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SUBSTITUTION IN RELEVANT LOGICS

TORE FJETLAND ØGAARD

Department of Philosophy, University of Bergen

Abstract. This essay discusses rules and semantic clauses relating to Substitution—Leibniz’s
law in the conjunctive-implicational form s =̇ t ∧ A(s) → A(t)—as these are put forward in Priest’s
books In Contradiction and An Introduction to Non-Classical Logic: From If to Is. The stated rules
and clauses are shown to be too weak in some cases and too strong in others. New ones are presented
and shown to be correct. Justification for the various rules is probed and it is argued that Substitution
ought to fail.

§1. Introduction. Finding the correct clause, be it proof-theoretic or semantic, suffi-
cient for validating some logical principle can be hard work. Even after having specified the
proof-theoretic machinery and the semantic interpretation thereof, it may happen that even
though the setup is sound and complete and does allow one to draw the intended inferences,
it also forces unintended ones; the clauses have simply overshot their target. The result is
that the logic in question has become stronger than intended, and possibly stronger than
what is desired. This is the case with clauses set forth to validate Substitution—Leibniz’s
law in the form s =̇ t∧A(s) → A(t)—in relevant logics in Priest’s most excellent textbook
An Introduction to Non-Classical Logic: From If to Is (Priest, 2008). Let’s use ‘INCL’ to
refer to this book from now on. I show in §2 that identity contracts in relevant logics with
Substitution provided Ackermann’s δ-rule—A → (B → C), B � A → C—is available, but
that it doesn’t in many logics in which this rule is not derivable. §3 then shows that Priest’s
clauses designed to validate Substitution entail not only it, but also that identity contracts.
They are also shown to involve a kind of cross-world reasoning which seems unwarranted
given the motivation Priest gives for relevant logics as logics which allows for reasoning
with impossible worlds where the laws of logic are different. I correct the mistake and
display the correct clauses, but show that these make the semantics quite intractable.

§5 considers the logic of identity as this is presented in Priest’s first and second edition
of In Contradiction (Priest, 2006). Let’s use ‘IC’ to refer to this book from now on. The
error of Priest (2008) has its roots in both these editions, although the problem with the
logic of identity in IC is different and more intricate than the problem with identity for
Substitution in relevant logics in Priest (2008). Although in the same ballpark, the proof
theory and semantics of Priest (2006) are slightly different and it is shown that the clauses
for identity there too are stronger than what is needed if the goal is simply to validate
Substitution for the primitive and non-contraposable conditional ⇒. They are, however,
shown to be too weak to validate Substitution for the contraposable conditional → which
is the version Priest states that the semantic clauses do validate. It is then shown how to
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2 TORE FJETLAND ØGAARD

validate Substitution for the contraposable conditional, clauses which then provide further
impetus for thinking that Substitution should not be valid. Before summing up, the short §6
gives three further reasons for why a relevantist should reject Substitution. The third reason
connects most closely to one way of motivating relevant logics, namely logics which allow
for impossible worlds—worlds in which logic itself goes astray.

But first, a quick note on notation: I follow Priest (Priest, 2008, sec. 12.2.4) in writing
Az(t) for the formula obtained from A by replacing every free occurrence of the variable
z by the term t. When there is no danger of confusion, I’ll simply write A(t). This term-
replacing function is obviously a surjective function from the Cartesian product of the set
of formulas, the set of variables and the set of terms onto the set of formulas. Thus there
will typically be many formulas A and A’ such that Az(t) and A′

z(t) are the same formulas.
For instance x =̇ xx(a), x =̇ ax(a), a =̇ xx(a), and a =̇ ax(a) are all identical to the formula
a =̇ a. s and t will be arbitrary terms, whereas a, b and c will be constants or elements in
a domain of quantification or both.

§2. The logics B, TW and EW - Hilbert style. The relevant logic ∀TW s=—quantified
TW with Substitution—has the following axioms and rules:

(Ax1) A → A
(Ax2) A → A ∨ B and B → A ∨ B
(Ax3) A ∧ B → A and A ∧ B → B
(Ax4) ¬¬A → A
(Ax5) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
(Ax6) (A → B) ∧ (A → C) → (A → B ∧ C)
(Ax7) (A → C) ∧ (B → C) → (A ∨ B → C)
(Ax8) (A → B) → ((B → C) → (A → C))
(Ax9) (A → B) → ((C → A) → (C → B))
(Ax10) (A → ¬B) → (B → ¬A)

(Q1) ∀xA → Ax(t) t free for x
(Q2) ∀x(A ∨ B) → A ∨ ∀xB x 	∈ FV{A}
(Q3) ∀x(A → B) → (A → ∀xB) x 	∈ FV{A}
(Q4) Ax(t) → ∃xA t free for x
(Q5) A ∧ ∃xB → ∃x(A ∧ B) x 	∈ FV{A}
(Q6) ∀x(B → A) → (∃xB → A) x 	∈ FV{A}
(I1) ∀x(x =̇ x)
(I2) ∀x∀y(x =̇ y ∧ Az(x) → Az(y)) x & y free for z
(R1) A, B � A ∧ B
(R2) A, A → B � B

(RQ)
� � Ax(y)
� � ∀xA

y 	∈ FV(� ∪ {∀xA})

The logic ∀B s= is got simply by weakening Ax8–Ax10 to rule form, whereas the logic
∀EW s= is got from ∀TW s= by adding Ackermann’s δ-rule—the weak permutation rule

(R3) A → (B → C), B � A → C.

Neither of these three logics validate the contraction rule—the rule A → (A → B) �
A → B—but they might, of course, validate it for some restricted part of the language. The
current question is whether I2 entails that contraction holds for identity statements. I will
now show that this is so only provided that R3 is available.
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SUBSTITUTION IN RELEVANT LOGICS 3

Fig. 1. The ∀TW =̇ -model A.

THEOREM 2.1. Identity contracts in ∀EW s=;

s =̇ t → (s =̇ t → C) �∀EW s= s =̇ t → C.
Proof.

(1) s =̇ t → (s =̇ t → C) assumption
(2) s =̇ t → (s =̇ t ∧ (s =̇ t → C)) 1, fiddling
(3) (s =̇ t ∧ (s =̇ t → C)) → (t =̇ t → C) I2
(4) s =̇ t → (t =̇ t → C) 2, 3, transitivity of →
(5) t =̇ t I1
(6) s =̇ t → C 4, 5, R3 �

So avoiding that identity contracts is hopeless in stronger logics such as ∀EW s=. To
show that R3 really is needed for the inference to go through I will now present a model for
∀TW s= over the empty language in which the contraction inference above does not hold.
{a, b} will be the domain of quantification. ¬ and → are to be interpreted according to the
displayed matrix in Figure 1, ∨ and ∃ are interpreted as supremum and ∧ and ∀ as infimum
over the displayed ordering of the truth-values {⊥, f, t, �}. For ease of reference, let’s call
the model A.1 The propositional part of A was found by the matrix generator MaGIC.2 To
see that A validates I2 one should note that if x =̇ y is evaluated to t, then obviously Az(x)
and Az(y) are evaluated to the same truth-value, and so x =̇ y∧Az(x) → Az(y) is evaluated
to the designated element t. If x =̇ y is evaluated to f, then x =̇ y ∧ Az(x) → Az(y) may be
evaluated to f if it can happen that Az(y) is evaluated to ⊥ while Az(x) is evaluated to some
element different from ⊥. The following lemma will therefore complete the demonstration
that the model in fact validates I2:

LEMMA 2.2. If A(x =̇ y) = f, then both

A(Az(y)) = � ⇒ A(Az(x)) = �
A(Az(y)) = ⊥ ⇒ A(Az(x)) = ⊥.

1 It is worth mentioning that the model also validates the following logical principles:

A ∨ ¬A
(A → B) ∧ (B → C) → (A → C)
A � ¬(A → ¬A)

�, B � A �, C � A
�, B ∨ C � A

(Reasoning by Cases)

�, Bx(y) � A
�, ∃xB � A

y 	∈ FV(� ∪ {∃xB, A})
(Existential Instant.)

Thus it validates the logic ∀TRd s=. For a better overview over the various relevant logics and
how they can be pieced together, see Øgaard (2016, sec. 2). §7 of Øgaard (2016) also has a
classification of various versions of Leibniz’s law according to strength and relevance.

2 I leave it to the distrusting reader to verify that it is in fact a model for ∀TW. MaGIC—an acronym
for Matrix Generator for Implication Connectives—is an open source computer program created
by John K. Slaney (Slaney, 1995).
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4 TORE FJETLAND ØGAARD

Proof. The proof is by induction on the complexity of A. Assume that the variable
assignment function is chosen so that A(x =̇ y) = f. Now if A is a propositional variable
then since Az(y) will then simply be A, the consequent follows trivially. If A is an atomic
formula s =̇ t for terms s and t, then the consequent again follows trivially since identity
statements only can be evaluated to t or f. For induction hypothesis (IH), assume that the
lemma holds for B and C.

1. Az(y) := (B ∧ C)z(y).
(1.1). If A(Az(y)) = ⊥, then either A(Bz(y)) = ⊥ or A(Cz(y)) = ⊥, and so,

by (IH) it follows that either A(Bz(x)) = ⊥ or A(Cz(x)) = ⊥ and therefore that
A((B ∧ C)z(x)) = ⊥.

(1.2). The case when A(Az(y)) = � is similar to (1.1).

2. Az(y) := ¬Bz(y).
(2.1). If A(Az(y)) = ⊥, then it follows that A(Bz(y)) = � and so, by (IH), that

A(Bz(x)) = � and therefore that A(¬Bz(x)) = ⊥.
(2.2). The case when A(Az(y)) = � is similar to (2.1).

