the model has been parameterised to represent two different 

scenarios: 1) Atlantic mackerel (Scomber scombrus) feeding in the Norwegian Sea during summer and 

2) pilchard (Sardinops sagax) feeding in closed tanks in experimental trials. The simulation of the 

field situation (1) is independent of time, while the simulation of feeding experiments (2) runs in time-

steps. To evaluate the behaviour of the model, predictions are compared with data from real systems.  

   

 

Fig. 2. Conceptual representation of the system. The fish is expected to switch from bite- to filter-feeding if the 

prey density increases above a threshold level, or if the irradiance decreases enough to reverse the advantage of 

visual predation.   

 

 

 

 

 

 

 



10 
 

 

2 METHODS 

 

Net intake rates are calculated in two submodels—one for bite-feeding and one for filter-feeding. Both 

submodels are run under varying environmental conditions, and the fish switches strategy when the 

other feeding mode becomes more profitable than the one currently used. Simulations were performed 

in MATLAB (versions R2018b and R2019a). Complete scripts are provided as supplementary 

material (Appendix 1-2), where more detailed information about the model structure can be found.  

 

2.1 MODEL COMPONENTS 

Foraging efficiency depends on various predator and prey attributes as well as many environmental 

parameters, notably prey density and light intensity, that are beyond any direct control by the fish 

(Table 1). What the fish can control to some extent, though, is its behavioural responses to external 

influences. It can switch to the alternative feeding mode should it become more favourable, but it can 

also regulate its swimming speed and pattern to optimise the balance between consumption and 

metabolic investment. When bite-feeding, it can besides choose selectively among available prey-

types. Such modifications influence the relative profitability of each feeding mode and thereby also the 

switching dynamic, and they are therefore accounted for in the model. Other behavioural adjustments 

like predator avoidance, school formation and partitioning of resources among competitors can also be 

important, but these factors are not part of the model.  

 

 

Table 1. Some factors that determine the intake rate from aquatic feeding. The main focus is on the parameters 

that are highlighted, while the ones in grey are not included in the model.  

 

Environmental factors Behavioural factors Predator and prey characteristics 

Prey density Feeding mode Size 

Prey composition Swimming speed Filtration efficiency 

Light regime Selectivity Visibility of prey 

Temperature Schooling Capture probability 

Turbulence When to feed Handling time 

Topography Where to feed Energy content of prey 

Predation risk Predator avoidance Digestibility of prey  

Competition Niche segregation Stomach capacity 

 

 

Some of the model components are common to both submodels, whereas others are specific to either 

of them. An overview of all the parameters is given below (Table 2). 
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Table 2. Explanation of parameters used in models of bite-feeding and filter-feeding.  

 
 
 

Symbol 
 

 

Description  
 

Unit 

Ag Gape area of fish mouth  m2 

Ap Prey area  m2 

Apr Prey image area at retina m2 

af 

ah 

Bv 

Activity multiplier for filter-feeding (increases the metabolic rate) 

Activity multiplier for prey handling (increases the metabolic rate) 

Ratio of buccal flow speed to swimming speed of fish 

dimensionless 

dimensionless 

dimensionless 

C0 Inherent contrast of prey dimensionless 

Cr 

c 

Prey image contrast at retina 

Beam attenuation coefficient 

dimensionless 

m-1 

E’ Visual capacity of fish (equal to Emax/ΔSe) dimensionless 

E0 Irradiance just beneath water surface µE m-2 s-1 

Eb Background irradiance intercepted by eye lens of fish µE m-2 s-1 

Ez Irradiance at depth z µE m-2 s-1 

Emax Maximum processable irradiance at fish retina  µE m-2 s-1 

eb Rate that bite-feeding fish encounters prey ind. s-1 

eg 

ex 

Fb 

Ff 

Proportion of ingested energy egested by the fish (not assimilated) 

Proportion of assimilated energy excreted by the fish 

Bite-feeding clearance rate (volume cleared for prey per unit time) 

Filter-feeding clearance rate (volume cleared for prey per unit time) 

dimensionless 

dimensionless 

m3 s-1 

m3 s-1 

ft Fraction of total filter-feeding time that fish filters prey  dimensionless 

H Handling time when capture probability Pc is 1 s ind.-1 

h Prey-specific handling time (equal to H/Pc) s ind.-1 

Ib Absolute intake rate of bite-feeding  J s-1 

If Absolute intake rate of filter-feeding  J s-1 

K Coefficient for attenuation of diffuse light m-1 

ke Half saturation constant of light processing (irradiance at fish eye lens 

where the retinal irradiance is half the maximum processable level) 

µE m-2 s-1 

kl Prey length for which retention efficiency is half the maximum level m 

L 

l 

Mr 

Fish length 

Prey length 

Routine metabolic rate of non-feeding fish 

m 

m 

J h-1 g-1 

Mb Metabolic rate of bite-feeding fish J h-1 g-1 

Mh Metabolic rate of fish handling prey J h-1 g-1 

Ms 

Mf 

Ntot 

Npf 

p 

Pc 

Metabolic rate of fish searching for prey 

Metabolic rate of filter-feeding fish  

Total prey density 

Net profitability of prey (net energy gained per handling time) 

Proportion of prey-type to total prey density 

Capture probability (proportion of attacked prey that the fish captures) 

J h-1 g-1 

J h-1 g-1 

ind. m-3 

J h-1 g-1 

dimensionless  

dimensionless 

Pe Probability that a prey will enter the oral cavity instead of escaping dimensionless 

Pf 

Qox 

Profitability of prey (energy gained per handling time) 

Oxycalorific coefficient  

J s-1 

J (g O2)-1 

R Visual range of fish (maximum prey detection distance)  m 

r Retention efficiency (proportion of prey retained in the oral cavity) dimensionless 

rmax Maximum retention efficiency dimensionless 

s Selectivity (proportion of encountered prey that the fish will try to capture) dimensionless 

ΔSe Sensitivity threshold for detection of change in irradiance at fish eye lens µE m-2 s-1 

ΔSr Sensitivity threshold for detection of change in radiant flux at fish retina µE m-2 s-1 

sda Proportion of assimilated energy that the fish spends in processing food 

(specific dynamic action) 

dimensionless 

T Ambient temperature °C 

ts Time spent searching for prey s 

th Time spent handling prey s 

ttot Total time spent bite-feeding s 

U Swimming speed of fish   m s-1 
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u 

vb 

Proportion of ingested energy made available for use 

Swimming speed of bite-feeding fish 

dimensionless 

m s-1 

vf 

vh 

vr 

vs 

Swimming speed of filter-feeding fish 

Swimming speed of fish handling prey 

Routine swimming speed of fish 

Swimming speed of fish searching for prey 

m s-1 

m s-1 

m s-1 

m s-1 

W Wet weight of fish g 

w Wet weight of individual prey g ind.-1 

z 

α 

Depth 

Intercept of metabolic function 

m 

g O2 day-1 g-1 

β 

δ 

Search rate of fish 

Coefficient for weight dependence in metabolic function 

m3 s-1 

dimensionless 

εb Net weight-specific intake rate of bite-feeding J h-1 g-1 

εf 

θ 

ν 

ρ 

Net weight-specific intake rate of filter-feeding 

Half angle of the fish’s visual field 

Coefficient for temperature dependence in metabolic function 

Coefficient for swimming speed dependence in metabolic function 

J h-1 g-1 

degrees 

°C-1 

s m-1 

∂ Energy density of prey J g-1 

 

 

 

2.2 THE BITE-FEEDING SUBMODEL   

The efficiency of bite-feeding is determined by ambient irradiance (Ez, µE m-2 s-1), swimming speed 

(vb, m s-1) and visual capacity (E’) of the predator, density (Ntot, ind. m-3) and visibility of prey, 

predator-prey size ratio, capture probability (Pc) and the time needed to handle each prey (h, s ind-1) 

(Aksnes and Giske, 1993; Varpe and Fiksen, 2010; Van Deurs, Jørgensen and Fiksen, 2015). The bite-

feeding process comprises two main phases: a search phase where the predator actively seeks out 

potential prey using vision, and a handling phase where the fish attempts to capture and eat individual 

prey it has sighted and decided to pursue. The total time spent bite-feeding (ttot, s) is therefore the sum 

of the time spent searching for prey (ts, s) and the time allocated to prey handling (th, s): 

 

𝑡tot = 𝑡s + 𝑡h 

 

2.2.1 Search rate  

For fish searching for prey in the pelagic realm, the visual field can be represented as a spherical sector 

with radius equal to the visual range (Eggers, 1977; Aksnes and Giske, 1993). The radius of the base 

of the spherical cap (the cone base) is thus the opposite cathetus to the half angle of the visual field 

(Fig. 3). The area of the cone base is also the plane area of the cylindrical volume that the fish searches 

through (Eggers, 1977). The volume that is scanned for prey per unit search time (β, m3 s-1) is then 

given by the following equation (Aksnes and Giske, 1993; Huse and Fiksen, 2010):   

 

𝛽 = 𝑣s𝜋(𝑅𝑠𝑖𝑛𝜃)2 

 

where vs is the swimming speed of the fish searching for prey (m s-1), R is the maximum distance from 

which prey can be detected (m) and θ is the half angle of the visual field (degrees). The expression 

π(Rsinθ)2 is the plane area (m2) of the search volume, while vs corresponds to the length of the 

cylindrical volume searched per unit time (m s-1) (Eggers, 1977; Aksnes and Giske, 1993). The fact 

that the search rate increases with the square of the visual range means that light conditions greatly 

influence the efficiency of aquatic visual predation (Fig. 3).   
 

(1) 

 

(2) 
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Fig. 3. The search rate β of the bite-feeding fish increases with the square of the visual range R. If the visual 

range doubles (situation 2), the search rate quadruples.  

 

2.2.2 Visual range  

The visual range depends on the optical environment and the visual capacity of the fish as well as prey 

characteristics that affect its visibility (Aksnes and Giske, 1993; Aksnes and Utne, 1997). Larger-sized 

prey project a larger image on the fish retina, which means that the minimum image size necessary for 

detection can be obtained from a greater distance. The inherent contrast of the prey (C0) is the 

difference in radiance between the prey and the background, where brighter backgrounds require 

larger differences for a given contrast (Hester, 1968). The visual system can only discern a prey if the 

difference at the retina between the radiant flux conveying the prey image and the radiant flux from 

the background alone exceeds some threshold level (Aksnes and Giske, 1993).  

In their model of aquatic visual feeding, Aksnes and Giske (1993) showed that the change in rate of 

photons reaching the retina can be expressed as the product of the background irradiance (Eb, µE m-2  

s-1), the prey image contrast (Cr) and the area of the prey image (Apr, m2), all as they appear at the 

retina. However, the neural response to changes in radiant flux is not proportional to the intensity of 

the incident light (Aksnes and Utne, 1997). Instead, due to various signal modifications and adaptive 

responses that moderate the absorption of light energy by receptors, the neural activity increases in a 

saturating fashion towards an asymptotic value at high irradiance levels. Increasing the light intensity 

above the maximum level that can be processed will therefore have no further effect on the neural 

activity. By including a saturation parameter that accounts for this non-linear response, Aksnes and 

Utne (1997) modified the model by Aksnes and Giske (1993) to arrive at following criterion for prey 

detection in fish:   

 

|𝐶r|𝐴pr [𝐸max

𝐸b

𝑘e + 𝐸b
] ≥ ∆𝑆r 

 

where Emax is the maximum processable irradiance at retina (µE m-2 s-1), ke is the half-saturation 

constant (the irradiance at the eye lens where the retinal irradiance is at half the maximum processable 

level) (µE m-2 s-1) and ΔSr is the sensitivity threshold for detection of differences in radiant flux 

received by the retina (µE m-2 s-1) (Aksnes and Utne, 1997). Emax tends to increase with the size of the 

fish (Lovvorn, Baduini and Hunt, 2001; Breck and Gitter, 2008).      

2) 

(3) 
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Light that strikes the ocean surface will be modified by absorption and scattering by water molecules 

and different dissolved and suspended particles along its path through the water. As a consequence, 

the downwelling light decreases exponentially with depth (Fig. 4). 

 

 

 

 

 

 

 

 

Fig. 4. Attenuation of downwelling irradiance with water depth. Light decreases more rapidly near the surface.  

 

 

Beer’s Law gives a quantitative description of the attenuation process:  

 

𝐸z = 𝐸0𝑒−𝐾𝑧 

 

where Ez is the irradiance (µE m-2 s-1) at a given depth (z, m), E0 is the irradiance just beneath the 

water surface (µE m-2 s-1) and K is the coefficient for attenuation of diffuse light (m-1). Different 

wavelengths are attenuated at different rates, and the spectral composition of light consequently 

changes with depth.  

The image transmitting ability of the light will also decrease due to beam attenuation processes 

(Aksnes and Giske, 1993). Accounting for these modifications, the criterion for prey detection (Eq. 3) 

can be translated into one that considers changes in irradiance at the eye lens when the prey is situated 

at a given distance away (Aksnes and Giske, 1993; Aksnes and Utne, 1997). The maximum distance R 

at which a prey can be detected is where the change in irradiance is equal to the sensitivity threshold:    

 

𝑅−2𝑒−𝑐𝑅|𝐶0|𝐴p [𝐸max

𝐸z

𝑘e + 𝐸z
] = ∆𝑆e 

or 

𝑅2𝑒𝑐𝑅 = |𝐶0|𝐴p𝐸′ [
𝐸z

𝑘e + 𝐸z
] 

 

where c is the beam attenuation coefficient (m-1), C0 is the inherent prey contrast (dimensionless), Ap is 

the prey area (m2), ΔSe is the sensitivity threshold for detection of differences in light intensity at the 

eye lens (µE m-2 s-1) and E’ represents the visual capacity of the fish as a dimensionless composite 

parameter equal to Emax/ΔSe. To determine the visual range for a certain prey-type at known light 

conditions, Eq. 5b is solved iteratively by use of the Newton-Raphson method (Aksnes and Utne, 

1997).        

 

(5b) 

 

(5a) 

 

(4) 
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2.2.3 Encounter rate  

Via the search rate β, the swimming speed vs and the visual range R determine the number of prey of a 

given density that the fish encounters per unit time spent searching. However, to get the full picture, 

the time allocated to searching versus prey handling must be taken into account. As more prey are 

encountered, more prey must also be handled, which requires time. Hence, less time is left for 

searching. When the fraction of time spent handling prey becomes sufficiently high, the encounter rate 

no longer increases with further increase in prey density. To estimate the overall encounter rate for 

bite-feeding, i.e. the number of prey encountered per total time (eb, ind. s-1), the encounter rate for the 

search phase must be multiplied with the fraction that the search time (ts, s) takes of the total time (ttot, 

s): 

 

𝑒b =
𝑡𝑠

𝑡𝑡𝑜𝑡
𝑁𝑡ot ∑ 𝑝𝑖𝛽𝑖

𝑛

𝑖=1

 

 

where n is the number of available prey-types (i), Ntot is the total prey density (ind. m-3) and pi is the 

proportion of prey-type i to total prey density. The indexed parameters are specific for prey-type i, and 

the weighted mean search rate β (m3 s-1) for all prey combined is calculated based on the proportion of 

each prey-type. Ntot corresponds to the density of prey from all prey-types included in the diet when it 

is at its broadest. A prey-type may be one or more taxonomic groups or different stages or size classes 

within groups. 

Due to time restrictions, not all of the encountered prey are handled. When the fish discovers a 

potential prey item, it has to decide whether it should try to capture it or instead use the time to search 

for more profitable prey (Charnov, 2002). As the handling time becomes more limiting and the supply 

of prey to choose from increases, the fish should become ever more selective (Krebs et al., 1977). 

Explicit criteria for prey selection will be derived in a later section, but for now the main point is that 

the fish only spends time on prey it has selected, and the time is spent whether or not it succeeds in 

capturing the prey. To determine the fraction of the total time that is spent searching, the denominator 

of the Holling disc equation can be modified by introducing a selectivity parameter si that either takes 

the value 1 (if prey-type is accepted) or 0 (if prey-type is rejected) (Holling, 1959; Charnov, 2002): 

 
𝑡𝑠

𝑡𝑡𝑜𝑡
=

1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

 

 

where hi is the prey-type specific time needed to handle individual prey (s ind.-1). From Eq. 6b it 

becomes clear that higher prey density and also light intensity via the search rate β will increase 

handling time limitations so that less time is left to search for prey. When substituting this expression 

into Eq. 6a, we arrive at following formulation for the encounter rate (Holling, 1959; Visser and 

Fiksen, 2013): 

 

𝑒b =
𝑁𝑡ot ∑ 𝑝𝑖𝛽𝑖

𝑛
𝑖=1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

 

 

2.2.4 Clearance rate and absolute energy intake  

The clearance rate of the bite-feeding fish (Fb, m3 s-1) is the volume cleared for prey per unit time or 

the ratio between the rate of prey eaten and the total prey density:  

(6b) 

 

(6a) 

 

(6c) 
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𝐹b =
∑ 𝑝𝑖𝛽𝑖𝑠𝑖𝑃c𝑖

𝑛
𝑖=1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

 

 

where Pci is the prey-type specific probability that the fish will succeed in capturing a prey it has 

selected (expressed as a proportion). The clearance rate is also a measure of the predation pressure. 

The higher the proportion of prey present in a given volume that is eaten per unit time, the higher is 

the risk that any individual prey will be eaten. The capture probability will be lower for prey with 

good escape responses, which vary between different prey-types. In general, more developed stages 

and larger-sized individuals have better escape ability. The handling time will also vary for different 

prey-types, since more evasive prey may take longer time to capture. To account for this variation, the 

prey-type specific handling time (hi) is defined as being inversely proportional to the prey-type-

specific capture probability (Pc,i): 

 

ℎ𝑖 =
𝐻

𝑃c𝑖

 

 

where the constant H represents the handling time (s ind.-1) when capture probability is 1. Multiplying 

clearance rate (Fb) with total prey density (Ntot) gives the number of individuals eaten per unit time, 

and multiplying again with the energy content of individual prey (the product of weight (w, g ind.-1) 

and energy density (∂, J g-1)) gives the rate of energy intake (Visser and Fiksen, 2013): 

 

𝐼b =
𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖𝑃c𝑖

𝑤𝑖𝜕𝑖
𝑛
𝑖=1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

 

 

where Ib is the absolute intake rate of bite-feeding for all prey combined (J s-1). It is uncertain whether 

or to what extent planktivorous fish become satiated in their natural environment, as piscivorous fish 

do. Piscivorous fish eat much larger prey that takes longer time to digest, and their feeding is therefore 

gut-limited (Fall and Fiksen, in press; Breck, 1993). In this model, the stomach capacity is not 

assumed to place any limits on the intake rate of adult planktivorous fish (Pepin, Koslow and Pearre 

Jr., 1988). Instead, handling time limits ingestion to a level below the full capacity.  

 

2.2.5 Metabolic rate and net energy intake  

To determine net rate of energy intake, several forms of energy loss must be subtracted from the 

absolute intake rate (Kitchell, Stewart and Weininger, 1977; Stewart et al., 1983; Bachiller et al., 

2018). Organisms are not able to exploit all energy consumed, and some of the energy made available 

will be spent in cellular respiration. The remaining energy can be invested in biomass accumulation in 

the form of growth, energy storage or reproduction. The proportion u of ingested energy that is 

available for use in metabolism or bioaccumulation can be expressed as follows: 

 

𝑢 = (1 − 𝑒𝑔)(1 − 𝑠𝑑𝑎 − 𝑒𝑥) 

 

where eg is the proportion of ingested energy that is egested instead of assimilated, sda is the 

coefficient of specific dynamic action (proportion of assimilated energy expended in processing food) 

and ex is the proportion of assimilated energy that is excreted (Bachiller et al., 2018). The weight-

specific metabolic rate (M, J h-1 g-1) decreases with the weight of the fish (W, g) and increases with 

ambient temperature (T, °C) and swimming speed (U, m s-1) in the following relationship (Stewart et 

al., 1983): 

(7) 

 

(9) 

 

(8) 

 

(10) 
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𝑀 = 𝛼𝑄ox𝑊𝛿−1𝑒𝜌𝑇𝑒100𝜈𝑈
1

24
 

 

A factor of 100 is applied to convert swimming speed from metres per second to centimetres per 

second (the unit used by Stewart et al. (1983)), and the model is divided by 24 to convert from a daily 

to an hourly rate. α, δ, ρ and ν are constants estimated empirically by use of multiple linear regression 

of log-transformed data, where the metabolic rate is measured as total oxygen consumption by the 

fish. In order to convert to weight-specific energy expenditure, the intercept α (g O2 day-1 g-1) of the 

model is multiplied by an oxycalorific coefficient Qox (J (g O2)-1) (Elliott and Davison, 1975), and the 

model is divided by the fish weight. Accordingly, the value of 1 is subtracted from the coefficient of 

weight-dependence δ, making the exponent negative (Stewart et al., 1983).  

