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Abstract

This thesis concerns iterative solvers for poromechanics problems. The problems

in the studies have involved linear poromechanics, non-linear poromechanics, and

poromechanics under large deformation. We included high order discretizations, ap-

plied linearization techniques and splitting methods to develop new solvers. We

studied the robustness and convergence of these solvers.

By studying the fixed stress method as an iterative solver for poromechanics, we

developed an optimized version of it. Furthermore, by extending the convergence

analysis in the time domain, we developed a new version of the fixed stress method

that is partially parallelized. This splitting method was combined with linearization

techniques to develop solvers for non-linear poromechanics. By studying the con-

vergence of the linearisation schemes, we developed new solvers and extended the

applicability to more complex phenomena, for instance poromechanics with large

deformation.
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Outline

This thesis is organized in two parts. The first part gives an overview of scientific

theory and mathematical methods that are relevant to the thesis. The second part

contains papers that are either published or submitted for publication in scientific

journals.

Part I is structured as follows: In Chapter 1 the main topic covered in the disser-

tation, i.e. numerical solvers for poromechanics problems, is introduced. The mathe-

matical modelling is presented in Chapter 2, which includes the governing equations

for poromechanics. In Chapter 3 we present the numerical framework used in the

included papers. Finally, the papers are presented and discussed in Chapter 4.

Part II contains the scientific results, which are grouped as main and related works.

The main contribution consists of the following four scientific articles:

Paper A M. Borregales, F.A. Radu, K. Kumar, and J.M. Nordbotten. Robust

iterative schemes for non-linear poromechanics. Computational Geo-

sciences, 22(4):1021–1038, 2018.

Paper B M. Borregales and F.A. Radu. Higher Order Space-Time Elements for

a Non-linear Biot Model. Numerical Mathematics and Advanced Ap-

plications ENUMATH 2017, Lecture Notes in Computational Science

and Engineering 126 541-549, 2018.

Paper C M. Borregales, K. Kumar, J.M. Nordbotten and F.A. Radu. It-

erative solvers for Biot model under small and large deformation.

arXiv:1905.12996[math.NA], 2019.

Paper D M. Borregales, K. Kumar, F.A. Radu, C. Rodrigo and F.J. Gaspar.

A parallel-in-time fixed-stress splitting method for Biots consolidation

model. Computers and Mathematics with Applications, 77(6):1466–

1478, 2019.

Also, the following two supplementary articles, on related work, are included:

Paper E J.W. Both, M. Borregales, J.M. Nordbotten, K. Kumar, and J.M.

Nordbotten. Robust fixed stress splitting for Biots equations in het-

erogeneous media. Applied Mathematics Letters, 68 101–108, 2017.
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Paper F F.A. Radu, M. Borregales, F.J. Gaspar, K. Kumar and C. Rodrigo. L-

scheme and Newton based solvers for a nonlinear Biot model. Proceed-

ings: 6th European Conference on Computational Mechanics (Solids,

Structures and Coupled Problems), 7th European Conference on Com-

putational Fluid Dynamics, ISBN: 978-84-947311-6-7 3505–3518, 2018.
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Chapter 1

Motivation

This dissertation presents a contribution in the context of solvers for poromechan-

ics. The term “poromechanics” refers to a coupled process between fluid flow and

mechanical deformation of a porous medium, and it plays a crucial role in many

societally relevant applications such as geothermal energy extraction, energy stor-

age in the subsurface, reservoir simulations, CO2 sequestration and the mechanics of

biological tissues. We will discuss two examples of these in more detail: CO2 seques-

tration and the mechanics of biological tissues. These applications enhance the need

for improved mathematical models and robust numerical solvers for poromechanics.

CO2 storage security: CO2 storage is one of the most promising approaches for a

large scale reduction of anthropogenic gas emissions in the atmosphere. It consists

of injecting CO2 e.g. in deep saline aquifers or depleted oil reservoirs. Accurate

prediction of the behavior of the injected CO2 is important for the long term success

of the sequestration, because even a low rate leakage over long time periods can

undo the positive outcomes of net CO2 sequestered [88, 89].

A significant issue for storage security is the geomechanical response of the reser-

voir. Geomechanical deformation can be induced by CO2 injection, and this could

create or reactivate fracture networks in the sealing caprocks, providing a pathway

for CO2 leakage [121]. Hence, accurate predictions of the possible reservoir deforma-

tion, migration of the injected CO2 and assurance of the storage security, require

poromechanics models.