3. Az(y) := (∀xB)z(y). Left for the reader.

4. Az(y) := (∃xB)z(y). Left for the reader.

5. Az(y) := (B → C)z(y). The conclusion follows trivially since it cannot happen that
a conditional gets evaluated to other elements than t or f. �

THEOREM 2.3. Identity does not contract in ∀TW s=.
Proof. Let the propositional variable p be evaluated to ⊥ by A, and let the individual

variables x and y be evaluated to the elements a and b, respectively. Then A(x =̇ y →
(x =̇ y → p)) = t, but A(x =̇ y → p) = f. A is a model for ∀TW s= by the above
considerations, and so the theorem follows. �

§3. Priest’s tableaux system and possible world semantics for B. Unlike the pre-
vious section, INCL does not use Hilbert systems for deductions, nor algebraic models.
Instead it uses tableaux systems and possible world semantics. In many cases this is quite
pleasing as the relation between the semantic and proof-theoretic clauses are most often
rather transparent. What can be challenging, however, is figuring out which Hilbertian rule
a given change in a tableaux system begets.

I will now give a brief presentation of Priest’s tableaux system for B and its possible
world semantics as this is presented in Priest (2008). I will only specify the {→, ∧}-
fragment of ∀B together with the identity principles. Afterward I’ll show that Priest’s
set-up forces identity to contract in the way the previous section showed was not the
case with ∀B s=. I’ll then go on to pin-point what is wrong with the set-up and how to
fix it.

A proof is defined to be a tree the nodes of which are of the form Rijk, A, +i or A, −i
for formulas A and natural numbers i, j and k. The proof system mirrors the possible world
semantics which has the semantic counterpart of R, R, as its ternary accessibility relation.
A, +i means that A holds, or is true at i, and A, −i means that A does not hold, or is untrue
at i. A branch therefore closes if A, +i and A, −i are both on it. ‘0’ stands for the actual
world.3 A tree is a proof of B from assumptions Am≤n if it has all of Am, +0 and B, −0

3 One only needs to assume that there is one possible, or normal world, and so every world different
from 0 will throughout this essay be impossible.
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SUBSTITUTION IN RELEVANT LOGICS 5

as initial nodes and all branches of the tree closes. The consequence relation is therefore
to be thought of as truth-preservation over the base world. Further axioms and rules are as
specified in Table 1.

i ii iii

I
·
↓

R0ii

A → B,+i
Rijk
↙↘

A,−j B,+k

A → B,−i
↓

Rijk
A,+j
B,−k

II

A,+i
A,−i

↓
×

A ∧ B,+i
↓

A,+i
B,+i

A ∧ B,−i
↙↘

A,−i B,−i

III
·
↓

t =̇ t,+0

s =̇ t,+0
Ax(s), +i

↓
Ax(t),+i

s =̇ t,+i
↓

s =̇ t,+0

Table 1. Fragment of Priest’s tableaux system for ∀B =̇
The rule I.iii requires j & k to be new, and if i is 0, then j = k. Rule III.ii carries the

usual requirement that s & t are substitutable for x in A. The rules are best read as rules
for expanding a branch downward; for instance, rule I.ii allows the branch to bifurcate
anywhere below A → B, +i, and Rijk, whereas rule I.iii allows one to expand a branch
downward with the nodes Rijk, A, +j, and B, −k provided A → B, −i is on it and j, k meet
the above restrictions.4

The following proof shows that identity contracts given the tableaux rules stated above:

4 These tableaux rules can be found on pages 165 (II.ii–II.iii), 190 (I.i–I.iii), and 549–550 (III.i–
III.iii) in Priest (2008).

Priest states the identity rules slightly differently, so let me make a quick note on what this amounts
to (this is a bit pedantic, so feel free to skip ahead!): the calculi in Priest (2008) are all sentential
calculi; the relations of proof-theoretic and semantic consequences, � and �, for the various logics
all take a set of closed formulas as their left argument, and a single such closed formula as their right
argument (see for instance Priest (2008, sec. 12.3.3)). This contrasts to In Contradiction in which
open formulas are allowed to be related by the consequence relations (see for instance Priest (2006,
p. 78 & sec. 19.7)). Some do make this out to be more than a difference of ideology; in terms of
semantic consequence one might argue that this is a relation of truth-preservation, and truth only
applies to sentences, whereas satisfaction applies to both open and closed formulas. As long as
the sententialist makes sure that there is always sufficiently many individual constants available,
however, one could translate between these ideologies without loss of logical strength (see Priest
(2008, sec. 12.2) for the INCL way of setting up the syntax of a logic). I have, for unity of presentation
and since I myself am not a sententialist, opted for formulating all consequence relations in this essay
to allow for open formulas, and so III.i–III.iii are stated for terms t and s and Ax(s) may be an open
formula.
The other difference is that Priest states rule III.ii with two restrictions: (1) A in the line Az(s), +i
should be atomic and (2) Az(s), +i must not be s =̇ t,+0. The latter here is inconsequential as
allowing it would simply allow one to extend a branch with s =̇ t,+0 and t =̇ t,+0. For the purposes
of this article, and so and not to cause confusion when III.ii is to be generalized, I’ve opted for
dropping this restriction. Some generalizations of III.ii do need that A be an arbitrary formula and
not just atomic. This is not the case with III.ii, but I have for consistency of presentation opted for
stating also it for arbitrary formulas. I will get back to this issue later when the difference between
having an atomic rule vs. a non-atomic one makes a difference to the consequence relation.
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6 TORE FJETLAND ØGAARD

(1) s =̇ t → (s =̇ t → B), +0 assumption
(2) s =̇ t → B, −0 assumption
(3) R011 I.iii
(4) s =̇ t, +1 2, I.iii
(5) B, −1 2, I.iii
(6) s =̇ t, +0 4, III.iii
(7) R000 I.i

↙↘
(8) s =̇ t, −0 s =̇ t → B, +0 1, 7, I.ii
(9) × × left: 6 & 8, II.i; right: 2 & 8, II.i

The crucial assumption is undoubtedly rule III.iii. Its corresponding semantic clause is
termed the Subset Constraint (SC) and allows one to infer that any identity statement true
at some world is true at the base world. Before we go on, let’s look closer at the possible
world semantics for B:

DEFINITION 3.1 (Interpretations). An interpretation for the positive fragment of the rele-
vant predicate logic B is a structure

S = 〈D,W,N ,R, ∗, s, v〉
where

• D is the non-empty domain of quantification
• W is a non-empty set of worlds
• N ⊆ W is a non-empty set of normal worlds
• R is the ternary accessibility relation on W—R ⊆ W3— such that for all normal

worlds n ∈ N , Rnxy iff x = y
• ∗, the Routley star, is a function from W to W such that w∗∗ = w for all w ∈ W
• s is a variable assignment function: s : VAR �→ D
• v is an interpretation function such that

– v(a) ∈ D for individual constants a

– vw(p) ∈ {1, 0} for propositional constants p and w ∈ W
– vw(P) ⊆ Dn for n-ary predicate P and w ∈ W
– vw(=̇) = {〈a, a〉 | a ∈ D} for w ∈ N
– vw(=̇) ⊆ D2 for w ∈ W \ N .

DEFINITION 3.2 (Satisfaction).
• vsw � p iff vw(p) = 1
• vsw � P(s1, . . . , sn) iff 〈vs(s1), . . . , v

s(sn)〉 ∈ vw(P)
• vsw � ¬A iff vsw∗ � A
• vsw � A ∧ B iff vsw � A and vsw � B
• vsw � A ∨ B iff vsw � A or vsw � B
• vsw � A → B iff for every world Rwxy, if vsx � A, then vsy � B

• vsw � ∀xA iff vs(
x/a)

w � A for all a ∈ D
• vsw � ∃xA iff vs(

x/a)
w � A for some a ∈ D.

DEFINITION 3.3 (Semantic consequence). Semantic consequence in a structure S is de-
fined as preservation of satisfaction over all normal worlds: � �S A iff for all n ∈ N , if
vsn � θi for all θi ∈ �, then vsn � A. Semantic consequence simpliciter for B, � |�B A, is
then semantic consequence over all B-structures.
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SUBSTITUTION IN RELEVANT LOGICS 7

In the case of B one may assume that there is only one normal world. This is reflected in
the tableaux system where ‘0’ stands for this one normal world. The interpretation of the
rule III.i is then that s =̇ s is true at the normal world, whereas III.ii says that if s =̇ t is
true at the normal world, then A is true of t at any world i if it is true of s there. The model
theory validates these two principles since =̇ is interpreted as the real identity predicate
at normal worlds and the semantics is compositional so that coreferring terms can’t make
out a semantic difference. The semantics does not validate III.iii, however, since it allows
non-normal worlds to interpret =̇ arbitrarily. Thus distinct object a and b can be identified
at non-normal world. It is this possibility the Subset Constraint does away with. Formally,
SC is the demand that =̇ be, at every non-normal world in the model, interpreted to be a
subset of the set of all identity-pairs:

(SC) vw(=̇) ⊆ {〈a, a〉 | a ∈ D} for w ∈ W \ N .

Priest adds both III.i and III.ii as default rules for identity for relevant logics, and states
that in order to validate Substitution one needs in addition to add III.iii:

The Subset Constraint nonetheless has an effect on the validity of in-
ferences concerning identity. Without it, (a = b ∧ Pa) → Pb is not
logically valid in B. (Details are left as an exercise.) With it, it is[. . . ].
(Priest, 2008, p. 551)

This is plainly wrong as the counter-model above shows; Substitution does not entail
contraction for identity formulas, whereas Priest’s clauses for it do. On the same page just
quoted from, Priest does prove that Substitution is a theorem of his set-up, and so the only
problem with the statement is the claim that Substitution is not a theorem unless III.iii/SC
holds.