In the model, metabolic rates are calculated for each of the different activity modes (non-, bite- and 

filter-feeding). To save energy, the non-feeding fish employs routine swimming, where the speed vr 

(m s-1) is adjusted to let the fish cover sufficient distances with minimum investment. The routine 

metabolic rate Mr (J h-1 g-1) is consequently lower than the metabolic rate of feeding fish. When bite-

feeding, the fish engages in two distinct activity states with different associated metabolic rates. The 

total metabolic rate of the bite-feeding fish (Mb, J h-1 g-1) can hence be decomposed into a search 

component (Ms, J h-1 g-1) and a handling component (Mh, J h-1 g-1), the relative contribution of each 

depending on how much of the time is allocated to searching versus handling:   

 

𝑀b =
𝑡s

𝑡tot
𝑀s +

𝑡h

𝑡tot
𝑀h 

 

𝑀b =
1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

𝑀s + (1 −
1

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

) 𝑀h 

 

𝑀b =
𝑀s − 𝑀h

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

+ 𝑀h 

 

In Eq. 11 the swimming velocity is assumed to be rather stable, which as an approximation can hold 

for the search phase of bite-feeding. During the handling phase, however, the fish often changes speed 

and direction in order to capture prey (van der Lingen, 1994). To account for the higher energetic costs 

associated with such frequent accelerations (Boisclair and Tang, 1993), an activity multiplier ah for 

prey handling is applied to the equation for the metabolic rate (Eq. 11):     

 

𝑀h = 𝑎h𝑀 

 

The value of ah is always higher than 1, but how much depends on the swimming behaviour of the  

species in question. When the metabolic rate has been quantified, the net specific energy intake rate 

(εb, J h-1 g-1), which is the energy available for biomass production per unit fish weight, can be 

calculated in this way:   

 

𝜀b =
𝑢𝐼b

𝑊
3600 − 𝑀b 

 

A factor of 3600 is applied to convert the intake per second to an hourly rate. Because net energy 

intake from feeding (εb) can be negative, it follows from Eq. 14 that fish can lose biomass at a higher 

rate while feeding than while fasting. This is contradictory to the purpose of feeding, and a threshold 

for the initiation of bite-feeding is therefore defined: 

(11) 

 

(13) 

(14) 

(12a) 

 

(12b) 

 

(12c) 
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𝜀b > − 𝑀r 

 

2.2.6 Optimal swimming speed  

The fish can regulate its swimming speed in order to maximise energy gain, and the optimal speed is 

identified as the speed that results in the highest net energy intake (Ware, 1975). The absolute speed 

that is optimal for foraging increases with body length, but the optimal relative speed (in body lengths 

per second) is lower for larger fish. In situations with low prey densities, the optimal swimming speed 

will increase with the supply of prey, but at higher densities more of the time will be spent handling 

prey. It is therefore commonly presumed that the fish should save energy by reducing swimming speed 

at high prey densities (Ware, 1978). This model however distinguishes between the swimming 

behaviours associated with each of the two different phases of bite-feeding.  

The fish is only able to handle one prey at a time, and it should do so in the most efficient way to 

increase the possibility of successful capture without expending too much time and energy. Efficient 

capture means that more time can be spent searching for additional prey to eat, or if saturated with 

prey, more of the available prey can be procured. In other words, the optimal swimming behaviour 

should ensure a high ratio between the capture probability Pc and the handling time h, and ideally, it 

should be specific to each prey-type (i).  

The benefit of increasing this ratio is highest when the encounter rate is at its maximum (handling time 

limits the consumption), but as an approximation, the mean swimming speed vh during the handling 

phase is assumed to be independent of prey density and light intensity. The swimming speed varies 

highly in the course of each handling event, and sharp manoeuvres and fast accelerations are probably 

more important for the outcome than what the mean speed is. For a given size and species of fish, a 

single value for vh that is constant across all prey-types and environmental conditions is therefore 

chosen based on swimming speeds reported in the literature.   

The swimming pattern is more stable during the search phase, and although the search rate varies 

between prey-types due to different visual ranges, the search swimming speed vs is the same for all 

prey. It can hence be factored out of the expression for the weighted mean search rate so that the 

equation for the encounter rate (Eq. 6c) becomes: 

 

𝑒b =
𝑁tot𝑣s ∑ 𝑝𝑖(𝑅𝑖𝑠𝑖𝑛𝜃)2𝑛

𝑖=1

1 + 𝑁tot𝑣s ∑ 𝑝𝑖(𝑅𝑖𝑠𝑖𝑛𝜃)2𝑠𝑖ℎ𝑖
𝑛
𝑖=1

 

 

From Eq. 16 it follows that the encounter rate (eb) and thereby the intake rate (εb) will increase with 

the search swimming speed vs, but that the rate of increase will decline at higher prey densities (Ntot) 

and/or light intensities (directly influencing visual range R). The encounter rate then approaches its 

maximum. Higher vs will itself also increase handling time limitations, and the intake rate will  

consequently respond more to changes in vs when the speed is low. When nearly all of the time is 

spent handling prey rather than searching for them, the value of vs does not matter anymore.    

 

The metabolic rate (Mb, Eq. 12c) will also increase with the swimming speed, and the fish is therefore 

expected to save energy by slowing down at very low encounter rates when there is little to gain from 

the investment. The optimal search swimming speed vs can be determined for each of the different 

light intensities and prey densities and compositions by choosing among a realistic spectre of 

swimming speeds the one that gives the highest net energy intake. The weighted mean swimming 

speed vb during bite-feeding can be calculated in the same way as done for the metabolic rate (Eq. 

(16) 

(15) 
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12c), by taking into account the fraction of the total time that is spent on searching (ts) and handling 

(th): 

 

𝑣b =
𝑣s − 𝑣h

1 + 𝑁tot ∑ 𝑝𝑖𝛽𝑖𝑠𝑖ℎ𝑖
𝑛
𝑖=1

+ 𝑣h 

 

As handling time becomes more limiting, the overall swimming speed vb will change from being most 

similar to vs to become nearly equal to vh.   

 

2.2.7 Selectivity and optimal diet breadth  

Traditionally, the concept of selectivity in foraging fish has been applied as a general term for the 

discrepancy between the prey composition found in fish stomachs and the prey composition observed 

in their environment (Luo, Brandt and Klebasko, 1996). Much of this discrepancy can however be 

ascribed to differential encounter rates for prey of different sizes and contrasts, or differential capture 

rates for prey with different escape abilities (Drenner, Strickler and O’Brien, 1978; Holzman and 

Genin, 2005). These are both forms of passive selection and do not reflect real preferences in the fish. 

To determine patterns of active prey choice, the prey community must be viewed from the fish’s 

perspective, that is, the prey composition observed by the fish (Luo, Brandt and Klebasko, 1996).   

Several forms of active selection have been proposed, for example specialisation on the most common 

prey-type (Murdoch et al., 1975), but here preferences are based on the profitability of prey, which is 

consistent with the intake maximation principle (Visser and Fiksen, 2013). The profitability pfi (J s-1) 

of prey of a given type (i) can be defined as the ratio between the energy gained from handling the 

prey and the time it takes to handle it (Charnov, 2002): 

 

𝑝𝑓𝑖 =
𝑃c𝑖

𝑤𝑖𝜕𝑖

ℎ𝑖
 

 

where wi and ∂i is the wet weight (g ind.-1) and energy density (J g-1) of prey-type i, respectively. The 

net profitability can be determined by multiplying the energy consumed with the proportion that 

becomes available for use per unit fish weight and then subtracting the metabolic cost of handling:  

 

𝑁𝑝𝑓𝑖 =
𝑢𝑝𝑓𝑖

𝑊
3600 − 𝑀h 

 

where Npfi is the net profitability or the net weight-specific energy intake during handling of the prey 

(J h-1 g-1). For fish foraging on a mixture of prey-types, which differ in catchability, size and energy 

density, it is only worth to invest time in trying to capture a prey from category i if it meets the 

criterion (Charnov, 2002; Visser and Fiksen, 2013):   

 

𝑁𝑝𝑓𝑖 ≥ 𝜀b 

 

The value of the selectivity parameter s becomes 1 if the criterion is met, or 0 if it is not met (Charnov, 

2002). If the net energy gained per handling time is lower than the overall net intake rate, the fish 

should ignore the prey. This inclusion criterion is independent of the density and search rate for the 

prey-type in question, since only the intake rate during the handling of the prey determines whether 

the total intake rate will change by including it, and if so, in what direction it will change. What the 

density and search rate influence, though, is how much the intake rate will change. If the prey-type 

constitutes a large proportion of the total prey density, or if the prey can be detected from a long 

(17) 

 

(18a) 

 

(18b) 

 

(19) 
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distance compared to other members of the diet, more individuals of this prey-type will be handled per 

unit time. This increases the significance of including the prey-type. Also, if it takes long time to 

handle it, more of the total time will be spent on this prey-type.         

The selectivity values for each prey-type is decided by first ranking them according to profitability, 

and then testing one diet at a time, beginning with the most profitable prey-type and then adding the 

next in the rank (Visser and Fiksen, 2013) (Appendix 1). To determine the maximum potential diet 

breadth, each prey-type can be tested to decide if it is profitable to handle it if it was the only food 

available: 

 

𝑁𝑝𝑓𝑖 >  − 𝑀r 

 

If net rate of energy intake during handling is more negative than the routine metabolism, the fish will 

lose biomass feeding on the prey and should therefore reject it, even if it is the only available prey-

type. The maximum potential diet breadth will be equal to the number of prey-types (n) that fulfil the 

criterion set in Eq. 20. Under most circumstances, the optimal diet will only constitute a fraction of 

this theoretical diet. The optimal diet becomes narrower as the intake rate increases and unprofitable 

prey-types are excluded, until eventually only the most valuable of the potential prey are accepted at 

saturating conditions (Charnov, 2002; Visser and Fiksen, 2013). The optimal diet breadth will vary as 

total prey density, relative densities of different prey-types and light conditions change.       

 

2.3 THE FILTER-FEEDING SUBMODEL 

Filtration or suspension-feeding is a foraging mode where the fish extracts small prey items from the 

water as it flows through the oral cavity, passes laterally through the gills and exits behind the 

opercula where the pressure is lower (Sanderson, S. L., Cech, J. J., Cheer, 1994; Sanderson et al., 

2001, 2016). Several mechanisms have traditionally been proposed to explain how particles are 

retained in the fish mouth. One common supposition has been that the gill rakers protruding from the 

branchial arches form a mesh that functions as a dead-end sieve through which water flows 

perpendicularly (Sanderson et al., 2001). Only particles that are larger than the pore sizes in the filter 

are retained, while the smaller ones escape through as part of the filtrate. Another suggested 

mechanism is that particles are entrapped by adhering to mucus-covered surfaces on the filter 

(Sanderson et al., 2001).    

More recent studies that employ video endoscopy and numerical simulations of hydrodynamic flow 

patterns have revealed that fish instead capture particles by means of cross-flow filtration, where the 

water flows parallel to the filter surface (Sanderson et al., 2001, 2016; Cheer et al., 2012; Brooks et 

al., 2018). Some of the water separates from the parallel flow and exits through the pores, while the 

majority of particles follow the main flow towards the posterior oral cavity, where they are 

concentrated. This enables the fish to retain particles that are much smaller than the mesh size of the 

gill raker filter, as has been observed in several species (Lazzaro, 1987; van der Lingen, 1994; 

Langeland and Nøst, 1995).  

Through endoscopic documentation of particle trajectories in mouths of filter-feeding fish, Sanderson 

et al. (2001) discovered that about 95% of the food particles present in the water never actually come 

into contact with any oral surface during their transport. Furthermore, surgical removal of gill rakers in 

tilapia did not result in any substantial impairment of the ability to retain small particles, as would be 

expected if the gap between the rakers determined the threshold size of retainable particles (Drenner et 

al., 2004; Smith and Sanderson, 2013).   

The fact that particles do not accumulate on the gill rakers means that the fish avoids clogging of the 

filtering apparatus, but the mechanisms by which particles remain suspended in the flow have only 

(20) 
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recently been elucidated. When Sanderson et al. (2016) investigated the filtration process in physical 

models of paddlefish and basking shark, they noticed that the branchial arches and the slots between 

them form a series of ribs with small ratio between groove width and rib height (Sanderson et al., 

2016). These ribs act as backward-facing steps along the wall of the oral cavity, and the gill rakers 

form a porous outer surface that is separated from the main flow by the slots. When the cross-flow 

passes a rib, a vortex is generated that covers the whole slot between the two neighbouring ribs, with 

the effect that particles are transported back into the oral cavity and transferred further posterior 

towards the oesophageal opening. This filtration principle, termed vortical cross-step filtration, 

appears to be a convergent phenomenon found in both baleen whales and filter-feeding birds as well as 

planktivorous fish (Sanderson et al., 2016).  

 

2.3.1 Filtration efficiency  

The maximum clearance rate (Fmax, m3 s-1) is the theoretical maximum volume that the fish can clear 

for prey per unit time. For ram filter-feeding, this rate is determined by the swimming speed (vf, m s-1) 

and the gape area of the fish mouth (Ag, m-2) in the following relationship (Fig. 5, Durbin and Durbin, 

1975; van der Lingen, 1994):  

 

𝐹max = 𝑣f𝐴g 

 

In reality the clearance rate is always some fraction of this theoretical rate. Some of the feeding time is 

used to handle the filtered prey (van der Lingen, 1994; Sims, 1999; Garrido et al., 2007), the intra-oral 

flow speed is lower than the swimming speed (Sanderson, S. L., Cech, J. J., Cheer, 1994), and not all 

of the particles that enter the oral cavity are retained (Friedland, Haas and Merriner, 1984; Langeland 

and Nøst, 1995; Mummert and Drenner, 2004). Also, some of the prey that would otherwise have 

entered the oral cavity manage to evade the fish gape due to escape responses (Drenner, Strickler and 

O’Brien, 1978; Kiørboe and Visser, 1999; Heuch, Doall and Yen, 2007). The clearance rate of filter-

feeding fish Fmax can thus be compared to the search rate β of the bite-feeding fish—both are measures 

of the volume of water processed in a given time, but not all of the prey present in this volume can be 

exploited.  

 

 

 

Fig. 5. The theoretical maximum clearance rate Fmax of the filter-feeding fish is the product of the swimming 

speed vf and the mouth gape area Ag. 

 

 

The actual volume cleared by a filter-feeding fish per time-unit can be estimated empirically by 

measuring the difference in prey concentration at the start and end of a feeding trial (Harvey, 1937; 

(21) 
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Friedland, Haas and Merriner, 1984; van der Lingen, 1994). The ratio of this experimental rate to the 

maximum clearance rate gives a measure of the filtration efficiency (Durbin and Durbin, 1975), but it 

does not tell us how this fraction can be attributed to the different components of the filtration process.  

 

2.3.2 Fraction of time spent filtering 

Filter-feeding fish are observed to periodically close their mouth and opercula for a brief time before 

they resume filtering, supposedly because they need to swallow the filtered prey (Ehlinger, 1989; 

Sanderson, Cech and Patterson, 1991; Sanderson, S. L., Cech, J. J., Cheer, 1994; van der Lingen, 

1994; Garrido et al., 2007). The duration of each filtering bout times the frequency gives the fraction 

of the total time that the fish spends filtering. In a feeding experiment with Sardinops sagax, the 

filtering bout duration was on average 1.3 s, and they filtered 85% of the time (van der Lingen, 1994). 

In an experiment with Sardina pilchardus, the fish were observed to swim with their mouth open 52% 

of the time, each bout lasting around 0.5 s (Garrido et al., 2007). Others have reported feeding bout 

durations ranging from 0.2 to 4.4 s (Leong and O’Connell, 1969; Janssen, 1976; Gibson and Ezzi, 

1985; James and Findlay, 1989).  

 

2.3.3 Buccal flow velocity  

In a study on American paddlefish (Polyodon spathula) where they simultaneously measured the 

buccal flow speed with a thermistor probe and the swimming speed using videotapes, Sanderson et al. 

(1994) found that the intra-oral flow speed during ram filter-feeding was 60% of the swimming speed 

(Sanderson, S. L., Cech, J. J., Cheer, 1994). They hypothesised that this reduction in speed might be 

due to the resistance exerted by the oral surfaces. Higher resistance will cause more water to be 

displaced in front of the mouth instead of entering and therefore lower the filtering rate (Sanderson, S. 

L., Cech, J. J., Cheer, 1994). It is possible that the buccal flow fraction will decrease at high 

swimming speeds, since then the filtering apparatus might function more as a solid surface than a 

filter, but whether the fish swims at high enough speeds to significantly impede the functioning of the 

filtering system is uncertain (Carey and Goldbogen, 2017).  

If the oral cavity widens posterior to the mouth opening, this expansion in “pipe” diameter will also 

cause the flow to slow down (Sanderson, S. L., Cech, J. J., Cheer, 1994), but without changing the 

volume of water passing through the mouth per unit time. The buccal flow speed is still important for 

the filtration efficiency, though, since the Reynolds number (the ratio of inertial forces to viscous 

forces) increases with the flow velocity. This again affects the particle encounter rate and retention 

efficiency (Siddiqui and Banerjee, 1975), but for simplicity, only reduction in buccal flow speed that 

affects the volumetric rate of the flow is considered in this model.  

 

2.3.4 Retention efficiency  

Although there seems to be no clear general correspondence between the gill raker gap and minimum 

size of retainable prey (Gibson, 1988; Langeland and Nøst, 1995; Drenner et al., 2004; Smith and 

Sanderson, 2013), some studies have nevertheless reported a correlation between gill raker gap and 

retention efficiency for different prey-types. The common bream (Abramis brama) is for example 

known to adjust the gill raker gaps to feed selectively on different size classes of prey (Hoogenboezem 

et al., 2008). It is also unable to retain Daphnia that are much wider than the smallest retainable 

copepods, which proposedly is due to the more flattened shape of Daphnia which allows it to pass 

between the rakers (Van den Berg et al., 1993). Moreover, as the Pacific mackerel (Scomber 

japonicus) grows larger and employs filter-feeding more frequently, the gill raker gaps narrow 
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(Molina, Manrique and Velasco, 1996). Since dead-end sieving in fish is refuted, it is possible that the 

gill rakers more indirectly influence particle retention through their effect on hydrodynamic flow 

patterns (Cheer et al., 2012).    

It is widely observed that the retention efficiency increases with the size of the food particles until the 

maximum retainability is reached at a given size, which varies between species and different stages 

within species (Friedland, Haas and Merriner, 1984; van der Lingen, 1994; Langeland and Nøst, 1995; 

Mummert and Drenner, 2004). A possible reason for this size-specific retention efficiency is that drag 

forces and inertial forces are greater for larger particles, which cause them to deviate from the 

streamlines that pass through the gill raker gaps (Cheer et al., 2012). Instead, they adhere to the main 

flow pattern of recirculating vortices and cross-flow (Sanderson et al., 2016; Brooks et al., 2018).  

Presuming that the retention efficiency does not change considerably with the length of the fish once it 

has reached adult size, but that the retainability of prey increases with prey length before it gradually 

levels off, the retention efficiency for prey-type i (ri) can be described with a Michaelis-Menten 

equation:  

 

𝑟𝑖 = 𝑟max

𝑙𝑖

𝑘l + 𝑙𝑖
 

 

where rmax is the maximum retention efficiency (value near 1), kl is a species-specific parameter 

representing the prey length for which retention efficiency is half the maximum value (m) and l is the 

length of the prey (m). The retention efficiency represents the proportion of incoming prey that are 

retained in the oral cavity and is thus a dimensionless quantity. If all prey-types included in the 

specified diet have mean sizes above the level where maximum retention efficiency is reached, r is 

equal to rmax for all prey.   

 

2.3.5 Evasiveness of prey  

When the fish makes its way through the water, it generates hydrodynamic signals that can be detected 

by nearby prey, eliciting escape responses. When bite-feeding, the fish aligns itself to seize particular 

prey, guided by vision, but when filter-feeding, the fish does not specifically target individual prey. 

The behaviour of the fish is more predictable during filter-feeding, which makes it easier for prey to 

evade. In the model, the probability that a prey positioned in the trajectory of the fish will enter the 

oral cavity instead of escaping is therefore set lower than the probability that similar prey will be 

captured during the handling phase of bite-feeding. Prey from some taxonomic groups and size classes 

are more evasive than others, which causes differential feeding rates on different prey-types also for 

filter-feeding, even though the fish is not selective in a behavioural sense.  

 

2.3.6 Clearance rate and absolute energy intake 

The clearance rate of the filter-feeding fish can be modelled by adding to Eq. 20 the different 

components that determine the filtration efficiency (Lovvorn, Baduini and Hunt, 2001). The clearance 

rate or filtration rate (Ff, m3 s-1) is then expressed as a fraction of the theoretical maximum rate: 

 

𝐹f = 𝑣f𝐴g𝑓t𝐵v ∑ 𝑝𝑖𝑃e𝑖𝑟𝑖

𝑛

𝑖=1

 

 

(22) 

(23) 
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where ft is the fraction of the total filter-feeding time that the fish actually filters prey, Bv is the fraction 

that the buccal flow speed takes of the swimming speed, Pei is the probability that a prey will enter the 

fish mouth and ri is the probability that the prey will be retained in the oral cavity once it has entered. 