Fully coupled numerical schemes for poromechanics guarantee that the numerical

solution is formally consistent with the underlying continuous differential equations.

Nevertheless, due to the complexities associated with monolithic solvers, what is used

as industry standard continues to be the so-called weakly- or iteratively-coupled ap-

proaches [90, 108]. Weakly coupled schemes, wherein the iterations are not continued

until convergence, have been questioned [50, 90, 96]. Therefore, in order to ensure the

robustness and accuracy of the resulting computations, it is essential to understand

the efficiency, stability, and convergence of iterative splitting schemes.
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Poromechanics of biological tissues: Unlike many geomechanics applications,

which usually assume small deformations in the porous medium, biological porome-

chanics models often experience large deformations and require more complicated

non-linear poromechanics theory [16], for porous media such as soft tissues, mem-

branes and bones. For instance, the brain is contained by the rigid skull, and it is

susceptible to volume changes that can immediately translate to pressure changes

inside the skull [51]. Various congenital conditions and conditions of the elderly are

manifestations of this pressure imbalance, that causes life-altering morphological

changes in the central nervous system. The development of biological modelling that

includes poromechanics is essential in the understanding of these illnesses.

Another example of poromechanics in biological tissues is the coupling between

fluid flow in coronary vessels with the mechanical deformation of heart tissue. In

this case, the mechanical deformation is a central feature of cardiac physiology and

can be accounted for by using a poromechanics model of coronary perfusion [63].

This coupling has been shown to exist in the large epicardial coronary vessels where

flow is impeded and even reversed during contraction. This complicated interplay

between the dynamics of vessel compression with resistance and pressure gradients

motivates to incorporate elastodynamics [81, 129] and hyperelasticity [16, 44] in the

poromechanics models.

1.1 Main results

The main contribution of this thesis is proposing new solvers for poromechanics

problems and the rigorous convergence analysis for some of these. These solvers are

robust and efficient, and can be used for both linear and non-linear poromechanics

problems.

1. Rigorous convergence analysis for linearization schemes for non-

linear poromechanics. We propose and analyse linearization schemes such

as the L-scheme (in Papers A, B, and E) and Newton’s method (in Paper C)

combined with monolithic and splitting schemes for solving non-linear porome-

chanics problems.

2. Developing solvers for poromechanics under large deformation. Ro-

bust iterative schemes are proposed for solving poromechanics problems that

follow the Saint Venant-Kirchoff constitutive law (in Paper C). The solver is

written in a Lagrangian frame of reference. The applicability, robustness, and

convergence of the schemes is shown by illustrative numerical examples.

3. Optimizing existing solver for linear poromechanics. We propose a new,

optimized tuning parameter for the splitting solver fixed-stress method. Ad-

ditionally, we prove global, linear convergence in energy norms of the method

for heterogeneous media (in Paper E).
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4. Development a new parallel fixed stress splitting scheme. We devel-

oped and analysed a parallel-in-time iterative solver for poromechanics (in Pa-

per D). The main benefit of the new solver is that the mechanics sub-problem

can be solved in a parallel-in-time manner. The new parallel fixed-stress scheme

is very efficient; it requires around 20% computational cost of fixed-stress.
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Chapter 2

Mathematical modelling of porome-

chanics problems

In order to model fluid flow in a deformable porous medium, it is required to satisfy

the conservation of momentum and the conservation of mass. The resulting system

has typically more unknowns than equations. Thus, constitutive laws are needed

to close the poromechanics system. In this chapter, we will introduce the partial

differential equations needed to model poromechanics.

2.1 Porous medium

A porous medium is a material that contains pores. These pores are void spaces with

a length scale that goes from nanometers to micrometers [113]. The fluid that fills

the pores may flow between the interconnection of these pores. Predictions for fluid

flow in porous media are relevant for many applications. Reservoir simulations for

CO2 sequestration is an example of these. However, a reservoir has length scales from

meters to kilometers. Therefore, it is computationally impractical to model fluid flow

in porous media in a complete reservoir with the complete pore-scale geometry. In

this regard, small volumes called representative elementary volumes (REVs) [15] are

considered. In a REV, the actual route of the fluid flow through the pore medium

is unknown. However, the average mass flux flowing through a part of the porous

domain can be obtained.