Without III.iii, the logic only validates the rule s =̇ t � A(s) → A(t) which the clause
III.ii is designed to validate. III.ii seems itself to be unwarranted as it forces substitution to
hold at a world different from where the identity holds; it licenses one to infer that t is A
at a world if A(s) is true there and the base world identifies s with t. The reason why this
is not unwarranted, however, is that the base world always identifies truly, whereas other
worlds can falsely identify objects—provided that the Subset Constraint does not hold of
course—or fail to report true identities. It is also instructive to note, as Priest also does,
that III.ii can equivalently be replaced by the Substitutivity of Identity, the rule

(SI) s =̇ t, A(s) � A(t),

the tableaux version of which is most naturally stated as the rule

(LL000)

s =̇ t, +0
Ax(s), +0

↓
Ax(t), +0.

Thus the only work that III.ii does—let’s for consistent nomenclature introduce LL0ii as
just another name for the rule III.ii— is to ensure that the actual world is closed under
SI; the cross-world rumpus of III.ii is simply due to the logic of → and the restriction on
every world to respect true identities even though it is not laid upon every world to confirm
these. The legitimacy of these rules, then, are based on the insistence that normal worlds
interpret the identity predicate in accordance with identity, and that the semantics must be
compositional.
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8 TORE FJETLAND ØGAARD

Clause III.iii is supposed to validate Substitution, and without any further stated pur-
poses, one would guess that it is not designed to validate any further logical principle than
what follows from Substitution (given the logic at hand). Substitution surely entails SI.
This is not reflected in Priest’s setup, however—III.ii is surely not derivable using III.i
and III.iii alone—and so it is somewhat disappointing to end up with a logic which has to
assume SI (in the guise of III.ii) as a primitive rule. To remedy this, one could equivalently
replace both III.ii and III.iii by the rule:

(LLijj)

s =̇ t, +i
Ax(s), +j

↓
Ax(t), +j.

Here is a proof of this equivalence:
Proof. (I) That LLijj entails III.ii is obvious. That it entails III.iii is seen by the following

derivation:
(1) s =̇ t, +i assumption
(2) (s =̇ x)x(s), +0 III.i
(3) s =̇ t, +0 1, 2, LLijj .

That III.ii together with III.iii entail LLijj can be seen from the following:

(1) s =̇ t, +i assumption
(2) A(s), +j assumption
(3) s =̇ t, +0 1, III.iii
(4) A(t), +j 2, 3, III.ii. �

Whereas III.iii informs one that only true identities hold at any possible world, this
variant of it brings to the light the fact that it entails that A(t) must be true at a world j if
A(s) is true there and s and t are identified at some world or other. This is so even though
the constraint does not entail the general Identity Invariance Rule

s =̇ t, +i
(IIR) ↓

s =̇ t, +j,

and so does not entail the only reasonable explanation—apart from assuming that s and
t really are identical which would be begging the question—for why A(t) should be true
at j, namely that it also identifies s and t. In this case, s =̇ t can fail to obtain at j, but
A(t) has to be true regardless. This kind of cross-world substitution seems just plainly
unwarranted! It is true that the rule III.ii, aka. LL0ii , does involve cross-world substitution,
but that was shown to follow simply by insisting on a compositional semantics and an
identity predicate which at normal worlds respects true identities. Why think that this
would extend to impossible worlds; why think that it is impossible for impossible worlds
to—wrongly from the point of view of possible worlds—identify separate objects?

III.iii, then, not only overshoots its target of validating Substitution, but seems also to
be objectionable from a philosophical perspective. What rule, then, must we add in order
to validate Substitution? In the possible world semantics which Priest makes use of, a
conditional A → B is true at the base world just in case every A-world is also a B-world,
and since conjunction is treated standardly at every world, it is plain to see that Substitution
will hold at the base world just in case it is not only closed under SI as required by III.ii, but
that every world is so closed. Put negatively: in order for Substitution to fail, there would
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SUBSTITUTION IN RELEVANT LOGICS 9

have to be a world i at which both s =̇ t, and A(s) hold, but at which A(t) fails. The proper
clause for Substitution in a tableaux system for relevant logics is therefore not LLijj , but

(LLiii)

s =̇ t, +i
Ax(s), +i

↓
Ax(t), +i.

With only III.i and LLiii available, it is easy to see that the contraction-proof above would
not go through.5

I have in this section shown that the Subset Constraint entails the contraction rule for
identity formulas, whereas the previous section showed that this is not the case with Sub-
stitution. That the Subset Constraint therefore overshoots its stated target shows that it
is possible to reject it, while at the same time insisting that every world respects SI and
therefore insisting that Substitution be true. I have also given strong reasons for rejecting
the principles due to its cross-world substitutional nature. Despite this, one might think
there are other reasons why one ought to go for the stronger rule LLijj instead of the weaker
LLiii . The following section gives two such reasons, which, though definitely far from
conclusive, do raise important questions in their own right. It also shows which semantic
clause is needed to validate Substitution and provides some reflections on its complexity.

§4. Two reasons for keeping the Subset Constraint. First reason - Symmetry. An
identity predicate worth its salt should not only validate Leibniz’s law over non-opaque
contexts, but also satisfy reflexivity, symmetry and transitivity. Reflexivity is obviously not
derivable using Substitution, and so it is to be expected that one would need a separate
axiom for this. One might, however, think that transitivity and symmetry would be. The
symmetry rule s =̇ t � t =̇ s is obviously derivable using LL000 , and so is the transitivity
rule s =̇ t, t =̇ u � s =̇ u. Neither →-symmetry, s =̇ t → t =̇ s, nor transitivity in either the
→-nested form s =̇ t → (t =̇ u → s =̇ u) or the conjunctive form s =̇ t ∧ t =̇ u → s =̇ u
is derivable without adding identity principles, however. By adding Substitution one does
get the conjunctive form of transitivity.6 →-symmetry is not, however, derivable from
Substitution for the simple reason that relevant logics fail to validate various forms of

5 To see this, it might help to look at the proof using LLijj instead of III.iii:

(1) x =̇ t → (s =̇ t → B)x(s), +0 assumption
(2) s =̇ t → B,−0 assumption
(3) R011 I.iii
(4) s =̇ t,+1 2, I.iii
(5) B,−1 2, I.iii
(6) t =̇ t → (s =̇ t → B),+0 4, 1, LLijj
(7) R000 I.i

↙↘
(8) t =̇ t,−0 s =̇ t → B,+0 1, 7, I.ii
(9) t =̇ t,+0 × 2, 8, II.i

(10) × left: 8, 9, II.i

Here it is easy to see that the proof needs the cross-world principle encoded by LLijj which allows
one to infer that A(t) holds at the base world (6th line) on the bases of A(s) holding there (1st line)
together with the fact that some other world identifies s and t (4th line).

6 Edwin Mares’ logical identity predicate in Mares (2004, sec. 6.13) obeys transitivity in this form,
and similarly for the arithmetical identity predicate which Richard Routley uses in Routley (1980,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020319000467
Downloaded from https://www.cambridge.org/core. Universitetsbiblioteket i Bergen, on 11 Dec 2019 at 13:21:48, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000467
https://www.cambridge.org/core


10 TORE FJETLAND ØGAARD

suppression of assumptions; in particular, the rule A∧B → C, A � B → C is not derivable
in any relevant logic.7 Because of this it will not be possible to derive s =̇ t → t =̇ s from
the Substitution-instance s =̇ t ∧ s =̇ s → t =̇ s. This is also brought out by trying to
derive the symmetry formula:

(1) s =̇ t → t =̇ s, −0 assumption
(2) R011 1, I.iii
(3) s =̇ t, +1 1, I.iii
(4) t =̇ s, −1 1, I.iii
(5) x =̇ tx(s), +1 3, rewrite
(6) t =̇ t, +1 3, 5, LLiii .

Using LLijj , however, one does get the desired closure: from (3) together with x =̇ sx(s), +0
one then gets t =̇ s, +0 using LLijj , which applied to (6) using LL0ii then suffices for
deriving t =̇ s, +1. The Substitution-instance s =̇ t ∧ s =̇ s → t =̇ s is easily seen to
translate into the condition that t =̇ s be true at each world where both s =̇ t and s =̇ s are
true, thus says nothing about what needs to be true at s =̇ t-worlds where s =̇ s fails. Piecing
the facts from the derivation together with this it is clear that to build a counterexample to
the symmetry axiom it would suffice to have an interpretation S with a two-world setup
W = {0, 0∗}, N = {0}, R = {〈0, 0, 0〉, 〈0, 0∗, 0∗〉} and have these two worlds interpret
the identity predicate over the domain D = {a, b} as follows:

v0(=̇) = {〈a, a〉, 〈b, b〉}
v0∗(=̇) = {〈a, b〉, 〈b, b〉}.

Here both s =̇ s and t =̇ s fail to be true at the non-normal world 0∗ when a is chosen as
the denotation of s and b as the denotation of t. Both worlds are, however, closed under SI,
so the set-up validates Substitution.8

The correct attitude here would surely not be to rush to some stronger version of Leib-
niz’s law, but to simply either accept and try to make due with the weaker and derivable
version of symmetry, or simply add ∀x∀y(x =̇ y → y =̇ x) as a separate axiom.9

sec. A.9). The more common way to add transitivity, however, at least in relevant arithmetics, is
to add some →-nested version of transitivity (see fn. 9 for references).

7 It is easily seen to be interderivable with the rule version of weakening, A � B → A.
8 I leave it to the reader to verify that the model in fact validates Substitution over the

empty language. This model can, incidentally, easily be made into a countermodel to identity
contraction: let p be propositional variable such that v0∗ � p. Since 0∗ is not R-related to any
world, every conditional is true at 0∗, and since 0∗ is the only world in which a =̇ b is true,
it follows that v0 � a =̇ b → (a =̇ b → p). However, since p is not true at 0∗, we have that
v0 � a =̇ b → p. By adding 〈0∗, 0∗, 0∗〉 to R, the interpretation still validates Substitution, but
also the contraction rule: A → (A → B) �S A → B.

