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Abstract 

The research of this thesis is concerned with developing and evaluating individual patient 

outcome prediction models based on hip arthroplasty registry data. It was assumed 

arthroplasty had a rich data collection to be explored using data mining methods. This was 

conducted in two major phases, firstly exploratory data analysis and then predictive modelling 

made possible by the finding of the exploration phase. To explore the dataset, clustering was 

utilized to identify similarities and distinctions between groups of patient records. Resulting 

from the exploration were the engineering and selection of dependent features to realize the 

predictive modelling.  

The dependent features were used for three separate perspective on modelling a patient 

outcome grounded in the length of survival of a prosthetic device. These perspectives were 

two classification tasks with a binary outcome and a multinomial outcome, as well as a 

prediction of survival as a continuous outcome. The classification tasks attempted to classify 

patients within categories defined by length of device survival, i.e. above and below eight 

years, as well as below five, between five and ten, and above ten years. Three separate 

learning algorithms from Scikit-learn were used to examine predictive capabilities in the 

dataset, and to compare performances. The best performance was observed in the Multi-

layered perceptron classifier on the binary classification task. The other two algorithms 

performed comparatively well in binary classification (Logistic regression and Random forest 

classifier). None of the models produced reliable results in multinomial classification and in 

predicting exact survival year. Results suggest that there was not enough explanatory power 

in the independent variables to perform more complicated predictions. 
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1. Introduction 
The health care sector produces a large quantity of information from a variety of sources 

which are stored, archived and in the context of quality registries they are curated. This thesis 

is concerned with Hip Joint Replacement surgery procedures and the inclusion of machine 

learning practices to search for and build solutions to help predict individual patient 

outcomes. In Scandinavia and other parts of Europe the maintenance of registries in hip and 

knee arthroplasty has been on-going for several decades (Delaunay, 2014). When a surgery is 

performed, either primary surgery or revision surgery, information deemed important are 

recorded and later entered into national spanning databases. This practice of data 

accumulation establishes potential for exploration and acquisition of new knowledge and 

solutions. Hip joint replacement surgery is most commonly associated with the elderly in 

society, although some change has occurred as it is becoming a more frequent phenomenon 

even in younger patients. The elderly part of the population in contemporary western society 

is additionally increasing in size, a corresponding increase in the necessity of primary hip 

joint replacement surgery is observed (Furnes, 2019). Registry data have been utilized for 

detecting surgery factors relating to survival rate of patients and for examining risks and 

reasons for requiring revision surgery (Varnum, 2019). Furthermore, it can provide specific 

information on surgery and products used in joint replacement, as well as, providing 

benchmarks on performance of specific prosthetic devices (Varnum, 2019).  

 

1.1 Motivation 
The purpose in this research is to explore and attempt to better understand the explanatory 

potential in registry data collected on surgery cases for hip joint replacement. Furthermore, to 

assess implementation of machine learning algorithm on predicting and classifying potential 

outcomes for individual patients.  

 

The reason for performing such research is to see whether existing features available in the 

registry could be used to better understand the outcome of implanting a specific prosthetic 

device. Focusing on features know to clinicians and researchers before carrying out the 

primary surgery. The research is largely consistent of two parts, firstly the data is explored to 

assess what dependent and independent features are present, and if outcomes exist or can be 

engineered by merging existent features. The second part involves modelling learning 

algorithms on the features selected from the exploration to assess the potential of predicting 

individual patient outcomes. As the number of primary surgeries increase within the 

population, the necessity for stable and relevant solutions become more significant. In 

machine learning a large part of the potential to predict arrive from the explanatory power of 

independent features and the correct choice of learning algorithms (Buitinck et al, 2013). 

Therefore, this research explores the possibility to use registry data to predict individual 

patient outcomes by applying data mining using open source software for machine learning. 
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1.2 Research questions 
 

Q1: Which variables in the dataset are suitable as dependent outcome features in this 

excerpt from a quality registry on hip arthroplasty? 

 

Q2: Which variables in the dataset have potential as independent features for 

explaining an outcome after hip replacement surgery? 

 

Q3: Can the dataset and a selection of learning algorithms give reliable results in 

predicting an individual patient outcome? 

 

The research questions address three separate parts of the overall exploration and evaluation 

of potential in variables and use of learning algorithms on the dataset. The first question 

addresses the potential for locating features denoting outcomes which can occur after having 

implanted a prosthetic device, and/or can be used to engineer dependent variables. The 

second question address the issue of finding the features for explaining whether a patient will 

have a certain type of outcome. Lastly, the third question addresses an attempt to determine 

which outcome will happen by applying algorithms to learn from the relationship between 

target (outcome) and explanatory features. 

 

Overall, the research questions address potential for different individual patient outcomes 

described by variables available in a registry-based dataset. The feasibility of methods 

designed by training on separate explanatory features are evaluated by metrics. Furthermore, 

together the questions investigate the potential for building adequate solution by leveraging 

registry data in hip arthroplasty. 
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1.3 Thesis outline 
The outline of the thesis is listed below, excluding this chapter. 

 

Chapter 2 – Theory: This chapter presents the theoretical foundation, and discuss medical 

informatics, orthopaedics, knowledge discovery and machine learning. As well as related 

research performed on similar data for a purpose akin to this thesis. 

 

Chapter 3 – Methodology and methods: This chapter discusses the methodology guiding 

the research, and the methods used for performing exploration, modelling, and evaluation of 

the results. 

 

Chapter 4 – Technologies and data: This chapter introduces the dataset used in this thesis, a 

brief explanation of contents, and technologies necessary to utilize the chosen methods. 

 

Chapter 5 – Exploratory data analysis: This chapter is a walkthrough of the exploratory 

data analysis by clustering, and selection of outcome features as potential perspectives on 

predicting an individual patient outcome. 

 

Chapter 6 – Modelling: This chapter details the modelling tasks performed for the selected 

outcome features from the exploratory data analysis. 

 

Chapter 7 – Evaluation: This chapter evaluates the performance of classification and 

regression algorithms implemented in Chapter 6. 

 

Chapter 8 – Discussion: This chapter deliberates on the results from exploration and 

modelling, and the potentials and issues encountered throughout this research. 

 

Chapter 9 – Conclusion and future work: This chapter sums up the findings in this thesis, 

as well as advice for how to conduct further research. 
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2. Theory 
This chapter details the literature related to the purpose of the thesis, and discuss medical 

informatics, orthopaedics, knowledge discovery and machine learning. As well as related 

research performed on similar data for a purpose akin to this thesis.  

 

Medical informatics pursue to fill a gap created by the unification of medical science and its 

many dimensions, and the development of information systems. The process of delivering 

medical and healthcare service by utilizing computer-assisted methods available through 

development of new methods and equipment.  Services developed for the health care sector 

may attempt at assisting medical personnel in their daily routine, simplifying communication, 

and aid in making decisions for both patients and practitioners. Medical informatics relies 

thereby on theory from information sciences alongside medical sciences for assisting in 

managerial tasks, diagnosis, and treatment by employing resources, methods and devices to 

gather, store, retrieve, and utilize information to maintain and improve standards of practice 

(Closa et al, 2009, p. 155).  

 

2.1 Orthopaedics  
Orthopaedics is concerned with the human muscle and skeletal system. The bone is 

connective tissue made of both organic and inorganic matter, and the consistency of our 

bones is altered as we grow older (Iyer, 2013, p. 2). The change in bone caused by aging or 

by any adverse event, such a fracturing, can lead to the immobility in parts of the body (Iyer, 

2013, p. 405). The skeletal system is intricately connected to the muscles and blood vessels in 

our physiology and how we as persons move our body parts. Disruptions in how the skeletal 

system functions can therefore cause larger problems of pain and trauma, some which 

requires surgical treatment (Iyer, 2013, p. 17). 
 

 

2.1.1 Arthroplasty 
Joint replacement is the process of removing our natural joint when the articular surface has 

been deteriorating by arthritis, common reference to multiple illnesses affecting the joints, or 

by fracturing the joint. Arthroplasty is another term used for referring to joint replacement or 

realignment, the main goal when performing arthroplasty is to relieve of suffering and restore 

functionality (Iyer, 2013, p. 317). There are several different types of arthroplasty, total or 

partial joint replacement, resurfacing arthroplasty, excisional arthroplasty, and interposition 

arthroplasty. Most common areas where arthroplasty is performed is in the hip, knee and 

shoulder, and may also be in less common areas such as ankle, elbow and wrist (Iyer, 2013, 

p. 317-319). 
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Common reasons for joint replacement  
Common causes for when joint replacement is an appropriate action, to mention a few, are: 

coxarthrosis, a breakdown in the surface material on joints and the underlying bone, 

rheumatoid arthritis, an autoimmune disorder causing pain and damage on the joints, post-

traumatic arthritis, a form of arthritis occurring post injury due to the effect of said injury, 

avascular necrosis, a disturbed joint cause blood flow interruption and tissue degeneration. 

Iyer (2013, p. 228-330) also discuss a few other events that may result in failure and cause of 

revision surgery, aseptic loosening of stem and/or cup, infections, wear on parts of the 

prosthesis device, and infections. A national report from the Norwegian registry details a 

majority coxarthrosis as the cause for primary surgery, and an increase in number of required 

surgeries in later years, although the revision rate is stated as the lowest registered rate in its 

history at 12.7% in 2018 (Furnes, 2019). 

 

Total hip arthroplasty 

Total hip arthroplasty (THA) is the surgical procedure of implanting a prosthetic joint after 

removing an arthritic or fractured joint. The purpose is to improve and regain function, as 

well as relieving a patient of pain. A prosthetic can be of materials such as metal, ceramics, 

and polyethylene. A modern prosthetic device for THA consists of a femoral stem, femoral 

head, acetabular shell and acetabular liner (Iyer, 2013, p. 326-328). There are different 

practices with the use of prosthetics that have impact on the patient, for example, a larger 

head size on the prosthesis can cause less chance of dislocations and more wear while a 

smaller size can cause higher probability of dislocations (Iyer, 2013, p. 328). Another aspect 

is the resurfacing of the artificial head; with the use of metal prosthetics an increased amount 

of metal ions has been reported, but with unknown risks. The survivorship of revision is high, 

but there are occurrences of premature failures in some series of prosthetics devices (Iyer, 

2013, p. 329). Iyer (2013, p. 334) also notes Revision Hip Joint Arthroplasty as a technically 

difficult procedure. 
 

 

2.2 Data Mining and databases 
Data mining is the task of exploring data to uncover new information, it is described as 

having acquired its foundational methodologies from three fields, statistics, computational 

methods, and data visualization (Gorunescu, 2012, p. 2-3). The methods used to “mine” data 

is an approach suitable to most domains, from health care to finance and energy related data. 

Databases have by necessity and possibility been established in all these domains, ranging 

from unstructured data in vast cloudy databases to more refined quality registries (Sarkar, p. 

48). The focus here is specifically within the domain of health care and medicine. Presently 

we record data in large quantities, a phenomenon which have during the last decades 

increased at an excessive rate due to development of new technologies adopted by the 

medical sector, as well as the diversity of other private and public domains (Hilbert & Lopez, 

2011), (Gorunescu, 2012, p. 5-6).  
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The data is firstly prepared, cleaned and transformed in some manner, important features are 

looked for by evaluation metrics, and by unsupervised methods from machine learning, as 

well as by visual exploration (Figure 2.1) (Gorunescu, 2012, p. 6).  

 

 
 

 

 

 

2.2.1 Data Mining in medicine 
 

Databases in health care have by now a presence in areas such as effectiveness of a treatment 

and understanding reasons for occurring symptoms, assisting with decision-making for 

patients and clinicians, and detecting fraudulent behaviour (Koh and Tan, 2005). Data from a 

range of domains have been investigated, clinical data from patient with ADHD have been 

tested by applying machine learning methods. Other promising attempts are based on raw 

biomedical data to predict cancers outcome, as well as exploring significant factors for 

survival of patients diagnosed with end-stage kidney disease (Yoo et al. 2012). Raw data 

rarely give beneficial information directly without attempting to uncover any, automated data 

analysis by statistical and computational methods adopted by machine learning provides the 

methods to perform what has been dubbed Knowledge-discovery in Databases (KDD) by 

mining (Fayyad and Uthurusamy, 1996). 

 

The development of the capacity to utilize large quantities of data alongside data mining 

techniques have increased community awareness of data analysis for finding new 

information. Mackinnon and Glick (1999) mention Chatfield’s’ definition of data mining: 

 

“the extraction of previously unknown information from databases that may be large, 

noisy, and have missing data” (Chatfield, 1997, cited in Mackinnon and Glick, 1999) 

 

Chatfield’s definition includes a few important points on data analysis, how it can be noisy 

and have missing data, and needs pre-processing. Gorunescu (2012, p. 57-58) elaborate on a  

 

Figure 2.1: Depiction of the steps from the KDD process (Fayyad & Uthurusamy, 1996). 
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process in data mining referred to as exploratory data analysis. A first step of search and 

retrieval relying on the ability to describe and locate correlations, patterns or phenomena, and 

possibly extract important features (Gorunescu, 2012, p. 57). Large and noisy databases may 

at first appear lacking in knowledge, to make them become fruitful they often has to be 

subjected to analysis and interpretation (Obermeyer and Emanuel, 2016). 

 

 

2.2.2 Knowledge Discovery in national registries 
 

Registries in Orthopaedics have been established in several countries now, a registry is a 

comprehensive collection of data on one or several health care related aspects pertaining to a 

defined population (Delaunay, 2014). Scandinavian countries have for the latter two decades 

or so been maintaining registries with data on conditions relating to the musculoskeletal 

system, such as the Norwegian Arthroplasty Registry of THA, Danish Hip Arthroplasty 

Registry, as well as the nationwide Canadian Joint Replacement Registry and the New 

Zealand Joint Registry for THA and TKA in other countries (Delaunay, 2014). Establishing 

registries have supplemented medical practitioners with the ability to compare the issues 

encountered within their work with that of others in the same speciality, and on a nation-wide 

scale. 

 

Machine learning has become an important aspect of KDD, relying upon algorithms for 

assisting in knowledge engineering, problem solving by finding best optimizations of an 

algorithm on a dataset, and for performing a prediction or classification (Mackinnon and 

Glick., 1999). There are also the possibilities of combining quality registry data on Hip 

Arthroplasty with other health data registries to acquire the data to build models valid at an 

individual level. The main purpose is to get access to the necessary fine-grained data to allow 

for constructing algorithms suitable for implementing shared decision-making systems for 

patients who are contemplating Total Hip Arthroplasty (Cnudde et al, 2016). The value in 

quality registries are discussed as being not fully utilized, but said to hold potential for 

effective services to be constructed and serve as a high value advantage which could be 

beneficial for patients and clinicians (Nelson et al, 2016). 

 

2.3 Machine learning 
Machine learning deals with how computers can learn to recognize patterns by processing 

data and examining relationships between the data. Arthur Samuel gave a less technical 

definition on what machine learning is: 

  

“Machine Learning is the field of study that gives computers the ability to learn without being 

explicitly programmed” (Arthur Samuel, 1959, in Geron, 2017, p. 4) 

 

 

 



8 
 

 

Machine learning has become more popular with the development of faster computers and 

access to a wider range of data in volume and variety (Yoo et al, 2012). The aspect of not 

having to program the rules the algorithm bases its reasoning on makes machine learning 

require less explicit programming to run, optimize and test, and more easily adoptable on a 

broader scale. As well as making it a more ideal solution toward problems with a large 

amount of data or handling varieties in data which can be an excessive amount of work for 

persons (Geron, 2017, p. 6-7). A more technical explanation on what is machine learning is 

given by Tom Mitchell:  

 

“A computer program is said to learn from experience E with respect to some task T and 

some performance measure P, if its performance on T, as measured by P, improves with 

experience E.” (Tom Mitchell, 1997, in Geron, 2017, p.4) 

 

There are three reoccurring variables throughout the above definition, the performance P at 

fulfilling a given task T which improves through iterations from rendered experience E. 

Machine learning in a brief statement is learning algorithms which execute the functionality 

described above (Sarkar, p. 10). 

 

2.3.1. Pre-processing 
 

Pre-processing data is necessary to transform it to a form suitable for the learning algorithm 

to ingest, since datasets often have features understood through separate scales, noise and 

missing values (Butinick., 2013). 

 

Dimensionality reduction  

Voluminous data with multiple differences in nature and variety to consider can induce an 

increase in problems complexity, causing the precision of an outcome to decrease (Sarkar et 

al, 2018, p. 39-40). In simple terms, the smaller the dataset the less complicated it is to 

analyse it, and the other way around, but this is regarding only an absence of complication 

not what it gives back in rewards. Dimensionality reduction can be performed through two 

approaches to the same problem of narrowing the number of features to consider, feature 

selection and feature extraction (Sarkar et al., 2018, p. 39-40). The importance of reducing 

dimensions can be understood through what has been dubbed ‘The curse of dimensionality’. 