A porous medium is characterized by its porosity φ ∈ [0, 1]. The ratio between

the volume of the pores filled by fluid, and the total volume within a REV, defines

the effective porosity of the medium.

φ :=
Volume of voids

Volume of REV
.

We denote the density of the fluid ρf , and we can use porosity to define the actual

fluid density φρf inside a REV.
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A fluid is called compressible if any change in normal pressure (or tension) gen-

erates a density change [15]. If density remains constant, the fluid is called incom-

pressible. In a deformable porous medium with constant temperature, the isothermal

compressibility constant of the fluid is defined by

cf :=
1

ρf

dρf
dp

.

Under isothermal conditions, a closed non-linear relation between the density ρf and

the pressure p can be obtained if cf is independent of the pressure [15]. This relation

can be expressed as follows

ρf = ρf0e
cf (p−p0),

where ρf0 is the fluid density at a reference pressure p0.

2.2 Deformation

We will consider a poroelastic domain Ω ⊂ Rd for d = {2, 3} with boundary ∂Ω. A

deformation field is an assignment of displacement vectors for all points in domain

Ω to a current (or deformed) domain Ωt at time t. We use bold letters for variables,

functions or spaces that represent vectors or tensors, and the identity tensor will be

denoted by I. Let Φ be the deformation map that is continuously differentiable and

invertible: Φ := {X ∈ Ω→ x = Φ(X) ∈ Ωt}. Mathematically, the deformation field

is denoted by

u(X) := x −X = Φ(X)−X.

It is also important to mention that a deformation field may introduce a volumetric

change [115]. Given the gradient of the transformation

F := ∇XΦ = ∇X(X + u(X)) = I +∇Xu

at the reference domain Ω, we can obtain the volumetric change of the transformation

by

J := det (F).

In order to exclude deformation due to rigid-body motions, we introduce the concept

of strain. Strain is a description of deformation in terms of relative deformation in

Ω. Strain measures how much a given deformation differs locally from a rigid-body

deformation. There is no unique way to define strain mathematically [115]. Hence,

we will use the Green-Lagrangian strain tensor E defined by

E(u) :=
1

2
(C− I) =

1

2

(
∇Xu + (∇Xu)

>
+ (∇Xu)

>∇Xu
)
, (2.1)

which measures the difference between the right Cauchy-Green deformation tensor

C := F>F and I. This Green-Lagrangian strain tensor is non-linear, and can be

linearised in case of infinitesimal deformation as follows,

ε(u) :=
1

2

(
∇Xu + (∇Xu)

>
)
. (2.2)
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2.3 Conservation laws

We consider mass and momentum as the quantities to be conserved during the

coupled process between fluid flow and mechanic deformation in a porous medium.

2.3.1 Conservation of momentum

The law of conservation of momentum says that the rate of change of the linear

momentum p :=
∫
ω
ρbv dx is equal to the force fσ applied to ω and the corresponding

reaction force generated due to internal stress σ inside ω ([115])

d

dt

∫

ω

ρbv dx =

∫

ω

(∇x · σ + fσ) dx. (2.3)

The left hand side can be neglected since we are not interested in the rigid body

dynamic of the porous material. Then, the differential version of the conservation of

momentum can be written for any domain ω as follows

−∇x · σ = fσ. (2.4)

2.3.2 Conservation of mass

The law of conservation of mass says that the rate of change of the fluid mass over

time mf :=
∫
ω
φρf dx is equal to the fluxes q across the boundary and the contribu-

tion of any source or sink term fm [15]. This law can be expressed mathematically

for any domain ω as follows

d

dt

∫

ω

φρf dx = −
∫

∂ω

q · n dx +

∫

ω

fm dx, (2.5)

where n is the outward normal vector to ∂ω, with unit length. We can obtain the

differential equation associated to the conservation of mass using the Divergence

theorem over the flux term as follows

∂

∂t
(φρf ) +∇x · q = fm. (2.6)

2.4 Constitutive relations

We will consider two constitutive equations to relate: fluid flow with pressure gradient

in porous media and stress tensor with mechanical deformation.