Similar to the bite-feeding intake (Eq. 9), the absolute intake rate If of filter-feeding (J s-1) is calculated 

by multiplying the clearance rate (Ff) with the total prey density (Ntot) and the energy content of prey 

(wi∂i):  

 

𝐼f = 𝑣f𝐴g𝑓t𝐵v𝑁tot ∑ 𝑝𝑖𝑃e𝑖𝑟𝑖𝑤𝑖𝜕𝑖

𝑛

𝑖=1

 

 

2.3.7 Metabolic rate and net energy intake 

The metabolic rate of filter-feeding differs from that of bite-feeding due to different swimming 

patterns and body shapes (James and Probyn, 1989; van der Lingen, 1995; Carey and Goldbogen, 

2017). When filtering, the fish flares its opercula and opens the mouth wide. Hence, the body becomes 

less streamlined, and the fish experiences higher drag (Durbin and Durbin, 1983; James and Probyn, 

1989; Sanderson and Cech, 1992; Macy, Durbin and Durbin, 1999). 

The fish can compensate for this increased cost of locomotion by moderating its swimming behaviour. 

For northern anchovy (Engraulis mordax), Carey and Goldbogen (2017) found that kinematic 

parameters were much less variable during filter-feeding than during routine swimming, which is 

characterised by alternating phases of acceleration and gliding (beat-glide swimming) (Carey and 

Goldbogen, 2017). When the body is held straight, the drag imposed on it is much lower than when it 

flexes, leading the fish to adopt a more stable swimming pattern with reduced lateral movements while 

filter-feeding. They also speculated that filtration may be more efficient if the filtering apparatus is 

kept steady, or that filtering mechanics impede movement of anterior body (Carey and Goldbogen, 

2017).  

Studies that have measured respiration rate of fish in relation to feeding mode report different relative 

costs of bite- and filter-feeding for different species and size classes within species (James and Probyn, 

1989; Yowell and Vinyard, 1993; van der Lingen, 1995). The slope of the relationship between 

respiration rate and swimming speed during filter-feeding is found to be much steeper for Cape 

anchovy (Engraulis capensis) than it is for pilchard (Sardinops sagax) and Atlantic menhaden 

(Brevoortia tyrannus) with size almost 2.8 times the length of anchovy (James and Probyn, 1989; van 

der Lingen, 1995). For the small-sized anchovy, filter-feeding is more energetically expensive than 

bite-feeding (James and Probyn, 1989), whereas the opposite is observed for pilchard (van der Lingen, 

1995).  

The reason for this discrepancy is probably that while viscous forces are negligible compared to 

inertial forces for pilchard, the Reynolds number for anchovy is low enough to make viscous forces 

count. The importance of skin friction is thereby increased, which is higher when filter-feeding than 

when bite-feeding (James and Probyn, 1989; Vogel, 1994; van der Lingen, 1995). In contrast, the 

untidy swimming pattern of bite-feeding is more energy demanding for the larger pilchard. This 

corresponds with the fact that bite-feeding is the principal foraging mode of anchovies (James, 1987; 

James and Findlay, 1989), while adult pilchards are mainly filter-feeders that can switch to bite-

feeding if presented with larger food items (van der Lingen, 1994). Similarly, for blue tilapia (Tilapia 

aurea) the weight-specific cost of filter-feeding is reported to decrease with size, whilst for bite-

feeding it increases (Yowell and Vinyard, 1993). It is also generally observed that fish capable of 

filtering change feeding behaviour throughout ontogeny from employing bite-feeding only to engage 

(24) 
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more in filter-feeding when they reach a threshold size (Janssen, 1976; Drenner, de Noyelles and 

Kettle, 1982; Sanderson and Cech, 1992; Yowell and Vinyard, 1993). 

In summary, the metabolic rate is higher for filter-feeding than for non-feeding activity (Hettler, 1976; 

James and Probyn, 1989; van der Lingen, 1995), but how much higher depends partly on the fish size. 

To account for this, Eq. 11 is multiplied with a size-specific activity coefficient af, which gives the 

following equation for the metabolic rate Mf of filter-feeding (J h-1 g-1): 

 

𝑀f = 𝑎f𝑀 

 

Once the absolute energy intake and metabolic rate have been determined, the net weight-specific 

intake rate εf of filter-feeding (J h-1 g-1) can be calculated in the same way as done for bite-feeding 

(Eq. 14): 

 

𝜀f =
𝑢𝐼f

𝑊
3600 − 𝑀f 

 

Similar to the bite-feeding criterion (Eq. 15), the fish will not initiate filter-feeding unless the net 

energy intake (εf) exceeds the threshold level corresponding to the non-feeding routine metabolic rate 

(Mr): 

 

𝜀f > − 𝑀r 

 

2.3.8 Optimal swimming speed  

It is uncertain to which extent filter-feeding fish are able to regulate their swimming speed to 

maximise net energy return, but basking sharks (Cetorhinus maximus) have been shown to change 

swimming speed according to prey availability (Sims, 1999). Carey and Goldbogen (2017) observed 

that the northern anchovy lowers its speed during filter-feeding compared to routine swimming, which 

has also been documented for filtering sharks and bowhead whales (Sims, 1999; Heyman et al., 2001; 

Simon et al., 2009). This probably reflects the high cost of filter-feeding, but it is also possible that the 

filtering process is hampered if the speed becomes too high (Carey and Goldbogen, 2017). In contrast, 

other studies have found that the fish increases its swimming speed during filter-feeding (Pepin, 

Koslow and Pearre Jr., 1988; James and Probyn, 1989), but some of these cases might represent initial 

“feeding frenzy” of the fish when prey is introduced rather than normal filter-feeding activity (James 

and Probyn, 1989; Carey and Goldbogen, 2017).   

The results of studies comparing swimming speeds for the two feeding modes are also variable. Some 

report that the fish swims faster while filter-feeding than while bite-feeding (Gibson and Ezzi, 1985; 

Pepin, Koslow and Pearre Jr., 1988), whereas others report the opposite (James and Findlay, 1989; 

Batty, Blaxter and Richard, 1990). In any case, since the energy return increases with prey density, the 

filter-feeding fish is expected to increase its swimming speed in response to higher prey availability 

before levelling off when the costs become too high compared to the intake (Ware, 1978). Similar to 

the swimming speed during the search phase of bite-feeding, the swimming speed chosen in the filter-

feeding model is the one that maximises net energy return.   

 

 

 

(25) 
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2.4 MODEL APPLICATIONS  

In order to examine the behaviour of the model, it is applied on two different species of fish known to 

alternate between bite- and filter-feeding, and for which relevant field or experimental data are 

available. These applications can serve as examples of how the model can be adapted to simulate 

systems in the real world. The first example is of Northeast Atlantic mackerel (Scomber scombrus) 

feeding in Atlantic waters in the Norwegian Sea during its summer migration (Langøy et al., 2006). 

The second represents feeding trials where pilchards (Sardinops sagax) forage in closed experimental 

tanks (van der Lingen, 1994). The model is calibrated to make it suitable for the particular species by 

adjusting the parameter values according to data found in scientific literature and comparing model 

results with observations from the real systems. The simulation experiments do however not establish 

the predictive ability of the model, which would require data sets independent of the ones used to 

calibrate the model.  

 

2.4.1 Atlantic mackerel feeding in the Norwegian Sea 

The feeding of mackerel is simulated without any time dimension, instead feeding rates and 

behaviours are modelled as functions of light intensity and prey density and composition independent 

of time. The adaptation is based mainly on a field study conducted by Langøy et al. (2006), where the 

prey community observed in samples from WP2 plankton nets are compared to the diet composition 

found in stomach samples from mackerel caught in the same area. In the model, the prey community is 

divided into different categories, each with its own set of parameter values, so that it accords with the 

prey composition in the environment as observed in the study. To investigate the correspondence 

between model results and observed data, the diet composition predicted from submodels of bite- and 

filter-feeding at a fixed set of parameter values is compared to the diet observed in stomach samples. 

Details on how this comparison was performed are given in the code for the simulation (Appendix 1). 

 

2.4.2 Pilchard feeding in experimental tanks  

For pilchard experimental studies of bite- and filter-feeding have been performed were results can 

readily be compared with model projections (van der Lingen, 1994, 1995). In a laboratory experiment, 

schools of fish were held in closed tanks and fed different types of prey, and water samples were taken 

at regular time intervals to determine the change in prey density during the course of a feeding trial 

(van der Lingen, 1994). In addition, feeding mode, swimming speed and feeding intensity (proportion 

of school feeding) were monitored using video camera. To make the model applicable to this 

experimental situation, it was converted to a simulation model for single-prey systems where the prey 

density is updated over time for each of the feeding-modes. The prey assemblages confined in the tank 

can be regarded as closed populations, and the decrease in prey density with time accordingly is the 

result of the feeding activity of the fish (natural mortality is ignored since the trials are of a relatively 

short duration). The number of prey subtracted from the population at a given time-step equals the 

total number of prey eaten by the fish in the tank during that time. In addition to prey densities, 

simulated and observed swimming speeds are also compared. For details on the procedure, the code 

can be consulted (Appendix 2).   

A problem that arose when planning this simulation was that not all members of the school were 

actually feeding at the various timepoints, and the proportion that were feeding decreased considerably 

as prey density declined (van der Lingen, 1994). The model is individual-based, though, and it is not 

obvious whether the modelled fish should represent the average of the whole school or only the 

feeding members of the school. Both variants are included when comparing model results with 

experimental data. While the simulation model for mackerel uses the regression equations for 
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metabolic rate presented earlier (Eqs. 11-13 and 25), other metabolic equations are chosen in the case 

of pilchard. The reason for this deviation is that it was difficult to find species specific values for all 

the constants needed, and when using the values that apply to mackerel, the metabolic rates became 

much lower than estimations based on an experiment with pilchards (van der Lingen, 1995). In this 

study, which was performed under similar laboratory conditions as the feeding experiment, the 

metabolic rate is given as a linear function of the swimming speed both for bite-, filter- and non-

feeding activity. These regression equations were used instead. In the experiments, no distinction is 

made between the search phase and the handling phase of bite-feeding. Only a single optimised 

swimming speed vb for bite-feeding is therefore determined in the simulation model for pilchard.  

 

2.5 SENSITIVITY ANAYLIS 

The model output is strongly dependent on the value of the different parameters, and some of them 

have greater impact than others. Uncertainties regarding parameter estimations will therefore be of 

little concern for some parameters, while for others it can greatly influence results. To evaluate the 

significance of some of the parameters involved, the sensitivity of the model to variations over 

realistic ranges was analysed using the simulation model for mackerel. The relative importance of 

varying handling time, fish length, ambient temperature, capture/enter probability, swimming speed 

and the proportion of ingested energy made available for use was examined by calculating percent 

change in net intake rate eb and ef as a function of percent change in parameter value. When testing a 

parameter, the others were held constant at their default values, while the same fixed values for light 

intensity and prey density and composition were chosen as those used when estimating the diet 

composition of mackerel. For bite-feeding, only the swimming speed vs for the search phase was 

tested, since only this was optimised in the simulations. 
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3 RESULTS AND DISCUSSION 

 

3.1 ATLANTIC MACKEREL FEEDING IN THE NORWEGIAN SEA 

The general behaviour of the model was explored by simulating Atlantic Mackerel foraging in the 

Norwegian Sea during summer. The diets predicted by the bite- and filter-feeding submodels differ 

both from each other and from the prey compositions observed in the environment by Langøy et al. 

(2006). Prey compositions observed in stomach samples represent an intermediate between the bite- 

and filter-feeding diets.  

 

3.1.1 Effects of prey density and light on switching  

 

When light is not limiting, net intake rate εb from bite-feeding increases rapidly with total prey density 

due to high encounter rate, but levels off abruptly when prey density is still very low (Ntot 

approximately 1 x 103 ind. m-3, Fig. 6). Contrary, when ambient irradiance Ez is low enough to 

considerably limit the neural activity of the visual system, the intake rate increases more gradually 

with prey density. The more limiting the light is, the more does the response in intake to changes in 

prey density decline. Consequently, the intake rate reaches its maximum at much higher prey densities 

under poor light conditions than in full light. However, as long as irradiance is above zero, the 

theoretical intake rate will eventually stabilise at the same asymptotic value if only the prey density 

becomes sufficiently high. When this stage is reached, neither prey density nor light place any limits 

on the intake anymore. The maximum absolute intake rate Ib is determined solely by the relative 

densities of the different prey-types and of the prey-type specific values of handling time, prey area 

and contrast, capture probability and energy content of prey.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Predicted net weight-specific energy intake εb and εf for mackerel bite- and filter-feeding in the 

Norwegian Sea at various prey densities Ntot and ambient irradiances Ez. In the simulation, 0.1% of the prey were  

krill and amphipods. 
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At satiating conditions, the metabolic cost of bite-feeding only depends on the handling component 

and is therefore at its highest (Mb = 1.6 J h-1 g-1). This is insignificant compared to the maximum net 

intake rate (εb = 638.7 J h-1 g-1). When prey density limits the intake, some of the feeding time is 

allocated to searching, which is less energy demanding than handling due to a more stable swimming 

pattern. Only at very low prey densities and light intensities is the energy gained from feeding reduced 

enough to let the metabolic rate influence the efficiency of bite-feeding to any appreciable extent.  

Net intake rate εf from filter-feeding is independent of light and increases linearly and unabated with 

prey density (Fig. 6). This may appear counterintuitive, since the fish repeatedly has to interrupt the 

filtering activity in order to swallow prey retained in the oral cavity. However, the time needed to 

handle incoming prey is the same regardless of the influx, resulting in the observed linear response. At 

low prey densities, intake rate from filter-feeding is considerably lower than for bite-feeding, unless 

irradiance is reduced to very low levels (Ez approximately 1.0 x 10-4 µE m-2 s-1). This is because the 

bite-feeding intake initially responds more to changes in prey density. The metabolic rate is usually 

minor compared to the intake rate also for filter-feeding (Mf = 1.5 and 1.7 J h-1 g-1 at low and high prey 

densities, respectively), but at very low prey densities, net intake rate becomes negative.  

As prey density increases and handling time limitations cause the bite-feeding intake rate to level off, 

it is eventually exceeded by the intake rate from filter-feeding, encouraging the fish to switch feeding 

mode from bite- to filter-feeding (Fig. 6). In full light, the switching occurs at a relatively high prey 

density (Ntot = 1.0 x 105 ind. m-3), but when irradiance is low enough to significantly limit the bite-

feeding intake (Ez approximately 2.0 x 10-3 µE m-2 s-1), switching occurs at lower prey density. The 

more limiting light becomes, the less efficient bite-feeding is, favouring filter-feeding with 

progressively less prey available.  

This main pattern of switching is reversed at extremely low prey densities (Ntot below 100 ind. m-3), 

where switching instead occurs at higher prey densities when irradiance decreases (Fig. 6). Here, the 

switching points coincide with the set of prey densities and light intensities where the optimal diet 

breadth of bite-feeding is expanded to include 4 prey-types after only comprising krill and amphipods. 

Lower light intensities require higher prey densities for the additional prey-types to be included. The 

intake rate from bite-feeding therefore accelerates at these points, surpassing the intake rate from 

filter-feeding and causing the fish to switch feeding mode along the same pattern, until prey density is 

high enough to favour filter-feeding despite the broadening of the diet.       

 

3.1.2 Effects of prey composition on switching 

At relatively high ambient irradiance (Ez = 8.1 x 10-2 µE m-2 s-1), increasing the proportion of krill and 

amphipods—the largest and most profitable prey-type—from 0.1 to 0.3% slightly enhances the intake 

rate from bite-feeding only when total prey density is very low (Fig. 7, scenario 1). At higher prey 

densities, the fish spends nearly all the time handling krill and amphipods, and increasing the supply of 

these prey has no additional effect. In lower light (Ez = 1.2 x 10-3 µE m-2 s-1), more of the time is spent 

searching for prey. The effect of increasing the proportion of the preferred prey-type is accordingly 

much greater, and prey density is higher before the effect is abated (Fig. 7, scenario 2). 
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Fig. 7. Predicted net weight-specific energy intake εb and εf as a function of prey density Ntot for mackerel bite- 

and filter-feeding in the Norwegian Sea at different ambient irradiances (Ez = 1.2 x 10-3 and 8.1 x 10-2 µE m-2 s-1) 

and proportions of large prey (0.1 and 0.3% krill and amphipods). The switch between feeding modes occurs at 

lower prey density if the light intensity decreases or if the relative density of large prey increases. 1) In high 

light, nearly all the time is spent handling krill and amphipods unless prey density is very low, and only then 

does the intake rate from bite-feeding increase with the proportion of the preferred prey-type. 2) In lower light, 

more of the time is spent searching for prey, and the intake rate from bite-feeding therefore responds more to 

increased access to krill and amphipods. 3) The intake rate from filter-feeding is not limited by handling time. 

Thus, it increases persistently with the proportion of krill and amphipods. 

 

 

The intake rate from filter-feeding, on the other hand, increases linearly and persistently with the 

proportion of krill and amphipods, and the response is independent of total prey density (Fig. 7, 

scenario 3). The reason for the increase is that the product of the prey-type specific parameters in the 

equation for the absolute intake rate If (Eq. 24) is greater for krill and amphipods (category 1) than the 

weighted mean of the products is for the remaining prey-types:     

 

𝑃e1𝑟1𝑤1𝜕1 > ∑
𝑝𝑖𝑃e𝑖𝑟𝑖𝑤𝑖𝜕𝑖

1 − 𝑝1

𝑛

𝑖=2

 

 

Had the inequality been the opposite, the intake rate would instead have decreased with the proportion 

of the prey-type. Since more prey are encountered by the filter-feeding fish at high prey densities, the 

absolute difference between the intake rates at different proportions of krill and amphipods 

consistently becomes larger as total prey density increases. For bite-feeding, the corresponding 

difference in intake rates eventually diminishes—soon in high light conditions and more gradually if 

light is limiting—and the switch from bite- to filter-feeding hence occurs at a lower total prey density 

if the proportion of large prey is higher (Figure 7, switching points marked). However, if irradiance is 

decreased to very low levels (not shown), higher proportions of large prey benefit bite-feeding more 

(28) 
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than filter-feeding at the prey densities where switching occurs, causing the fish to instead switch 

strategy at higher prey densities with higher proportions of large prey. 

These results demonstrate that prey size is important for switching. Experimental studies that have 

tested the effect of varying the size of prey in single-prey systems have documented that fish shift 

from filter- to bite-feeding when the prey exceeds a given size (Leong and O’Connell, 1969; James 

and Findlay, 1989; van der Lingen, 1994; Macy, Sutherland and Durbin, 1998). This threshold size 

increases if the prey has low escape ability, as for example is the case for cultivated individuals 

compared to wild members of the same taxonomic group (van der Lingen, 1994).  

When filter-feeding, the number of prey that can be handled per unit time is in principle unlimited. As 

long as the prey can be retained and density is sufficiently high, the fish meets its energy demands by 

filter-feeding even if each individual prey has a low energy content. As prey become larger and more 

evasive, the probability that they will enter the fish mouth instead of escaping decreases considerably. 

The spectre of prey lengths that a filter-feeding fish is capable of exploiting is thus demarcated by a 

lower limit determined by retainability of prey and an upper limit which depends on their escape 

ability (Fig. 8). The upper limit is extended if the fish feeds on cultivated prey with reduced escape 

reaction (van der Lingen, 1994).  

 

 

Fig. 8. Conceptual representation of how the net intake rate from bite- and filter-feeding is assumed to vary with 

length of wild and cultivated prey at high and low light intensity. The energy content of the prey increases with 

length, but the capture/enter probability decreases, and it decreases more for filter- than bite-feeding and more 

for wild than cultivated prey due to better escape ability. These variations lead to the differences in switching 

points and spectres of exploitable prey lengths illustrated in the diagram.  

 

 

The spectre of exploitable prey is shifted towards larger prey when fish are bite-feeding. For small 

prey, net energy gained per handling time is too low to make them profitable to feed on (Eq. 20), while 

the pursuit of selected individuals makes it possible to capture larger prey that are too evasive for 

filter-feeding. The spectre becomes contracted when irradiance decreases, while larger sizes can be 

exploited if the prey is cultivated in labs and therefore easier to catch. If the predator-prey size ratio is 

reduced due to larger fish size, the upper limit of filterable prey is extended because bigger mouth 

gape increases the probability that prey will be engulfed. Very large filter-feeders like rorqual whales 

Lower limit 

filter-feeding 

Lower limit 

bite-feeding 

Upper limit 

filter-feeding 

Upper limit 

bite-feeding 
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(Balaenopteridae) and whale sharks (Rhincodon typus) do for example include small fish in their diet 

(Potvin, Goldbogen and Shadwick, 2010; Rohner et al., 2013). For bite-feeding the whole spectre 

shifts towards larger prey when the predator gets bigger. The net profitability of prey of a given length 

is lower for larger-sized fish (Eq. 18b), increasing the threshold size for initiation of bite-feeding. At 

the same time, better swimming capability makes the fish able to capture larger prey.   

The exact mechanisms by which prey length affects the intake rate from each feeding mode is 

somewhat complicated. As prey grow longer, the weight increases, and for a given energy density, the 

energy content of individual prey increases accordingly. For both feeding modes, the intake rate is 

proportional to both prey weight and capture/enter probability (Eqs. 9 and 23). If the factor that the 

prey weight increases with is greater than the factor with which the capture or enter probability 

decreases, intake rate will increase with prey length. If it does so for both strategies, the positive effect 

of increasing prey length will eventually be greater for filter-feeding if only prey density becomes 

sufficiently high, despite the fact that enter probability of filter-feeding decreases more than capture 

probability of bite-feeding does. Even if the intake rate from filter-feeding decreases with prey length, 

this can in theory be compensated for by increasing prey density. The fish accordingly shifts from 

filter- to bite-feeding at larger prey lengths if density is increased. However, in addition to being more 

evasive, larger prey tends to occur in lower densities, which both negatively affect filter-feeding much 

more than bite-feeding. Increasing the prey length therefore generally favours bite-feeding over filter-

feeding (Leong and O’Connell, 1969; James and Findlay, 1989; van der Lingen, 1994; Macy, 

Sutherland and Durbin, 1998).     