The curse refers to the phenomenon that arises in situations where the purpose is to analyse a 

quantity in variety, as the number of dimensions increases, the corresponding feature space 

becomes larger (Sarkar et al., 2018, p. 40). This can cause pieces of actual importance to 

become scattered more thinly and harder to observe. 
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Selection and engineering 

Through selection, the feature to proceed with in further analysis and modelling is selected 

from existent features in the dataset. Meanwhile, feature engineering is done by combining 

existing features into new ones by imposing conditions on the data as explanations of an 

observed phenomenon. Rows in a dataset are then labelled by these conditions (Sarkar et al, 

2018, p. 53).  

 

 

 

 

 

 

Standardization 

Standardization is the process of reducing the value in a feature vector with attributes from 

different natures, and therefore represented by separate measurements, to be given on a 

similar scale. To illustrate, a feature vector on a surgery case may hold a specification on 

device size in centimetres all below a hundred in diameter, while another representing 

biometric data represented in the thousands. This difference in the size and nature of the scale 

can cause confusion (Sarkar et al, 2018, p. 180). Standardization resolves this by calculating 

the mean and standard deviation for an attribute, then further subtracting the mean and split it 

on deviation for each value of that attribute (Geron, 2017, p. 66-67). 

 

2.3.2 Unsupervised Learning 
 

Unsupervised learning is concerned with data that often have no known ground truth 

available to tell the conditions of the data and about phenomena it holds. Regarding the 

definition of the process of learning an algorithm, unsupervised methods gain the experience 

E in working without the advantage of pre-labelled data to interpret the phenomena. 

Rendering it as a powerful means to analyse data to find insight into what trends or patterns it 

may yield for understanding more about its nature and what it describes (Sarkar, 2018, p.39).  

 

Figure 2.2: Depiction of standard machine learning pipeline (Sarkar, 2018, p. 53). 
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Computational methods in unsupervised learning do not take any guidance in deriving values 

from the data and assign them by the use of metrics, therefore it is not given previous 

experience in performing the given task. Instead it does the heavy lifting by itself as it 

attempts to find inherent latent structures and relationships between data points. Broadly 

defined through several different sub-categories, such as clustering, dimensionality reduction, 

anomaly detection and association rule mining (Sarkar et al, 2018, p. 40).  

Unsupervised learning is often used prior to predicting or classifying and can be used for 

exploring data points which should have similar labels by for example indicating a 

relationship in outcome similarity or as risk groups. A common method for grouping and 

assigning labels is different types of clustering algorithms (Sarkar et al, 2018, p. 39). 

 

Clustering  

Clustering can be performed by using several different methods, the idea is to group data by 

deriving an assumed similarity in and relationship between data points, resulting in defined 

clusters/groups. Clustering handles data without any prior training or already known 

contextual knowledge about the data points, then produces a label for each data point which 

is retrievable after processing (Sarkar et al, 2018, p. 260). Resulting formations made up by 

each data point’s assigned membership to a range of groups is subject for interpretation and 

evaluated by internal or external metrics on distance and density (Sarkar et al, 2018, p. 279-

280). 

 

 Partition-based clustering approaches the problem by establishing a notion of 

similarity that is defined through applying mathematical function on data points (Sarkar et al, 

2018, p. 260). The measurement of similarity is further used to separate data into groups by 

starting at a frivolously chosen attribute and comparing and reassigning until each reassigning 

does no significant change to the distribution. K-means is one example of a partitioning based 

cluster and is commonly used for data with spherical formations (Sarkar et al., 2018, p. 260). 

 Density-based clustering approaches the problem in a different way, giving up the 

notion of distance, and rather defines a notion of density as a way of handling arbitrary 

shaped clusters. The clusters are formed by finding areas with greater quantities of data and 

works well as it is an unlikely event that all detectable clusters are spherical in nature (Sarkar 

et al, 2018, p. 260). 
 

2.3.3 Supervised Learning 
 

Methods from supervised learning focus on mapping the input data passed into the algorithm 

to a corresponding output by examining a record of inputs and subsequent outputs that have 

been set aside, often referred to as a training set. This is done to train an algorithm to attempt 

to understand how the inputs and related outputs are associated and create a trained 

algorithm. It is then used to predict an outcome by running the model on previously 

unobserved data.  
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The training is an attempt to model the relationships present in the training data, and take this 

knowledge gained and reuse it to predict. In contrast to unsupervised methods for machine 

learning, supervised methods must take a record of outputs that corresponds to an input, and 

the relationship between these acts as guidance on how to interpret new incoming values after 

an algorithm has learned from experience (Sarkar et al, 2018, p. 179).  

 

Considering the definition of machine learning, the experience E is gained in a controlled 

environment in supervised learning, as a means to prepare and optimize in performing task T, 

an option the unsupervised solutions do not have. 

 

Generalization 

Generalization in a learning algorithms performance is how well it does on newly observed 

data not present in the training set. Poor generalization can be an issue as the algorithms 

cannot be applied to a larger set of samples from its specific area. A goal in learning is for the 

model to be applicable to a broader range of sample without either being to specifically or to 

loosely tuned to the relationships in the training data (Sarkar, 2018, p. 287). 

 

A fitting issue arise when pursuing good standard of generalization across the 

spectrum of different data and can be understood through the trade-off between bias and 

variance. Bias refers to the model’s competence in making the right decision, and measures 

the error rate, or deviation, between what the truth was and what it was assumed to be. A high 

bias is related to larger presence of noise (Sarkar, 2018, p. 284-285). This causes the model to 

miss out on learning how to make the correct assumptions about relationships and eventually 

it makes erroneous decisions. Variance refers to the range of difference in performance 

across a changing set of data samples; low variance implies stability in performance, while 

high variance implies a larger difference in error rate in predicted outcomes (Sarkar, 2018, p. 

284-285).  The issue causes a problematic situation in building a model that adopts to change 

and still renders reliable results without being misled by newly discovered features, noise, or 

randomness. Under- and Overfitting are two scenarios to consider to better understand the 

occurrence of high or low bias and variance in modelling a problem space. 

 

Underfitting is when the model is incapable of learning anything from the underlying 

structure, patterns and correlations in the dataset, and is characterized by low variety in 

performance and high bias as the model made no clear assumptions about relationships in the 

data (Sarkar, 2018, p. 287). A model with these attributes will then have a stable range of 

outcome predictions as variety is low, although there is stability in variety, the algorithm 

makes frequent mistakes.  

 

Overfitting is the somewhat different in trade-off between variance and bias. With 

high bias, as the wrong assumptions is made on structures and patterns in the data, and high 

variance, as the noise and randomness in the data is assumed as informative and influence the  
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predictions. This is caused by too strictly fit assumptions toward the sample of data used for 

training and can generate lots of errors in modelling unobserved data (Sarkar, 2018, p. 287).  

 

Optimization  

Optimization involves a set of approaches toward preventing overfitting and is often 

performed by cross validating with a selection of hyperparameter settings (Figure 2.3). The 

method combines the settings in all possible combinations and return the one with the best 

performance (Varoquaux et al, 2017). 

 

 

 

 Regularization refers to finding a suitable method for reducing the chance of 

overfitting in a algorithm’s learning process by reducing the complexity. Ridge regression is 

a common form of regularization done by putting a constraint on the coefficient, adding bias 

but reducing variance in the resulting outcomes (Geron, 2017, p. 127-128). 

 

Stochastic gradient descent can be applied through hyperparameter settings in Multi-

layered perceptron classifier from Scikit-learn (Varoquaux et al, 2017). The literal meaning 

of gradient descent explains the nature of the method in very simple terms, as it picks a 

starting position and moves downward the slope of a cost function in iterations for each 

feature until it gets as far as the lowest point. Stochastic gradient descent is one of the more 

common methods for optimizing learning of a model by adjusting the rate it moves 

downward this slope, or size of previous update, and tracking it to improve performance 

through the learning process (Geron, 2017, p. 117). 

 

 

 

 

Figure 2.3: Deptiction of cross validation to select best model by measuring least error (Sarkar, 2018, p. 
289). 
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Regression 

Regression refers to tasks predicting a continuous numeric value or a class in case of logistic 

regression. This is performed by estimation through mapping the relationship between input 

features and corresponding output from a dataset with prepared target feature and explanatory 

features (Sarkar et al., 2018, p. 37). A common example where regression would be the 

choice is the prediction of housing prices, where input features such as size, age, amount of 

bedrooms/baths etc. is passed in to guess what the price will progress to from its’ current 

value, i.e. the price of a house by next the next quarter of the year in contrast to its current 

value and the values stored from the previous quarters. 

 

Classification 

Classification refers to all tasks that attempt to predict an output that is categorical in nature 

as it pertains to one out of a set of distinct classes, usually a fixed number of available 

classes. Classification can further be divided into binomial and multinomial classification, 

where the difference between the two is the amount of available output classes (Sarkar et al., 

2018, p. 36).  If the prediction can be a good or a bad result it is binomial, while the 

prediction of what genre a book or movie belongs to is a multinomial classification due to the 

existence of several classes of possible outcome.  

 

2.4 Related work 
This section is a review of literature relating to the area of interest in this thesis, the combination 

of patient outcomes in orthopaedics and machine learning methods. It is comprised as a 

discussion of similar research where data has been assessed and utilized for predictive 

modelling. 

 

Kruse et al. (2017) discuss applying machine learning methods to hip fractures patients in X-

ray data from Denmark in combination with additional data from a period of five years after 

surgery. Their purpose was to find patients who might sustain fractures from osteoporosis-

related reasons and classify those who would or would not be in risk, and reported positive 

results measuring an area under the curve score above 0.80. The data originated from national 

Danish patient data and collection of images from two university hospitals on patients with 

records on hip and/or femur region fractures. They suggest results from the study can be 

improved by supplementary data from a larger region and could be beneficial for identifying 

patients with a certain risk (Kruse et al., 2017). The chance of improvement in additional data 

is something also emphasized by others who suggest implementing solutions for predicting 

individual patient outcomes (Ellison, 2017). 

 

Fontana et al. (2019) reported on a similar venture, relying on patient reported outcome 

measures from Total joint replacement surgery and a set of supervised machine learning 

methods. They used Logistic regression, Random forest decision tree classification and Support 
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vector machine (SVM) to predict whether a patient would show changes that are of minimally 

clinically important difference, approaching the issue as a binary classification.  

 

Their results are discussed as being in-between poor and good, with a variation in area under 

the curve scores ranging from 0.60s to the 0.80s (Fontana et al., 2019). The performance was 

improved from supplementing additional patient reported outcome measures, however, it is 

discussed as not improving by adding extra data from hospitalization (Fontana et al., 2019). 

  

The issue of providing informative solutions as clinical aid by predicting future outcomes are 

present in literature, a summary of several results discussed in an article reports uses of Logistic 

regression classifier and Random forest classifier with decision trees, and approaches the 

problem based on rotating independent features for testing performances (Cabitza et al, 2018). 

Further, several attempts at clustering data are discussed, for reasons such as segregating 

records into groups to identify patients with different levels of risk of suffering an adverse event 

after surgery and locating fracture risks in patients (Cabitza et al, 2018). Approaching the is 

issue of finding groups with similar characteristics to compare and establish an understanding 

of the data can be done by model-based clustering (Fraley and Raftery, 2002). Investigating 

data in hip replacement using larger registries has for instance been done to locate reasons for 

differences in efficiency of revision surgery among patient records (Salassa et al, 2014). The 

investigation is useful for designing better predictive models, as their performance is a result 

of design by the training data.  

 

Assessment tools for outcome predictions have also been tested for a variety of causes relating 

to arthroplasty surgery; such as predicting postoperative rehabilitation needs, in-hospital care 

needs after surgery, and occurrence of postoperative complications (Konopka, 2015). A variety 

of variables are discussed throughout the article, most focused on general patient information, 

i.e. among others age, gender, BMI, and health status by the American Society of 

Anaesthesiologists classification system, in combination with a selection of other contextual 

variables (Konopka, 2015). The possibility of building larger data warehouse structures has led 

to the collection of quantities of data in medicine. However, even as registries of records exist, 

having the right data is an issue, introducing a trade-off in quantity and quality, with one not 

being enough. Volume is necessary to make sure enough entities are present to represent the 

true associations in the data, and not a reflection of only a small part of the population (Roski 

et al, 2014), as using inadequate knowledge may cause poor decision-making. Quality is 

necessary as even though a dataset might be large, it may also be noisy and have randomness 

misrepresenting the true associations, causing the model not to learn what it needs to make 

good decisions (Roski et al, 2014). 

 

The accumulation of data on patients in arthroplasty and the increased availability of machine 

learning methods have caused a surge in research and development of shared decisions making 

solutions (Bozic, 2013), (Nemes, 2018). For instance, such solutions could aid clinicians and 

patients in making better decisions together by increasing awareness of outcome possibilities. 

However, to realize this the issue of the right assembly of data and validated methods to 

implement is a fundamental necessity.  
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3. Methodology and methods 
This chapter discusses the underlying methodology guiding the research, and methods used to 

perform the necessary actions and evaluations through the process of analysing records and 

predictive modelling for patient outcomes. The evaluation in this thesis is done by applying 

performance evaluation metrics to assess the feasibility of the results from unsupervised and 

supervised machine learning methods. 

 

3.1 Design Science 
The development of new systems in information technology is concerned with the idea of 

improving efficiency and contribution to the organizational structure or a determined 

environment. New systems can often be complex, intact with advancements in technological 

capabilities, there emerges a necessity for studying such systems on multiple planes. It is 

therefore argued that to approach the problem of researching information systems requires the 

inclusion of two paradigms of science, Behavioural and Design Science (Hevner et al, 2004). 

The design science paradigm is a problem-solving centric methodology, rooted in the 

engineering field, and attempts to construct artefacts in a research context by applying related 

knowledge in the process to ensure relevance and rigor in research (March and Smith., 1995). 

Behavioural science is more concerned with providing explanation to questions about why 

and how a phenomenon is the way it is, seeking out some truth by understanding and 

conceptualizing how things work (Hevner et al, 2014). Regarding the construction of an 

artefact within information technology, the behavioural science paradigm provides a sense of 

direction by promoting the development and justification of more precise theories for 

explaining how the artefact should be shaped (March and Smith, 1995). For designing 

systems, theories can often relate to the performance of a system in an organizational 

structure, in efficiency and/or achieving usefulness in executing desired functionality (Hevner 

et al, 2014).   

 

Design science as a methodology is different from the concept of development methodology, 

while the latter focuses on best practices for maximizing efficiency in structure and 

management of a development process. The first is more concerned with the novelty 

solutions within a research perspective. The goal is to prescribe solutions toward problems 

with the intent of either improve upon a previous solution or address unsolved issues through 

an innovative approach. Likewise, Design Science research helps encourage contribution 

towards a knowledge base (Gregor and Hevner, 2013). 
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The design science process: In behavioural sciences the focus is on constructing theories on 

how things work and evaluating the results. Correspondingly, the design science process is 

involved with activities generalizable to constructing artefacts of some kind and evaluating 

the result (March and Smith, 1995). Artefacts are discussed as belonging to a list of 

categories detailing types of products: 

 

 

• Constructs are artefacts which assist the communication of knowledge within a 

domain by aiding the composition of a shared vocabulary (March and Smith., 1995). 

An example of a construct could be attributes and entities as representations of a 

certain concept. 

 

• Models are representations of the real-world by relying on constructs to build 

composite structures based on their relationships (March and Smith., 1995). An 

example of a type of model could be an Entity-Relationship diagram illustrating 

which attributes are involved in the assembly of a representation of a phenomenon. 

 

• Methods are the means for conducting an activity aimed at performing a certain goal 

(Hevner et al, 2014). An example of methods would be the ways to perform certain 

activities by providing descriptive textual approach or computational algorithms as 

the goal. 

 

 

Figure 3.1: The Design Science Research contribution matrix (Gregor and Hevner, 2013) 
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• Instantiations are the step of bringing all other types of artefacts, from attributes at 

the bottom level to validated methods at the top, together to realize a system in its 

true environment (March and Smith., 1995). Implementations of instantiations are 

done to illustrate how adapt an artefact performs in a real-world context and to 

establish proof its usefulness. 

 

 

Evaluation: The evaluation is often concerned with testing adequacy in performance and 

benefits rendered by an artefact to address a problem and provide solutions (Hevner et al., 

2004). Sufficiently evaluating research can lead to providing better information on the results 

and therefore highlight potential for improvement in further research (Hevner et al., 2004). 

Evaluating the performance of an artefact is a relative exercise as it is highly connected to the 

nature of the artefact, and/or the intended functionality. Which metrics are used to perform an 

evaluation often depend on the environment of a given artefact and its intended usage and can 

range from assessment of completeness and functionality to usability and reliability. As well 

as how technological implementations are used within desired environment (Hevner et al., 

2004). 

 

The study of information systems involves two different types of research, descriptive and 

prescriptive. The first is concerned with providing adequate knowledge about the intended 

problem space and related phenomena to avoid poorly constructed solutions. The latter is 

concerned with identification and investigation of artefacts similar to the intended research, 

assisting in restricting domain knowledge to a baseline and preventing over-reaching (Hevner 

et al, 2004). 