9 Symmetry is added as an extra axiom in for instance Edwin Mares’ book Relevant Logic: A
Philosophical Interpretation (Mares, 2004) in which identity is treated as a logical predicate. I
think it is fair to say, however, that identity is most often taken as a non-logical predicate. This is
the case with the literature on relevant arithmetics in which symmetry is always (as far as I know)
taken as a separate axiom, or derivable using Ackermann’s δ-rule (R3) from the transitivity axiom
∀x∀y∀z(x =̇ y → (x =̇ z → y =̇ z)) (see, for instance, Dunn (1979), Friedman & Meyer (1992),
Meyer & Restall (1999), Restall (2010), Routley (1980, sec. A.9), and Meyer & Restall (1996)).
It is only in Restall (2010, p. 98) that I’ve found it suggested that one might do arithmetics
without symmetry in →-form (the �-form is derivable). Note also that the symmetry axiom can
come out false in Belnap’s test-model of relevance; see Øgaard (2017, fn. 14), which shows that
∀x∀y(x =̇ y ∧ t → y =̇ x), however, does come out true on that model, where t is the Ackermann
constant axiomatized by the two-way rule A �� t → A.
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SUBSTITUTION IN RELEVANT LOGICS 11

The same reason why symmetry is not derivable from Substitution applies if one con-
siders function symbols; the “functionality” axiom for unary functions f , ∀x∀y(x =̇ y →
f (x) =̇ f (y)), fails to be derivable, and one needs to take a stand on whether to add
this as a logical axiom, or stick with the derivable �-version s =̇ t � f (s) =̇ f (t). At
least the literature on relevant arithmetics seems to prefer the intuitionistic-style approach
where such axioms are added as non-logical axioms, and not necessarily for all function
symbols.10 End first reason.

Second reason - Inductiveness. It is easy to show that the rules LL000 and LL0ii are in
fact interderivable. There is an important difference between them, however, which the
following definition brings out:

DEFINITION 4.1. A rule is inductive in a logic L if the rule restricted to atomic formulas
suffices for deriving the unrestricted version of it. A rule is non-inductive in that logic if
not.

The difference between LL000 and LL0ii is then that the latter is inductive in the logic
B, whereas the first is non-inductive. That LL000 is non-inductive in the logic B is easily
realized by contemplating how an inductive proof would go; since LL000 is assumed for
atomic formulas, the base case is trivial. Assume that LL000 is derivable for A and B. We
should then have to show that it is OK for A → B as well which would have to get beyond
(9) in the following derivation without using LL0ii :

(1) s =̇ t, +0 assumption
(2) (A → B)x(s), +0 assumption
(3) (A → B)x(t), −0 assumption
(4) R011 3, I.iii
(5) Ax(t), +1 3, I.iii
(6) Bx(t), −1 3, I.iii

↙↘
(7) Ax(s), −1 Bx(s), +1 2, 4, I.ii
(8) x =̇ sx(s), +0 left: III.i
(9) t =̇ s, +0 left: 1, 8, LL000

(10) [Ax(s), +1] [Bx(t), +1] left: 9, 5, LL0ii ; right: 1, 7, LL0ii
(11) [×] [×] left: 7r, 10r, II.i; right: 6, 10r, II.i

10 As far as I know, only Routley has proposed a weaker functionality axiom in the context of
relevant arithmetics—the functionality of the successor function is in Routley (1980, sec. A.9)
stated as ∀x∀y(x =̇ y ∧ 1 =̇ 1 → x′ =̇ y′) which is slightly stronger than the strongest version of
the functionality axiom validated by Belnap’s test model for relevance (see Belnap (1960)). That
model validates Leibniz’s law in any (permuted) version of the following two formulas:

∀x̄∀ȳ(xn =̇ yn ∧ t → (. . . (x1 =̇ y1 ∧ t → (A(x̄) → A(ȳ))) . . .))
∀x̄∀ȳ(

∧
i≤n xi =̇ yi ∧ t → (A(x̄) → A(ȳ))).

Thus the strongest versions of the functionality axioms that it validates are any permuted version
of the following axioms:

∀x̄∀ȳ(xn =̇ yn ∧ t → (. . . (x1 =̇ y1 ∧ t → f (x̄) =̇ f (ȳ)) . . .))
∀x̄∀ȳ(

∧
i≤n xi =̇ yi ∧ t → f (x̄) =̇ f (ȳ)).

(See Øgaard (2017, sec. 8) for more details on Belnap’s test model and the versions of Leibniz’s
law it validates).
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12 TORE FJETLAND ØGAARD

It is here easy to see that LL000 for A and B will not bridge the world-gap needed to get
below line (9).11

When it comes to semantics it is vastly more difficult to check that a non-inductive rule
holds in a model than checking that an inductive one does. In the case of LL000 one needs
to verify that

if 〈a, b〉 ∈ v0(=̇), then v
s(x/a)
0 � A iff vs(

x/b)
0 � A.

Since there are infinitely many such A-formulas to check, one will in general need a proof
by induction in order to verify that LL000 does indeed hold in a model. The situation with
LL0ii is quite different; in order to validate this rule, one only needs to verify that a given
model satisfies

if 〈a, b〉 ∈ v0(=̇), then 〈c1, . . . , a, . . . , cn〉 ∈ vi(P) iff 〈c1, . . . , b, . . . , cn〉 ∈ vi(P),

where i ranges over every world in the model, and P is any atomic n-ary predicate.12 For
models for finite languages with finite set of worlds, this can be a far easier task.

As I mentioned in fn. 4, Priest’s rule III.ii is stated for only atomic A’s and even with
this limitation it, together with III.iii, suffices for deriving LLijj which also can be shown
to be inductive in any logic extending B. The rule LLiii , however, is, like LL000 , non-
inductive in relevant logics, and so restricting it to atomic formulas will not suffice for
deriving unrestricted Substitution. This is maybe easier seen by trying to actually derive
for instance a =̇ b ∧ (B → C(a)) → (B → C(b)). By inductive hypothesis one may then
assume that Substitution for C(x) is safe. We may therefore use LLiii on C(x). The best
derivation that is possible is this:

(1) a =̇ b ∧ (B → C(a)) → (B → C(b)), −0 assumption
(2) R011 1, I.iii
(3) a =̇ b ∧ (B → C(a)), +1 1, I.iii
(4) B → C(b), −1 1, I.iii
(5) a =̇ b, +1 3, II.i
(6) B → C(a), +1 1, II.i
(7) R123 4, I.iii
(8) B, +2 4, I.iii
(9) C(b), −3 4, I.iii

↙↘
(10) B, −2 C(a), +3 3, I.ii
(11) × left: 8 & 10, II.i

11 A countermodel here would involve a completeness proof for B with atomic LL000 . The models
here would have to allow for “non-logical” interpretations of identity; for “logical” interpretations
of the identity predicate we demand that normal worlds interpret the identity predicate as the real
identity predicate: vsn |� s =̇ t iff s(s) = s(t). Since in general we have that for any assignment

function s, term t and world w, vs(
x/s(t))

w |� A iff vs
w |� Ax(t), one automatically gets that if

vsn |� s =̇ t, then vsw |� Ax(s) iff vsw |� Ax(t), thus validating unrestricted LL0ii . B with atomic
LL000 is not complete with regard to such models. To get the appropriate models one would have
to relax the identity clause so as to permit that {〈a, a〉 | a ∈ D} ⊆ vn(=̇) even for normal worlds.

12 Here =̇ needs to be included among the P’s. However, by adding transitivity, symmetry and
functionality as primitive axioms/rules, which is the more common way to deal with identity in
classical mathematical logic, this could then be dispensed with.
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SUBSTITUTION IN RELEVANT LOGICS 13

The only way to close the right-most branch would be to utilize the fact that a =̇ b, +1
together with the fact that C(a), +3 to infer C(b), +3. The options here seem to be two
in number: either somehow derive a =̇ b, +0 and then to infer C(b), +3 using LL0ii .

13

Without III.iii, this will not happen, however. The other option is to somehow derive a =̇
b, +3. However, if not by magic, then the only general rule which would make this possible
would be the rule

A, +i
Rijk
↓

A, +k

which is the rule needed to validate the weakening axiom A → (B → A). Thus without
either weakening or III.iii, LLiii is non-inductive. To show how badly it is non-inductive,
consider the following model for (the positive fragment of) B which validates atomic
Substitution over the empty language ( =̇ is here regarded as a logical predicate), but in
which

(a =̇ b ∧ (a =̇ a → a =̇ x)x(a)) → (a =̇ a → a =̇ x)x(b)

fails:
D = {a, b} v0(=̇) = {〈a, a〉, 〈b, b〉}
W = {0, 0∗} v1(=̇) = {〈a, b〉, 〈b, b〉}
N = {0} R = {〈0, 0, 0〉, 〈0, 0∗, 0∗〉, 〈0∗, 0, 0〉}.

It is then easy to check that v0∗ � a =̇ b ∧ (a =̇ a → a =̇ x)x(a), but that v0∗ � a =̇ a →
a =̇ xx(b) so that v0 fails to validate the instance of Substitution despite the fact that both
0 and 0∗ validate atomic Substitution.14

Setting out looking for a model which validates Substitution without either weakening
or the Subset Constraint can therefore be quite an onerous task in that one has to chance
upon a set of worlds which for every formula A satisfies that

DEFINITION 4.2 (Semantics of Substitution).

if 〈a, b〉 ∈ vw(=̇), then v
s(x/a)
w � A iff vs(

x/b)
w � A.