Whether the larger energy content outweighs the negative effect of reduced filtration efficiency for 

krill and amphipods, as assumed in the simulation model for mackerel, is an open question. As 

emphasised, the effect of prey length on intake rates very much depends on the negatively correlated 

capture and enter probabilities. The values chosen in the simulations are merely tentative. Ideally these 

probabilities should be determined mechanistically for each prey-type by modelling the attack or 

engulfment success, as has been done for zooplankton exposed to planktonic predators, where 

deformation rates, avoidance behaviour and attack kinematics determine the outcome (Kiørboe and 

Visser, 1999; Caparroy, Thygesen and Visser, 2000; Visser, 2001; Kiørboe, 2008). Kiørboe and Visser 

(1999) meant that their “considerations are robust up to at least Re of the order of 10”. The Reynolds 

number is however much larger for adult fish than for planktonic larvae (Vogel, 1994), and due to 

uncertainties regarding how this affects small-scale hydrodynamic patterns in the model, I abandoned 

an initial attempt to model capture success. Future developments of foraging models for fishes should 

strive to incorporate mechanistic formulations of the attack or engulfment process, since this would 

greatly improve our understanding of how predator-prey size ratios and inherent escape abilities affect 

the probability of obtaining prey of different types and densities. The effects of prey composition on 

switching would then emerge from first principles, improving the predictive abilities of the models.  

 

3.1.3 Switching influences diet composition 

When relative intake rates and corresponding biomass consumption for different prey-types by bite- 

and filter-feeding fish were compared, it became clear that the diet composition of mackerel feeding in 

the Norwegian Sea will differ much depending on which feeding mode the fish mainly employs (Fig. 

9). When bite-feeding, the model predicts that the fish will forage only on krill and amphipods if prey 

density and irradiance are both very low—presumably because the visual range R for the smaller prey-

types are too short to let the fish spot them, unless they occur in high densities. As light conditions 

improve, the visual range increases relatively more for small than for large prey, and the fish expands 

its diet to include all prey-types except for the smallest copepods (mostly Oithona), which are too 

minute to be worth handling. At this point the optimal diet corresponds to the broadest potential diet 
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comprising all prey that “pass the test” of net profitability (Eq. 19). When further increasing 

irradiance, prey handling soon occupies so much of the feeding time that the fish becomes choosy, 

eventually rejecting all prey except for the most valuable category of krill and amphipods. At 

moderate to high irradiance, the fish feeds exclusively on krill and amphipods regardless of prey 

density, while at lower irradiances the fish supplements its diet with smaller prey when density is low, 

save in very dim light when they again are excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Percentage of each prey-type in WP2 samples (numbers and wet weight), stomach samples from mackerel 

(dry weight) and in the diet predicted by bite- and filter-feeding submodels (wet weight). Samples were collected 

in Atlantic waters in the Norwegian Sea during summer by Langøy et al. (2006). A fixed set of parameter values 

were chosen for the simulation (Ez = 1.2 x 10-3 µE m-2 s-1, Ntot = 1.9 x 104 ind. m-3, and 0.1% of the prey were 

krill and amphipods). Predicted net intake rate was then higher for bite-feeding (εb = 328 J h-1 g-1) than filter-

feeding (εf = 116 x 103 J h-1 g-1). 

 

 

When the fish is filter-feeding, the predicted diet reflects the prey composition observed in the ambient 

environment by Langøy et al. (2006) to a larger extent than when it is bite-feeding. Still, varying 

escape abilities among the prey do result in somewhat altered wet weight percentages in the diet 

compared to WP2 samples (Fig. 9). In particular, the percentage of krill and amphipods—the most 

evasive prey-type—is significantly reduced, while the percentage of the more inert Limacina 

retroversa is correspondingly increased. The wet weight percentage of calanoid copepods is only 

slightly lower in the filter-feeding diet than in the environment, since the enter probability for this 

prey-type almost equals the fraction of the total prey biomass concentration that the fish is capable of 

exploiting by filter-feeding. Although numerous both in the environment and in the stomach of the 

filter-feeding fish, the individual weight of the smallest prey-type in the diet, Oithona, is too low to let 

them constitute any noticeable fraction of the total prey weight. In contrast, only 0.1% of the members 

 

 

Oithona 

Limacina retroversa 
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of the prey community were krill and amphipods, but their contribution in weight is still significant 

both in the environment and in the diet. 

In the simulation, temporal and spatial variations in prey occurrence were not accounted for, while in 

reality, prey distributions are often patchy and vary during a diel cycle (Pinel-Alloul, 1995; Langøy et 

al., 2012). Krill do for example form dense aggregations in some places at some times, but may be 

absent in other instances (Kaartvedt et al., 2005; Eriksen et al., 2016). During daylight hours when 

conditions are optimal for bite-feeding, krill and amphipods have mostly migrated to deeper waters to 

take refuge from visual predators (Falk-Petersen et al., 2008; Kaartvedt, 2010), while mackerel stay 

near the surface all day (Godø et al., 2004; Nøttestad et al., 2016). In comparison, blue whiting 

(Micromesistius poutassou) generally occur in deeper water than mackerel in the same feeding area of 

the Norwegian Sea, and they forage mainly on krill and amphipods (Huse, Utne and Fernö, 2012; 

Langøy et al., 2012; Bachiller et al., 2016). The prediction that bite-feeding mackerel would exclude 

all other prey-types from their diet unless conditions are very unfavourable is probably not valid as a 

general statement, but if swarms or even loose aggregations of krill or amphipods are encountered, the 

fish are expected to specialise on these prey.   

The prey composition observed in stomach samples from mackerel in the area is more similar to the 

diet predicted for filter- than for bite-feeding, but the observed weight percentage of krill and 

amphipods is considerably higher than predicted for filter-feeding, while the percentages of the 

remaining prey-types are lower (Fig. 9). The contribution of krill and amphipods in the observed diet 

also clearly exceeded the weight percentage in the ambient environment, implying that the fish spent 

enough time bite-feeding to more than outweigh the decrease in predation pressure on this prey-type 

associated with filter-feeding. The observed diet thus resembles a combination of the diets predicted 

for each of the two feeding modes, but exactly how much of the total feeding time the fish would 

allocate to either of them is difficult to ascertain, since predictions are uncertain. It should also be 

noted that the observed weights were dry while the predicted ones were wet, and the ratios between 

these weight measures are quite variable. Still, the model results clearly demonstrate that the overall 

predation pressure on different segments of the prey community and the resulting diet composition are 

highly dependent on how the fish switches between bite- and filter-feeding in the course of a day. 

Under conditions favouring filter-feeding, small prey-types with weak escape reactions are most 

vulnerable, whereas larger, energy rich prey-types are most at risk when adequate light and scarcity of 

prey encourage bite-feeding.  

In species alternating between feeding-modes, the relative contribution of each prey-type may vary 

predictively across their geographical distribution. Maybe Atlantic mackerel inhabiting crystal-clear 

waters of the oligotrophic Mediterranean Sea spend relatively more of their time bite-feeding than 

conspecifics located in turbid and nutrient-rich waters such as the North Sea. Moreover, coastal areas 

at high latitudes are subject to climate-driven water darkening due to increased runoff of dissolved 

organic matter (DOM) from terrestrial sources (Opdal, Lindemann and Aksnes, 2019), which may 

cause the fish to resort more to filter-feeding, relieving some of the pressure on large prey. To better 

evaluate how planktivorous fishes regulate prey populations and structure zooplankton communities in 

different regions and changing environments, it is thus important to understand the switching 

dynamics of the species. 

 

3.2 PILCHARD FEEDING IN EXPERIMENTAL TANKS 

When simulating experiments conducted by van der Lingen (1994), where schools of pilchard were 

fed prey of different size and density and the resulting feeding activity monitored, predicted results 

vary depending on how the fish in the individual-based model is assumed to represent the multiple fish 

in the tank.   
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3.2.1 Comparison of predicted and observed prey density in feeding trials 

When the individual fish represents the average of the whole observed school of pilchard bite-feeding 

on wild Calanus agulhensis adults (version 1 of the simulation), the prey density Ntot in the tank is 

predicted to decrease more slowly than observed in the experiment (Fig. 10). Even so, the predicted 

change in prey density with time corresponds far better with observed values than what is the case if 

the individual fish is assumed to only represent feeding members of the school (version 2). According 

to this alternative simulation, the modelled fish will only manage to consume 12% of the prey present 

in the tank before the feeding trial is over, while in the experiment about 98% of the prey were eaten 

when averaged over several replicated trials (van der Lingen, 1994). In contrast, total prey 

consumption predicted in version 1 nearly equals the observed percentage, and the fish terminate 

feeding almost halfway through the trial, shortly after all the 15 fish in the school had ceased feeding 

in most of the experimental replicates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Observed and predicted prey density at different times after food introduction in feeding trials with 

pilchard bite-feeding on wild Calanus agulhensis adults (van der Lingen, 1994). Means ± 2 SD for the 

observations are shown. 

 

 

The observed feeding intensity was not very high at the start of the feeding trial either—the percentage 

of school feeding decreased from 35 to 5% already during the first 10 min (van der Lingen, 1994). The 

low feeding intensity explains the large difference between results from the two simulation versions, 

but it is not straightforward to explain why the predicted prey densities fit observations best if the 

feeding rate of the ideal fish is multiplied with the total number of fish in the tank. Even then, the 

predicted consumption rate is lower than observed, although only a minority of the fish were actually 

feeding in the experiment. Underestimation of the search rate is probably not the cause for this 

disparity, for as the linear decrease in prey density reveals, the simulated fish spend almost all their 
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time handling prey as long as they are feeding (Fig. 10). It is possible that the capture probability Pc is 

underestimated and the handling time h overestimated, but still it is difficult to comprehend the very 

large discrepancy between observed and predicted results when only feeding fish are included in the 

calculations.   

Maybe the key to the conundrum is to appreciate the role that schooling behaviour might have in 

shaping the feeding process. When fish are bite-feeding, the pattern of schooling is less rigid than 

when they are filter-feeding, since individual fish often must alter speed and direction to pursue 

selected prey (van der Lingen, 1995). Still, the fish form an aggregation that may allow them to 

function as a coherent whole, and the chance that any individual prey will be attacked and captured is 

perhaps higher if it is approached by a shoal than if it is subject to randomly spaced fish feeding 

wholly independently of each other. It is hard to circumvent multiple possible attackers at once, and if 

a prey survives an initial attack from one fish, it might be easier for a neighbouring fish to capture it 

subsequently. Furthermore, it is not given that non-feeding fish were so locked in this state that they 

would not occasionally snatch easy prey when given the opportunity, and the high capture probability 

for such attacks would increase the consumption rate above the predicted level. Whatever the 

explanation may be, the initial prey density in the experimental replicates besides varied highly 

(Fig. 10, van der Lingen, 1994). which makes the comparison between model and experimental results 

uncertain. Another source of uncertainty is that the number of fish feeding during a time interval was 

calculated in the simulation as the average between the observations at two consecutive timepoints, 

while in reality the decline in feeding intensity could have been nonlinear.   

When the fish filter-feed on Artemia franciscana nauplii, which are too small for bite-feeding, the 

predicted prey densities correspond well with observations (Fig. 11). For the first 10 min of the 

feeding trial, the fit is closest if only feeding fish are included in the simulation, while for the rest of 

the trial, predictions agree better with observations if the fish instead represent the average of the 

whole school. The difference between the two set of predictions is however very small, which can be 

attributed to the relatively high feeding intensity in the first part of the trial (van der Lingen, 1994). 

About 85% of the school members were initially feeding, but the percentage dropped to well below 

10% midway through when few prey were left, increasing the difference between predictions slightly 

for the second half. It would therefore be premature to conclude that the predictive ability of the model 

is better for filter-feeding than for bite-feeding, even though the results from the filter-feeding 

submodel are more in accordance with observations. Moreover, the enter probability in the filter-

feeding simulation was adjusted to make the model predictions conform with observations, and 

although the prey are very small (mean length 47.87 x 10-4 m) and have reduced escape ability because 

they are cultivated, it could have been set too high (Pe = 0.9). Besides, the much higher prey densities 

in the filter-feeding experiment reduced the influence of variation (van der Lingen, 1994), which 

partly obscured the results for bite-feeding.   
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Fig. 11. Observed and predicted prey density at different times after food introduction in feeding trials with 

pilchard filter-feeding on cultivated Artemia franciscana nauplii (van der Lingen, 1994). Means ± 2 SD for the 

observations are shown. 

 

 

To save energy, schooling fish form a hydrodynamically advantageous configuration where 

individuals are positioned diagonally to each other (Weihs, 1973; van der Lingen, 1995). This 

formation, which is denser during filter-feeding than bite-feeding, probably facilitates the engulfment 

of encountered prey, but it is also conceivable that the prey density will be higher at the front than at 

the rear of the school as a result of the feeding activity (O’Connell, 1972). The rearmost fish would 

then be at a disadvantage to those located at the front, which besides have better overview of the prey 

field. Whether total consumption rate for the school as a whole is higher or lower than it would have 

been were the fish feeding independently as assumed in the model, is difficult to say. Schooling may 

perhaps involve a trade-off between feeding opportunity and predator defence (Partridge, 1982), since 

centrally positioned school members have reduced access to prey. Reduced feeding opportunity might 

also partly be the reason why only some of the fish were feeding, even when prey density was very 

high.    

 

3.2.2 Comparison of predicted and observed swimming speed in feeding trials 

For the whole duration of the feeding trial, the optimal swimming speed vb for pilchard bite-feeding on 

Calanus agulhensis is predicted to be the lowest alternative in the predetermined set of possible speeds 

(Fig. 12), which were chosen based on experimental data (van der Lingen, 1995). This is true whether 

the individual fish is considered the average of the whole school or only feeding fish. The reason why 

the fish are swimming so slowly is that the net rate of energy Npf gained from handling the prey is 

very low—negative in fact—and just barely exceeding the negative of the routine metabolic rate Mr 

(Eq. 20). For the fish to even initiate feeding, the capture probability was set higher (Pc = 0.72) than it 

was for copepods of similar length (2.5 x 10-3 m) in the simulation model for mackerel (Pc = 0.5). To 
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save energy, the simulated pilchard reduce their swimming speed, which in contrast to the optimised 

speed for mackerel is not composed of distinct speeds vs and vh for the search and handling phases of 

bite-feeding. Had the swimming speed instead been constant for the handling phase and only 

optimised for the search phase, the overall speed would have been higher (assuming higher speed for 

handling than the lowest possible for searching), as the fish spent most of their feeding time handling 

prey. In this particular case of bite-feeding pilchard, the metabolic rate Mb would then have been too 

high compared to the intake rate Ib to allow feeding (Eq. 15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Observed and predicted swimming speed at different times after food introduction in feeding trials with 

pilchard bite-feeding on wild Calanus agulhensis adults (van der Lingen, 1994). Means ± 2 SD for the 

observations are shown. 

 

 

The observed mean swimming speed of all the fish in the tank was higher than predicted for the first 

part of the feeding trial, but it decreased towards predicted levels as prey density declined (Fig. 12). 

The main reason for the decrease in swimming speed is probably that the relatively high prey density 

early in the trial encouraged more of the fish to feed actively (van der Lingen, 1994). Since swimming 

speed is higher for feeding than non-feeding activity, decline in feeding intensity would reduce the 

mean speed. This does however not explain why the feeding members of the school were swimming at 

a much higher speed than predicted, but it is likely a consequence of both the underestimated intake 

rate and the lack of distinction between the search and the handling phase when optimising swimming 

speed. Besides too low rate of prey intake (Fig. 11), the net intake rate εb, which is the parameter to be 

maximised by the optimal foraging fish, could also have been underestimated if the proportion of the 

consumed energy made available for use was set too low (Eq. 14). The metabolic rate however is 

probably not decisive, as special regression equations for pilchard were used (van der Lingen, 1995).    

When pilchard filter-feed on Artemia franciscana nauplii, net intake rate is higher than when they bite-

feed on Calanus agulhensis, and they can thus afford to spend more energy. High prey density in the 
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beginning of the feeding trial makes it profitable to invest more in faster swimming and thereby higher 

prey consumption (Fig. 13). Since intake rate from filter-feeding does not affect handling time, it 

increases linearly with swimming speed. Measured in absolute rate of energy intake, the fish thus have 

more to gain from increasing swimming speed when they are filter-feeding than when they are bite-

feeding, unless searching occupies most of the bite-feeding time. For pilchard the metabolic rate 

besides increases less with swimming speed for filter- than for bite-feeding (van der Lingen, 1995), 

and net rate of energy intake therefore also responds more to changes in swimming speed when the 

fish are filter-feeding. This is reflected by higher observed and simulated difference between 

swimming speeds early and late in the feeding trial for filter- than for bite-feeding (Figs. 12-13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Observed and predicted swimming speed at different times after food introduction in feeding trials with 

pilchard filter-feeding on cultivated Artemia franciscana nauplii (van der Lingen, 1994). Means ± 2 SD for the 

observations are shown. 

 

 

Predicted swimming speeds for filter-feeding agree better with observations than the speeds predicted 

for bite-feeding do, probably because there is no need to distinguish between different phases of the 

feeding process, as ideally should have been done when optimising the bite-feeding swimming speed. 

Still, the predicted swimming speed does not decrease gradually as the observed mean speed does 

(Fig. 13). According to the simulation model, where linear respiration equations were used instead of 

exponential, the fish should swim as fast as possible as long as net intake rate increases with 

swimming speed, and as slowly as possible when it decreases with speed. The predicted swimming 

speed therefore drops momentarily from highest to lowest possible value when prey density becomes 

so low that net intake rate starts to decrease with swimming speed. At this timepoint the rate of prey 

consumption decreases abruptly (Fig. 12). The drop in swimming speed occurs later when the 

individual fish represents the average of only feeding fish instead of the whole school (Fig. 13), since 

prey density then increases more slowly due to lower consumption rate.  
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3.3 SENSITIVITY ANALYSIS   

The bite- and filter-feeding submodels differ in their sensitivity to variations in most of the parameters 

tested (Fig. 14). In both submodels, percent change in net weight-specific intake rate eb or ef as a 

function of percent change in parameter value is highest when varying the fish length L, but the 

response to changing length is greatest for bite-feeding. Since larger fish are heavier, weight-specific 

intake rate is negatively correlated with length. However, both the visual capacity E’ and the mouth 

gape area Ag increase nonlinearly with length, and the response in intake to increasing length is 

therefore less negative for larger fish. At the fixed parameter values chosen for the simulation (Ez = 

1.2 x 10-3 µE m-2 s-1, Ntot = 1.9 x 104 ind. m-3, 0.1% krill and amphipods), mouth area limits intake 

from filter-feeding more than visual capacity limits intake from bite-feeding, which may explain why 

the filter-feeding intake rate decreases less with length. The sharp decline in intake rate with length is 

probably not realistic, for larger fish have better swimming abilities. Higher capture probability and 

lower handling time for larger fish would benefit bite-feeding, and higher maximum swimming speed 

would increase absolute intake rate from filter-feeding. 

 

 

Fig. 14. Sensitivity of bite- and filter-feeding submodels to variations in selected parameter values over realistic 

ranges. Analyses were performed using simulation model for mackerel with fixed values for irradiance and prey 

density and composition (Ez = 1.2 x 10-3 µE m-2 s-1, Ntot = 1.9 x 104 ind. m-3, and 0.1% of the prey were krill and 

amphipods). When testing a parameter, the others were held constant at their default values. Only the swimming 

speed vs for the search phase was tested for the bite-feeding model. 

 

 

Bite-feeding submodel Filter-feeding submodel 
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Changes in temperature T have no appreciable effect on net intake rate in either of the submodels (Fig. 

14). The metabolic rate M increases exponentially with temperature (Eq. 11), but at the parameter 

values chosen in the simulation, metabolic rate is too small compared to the intake rate to matter. In 

reality, however, it is possible that net intake rate could slightly increase with temperature. Although 

higher temperature leads to higher metabolic rate, the optimal swimming speed rises exponentially 

with temperature at low values (Ware, 1978; Stewart et al., 1983). The density and viscosity of the 

water decreases with temperature, hence the drag imparted on the fish declines, allowing higher 

swimming speeds and thereby higher intake rates for a given metabolic rate. These relationships are 

not accounted for in the model.  

The filter-feeding submodel is equally sensitive to changes in swimming speed vf, enter probability Pe 

and the proportion u of ingested energy made available for use (Fig. 14). Net intake rate from filter-

feeding increases linearly with all these parameters at the chosen prey density and composition (Eqs. 

24 and 26). If prey density and the proportion of krill and amphipods had been low enough, net intake 

rate would instead have decreased with swimming speed. Net intake rate from bite-feeding increases 

linearly with capture probability Pc and the proportion of ingested energy available for use, but the 

positive response to increasing search swimming speed vs declines at higher speeds due to increasing 

handling time limitations (Eqs. 9 and 14). The bite-feeding submodel is more sensitive to variations in 

capture probability than the filter-feeding submodel is to variations in enter probability, for the prey-

specific handling time h is inversely related to capture probability (Eq. 8).     