2.4.1 Darcy’s law

The proportionality relation between the volumetric flux qv and the pressure gradi-

ent in Ωt is given by Darcy’s law
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qv = −k (∇xp− ρfg) . (2.7)

The proportionality parameter k is a second-rank tensor that represents the resis-

tance of the fluid to flow in each direction. The fluid flow, or volumetric flux, is

denoted by qv. There are mainly two properties related to k, permeability and vis-

cosity. Permeability is a property of the porous medium, it is independent of the

fluid and it measures the ability of a porous material to allow fluids to pass through

it [15]. Viscosity, on the other hand, is a property of the fluid that measure its inter-

nal friction [75]. The parameter k is directly proportional to the permeability of the

porous domain and inverse proportional to the viscosity and density of the fluid [15].

The relation between the mass flux q and the volumetric flux is given by q = ρfqv.

The gravitational acceleration is denoted by g.

2.4.2 Hooke’s law

A general relation between the stress and the strain tensor is given by

σ = β0I + β1ε+ β2ε
2, (2.8)

where the coefficients β0, β1 and β2 are functions of the invariants

εI = tr(ε),

εII =
1

2

(
tr(ε)

2 − tr(ε2)
)
,

εIII = det(ε).

The trace of a second-rank tensor and its determinant is denoted by tr(·) and det(·),
respectively. It has been proven by Ciarlet in [43] that every constitutive law can

be written in this way (Eq. (2.8)). However, under the assumption of small defor-

mations, Hooke’s law can be applied. Similar to Darcy’s law, Hooke’s law offer a

proportionality relation between the strain tensor ε and the stress tensor σ,

σ = C : ε, (2.9)

where the proportionality constant C is a fourth-rank tensor that depends on the

properties of the porous material. Hooke’s law can be simplified for isotropic porous

materials as follows

σ = 2µε+ λtr(ε), (2.10)

where µ and λ are the Lamé parameters.

2.5 Piola transformation

Since the transformation Φ is unknown and Ωt is not available, we must write Eqs.

(2.4) and (2.6) into a Lagrangian frame of reference. Here, we use the Piola trans-

formation to map variables from Ωt to Ω.
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The conservation of momentum Eq. (2.4) in the Lagrangian frame of reference

would read as follows

−∇X ·Π = ρ0g, (2.11)

where Π is the Piola transformation of σ also known as the first Piola-Kirchhoff

stress tensor Π = JF−>σ. We now introduce the second Piola-Kirchhoff stress

tensor Σ = F−1Π, since all constitutive laws are obtained for Σ (Ciarlet [43])

Σ = β0I + β1C + β2C
2, (2.12)

where β0, β1 and β2 are functions of the invariants CI , CII and CIII

CI = tr(C),

CII =
1

2

(
tr (C)

2 − tr
(
C2
))
,

CIII = det(C).

By considering isotropic material, using Eq. (2.1) (see e.g [115]) and choosing β0 =

λc(CI)− µ− 1, β1 = µ and β2 = 0, we get from Eq. (2.12)

Σ = 2µE + c(tr(E))I, (2.13)

where c(·) represents a non-linear function of the volumetric strain.

The Lagrangian formulation and conservation of mass is given by

∂

∂t
(Jρfφ) +∇X ·Q = fm, (2.14)

where Q corresponds to the Piola transformation of the flux variable q, Q = JF−1q.

This Lagrangian Q can be obtained by the Lagrangian formulation of Darcy’s law

as follows

Q = −K (∇Xp− ρfg0) , (2.15)

where K = JF−1kF−> is the corresponding transformation of the mobility tensor

k in Ωt and g0 = F>g.

2.6 Poromechanics

Poromechanics refers to coupled processes between fluid flow and mechanical defor-

mation in a porous medium. This coupled model was first introduced by Biot and

it relates changes in the total stress and fluid pressure with changes in strain and

fluid mass, respectively [18, 19, 46, 116]. This relation is defined mathematically by

the second Piola-Kirchhoff poroelastic stress tensor Σ, which is composed by the

effective mechanical stress Σeff and the pore pressure p by the following relation

Σ = Σeff − JF−1F>p. (2.16)

The term JF−1F> ensures that pressure p exerts an isotropic stress in Ωt.
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In addition, changes in the Lagrangian fluid mass term are proportional to

changes in fluid pressure and volume [67]. This relation can be written mathemati-

cally by
∂

∂t
(Jρfφ) = cM

∂p

∂t
+ cα

∂J

∂t
, (2.17)

where cM = 1
M + cfφ0 and cα = J ∂φ∂J + φ0 given by the Biot modulus M .