As we saw, the A’s here might be formulas which involve the identity predicate itself, and
so the stated semantical clause for substitution is essentially a closure condition. However,
looking at the above model one also realizes that that model can’t be extended so as to
validate unrestricted Substitution, and so it will not always be possible to generate models
from initially permissible models which validate atomic Substitution.15 End second reason.

Problem 9 in Priest (2008, p. 562) asks the reader to consider if one ought to accept
the Subset Constraint. I have in the previous section shown that that principle entails
the contraction rule for identity formulas which the previous section showed is not the
case with Substitution. I then displayed a different, but equivalent, tableaux rule for the
constraint, which makes it clearer in what regard it is too strong, and even though it entails

13 LL0ii would here have to be added as an primitive rule since it is not derivable from atomic LLiii
as the reader should be able to convince themselves.

14 It is this feature which Edwin Mares exploited in Mares (2004, sec. 6.13) where he argues that
unrestricted Substitution should not be regarded as a valid principle, but suggests that we ought
to accept s =̇ t ∧ A(s) → A(t) when A is a formula over the →-free fragment of the language.

15 If this translates into a complexity issue is another matter which I have not tried to decide.
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14 TORE FJETLAND ØGAARD

Substitution, and therefore that SI holds at every world, it also entails a cross-world version
of SI which seems quite unwarranted.

We have so far seen that Priest’s Subset Constraint, as this is formulated in INCL, over-
shoots the stated goal of validating Substitution; we have seen that the Subset Constraint
forces the symmetry of identity to hold in →-form, as well as identity to contract. The
question, therefore, is how to add axioms/rules to the Hilbert calculus for ∀B s= to get a
logic which is complete with regard to ∀B s=-models with the Subset Constraint. A further
reason for, temporarily at least, not accepting the Subset Constraint is that this question is
as of yet an open one:

OPEN PROBLEM. What axioms and/or rules need to be added to ∀B s= (and relatives)
to get a logic which is sound and complete with regard to ∀B s=-models with the Subset
Constraint?

Added in Press: In vernacular English, the Subset Constrain says that only true
identity statements can hold true at other possible worlds. This is captured by
Priest’s tablaux rule which allows one to infer that if an identity is true at some
world, then it is true at the base world. Put differently, then, either an identity
statement s =̇ t is true at the base world, or it is true nowhere. Now the semantics
for relevant logics is such that a conditional A → B is evaluated as true at the base
world if B is true at every world at which A is true. Thus, if s =̇ t is true at no world,
s =̇ t → A will be true at the base world. A completeness proof is beyond the scope
of this paper, but I dare guess that is possible to prove that ∀B s= augmented with

(RM =̇
3 ) ∀x∀y(x =̇ y ∨ (x =̇ y → A))

is sound and complete with regards to ∀B s=-models with the Subset Constraint.
This, then, yields a new argument against the Subset Constraint. That identity

contracts will not be a counterargument to any relevant logician who already
accepts contraction. However, that ∀x∀y(x =̇ y∨ (x =̇ y → A)) is forced upon one,
even though A ∨ (A → B) is not a theorem of any relevant logic,a speaks against
accepting the Subset Constraint. Why should “if s is identical to t, then the earth is
flat” hold true just because it is not true that s is identical to t?b

a The three-valued logic RM3 is got by adding the formula A ∨ (A → B) to the quasi-
relevant logic RM which again is got by adding A → (A → A) to the relevant logic
R.

b Many thanks to one of the referees who pressed the issue of the missing axiom/rule from
the Hilbert axiomatization. Alas, the solution presented here dawned on me too late to
incorporate it further into the paper.

Having differentiated between the Subset Constraint and the validity of Substitution,
Problem 9* arises: is it viable to reject the former, but accept the latter? I have shown
that without the Subset Constraint, one will not be able to derive the symmetry of identity
in the usual form and that Substitution in tableaux systems is essentially a non-inductive
rule which entails that the semantics will not be, in a sense, recursively generatable by
specifying the truth-conditions of the atomic formulas. The first point should not move one
either way, but the latter is worrying in that the construction of models will be needlessly
hard. One might here, however, console oneself with the fact that it will often be fine to
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SUBSTITUTION IN RELEVANT LOGICS 15

try to first construct a model which validates the Subset Constraint, and only if this fails
look for models where the Subset Constraint fails, but Substitution holds. I will in §6 give
three further reasons why one should not accept Substitution, but first I will examine the
roots of the Subset Constraint, namely the second edition of Priest’s provocative book In
Contradiction.

§5. Identity in In Contradiction. This section discusses how identity is treated in
In Contraction—IC for short. Priest states in Priest (2008, sec. 24.10) that the Subset
Constraint had its origin in §19.8 of the second edition of IC. A version of the Subset
Constraint is there presented in Footnote 30 which reads:16

Note that this condition does not deliver the validity of (x = y ∧ β) →
β(x/y). If x = y holds at an impossible world, it is not guaranteed that
x and y have the same denotation. The validity of this principle can be
obtained by adding the further constraint that at impossible worlds, w,
d+

w (=) ⊆ {〈a, a〉 : a ∈ D}. (Priest, 2006, p. 273)

The quote does not, and Priest does, as far as I have found, nowhere else in IC either,
state the stronger, and as the previous section of this essay shows, false statement which An
Introduction to Non-Classical Logic (INCL) does, namely that Substitution fails without
the Subset Constraint. The Subset Constraint of IC, however, is different from that of INCL
in that it is not only too strong, but also too weak. The essential difference between the two
is that the Subset Constraint of INCL appears in the context of an intensional semantics
for negation in which the Routley star is used, whereas the semantics of IC is many-valued
or relational. The consequence of this is that the semantically basic conditional of INCL
is the contraposable conditional →INCL which we have been dealing with up until now,
whereas the semantically basic conditional of IC is a non-contraposable ⇒ from which
Priest’s “official” entailment conditional →IC may be defined as (A ⇒ B) ∧ (¬B ⇒ ¬A).
The identity rules and principles, including the SC, of INCL relate to →INCL, whereas the
identity rules and principles of IC relate to ⇒. It may, of course, be the case that the rules
and principles also relate to →IC, but then again, they might not. As it turns out, not all of
them do, and it is the purpose of this section to explain this more thoroughly.

IC was first published in 1987. The second edition came out in 2006 and contained
four additional chapters (Chapter 15–18) with new material, one chapter (Chapter 19) with
autocommentary on the chapters of the first edition, and finally one chapter containing
comments on critics. Priest touches fleetingly on the logic of identity in both Chapters
5 and 6 belonging to the first edition, in Chapter 18 of the second edition, and in the
autocommentary on Chapter 6 found in Chapter 19.8 of the second edition.17 During the
19 years between the first and the second edition, Priest has, as detailed in Chapter 19,
changed his views on some things. For starters, the logic of the first edition was a non-
relevant logic, whereas Priest of the second edition prefers a relevant logic. With it, his
view on identity seems also to have evolved. The two most important differences for our
quest is that the first edition thought that all worlds must report all true identities and that
all worlds must respect excluded middle. The second edition does not.

16 ‘This condition’ refers to d+
w (=) = {〈a, a〉 : a ∈ D} for normal worlds w.

17 Chapter 18 is also reprinted with minor differences in Priest (2011) which came out in 2011.
There are no differences between Chapter 18 of Priest (2006) and Priest (2011) in terms of the
logic of identity.
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16 TORE FJETLAND ØGAARD

The following two subsections go through, respectively, the semantic material and the
syntactic material relating to the logic of identity, explain how the logic of identity of the
first edition is different from the logic of the second, and what is wrong with the latter.

5.1. In Contradiction and the semantics of identity. The semantics laid out for rele-
vant logics in INCL uses the Routley star semantics.18 That semantics interprets identity
by adding a ∗-operator on worlds and demands that ¬A be true at a world w if and only if
A fails to be true at w’s star-mate w∗—w�¬A iff w∗

�A. Because of this one only needs to
specify the extension of a predicate at every world in order for the semantics to get going.
This allows for the following four options:

(∗1) a is in the extension of the predicate P at w (a ∈ vw(P))

(∗2) b is not in the extension of the predicate P at w (b 	∈ vw(P))

(∗3) c is in the extension of the predicate P at w∗ (c ∈ vw∗(P))

(∗4) d is not in the extension of the predicate P at w∗ (d 	∈ vw∗(P)).

These conditions then entail the following four w-facts:

(w1) P is true of a at w (vsw � P(a))

(w2) P is not true of b at w (vsw � P(b))

(w3) ¬P is not true of c at w (vsw � ¬P(c))

(w4) ¬P is true of d at w (vsw � ¬P(d)).

The semantics of IC, however, is relational; a formula is evaluated by relating it to the
truth-values 1 and 0.19 In the classical case it will relate to precisely one of them. It may,
however, be related to neither 1 nor 0—in that case it is called a gap—or it may be related
to both 0 and 1, in which case it is called a glut. In such a setting one needs to not only
specify the extension of a predicate—the things the predicate is true of (1-related to), but
also its anti-extension—the things the predicate is false of (0-related to). For any predicate
P, v+

w (P) is the extension of P at the world w, whereas v−
w (P) is the anti-extension of P

at the world w. The latter is the set of all things the predicate is false of, whereas the first
is the set of things the predicate is true of. The four w-facts above are in this semantics
generated by the following four conditions:

(R1) a is in the extension of the predicate P at w (a ∈ v+
w (P))

(R2) b is not in the extension of the predicate P at w (b 	∈ v+
w (P))

(R3) c is not in the anti-extension of the predicate P at w (c 	∈ v−
w (P))

(R4) d is in the anti-extension of the predicate P at w (d ∈ v−
w (P)).

With this cleared up, we can state the recursive model-theoretic clauses for the relational
semantics of the logic FDE.20

18 The exception here is the logic N4 discussed in Chapters 9 and 23. However, only the weak rule
III.ii, is considered for this logic.