The bite-feeding submodel is most sensitive to variations in handling time when it is low (Fig. 14). 

Searching then occupies so much of the time that the rate of prey encountered is significantly reduced 

when handling time increases (Eq. 6c). When it takes long time to handle prey, little time is left for 

searching, and the encounter rate does not respond much to increases in handling time. Still, net intake 

rate declines since fewer prey can be handled and eaten per unit time spent handling prey.     
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4 CONCLUSIONS 

 

The ability to switch between bite- and filter-feeding is an important behavioural adaptation that 

combined with prey selection and regulation of swimming speed allow planktivorous fishes to more 

optimally exploit available prey as environmental conditions change. According to model predictions, 

bite-feeding is the most efficient feeding mode at low prey densities unless ambient irradiance limits 

vision too much. However, as more prey are encountered, the fish soon spends so much of the time 

handling prey that intake rate levels off. Conversely, intake rate from filter-feeding increases unabated 

with prey density and will eventually surpass the bite-feeding intake rate, encouraging switching. This 

happens at lower prey density if irradiance decreases enough to significantly limit visual foraging or if 

the proportion of valuable prey increases. Filter-feeding persistently increases with the proportion of 

large prey unless filtration efficiency is too low, but for bite-feeding the response is limited by 

handling time. Since bite-feeding fish only select the most valuable prey, which often are too evasive 

to constitute much of the filter-feeding diet, overall diet composition of the fish largely depends on 

how much of the time the fish spends on each feeding mode.  

Metabolic rate is usually too low compared to net intake rate to significantly influence switching, but 

it is important in determining which prey-types bite-feeding fish will forage on. Nor do the proportion 

of ingested energy made available for use affect switching points much, for net intake rate of both 

feeding modes increases linearly with this parameter. Assuming that mean swimming speed during 

prey handling does not vary with environmental conditions, optimising swimming speed will benefit 

filter-feeding more than bite-feeding. Evasiveness of prey greatly influences intake rate from both 

feeding modes, but bite-feeding is especially sensitive to variations in capture probability. When 

comparing model results with experimental observations, it became clear that schooling behaviour 

must play a central role in determining foraging efficiency. For both feeding-modes, predicted prey 

consumption fit observations best if the individual fish represented the average of the whole school, 

even though only some of the fish were actively feeding. We know that schooling fish do not feed 

independently of each other, but the mechanisms by which schooling affects intake rate of individual 

fish are poorly understood. If effects of schooling behaviour could be incorporated into mechanistic 

formulations that also include the attack or engulfment process of foraging, we would further improve 

our understanding of the mechanisms regulating intake rates and switching dynamics.  
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APPENDIX 1 – MATLAB code for simulation of mackerel foraging 
 

 

 

 

%% BITE-FEEDING AND FILTER-FEEDING  
%**************************************************************************************** 

  
% The model compares net specific energy intake for fish bite-feeding and filter-feeding  
% at varying light conditions and prey densities and compositions. Irradiance is modelled  
% as a function of depth, surface irradiance and chlorophyll concentration. The prey is   
% divided into individual categories with different sets of parameter values, and diet  
% breadth and swimming speeds are optimised to maximise net energy return. The model also  

% explores the effect of temperature, fish size and handlig time. Values of R, which is  

% the detection range of a visual predator, are calculated separately in Fortran and read  

% from R-tables into Matlab. The model is parametrised for Atlantic mackerel (Scomber  

% scombrus) feeding in Atlantic waters in the Norwegian Sea during summer. 

  
close all; 
clear all; 

  

  
%% PARAMETERS  

  
%% Parameters for environment 

  
Z = 10;                   % depth (m) where the fish is located (Nøttestad et al., 2016; Bachiller et al., 2018) 
Chla = 1;                 % concentration of chl a (mg/m^3) (Bagøien, Melle and Kaartvedt, 2012) 
BeamAtt = 0.066 + 0.39*Chla^0.57*0.93; % beam attenuation coefficient (m^-1) (Mobley, 1994) 
DiffAtt = 0.125 + Chla*(0.0506*exp(-0.606*Chla) + 0.0285); % diffuse attenuation coefficient (m^-1) (Mobley, 1994) 
E0 = logspace(-6,3,50);   % range of surface irradiances (µE/m^2/s) 
Ez = E0*exp(-DiffAtt*Z);  % irradiance at depth Z (µE/m^2/s) (Aksnes and Utne, 1997)  
T = 11;                   % either: default ambient temperature (°C) (Bagøien, Melle and Kaartvedt, 2012) 
%T = 7:2:13;              % or: range of temperatures (°C) (for sensitivity analysis)  

  
%% Parameters for prey 

  
PreyC = 1:5;              % prey categories 
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Ntot = logspace(0,6,50);  % range of total prey concentrations (ind./m^3) 
Ctr = 0.3;                % inherent contrast of prey (Utne-Palm, 1999) 
pi = 4*atan(1);           % value of pi 
Fc = 0.8;                 % fraction of plan area of prey that is visible core area  
Apscale = (pi/8)*(1.5*10^-3)^2*Fc; % image area of small prey (m^2) (for scaling) 
p1 = [0.001,0.003];       % range of proportions of prey category 1 (krill and amphipods) to total number of prey   
vp = 1:length(p1);        % elements in p1 vector 
dfvp = 1;                 % element in p1 vector that gives default value (0.001) 

  
% Parameters for prey category 1 (krill and amphipods) 

  
l(1) = 0.025;             % length of prey (m) approximated from data on different species (Agersted and Nielsen, 2014; Sirenko 

et al., 2019)   
d(1) = 4700;              % energy density of prey (J/(g wet weight)) approximated from data on different species and assuming 

that dry weight is 24% of wet weight (Percy and Fife, 1981; Kulka and Corey, 1982; Schaafsma et al., 2018)  
p(1,vp) = p1(vp);         % proportion of prey category to total number of prey (only fractional)  
Pc(1) = 0.29;             % capture probability (fraction of attacked prey that fish succeeds in capturing)   
Pe(1) = 0.09;             % enter probability (probability that prey on the trajectory of the fish will enter the mouth) 
wpctEmp(1) = 30;          % observed dry weight percentage of prey category in stomach samples (Langøy et al., 2006) 

  
% Parameters for prey category 2 (calanoid copepods (mostly Calanus finmarchicus)) 

  
l(2) = 2.5*10^-3;         % length of prey (prosome length (m)) (Hirche et al., 1994; Choquet et al., 2018) 
d(2) = 4500;              % energy density of prey (J/(g wet weight)) assuming that dry weight is 16% of wet weight (Davies, 

Ryan and Taggart, 2012; Davis, 1993) 
p(2,vp) = 0.11*(1 - p1(vp)); % proportion of prey category to total number of prey (Langøy et al., 2006) 
Pc(2) = 0.5;              % capture probability (fraction of attacked prey that fish succeeds in capturing)                      
Pe(2) = 0.17;             % enter probability (probability that prey on the trajectory of the fish will enter the mouth) 
wpctEmp(2) = 9;           % observed dry weight percentage of prey category in stomach samples (Langøy et al., 2006) 

  
% Parameters for prey category 3 (Limacina retroversa)  

  
l(3) = 2.0*10^-3;         % length of prey (shell diameter (m)) (Sirenko et al., 2019)  
d(3) = 2700;              % energy density of prey (J/(g wet weight)) (Davis et al., 1998) 
p(3,vp) = 0.6*(1 - p1(vp)); % proportion of prey category to total number of prey (Langøy et al., 2006) 
Pc(3) = 0.6;              % capture probability (fraction of attacked prey that fish succeeds in capturing)  
Pe(3) = 0.2;              % enter probability (probability that prey on the trajectory of the fish will enter the mouth) 
wpctEmp(3) = 47;          % observed dry weight percentage of prey category in stomach samples (Langøy et al., 2006) 
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% Parameters for prey category 4 ("others" (miscellaneous zooplankton)) 

  
l(4) = 1.5*10^-3;         % length of prey (m) 
d(4) = 3800;              % energy density of prey (J/(g wet weight)) 
p(4,vp) = 0.05*(1 - p1(vp)); % proportion of prey category to total number of prey  
Pc(4) = 0.8;              % capture probability (fraction of attacked prey that fish succeeds in capturing)  
Pe(4) = 0.3;              % enter probability (probability that prey on the trajectory of the fish will enter the mouth) 
wpctEmp(4) = 2;           % observed dry weight percentage of prey category in stomach samples (Langøy et al., 2006) 

  
% Parameters for prey category 5 (small copepods (mostly Oithona and some Microcalanus)) 

  
l(5) = 5.0*10^-4;         % mean length of prey (prosome length (m)) (Sirenko et al., 2019) 
d(5) = 4300;              % energy density of prey (J/(g wet weight)) (assumed to be somewhat lower than for C. finmarchicus) 
p(5,vp) = 0.24*(1 - p1(vp)); % proportion of prey category to total number of prey (Langøy et al., 2006) 
Pc(5) = 0.8;              % capture probability (fraction of attacked prey that fish succeeds in capturing)  
Pe(5) = 0.3;              % enter probability (probability that prey on the trajectory of the fish will enter the mouth) 
wpctEmp(5) = 0.1;         % observed dry weight percentage of prey category in stomach samples (only fractional)   

  
wpctEmp(6) = 9;           % observed dry weight percentage of Crustacea remainders in stomach samples (Langøy et al., 2006) 
wpctEmp(7) = 2.9;         % observed dry weight percentage of unindentified remainders in stomach samples (Langøy et al., 2006) 

  
% Initialising matrices 

  
w = zeros(1,length(PreyC)); % prey weight ((g wet weight)/ind.) 
Ar = zeros(1,length(PreyC)); % plan area of prey (m^2) 
Ap = zeros(1,length(PreyC)); % image area of prey (m^2) 
pw = zeros(length(PreyC),length(p1)); % weight of each prey category per total prey abundance ((g wet weight)/ind.) 
pwSum = zeros(1,length(p1)); % weight of all prey combined per total prey abundance ((g wet weight)/ind.) 
wpct = zeros(length(PreyC),length(p1)); % wet weight percentage of prey category in field samples 

  
for vp = 1:length(p1) % loop over different proportions of prey category 1 (krill and amphipods)  
 for preyC = 1:length(PreyC) % loop over different prey categories  

       
     w(preyC) = 6.25*(10.^(3.13*log10(10.^6*l(preyC))-8.18)/10.^6); % weight of copepods and "others" ((g wet weight)/ind.) 

assuming that dry weight is 16% of wet weight (Uye, 1982) 
     w(1) = (10.^((log10((10.^3*l(1) - 9.331)/1.832) - 0.0682)/0.3662))/10.^3; % weight of krill and amphipods ((g wet 

weight)/ind.) (from data on Meganyctiphanes norvegica) (Kulka and Corey, 1982) 
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     w(3) = 3.57*1.37*10^-4*(10^3*l(3))^1.5005; % weight of Limacina retroversa ((g wet weight)/ind.) assuming that dry weight 

is 28% of wet weight (Davis and Wiebe, 1985; Bednaršek et al., 2012)   
     Ar(preyC) = (pi/8)*l(preyC).^2; % plan area of prey (m^2) calculated as an ellipse with length l and width l/2 (Van Deurs, 

Jørgensen and Fiksen, 2015) 
     Ar(1) = (pi/20)*l(1).^2; % plan area of krill and amphipods (m^2) calculated as an ellipse with length l and width l/5          
     Ap(preyC) = Ar(preyC)*Fc; % image area of prey (m^2)   
     pw(preyC,vp) = p(preyC,vp)*w(preyC); % weight of each prey category per total prey abundance ((g wet weight)/ind.)            
     pwSum(vp) = sum(pw(:,vp),1); % weight of all prey combined per total prey abundance ((g wet weight)/ind.) 

      
 end % prey categories 

  
 for preyC = 1:length(PreyC) % loop over different prey categories  

      
     wpct(preyC,vp) = pw(preyC,vp)/pwSum(vp)*100; % wet weight percentage of prey category in field samples 

      
 end % prey categories    
end % proportions of prey category 1 

  
%% Parameters for fish predator 

  
L = 0.3;                  % either: default fish length (m) (Collette and Nauen, 1983) 
%L = 0.1:0.1:0.6;         % or: range of fish lengths (m) (for sensitivity analysis) (Muus, B.J. and J.G. Nielsen, 1999) 
dfvL = 3;                 % element in L vector that gives default value  

  
%vSearch = 0.50;          % swimming speed of fish searching for prey (m/s) 
vSearch = linspace(0.35,1.2,10); % range of swimming speeds of fish searching for prey (m/s) (Pepin, Koslow and Pearre Jr., 

1988; Macy, Sutherland and Durbin, 1998; Nøttestad et al., 2016) 
vHandling = 0.50;         % mean swimming speed of fish handling prey (m/s) 
H = 1.5;                  % either: default handling time when capture probability is 1 (s/ind.) 
%H = 1:6;                 % or: range of handling time values (s/ind.) (for sensitivity analysis) 
Theta = 30;               % half angle of reavtive field (degrees) (Dunbrack and Dill, 1984; Giske and Aksnes, 1992) 
Ke = 1;                   % half-saturation constant (irradiance at half the maximum processable level) (µE/m^2/s) 
RsmallPrey = 1;           % detection distance in body lengths for small prey when light is not limiting (Varpe and Fiksen, 

2010; Blaxter, 1966) 

  
%vFilter = 0.50;          % swimming speed of filter-feeding fish (m/s) 
vFilter = linspace(0.35,1.2,10); % range of swimming speeds of filter-feeding fish (m/s) (Pepin, Koslow and Pearre Jr., 1988; 

Macy, Sutherland and Durbin, 1998; Nøttestad et al., 2016) 
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ft = 0.85;                % fraction of time spent filtering (assumed to be similar to pilchard (Sardinops sagax)) (van der 

Lingen, 1994)  
Bf = 0.95;                % buccal flow as fraction of swimming speed  
r = 0.99;                 % retention efficiency (maximum reached for prey classes) (Molina, Manrique and Velasco, 1996)  

  
vRoutine = 0.18;          % routine swimming speed of non-feeding fish (m/s) (Johnstone, Wardle and Almatar, 1993) 
eg = 0.16;                % proportion of ingested energy egested (not assimilated) (Bachiller et al., 2018)  
ex = 0.10;                % proportion of assimilated energy excreted (Bachiller et al., 2018)  
sda = 0.172;              % proportion of assimilated energy expended in processing food (Bachiller et al., 2018)  

  

% Initialising matrices 

  
W = zeros(1,length(L)); % fish weight (g wet weight) 
h = zeros(length(PreyC),length(H)); % handling time for each prey category (s/ind.) 
prof = zeros(length(PreyC),length(H)); % profitability of prey (J/s) 
EM = zeros(1,length(L)); % visual capacity of fish scaled such that the detection distance in body lengths for small prey is 1 

when light is not limiting (Varpe and Fiksen, 2010; Blaxter, 1966) 
gAr = zeros(1,length(L)); % mouth gape area of fish (m^2) 
Mroutine = zeros(length(T),length(L)); % metabolic rate of fish swimming at routine speed (J/h/(g fish))  
Msearch = zeros(length(T),length(L),length(vSearch)); % metabolic rate of fish searching for prey (J/h/(g fish))  
Mhandling = zeros(length(T),length(L)); % metabolic rate of fish handling prey (J/h/(g fish)) 
fM = zeros(length(L),length(vFilter),length(T)); % metabolic rate of filter-feeding fish (J/h/(g fish)) 

  
for vT = 1:length(T) % loop over different temperatures (°C)  
 for vL = 1:length(L) % loop over different fish lengths (m) 
  for vS = 1:length(vSearch) % loop over different swimming speeds for searching (m/s)  
   for vF = 1:length(vFilter) % loop over different swimming speeds for filter-feeding (m/s) 
    for vH = 1:length(H) % loop over different handling time values (s/ind.)  
     for preyC = 1:length(PreyC) % loop over different prey categories 

         
         W(vL) = 0.00338*(100*L(vL))^3.241; % fish weight (g wet weight) (Bachiller et al., 2018)                        
         h(preyC,vH) = H(vH)/Pc(preyC); % handling time for each prey category (s/ind.) 
         prof(preyC,vH) = Pc(preyC)*w(preyC)*d(preyC)/H(vH); % profitability of prey (energy gained per handling time) (J/s) 

(Visser and Fiksen, 2013) 
         EM(vL) = (L(vL)*RsmallPrey)^2/(Ctr*Apscale); % visual capacity of fish eye (Varpe and Fiksen, 2010; Blaxter, 1966) 
         gAr(vL) = 1.32*10^-6*(100*L(vL))^1.895; % mouth gape area of fish (m^2) (MacKay, 1979)        
         Mroutine(vT,vL) = 0.00264*13560*W(vL)^-0.217*exp(0.06818*T(vT))*exp(0.0234*vRoutine/0.23)/24; % metabolic rate of fish 

swimming at routine speed (J/h/(g fish)) (Elliott and Davison, 1975; Stewart et al., 1983; Bachiller et al., 2018)   
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         Msearch(vT,vL,vS) = 0.00264*13560*W(vL)^-0.217*exp(0.06818*T(vT))*exp(0.0234*vSearch(vS)/0.23)/24; % metabolic rate of 

fish searching for prey (J/h/(g fish))  
         Mhandling(vT,vL) = 0.00264*13560*W(vL)^-0.217*exp(0.06818*T(vT))*exp(0.0234*vHandling/0.23)*1.5/24; % metabolic rate of 

fish handling prey (J/h/(g fish))                       
         fM(vT,vL,vF) = 0.00264*13560*W(vL)^-0.217*exp(0.06818*T(vT))*exp(0.0234*vFilter(vF)/0.23)*1.5/24; % metabolic rate of 

filter-feeding fish (J/h/(g fish))  

           
     end % prey categories  
    end % handling time   
   end % swimming speeds filter-feeding  
  end % swimming speeds searching 
 end % fish lengths  
end % temperatures 

  

  
%% BITE-FEEDING MODEL 

  
% Initialising matrices 

  
R = zeros(length(PreyC),length(Ez),length(L)); % visual range of fish (m) 
B = zeros(length(PreyC),length(Ez),length(L),length(vSearch)); % search rate of fish (m^3/s) 
EtSearch = zeros(length(Ntot),length(Ez),length(PreyC),length(p1),length(L),length(vSearch)); % energy intake per search time 

for each prey category (J/s)      
tHandlingtSearch = zeros(length(Ntot),length(Ez),length(PreyC),length(p1),length(L),length(vSearch),length(H)); % ratio of 

handling time to search time for each prey category       
bNIDiet = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(vSearch),length(H)); % net specific 

energy intake for all prey in potential diet (J/h/(g fish))     
bNI = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % net specific energy intake for 

all prey combined (J/h/(g fish)) 
odb = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % optimal diet breadth (number of 

categories)   
bNIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % net specific energy intake at optimal 

swimming speed (J/h/(g fish))  
vSind = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % index for optimal speed  

  
vSearchOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % optimal swimming speed of fish searching 

for prey (m/s)   
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BOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(H)); % search rate of fish swimming at 

optimal speed (m^3/s) 
ODB = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % optimal diet breadth at optimal swimming speed  
Nprof = zeros(length(PreyC),length(T),length(L),length(H)); % net profitability of prey (net energy gained per handling time) 

(J/h/(g fish)) 
Nproftest = zeros(length(PreyC),length(T),length(L),length(H)); % testing if it is profitable to handle prey from category if it 

is the only food available. Value either 0 or 1  
minDB = zeros(length(T),length(L),length(H)); % minimum potential diet breadth  
maxDB = zeros(length(T),length(L),length(H)); % maximum potential diet breadth  
ODBminSize = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % minimum size of prey in 

optimal diet 
ODBmaxSize = zeros(length(T),length(L),length(H)); % maximum size of prey in optimal diet (m) 
S = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(vSearch),length(H)); % selectivity 

(fraction of encountered prey that the fish will attack). Value either 0 or 1  
bin = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(vSearch),length(H)); % individuals from 

prey category eaten by each fish during timestep                 
bIn = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % total number of individuals 

eaten by each fish during timestep            
bi = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(vSearch),length(H)); % absolute intake 

rate for each prey category (J/s) 
bI = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % absolute intake rate for all 

prey combined (J/s) 
bIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % absolute intake rate at optimal swimming 

speed (J/s)  
tSearcht = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % ratio of search time to 

total time  
bMsearch = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % metabolic rate of bite-

feeding fish (search component) (J/h/(g fish)) 
bMhandling = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % metabolic rate of bite-

feeding fish (handling component) (J/h/(g fish)) 
bM = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vSearch),length(H)); % total metabolic rate of bite-

feeding fish (J/h/(g fish)) 
bMOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % total metabolic rate of fish bite-feeding at 

optimal swimming speed (J/h/(g fish)) 
bNiOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(H)); % net specific energy intake for 

each prey catgory at optimal swimming speed (J/h/(g fish)) 
bfOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(H)); % volume cleared for prey 

category by fish swimming at optimal speed (m^3/min) 
bFOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % volume cleared for all prey by fish swimming 

at optimal speed (m^3/min) 
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bwiOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(H)); % daily consumption rate in 

weight of each prey category by fish swimming at optimal speed (g/day/(g fish))  
bwIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(H)); % daily consumption rate in weight by fish 

swimming at optimal speed (g/day/(g fish))  
bwpctOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L),length(H)); % relative consumption of each 

prey category by fish swimming at optimal speed (wet weight percentage)  