 

The Artefact 

The artefact in this thesis is in form of engineered and selected dependent features for 

suggesting possible predictive solutions for hip arthroplasty patients. Furthermore, predictive 

models are produced to test different outcome prediction possibilities as a suggestion for 

further use of machine learning in utilizing registry data to benefit clinicians and patients 

alike. The evaluation of the artefact was performed by evaluation metrics, such as the AUC 

score to document achieved performance (Hajian-Tilaki, 2013).  

 

The artefact consists of models and methods, as defined above, the attributes of registry 

records are explored to synthesize the constructs into applicable models for interpreting the 

data, i.e. defining new features based on the attributes in the dataset. Further, these models 

are used to build methods to test performance of a goal-directed activity, i.e. to 

predict/classify an individual patient outcome. Generally speaking, the artefact is in two 

parts. First part concerns locating and/or establishing the outcome features for describing a 

distinct difference in outcomes between patients. The second part is implementing learning 

algorithm to perform the goal-directed activity based on the outcome features established in 

the first part. 
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3.2 Development methodology 
The development of the artefact in this research project was performed through exploration of 

the problem space established by the research questions. This included data analysis with 

unknown results and therefore found a methodology with the ability to adopt quickly changes 

in development. Crystal Clear is an agile methodology with a focus on creating room for 

navigation during the process of development (Cockburn, 2014). The methodology suggests 

frequent deliveries and communication, and reflective improvement through clarification and 

evaluation (Cockburn, 2004). The methodology’s impression of adaptiveness to a changing 

environment made it appear suitable for this thesis. 

 

The development was done in two iterations. The first corresponds to the phase of data 

exploration and feature engineering, the second iteration was concerned with predicting 

individual patient outcomes and evaluating results. The machine learning models used to 

perform the necessary activities to realize this are presented next. 

 

3.3 Machine learning methods 
The methods from the field of machine learning used to pre-process, explore and model are 

described in more detail. Included are the methods for unsupervised clustering, regression 

and classification, as well as, an overview on pre-processing the data.   

 

3.3.1 Exploratory Data Analysis 
 

Exploratory data analysis focuses on interpreting and establishing understanding about a 

dataset, recognizing systematically underlaying trends and patterns. Often this exploration 

can be aided by use of different techniques for identifying the systematic relationships 

between attributes/variables present in the data (Gorunescu, 2011, p. 57). Exploring was 

chosen as method for revealing the underlying structures, detect differences, and maximizing 

knowledge about what the records detail about hip replacement surgery. Furthermore, to 

identify important variables within the data, and suggest potential outcome features. 

 

3.3.2 Pre-processing 
 

Pre-processing the dataset used in this thesis was done to make it appropriate in shape and 

form for the learning process, the step of transforming the data before use is done prior to 

exploration and prior to modelling in this thesis. Description of pre-processing methods are 

following. 
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Feature selection 

Feature selection is the act of deciding which of the attributes in a dataset to include, it is 

done twice throughout this thesis, prior to exploration and prior to modelling. Variables are 

also assessed while exploring the dataset to decide other possible dependent and independent 

features. The process of selection was guided by the established purpose of the research, 

focusing on locating descriptions of an outcome and the means to predict said outcome after 

primary surgery. 

 

Feature engineering  

Feature engineering refers to the act of establishing new features from existent ones within 

the data, to better describe the structures and phenomena within the dataset. The creation of 

new features is often a demanding task as it can require necessary knowledge to direct the 

process. However, it is a highly important aspect as it can be used for establishing dependent 

variables or reducing the number of dimensions by combining independent features (Sarkar et 

al, 2018, p. 181-182). Engineering new features in this thesis was performed as a solution to 

establish more relatable outcome categories after exploratory data analysis. Furthermore, to 

check for improvement in performance with different dependent features. 

 

Binary encoding features 

Numerous features from the dataset are in a categorical multinomial range without any order 

or context to help the algorithm with interpretation. For portraying these values in a way to 

minimize the machine learning models chance of learning erroneous associations, one-hot 

encoding was used to transform the multinomial independent features to a binary matrix 

representation (Buitinck, 2013). For instance, prosthetic device materials are represented as a 

defined numerical scale, but the materials represented by the values three and four are not any 

closer associated than three and ten.   

 

Scaling features 

Feature scaling is performed on continuous features selected from the dataset, by reducing 

them to fit on the same scale. To illustrate, features may have different nature, a person’s age 

and their weight are both numerical, but describe different phenomena and may have larger 

difference in the size of the scale. This difference in nature can, if not tended to, cause a 

decrease in performance (Geron, 2017, p. 65). Standardization was utilized as the method for 

scaling values in this thesis. 
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3.3.3 Unsupervised methods 
 

Clustering models were used for exploring the data in the attempt to find possible outcomes 

in groups in the dataset. To perform this action K-Means is used to group cases on similarity 

between cases as a method for examining the population. Mean Shift, based on a different 

internal strategy for clustering is used as a secondary method for comparison. Both were 

provided by the Scikit-learn environment (Varoquaux et al, 2017). 

 

K-Means  

K-means belongs to the partitioning family of machine learning models but differs from other 

clustering models in the ability to manually adjust the K number of clusters the data should 

be grouped into as a result (Sarkar et al., 2018, p. 386). This gives a unique opportunity to 

define a space by setting thresholds of K clusters. The metric used to measure distance is 

Euclidian distance, measuring the relationship between two data points in a set. It is used to 

decide where to position data points towards the cluster with the centroid it is nearest, and 

performs this for each data point. The centre is recalculated by averaging the dimensions 

among data in each cluster and moving data points to the closest group. After all data has 

been assigned then the process repeats itself iteratively, the iterations are repeated until 

cluster formations are stable (Sarkar, et al. p. 267). 

 

Mean Shift  

Mean Shift is a density-based cluster, although it is similar in use of centroids for defining a 

search space, it measures where the denser areas are by shifting across the data. It does so by 

incrementally moving and updating the centre used for deciding which data should be 

assigned to a cluster by calculating the mean position from all data points. Further, selecting 

from within an area around the new mean every move. It takes no parameter to decide the 

number of resulting clusters, Mean Shift uses nonparametric kernel density estimates, to 

establish an estimation of density it requires only one input parameter, bandwidth (Carreira-

Perpinan, 2015). It works well with non-spherical shapes (Comaniciu, 2002). In this research 

it provides a second look at the dataset. 

 

 

3.3.4 Supervised methods 
 

This section discusses steps and methods takes in conducting supervised learning. Such as 

generalization and hyperparameter settings, and specific learning algorithms. 
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Generalization 

The data was split into training and testing sets by using functionality available through 

Scikit-learn (Varoquaux et al, 2017). The learning algorithms are trained on one set and 

evaluated on a selection set aside for testing. For evaluating capability of the model to 

generalize, cross-validation was employed as a method (Sarkar, 2018, p. 289).  

 

Hyperparameters 
Prior to training and testing the supervised models, the hyperparameters were set by using the 

modules GridSearchCV and RandomSearchCV from Scikit-learn (Varoquaux et al, 2017), 

selecting the model giving the most optimal results. These modules depend on cross-

validation to loop through the dataset changing out the testing and training samples by 

dividing the data at a determined threshold, such as five-fold and ten-fold cross valiation 

(Claesen, 2015).  

Regularization method is set during tuning the models for an optimal combination of 

hyperparameter settings, determining type of regularization and strength of constriction 

(Varoquaux, et al, 2017). 

Learning rate is set in the Multi-layered perception to establish the step size of the 

stochastic gradient descent in the optimizer determined by tuning the model (Varoquaux et 

al, 2017). 

Two regression models are used to predict and classify an outcome, as well as two 

supplementary methods are used to predict the survival year of an individual by a set of 

explanatory features. The Linear regression is used for predicting exact survival year of a 

prosthetic device, while the rest are utilized for classifying a survival in year as grouped 

outcome classes. Following are the employed models. 

 

Linear regression 

Linear regression outlines the relationship between the features passed in as dependent 

(target) and independent (explanatory) features. The approach draws a straight line assuming 

a linear relationship between variables in attempt to minimize the error in forecasting an 

effect (Sarkar, 2018, p. 315). Linear regression was used for predicting a precise outcome 

prior to primary surgery. 

 

Logistic regression 

Logistic regression classifies data within defined categories and differ in type of dependent 

variable and is used more commonly to determine a bi- or multinomial discrete outcomes 

(Sarkar, 2018, p. 315). It is a linear model despite the difference in detecting a discrete target, 

using what is commonly referred to as the sigmoid function to linear regression to reduce the 

result to one of a several categories (Sarker, 2018, p. 262).  Logistic regression was employed  
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as a baseline method to evaluate classification performance across various learning 

algorithms that are described below. 

 

Random forest classifier 

Random forest classifier is a learning algorithm processesing by assembling multiple decision 

trees on sub-groups of the data (Varoquaux et al, 2017). By working with multiple trees in 

parallel the algorithm tries to improve the performance. The collective approach of the 

decision trees gives an interesting effect as some tress make a poor decision, their collective 

effort can still move the result in the right direction (Sarkar, 2018, p. 283-284). Random 

forest classifier was added as an alternative perspective to compare against the other methods. 

 

Multi-layer perceptron 

Multi-layer perceptron (MLP) is feedforward neural network, functioning quite differently 

than the algorithms mentioned above, as it is built on the use of perceptron/neurons as 

individual processing units in each of the separate layers. MLP consists of minimum three 

layers, one for input, at least on hidden layer for computation, and one output layer for 

reducing the result to one of the possible outcomes (Sarkar, 2018, p 32). MLP was employed 

as another alternative for comparison, this thesis only used simple MLP with three layers. 

 

 

3.3.5 Evaluation metrics 
 

This section introduces the evaluation metrics employed to evaluate the results in this thesis. 

There are three separate types, internal cluster validation metrics, and metrics for regression 

and classification tasks. 

 

Internal cluster validation 

Internal validation metrics were used to assess the similarity within and variety between 

clusters. No proper ground truth was known for how to segment data points into groups in 

any meaningful sense relating to a known outcome.  

 

Silhouette Coefficient: This metric is an internal validation metric used when no 

ground truth labels are present, and attempts to combine the two characteristics, 

compact and clearly separated, to capture the expected behaviour of good clustering.  

The metric does so by assessing how similar data points are in relation to others in its 

own group and how dissimilar they are to those belonging to another group (Sarkar et 

al, 2018, pp. 280). The result of calculating the coefficient is between 0 and 1, where 

a higher score means a better result (Rousseeuw, 1987).  
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Calinski-Harabasz Index: This metric is calculated by considering the ratio of the 

between cluster dispersion means, i.e. a calculated average ratio of how widely spread 

the groups are, and how dispersed the data points are within the different clusters 

(Calinski and Harabasz, 1974). The Calinski-Harabasz Index returns a result that is 

not limited to a number between 0 and 1, and the higher the score the better the result 

is considered. Similarly used to evaluate without a known ground truth (Sarkar et al, 

2018, pp. 281).  

 

 

Regression metrics 

Result from linear regression were performed by several metrics outlined below.  

 

Coefficient of determinations (R2): R2-score measures the likelihood of future 

predictions being appropriate (Sarkar et al, 2018, p. 281). The best score that can be 

achieved is 1 and can returns a negative score on low chance of correct prediction. It 

is used to evaluate regression models and test how well the independent features 

explain the occurrence of the dependent feature (Sarkar et al, 2018, p. 281).  
 

Mean Absolute Error (MAE): MAE measures the absolute deviation between a 

ground truth value known in advance and a predicted value. The metric gives a clear 

view of how sizable the deviation is overall, illustrated on the same measurement 

scale as the output (Geron, 2017, p. 39). For instance, if the output is understood in 

the context of years passed, then the MAE score will inform on have many years the 

predicted value deviated from the known truth by calculation the average from the 

sum of total errors. 

 

Mean Square Error (MSE): MSE performs the evaluation by finding how much a 

predicted outcome deviates from the true value, considering the average square of the 

measured deviation. The lower the values returned by calculating the MSE, the better 

the model performs with less errors (Sarkar et al, 2018, p. 282).  

 

Root Mean Square Error (RMSE): RMSE is a modification of Mean Square Error 

(MSE), additionally finding the root of MSE. This metric can also be used to evaluate 

the performance of a regression model, especially the distribution of errors. It is 

similar to MAE in returned value, as it gives a result in the same measurement scale as 

the predicted value (Geron, 2017, p. 37). 
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Classification metrics 

For assessing the bi- and multinomial classification the accuracy is used to test generalization 

through cross validation with the accuracy metric. Additionality, the receiver operator 

characteristic provides a second look at performance (Sarkar, 2018, p. 276). They are 

described below. 

 

Accuracy: The accuracy score returns an assessment of the overall proportion of 

correct predictions (Geron, 2017, p. 83). The accuracy score is available through 

Scikit-learn for both bi- and multinomial modelling, giving a consistent evaluation 

using an identical metric on both classification tasks. 

 

Receiver operator characteristic: The method provides a solution for interpreting the 

result of classification working well for modelling bi- and multinomial classifiers 

(Varoquaux, et al, 2017).  The curve is created by assembling the confusion matrix 

from the true-positive rate and false-positive rate of performance and plotting the 

portion true-positive versus false-positive by iterating through the ground truth and 

the predicated results (Sarkar et al., 2018, p. 276). The area under the curve-score 

provides a further assessment of performance and is measured between 0 and 1 with 

0.5 being considered random guessing (Geron, 2017, p. 92). The Receiver operator 

curve is a common method for evaluating medical diagnostic tests (Hajian-Tilaki, 

2013). 
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4. Technologies and data 

This chapter contains a description of the dataset and technologies used to pre-process, 

explore the contents and training the learning algorithms to perform the regression and 

classification tasks. 

 

4.1 Technologies 
This section presents the different technological tools used to perform the activities in this 

research. 

Python Programming language:   Python is a general-purpose programming language, 

applicable to many domains and supports functional, procedural, and object-oriented 

programming. It is widely used and has many supporting libraries with tools for data mining 

and machine learning (Rosssum, 2009). The was used alongside the Anaconda framework. 

Anaconda:   Anaconda is a free downloadable platform for data science mainly 

constructed for scientific purposes (Anaconda Software Distribution). It allows for setting up 

a virtual environment with Jupyter Notebook preinstalled and has access to most common 

libraries used in importing and processing data, as well as access to libraries for visualizing 

data and machine learning tools. 

Jupyter Notebook:   Jupyter Notebook was used for programming during the study, it is 

an application that allows for running Python code live in the browser and is primarily used 

for cleaning and transforming data, carry out machine learning and statistical modelling tasks, 

and visualizing data for exploration (Kluyver, 2016). The notebook allows for segmenting 

code into individual blocks and serves as an effective tool for working through a more 

adoptable approach. 

Scikit-learn:   Scikit-learn is a library for data mining, and data analysis in Python, it is an 

open source solution and available for free (Varoquaux, 2017). Scikit-learn provided the 

required machine learning tools for exploring the dataset and training prediction models. 

Miscellaneous libraries:   For working with the data a few noteworthy Python libraries 

were used, most of all Pandas, NumPy and Matplotlib from the SciPy environment.  

(Virtanen, 2019). 
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4.2 Dataset description 
The dataset is an excerpt of arthroplasty surgery records from the Norwegian National 

Register for Hip Joint Replacements. In general, the dataset has a minor selection of details 

on the patients and surgery, reasons for requiring the procedure, and details on materials used 

in the implanted prosthetic device. The dataset has records collected between the years 1987 

and 2018. The selection of patient records and important variables were chosen through 

discussions with the Orthopaedic clinic at Haukeland University hospital. 

As stated above this data is an excerpt and do not contain all the data from the registry, rather 

it is based on a selection of product types. The types are listed below and is organized around 

three main products and their combination with a selection of less represented product types. 

1. Cases with Spectron cemented stem combined with cups: 

1) Reflection cemented HXLPE 

2) Reflection uncemented 

3) Opera 

4) Elite 

 

2. Cases with Reflection cemented UHMWPE cup combined with stems: 

1) Spectron cemented stem 

2) ITH stem 

3) Bio-fit cemented stem 

4) Corail stem 

5) Taperloc stem 

6) Hactiv stem 

 

3. Gold standard cases with Charnley stem combined with cups: 

1) Charnley 

 

The third selection of cases consists of one type of prosthetic device with a good track record 

serving as a gold standard group with no combinations occurring across product types. 

Surgery records from the first two groups provide a more varied landscape of different 

combination to explore. 

Column overview 

The content of the dataset can be further explained through belonging to different sub-

domains: 

 

1. Patient details 

Organized within the domain ‘Patient’ details are the variables relating specifically to the 

patient, i.e. age, gender, and health status. 
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2. Prosthetic device details 

Under the hyponym ‘Prosthetic device’ details are the variables directly related to the device, 

i.e. the materials used in the acetabular cup, femur stem, and the caput, as well as use of 

polyethylene and size of the prosthetic caput.  