19 The first edition of IC used a many-valued semantics; formulas were there evaluated to the truth-
values {0}, {1}, and {0, 1}. Priest notes in the autocommentary (Priest, 2006, sec. 19.7) that he
now favors a relational semantics. The semantics are, however, equivalent, but whereas the many-
valued semantics suggests that there are three truth-values—False, True and Glut—the relational
semantics relates formulas to only the two classical truth-values True and False.

20 Disjunction and the existential quantifier can be defined in the usual way.
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SUBSTITUTION IN RELEVANT LOGICS 17

DEFINITION 5.1 (Enough relational semantics to be dangerous).

(A1) vsw |�1 P(s1, . . . , sn) iff 〈vs(s1), . . . , v
s(sn)〉 ∈ v+

w (P)
(A0) vsw |�0 P(s1, . . . , sn) iff 〈vs(s1), . . . , v

s(sn)〉 ∈ v−
w (P)

(N1) vsw |�1 ¬A iff vsw |�0 A
(N0) vsw |�0 ¬A iff vsw |�1 A
(C1) vsw |�1 A ∧ B iff vsw |�1 A and vsw |�1 B
(C0) vsw |�0 A ∧ B iff vsw |�0 A or vsw |�0 B

(U1) vsw |�1 ∀xA iff v
s(x/a)
w |�1 A for all a ∈ D

(U0) vsw |�0 ∀xA iff v
s(x/a)
w |�0 A for some a ∈ D.

FDE itself needs no world parameter w, but these will come in handy in a little while.
All worlds in both the first and second edition of IC respects the FDE-clauses, but both
add to these in different ways. There are significant differences between the first and the
second edition of IC, and this section now splits into two subsections to deal with these
editions in turn.

5.1.1. The semantics of identity in the first edition of In Contradiction. The first edition
of IC made use of a possible world semantics with a base world G which is related to every
other world by the binary accessibility relation R. No other R-facts are required to hold.
Priest demands that excluded middle should hold for all atomic formulas at all worlds—
which then propagates to all formulas—and introduces a non-contraposable conditional ⇒
from which the contraposable → is defined as A → B =df (A ⇒ B) ∧ (¬B ⇒ ¬A). The
new conditional, ⇒, is simply a strict conditional preserving truth over all worlds. The
missing semantic clauses are as follows:

(R) GRw for all w ∈ W
(BI) v+

w (P) ∪ v−
w (P) = Dn for all w ∈ W

(I1) vsw |�1 A ⇒ B iff for all Rwx, vsx |�1 B if vsx |�1 A
(I0) vsw |�0 A ⇒ B iff for some Rwx, vsx |�1 A and vsx |�0 B

(BI=̇) v+
w (=̇) ∪ v−

w (=̇) = D2 for all w ∈ W
(=̇+) v+

w (=̇) = {〈a, a〉 | a ∈ D} for all w ∈ W
(=̇−) v−

G(=̇) = v−
w (=̇) for all w ∈ W .

The anti-extension of =̇ can, in other words, be arbitrary, but should be world-invariant.21

Semantical consequence is defined as |�1-preservation over the base world G. These se-
mantic clauses are referred to as the �-semantics in the first edition of IC.22

THEOREM 5.2. s =̇ t ∧ Az(s) → Az(t) is valid on the �-semantics without the invariance
clause (=̇−).

Proof. The goal, then, is to show that
vsG �1 s =̇ t ∧ Az(s) → Az(t). Since → is defined, this reduces to showing

21 This, I believe, is the most reasonable interpretation of Priest. We are first told in §5.3 of IC that
the anti-extension of =̇ for the extensional FDE-fragment can be arbitrary (Priest, 2006, p. 78),
and in the next chapter dealing with conditional which involves many worlds, we are then told
that “‘=’ is a two-place predicate whose interpretation is the world-invariant set specified in §5.3.”
(Priest, 2006, p. 93).

22 As Priest notes in Priest (2006, pp. 86f) that � validates the depth-relevant logic DR (see Brady
(1989)).
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18 TORE FJETLAND ØGAARD

(1) vsG �1 s =̇ t ∧ Az(s) ⇒ Az(t)
(2) vsG �1 ¬Az(t) ⇒ ¬(s =̇ t ∧ Az(s)).

As for (1), assume that there is a world w such that vsw �1 s =̇ t ∧ Az(s). Then vsw �1 s =̇ t
which then per clause (=̇+) entails that the two terms really denote one single object. The
compositionality of the semantics then entails that vsw |�1 Az(t) since vsw |�1 Az(s). Since
w was arbitrary, (1) follows by (I1) and (R).

As for (2), assume that there is a world w such that vsw�1¬Az(t). Now either (i) vsw�0s =̇ t
or (ii) vsw�0 s =̇ t. If (i), then using (N1) and (C0), we get that vsw�1¬(s =̇ t∧Az(s)). If (ii),
then 〈vs(s), vs(t)〉 	∈ v−

w (=̇), and so by (BI=̇), 〈vs(s), vs(t)〉 ∈ v+
w (=̇). By (=̇+) we have

then that s and t really do denote the same object. The compositional semantics then entails
that vsw �1 ¬Az(s) which, using (N1) and (C0) again, suffices for vsw �1 ¬(s =̇ t ∧ Az(s)).
w was arbitrary and so (2) follows by clauses (I1) and (R). �

Note that the proof of (1) above would have gone through as long as every world was
closed under the weak SI-rule s =̇ t, Az(s) � Az(t). The appeal to (=̇+) in (2) could also be
dispensed with in favor of having every world closed under this rule. However, the proof of
(2.ii) does need (BI=̇) to infer 〈vs(s), vs(t)〉∈v+

w (=̇). This amounts to validating excluded
middle for identity statements at every world. One could here rather appeal to (=̇−) to
infer 〈vs(s), vs(t)〉 	∈ v−

G(=̇) and then use (BI=̇) to infer that 〈vs(s), vs(t)〉 ∈ v+
G(=̇). That

way one would only need (=̇+) and excluded middle to hold at the base world provided all
worlds are closed under the SI-rule. The following theorem states this with a slight twist
so as to avoid having to appeal to excluded middle at G:

THEOREM 5.3. s =̇ t ∧ Az(s) → Az(t) is valid on the �-semantics with clauses

(BI=̇) v+
w (=̇) ∪ v−

w (=̇) = D2

(=̇+) v+
w (=̇) = {〈a, a〉 | a ∈ D}

(=̇−) v−
G(=̇) = v−

w (=̇) for all w ∈ W
dropped in favor of

(•1) v+
G(=̇) = {〈a, a〉 | a ∈ D}

(•2) D2 \ v+
G(=̇) ⊆ v−

w (=̇)

provided all worlds are closed under the SI-rule.

(•2) here licenses the inference from s =̇ t failing to being false at w to it in fact being
true which is what the proof above needs.

Neither of these options for validating →-substitution seem rather attractive, however.
(1) Having excluded middle valid on every world is a recipe for irrelevancies, and the
invariance clause seems simply ad-hoc. (•2) also seems ad-hoc; why think that all worlds
must report all identity falsehoods?

The first edition of IC simply notes without a proof that →-Substitution is valid on the
�-semantics. That it does so with a vengeance, is of course not something to fault it over
as it is never claimed that →-Substitution would fail in a logically skimpier environment.

I will get back to these two ways of validating →-substitution in the next section where
Priest’s tableaux system from the second edition of IC is shown forth. Before that, however,
let’s look at the semantics of identity in the second edition of IC.

5.1.2. The semantics of identity in the second edition of In Contradiction. The condi-
tional ⇒ of the first edition of IC was, as I mentioned, simply a strict conditional which
preserves truth over all possible worlds. A relevantist will regard this as suspect, however,
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SUBSTITUTION IN RELEVANT LOGICS 19

since strict conditionals bring with them paradoxes. If we restrict our attention to the ⇒-
free fragment of the language we get that every �-world is a LP-evaluation and every
such LP-evaluation validates B if and only if B is a two-valued tautology (Priest, 1979,
Theorem III.8). But then for any formula A and two-valued tautology B such that A and
B share no propositional parameters, we get that vsG �1 A ⇒ B. Furthermore, for every
formula A and B we get that vsG �1 A ⇒ (B ⇒ B). There is, as Priest also notes, a tradition
within relevant logic, going back to the Routleys’ essay Routley & Routley (1972) which
claims that total absence of suppression is the deep challenge to entailment.23 On that
note, notice that � validates the suppression rules �A, A ∧ B ⇒ C |� B ⇒ C, where
�A =df ¬A ⇒ A.24 These irrelevancies do not hold when ⇒ is replaced by →, however.
Entailment proper, according to Priest, does not only preserve truth by necessity as ⇒
does, but also preserves falsity from the consequent back to the antecedent. Hence ⇒ is
not, according to Priest, an entailment connective. Of course, not every conditional need to
be relevant for the relevantist to accept it, but it does seem that a relevantist should reject a
logical theory which has, like Priest’s �, a necessary truth-preserving conditional littered
with irrelevancies. Anyways, there are also pure →-irrelevancies in � such as the Kleene
axiom A ∧ ¬A → B ∨ ¬B for any A’s and B’s. This generalizes: let A be the negation of a
classical tautology25 and B be a classical tautology which shares no propositional variables
with A. Then for every world w, we have that vsw�1 B and vsw�1¬A. Thus both vsG�1 A ⇒ B
and vsG �1 ¬B ⇒ ¬A, and therefore vsG �1 A → B.