We therefore include the poroelastic relationships (2.16)-(2.17) to the conserva-

tions laws, and we obtain the following poromechanics problem:

Find (u,q, p) such that

−∇X · (FΣ) = ρb0g,

Σ = Σeff − JF−1F>p,

Q = −K (∇Xp− ρfg0) ,

∂
∂t (cMp+ cαJ) +∇X ·Q = Sf0.

(2.18)

To complete the model, we consider homogeneous Dirichlet boundary conditions and

initial conditions given by (u0, p0), such that Γ(u0, p0) = Γ0, and Π(u0, p0) = Π0 at

time t = 0. The functions Γ0 and Π0 are given and sufficiently regular. Additionally,

the initial data u0 and p0 are not independent, and can be obtained in practice by

solving the flow problem for p0, and then solving the mechanics problem for u0.

2.6.1 Poromechanics under small deformation

In case of infinitesimal deformations and rotations, the distinction between Ω and

Ωt may be ignored. Therefore, σ can be identified with Π, and J ≈ 1, F ≈ I.

Furthermore, the Lagrangian strain tensor can be approximated by E ≈ ε where

ε = 1
2

(
∇xu> +∇xu

)
is the linearized strain tensor. Then, the poroelastic Cauchy

stress tensor σ can be written in terms of the fluid pressure p and the displacement

u as

σ(u, p) = σeff (u)− αpI, (2.19)

where α is the dimensionless Biot coefficient, and σeff (u) the effective stress tensor,

given by

σeff (u) = 2µε(u) + λtr(ε(u))I. (2.20)

see e.g. [18, 19, 45, 49]. The change in time of the volumetric change can still influence

the fluid pressure. This effect can be written mathematically as ∂J
∂t = ∂

∂t∇x · u [79].

Then, the quasi-static linear Biot model reads as follows: Find (u,q, p) such that

−∇x · [2µε(u) + λtr(ε(u))] + α∇x · (pI) = fσ,

q = −k (∇xp− ρf,refg) ,

∂
∂t (cMp+ α∇x · u) +∇ · q = fm.

(2.21)
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To complete the model, we consider homogeneous Dirichlet boundary conditions

(BC) and initial conditions given by u = u0 and p = p0 at time t = 0. The functions

u0, p0 are given and are sufficiently regular.

Problem (2.21) is well posed [110]. Furthermore, extensions of the linear Biot

equations include well-posedness for the dynamic poro-elasticity [81], thermo-poro-

elasticity with non-linear, thermal convection [33], poro-visco-elasticity with a

purely visco-elastic strain [20, 110], thermo-poro-visco-elasticity [30] and linear poro-

elasticity with a deformation-dependent, non-linear permeability [20].
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Chapter 3

Numerical framework

Finding closed form solutions for poroelastic problems is very difficult and normally

based on various simplifications. We therefore resort to numerical approximations.

Here we will describe some of the numerical techniques we used to obtain and ap-

proximate solutions for poromechanics problems. First, we will describe a space-time

discretization of the Eqs. (2.21). Second, we will show two linearization techniques:

Newton’s method and the L-scheme. Third, we will describe a monolithic and a

splitting approach for solving coupled problems.

3.1 Space-time discretization

The quasi-static Biot model (2.21) can be understood as the limit of the fully dy-

namic Biot-Allard model [81]. The quasi-static characteristic of the Biot model comes

from neglecting the acceleration of the solid skeleton in the conservation of momen-

tum equation (2.4). This approximation does not allow the application of the Biot

model (2.21) to problems with higher dynamics in the solid’s deformation. Here,

the Biot model (2.21) would be studied as a prototype model. We believe that

the discretization that is presented below can also be generalized to more dynamic

poroelasticity.