 

3. Primary surgery reason details 

Accumulated within the domain ‘Primary surgery reason’ details are the variables related 

specifically to reasons for requiring the primary surgery, i.e. the first insertion of a prosthetic 

device.  

 

4. Revision surgery reason details 

Organized within the domain ‘Revision surgery reason’ details are the variables related to 

why revision surgery was necessary, such as separate adverse events. These details are only 

available in records with revision. 

 

A full list of all variables considered throughout exploration in this study is in Appendix C, 

and the different variables are explained more in detail.  

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 

5. Data Exploration 

This chapter details an exploration phase by invoking clustering as an unsupervised method 

to examine similarities within and between groups in the dataset, and by describing and 

visualizing the resulting formations. The primary focus is on locating and exploring possible 

features for engineering outcomes, and potential explanatory features within the dataset. The 

purpose is to better understand the predictive powers of the variables and how to further 

appropriate it for modelling. 

 

5.1 Approach 
The approach taken in exploring was performed in the manner detailed here. The following 

two steps are first performed. 

 

1. The data is checked for missing values. 

2. The features to include in clustering models are selected. 

 

The data is separated into three different sets of records, those with a device survival length at 

< 5, < 10, and < 15 years. For each of the sets of records the following step are performed 

(Figure 5.1):  

1. The number of clusters is determined by running the Elbow method (Kodinariya, 

2013) using K-means to locate a range of possible K-values to explore the dataset. 

 

2. Clustering is performed between a range of possible K-values, after each clustering 

the Silhouette Coefficient and Calinski-Harabazs index, as well as details on records 

in individual clusters, are summarized in tables, Appendix D-F. 

 

3. The Mean shift hyperparameter bandwidth is estimated by using Silhouette 

coefficient, after clustering is done the details on records in the set of produced 

clusters are listed in tables, Appendix J and K. 

 

4. Variance between clusters is examined, Cramér's V correlation coefficient (Akoglu, 

2018) are employed to assess explanatory power in independent features toward 

possible outcome features in the overall populations and in a selection of individual 

clusters. 
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5.2 Distribution of values 
An inspection of missing values in the dataset with all cases, revision and non-revisions 

surgeries, show that most columns are without Nan values, in total only three columns have 

a minority registered values available. For a second perspective on what is in the data (Figure 

5.2) included the distribution of values that are positive, Nan and 0.  

 

 

Looking toward the columns denoting the use of materials in separate parts of the prosthetic 

device there is more available positive values than there is in reasons for requiring primary  

Figure 5.2: Distribution missing (marked red), 0 (marked blue) and present values (marked green). 

 
. 

Figure 5.1: Step performed with clusters detailing initial segmentation of records, determining hyperparameters, and 
processing the data. 
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surgery. Variables on reasons for requiring primary surgery show that in the majority of 

records the reason for hip replacement was coxarthrosis and only a minor selection originates 

from another cause, reflecting the majority coxarthrosis in the overall registry (Furnes, 2019) 

 

5.3 Features selection 
Features for clustering were selected through a process of elimination where the features 

detailing knowledge inaccessible prior to primary surgery were removed. Thereby excluding 

features such as surgery length and details on why cases required revision surgery. The 

selected features are listed below, and primarily concern two separate domains, case specific 

and prosthesis device specific details. The details on the device include materials used in the 

procedure and size of the caput.  

For handling categorical variables without a contextual relationship between values, all 

features with a multinomial finite scale of values was pre-processed by one-hot encoding 

creating a binary matrix representation of the categorical variables. 

Standardizing was than performed to reduce the effect of a variety in types of measurements 

within the data as there are multiple dimensions with different natures. Among them age and 

caput size, one in years and the other is centimetres. 

 

Patient specific variables: 

ALDER: Describes the age of an individual at the time of surgery and is represented by a 

continuous value measured in years. 

PAS_KJONN: Feature describes the gender of an individual and is represented by a binary 

value. 

P_ASA: Describes the health status of an individual and is represented by a categorical value 

between 0 and 5, and 9, with 9 representing unknown and 0 being unregistered/left blank. 

P_TIDL_OP: Describes if a patient has had surgery in the hip outside of hip replacement and 

is represented by a binary value. 

P_SYKEHUS: Describes at which hospital the surgery took place and is represented by a 

categorical variable representing different hospitals. 

REVISION: Describes if a patient had revision surgery and is represented by a binary value. 

SURVYRS: Describes the length of survival for an individual case/device and is represented 

by a continuous value measured in years. 
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Prosthesis device specific variables: 

Each categorical variable can be between 0 and 12 and the variable describing prosthetic 

caput size is stored as a continuous variable. In both categorical and continuous variables, the 

value 0 represents an empty column.  

 

P_CUP_MATERIALE: Describes the materials used in the cup between the caput and stem 

and is represented by a value between 0 and 12. 

P_LINER_MATERIALE: Describes the type of polyethylene liner between cup and caput 

and is represented by a value between 0 and 12. 

P_STEM_MATERIALE: Describes the value used in the stem of a device and is represented 

by a value between 0 and 12. 

P_PROX_MATERIALE: Describes the type of polyethylene liner between the femoral-head 

and cup and is represented by a value between 0 and 12. 

P_DIST_MATERIALE: Describes secondary materials used in the stem and is represented 

by a value between 0 and 12. 

P_CAPUT_MATERIALE: Describes materials used in the head of the component and is 

represented by a value between 0 and 12. 

P_CAPUT_DIAMETER: Describes the size of the head of the component and is represented 

by a continuous value. 

 

A complete list of materials and their coding is in Appendix B. 

 

5.4 Clustering with K-means 
This section is a walkthrough of results from model-based clustering with K-means from 

Scikit-learn. Details on resulting clusters are documented in Appendix D-F. 

Produced clusters are as well compared to the original groups based on main product type 

briefly presented in Chapter 4, although these do not represent a ground truth in relation to 

any known occurrence of an outcome. 

In this section the terms «groups/original groups» are used for referring to the organization 

of device types presented in Chapter 4 and «gold cases» for group 3 with only one product 

type overall (Charnely). While «cluster x» is used frequently and distinguishes between 

resulting clusters. 
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5.4.1. Determining number of clusters 

The Elbow method was used for determining an appropriate number of clusters (Kodinariya, 

2013). This was done starting at K=2 and ending at K=10 clusters for the three sets (< 5, < 

10, < 15), with the original formatting of the data and with data standardized using Scikit-

learns module StandardScaler (Buitinck, 2013). 

 

 

 

The results show a sharp angle with data in the original formatting that is more 

distinguishable at three clusters and persistent across the < 5, < 10 and < 15 years. While 

the standardized data show a more ambiguous result, the angle appears at five and six clusters 

for data < 5 and < 10 years survival. The results from < 15 years indicate a change in 

distribution of records occurring at six clusters, however there are less distinct changes in 

convergence across the spectrum than in the smaller selections of data (Figure 5.3). 

Taking into consideration the minimal variety in product types in the dataset with only a 

handful of prosthesis products in the overall population, the area to search were set to K=2 

and K=6. 

 

 

Figure 5.3: Elbow method with regular formatted data vs standardized data, in row A) the data is not changed, in 
row B) the data is standardized. 

A) 

B) 

< 5 years < 10 years < 15 years 
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5.4.2 Survival below five years 

The overall results from cluster K=2 to K=6 with a selection of records with survival at < 5 

years prior to requiring revision surgery is in Appendix D. Here are the main findings. 

Overall population: There are 9257 records, the total number of unique materials is seven, 

with a majority steel and chrome/aluminium stems. The number per group is 325 Reflection 

UHMWPE, cup combined with a range of stems, 1526 Spectron stems combined with a range 

of cups, and 7403 Charnely type from gold records, with mean length of device survival 

before revision at 1.7, 2.1, and 2.4 years respectively. 

K = 2: The two smaller selections of 

records are made into one cluster, 

and the majority of gold records is 

alone in cluster 1. There is no unique 

division between clusters and 

gender, the characteristic in the 

overall population of a majority 

female is represented equally in both 

clusters (Figure 5.4).  

The revision rate is similar in both 

clusters, at 17.6% and 22,3% (Figure 

5.5). In survival years there is a 

slight deviation, with a mean 

survival in cluster 0 occurring 4 

months earlier than cluster 1. In 

materials the clusters appear to be 

separated by one larger difference, 

cluster 1 include almost all records 

with the same use of steel contrary to 

a wider variety observed in cluster 0.  

K = 3: Results with three cluster 

show the larger group of gold 

records is still together in one 

cluster, while clusters 1 and 2 

include a large variety. These clusters 

have a larger difference in records 

with Spectron stem and type of 

polyethylene. 

 

Figure 5.5: Distribution of records in clusters according to 
revision surgery with data < 5 years. 

. 

Figure 5.4: Distribution of records in clusters according to 
gender with data < 5 years. 

. 
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There is no significant distribution of cases among genders, though there is a clear distinction 

between cluster 2 and the others in number of records with registered ASA-class (Figure 5.6), 

as it has practically no missing values. On revisions the rate is 22%, 17%, and 15% and 

length of survival is 2.4, 2.1 and 1.4 years respectively. 

K = 4: There is barely any new variation in use of materials between the clusters, the new 

change occurs mostly within a selection of similar steel cases from the cluster of gold 

records. There is no distinct difference in gender or health status among them. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Distribution of records in clusters according to health status by The 
American Society of Anaesthesiologists (ASA) indicator with data < 5 years. 

. 

Figure 5.7: Distribution of records in clusters according to revision surgery 
with data < 5 years (4 cluster in total). 
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Cluster 0 has no revision, and consists of 5715 gold cases, and cluster 2 is comprised of 98% 

revision surgeries and has most of the remaining out of all 7400 gold records < 5 years 

device survival. The mean survival year before requiring revision in cluster 3 is 2,4 years 

with 98% revision surgeries (Figure 5.7), Clusters 0 and 1 have survival at a persistent 1,4 

and 2.1 years. 

K = 5: Some small changes, but not 

much alteration in distribution is 

observed. Cluster 4 contains 13 

records with Reflection Uncemented 

cup, with 8 revisions and 84% male 

population and a mean survival at 

2.4 years. The clusters with 1,4 and 

2,1 years are persistent with only 

minor alteration (Figure 5.8). 

K = 6: There are some larger changes 

in how the records were distributed 

related to gender with six clusters, 

clusters 2 and 5 are established without revisions and separated by gender (Figure 5.9). 

Cluster 5 with all female records and cluster 2 with 99.8% males, however, there are no other 

distinct changes in materials between these cluster and the others. 

 

 

 

 

Figure 5.8: Distribution of records in clusters according to 
revision surgery with data < 5 years (5 cluster in total). 

Figure 5.9: Distribution of records in clusters according to gender with six clusters 
and data < 5 years (six clusters in total). 
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Brief summary for < 5 years: There is some persistency throughout K=2 and K=6 in mean 

survival between clusters, and a distinct similarity in materials within clusters. Reoccurring 

mean length of survival outcomes are 1.4, 2.1 and 2.4 in years, as well as repeating cluster 

with all non-revisions. Looking at reasons for requiring primary surgery the majority resulted 

from coxarthrosis and fractures (Figure 5.10), and a dominant aseptic loosening of the stem 

as main adverse events leading to revision surgery. 

 

 

 

5.4.3 Survival below ten years 

The overall results from cluster K=2 to K=6 with a selection of cases with survival at < 10 

years prior to requiring revision surgery is in Appendix E. Here are the main findings. 

 

Overall population: There are in total 22 272 records < 10 years device survival, with mean 

survival of 4.2, 5.7, and 4.4 years organized by product types in the following order. The 

amount per group is 1302 Reflection UHMWPE cup combined with a range of stems, 3967 

Spectron stems with a range of cups, and 17003 Charnely type of gold records. 

K = 2: Minor change is observed in the way data is grouped in comparison to the data with < 

5 years device survival. The gold records are together in cluster 0, while the more disperse 

combination of products is in cluster 1. The rate of revision is 5.6 years for cluster 0 and 4.4 

years for cluster 1. There is no significant difference in revision rates with 16.1% and 16.5% 

percent of records having had re-surgery before ten years. 

Figure 5.10: Cramér's V correlation coefficient for categorical primary surgery reasons and revision 
indicator in all records with survival < 5 years. 
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K = 3: Results indicate a similar 

organization of records as seen < 5 

years. Records with the majority of 

Spectron alumina stem and a 

sharing a similarity in type of 

polyethylene is moved to the new 

cluster 2.  

The distribution of records related 

to gender is 65%, 66%, and 67% 

female, reflecting the overall 

population. Cluster 2 with 99% 

ASA-status present among its 

records is similar to the one < 5 

years. (Figure 5.12). The rate of 

revision is 16%, 15%, and 5% per cluster, with cluster 2 having a significantly earlier 

revision at 3.6 years (Figure 5.11). Cluster 0 and 1 have 4.4 and 5.7 years survival, 

respectively. 

 

 

 

 

 

 

Figure 5.11: Distribution of records in clusters according to 
revision surgery with records < 10 years. 

Figure 5.12: Distribution of records in clusters according to health status by The 
American Society of Anaesthesiologists (ASA) indicator with data < 10 years (3 
clusters in total). 

. 
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K = 4: The change seen by 

increasing the number of clusters is 

mainly due to the larger structure of 

gold records with steel prosthetic as 

it splits into clusters 1 and 2. While 

the previous clusters with a wider 

variety in product types have no 

clear alteration. Gender and ASA-

class distribution express no 

difference between previous results. 

There is a split in revision and non-

revision records among the clusters 

lacking variety in materials. Cluster 1 

has no revision and cluster 2 has 

approximately 99% revisions. The mean length of survival among revision cases is persistent 

at 5.7, 4.4 and 3.6 years, excluding the cluster with no revision surgery. The patient specific 

variables showed no clear significant correlation toward the occurrence of revision (Figure 

5.13). 

K = 5: Changes are minor, a new cluster appears with 44 records from the persistent selection 

with a mean survival of 3.6 years, now with 5.1 year in survival length and a difference in use 

of cup type and a larger number of undocumented cup material. There is no significant 

difference in the distribution of gender in the overall population except for the new cluster 2, 

with has approximately 50% split between male and female. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Cramér's V Correlation coefficient for continuous 
and categorical variables in K = 4, cluster 4 (<10 years 
survival length). 

Figure 5.14: Distribution of records in clusters according to revision surgery 
with records < 10 years and five clusters. 
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Revision rates are 0%, 5%, 40%, 18%, and 99%, there is persistent distribution of records 

among clusters seen previously, as well as the new cluster 1. Though this cluster is only a 

minor selection of records (Figure 5.14).  

K = 6, has some significant changes to the cluster with no revision mentioned above, as it 

forms cluster 0 and 4. The difference is largely in gender, with cluster 0 having only females 

and cluster 4 with 99.7% male records, and a minor difference among cases in use of alumina 

in the caput material (Figure 5.15). The rest of previously seen clusters are rather persistent, 

with only small changes in distribution.  

 

 

 

 

 

 

 

 

 

 

 

The revision rates are at 0%, 18.1%, 5.1%, 99.6%, 0% and 40% ordered from cluster one to 

six. The observed clusters have a large similarity toward previous results, with persistency in 

cluster 1, 2, 3 and 5, with a survival in years at 5.7, 3.6, 4.4, and 5.1 years, excluding clusters 

0 and 4 with no records with revision. 

Brief summary for < 10 years: Persistence in distribution of records in clusters is observed 

in < 10 years, as it was in data < 5 years. There is consistency in how clusters are 

differentiated by prosthesis product types and a largely common us of polyethylene type 

within larger clusters. In mean survival years and revision rates there is a frequent 

reoccurrence of outcomes, in year 3.6, 4.4, 5.7, and a persistent two formations with no 

revision surgeries. Examining reasons for primary surgery among clusters show a similar 

 

Figure 5.15: Distribution of records in clusters according to caput material with 
records < 10 years and six clusters. 
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phenomenon in a majority coxarthrosis, as well as a considerable amount of fractures and 

rheumatoid arthritis. This is similar to reported statistics (Furnes, 2019) indicating primary 

reason is coxarthrosis, and a decline in rheumatoid arthritis in later years. 

 

5.4.4 Survival below fifteen years 

The overall results from cluster K=2 to K=6 with a selection of cases with survival at < 15 

years prior to requiring revision surgery is in Appendix F. Here are the main findings. 

Overall population: In total there are 37406 records < 15 years survival, with mean survival 

of 5.7, 8.2, and 6 years organized by product types in the following order. The amount per 

group is 2161 Reflection UHMWPE cup combined with a range of stems, 7828 Spectron stems 

with a range of cups, and 27420 Charnely type gold cases. 

K = 2: has no clear distinct difference between clusters in gender, and a similar distribution of 

records as observed on data < 5 and < 10 years. The separation is almost completely clear 

between gold records and the smaller groups of variations (Spectron/Reflection product 

types) with only a 0.2% overlap among all three clusters. 