  
% Loops 

  
for N = 1:length(Ntot) % loop over different total prey densities (ind./m^3) 
 for E = 1:length(Ez) % loop over different light intensities (µE/m^2/s)  
  for vT = 1:length(T) % loop over different temperatures (°C)  
   for vp = 1:length(p1) % loop over different proportions of prey category 1 (krill and amphipods) 
    for vL = 1:length(L) % loop over different fish lengths (m) 
     for vS = 1:length(vSearch) % loop over different swimming speeds (m/s) 
      for vH = 1:length(H) % loop over different handling time values (s/ind.)  
       for preyC = 1:length(PreyC) % loop over different prey categories 

             
           R(preyC,E,vL) = getr(BeamAtt,Ctr,Ap(preyC),EM(vL),Ke,Ez(E)); % visual range of fish (m),  call SUBROUTINE GETR() 

(Aksnes and Utne, 1997) 
           B(preyC,E,vL,vS) = vSearch(vS)*pi*(R(preyC,E,vL)*sind(Theta))^2; % search rate of fish (m^3/s) (Huse and Fiksen, 

2010)                 
           EtSearch(N,E,preyC,vp,vL,vS) = Ntot(N)*p(preyC,vp)*B(preyC,E,vL,vS)*Pc(preyC)*w(preyC)*d(preyC); % energy intake per 

search time for each prey category (numerator) (J/s);          
           EtSearchDiet = cumsum(EtSearch,3); % total energy intake per search time (numerator) (J/s); 
           tHandlingtSearch(N,E,preyC,vp,vL,vS,vH) = Ntot(N)*p(preyC,vp)*B(preyC,E,vL,vS)*h(preyC,vH); % ratio of handling time 

to search time for each prey category             
           tHandlingtSearchDiet = cumsum(tHandlingtSearch,3); % ratio of total handling time to search time (in denominator) 
           tSearchtDiet = 1/(1 + tHandlingtSearchDiet(N,E,preyC,vp,vL,vS,vH)); % ratio of search time to total time (inverse of 

denominator)     
           bIDiet = EtSearchDiet(N,E,preyC,vp,vL,vS)/(1 + tHandlingtSearchDiet(N,E,preyC,vp,vL,vS,vH)); % absolute intake rate 

for all prey in potential diet (J/s);  
           bUDiet = bIDiet*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy minus 

excretion and specific dynamic action) (J/h/(g fish)) (Bachiller et al., 2018)                                            
           bMsearchDiet = Msearch(vT,vL,vS)*tSearchtDiet; % metabolic rate of bite-feeding fish (search component) (J/h/(g 

fish)) 
           bMhandlingDiet = Mhandling(vT,vL)*(1 - tSearchtDiet); % metabolic rate of bite-feeding fish (handling component) 

(J/h/(g fish))           
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           bNIDiet(N,E,preyC,vT,vp,vL,vS,vH) = max((bUDiet - bMsearchDiet - bMhandlingDiet), - Mroutine(vT,vL)); % net specific 

energy intake for all prey in potential diet (J/h/(g fish)). If net intake rate is more negative than routine metabolism, the 

fish will not feed.                                
           [bNI(N,E,vT,vp,vL,vS,vH),odb(N,E,vT,vp,vL,vS,vH)] = max(bNIDiet(N,E,:,vT,vp,vL,vS,vH),[],3); % net specific energy 

intake for all prey in optimal diet (J/h/(g fish); optimal diet breadth (number of categories)   
           [bNIOpt(N,E,vT,vp,vL,vH),vSind(N,E,vT,vp,vL,vH)] = max(bNI(N,E,vT,vp,vL,:,vH),[],6); % net specific energy intake at 

optimal swimming speed (J/h/(g fish)); index for optimal speed  

             
           vSearchOpt(N,E,vT,vp,vL,vH) = vSearch(vSind(N,E,vT,vp,vL,vH)); % optimal swimming speed of fish searching for prey 

(m/s)           
           BOpt(N,E,preyC,vT,vp,vL,vH) = B(preyC,E,vL,vSind(N,E,vT,vp,vL,vH)); % search rate of fish swimming at optimal speed 

(m^3/s)             
           ODB(N,E,vT,vp,vL,vH) = odb(N,E,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH); % optimal diet breadth at optimal swimming speed  
           Nprof(preyC,vT,vL,vH) = prof(preyC,vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda) - Mhandling(vT,vL); % net profitability of 

prey (net energy gained per handling time) (J/h/(g fish)) 
           Nproftest(preyC,vT,vL,vH) = Nprof(preyC,vT,vL,vH) > - Mroutine(vT,vL); % testing if it is profitable to handle prey 

from category if it is the only food available. Value either 0 or 1  
           minDB(vT,vL,vH) = min(PreyC(Nproftest(:,vT,vL,vH) == 1)); % minimum potential diet breadth (only the most profitable 

category is accepted (if it passed the above test))  
           maxDB(vT,vL,vH) = max(PreyC(Nproftest(:,vT,vL,vH) == 1)); % maximum potential diet breadth (all categories that 

passed the test are accepted)              
           ODBminSize(N,E,vT,vp,vL,vS,vH) = l(odb(N,E,vT,vp,vL,vS,vH)); % minimum size of prey in optimal diet (m) 
           ODBmaxSize(vT,vL,vH) = l(minDB(vT,vL,vH)); % maximum size of prey in optimal diet (m) 
           S(N,E,preyC,vT,vp,vL,vS,vH) = Nprof(preyC,vT,vL,vH) >= bNI(N,E,vT,vp,vL,vS,vH); % selectivity (fraction of 

encountered prey that the fish will attack). Value either 0 or 1  
           bin(N,E,preyC,vT,vp,vL,vS,vH) = Ntot(N)*p(preyC,vp)*B(preyC,E,vL,vS)*S(N,E,preyC,vT,vp,vL,vS,vH)*Pc(preyC)/(1 + 

tHandlingtSearchDiet(N,E,odb(N,E,vT,vp,vL,vS,vH),vp,vL,vS,vH)); % individuals from prey category eaten by each fish (ind./s)                
           bIn(N,E,vT,vp,vL,vS,vH) = sum(bin(N,E,:,vT,vp,vL,vS,vH),3); % individuals from all categories eaten by the fish 

(ind./s)                    
           bi(N,E,preyC,vT,vp,vL,vS,vH) = bin(N,E,preyC,vT,vp,vL,vS,vH)*w(preyC)*d(preyC); % absolute intake rate for each prey 

category (J/s)   
           bI(N,E,vT,vp,vL,vS,vH) = sum(bi(N,E,:,vT,vp,vL,vS,vH),3); % absolute intake rate for all prey (J/s)   
           bIOpt(N,E,vT,vp,vL,vH) = bI(N,E,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH); % absolute intake rate at optimal swimming speed 

(J/s)     
           tSearcht(N,E,vT,vp,vL,vS,vH) = 1/(1 + tHandlingtSearchDiet(N,E,odb(N,E,vT,vp,vL,vS,vH),vp,vL,vS,vH)); % ratio of 

search time to total time  
           bMsearch(N,E,vT,vp,vL,vS,vH) = Msearch(vT,vL,vS)*tSearcht(N,E,vT,vp,vL,vS,vH); % metabolic rate of bite-feeding fish 

(search component) (J/h/(g fish))   



56 
 

           bMhandling(N,E,vT,vp,vL,vS,vH) = Mhandling(vT,vL)*(1 - tSearcht(N,E,vT,vp,vL,vS,vH)); % metabolic rate of bite-

feeding fish (handling component) (J/h/(g fish))           
           bM(N,E,vT,vp,vL,vS,vH) = bMsearch(N,E,vT,vp,vL,vS,vH) + bMhandling(N,E,vT,vp,vL,vS,vH); % total metabolic rate of 

bite-feeding fish (J/h/(g fish))            
           bMOpt(N,E,vT,vp,vL,vH) = bM(N,E,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH); % total metabolic rate of fish bite-feeding at 

optimal swimming speed (J/h/(g fish)) 
           bNiOpt(N,E,preyC,vT,vp,vL,vH) = bi(N,E,preyC,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda) - 

bMOpt(N,E,vT,vp,vL,vH); % net specific energy intake for each prey catgory (J/h/(g fish)) 
           bfOpt(N,E,preyC,vT,vp,vL,vH) = bin(N,E,preyC,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH)/(Ntot(N)*p(preyC,vp)); % volume 

cleared for prey category by fish swimming at optimal speed (m^3/s)                      
           bFOpt(N,E,vT,vp,vL,vH) = bIn(N,E,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH)/Ntot(N); % volume cleared for all prey by fish 

swimming at optimal speed (m^3/s)      
           bwiOpt(N,E,preyC,vT,vp,vL,vH) = bi(N,E,preyC,vT,vp,vL,vSind(N,E,vT,vp,vL,vH),vH)*3600*24/d(preyC)/W(vL); % daily 

consumption rate in weight of each prey category by fish swimming at optimal speed (g/day/(g fish))  
           bwIOpt(N,E,vT,vp,vL,vH) = sum(bwiOpt(N,E,:,vT,vp,vL,vH),3); % daily consumption rate in weight by fish swimming at 

optimal speed (g/day/(g fish))     

  
       end 

        
       for preyC = 1:length(PreyC) % loop over different prey categories 

            
           bwpctOpt(N,E,preyC,vT,vp,vL,vH) = bwiOpt(N,E,preyC,vT,vp,vL,vH)/bwIOpt(N,E,vT,vp,vL,vH)*100; % relative consumption 

of each prey category by fish swimming at optimal speed (wet weight percentage) 

                     
       end % prey categories        
      end % handling time  
     end % swimming speeds 
    end % fish lengths 
   end % proportions of prey category 1 
  end % temperatures 
 end % light intensities 
end % prey densities 

  

  
%% FILTER-FEEDING MODEL 

  
% Initialising matrices 
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fin = zeros(length(Ntot),length(Ez),length(PreyC),length(p1),length(L),length(vFilter)); % individuals from prey category eaten 

by each fish (ind./s)  
fIn = zeros(length(Ntot),length(Ez),length(p1),length(L),length(vFilter)); % individuals from all categories eaten by each fish 

(ind./s)   
fi = zeros(length(Ntot),length(Ez),length(PreyC),length(p1),length(L),length(vFilter)); % absolute intake rate for each prey 

category (J/s) 
fI = zeros(length(Ntot),length(Ez),length(p1),length(L),length(vFilter)); % absolute intake rate for all prey  (J/s) 
fNI = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L),length(vFilter)); % empty matrix for net specific energy 

uptake for all prey combined (J/h/(g fish)) 
fNIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % net specific energy intake at optimal swimming speed 

(J/h/(g fish)) 
vFind = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % index for optimal speed  

  
vFilterOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % optimal swimming speed of filter-feeding fish 

(m/s) 
fIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % absolute intake rate at optimal swimming speed (J/s)  
fMOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % metabolic rate of fish filter-feeding at optimal 

swimming speed (J/h/(g fish))  
fNiOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L)); % net specific energy intake for each prey 

catgory at optimal swimming speed (J/h/(g fish))   
ffOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L)); % volume cleared for prey category by fish 

swimming at optimal speed (m^3/s)                      
fFOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % volume cleared for all prey by fish swimming at optimal 

speed (m^3/s) 
feffOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L)); % filtration efficiency for each prey 

catgory 
fEffOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % filtration efficiency for all prey 
fwiOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L)); % daily consumption rate in weight of each 

prey category by fish swimming at optimal speed (g/day/(g fish))  
fwIOpt = zeros(length(Ntot),length(Ez),length(T),length(p1),length(L)); % daily consumption rate in weight by fish swimming at 

optimal speed (g/day/(g fish))   
fwpctOpt = zeros(length(Ntot),length(Ez),length(PreyC),length(T),length(p1),length(L)); % relative consumption of each prey 

category by fish swimming at optimal speed (wet weight percentage) 

  
% Loops 

  
for N = 1:length(Ntot) % loop over different total prey densities (ind./m^3) 
 for E = 1:length(Ez) % loop over different light intensities (µE/m^2/s) 
  for vT = 1:length(T) % loop over different temperatures (°C)  
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   for vp = 1:length(p1) % loop over different proportions of prey category 1  
    for vL = 1:length(L) % loop over different fish lengths (m) 
     for vF = 1:length(vFilter) % loop over different swimming speeds (m/s) 
      for preyC = 1:length(PreyC) % loop over different prey categories   

           
          fin(N,E,preyC,vp,vL,vF) = vFilter(vF)*gAr(vL)*ft*Bf*Ntot(N)*p(preyC,vp)*Pe(preyC)*r; % individuals from prey category 

eaten by each fish (ind./s) (Lovvorn, Baduini and Hunt, 2001)                
          fIn(N,E,vp,vL,vF) = sum(fin(N,E,:,vp,vL,vF),3); % individuals from all categories eaten by each fish (ind./s)  
          fi(N,E,preyC,vp,vL,vF) = fin(N,E,preyC,vp,vL,vF)*w(preyC)*d(preyC); % absolute intake rate for each prey category 

(J/s)            
          fI(N,E,vp,vL,vF) = sum(fi(N,E,:,vp,vL,vF),3); % absolute intake rate for all prey (J/s)        
          fU = fI(N,E,vp,vL,vF)*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy 

minus excretion and specific dynamic action) (J/h/(g fish)) (Bachiller et al., 2018)  
          fNI(N,E,vT,vp,vL,vF) = max((fU - fM(vT,vL,vF)), - Mroutine(vT,vL)); % net specific energy intake (J/h/(g fish))                   
          [fNIOpt(N,E,vT,vp,vL),vFind(N,E,vT,vp,vL)] = max(fNI(N,E,vT,vp,vL,:),[],6); % net specific energy intake at optimal 

swimming speed (J/h/(g fish)); index for optimal speed  

                    
          vFilterOpt(N,E,vT,vp,vL) = vFilter(vFind(N,E,vT,vp,vL)); % optimal swimming speed of filter-feeding fish (m/s)           
          fIOpt(N,E,vT,vp,vL) = fI(N,E,vp,vL,vFind(N,E,vT,vp,vL)); % absolute intake rate at optimal swimming speed (J/s)  
          fMOpt(N,E,vT,vp,vL) = fM(vT,vL,vFind(N,E,vT,vp,vL)); % metabolic rate of fish filter-feeding at optimal swimming speed 

(J/h/(g fish))           
          fNiOpt(N,E,preyC,vT,vp,vL) = fi(N,E,preyC,vp,vL,vFind(N,E,vT,vp,vL))*3600/W(vL)*(1 - eg)*(1 - ex - sda) - 

fMOpt(N,E,vT,vp,vL); % net specific energy intake for each prey catgory at optimal swimming speed (J/h/(g fish))               

          ffOpt(N,E,preyC,vT,vp,vL) = fin(N,E,preyC,vp,vL,vFind(N,E,vT,vp,vL))/(Ntot(N)*p(preyC,vp)); % volume cleared for prey 

category by fish swimming at optimal speed (m^3/s)                      
          fFOpt(N,E,vT,vp,vL) = fIn(N,E,vp,vL,vFind(N,E,vT,vp,vL))/Ntot(N); % volume cleared for all prey by fish swimming at 

optimal speed (m^3/s)               
          feffOpt(N,E,preyC,vT,vp,vL) = ffOpt(N,E,preyC,vT,vp,vL)/(vFilter(vFind(N,E,vT,vp,vL))*gAr(vL)); % filtration 

efficiency for each prey catgory 
          fEffOpt(N,E,vT,vp,vL) = fFOpt(N,E,vT,vp,vL)/(vFilter(vFind(N,E,vT,vp,vL))*gAr(vL)); % filtration efficiency for all 

prey  
          fwiOpt(N,E,preyC,vT,vp,vL) = fi(N,E,preyC,vp,vL,vFind(N,E,vT,vp,vL))*3600*24/d(preyC)/W(vL); % daily consumption rate 

in weight of each prey category by fish swimming at optimal speed (g/day/(g fish))  
          fwIOpt(N,E,vT,vp,vL) = sum(fwiOpt(N,E,:,vT,vp,vL),3); % daily consumption rate in weight by fish swimming at optimal 

speed (g/day/(g fish))  

           
      end 

        
      for preyC = 1:length(PreyC) % loop over different prey categories 
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          fwpctOpt(N,E,preyC,vT,vp,vL) = fwiOpt(N,E,preyC,vT,vp,vL)/fwIOpt(N,E,vT,vp,vL)*100; % relative consumption of each 

prey category by fish swimming at optimal speed (wet weight percentage) 

                  
      end % prey categories     
     end % swimming speeds 
    end % fish lengths 
   end % proportions of prey category 1 
  end % temperatures 
 end % light intensities 
end % prey densities    

  

  
%% PLOTS 

  
figure(1)  
h1 = plot(Ntot,squeeze(bNIOpt(:,32,:,2,:,:)),'LineWidth',2,'Color',[0.91,0.234,0.325]); hold on; 
h2 = plot(Ntot,squeeze(bNIOpt(:,32,:,1,:,:)),'LineWidth',1,'Color',[0.91,0.234,0.325]);  
h3 = plot(Ntot,squeeze(bNIOpt(:,22,:,2,:,:)),'LineWidth',2,'Color',[0.7,0.18,0.25]); 
h4 = plot(Ntot,squeeze(bNIOpt(:,22,:,1,:,:)),'LineWidth',1,'Color',[0.7,0.18,0.25]); 
h5 = plot(Ntot,squeeze(fNIOpt(:,length(Ez),:,2,:)),'--','LineWidth',2,'Color',[0.1,0.4,0.7]); 
h6 = plot(Ntot,squeeze(fNIOpt(:,length(Ez),:,1,:)),'--','LineWidth',1,'Color',[0.1,0.4,0.7]);  
xlim([-1*10^4,11*10^4]);  
ylim([-40,900]); 
ax = gca; ax.XAxis.Exponent = 4; 
xlabel('Prey density (ind. m^{-3})'); ylabel('Net intake rate (J h^{-1} g^{-1})'); 
legend([h1,h3,h5],{'Bite-feeding high light','Bite-feeding low light','Filter-

feeding'},'location','southeast','fontsize',9,'box','off'); 
set(gca,'box','off'); 
export_fig C:\Users\Admin\Documents\fig1.png -transparent -m2; 

  
figure(2)  
surf(log10(Ez),log10(Ntot),bNIOpt(:,:,:,dfvp,:,:),'FaceAlpha',0.8,'FaceColor',[0.81,0.21,0.29],'EdgeColor',[0.81,0.21,0.29]); 

hold on; 
surf(log10(Ez),log10(Ntot),fNIOpt(:,:,:,dfvp,:),'FaceAlpha',0.8,'FaceColor',[0.1,0.4,0.7],'EdgeColor',[0.1,0.4,0.7]);  
ylim([0,log10(2) + 5]); zlim([-1,1200]); 
yticks([0,1,2,3,4,5]); 
xticklabels({'10^{-6}','10^{-4}','10^{-2}','10^{0}','10^{2}'}); 
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yticklabels({'10^{0}','10^{1}','10^{2}','10^{3}','10^{4}','10^{5}'}); 
xlabel('Irradiance (µE m^{-3} s^{-1})'); ylabel('Prey density (ind. m^{-3})'); zlabel('Net intake rate (J h^{-1} g^{-1})');  
legend({'Bite-feeding','Filter-feeding'},'location','northeast','fontsize',9,'box','off'); 
set(gca, 'Color', 'none','LineWidth',1); 
grid off 
export_fig C:\Users\Admin\Documents\fig2.png -transparent -m2; 

  
figure(3) 
b1 = [transpose(p(:,1)*100),0,0];  
b2 = [transpose(wpct(:,1)),0,0]; 
b3 = wpctEmp;  
b4 = [reshape(bwpctOpt(36,22,:,:,dfvp,:,:),1,[]),0,0];  
b5 = [reshape(fwpctOpt(36,22,:,:,dfvp,:),1,[]),0,0];  
x = categorical({'WP2 samples (numbers)','WP2 samples (weight)','Stomach samples (weight)'... 
    ,'Bite-feeding submodel (weight)','Filter-feeding submodel (weight)'}); 
x = reordercats(x,{'WP2 samples (numbers)','WP2 samples (weight)','Stomach samples (weight)'... 
    ,'Bite-feeding submodel (weight)','Filter-feeding submodel (weight)'}); 
y = [b1; b2; b3; b4; b5]; 
bar(x,y,0.6,'stacked'); 
ylim([0,100]); 
ytickformat('percentage'); 
legend({'Krill and amphipods','Calanoid copepods','Limacina retroversa','Others','Oithona',... 
    'Crustacea remainders','Unindentified remainders'},'location','northeastoutside','fontsize',13,'box','off'); 
set(gcf,'position',[10,10,1000,600]); 
set(gca,'fontsize',14); 
export_fig C:\Users\Admin\Documents\fig3.png -transparent -m2; 
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APPENDIX 2 – MATLAB code for simulation of pilchard foraging 
 

 

%% BITE-FEEDING AND FILTER-FEEDING  
%**************************************************************************************** 

  
% The model compares net specific energy intake for fish bite-feeding and filter-feeding  
% at varying light conditions and prey densities. The prey is divided into individual  

% categories with different sets of parameter values, and swimming speeds are optimised  
% to maximise net energy return. Values of R, which is the detection range of a visual  

% predator, are calculated separately in Fortran and read from R-tables into Matlab.  