Priest notes that � validates some irrelevancies—he mentions the Kleene axiom
explicitly—but shurgs this off due to �’s “simplicity and philosophical perspicuity” (Priest,
2006, p. 92). The semantics for relevant logics at the time of the first edition of IC was
complicated and difficult to give good philosophical sense of. That changed, however,
with Priest and Sylvan’s (formerly known as Routley) essay Simplified Semantics for Basic
Relevant Logics (Priest & Sylvan, 1992) which came out in 1992 and made the ternary
semantics of relevant logics much easier to stomach. This was also the year What is A
Non-Normal World? (Priest, 1992) came out in which Priest develops a relevant semantics
(albeit not a ternary one) in which impossible/non-normal worlds figure and motivates the
idea that even logical laws can fail.

When the second edition of IC then came out, Priest had dropped the adherence to a
strict conditional in favor of a relevant one with a new emphasis on the dichotomy of
possible/impossible worlds and the mischiefs of the latter. Both excluded middle and the
law of self-identity, s =̇ s, are now counted as such laws which hold on all possible/normal
worlds, but may fail at impossible/non-normal ones. The new semantics laid out in §19.8—
the autocommentary on Chapter 6 of the first edition— holds on to the relational semantics,
and so the FDE-clauses above are still enforced, but the binary relation R of the first edition
is dropped in favor of the ternary R-relation of relevant logics. Since the new relevant
conditional reduces to the strict conditional of � in normal worlds, I will not specify the
new semantic clauses here.26 What is new, however, is the identity clauses. The second
edition of IC has only two such (Priest, 2006, p. 273):

23 See Øgaard (2019, sec. 6) where it is shown that absence of suppression is in fact weaker than the
variable-sharing property.

24 This is Priest’s definition of a necessity operator (Priest, 2006, p. 90). �A is true at any world if
and only if A is true at all worlds accessible from it.

25 Formulas C ⇒ D can be regarded as propositional variable so as to be classically evaluable.
26 They can be gleaned off the proof theory presented in §5.2.
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20 TORE FJETLAND ØGAARD

(BIn=̇) v+
n (=̇) ∪ v−

n (=̇) = D2 for normal worlds; n ∈ N
(=̇+

n ) v+
n (=̇) = {〈a, a〉 | a ∈ D} for normal worlds; n ∈ N .

Priest then notes (Priest, 2006, fn. 30, p. 273) that this is insufficient for validating →-
Substitution and then specifies for the first time a version of the Subset Constraint as
sufficient for validating →-Substitution. To avoid confusing the two versions of the Subset
Constraint, let’s agree to use ‘SC’ for the version of INCL and SCIC for the version of IC:

(SC) vw(=̇) ⊆ {〈a, a〉 | a ∈ D}
(SCIC) v+

w (=̇) ⊆ {〈a, a〉 | a ∈ D}.
SCIC does validate ⇒-Substitution, and as in INCL, is stronger than what is needed in

this regard. Unlike INCL, however, there is no claim here that SCIC is necessary, only that it
is sufficient. But it is claimed to be sufficient for →-Substitution, not only ⇒-Substitution,
however, and this seems at best doubtful. Note that there are in the second edition of IC
no new clauses for how to interpret the anti-extension of =̇ and so one is left wondering
if it now can be interpreted willy-nilly as long as excluded middle holds for all identity
statements at normal worlds, or if in fact the world invariant clause of the first edition is still
to be enforced. If the first is the case, then the semantics doesn’t validate →-Substitution.
If the latter, then →-Substitution is valid as I showed in the comments to Theorem 5.2
in the previous section. However, it would then seem simply misleading to claim, as the
quotation at the beginning of this section does, that one needs to add SCIC in addition to
(=̇+) to validate →-Substitution. A better interpretation, I think, is rather that Priest is
simply wrong here. This is also the most plausible interpretation when looking at the proof
theory set forth in Chapter 18 new to the second edition. This is the task of the next section.
Here, again, we will find that the proof theory suffices for deriving ⇒-Substitution, but not
→-Substitution. I will also consider various rules which are sufficient for deriving →-
Substitution, and end with evaluating the plausibility of →-Substitution on the relational
semantics for relevant logics.

5.2. In Contradiction and the proof theory of identity. The first edition of IC did not
specify a proof system. This is rectified with the new 18th chapter of the second edition.
Note, however, that the title of that chapter is “Paraconsistent Set Theory”, and so stating a
proof system isn’t the main agenda of the chapter. The proof system is claimed to be sound
with regard to the semantics of Priest (2006, sec. 19.8) (Priest, 2006, p. 270, fn. 20). No
claim with regard to completeness is made.

The rules of IC’s proof system, let’s call it IC2, are akin to those presented for the INCL-
system above, so as not to confuse the two, Table 2 contains the entire proof system for the
proposition fragment together with the rules of identity.27

First note that the extra closing rule, IC2.i.b, ensures that excluded middle holds, but
only at the base world. Secondly, note also the ‘±’ in the IC5.i-rule which therefore should
be read as the conjunctive of the two clauses

• if s =̇ t is true at world i and A is true of s at world j, then A is also true of t at j.
• if s =̇ t is true at world i and A is untrue of s at world j, then A is also untrue of t

at j.

27 The Leibniz’s law rule carries the usual restriction on substitutivity. The same restriction as above
also applies here with regards to the world parameters; for the rules involving the conditional, j
and k need to be identical if i is 0, and the non-branching rules requires that j and k be new to the
branch.
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i ii iii

IC1
·
↓

R0ii

A ⇒ B,+i
Ri jk
↙↘

A,−j B,+k

A ⇒ B,−i
↓

Ri jk
A,+j
B,−k

IC2

(IC2.i.a)

A,+i
A,−i

↓
×

(IC2.i.b)

A,−0
¬A,−0

↓
×

¬(A ⇒ B),+i
↓

Ri jk
A,+j

¬B,+k

¬(A ⇒ B),−i
Ri jk
↙↘

A,−j ¬B,−k

IC3
¬¬A,±i

↓
A,±i

¬(A ∧ B),±i
↓

¬A ∨ ¬B,±i

¬(A ∨ B),±i
↓

¬A ∧ ¬B,±i

IC4
·
↓

t =̇ t,+0

A ∧ B,+i
↓

A,+i
B,+i

A ∧ B,−i
↙↘

A,−i B,−i

IC5

s =̇ t,+i
Ax(s), ±j

↓
Ax(t),±j

A ∨ B,+i
↙↘

A,+i B, +i

A ∨ B,−i
↓

A,−i
B,−i

Table 2. The tableaux system IC2 from In Contradiction

‘Untrue’ here simply means the same as ‘not true’, whereas A is false at a world if ¬A is
true there. Untruth and falsity will not always be the same thing; indeed the proof system
does not have rules which links these concepts except for the closure rule which bars a
formula from, at the base world, being both untrue (A, −0) and unfalse (¬A, −0). This is
the excluded middle rule which could have equivalently been replaced by the rule allowing
one to infer that A is false at 0 from the assumption that it is untrue.

Before I process, note that both the positive version of IC5.i, +IC5.i, as well as the
negative version -IC5.i, both individually suffice for deriving s =̇ t ⇒ t =̇ s, which
otherwise only holds as a mere rule.

THEOREM 5.4. s =̇ t ⇒ t =̇ s is derivable in IC2 using either +IC5.i or -IC5.i.

Proof. The left derivation uses the positive rule, whereas the right uses the negative
rule:

(1) s =̇ t ⇒ t =̇ s assumption (1) s =̇ t ⇒ t =̇ s, −0 assumption
(2) R011 IC1.iii (2) R011 IC1.iii
(3) s =̇ t, +1 IC1.iii (3) s =̇ t, +1 IC1.iii
(4) t =̇ s, −1 IC1.iii (4) t =̇ s, −1 IC1.iii
(5) x =̇ sx(s), +0 IC4.i (5) t =̇ t ⇒ t =̇ t, −0 3, 1, −IC5.i
(6) t =̇ s, +0 3, 5, +IC5.i (6) R022 IC1.iii
(7) x =̇ tx(s), +1 3, rewrite (7) t =̇ t, +2 IC1.iii
(8) t =̇ t, +1 3, 7, +IC5.i (8) t =̇ t, −2 IC1.iii
(9) t =̇ xx(t), +1 8, rewrite (9) × 7, 8, IC2.i.a

(10) t =̇ s, +1 6, 9, +IC5.i
(11) × 4, 10, IC2.i.a �
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22 TORE FJETLAND ØGAARD

As I mentioned in §4, Substitution will not suffice for deriving this in relevant logics
since one cannot suppress true premises so as to get rid of s =̇ s in the Substitution instance
s =̇ t ∧ x =̇ sx(s) ⇒ x =̇ sx(t).28

THEOREM 5.5. The semantic validity of the positive and negative parts of IC5.i separately
coentail SCIC.

Proof. That +IC5.i coentails SCIC is obvious from the discussion of SCINCL.
Now assume that -IC5.i is valid, but that SCIC fails and let (i) 〈a, b〉 ∈ v+

w (=̇) and (ii)
〈a, b〉 	∈ v+

0 (=̇) for some world w. Using -IC5.i on 〈a, a〉 ∈ v+
0 (=̇) and (ii) yields 〈b, b〉 	∈

v+
0 (=̇) which contradicts the clause (•1) in the above section.