K = 3: There is little change 

occurring as compared to the results 

from < 5 years, they are rather 

identical. The clearest observed 

difference in materials is the use of 

highly cross-linked polyethylene 

between clusters 1 and 2 (Figure 

5.16). Cluster 0 has majority gold 

records, a similar distribution as 

seen previously. The revision rates 

are 12.7%, 14%, and 3.2%, with a 

mean survival length at 6, 8.2, and 

3.6 years, the lowest revision rate also 

corresponds to the cluster with earliest 

occurrence of revision. 

 

 

 

 

Figure 5.16: Distribution of records in clusters according to 
polyethylene liner with records < 15 years and three 

clusters. 
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K = 4: There is a similar 

distribution as seen prior, the 

clusters with a wider variety and a 

smaller number of records remain 

largely unchanged. While the 

group of gold records divides into 

two, cluster 0 and 3, distinguished 

by a clear separation in revision 

and non-revision. There is 

persistency in clusters with 3.6 and 

8.17 years survival (Figure 5.17), 

and the new cluster with only 4 

non-revision records has a mean 

survival at 6 years. 

K = 5: An interesting change in 

the larger selection of gold 

records occurs, altering the 

distribution among revision 

records seen with K=4 clusters. 

Two clusters are established, one 

with 3.7% and the other with 23% 

revision rate. There is larger 

deviation in mean survival years 

among records with a positive 

revision indicator, with 12.7 years 

in cluster 0 (Figure 5.18) and 4.7 

in cluster 3. Furthermore, there is a 

new smaller cluster originating from 

group 1 with only 70 records, 35.7% 

rate of revisions and a mean survival 

at 7 years, with a clear difference in use of polyethylene type. The only small distinction in 

distribution among gender and patient condition is the new cluster of 70 records with 48.5% 

male population. 

 

 

 

Figure 5.18: Cramér's V Correlation coefficient for K=5, with 
records from cluster 1 and 12.7 years survival (data < 15 years 
survival length).  

Figure 5.17: Cramér's V Correlation coefficient for K=4, with 
records from cluster 3 and 8.17 years device survival (data < 15 

years survival length).  
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K = 6: Increasing number of clusters 

changes the distribution according 

to gender among gold records 

without revision, a phenomenon 

observed in data with < 10 years 

device survival. Cluster 1 is 99% 

male records, while cluster 2 is all 

female, both with no revisions. The 

revision rates are 23%, 99%, 35% 

and 3.2% in clusters 0, 3, 4, and 5, 

while mean survival length before 

requiring revision surgery is 8.2, 

6, 7, and 3.6 years, excluding 

clusters with no revisions (Figure 

5.19). 

Brief summary for < 5 years: Survival outcomes in years have some reoccurring similarities 

in a few general areas, such as reasons for primary (Figure 5.20) and revision surgery. The 

least lasting cluster is persistent at 3.6 years survival, similarly observed in data < 10 years 

and < 5 years (1.4 years). Frequent mean device survival lengths are 3.6, 6, 8-8.2 years, and 

another interesting outcome only seen once was a sizeable selection of revision records at 

12.7 years, the longest mean survival observed in any cluster. 

 

 

 

Figure 5.19: Cramér's V Correlation coefficient for K=6, with 
records from cluster 4 and 6 years device survival (data < 15 
years survival length). 

Figure 5.20: Cramér's V correlation coefficient for categorical primary surgery reasons and revision 
indicator in records with survival < 15 years. 
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5.5 Clustering with Mean Shift 
This method was chosen as a means for comparing results between separate clustering 

models. Mean Shift is sensitive to any estimation of the bandwidth parameter, increasing the 

bandwidth can cause data points to merge at a higher rate, while turning it down gives less 

convergence between data points (Carreira-Perpinan, 2015).  

In this study estimating the hyperparameter was done by recording the Silhouette Coefficient 

to assess cluster structures with different bandwidth-values (Table of results for estimating 

bandwidth are in Appendix L). As a result, the parameters were set to 0.35, 0.275 and 0.25, 

in the order of < 5 years, < 10 years, and < 15 years. 

 

5.5.1 Survival below five years 

The table of results is in Appendix J. Starting at a population size of 9257 records, there is a 

much similarity in the larger clusters, 1, 2, and 3, to what was seen in Section 5.2. While 

several smaller clusters ranging from 1 to 52 members have been distinguished as their own 

formations. The difference in materials reflect a separation between steel and 

chrome/alumina, or alumina-based combinations observed previously, and a reoccurring 

cluster 3 with 37 revision cases and 1.4 years mean survival before revision. Looking toward 

gender and registered patient condition there is no distinct difference between resulting 

clusters. Although most outliers are females, they have none or only a small amount of 

revision surgeries.  

The interesting clusters are two of the smaller ones, 6 and 12. Cluster 6 has 44% revision and 

the only cluster with the material Zirconium. Cluster 12 has only 4 members and 

distinguishes itself from the rest by the average age of patients at 29 years, although there is 

no clear difference in use of materials at a lower patient age in this data.  

 

5.5.2 Survival below ten years 

The table of results is in Appendix J. Increasing the population size (22 272 records total) do 

not bring any significant changes to the distribution in accordance with use of materials. 

There is a clear separation between the steel and chrome/alumina records, and a minor degree 

of overlap between alumina and the less represented materials. There is also a persistence 

seen in cluster 5, with Zirconium, now at a revision rate of 59% and an average survival at 

6.78 years. 
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5.5.3 Survival below fifteen years 

The table of results is in Appendix K. A total of 37406 records with device survival < 15 

years has no distinct difference occurring in distribution of cases on grounds of materials 

used in the device, the same steel and chrome/alumina differentiation is dominant. Among 

the smaller clusters forming the most interesting is the persistent cluster 5, with a revision 

rate at 51% and an average survival length prior to requiring revision at 9.33 years. Cluster 5 

has the second longest mean survival in years, only surpassed by a one-record cluster, 

number 14, with 9.81 years. 

 

Brief summary for Mean Shift: Overall, there is a larger similarity towards the original 

presentation organized by product types and towards results from K-means. There is some 

difference in reasons for revisions between the two larger clusters, with aseptic loosening of 

the stem as dominant reason in clusters with majority steel records and loosening of the cup 

in clusters with a majority alumina-based device. The only reoccurring cluster of interest is 

cluster 6 in data < 5 years, and cluster 5 in data < 10 years and < 15 years survival, with a 

persistent revision rate at above 50%. It is additionally one of the formations with a longer 

average survival among revision records. Among smaller clusters there is a repeating 

phenomenon of all cases having an unknown patient condition (ASA-class), however these do 

not correspond to any higher rate of revision. 

 

5.6 Summary 
Silhouette Coefficient has the highest result on two or three clusters, however the indication 

is not a particularly strong cluster (Table 5.1) (Rousseeuw, 1987). Similar result is returned 

by the Calinski-Harabasz Index (Table 5.2), regardless, on visual inspection the K=2 and 

K=3 did not produce specifically interesting results in relation to outcomes or risk groups. 

 

 

K < 5 

YEARS 

< 10 

YEARS 

< 15 

YEARS 

K=2 0,473 0,444 0,424 

K=3 0,471 0,448 0,434 

K=4 0,314 0,347 0,359 

K=5 0,321 0,354 0,238 

K=6 0,305 0,318 0,329 

K 
< 5 

YEARS 

< 10 

YEARS 

< 15 

YEARS 

K=2 3891 9692 15812 

K=3 3523 8501 14139 

K=4 3123 7437 12147 

K=5 3190 7444 11511 

K=6 3127 7329 11991 

Table 5.1: Silhouette Coefficients for K <= 6 for data < 

5, < 10, < 15 years device survival. 
Table 5.2: Calinski-Harabasz Index for K <= 6 for 
data < 5, < 10, < 15 years device survival. 
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Investigating reasons for requiring the primary surgery gave a description of potential 

features, although the correlation between revision and primary reasons for requiring surgery 

were largely insignificant. Primary surgery reasons 1 and 4, have a barely positive coefficient 

observed across the selections of data; checking individual clusters did not indicate any 

correlation between revision and other variables. Moving up to all data < 15 years the same 

reasons have a correlation closer to zero, indicating a neglectable effect on revision in the 

larger sample of data. 

Materials showed to be divided between clusters largely on stem and caput materials, with 

clusters forming as either large and consisting of a similar blend of well represented 

materials, or smaller with a variety of less represented materials. Clustering with a 

combination of materials used in different parts of the prosthetic device did present a range of 

formations with a variety in mean survival outcomes occurring on a broader range. 

Exploratory analysis additionally led to three issues in establishing a dataset with a ground 

truth available for modelling: 

The undecided: Currently the survival year is not an absolute length of survival until revision 

unless the revision indicator is positive. Most cases do not have revisions and for those records 

the listed device survival length is an ongoing process and is not appropriate for a ground truth 

to indicate time from primary surgery to revision surgery.  

Those whom left us: The mean age at primary surgery in the dataset is 68 years, in a 

considerable number of records the patient has passed on before any problems occurred or 

moved away, and the information of whether a revision surgery happened is unknown. 

Similarity in reason: Correlation between causes and revision indicator was low, with only 

two causes for requiring primary surgery showing a slight positive result. Increasing the 

feature space in modelling by including all reasons may confuse more than it can help. The 

reasons for requiring revision surgery do render an opportunity for classifying an expected 

outcome. However, the majority in our dataset is aseptic loosening and the variety between 

records is sparse with a majority of one type of prosthetic device present. 

Clustering gave a few interesting results inspecting outcome in years of survival between 

clusters with a difference in product types and their materials, however, there were no clear 

indication of groups with a specific risk of a certain adverse event leading to re-surgery. The 

mean survival of devices in years were somewhat persistent and reoccurred across the data 

separated by the thresholds in survival year. Results indicated a difference in when revisions 

occurred for separate groups of patients, suggesting using the existent revision indicator in 

the dataset for predicting revision or no revision may not be informative. As an individual 

patient seeking to know more about the chances for revision surgery may be confused 

without additional information on time, place and reason the revision might be required. 
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  5.6.1 Features 

Feature engineering 

Engineering outcome features was done by establishing two new variables, one multiclass 

defined as < 5 year as class 0, ≥ 5 and ≤ 10 year for class 1, and > 10 years survival before 

revision surgery for class 2. In addition, another outcome feature was established by defined 

records as either ≤ 8 as class 0 and > 8 years device survival for class 1. This was done to 

add relatable context to the issue of predicting if a revision would occur (Figure 5.21 and 

Figure 5.22). It also represents the result from the exploratory analysis showing that different 

clusters varying in materials had a range of results from a few years after surgery to as late as 

twelve years after primary surgery.  

 

 

Figure 5.21: Steps taken to add a new column for representing binary class of survival outcomes. 

 

 

Figure 5.22: Extraction process to add a new column for representing multi-class of survival outcomes. 
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Another possibility is to include primary operating reasons, although the data is heavily 

skewed toward one of the reasons (coxarthrosis). All reasons above P_AKT_OP_4 are hardly 

present and often occur together, i.e. correlate with each other. To include primary surgery 

reasons further without adding to many dimensions and to avoid noise the sparsely 

represented reasons are grouped into one column (Figure 5.23). 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Steps taken to add a new column for representing reasons for primary surgery 4-10 in one column 

as they only appear in a minor selection of records.  

 

Dependent features 

For target variables there are the possibility of forecasting a length of survival before revision 

in exact survival years by regression, there is also the current binary revision indicator. 

However, for binary classification to be meaningful additional context is necessary. 

Therefore, approaching the issue of classifying an outcome after primary hip replacement 

surgery is performed through two features named ‘Term_Binary’ and ‘Term_Multi’, 

engineered as discussed above. All the three selected outcomes are listed below. 
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Selected dependent variables: 

Survyrs: Describes exact amount of years survival before revision surgery (existent). 

Term_Binary: Describes classes of outcome defined by combining the Survyrs and Revision 

variables, establishing the feature ‘Term_Binary’ with two possible outcomes dependent on amount of 

time from last surgery to revision surgery. All records with revision was assigned to one of these three 

categories (engineered). 

Term_Multi: Describes classes of revision outcome defined by combining the Survyrs and Revision 

variables, establishing the feature ‘Term_Multi’ with three possible outcomes dependent on amount of 

time from last surgery to revision surgery. All records with revisions was assigned to one of these 

three categories (engineered). 

 

Distribution of records according to categorical outcomes: 

The establishment of the new outcome features required the revision indicator to be positive, 

as a known outcome had to have occurred, this reduced the dataset to 5538 patient records. 

The distribution of records within the engineered features for describing outcome groups are 

quite evenly split between possible classes. According to the binary outcome variable it is 

split 54.4% and 45.6%, while the multinomial classes all have around 30-35% of surgery 

records (Figure 5.24). There is no clear skewed distribution of class membership with either 

the binary or multinomial outcome feature, thus the records are balanced between possible 

survival outcomes. 

 

Figure 5.24: Distribution of all revision records according to the newly engineered dependent variables. 

 

Term_Binary Term_Multi 
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6. Modelling 

The process of modelling in this thesis is done by applying existent learning algorithms that 

were suitable for the tasks. The goal is to explore perspectives in predicting an outcome made 

possible by the establishment of quality registries in hip arthroplasty. All perspectives on 

outcomes are wrapped in the context of time in this modelling exercise and is in total three 

modelling tasks. They are classifying revision before or after 8 years from primary surgery 

and classifying revision before five years, between five and ten, or after 10 years from 

primary surgery. Furthermore, as a last task predicting exact survival years was done to see 

how much the results would deviate from the exact answer.  

The modelling process applies learning algorithms from the Scikit-learn library to serve as 

baseline and for comparing results. Two of the tasks are classification problems, Logistic 

regression, Random forest classifier, and Multi-layer perceptron classifier were used for 

modelling these problem spaces as they are applicable to both binomial and multinomial 

classification (Varoquaux, 2015). Predicting the exact outcome in survival years is a 

regression task and is performed by Multiple linear regression, also from Scikit learn 

(Varoquaux, 2015). 

 

6.1 Approach 
The approach details how the process of modelling was performed through three perspectives 

on predicting a type of outcome overall in this chapter. These perspectives can be illustrated 

by asking three questions: 

 

1. Will revision surgery be necessary before or after 8 years after primary surgery? 

2. Will revision surgery be necessary before 5 years, before 10 years, or later than 10 

years after primary surgery? 

3. What might the exact length in device survival years until revision surgery be? 

 

The questions were answered through three separate attempts with varying use of features 

known in a preoperative setting, the features are organized as: 

 

• Patient specific features 

• Prosthetic device specific features 

• Primary surgery reasons specific features 
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The features are used in the manner detailed in Figure 6.1, always retaining the patient 

specific features, and combining them with either device specifications, primary surgery 

reasons, and with both. 

 

 

Figure 6.1: Process structure for modelling with different segmentations of preoperative features performed by 
separating data into different sets and testing different learning algorithms and recording the results. 

 

The process of segmenting data into selections with separate use of features is done to see 

whether manifestations of consequence or importance would emerge. 

 

6.2 Pre-processing 
 
 

Feature selection 

Feature selection was partly completed through exploring in the previous chapter, three 

features were selected as dependent variables. For a final examination of independent 

features, univariate feature selection was done to see how variables related to their respective 

outcome. As two of our outcomes concern classes and lastly a continuous outcome, two 

measures were used to find the importance of features. F-score was used to test feature for 

the regression task and Chi2-score for the classification tasks (Buitinck, 2013) (Varoquaux, 

2015). Results are presented in Figure 6.2. 
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Figure 6.2: Results from feature evaluation with SelectKBest module in Scikit-learn library with Chi2 for testing 
features for classification tasks and f-score for the regression task (Varoquaux, 2015). 

 

The influence on outcome features overall is sparse, with only a few indicating any 

significant result. There is some deviation in which features are related, the size and material 

of the caput is the most relevant with binary and multinomial outcome. In case of predicting 

the exact survival year, the age and patient condition at surgery (ASA-class) is the most 

significant. All features were included. 

 

Binary encoding 

For handling multinomial values in the input feature vector, the Scikit-learn module one-hot 

encoding (Varoquaux., 2015) was used to transform the variables on materials to a binary 

matrix representation. This is done to prevent the model from interpreting values on a scale of 

0 – 12 as ordinal. 

 

Standardization 

The Scikit-learn module StandardScaler was used to transform the feature vectors to 

standardize the continuous features, binary representations remain unaltered (Varoquaux., 

2015). 

Cross-validation 

Scikit-learns cross-validation module was used for hyperparameter tuning and validating the 

model on different sections of the data. For the first the number of folds was set to 5, for the 

latter it was set to 10 (Claesen, 2015). 
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6.3 Binary revision classification 

The binary classification was used to see if revision surgery might be expected before or after 

a threshold at eight years. It is the one out of all three with the broadest defined target, 

records have an outcome of either class 0 or 1, 0 is before and 1 is after the threshold. 