% In this script version the model is calibrated using empirical data on pilchard  

% (Sardinops sagax) bite-feeding and filter-feeding on single prey-types (van der Lingen, 

% 1994; van der Lingen, 1995). Feeding trials with closed polulations are simulated to  

% compare predictions with experimental results.              

  

  
close all; 
clear all; 

  

  
%% PARAMETERS  

  
%% Parameters for environment / experimental conditions 

  
Chla = 2;                 % concentration of chl a (mg/m^3) 
BeamAtt = 0.066 + 0.39*Chla^0.57*0.93; % beam attenuation coefficient (m^-1) (Mobley, 1994) 
E = logspace(-6,3,50);    % range of ambient irradiances (µE/m^2/s) 
Exp = 10^3;               % either: default experimental irradiance (µE/m^2/s)  
%Exp = logspace(-6,3,4);  % or: range of experimental irradiances (µE/m^2/s) (for sensitivity analysis) 
T = 17;                   % either: default ambient temperature (°C) (van der Lingen, 1994) 
%T = [10,17,22];          % or: range of temperatures (°C) (for sensitivity analysis) (van der Lingen, 1995) 
V = 1;                    % volume of water in experimental tank (m^3) (van der Lingen, 1994) 
nFish1 = repmat(15,1,360); % total number of fish in experimental tank at each timestep (van der Lingen, 1994)  
nFish2(:,1) = [repmat(3.08,1,60),repmat(0.75,1,60),repmat(0.45,1,60),repmat(0.45,1,60),repmat(0.45,1,60),... 
              repmat(0.225,1,60)]; % average number of fish feeding on Calanus at each timestep (van der Lingen, 1994) 
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nFish2(:,2) = [repmat(12.5,1,60),repmat(9.83,1,60),repmat(4.35,1,60),repmat(0.75,1,60),repmat(0.45,1,60),... 
              repmat(0.37,1,60)]; % average number of fish feeding on Artemia at each timestep (van der Lingen, 1994)       
tmax = 60;                % duration of feeding experiment (min) (van der Lingen, 1994)  
ntstep = 360;             % number of timesteps  
dtstep = tmax/ntstep;     % length of each timestep (min) 
t1 = linspace(0,tmax,ntstep + 1); % time after food introduction (min) (for simulation)  
t2 = linspace(0,tmax - 1,ntstep); % time after food introduction (min) (for simulation)  
t3 = linspace(0,tmax,7);  % time after food introduction (min) (sampling times in feeding trial) 

  
% Loop choice 

  
bnotime = 0; % 1 = run time-independent bite-feeding loop 
fnotime = 0; % 1 = run time-independent filter-feeding loop 
btime = 0; % 1 = run bite-feeding time loop  
ftime = 1; % 1 = run filter-feeding time loop  

  
%% Parameters for prey 

  
PreyC = 1:2;              % prey categories 
N = logspace(0,6,50);     % range of prey densities (ind./m^3) 
Ctr = 0.3;                % inherent contrast of prey (Utne-Palm, 1999) 
pi = 4*atan(1);           % value of pi 
Fc = 0.8;                 % fraction of plan area of prey that is visible core area  
Apscale = (pi/8)*(1.5*10^-3)^2*Fc; % image area of small prey (m^2) (for scaling) 

  
% Parameters for prey category 1 (wild Calanus agulhensis adults) 

  
N1xp(1) = 9*10^3;         % initial prey density in exprimental tank (at time of food introduction) (ind./m^3) (van der Lingen, 

1994) 
Nemp(:,1) = [9*10^3,1.5*10^3,3*10^2,5*10^2,3*10^2,4*10^2,2*10^2]; % observed prey density at each ten min during feeding trial 

(ind./m^3) (van der Lingen, 1994) 
l(1) = 2.48*10^-3;        % mean length of prey (m) (van der Lingen, 1994) 
w(1) = 6*(10.^(3.13*log10(10.^6*l(1))-8.18)/10.^6); % weight of prey ((g wet weight)/ind.) assuming that dry weight is 16% of 

wet weight (Uye, 1982) 
d(1) = 4500;              % energy density of prey (J/(g wet weight)) (assumed to be similar to C. finmarchicus) (Davies, Ryan 

and Taggart, 2012; Davis, 1993) 
Pc = 0.72;                % capture probability (fraction of attacked prey that fish succeeds in capturing)        
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Ar = (pi/8)*l(1)^2;       % plan area of prey (m^2) calculated as an ellipse with length l and width l/2 (Van Deurs, Jørgensen 

and Fiksen, 2015)  
Ap = Ar*Fc;               % image area of prey (m^2) 

  
% Parameters for prey category 2 (cultivated Artemia franciscana nauplii) 

  
N1xp(2) = 7.85*10^5;      % initial prey density in exprimental tank (at time of food introduction) (ind./m^3) (van der Lingen, 

1994) 
Nemp(:,2) = [7.9*10^5,1.45*10^5,4*10^4,1*10^4,9*10^3,8*10^3,7*10^3]; % observed prey density at each ten min during feeding 

trial (ind./m^3) (van der Lingen, 1994) 
l(2) = 4.87*10^-4;        % mean length of prey (m) (van der Lingen, 1994)  
w(2) = 1.15*10^-5;        % weight of prey ((g wet weight)/ind.) assuming that dry weight is 20% of wet weight (Leger et al., 

1986)  
d(2) = 4400;              % energy density of prey (J/(g wet weight)) aproximated from data on different Artemia nauplii (Leger 

et al., 1986)  
Pe = 0.9;                 % enter probability (probability that prey on the trajectory of the fish will enter the mouth)               

  
%% Parameters for fish predator 

  
L = 0.229;                % either: default fish length (m) (van der Lingen, 1994) 
%L = [0.22,0.23,0.24];    % or: range of fish lengths (m) (for sensitivity analysis) 

  
vBite = linspace(0.26,0.51,10); % range of swimming speeds of bite-feeding fish (m/s) (van der Lingen, 1995) 
vBiteEmp = [0.48,0.37,0.29,0.3,0.27,0.26,0.29]; % observed mean swimming speed at each ten min during bite-feeding trial (m/s) 

(van der Lingen, 1994) 
H = 1.5;                  % either: default handling time when capture probability is 1 (s/ind.) 
%H = 1:6;                 % or: range of handling time values (s/ind.) (for sensitivity analysis) 
Theta = 30;               % half angle of reavtive field (degrees) (Dunbrack and Dill, 1984; Giske and Aksnes, 1992) 
Ke = 1;                   % half-saturation constant (irradiance at half the maximum processable level) (µE/m^2/s) 
RsmallPrey = 1;           % detection distance in body lengths for small prey when light is not limiting (Varpe and Fiksen, 

2010; Blaxter, 1966) 

  
vFilter = linspace(0.15,0.67,10); % range of swimming speeds of filter-feeding fish (m/s) (van der Lingen, 1995) 
vFilterEmp = [0.59,0.44,0.32,0.25,0.22,0.22,0.19]; % observed mean swimming speed at each ten min during filter-feeding trial 

(m/s) (van der Lingen, 1994) 
ft = 0.85;                % fraction of time spent filtering (the duration of each filtering bout times the frequency) (van der 

Lingen, 1994) 
Bf = 0.95;                % buccal flow as fraction of swimming speed  
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r = 0.99;                 % retention efficiency (maximum reached for prey classes) (van der Lingen, 1994)  

  
vRoutine = 0.20;          % routine swimming speed of non-feeding fish (m/s) (van der Lingen, 1995) 
Mroutine = (0.2219*vRoutine/0.256 + 0.0047)*13560/1000; % metabolic rate of fish swimming at routine speed (J/h/(g fish)) (van 

der Lingen, 1995) 
eg = 0.16;                % proportion of ingested energy egested (assumed to be similar to herring (Clupea harengus)) 

(Bachiller et al., 2018)  
ex = 0.10;                % proportion of assimilated energy excreted (assumed to be similar to C. harengus) (Bachiller et al., 

2018) 
sda = 0.175;              % proportion of assimilated energy expended in processing food (assumed to be similar to C. harengus) 

(Bachiller et al., 2018)  

  
% Initialising matrices 

  
h = zeros(1,length(H)); % handling time for prey category (s/ind.) 
prof = zeros(1,length(H)); % profitability of prey (J/s) 
W = zeros(1,length(L)); % fish weight (g wet weight) 
EM = zeros(1,length(L)); % visual capacity of fish scaled such that the detection distance in body lengths for small prey is 1 

when light is not limiting (Varpe and Fiksen, 2010; Blaxter, 1966) 
gAr = zeros(1,length(L)); % mouth gape area of fish (m^2) 
bM = zeros(1,length(vBite)); % metabolic rate of bite-feeding fish (J/h/(g fish)) 
fM = zeros(1,length(vFilter)); % metabolic rate of filter-feeding fish (J/h/(g fish))  

  
for vL = 1:length(L) % loop over different fish lengths (m) 
 for vB = 1:length(vBite) % loop over different swimming speeds for bite-feeding (m/s)  
  for vF = 1:length(vFilter) % loop over different swimming speeds for filter-feeding (m/s) 
   for vH = 1:length(H) % loop over different handling time values (s/ind.)  

       
       W(vL) = exp(-10.497 + 2.848*log(10^3*L(vL)) - 0.049); % fish weight (g wet weight) (Dorval et al., 2015)         
       h(vH) = H(vH)/Pc; % handling time for prey category (s/ind.) 
       prof(vH) = Pc*w(1)*d(1)/h(vH); % profitability of prey (energy gained per handling time) (J/s) (Visser and Fiksen, 2013) 
       EM(vL) = (L(vL)*RsmallPrey)^2/(Ctr*Apscale); % visual capacity of fish eye (Varpe and Fiksen, 2010; Blaxter, 1966)            
       gAr(vL) = 1.32*10^-6*(100*L(vL))^1.895; % mouth gape area of fish (m^2) (using regression for mackerel (Scomber 

scombrus)) (MacKay, 1979)                               
       bM(vB) = (0.5711*vBite(vB)/0.256 - 0.2891)*13560/1000; % metabolic rate of bite-feeding fish (J/h/(g fish)) (van der 

Lingen, 1995)          
       fM(vF) = (0.4131*vFilter(vF)/0.256 - 0.2035)*13560/1000; % metabolic rate of filter-feeding fish (J/h/(g fish)) (van der 

Lingen, 1995)   
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   end % handling time      
  end % swimming speeds filter-feeding  
 end % swimming speeds bite-feeding 
end % fish lengths  

  

     
%% BITE-FEEDING MODEL (Calanus) 

  
if bnotime == 1 % run loop below (intake rates at different prey densities and light intensities) 

     
% Initialising matrices  

  
R = zeros(length(E),length(L)); % visual range of fish (m) 
B = zeros(length(E),length(L),length(vBite)); % search rate of fish (m^3/s) 
bin = zeros(length(N),length(E),length(L),length(vBite),length(H)); % individuals eaten by each fish during timestep                 
bi = zeros(length(N),length(E),length(L),length(vBite),length(H)); % absolute energy intake (J/s) 
bNi = zeros(length(N),length(E),length(L),length(vBite),length(H)); % net specific energy intake (J/h/(g fish)) 
bNiOpt = zeros(length(N),length(E),length(L),length(H)); % net specific energy intake at optimal swimming speed (J/h/(g fish))  
vBind = zeros(length(N),length(E),length(L),length(H)); % index for optimal speed  

  
vBiteOpt = zeros(length(N),length(E),length(L),length(H)); % optimal swimming speed of fish searching for prey (m/s)   
BOpt = zeros(length(N),length(E),length(L),length(H)); % search rate of fish swimming at optimal speed (m^3/s) 
biOpt = zeros(length(N),length(E),length(L),length(H)); % absolute energy intake at optimal swimming speed (J/s)  
bfOpt = zeros(length(N),length(E),length(L),length(H)); % volume cleared for prey by fish swimming at optimal speed (m^3/min) 
bMOpt = zeros(length(N),length(E),length(L),length(H)); % metabolic rate of fish bite-feeding at optimal swimming speed (J/h/(g 

fish)) 
Nprof = zeros(length(L),length(H)); % net profitability of prey (net energy gained per handling time) (J/h/(g fish)) 

  
% Loop (time-independent)    

  
for vN = 1:length(N) % loop over different prey densities (ind./m^3) 
 for vE = 1:length(E) % loop over different light intensities (µE/m^2/s)  
  for vL = 1:length(L) % loop over different fish lengths (m) 
   for vB = 1:length(vBite) % loop over different swimming speeds (m/s) 
    for vH = 1:length(H) % loop over different handling time values (s/ind.)                                         
     for preyC = 1 % loop over prey category 
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         R(vE,vL) = getr(BeamAtt,Ctr,Ap,EM(vL),Ke,E(vE)); % visual range of fish (m),  call SUBROUTINE GETR() (Aksnes and Utne, 

1997) 
         B(vE,vL,vB) = vBite(vB)*pi*(R(vE,vL)*sind(Theta))^2; % search rate of fish (m^3/s) (Huse and Fiksen, 2010)                 
         bin(vN,vE,vL,vB,vH) = N(vN)*B(vE,vL,vB)*Pc/(1 + N(vN)*B(vE,vL,vB)*h(vH)); % individuals eaten by each fish (ind./s)                              
         bi(vN,vE,vL,vB,vH) = bin(vN,vE,vL,vB,vH)*w(preyC)*d(preyC); % absolute energy intake (J/s)          
         tSearcht = 1/(1 + N(vN)*B(vE,vL,vB)*h(vH)); % ratio of search time to total time (inverse of denominator)     
         bu = bi(vN,vE,vL,vB,vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy 

minus excretion and SDA) (J/h/(g fish)) (Bachiller et al., 2018)                                               
         bNi(vN,vE,vL,vB,vH) = bu - bM(vB); % net specific energy intake (J/h/(g fish)) 
         [bNiOpt(vN,vE,vL,vH),vBind(vN,vE,vL,vH)] = max(bNi(vN,vE,vL,:,vH),[],4); % net specific energy intake at optimal 

swimming speed (J/h/(g fish)); index for optimal speed  

            
         vBiteOpt(vN,vE,vL,vH) = vBite(vBind(vN,vE,vL,vH)); % optimal swimming speed of fish searching for prey (m/s)     
         BOpt(vN,vE,vL,vH) = B(vE,vL,vBind(vN,vE,vL,vH)); % search rate of fish swimming at optimal speed (m^3/s)             
         biOpt(vN,vE,vL,vB,vH) = bi(vN,vE,vL,vBind(vN,vE,vL,vH),vH); % absolute energy intake at optimal swimming speed (J/s)              
         bfOpt(vN,vE,vL,vH) = bin(vN,vE,vL,vBind(vN,vE,vL,vH))/N(vN); % volume cleared for prey by fish swimming at optimal 

speed (m^3/s)      
         bMOpt(vN,vE,vL,vH) = bM(vBind(vN,vE,vL,vH)); % total metabolic rate of fish bite-feeding at optimal swimming speed 

(J/h/(g fish))               
         Nprof(vN,vE,vL,vH) = prof(vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda) - bMOpt(vN,vE,vL,vH); % net profitability of prey (net 

energy gained per handling time) (J/h/(g fish))                       

                                       
     end % prey category        
    end % handling time  
   end % swimming speeds 
  end % fish lengths 
 end % light intensities  
end % prey densities 

  
else % do not run loop above 
end 

  
if btime == 1 % run loop below (simulation of feeding experiment with closed populations)  

     
% Initialising matrices  

  
NOptxp1 = zeros(length(t2),length(Exp),length(L),length(H)); % prey density when fish swims at optimal speed (ind./m^3) (loop 1) 
NOptxp2 = zeros(length(t2),length(Exp),length(L),length(H)); % prey density when fish swims at optimal speed (ind./m^3) (loop 2) 
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Rxp = zeros(length(Exp),length(L)); % visual range of fish (m) 
Bxp = zeros(length(Exp),length(L),length(vBite)); % search rate of fish (m^3/s) 
binxp = zeros(length(t2),length(Exp),length(L),length(vBite),length(H)); % individuals eaten by each fish during timestep                 
bixp = zeros(length(t2),length(Exp),length(L),length(vBite),length(H)); % absolute energy intake (J/s) 
bNixp = zeros(length(t2),length(Exp),length(L),length(vBite),length(H)); % net specific energy intake (J/h/(g fish)) 
bNiOptxp = zeros(length(t2),length(Exp),length(L),length(H)); % net specific energy intake at optimal swimming speed (J/h/(g 

fish))  
vBindxp = zeros(length(t2),length(Exp),length(L),length(H)); % index for optimal speed  

  

vBiteOptxp1 = zeros(length(t2),length(Exp),length(L),length(H)); % optimal swimming speed of bite-feeding fish (m/s) (loop 1)   
vBiteOptxp2 = zeros(length(t2),length(Exp),length(L),length(H)); % optimal swimming speed of bite-feeding fish (m/s) (loop 2)   
BOptxp = zeros(length(t2),length(Exp),length(L),length(H)); % search rate of fish swimming at optimal speed (m^3/s) 
biOptxp = zeros(length(t2),length(Exp),length(L),length(H)); % absolute energy intake at optimal swimming speed (J/s)  
bfOptxp = zeros(length(t2),length(Exp),length(L),length(H)); % volume cleared for prey by fish swimming at optimal speed 

(m^3/min) 
bMOptxp = zeros(length(t2),length(Exp),length(L),length(H)); % total metabolic rate of fish bite-feeding at optimal swimming 

speed (J/h/(g fish)) 
Nprof = zeros(length(L),length(H)); % net profitability of prey (net energy gained per handling time) (J/h/(g fish)) 

  
% Loop 1 over time (individual fish represents the average of the whole school) 

  
for tstep = 1:ntstep % loop over different timesteps 
 for vE = 1:length(Exp) % loop over different light intensities (µE/m^2/s)         
  for vL = 1:length(L) % loop over different fish lengths (m)         
   for vB = 1:length(vBite) % loop over different swimming speeds (m/s)          
    for vH = 1:length(H) % loop over different handling time values (s/ind.)              
     for preyC = 1 % loop over prey category 

             
         NOptxp1(1,:,:,:) = N1xp(preyC); % initial prey density (ind./m^3) 

           
         Rxp(vE,vL) = getr(BeamAtt,Ctr,Ap,EM(vL),Ke,Exp(vE)); % visual range of fish (m),  call SUBROUTINE GETR() (Aksnes and 

Utne, 1997) 
         Bxp(vE,vL,vB) = vBite(vB)*pi*(Rxp(vE,vL)*sind(Theta))^2; % search rate of fish (m^3/s) (Huse and Fiksen, 2010)                                                  
         binxp(tstep,vE,vL,vB,vH) = NOptxp1(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*Pc/(1 + NOptxp1(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*h(vH)); 

% individuals eaten by each fish (ind./s)   
         bixp(tstep,vE,vL,vB,vH) = binxp(tstep,vE,vL,vB,vH)*w(preyC)*d(preyC); % absolute energy intake (J/s) 
         tSearchtxp = 1/(1 + NOptxp1(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*h(vH)); % ratio of search time to total time                   
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         buxp = bixp(tstep,vE,vL,vB,vH)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy minus 

excretion and SDA) (J/h/(g fish)) (Bachiller et al., 2018)                              
         bNixp(tstep,vE,vL,vB,vH) = buxp - bM(vB); % net specific energy intake (J/h/(g fish))                                                                                  
         [bNiOptxp(tstep,vE,vL,vH),vBindxp(tstep,vE,vL,vH)] = max(bNixp(tstep,vE,vL,:,vH),[],4); % net specific energy intake at 

optimal swimming speed (J/h/(g fish)); index for optimal speed  

  
         vBiteOptxp1(tstep,vE,vL,vH) = vBite(vBindxp(tstep,vE,vL,vH)); % optimal swimming speed of bite-feeding fish (m/s)           
         BOptxp(tstep,vE,vL,vH) = Bxp(vE,vL,vBindxp(tstep,vE,vL,vH)); % search rate of fish swimming at optimal speed (m^3/s)                                                              
         biOptxp(tstep,vE,vL,vH) = bixp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH); % absolute energy intake at optimal swimming 

speed (J/s)                                                                              
         bMOptxp(tstep,vE,vL,vH) = bM(vBindxp(tstep,vE,vL,vH)); % total metabolic rate of fish bite-feeding at optimal swimming 

speed (J/h/(g fish))               
         bfOptxp(tstep,vE,vL,vH) = binxp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH)/NOptxp1(tstep,vE,vL,vH); % volume cleared for 

prey by fish swimming at optimal speed (m^3/s) 
         Nprof(vL,vH) = prof(vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda) - bMOptxp(tstep,vE,vL,vH); % net profitability of prey (net 

energy gained per handling time) (J/h/(g fish)) 

               
       if bNiOptxp(tstep,vE,vL,vH) > - Mroutine % if net intake rate is higher than routine metabolism... 