Now assume that SCIC is valid, and that s =̇ t is true at w, but that A(s) fails to be true
at z. Since s =̇ t is true at w, we can use SCIC to infer that it is true at the base world and
that s and t therefore have the same denotation. The compositional semantics then ensures
that A(s) and A(t) have to be evaluated the same at every world, and therefore that A(t) is
not true at z. �

Just as in INCL, then, the proof-theoretic and semantic clauses for identity are fit for
each other. From the discussion of Theorems 5.2 and 5.3 is easy to see that SCIC does not
suffice for validating the contraposed version of ⇒-Substitution, but it is instructive to see
where the derivation terminates:

(1) ¬A(t) ⇒ ¬(s =̇ t ∧ A(s)), −0 assumption
(3) R011 IC1.i
(4) ¬A(t), +1 1, IC1.iii
(5) ¬(s =̇ t ∧ A(s)), −1 1, IC1.iii
(6) s ˙	= t ∨ ¬A(s), −1 5, IC3.ii
(7) s ˙	= t, −1 6, IC5.iii
(8) ¬A(s), −1 6, IC5.iii

No further expansion of the tree is possible and the tree will therefore not close. The trouble
here is that there is no rule which allows one to eliminate single negations; s =̇ t ends up
being not false at 1 (Step 7), but without excluded middle holding there ((BIn =̇ ) only
guarantees =̇ -excluded middle for normal worlds) one may not infer that s =̇ t is true
at 1 which would, together with the positive part of IC5.i, suffice for a proof. Without
excluded middle holding at every world it seems hard to find a plausible principle which
would suffice; one option would be to handle negation via the so-called Routley Star, ∗,
as the semantics of INCL does. That would indeed be sufficient as the reader can easily
check by consulting Priest (2008, sec. 8.5) for the rules regulating it. However, those rules
also entail that the conditional will contrapose, and so go against Priest’s wish to have a
non-contraposable conditional. One might amend this by adding either of the following
three rules:

s ˙	= t, −i
↓

s =̇ t, +i

(¬̄LLiii)

s ˙	= t, −i
A(s), −i

↓
A(t), −i

(¬̄III.iii)
s ˙	= t, −i

↓
s =̇ t, +0.

28 Note, furthermore, that IC5.i will not yield symmetry in → form. I leave it to the reader to
construct a model which verifies this.
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The first, however, seems rather ad hoc; it entails that excluded middle holds at every
world for identity statements, which seems strange to claim if one allows excluded middle
to fail in general. The second is more interesting; looking at the above derivation it is evi-
dent that ¬̄LLiii is just what is needed. The rule preserves the untruth/unfalsity of A(s) unto
A(t) given that s =̇ t is unfalse. This is in fact in line with the rest of Priest’s tableaux system
which do also preserve untruth/unfalsity. Those rules, however, are designed to break up
complex formula into their composites and the rules simply ensure that untruth/unfalsity
is preserved in the process. ¬̄LLiii has a very different ring to it, and I find it hard to give
anything but a technical justification for it: the proof system is set up to display that a
formula can be evaluated in four different ways at every world; it could be true at i (A, +i),
false at i (¬A, +i), untrue at i (A, −i) and unfalse at i (¬A, −i). The inference now encoded
by ¬̄LLiii is that it not be possible for s =̇ t to be unfalse, A(s), depending on it is a positive
or negated formula, untrue/unfalse, while A(t) be anything other than A(s). Now, per the
closure rule IC2.i.a, no formula can be both true/false and untrue/unfalse at the same world.
Any of the other four combinations of different valuations are generally possible, however.
These five combinations are as follows:

True and untrue (A, +i)&(A, −i) ruled out by Logic (IC2.i.a)
True and false (A, +i)&(¬A, +i) ruled out by ex falso quodlibet at i
True and unfalse (A, +i)&(¬A, −i) classical case 1
Untrue and false (A, −i)&(¬A, +i) classical case 2
Untrue and unfalse (A, −i)&(¬A, −i) ruled out by excluded middle at i.

Now if s =̇ t is unfalse yet not true at a world—unless excluded middle holds for identity
statements at every world, this is possible—why can’t A(s) be unfalse (and maybe true
as well), yet A(t) be simply false? The rule seems simply to deliver what is needed for
the derivation to go through, without allowing for a justification for why it should be
included as a valid inference rule in the first place. A slightly better rule, then, would
be to add ¬̄III.iii, which, as the reader can easily verify, entails ¬̄LLiii . ¬̄III.iii is the
proof-theoretic equivalent of the semantic clause (•2) in Theorem 5.3. This rule itself,
however, seems out of tune with the ideology of impossible worlds: if even the law of self-
identity can fail at impossible world, then such worlds need not report all true identities.
But then it seems rather far fetched to demand that every such world need to report all false
identities.

I have in this rather long section shown that the semantics of the first edition of IC did
manage to validate →-Substitution. The proof-theoretic and semantic clauses for identity
in the second edition were shown to match each other and to suffice—with an oomph—for
validating ⇒-Substitution. However, they fall short of validating →-Substitution contra
what is claimed by Priest. Different principles sufficient for validating →-Substitution
were considered, but were all found to lack justification either by being simply ad hoc,
or by being unsound within the ideology of impossible worlds. The cost of insisting that
→-Substitution in the framework of IC seems therefore quite higher than that under INCL
where one only need to insist that all worlds be closed under the weak SI-rule s =̇ t, Az(s) �
Az(t). The problem of validating Substitution, then, dips into the battle between the The
Australian Plan and the The American Plan for a semantics for negation.29 The trouble
with the entailment connective of IC is that it is not semantically basic, but rather definable

29 The Australian Plan is sometimes used to refer to possible world semantics in which negation is
treated as a modal or shift-operator on worlds such as as the Routley star does. The American Plan
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from a non-contraposable conditional. To get the expected laws to hold for the entailment
connective, one often has to add to the system in order for it to become sufficiently strong
so as to make the requisite laws hold for the entailment connective. Such additions need not
always be justifiable, as I have argued is the case with the principles required to validate
→-Substitution.

I think that this shows that one ought not to accept →-Substitution within the framework
of the second edition of In Contradiction. Should one, however, accept ⇒-Substitution?
The next section gives further reasons for not accepting ⇒-Substitution in the framework
of IC, and not to accept →-Substitution in the framework of INCL.

§6. Further reasons for dropping Substitution. The rule IC5.i was first set forth in
Chapter 18.3 of Priest’s book In Contradiction. That chapter discusses the prospects of
developing a naïve theory of sets using a relevant logic. Priest there claims that such a
theory is non-trivial in the logic he sets up. However, I showed in Øgaard (2017, fn. 25)
that any relevant logic with Substitution—∀B =̇ will do—trivializes naïve set theory. The
naïve set theorist should therefore definitely shun →-Substitution.30

I furthermore suggested in Øgaard (2017) that Substitution should be regarded as too
strong for the relevantist since it is not valid in Belnap’s test-model for relevance. That
might be regarded as a barren and technical point, so let’s take a step back and look at one
possible motivation for relevant logics, namely the need to recognize impossible worlds—
worlds at which logic itself is different—in order to make sense of conditionals such as
“if intuitionistic logic were correct, the law of double negation would fail”.31 I think it is
fair to say that Priest approaches the various logics presented in Priest (2008) by and large
by way of reasoning with possible and impossible worlds, and relevant logics are therein
commended for allowing such impossible worlds to exist. The following quote is a succinct
example: “Since a = a is a logical truth, there may be (impossible) worlds where it fails”
(Priest, 2008, p. 550). Priest sets up the laws of identity in such a way that SI must hold at
the base world. As a logical law on par with the logical truth of a =̇ a, however, it seems
reasonable that there should be worlds in which also SI fails to hold. In light of this, it is
easy to see the true effect of Substitution—be it formulated with either → or ⇒—namely
the blocking of such impossible worlds from existence. If impossible worlds can fail to
report true identities, then why not accept worlds which simply get mixed up about how to
interpret identity altogether and therefore fail to report that identity is reflexive, symmetric,
transitive and congruent?32

is used to refer to the same kind of possible world semantic but where negation is world-bound
such as is the case in IC. For more on this, see Berto & Restall (2019).

30 To be fair, it is worth mentioning that Priest states naïve set theory using the naïve comprehension
axiom ∃y∀x(x∈y ↔ A), where x does not occur in A, whereas the proof in Øgaard (2017) uses the
term-rich abstraction version of it, namely ∀x(x ∈ {x | A} ↔ A). The latter obviously entails the
first, but it is as of yet an open question if naïve abstraction is derivable from naïve comprehension.
Furthermore, the triviality proof does not consider non-contraposable conditionals, and so it might
be possible to have ⇒-Substitution without trivializing the theory.

31 For more on this way of motivating relevant logics, see Priest (1992) and Priest (2008, secs. 9,7).
32 I should also mention another, albeit quite different, line of attack on Substitution, namely that

of Kremer (1999). Kremer there argues that Substitution is at odds with the theory of relevant
predication together with the relevant indiscernibility interpretation of identity.
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§7. Summary. I have in this essay shown that the proper semantical clause for Leib-
niz’s law of the form s =̇ t ∧ A(s) → A(t), Substitution, in relevant logics with a con-
traposable conditional →, is not Priest’s Subset Constraint—that an identity claim true at
some world is true at all normal worlds—but instead that every world be closed under the
substitutivity of identity, the rule s =̇ t, A(s) � A(t). It was shown that the Subset Constraint
entails that identity formulas contract, but that Substitution does not entail this in relevant
logics such as TW. The Subset Constraint was also shown to entail an unwarranted version
of cross-world substitution stronger than Substitution which lacked justification.

I then showed that great care has to be taken when setting up a system with a non-
contraposable conditional as the primitive one. This is Priest’s approach in In Contradiction
from whence the Subset Constraint originates. In this case, however, it was shown that the
constraint is insufficient to validate →-Substitution, and that it, like before, is stronger than
what is needed for validating Substitution for the primitive non-contraposable conditional
⇒. The rules needed to validate →-Substitution, where → is the defined contraposable
conditional, were shown to lack justification. Finally I tried fleetingly to motivate why
Substitution ought to fail: i) it trivializes naïve set theory; ii) it is invalid in Belnap’s test-
model for relevance; iii) it is in conflict with one of the motivations behind relevant logics
as such, namely the need to recognize impossible worlds—worlds at which logic itself is
different.
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