 

6.3.1 Patient and device features 

Cross-validation 

Results from cross validation with patient and prosthetic device specific features is listed in 

Table 6.1, detailing the three classifiers on binary classification over ten folds. 

 

 

 

 

 

 

 

 

 

 

The base line Logistic regression model has an overall average accuracy across ten folds at 

0.624, the Random forest model an average of 0.617, while the MLP model scores the highest 

average over all ten folds at 0.647 in accuracy. The results indicate a lack of variance in 

performance across different sections of the data, and the level of error appear to be quite high 

as the accuracy persistently stay below a score of 0.70, only peeking above in one out of ten 

folds. 

 

 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST  

MLP 

1 0.59 0.54 0.66 

2 0.55 0.52 0.57 

3 0.74 0.76 0.74 

4 0.68 0.67 0.67 

5 0.63 0.62 0.66 

6 0.62 0.61 0.64 

7 0.58 0.61 0.62 

8 0.59 0.60 0.60 

9 0.64 0.63 0.67 

10 0.62 0.61 0.64 

Table 6.1: Cross validation results table with accuracy score from the three models over ten folds. 
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Receiver Operator Curve (ROC) 

The ROC curve, and area under the curve show a similar result as seen in the overall 

accuracy, with the Logistic regression as the least effective with an area score at 0.718, and 

Random forest and MLP with a score at 0.726. The curve is not distinct in any of the three 

classifiers and show no clear difference across classifiers on patient and device features 

(Figure 6.3). 

 

 

 

6.3.2 Patient and primary surgery reason features 

Cross-validation 

Results from cross validation with patient and primary surgery reason features is listed in 

Table 6.2, detailing the three classifiers on binary classification over ten folds. 

 

 

 

 

 

 

 

 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST 

MLP 

1 0.58 0.61 0.61 

2 0.57 0.58 0.56 

3 0.72 0.71 0.73 

4 0.67 0.66 0.67 

5 0.64 0.68 0.67 

6 0.62 0.63 0.63 

7 0.58 0.64 0.64 

8 0.59 0.61 0.62 

9 0.64 0.68 0.68 

10 0.62 0.63 0.64 

Figure 6.3: Illustration of ROC curve across the three models with patient and device features. 

 

Logistic regression Random forest classifier Multi-layer perceptron 

Table 6.2: Cross validation results table with accuracy score from the three models over ten folds. 
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The Logistic regression base line has an average accuracy at 0.623 and is surpassed by the 

Random forest classifier at 0.643. The state-of-the-art MLP has an average of all ten folds of 

0.645 and surpasses the rest by an insignificant margin. The results indicate little or no 

improvement, with a similar lack of variance in performance across ten folds. The error rate 

appears to be quite high as the accuracy only peeks above 70 in one out ten folds, similar to 

was observed previously. 

 

Receiver operator curve 

The ROC curve, and area under the curve score is similar across classifiers, with the Logistic 

regression as the least effective with an area score at 0.718, MLP at 0.723 and Random 

forest classifier with an area score at 0.725. The curve has no clear distinctions on visual 

inspection, although a larger similarity in curvature between Logistic regression and MLP 

across all records (Figure 6.4). 

 

 

 

6.3.3 Patient, device and primary surgery reason features 

Cross-validation 

Results from cross validation with patient, prosthetic device, and primary surgery reason 

features is listed in Table 6.3, detailing the three classifiers on binary classification over ten 

folds with all three feature categories.  

 

 

Figure 6.4: Illustration of ROC curve across the three models with patient and primary surgery reason features. 

 

Logistic regression Random forest classifier Multi-layer perceptron 



55 
 

 

 

 

 

 

 

 

 

 

 

 

The Logistic regression base line has an average accuracy score at 0.628, surpassing the 

Random forest classifier with a score of 0.616. While the MLP classifier outperforms the 

other with an accuracy at 0.653. The results indicate no consequential improvement, with a 

similar lack of variance in performance across ten folds with increased feature space. The 

error rate appears high as the accuracy largely stay persistent within the .60-70-range across 

ten folds, only peeking above or below a < .5 accuracy. 

 

Receiver operator curve (ROC) 

The ROC curve, and area score follow a similar suit as prior, with the Logistic regression as 

the least effective with an area under the curve score at 0.715, Random forest classifier with 

a score of 0.722, and MLP surpassing the latter by an insignificant 0.002. The curve has no 

abrupt changes across the spectrum, although the Random forest classifier has a slightly more 

varied performance (Figure 6.5).  

 

 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST 

MLP 

1 0.58 0.56 0.59 

2 0.55 0.52 0.64 

3 0.75 0.75 0.73 

4 0.68 0.68 0.67 

5 0.64 0.62 0.66 

6 0.63 0.62 0.65 

7 0.59 0.60 0.63 

8 0.59 0.59 0.61 

9 0.65 0.62 0.67 

10 0.62 0.60 0.68 

Table 6.3: Cross validation results table with accuracy score from the three models over ten folds. 
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6.4 Multinomial revision classification 

The multinomial classification attempts to predict if revision can be expected before five years, 

between five and ten, or after fifteen years. This task has a narrower target than what was 

attempted in Section 6.3, increasing possible outcomes to three. The records can have an 

outcome of either class 0, 1, or 2.  

 

6.4.1 Patient and device features 

Cross-validation 

Results from cross validation with patient and prosthetic device features are listed in Table 

6.4, detailing the three classifiers on multinomial classification over ten folds.  

 

 

 

 

 

 

 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST 

MLP 

1 0.41 0.40 0.43 

2 0.51 0.51 0.52 

3 0.55 0.56 0.53 

4 0.47 0.48 0.47 

5 0.49 0.48 0.50 

6 0.46 0.47 0.46 

7 0.42 0.44 0.44 

8 0.43 0.45 0.45 

9 0.47 0.47 0.47 

10 0.47 0.47 0.48 

Figure 6.5: Illustration of ROC curve across the three algorithms with patient, device and primary surgery reason 
features. 

 

Random forest classifier Logistic regression Multi-layer perceptron 

Table 6.4: Cross validation results table with accuracy score from the three models over ten folds. 
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The Logistic regression classifier has an average accuracy at 0.468, a considerable drop 

from the performance seen overall in binary classification. Random forest classifier scores 

0.43, while MLP outperforms the rest with 0.475. Overall, the models have no larger 

fluctuation in performance, and stay somewhat stable within 0.4-0.5, only peeking above on 

similar folds as the others. The results indicate a lack of variance in performance with only 

small changes in generalizing model performance across different sections of the data. The 

level of error appears to be high as the accuracy persistently stays below .50. 

 

Receiver operator curve 

The ROC curve, and area score is measured as a one-vs-all, indicating a slightly more 

optimistic representation. Results are similar across the board, the Logistic regression getting 

class 0 and 2 wrong, and more correct classifications of class 1. Overall, the micro-/macro-

average show MLP performing better than the rest by a minor 0.01. The classifications are 

skewed toward class 0 and 2 (Figure 6.6). 

 

 

 

 

 

 

 

 

 

Figure 6.6: Illustration of ROC curve across the three models with patient and device features. 

 

Logistic regression Random forest classifier Multi-layer perceptron 
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6.4.2 Patient and primary surgery reason features 

Cross-validation 

Cross validation with patient and primary surgery reason features is listed in Table 6.5, 

across the three classifiers on multinomial classification. 

 

 

 

 

 

 

 

 

 

 

Starting from left, the Logistic regression still scores less overall, averaging all results to 

0,472, followed by MLP also on 0.478, and Random forest having an accuracy at 4.8, 

performing slightly better than the others. Although, overall the scores are low, the results 

indicate low variance with only minor alteration in performance throughout ten folds. Similar 

to previous results, the error appears to be high and stable as the accuracy is persistently low 

across all folds. 

 

Receiver Operator Curve (ROC) 

The ROC curve with surgery reason details does not cause any apparent consequential 

changes on performance. The Logistic regression scores best on classifying class 1, while 

Random forest classifier on inspecting the curve does worse than the rest in class 1. Overall, 

the micro-/macro-average scores indicate no clear difference in performance between the 

classifiers as the results are identical (Figure 6.7). 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST 

MLP 

1 0.43 0.42 0.44 

2 0.52 0.54 0.53 

3 0.55 0.55 0.54 

4 0.47 0.47 0.45 

5 0.49 0.48 0.50 

6 0.46 0.48 0.47 

7 0.43 0.45 0.44 

8 0.44 0.46 0.46 

9 0.47 0.47 0.47 

10 0.46 0.48 0.48 

Table 6.5: Cross validation results table with accuracy score from the three models over ten folds. 
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6.4.3 Patient, device and primary surgery reason features 

Cross-validation 

Results from cross validation with patient, prosthetic device and primary surgery reason 

features are listed in Table 6.6, with the three classifiers on multinomial classification. All 

selected features were used here. 

 

 

 

 

 

 

 

 

 

 

 

 

FOLD LOGISTIC 

REGRESSION 

RANDOM 

FOREST 

MLP 

1 0.42 0.38 0.43 

2 0.52 0.51 0.52 

3 0.55 0.58 0.54 

4 0.46 0.46 0.45 

5 0.49 0.47 0.49 

6 0.46 0.47 0.46 

7 0.44 0.44 0.44 

8 0.44 0.45 0.46 

9 0.47 0.47 0.47 

10 0.46 0.47 0.48 

Figure 6.7: Illustration of ROC curve across the three models with patient and primary surgery reason 
features. 

 

Logistic regression Random forest classifier Multi-layer perceptron 

Table 6.6: Cross validation results table with accuracy score from the three algorithms over ten folds. 
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Increasing the number of features to include all selected categories and the scores are still 

similar to previous sections, with no observed consequential changes in performance. The 

overall average accuracy is between 0.47-0.48 on all classifiers, with no signs of larger 

variance in results, though Random forest varies most in accuracy over ten folds. The results 

indicate low variance with only minor change in accuracy throughout ten folds. Furthermore, 

on increasing number of features the error rate is still high and stable as the accuracy is 

persistently low, although, there is a slight (rather insignificant) improvement in overall 

accuracy. 

 

Receiver Operator Curve (ROC) 

Results from the ROC curve show some decrease in performance in the Random forest 

classifier, specifically in classifying class 1. The results from Logistic regression and MLP do 

not show any noticeable change in performance. The micro-/macro-average scores indicate 

no changes of importance, MLP exceeds the rest by a small margin, a phenomenon observed 

previously (Figure 6.8). 

 

 

 

 

 

 

 

Figure 6.8: Illustration of ROC curve across the three algorithms with patient, device and primary surgery reason 
features. 

 

Logistic regression Random forest classifier Multi-layer perceptron 
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6.5 Predicting exact device survival year 

The regression task of predicting the length of survival of a prosthetic device until revision 

surgery is the narrowest of the three target outcomes, a much more specific result than what 

was done in classification. Although a target with a much smaller chance of a correct outcome, 

it provides valuable insight into how the predicted value deviated from the truth, and a clearer 

picture on how it responds to larger variations in device survival length. 

 

6.5.1 Patient and device features 

Cross-validation 

Cross validation with patient and prosthetic device features is listed in Table 6.7, listing four 

metrics describing the amount of error and variance, and overall performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show a larger occurring rate of error between the predicted and known ground 

truth, there is some stability in the magnitude of total errors across ten folds, though there is 

also range of larger fluctuations using the device specific data as the only additional features. 

Predicted outcomes have an average error below five years deviation from the truth, although 

the error in size is not the largest in most predictions but the number of errors is many in 

quantity. Overall performance by the R2-score indicates an unreliable model with almost no 

chance of predicting the exact survival length. 

 

FOLD R2 MAE MSE RMSE 

1 -1.417 646 2.7 3.7 

2 0.008 3.4 17.3 2.9 

3 -8.453 7001 2.6 4.3 

4 0.134 4.6 30.7 4 

5 0.151 4.4 29.3 4 

6 0.14 4.3 28.7 3.9 

7 0.121 4.7 34.4 4.2 

8 0.119 4.6 31.1 4 

9 0.145 4.7 33 4.2 

10 0.151 4.6 33.2 3.8 

Table 6.7: Cross validation results table with regression metrics from the three algorithms over ten folds. 
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Visual inspection of results from Figure 6.9, showed the model largely remain inside a range 

between three and thirteen years, seldom predicting above thirteen years and below three. 

The model performs poorly on records with a significant deviation from the average survival 

length when using the patient and device features.  
 

 

6.5.2 Patient and surgery reason features 

Cross-validation 

Cross validation with patient and primary surgery features is listed in Table 6.8, describing 

the amount of error and variance, and overall performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOLD R2 MAE MSE RMSE 

1 0.13 3.3 16.9 3.2 

2 0.038 3.3 16.8 2.9 

3 0.112 4.2 27.7 3.7 

4 0.134 4.5 30.7 4 

5 0.157 4.4 29.1 3.9 

6 0.14 4.3 28.8 3.8 

7 0.128 4.7 34.1 4.2 

8 0.117 4.6 31.6 4.1 

9 0.148 4.8 32.9 4.3 

10 0.146 4.6 33.4 3.9 

Table 6.8: Cross validation results table with regression metrics from the three models over ten folds. 

 

Figure 6.9: Illustration of a selection of predictions vs the known true outcome in survival years with 
patient and device materials features. 
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The mean square error indicates a larger rate of errors occurring, and a low rate of variance in 

number of errors across separate test sets. Overall specificity is quite poor, although the score 

is improved slightly by changing from device materials to primary surgery reasons as the 

additional features. The fluctuations in results are minimal, within a difference at +/-1 in 

total summed error and root mean square error across the spectrum of testing data.  

 

 

 

Visualizing predictive results are in Figure 6.10. A similar phenomenon repeats itself as the 

mean square error rate is below five years in average size, and the larger errors appear at a 

decent gap in distribution while most frequent errors are smaller in size. Generally, the model 

is poor in performance and still has large amount of errors and produces results that are not 

varying much in predicted values. 

 

 

6.5.3 Patient, device and surgery reasons features 

Cross-validation 

Cross validation with patient, device, and primary surgery features are listed in Table 6.9, 

describing the amount of error and variance, and overall performance.  

 

 

 

Figure 6.10: Illustration of a selection of predictions vs the known true outcome in survival years with 
patient and primary surgery reason features. 
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Results reveal no significant changes in model performance by increasing the feature space to 

include all categories of selected features. This increases the number of features significantly 

but does not change performance of the model in any of the aspects of overall error rate, root 

mean size of errors, and frequency of larger deviations. The change is barely noticeable, 

although there are more errors and less variance by increasing number of features, there are 

no distinct changes appearing to be of consequence or importance. 

 

 

Visualizing gave a similar illustration of performance seen in the two previous sections 

(Figure 6.11), there are no clear changes. The model struggles to grasp errors with a longer 

than average survival length (above 8-10 years deviation from the mean) with no real chance 

of getting within a short range of the ground truth. On smaller errors the model can get 

somewhat close to the truth, however the mean errors in predictions are still approximately 

four years. 

FOLD R2 MAE MSE RMSE 

1 0.012 3.6 19.2 3.4 

2 0.02 3.4 17.2 3.1 

3 0.138 4.1 27.1 3.7 

4 0.136 4.6 30.1 4 

5 0.161 4.4 29.1 3.9 

6 0.131 4.7 29 3.9 

7 0.128 4.6 34 4.2 

8 0.125 4.6 31.3 4.1 

9 0.168 4.9 32.8 4.3 

10 0.149 4.6 33.4 3.8 

Table 6.9: Cross validation results table with regression metrics from the three models over ten folds. 

 

Figure 6.11: Illustration of a selection of predictions vs the known true outcome in survival years with 
patient, device materials and primary surgery reason features. 

 



65 
 

 

7. Results 

The chapter is a broader reflection on the results achieves in the last chapter and summarizes 

the exploration and its aftereffects. Further, a review of the results from modelling the bi- and 

multinomial classification tasks, and a brief look at the prediction of exact survival year of a 

prosthetic device. 

 

 

7.1 Exploration 

In this thesis data exploration was done to gain a sense of situational awareness by 

uncovering more about what it could describe about the surgery records, and the differences 

and similarities between the groups of arthroplasty patients. The goal of the exploratory data 

analysis was to locate perspectives on predictive modelling, therein potential dependent and 

independent variables as outcome and explanatory features. Several aspects of the data were 

examined. Regarding missing values most columns were present, although among important 

variables such as patient health status and caput diameter there was a majority missing 

values. In depicting missing values, the relationship between presence of positive values and 

neutral 0, registered absence of a value, was briefly examined prior to clustering the data. In 

reasons for requiring primary surgery the majority was one type, i.e. coxarthrosis, although 

the reasons are described dichotomously and not restricted to only one at the time. The 

presence of other reasons was very low. The variables on materials used have a wider variety 

in certain device parts, there is however a minority in variety as one of the product types was 

represented at a much larger scale than the others (gold records).  