              
          dNOptxp = binxp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH)*dtstep*60*nFish1(tstep)/V; % decrease in prey density during 

timestep when fish swims at optimal speed (ind./m^3)           
          NOptxp1(tstep + 1,vE,vL,vH) = max((NOptxp1(tstep,vE,vL,vH) - dNOptxp),0); % prey density at next timestep when fish 

swims at optimal speed (ind./m^3)    

              
       else 

              
          NOptxp1(tstep + 1,vE,vL,vH) = NOptxp1(tstep,vE,vL,vH); % else, the fish has stopped feeding and prey density no longer 

declines  

                          
       end                                                                                   

          
     end % prey category       
    end % handling time  
   end % swimming speeds 
  end % fish lengths 
 end % light intensities 
end % timesteps 
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% Loop 2 over time (individual fish represents the average of only the feeding members of the school) 

  
for tstep = 1:ntstep % loop over different timesteps 
 for vE = 1:length(Exp) % loop over different light intensities (µE/m^2/s)         
  for vL = 1:length(L) % loop over different fish lengths (m)         
   for vB = 1:length(vBite) % loop over different swimming speeds (m/s)          
    for vH = 1:length(H) % loop over different handling time values (s/ind.)              
     for preyC = 1 % loop over prey category 

             
         NOptxp2(1,:,:,:) = N1xp(preyC); % initial prey density (ind./m^3) 

           
         Rxp(vE,vL) = getr(BeamAtt,Ctr,Ap,EM(vL),Ke,Exp(vE)); % visual range of fish (m),  call SUBROUTINE GETR() (Aksnes and 

Utne, 1997) 
         Bxp(vE,vL,vB) = vBite(vB)*pi*(Rxp(vE,vL)*sind(Theta))^2; % search rate of fish (m^3/s) (Huse and Fiksen, 2010)                                                  
         binxp(tstep,vE,vL,vB,vH) = NOptxp2(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*Pc/(1 + NOptxp2(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*h(vH)); 

% individuals eaten by each fish (ind./s)   
         bixp(tstep,vE,vL,vB,vH) = binxp(tstep,vE,vL,vB,vH)*w(preyC)*d(preyC); % absolute energy intake (J/s) 
         tSearchtxp = 1/(1 + NOptxp2(tstep,vE,vL,vH)*Bxp(vE,vL,vB)*h(vH)); % ratio of search time to total time                   
         buxp = bixp(tstep,vE,vL,vB,vH)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy minus 

excretion and SDA) (J/h/(g fish)) (Bachiller et al., 2018)                              
         bNixp(tstep,vE,vL,vB,vH) = buxp - bM(vB); % net specific energy intake (J/h/(g fish))                                                                                  
         [bNiOptxp(tstep,vE,vL,vH),vBindxp(tstep,vE,vL,vH)] = max(bNixp(tstep,vE,vL,:,vH),[],4); % net specific energy intake at 

optimal swimming speed (J/h/(g fish)); index for optimal speed  

  
         vBiteOptxp2(tstep,vE,vL,vH) = vBite(vBindxp(tstep,vE,vL,vH)); % optimal swimming speed of bite-feeding fish (m/s)           
         BOptxp(tstep,vE,vL,vH) = Bxp(vE,vL,vBindxp(tstep,vE,vL,vH)); % search rate of fish swimming at optimal speed (m^3/s)                                                              
         biOptxp(tstep,vE,vL,vH) = bixp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH); % absolute energy intake at optimal swimming 

speed (J/s)                                                                              
         bMOptxp(tstep,vE,vL,vH) = bM(vBindxp(tstep,vE,vL,vH)); % total metabolic rate of fish bite-feeding at optimal swimming 

speed (J/h/(g fish))               
         bfOptxp(tstep,vE,vL,vH) = binxp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH)/NOptxp2(tstep,vE,vL,vH); % volume cleared for 

prey by fish swimming at optimal speed (m^3/s) 
         Nprof(vL,vH) = prof(vH)*3600/W(vL)*(1 - eg)*(1 - ex - sda) - bMOptxp(tstep,vE,vL,vH); % net profitability of prey (net 

energy gained per handling time) (J/h/(g fish)) 

               
       if bNiOptxp(tstep,vE,vL,vH) > - Mroutine % if net intake rate is higher than routine metabolism... 
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          dNOptxp = binxp(tstep,vE,vL,vBindxp(tstep,vE,vL,vH),vH)*dtstep*60*nFish2(tstep,1)/V; % decrease in prey density during 

timestep when fish swims at optimal speed (ind./m^3)           
          NOptxp2(tstep + 1,vE,vL,vH) = max((NOptxp2(tstep,vE,vL,vH) - dNOptxp),0); % prey density at next timestep when fish 

swims at optimal speed (ind./m^3)    

              
       else 

              
          NOptxp2(tstep + 1,vE,vL,vH) = NOptxp2(tstep,vE,vL,vH); % else, the fish has stopped feeding and prey density no longer 

declines  

                          
       end                                                                                   

          
     end % prey category       
    end % handling time  
   end % swimming speeds 
  end % fish lengths 
 end % light intensities 
end % timesteps 

  
else % do not run loop above 
end 

  

  
%% FILTER-FEEDING MODEL (Artemia) 

  
if fnotime == 1 % run loop below (intake rates at different prey densities and light intensities) 

  
% Initialising matrices 

            
fin = zeros(length(N),length(E),length(L),length(vFilter)); % individuals eaten by each fish (ind./s)  
fi = zeros(length(N),length(E),length(L),length(vFilter)); % absolute energy intake (J/s) 
fNi = zeros(length(N),length(E),length(L),length(vFilter)); % net specific energy intake (J/h/(g fish)) 
fNiOpt = zeros(length(N),length(E),length(L)); % net specific energy intake at optimal swimming speed (J/h/(g fish)) 
vFind = zeros(length(N),length(E),length(L)); % index for optimal speed  

  
vFilterOpt = zeros(length(N),length(E),length(L)); % optimal swimming speed of filter-feeding fish (m/s) 
fiOpt = zeros(length(N),length(E),length(L)); % absolute energy intake at optimal swimming speed (J/s)  
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ffOpt = zeros(length(N),length(E),length(L)); % volume cleared for prey by fish swimming at optimal speed (m^3/s)                      
feffOpt = zeros(length(N),length(E),length(L)); % filtration efficiency 
fMOpt = zeros(length(N),length(E),length(L)); % metabolic rate of fish filter-feeding at optimal swimming speed (J/h/(g fish))  

  
% Loop (time-independent) 

  
for vN = 1:length(N) % loop over different prey densities (ind./m^3) 
 for vE = 1:length(E) % loop over different light intensities (µE/m^2/s) 
  for vL = 1:length(L) % loop over different fish lengths (m) 
   for vF = 1:length(vFilter) % loop over different swimming speeds (m/s) 
    for preyC = 2 % loop over prey category   

           
        fin(vN,vE,vL,vF) = vFilter(vF)*gAr(vL)*ft*Bf*N(vN)*Pe*r; % individuals eaten by each fish (ind./s) (Lovvorn, Baduini and 

Hunt, 2001)                
        fi(vN,vE,vL,vF) = fin(vN,vE,vL,vF)*w(preyC)*d(preyC); % absolute energy intake (J/s)   
        fu = fi(vN,vE,vL,vF)*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated energy minus 

excretion and specific dynamic action) (J/h/(g fish)) (Bachiller et al., 2018)  
        fNi(vN,vE,vL,vF) = fu - fM(vF); % net specific energy intake (J/h/(g fish)) 
        [fNiOpt(vN,vE,vL),vFind(vN,vE,vL)] = max(fNi(vN,vE,vL,:),[],4); % net specific energy intake at optimal swimming speed 

(J/h/(g fish)); index for optimal speed  

            

        vFilterOpt(vN,vE,vL) = vFilter(vFind(vN,vE,vL)); % optimal swimming speed of filter-feeding fish (m/s)  
        fiOpt(vN,vE,vL) = fi(vN,vE,vL,vFind(vN,vE,vL)); % absolute energy intake at optimal swimming speed (J/s)    
        ffOpt(vN,vE,vL) = fin(vN,vE,vL,vFind(vN,vE,vL))/N(vN); % volume cleared for prey by fish swimming at optimal speed 

(m^3/s)                                  
        feffOpt(vN,vE,vL) = ffOpt(vN,vE,vL)/(vFilter(vFind(vN,vE,vL))*gAr(vL)); % filtration efficiency  
        fMOpt(vN,vE,vL) = fM(vFind(vN,vE,vL)); % metabolic rate of fish filter-feeding at optimal swimming speed (J/h/(g fish))   

        
    end % prey category   
   end % swimming speeds 
  end % fish lengths 
 end % light intensities 
end % prey densities    

  
else % do not run loop above 
end 
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if ftime == 1 % run loop below (simulation of feeding experiment with closed populations)  

     
% Initialising matrices 

            
NOptxp1 = zeros(length(t2),length(Exp),length(L)); % prey density when fish swims at optimal speed (ind./m^3) (loop 1) 
NOptxp2 = zeros(length(t2),length(Exp),length(L)); % prey density when fish swims at optimal speed (ind./m^3) (loop 2) 

  
finxp = zeros(length(t2),length(Exp),length(L),length(vFilter)); % individuals eaten by each fish (ind./s)  
fixp = zeros(length(t2),length(Exp),length(L),length(vFilter)); % absolute energy intake (J/s) 
fNixp = zeros(length(t2),length(Exp),length(L),length(vFilter)); % net specific energy intake (J/h/(g fish)) 
fNiOptxp = zeros(length(t2),length(Exp),length(L)); % net specific energy intake at optimal swimming speed (J/h/(g fish)) 
vFindxp = zeros(length(t2),length(Exp),length(L)); % index for optimal speed  

  
vFilterOptxp1 = zeros(length(t2),length(Exp),length(L)); % optimal swimming speed of filter-feeding fish (m/s) (loop 1) 
vFilterOptxp2 = zeros(length(t2),length(Exp),length(L)); % optimal swimming speed of filter-feeding fish (m/s) (loop 2) 
fiOptxp = zeros(length(t2),length(Exp),length(L)); % absolute energy intake at optimal swimming speed (J/s)  
fMOptxp = zeros(length(t2),length(Exp),length(L)); % metabolic rate of fish filter-feeding at optimal swimming speed (J/h/(g 

fish))    
ffOptxp = zeros(length(t2),length(Exp),length(L)); % volume cleared for prey by fish swimming at optimal speed (m^3/s)                      
feffOptxp = zeros(length(t2),length(Exp),length(L)); % filtration efficiency 

  

% Loop 1 over time (individual fish represents the average of the whole school) 

  
for tstep = 1:ntstep % loop over different timesteps 
 for vE = length(Exp) % loop over different light intensities (µE/m^2/s)         
  for vL = 1:length(L) % loop over different fish lengths (m) 
   for vF = 1:length(vFilter) % loop over different swimming speeds (m/s)            
    for preyC = 2 % loop over prey category 

                               
        NOptxp1(1,:,:) = N1xp(preyC); % initial prey density (ind./m^3)  

           
        finxp(tstep,vE,vL,vF) = vFilter(vF)*gAr(vL)*ft*Bf*NOptxp1(tstep,vE,vL)*Pe*r; % individuals eaten by each fish (ind./s) 

(Lovvorn, Baduini and Hunt, 2001)                
        fixp(tstep,vE,vL,vF) = finxp(tstep,vE,vL,vF)*w(preyC)*d(preyC); % absolute energy intake (J/s)     
        fuxp = fixp(tstep,vE,vL,vF)*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated 

energy minus excretion and specific dynamic action) (J/h/(g fish)) (Bachiller et al., 2018)  
        fNixp(tstep,vE,vL,vF) = fuxp - fM(vF); % net specific energy intake (J/h/(g fish)) 
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        [fNiOptxp(tstep,vE,vL),vFindxp(tstep,vE,vL)] = max(fNixp(tstep,vE,vL,:),[],4); % net specific energy intake at optimal 

swimming speed (J/h/(g fish)); index for optimal speed  

                        
        vFilterOptxp1(tstep,vE,vL) = vFilter(vFindxp(tstep,vE,vL)); % optimal swimming speed of filter-feeding fish (m/s)  
        fiOptxp(tstep,vE,vL) = fixp(tstep,vE,vL,vFindxp(tstep,vE,vL)); % absolute energy intake at optimal swimming speed (J/s)             
        fMOptxp(tstep,vE,vL) = fM(vFindxp(tstep,vE,vL)); % metabolic rate of fish filter-feeding at optimal swimming speed 

(J/h/(g fish))                                          
        ffOptxp(tstep,vE,vL) = finxp(tstep,vE,vL,vFindxp(tstep,vE,vL))/NOptxp1(tstep,vE,vL); % volume cleared for prey by fish 

swimming at optimal speed (m^3/s) 
        feffOptxp(tstep,vE,vL) = ffOptxp(tstep,vE,vL)/(vFilter(vFindxp(tstep,vE,vL))*gAr(vL)); % filtration efficiency  

              
      if fNiOptxp(tstep,vE,vL) > - Mroutine % if net intake rate is higher than routine metabolism...  

              
         dNOptxp = finxp(tstep,vE,vL,vFindxp(tstep,vE,vL))*dtstep*60*nFish1(tstep)/V; % decrease in prey density during timestep 

when fish swims at optimal speed (ind./m^3)           
         NOptxp1(tstep + 1,vE,vL) = max((NOptxp1(tstep,vE,vL) - dNOptxp),0); % prey density at next timestep when fish swims at 

optimal speed (ind./m^3)   

              
      else     

             
         NOptxp1(tstep + 1,vE,vL) = NOptxp1(tstep,vE,vL); % else, the fish has stopped feeding and prey density no longer 

declines            

                                             
      end 

                                                                                                                          
    end % prey category    
   end % swimming speeds 
  end % fish lengths 
 end % light intensities 
end % timesteps 

  
% Loop 2 over time (individual fish represents the average of only the feeding members of the school) 

  
for tstep = 1:ntstep % loop over different timesteps 
 for vE = length(Exp) % loop over different light intensities (µE/m^2/s)         
  for vL = 1:length(L) % loop over different fish lengths (m) 
   for vF = 1:length(vFilter) % loop over different swimming speeds (m/s)            
    for preyC = 2 % loop over prey category 
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        NOptxp2(1,:,:) = N1xp(preyC); % initial prey density (ind./m^3)  

           
        finxp(tstep,vE,vL,vF) = vFilter(vF)*gAr(vL)*ft*Bf*NOptxp2(tstep,vE,vL)*Pe*r; % individuals eaten by each fish (ind./s) 

(Lovvorn, Baduini and Hunt, 2001)                
        fixp(tstep,vE,vL,vF) = finxp(tstep,vE,vL,vF)*w(preyC)*d(preyC); % absolute energy intake (J/s)     
        fuxp = fixp(tstep,vE,vL,vF)*3600/W(vL)*(1 - eg)*(1 - ex - sda); % mass-specific surplus energy intake (assimilated 

energy minus excretion and specific dynamic action) (J/h/(g fish)) (Bachiller et al., 2018)  
        fNixp(tstep,vE,vL,vF) = fuxp - fM(vF); % net specific energy intake (J/h/(g fish)) 
        [fNiOptxp(tstep,vE,vL),vFindxp(tstep,vE,vL)] = max(fNixp(tstep,vE,vL,:),[],4); % net specific energy intake at optimal 

swimming speed (J/h/(g fish)); index for optimal speed  

                        
        vFilterOptxp2(tstep,vE,vL) = vFilter(vFindxp(tstep,vE,vL)); % optimal swimming speed of filter-feeding fish (m/s)  
        fiOptxp(tstep,vE,vL) = fixp(tstep,vE,vL,vFindxp(tstep,vE,vL)); % absolute energy intake at optimal swimming speed (J/s)             
        fMOptxp(tstep,vE,vL) = fM(vFindxp(tstep,vE,vL)); % metabolic rate of fish filter-feeding at optimal swimming speed 

(J/h/(g fish))                                          
        ffOptxp(tstep,vE,vL) = finxp(tstep,vE,vL,vFindxp(tstep,vE,vL))/NOptxp2(tstep,vE,vL); % volume cleared for prey by fish 

swimming at optimal speed (m^3/s) 
        feffOptxp(tstep,vE,vL) = ffOptxp(tstep,vE,vL)/(vFilter(vFindxp(tstep,vE,vL))*gAr(vL)); % filtration efficiency  

              
      if fNiOptxp(tstep,vE,vL) > - Mroutine % if net intake rate is higher than routine metabolism...  

              
         dNOptxp = finxp(tstep,vE,vL,vFindxp(tstep,vE,vL))*dtstep*60*nFish2(tstep,2)/V; % decrease in prey density during 

timestep when fish swims at optimal speed (ind./m^3)           
         NOptxp2(tstep + 1,vE,vL) = max((NOptxp2(tstep,vE,vL) - dNOptxp),0); % prey density at next timestep when fish swims at 

optimal speed (ind./m^3)   

              
      else     

             
         NOptxp2(tstep + 1,vE,vL) = NOptxp2(tstep,vE,vL); % else, the fish has stopped feeding and prey density no longer 

declines            

                                             

      end 

                                                                                                                          
    end % prey category    
   end % swimming speeds 
  end % fish lengths 
 end % light intensities 
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end % timesteps 

  
else % do not run loop above 
end    

  

  
%% PLOTS 

  
figure(1)  
plot(t1,NOptxp1(:,:,:,:),'LineWidth',2,'Color',[0.91 0.234 0.325]); hold on; 
plot(t1,NOptxp2(:,:,:,:),'LineWidth',1,'Color',[0.91 0.234 0.325]); hold on; 
err = [5000,1500,180,250,250,250,180]; 
errorbar(t3,Nemp(:,1),err,'o','Color',[0.8500 0.3250 0.0980],'MarkerFaceColor',[0.9290 0.6940 0.1250]); 
xlim([-3,62]); 
ylim([-1*10^3,15*10^3]); 
ax = gca; 
ax.YAxis.Exponent = 3; 
xlabel('Time after food introduction (min)'); ylabel('Observed and predicted prey density (ind. m^{-3})'); 
legend({'Predicted (whole school)','Predicted (only feeding fish)','Observed'},'Location','northeast','FontSize',8); 
set(gca,'box','off'); 
export_fig C:\Users\Admin\Documents\fig10.png -transparent -m2; 

  
figure(2) 
h1 = plot(t2,vBiteOptxp1(:,:,:,:)*100,'LineWidth',2,'Color',[0.91 0.234 0.325]); hold on 
plot(t2,vBiteOptxp2(:,:,:,:)*100,'LineWidth',1,'Color',[0.91 0.234 0.325]); hold on 
err = [0.07,0.06,0.08,0.05,0.07,0.07,0.07]*100; 
h2 = errorbar(t3,vBiteEmp*100,err,'o','Color',[0.8500 0.3250 0.0980],'MarkerFaceColor',[0.9290 0.6940 0.1250]); 
xlim([-3,62]); 
ylim([0,70]); 
xlabel('Time after food introduction (min)'); ylabel('Observed and predicted swimming speed (cm s^{-1})'); 
legend([h1,h2],{'Predicted','Observed'},'Location','northeast','FontSize',8); 
set(gca,'box','off'); 
export_fig C:\Users\Admin\Documents\fig11.png -transparent -m2; 

  
figure(3)  
plot(t1,NOptxp1(:,:,:),'--','LineWidth',2,'Color',[0.1 0.4 0.7]); hold on; 
plot(t1,NOptxp2(:,:,:),'--','LineWidth',1,'Color',[0.1 0.4 0.7]); hold on; 
err = [5.5*10^4,2.5*10^4,2*10^4,10^4,9*10^3,8*10^3,8*10^3]; 
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errorbar(t3,Nemp(:,2),err,'o','Color',[0.4940 0.1840 0.5560],'MarkerFaceColor',[0.9 0.7 1]); 
xlim([-3,62]); 
ylim([-40*10^3,900*10^3]); 
ax = gca; 
ax.YAxis.Exponent = 3; 
xlabel('Time after food introduction (min)'); ylabel('Observed and predicted prey density (ind. m^{-3})'); 
legend({'Predicted (whole school)','Predicted (only feeding fish)','Observed'},'location','northeast','fontsize',9,'box','off'); 
set(gca,'box','off'); 
export_fig C:\Users\Admin\Documents\fig12.png -transparent -m2; 

  

figure(4) 
plot(t2,vFilterOptxp1(:,:,:)*100,'--','LineWidth',2,'Color',[0.1 0.4 0.7]); hold on 
plot(t2,vFilterOptxp2(:,:,:)*100,'--','LineWidth',1,'Color',[0.1 0.4 0.7]); hold on 
err = [0.06,0.07,0.05,0.02,0.03,0.07,0.04]*100; 
errorbar(t3,vFilterEmp*100,err,'o','Color',[0.4940 0.1840 0.5560],'MarkerFaceColor',[0.9 0.7 1]); 
xlim([-3,62]); 
ylim([0,70]); 
xlabel('Time after food introduction (min)'); ylabel('Observed and predicted swimming speed (cm s^{-1})'); 
legend({'Predicted (whole school)','Predicted (only feeding fish)','Observed'},'location','northeast','fontsize',9,'box','off'); 
set(gca,'box','off'); 
export_fig C:\Users\Admin\Documents\fig13.png -transparent -m2; 
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