Clustering the data gave insight into the larger similarities and the minor differences in the 

case of this dataset, in age the records were largely similar across different clusters, as well as 

by product usage. Considering gender and reoccurring survival outcomes from clusters there 

was no clear indication of any group exposed to certain risks. The records are approximately 

two thirds female majority. Visualising clusters by revision indicated there is no 

disproportionate distribution of records according to gender, as this characteristic is a 

repeating phenomenon in produced clusters. There is minimal variety in the dataset, even 

though there are several materials represented, the majority of prosthetic devices fall within a 

few combinations of these materials 

  

Outcomes 

The variables suitable for outcomes were the length of survival of the device and an indicator 

for revision surgery. Most records had no occurrence of revision surgery, meaning the device 

was still functioning. The survival year was then difficult to interpret as a definite answer to  
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how long a device survived until revision, as no revision surgery has been required. There are 

interesting outcomes among variables in the dataset, reasons for requiring revision surgery 

and the separate adverse events could have been approached as a categorical classification if 

combined with the revision indicator. However, in this selection of data the variation in 

adverse events is sparse, most are largely aseptic loosening of the stem and/or cup, and no 

signs were seen among groupings of records indicating a larger presence of any one type of 

reason for revision.  

 

Target features 

In Section 5.4. two dependent features for classifying an individual patient outcome into a 

class based on how long the expected survival length of the prosthetic device would be were 

engineered. The first feature detailed a class distribution based on a threshold at eight years 

by labelling records with a known revision status as a binary classification problem. The 

basis for the classification is the recorded length in years between primary and revision 

surgery. The second detailed a three-way split, distributing records into a class by two 

thresholds at five years and ten years. Surgery cases of patients with a known length below 

five years became one class, between five and ten year became the second class, and above 

ten years became the third class. By labelling records with a known revision within any of 

these classes the number of records was reduced significantly. This excluded all records with 

no positive indication of revision surgery, thereby removing patients deceased before 

anything went wrong and those where the outcome in years is still unknown due the patient 

moving away. As a last prediction the continuous feature detailing exact length of survival in 

years was included by reducing the dataset to only records where a revisions surgery was 

known to have occurred after the given length in device survival. This served as an 

interesting look towards how much a prediction would deviate in number of years as the 

dependent feature differed from the two classification tasks and is given years, thus making it 

is interpretable to most.  

 

 

7.2 Modelling 

Distribution of records among the new features indicated the population was not largely 

skewed toward one or the other class (Section 5.6.1):  

• According to the binary revision variable before or after eight years, the population 

was split to 54.4% and 45,6%, suggesting the majority of those who have revision 

surgery among this data have it before eight years passed.  

• According to the three-way split multinomial variable the population was distributed 

with 35,6% with revision before five years, 30,4% between five and ten years, and 

33,9% after ten years. 
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Binary classification 

The binary classification considered whether a patient would require revision surgery and 

replacement of a prosthetic device before or after eight years from primary surgery. The 

features used were based on information available prior the actual surgery, and contained 

variables on the patient, unique materials in the device, and the reasons for requiring the 

implant, i.e. types of arthritis and fractures. The distribution of revision records by the known 

outcomes showed nearly equal distribution between before or after eight years. This is 

comparable in distribution to the predicted result from Chapter 6 which had a similar 

distribution in the Multi-layer perceptron classifier with 53.5% below and 46.5% above eight 

years (Figure 7.1).  

 

 

 

 

 

Although the distribution is similar, the accuracy score was only between 60-70% and a 

minority of predictions were either false positive or false negative (Figure 7.2). The MPL 

classifier was slightly better to other models, however it was only by a small margin. The 

results from the confusion matrix showed MLP was slight better at correctly predicting 

occurrence of revisions before eight years, and 

slightly worse on predicting revision after eight 

years. The Random forest classifier had a correct 

classification rate of class 0 and 1 at 43.7% and 

23.3%, respectively. Moreover, 12% and 20.2% in 

incorrect classification for class 0 and 1, respectively. 

The best model was MLP, with a sensitivity at 0.72 

and a specificity at 0.66, however the random forest 

classifier was not far behind with sensitivity and 

specificity at 0.77 and 0.53, respectively. 

 

 

 

 

 

 

 

Logistic regression classifier Random forest classifier MLP Classifier 

Figure 7.2: Visualization of confusion matrix from 
MLP with all data.  

Figure 7.1: Visualization of class distribution by each model with binary target and all features 
(patient, prosthetic device and surgery reasons features). 

         

                        MLP Classifier 



68 
 

 

Multinomial classification 

The multinomial classification tried to classify whether a patient would require revision 

surgery and replacement of a prosthetic device before five years, between five and ten years, 

or after ten years from primary surgery. The distribution of revision cases by the known true 

outcome showed a close to equal distribution between the three classes, however, the 

predicted results from Chapter 6 had a different distribution. The Random forest classifier 

and Logistic regression classifier had a similar distribution of classifications between them, 

with only a small minority of records expected to require revision surgery after five years and 

before ten years from primary surgery (Figure 7.3). The MLP classifier have more class 1 

(between five and ten years) outcomes as a result, but the accuracy was not found to be 

consequentially better. 

 

 

 

The sensitivity and specificity of the multinomial classification models were calculated as one-

vs-the rest for each possible outcome class. The MLP classifier had a sensitivity and specificity 

at 0.71 and 0.55 on classifying class 0. Class 1 had a sensitivity at 0.77 and specificity 0.25, 

while class 3 resulted in 0.69 and 0.53, respectively. The sensitivity measures how well the 

models perform at detecting an event of a certain class (Geron, 2017, p.91), meaning the models 

are able to correctly classify approximately 70% of records of class 1 correctly. However, the 

specificity measures how precise the model classifies a certain outcome class (Geron, 2017, p. 

91). Meaning considering the results above the model is not very precise in correctly classifying 

any of the three classes, with most correct classifications being of class 0 (below 5 years device 

survival). 

 

A phenomenon observed across all three classes was a specificity lower than the sensitivity, 

with class 1 at 0.25 specificity indicating a larger selection of incorrect classifications of 

between five- and ten-years device survival before revision.   

 

 

Random forest classifier MLP Classifier 

Figure 7.3: Visualization of class distribution with three classes by two models, random forest and MLP, and 

all selected features (patient, prosthetic device and surgery reasons features). 
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The Random forest classifier had a sensitivity and specificity for class 0 at 0.63 and 0.67, class 

1 at 0.93 and 0.09, and class 2 at 0.66 and 0.66. In contrast to the result from MLP, the scores 

are more evenly distributed between the model being good at predicting a certain class and 

precision for said classifications. In classifying class 1 the model only assigns 7.2% of records 

as expected to have a device survival between five and ten years before revision. On these 

records the specificity score was very low with only 9%, showing a less balanced result than 

the MLP classifier. The Logistic regression classifier and Random forest classifier has largely 

similar results. 

 

Predicting exact survival year 

The task of predicting the exact survival years of a prosthetic device after primary surgery 

was done by multiple linear regression and through a similar process as with the 

classification tasks. It was done as three separate exercises, always retaining the patient 

specific features, and combining them with device materials features, primary surgery  

 

reason features, or both selections of features. The results showed that an exact survival year 

was a difficult target to predict, and the model could not get close to the know ground truth in 

most cases. Examining the results with the algorithm trained on separate selections of 

features display a similar performance with little differences observed in predicted outcomes 

regardless of the explanatory features (Figure 7.4). 

 

 
 

 

The use of different sets of features did not influence the amount of error and variance 

observed. The Mean Absolute Error was at approximately four years across the spectrum, 

with only minor deviation seen between model performances when changing features.  

 

Figure 7.4: Illustration of a selection of predictions from multiple linear regression, employing different sets 
of features. 
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Similar effect was seen in the Root Mean Square Error, with most results from tenfold cross 

validation giving an error at approximately four years. Across the ten folds the model gave 

results with little variation in performance by training and testing on different sections of the 

dataset, meaning their performance experienced little fluctuation in terms of amount of error.  
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8. Discussion 

The research is discussed in this section, starting with the employed methods and what they 

yielded. This is followed by as brief look at variables ability to predict an outcome, and 

lastly, the research questions are answered. 

 

 

8.1 Methodology and methods 

This section discusses the Design Science and how it assisted in guiding the research, the 

essential nature of data exploration in this thesis, and the machine learning methods 

employed to perform predictive modelling. 

 

Design Science Research 

In this project Design Science was adopted as a fundamental methodology in guiding and 

research and development in this thesis. The Design Science research methodology gave a 

framework on principals of relevance and rigor in design of an artefact in a research context 

(Section 3.1). In general, the artefact is the establishment and testing of machine learning 

models for individual outcome prediction in hip arthroplasty. It consists of two parts; the first 

part of the artefact are the dependent variables selected and engineered from the dataset to 

make an attempt at prediction feasible (Chapter 5). The second part is the training and testing 

of predictive solutions by implementing learning algorithm from Scikit-learn (Chapter 6).  

The research questions were introduced in Section 1.2 and provided crucial direction on how 

to move forward in exploring the dataset and modelling possible outcome solutions. Having 

established the goal as prediction of individual patient outcome and a search for the 

prerequisites to do so helped navigate in decision-making throughout the process. First two 

questions are concerned with establishing the possibility of implementing the predictive 

models based on identifying available features and their potential as an outcome. The third, 

based on the results from the first research questions, then attempts to use the findings to 

implement prediction models for hip arthroplasty. This conduct of research was helped by 

follow Design Science providing a structure stopping the work from going either above or 

below the intended range, in purpose of the research and development. Further, it did as well 

help in remaining focused on the research aspects in the establishment of an artefact, 

promoting inclusion of relevant research and the purpose of facilitating knowledge. 
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Exploration 

The exploratory data analysis was performed to address the first part of the artefact by 

finding and establishing the outcome features necessary to perform a modelling task. At the 

beginning of the thesis not much was known about the dataset except the distribution 

according to different product types (Section 4.2). Possibilities for testing individual outcome 

predictions within this dataset was unknown information at the time and had to be 

discovered. This is where the exploration played a crucial role as it firstly brought forward 

contextual knowledge about the data itself, i.e. the number of records and how these records 

are represented by different variables explaining the similarities and differences between 

them (Chapter 5). In light of the research questions it was necessary to figure out if some 

dependent variable existed which could be an interesting option for predictions. As well as, if 

the dataset had the variables necessary to make new dependent features by combining 

existing ones. Furthermore, it was of interest to locate independent variables which could be 

used to explain the occurrence of a specific outcome. 

 

The exploration phase was rather invaluable in assessing these variables within the data as 

dependent and independent features. Specifically, for this study there was a necessity for 

engineering new dependent features as outcomes to model towards, as the data was sparse in 

variables describing outcome scenarios for individual patients. The occurrence of an adverse 

event, where revision surgery and implanting a new device would be required, was found to 

be the one type of outcome. It also showed this type of outcome could be approached from 

different perspectives, one is the classification of which adverse event will occur and the 

other is to approach the issue in a time related sense. The first would predict what type of 

reason for revision might be, while the latter focuses on the time a revision surgery might 

become necessary. The first task was found to be more difficult modelling exercise as the 

data was heavily skewed toward aseptic loosening, similarly it had a majority one type of 

prosthetic device leaving little variation in the dataset on reasons for requiring revision 

surgery. The latter, focusing on the time-based nature of the occurrence of revisions surgery, 

was found to be a much more plausible route as the dataset had a wider variety in when 

revision occurred in contrast to how it occurred. Therefore, in predicting an outcome a result 

contextualized by length of survival became the reason for selecting and engineering 

dependent outcome features. This led to three dependent features being chosen to proceed 

with in modelling, the exact survival years were selected as one outcome by including 

records where the listed years detailed an actual length until revision. While two more 

dependent features were selected by engineering new categorical outcome features. The 

availability of the exact survival years and an indicator for occurrence of revision surgery 

made it possible to engineer outcome classes based on either below or above a certain device 

survival length in years. The revision indicator was of major importance as it made the 

separation of records possible due to a known true outcome. Therefore, the exploration gave 

an opportunity to establish a collection of records suitable for learning an algorithm to predict 

and to evaluate the results by comparing predicted and true values. 
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Predictive models 

This thesis utilized a selection of machine learning models for supervised learning (Section 

3.2.4), as a means for predicting both discrete dependent variables by assigning records to a 

class and for predicting toward a continuous dependent variable. The classification 

predictions towards a discrete target were made possible by the engineering of two variables 

as a result from the exploration, one binary classification and one multinomial variable 

(Section 5.6.1).  

 

Binary classification: The results from binary classification showed an accuracy of 

prediction around 60-70% and were the one of the three predictive modelling tasks with the 

highest score (Section 6.3). The prediction was done with three different uses of explanatory 

features; once with only patient and device specific features, once with patient and primary 

surgery reason specific features, and one with patient and both device and primary surgery 

reason features. There were minimal differences observed by using different features, the 

overall accuracy of the classifications did not improve significantly by changing features 

(Chapter 6). The results from using patient and primary surgery reasons were slightly above 

the results from using patient and device features, while increasing the feature space to all 

selected features did not show consequential change in performance. Different features were 

tested on all three learning algorithms adopted in this thesis, a reoccurring phenomenon was 

the observation of a slight improvement in the multi-layer perceptron classifier compared to 

the logistic regression and random forest classifiers. 

 

Multinomial classification: The results from the multinomial classification indicated that the 

model trained on the dataset used in this thesis did not provide the necessary information for 

mapping a surgery record to the correct outcome class among multiple options. The accuracy 

score achieved by the models through testing generalization with cross validation showed the 

models did not score any better than what a random guess would, only reaching above 50% 

accuracy on a selection of folds (Section 6.4). The score below 50% suggests the features 

available in the dataset may not provide the necessary explanatory power to achieve a 

classification of record according to the multinomial classes. Classification was done with 

separate use of features, but no consequential change was seen by altering the features the 

models were trained on (Section 6.4). Similar to the results from the binary classification, the 

Multi-layer perceptron classifiers performed better than the other models provided by the 

Scikit-learn library, although the changes in performance were barely noticeable between all 

classifiers. 

 

Predicting exact device survival length: The prediction of an exact survival in years was 

the last task and differed from the tasks discussed above as the dependent outcome feature 

were continuous (Section 6.5). The results showed that models trained in the data did not 

perform well enough to predict the exact length of survival, and in most cases the predicted 

values were several years from the known ground truth. 

 



74 
 

 

Overall performance of the R2 score strongly indicated no reliability in performance, and little 

presence of variation in predicted outcomes were observed from testing ability to generalize. 

Several regression metrics were used to assess predictions from this task and provided 

valuable insight into the amount of error and variation in model performance. Looking at the 

differences between scores based on which features were used indicated the primary surgery 

reasons features would give a slightly improved result over device features. While increasing 

the feature space to include both device and primary surgery reasons did not further increase 

the performance with this collection of records (Section 6.5) 

 

8.2 Explanatory power 

The exploration indicated no presence of a correlation between revision indicator and other 

variables, going into individual clusters and examining record showed the same tendency of 

practically no correlations. Although, there are larger difference in device usage and 

materials, the dataset is largely consisting of one similar type of device. The distribution of 

records according to primary reasons for surgery are also predominantly of one kind. On 

variables with specific detailed measurements there was a sparsity, with the caput diameter as 

the only one detailing a difference in device specifications. Different types of wear on bone 

and the device have been suggested to be caused by contrasts in size (Iyer, 2013, p. 328), and 

more details on device specification could be a suggestion for increasing performance. 

However, the correlations were not found to be significant between revision indicator and 

other variables assessed during exploration, presence of causations may still be present by not 

identifiably in this data.  

 

The modelling in Chapter 6 were presented starting with the binary outcome first, as it has 

the highest probability of a correct classification with only two possibilities. The highest 

AUC score achieved was by the multi-layer perceptron classifier at 0.74. The multinomial 

classification with three classes had a much lower AUC score, suggesting the data could not 

explain the occurrence of revision surgery to any approvable degree of certainty based on the 

used features. Investigating results in Chapter 7 showed the distribution of records between 

classes varied more between predictions and the truth in multinomial classification than 

observed in binary classification. The AUC were calculated one-vs-the rest, also indicating a 

disproportionate difference between results on predicted classes (Section 7.2). The accuracy 

from testing on different sections of the data showed majority of a ten-fold cross validation 

below %50 in accuracy and stability in performance, suggesting the model might not have 

learned what it need to make correct decisions on the subject. The last individual outcome 

prediction was the exact survival year of a prosthetic device until a patient is likely to need 

revision surgery, which aslo gave a similar result, with larger presence of errors and a stable 

performance. The results suggest, apart from an above .70 AUC on the binary classification, 

that this dataset does not contain the adequate information to correctly predict more complex 

outcomes in number of classes or more precise and detailed in nature (Section 7.2). 
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The evaluation of results was carried out by metrics provided by the Scikit-learn library, as it 

provides functionality for evaluating results for the machine learning method implemented to 

explore and predict. 
 

 

8.3 Challenges and limitations 

This section discusses the challenges in development during this research and limitations 

potentially impacting the results. 

 

Challenges in development 

The development in this thesis concerned exploring the data, and training and evaluating 

predictive models. The larger difficulties experienced were related to exploring the dataset 

and visualising the data in a convenient and informative way. As well as, dealing with the 

discovery of new information and having to respond to these changes in an efficient manner. 

For developing the agile methodology Crystal clear was chosen, which in light of dedaling 

with the uncovering the unknown, provided an excellent structure for manoeuvring in 

response to new knowledge and navigating a situation characterized by novice developer 

experience. 

 

Limitations 

The research has a set of limitation which should be considered. The dataset only has a 

smaller number of revision records left after removing all without revision as a known ground 

truth, 5538 records in total. There was also observed a skewed distribution according to 

prosthetic device product types, with one product used in almost all cases. This leaves only a 

smaller selection of records representing a larger variety in products and materials used in 

these devices. The records have a larger similarity in reasons for why they required the 

primary surgery in the first place, with a majority one reason and the others sparsely 

represented. Overall, there was very little variety in the data. 

 
 

8.4 Answering research questions 

This section addresses the research questions presented in Section 1.2. There were three 

questions in the focal point of this thesis, and they are answered below. 

 

Q1: Which variables in the dataset are suitable as dependent outcome features in this 

excerpt from a quality registry on hip arthroplasty? 

 

The dataset had overall only one variable denoting a specific outcome, this being the revision 

indicator. It had as well several descriptive variables detailing more about how and when a 

revision surgery occurred. The variables describing length of survival since a prosthetic  
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device was implanted was one of the variables detailing a specific measurement describing an 

outcome if combined with a positive revision indicator (Chapter 5).  

 

Combining these variables gives the opportunity to engineer dependent outcome features to 

organize records by different classes based on how long the device lasted before revision. In 

this thesis two dependent features were established by this approach, one dependent outcome 

variable for binary classification and one for a multinomial classification (Section 5.6.1). The 

dataset additionally has variables describing why a revision surgery was necessary, 

suggesting a possibility for combining revision indicator and types of adverse event (Section 

5.6). This could be used for engineering categorical features describing reasons for revision, 

providing clinicians and patients with the knowledge about what the cause for concern might 

be in the context of their individual situation. 

 

Q2: Which variables in the dataset have potential as independent features for 

explaining an outcome after hip replacement surgery? 

 

The dataset has a number of variables, but in this dataset no clear correlation between a 

positive revision indicator and independent features was located. Rather, the opposite was 

observed, variables available for explaining why a revision occurs indicated that there were 

no significant association present (Section 5.4.4). Several features were tested for how much 

they related to the engineered dependent outcome variables and to the exact survival year. 

However, only a minor selection of variables indicated to have an impact (Section 6.2). These 

were the age of the patient, the size of the caput component on the device, and the material of 

the caput. The rest of the variables were indicated to have little or no impact based on the 

combination of records in the data (Chapter 6). 

 

Q3: Can the dataset and a selection of learning algorithms give reliable results in 

predicting an individual patient outcome? 

 

In answering this question three separate perspectives were taken to test if a reliable result 

could be achieved in predicting an individual patient outcome. Furthermore, this was done by 

rotating the use of features to see if any consequential change would be observed by altering 

some of the independent features. The results showed that the more complex task of 

classifying records among more than two classes were not reliable, with the multinomial 

classification producing largely inaccurate results (Section 6.4). Furthermore, it showed to 

produce a skewed distribution of class membership by classifying a majority of records as 

belonging to either two of the three classes (Section 7.2). Suggesting the explanatory power 

in independent feature are not enough for producing a feasible multinomial classification by 

utilizing this dataset.   
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Similarly, the preciseness of predicting exact survival length of a prosthetic device before a 

revision surgery would be required, proved to be an ambitious task based on the available 

independent features (Section 6.4). The model would deviate with several years from the 

known truth, the results also showed a larger amount of occurring errors (Section 6.4).  

 

The binary classification was the least complex of the three tasks, with only two possible 

outcome classes. The results were more positive than what was observed in the tasks 

discussed above. Looking at performance the model scored an AUC score of above 0.70 

(Section 6.3), suggesting the features may have some explanatory power. However, the 

overall results from modelling indicate that to achieve a more reliable result in predicting an 

individual patient outcome there is a necessity for supplementary data to convey the 

underlying relationships to the learning algorithm.  
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9. Conclusion and future work 

This thesis demonstrated the exploration for possible dependent outcome features in a dataset 

describing hip arthroplasty records. Furthermore, several predictive models were constructed 

based on the findings of the exploration. The exploration led to the engineering of two 

outcome features, and a selection of in total three dependent features. Permitting the training 

and testing of the three separate perspectives on predictive modelling in hip arthroplasty. 

 

Conclusion 
Machine learning was performed in two stages, one in exploration and the other in prediction 

in order to generate models for individual patient outcome in hip arthroplasty. The clinically 

interesting question is to understand reasons for revisions and predict whether a patient is at 

risk of a certain outcome. The achieved results showed how the data was structured and how 

new features could be engineered to suggest new predictive solutions and provide better 

performing models. In the best case the AUC score was 0.75, which was the Multi-layer 

perceptron classifier for binary classification. All other perspectives on predicting an 

outcome showed to give results inappropriate for practical use, as the models attempting at 

classifying with multiple possible outcomes performed unsatisfactory. Even though the 

combination of methods appears efficient in the binary classification, the limitations of the 

data could not be overcome in case of increasing complexity of predicted outcome. This 

would suggest that for better predictions more variety in data could possibly improve 

performance. There is also the case that more specific details on product specifications could 

help distinguish between records based on outcomes. This performance is something which 

supplementary data on a person’s physical status could improve by giving more context about 

the patient. 

 

Features 

The results from modelling showed no clear improvement in predicting with models trained 

on different features, as each perspective on predicting an outcome was tested three times 

with variation in independent features in the dataset. There was a slight improvement on 

using the primary surgery reasons as additional features in comparison to the features 

describing a prosthetic device. Increasing the feature space to include all independent features 

did not cause any improvement in the performance of models (Sections 6.3-6.5). This was a 

reoccurring phenomenon in both the two classification tasks and in the linear regression task. 
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Learning algorithms 

The thesis used in total three machine learning methods for establishing predictive models. 

These were Logistic regression, Random forest classifier, and Multi-layer perceptron. In both 

the classification tasks and the prediction of exact survival year, the Multi-layer perceptron 

had the best performance. The other two algorithms performed slightly poorer, though not by 

much. 

 

Future work 
The section briefly discusses the potential for future work following the results achieved in 

this thesis. There are several aspects which could be beneficial for improving results, 

including larger quantities of data, as well as more detailed data. Further analysis of 

correlation between interesting variables within the national registry and investigation of 

causation for revision surgery could be beneficial. This regards the selection and engineering 

of more optimal features to train an algorithm to understand the relationships present in hip 

arthroplasty registry.  

 

There is the interesting activity of piecing together the models and methods into an 

instantiation, or a full software solution. Making it suitable for performing goal-directed 

actions within its intended environment and for evaluating the real-world usage of predictive 

decision aids in hip arthroplasty. 

 

Expansive data analysis 

In conducting further research on the subject of building and evaluating individual patient 

outcome prediction models for hip arthroplasty, a more detailed and expansive data analysis 

could prove beneficial. Increasing the size of the dataset, not for training a model, but for 

exploring correlations and possible causations could highlight important constructs in the 

database. 

 

Supplementary data 

Increasing the size of the dataset used for training the algorithm could potentially improve the 

performance. However, there is not only the aspect of number of records when discussing 

size of a dataset, as what is described within also matters greatly. In our case the dataset was 

sparse in variety, with most records belonging to a clear majority in product usage and 

corresponding device details. As well as, reasons for requiring surgery, and in the availability 

of detailed measurements on the patient and device. Increasing the data not just by number of 

records, but in internal contents. i.e. variation in values of different attributes, could prove 

beneficial. 
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Learning algorithms 

The Scikit-learn framework has a wide variety of learning algorithms, and deciding on the 

appropriate choice for the task at hand can have an impact on the performance. Future 

research could as well test and evaluate methods to locate a more optimal choice. 

Furthermore, there is the area of deep learning concerned with complex neural networks for 

building prediction models. The Multi-layer perceptron in this thesis only consisted of three 

layers, not taking the full step to deep learning with an increased number of neuron layers. 

Increasing the complexity of the algorithms might enhance the performance. 
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Appendix A 
 

List of variables 
This list contains all the variables used either in clustering, and classification and regression, 

and a review of what values are present in each variable.  

 

1. REVISJON  

0 = No Revision. 

 1 = Revision. 

2. SURVYRS 

 From 0 and upward = Length of survival since primary operation or revision.  

3. PAS_KJONN 

 1 = Male. 

 2 = Female. 

4. P_TIDL_OP 

 0 = Yes. 

 1 = No. 

 9 = Missing information. 

5. P_ASA 

 0 = Not entered. 

 1 = Healthy. 

 2 = Mild systemic disease. 

 3 = Severe systemic disease. 

 4 = Sever systemic disease with treat of death. 

 5 = Morbid person, the person is not thought to survive without undergoing surgery. 

 9 = Missing information. 

6. P_CUP_MATERIALE 

 0-12 = See list of materials in appendix X, the list of materials coding. 

7. P_LINER_MATERIALE 

0-12 = See list of materials in appendix X, the list of materials coding. 

8. P_STEM_MATERIALE 

 0-12 = See list of materials in appendix X, the list of materials coding. 

9. P_PROX_MATERIALE 

0-12 = See list of materials in appendix X, the list of materials coding. 

10. P_DIST_MATERIALE 

0-12 = See list of materials in appendix X. 
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11. P_CAPUT_MATERIALE 

 0-12 = See list of materials in appendix X. 

12. P_CAPUT_DIAMETER: 

 0 = Not entered.  

1.0 and upward = Size of the head on the device. 

13. P_AKT_OP_1-10: 

Section of dichotomously represented reasons for requiring primary surgery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



87 
 

Appendix B 

 

List of materials 
This list contains all the numbers used to indicate a type of material used in a device and 

which materials they represent. 

 

0. No materials used or present in the data. 

1. UHMWPE. 

2. Highly crosslinked polyethylene. 

3. Hylamer. 

4. Steel. 

5. Titanium. 

6. Cobolt Chrome. 

7. Alumina. 

8. Alumina/Zirconium. 

9. UHMWPE/Alumina'. 

10. Oxinium. 

11. Zirconium. 

12. Unknown information 
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Appendix C 

 

Table headers 
This list contains all the headers and data recorded in the tables on clustering outcome in 

Chapter 4, tables are in Appendix D, E, and F. 

 

1. G1 

o Number of cases belonging to group 1 from Chapter 4. 

2. G2 

o Number of cases belonging to group 2 from Chapter 4. 

3. G3 

o Number of cases belonging to group 3 from Chapter 4 (Gold cases). 

4. M.Age 

o  Mean age for all case in a cluster. 

5. U.Gender 

o Unique occurrences of gender per cluster. 

6. U.Asa 

o Unique occurrences of ASA-class per cluster. 

7. Revision 

o All cases with a revision. 

8. Survyrs 

o Mean survival year for all cases. 

9. R.Survyrs 

o Mean survival year for all cases with a revision. 

10. UM.Cup 

o Unique occurrences of cup materials registered per cluster. 

11. UM.Liner 

o Unique occurrences of liner materials register per cluster. 

12. UM.Caput 

o Unique occurrences of caput materials registered per cluster. 
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13. UM.Stem 

o Unique occurrences of stem materials registered per cluster. 

14. UM.Prox 

o Unique occurrences of prox materials registered per cluster. 

15. UM.Dist 

o Unique occurrences of dist materials registered per cluster. 

16. M.OPT 

o Mean surgery time per cluster. 

17. COMP 

o Number of cases with complications during surgery per cluster. 

18. R.LCUP 

o Number of revision cases where the cause is a loose cup. 

19. R.LFEMUR 

o Number of revision cases where the cause is a loose femur. 

20. R.BOTH 

o Number of revision cases where with both a loose femur and cup. 

21. R.ANNET 

o  Number of revision cases with another reason for reoperation. 

22. R.MANGLER 

o Number of revision cases where the information is marked as missing/unknown. 

23. P_OP_1 

o Number of cases requiring primary surgery due to coxarthrosis. 

24. P_OP_2 

o Number of cases requiring primary surgery due to rheumatoid Arthritis 

25. P_OP_3 

o Number of cases requiring primary surgery due to sequelae after fracture. 

26. P_OP_4 

o Number of cases requiring primary surgery due to sequelae after dysplasia. 

27. P_OP_ANNET 

o Number of cases requiring primary surgery due to another reason. 
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Appendix D 

 

K-Means below 5 years table 

results 
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Appendix E 

 

K-Means below 10 years table 

results 
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Appendix F 

 

K-Means below 15 years table 

results 
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Appendix G 

 

K-Means below 5 years table 

results, primary surgery 

reasons 
 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 1236 37 394 45 134 

KMEANS G2 4713 276 1717 217 504 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 4713 276 1717 217 502 

KMEANS G2 1046 35 365 40 111 

KMEANS G3 190 2 29 5 25 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 3456 225 1515 155 384 

KMEANS G2 1038 25 365 40 109 

KMEANS G3 1265 51 202 62 120 

KMEANS G4 190 2 29 5 25 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 1265 51 202 62 120 

KMEANS G2 3456 225 1515 155 384 

KMEANS G3 1026 34 365 40 109 

KMEANS G4 190 2 29 5 25 

KMEANS G5 12 1 0 0 0 
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CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 1253 50 200 62 108 

KMEANS G2 1026 34 365 40 109 

KMEANS G3 1415 60 369 58 156 

KMEANS G4 190 2 29 5 25 

KMEANS G5 12 1 0 0 0 

KMEANS G6 2053 166 1148 97 240 
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Appendix H 

 

K-Means below 10 years, table 

results for primary surgery 

reasons 
 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 3964 89 729 198 294 

KMEANS G2 11676 634 3271 510 989 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 11674 634 3268 510 987 

KMEANS G2 3034 75 654 147 231 

KMEANS G3 932 14 78 51 65 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 3010 75 651 146 229 

KMEANS G2 9532 538 2961 364 801 

KMEANS G3 2166 96 310 147 188 

KMEANS G4 932 14 78 51 65 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 9532 538 2961 364 801 

KMEANS G2 932 14 78 51 65 

KMEANS G3 36 2 3 2 1 

KMEANS G4 2974 73 648 144 228 

KMEANS G5 2146 96 307 147 182 
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CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 6155 408 2345 245 519 

KMEANS G2 2974 73 648 144 227 

KMEANS G3 932 14 78 51 65 

KMEANS G4 2141 94 306 147 170 

KMEANS G5 3402 132 620 119 301 

KMEANS G6 36 2 3 2 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



100 
 

 

Appendix I 

 

K-Means below 15 years, table 

results for primary surgery 

reasons 
 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 19935 971 4264 920 1447 

KMEANS G2 7962 163 1027 417 449 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 19931 971 4263 920 1444 

KMEANS G2 6469 145 925 345 361 

KMEANS G3 1497 18 103 72 91 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 2685 121 356 214 212 

KMEANS G2 6412 145 920 342 357 

KMEANS G3 1497 18 103 72 91 

KMEANS G4 17303 850 3912 709 1236 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 11841 552 1350 547 699 

KMEANS G2 1497 18 103 72 91 

KMEANS G3 6398 141 902 339 356 

KMEANS G4 8106 419 2933 373 748 

KMEANS G5 55 2 4 6 2 

 

 



101 
 

 

 

 

CLUSTERS P_OP_1 P_OP_2 P_OP_3 P_OP_4 P_OP_ANNET 

KMEANS G1 6325 141 909 335 354 

KMEANS G2 5626 174 799 200 465 

KMEANS G3 11713 67 3121 510 775 

KMEANS G4 2685 121 356 214 209 

KMEANS G5 55 4 3 6 2 

KMEANS G6 1497 18 103 72 91 
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Appendix J 

 

Mean Shift below 5 and 10 

years, table of results 
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Appendix K 

 

Mean Shift below 15 years 

table of results 
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Appendix L 
 

 

Silhouette Coefficient table, 

Mean Shift 
 

 

BANDWIDTH 5 YEARS 10 YEARS 15 YEARS 

0.1 0.299 0.339 0.373 

0.125 0.376 0.353 0.368 

0.15 0.413 0.379 0.374 

0.175 0.413 0.382 0.379 

0.2 0.414 0.430 0.415 

0.225 0.414 0.433 0.434 

0.25 0.414 0.433 0.433 

0.275 0.414 0.447 0.432 

0.3 0.456 0.446 0.432 

0.325 0.456 0.441 0.432 

0.35 0.458 0.441 0.432 

0.375 0.428 0.441 0.431 

0.4 0.428 0.438 0.432 

0.425 0.428 0.437 0.432 

0.45 0.442 0.438 0.434 

0.475 0.442 0.437 0.357 

0.5 0.442 0.442 0.357 
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Appendix M 
 

 

NSD Approval 
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