We start by defining the function space L2(Ω) of Lebesgue measurable and square

integrable functions on Ω, and let Hm(Ω) (with m ≥ 1) be the space of L2-functions

having weak derivatives up to order m in L2(Ω). Again, we use bold letters to denote

vector or tensor variables and vector or tensor spaces. We denote the inner product

by 〈·, ·〉 and norm in L2(Ω) by ‖·‖. For rank 2 tensors A, B ∈ Rd,d, the internal

product is defined by 〈A : B〉 :=
∫

Ω

∑d
i,j=1AijBijdx. Further, we consider the

spaces

H1
0(Ω) := {u ∈ H1(Ω)| u = 0 on ∂Ω},

H(div; Ω) := {q ∈ L2(Ω) | ∇ · q ∈ L2(Ω)}.
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Let X0 ⊂ X ⊂ X1 be three reflexive Banach spaces with continuous embeddings

and let I = (0, T ) be the time interval. Following [13, 14] we consider the following

set of Bochner spaces

L2(I;X) =

{
w : (0, T )→ X

∣∣∣∣∣

∫ T

0

‖w(t)‖2Xdt <∞
}
,

H1(I;X0, X1) = {w ∈ L2(I;X0) | ∂tw ∈ L2(I,X1)},
that are equipped with their natural norms and where the time derivative ∂t is un-

derstood in the sense of distributions. In particular, every function in H1(I;X0, X1)

is continuous on I with values in X. For X0 = X = X1 we simply write H1(I;X). We

can now proceed and state the space-time variational formulation of the considered

quasic-static linear Biot model (2.21):

Find u ∈ H1
(
I; H1 (Ω)

)
∩ L2

(
I; H1

0 (Ω)
)
, q ∈ L2 (I; H (div; Ω)) and p ∈

H1
(
I;L2 (Ω)

)
such that:

∫

I

2µ〈ε(u) : ε(v)〉dτ +

∫

I

〈λ∇ · u− αp,∇ · v〉dτ =

∫

I

〈fσ,v〉dτ,
∫

I

〈k−1q, z〉dτ −
∫

I

〈p,∇ · z〉dτ =

∫

I

〈ρfg, z〉dτ, (3.1)

∫

I

〈
∂

∂t
(cMp+ α∇ · u) , w

〉
dτ +

∫

I

〈∇ · q, w〉dτ =

∫

I

〈fm, w〉dτ,

for all v ∈ L2
(
I; H1

0 (Ω)
)
, z ∈ L2 (I; H (div; Ω)) and w ∈ L2

(
I;L2 (Ω)

)
, given

fσ ∈ L2
(
I; L2(Ω)

)
and fm ∈ L2

(
I;L2(Ω)

)
. Here, we have the Lamé parameters µ

and λ, and the coupling term α. The permeability is represented by k, the fluid

density by ρf , and the gravitational acceleration by g. The compressibility term is

represented by cM . Recall that we use bold letters for variables, functions or spaces

that represent vectors or tensors, and the identity tensor will be denoted by I.

3.1.1 Semi-Discretization in time: continuous Galerkin cG(r)

The time interval I is decomposed in N subintervals In = (tn−1, tn], where

n=1, ..., N , 0 = t0 < t1 < ... < tn−1 < tn = T and τn = tn − tn−1. The time

step size is denoted by τ = max1≤n≤N τn. In order to define a higher order cG

scheme in time, we need to introduce the space of piecewise polynomials of order r

with coefficients in a Banach space X and the associated Bochner space X rτ (X) and

Yrτ (X):

Pr(In;X) :=



ψn : In → X

∣∣∣∣∣∣
ψn(t) =

r∑

j=0

ξjnt
j , ξjn ∈ X, j = 0, ..., r



 ,

X rτ (X) :=
{
ψτ ∈ C(Ī;X)

∣∣ ψτ |In = ψn ∈ Pr(Īn;X); ∀n ∈ {1, ..., N}
}
,

Yrτ (X) :=
{
ψτ ∈ L2(I;X)

∣∣ ψτ |In = ψn ∈ Pr(In;X); ∀n ∈ {1, ..., N}
}
.
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We can now state a semi-discrete variational form of the system (3.1). We mention

that the test functions ψn are vanishing on I \In. The semi-discrete scheme reads

as:

Find uτ ∈ X rτ
(
H1 (Ω)

)
, qτ ∈ X rτ (H (div; Ω)) and pτ ∈ X rτ

(
L2 (Ω)

)
, such that

2µ

∫

In

〈ε(uτ ) : ε(vτ )〉dτ +

∫

In

〈λ∇ · uτ + αpτ ,∇ · vτ 〉dτ =

∫

In

〈fσ,vτ 〉dτ,
∫

In

〈k−1qτ , zτ 〉dτ −
∫

In

〈pτ ,∇ · zτ 〉dτ =

∫

In

〈ρfg, zτ 〉dτ,
∫

In

〈
∂

∂t
(cMpτ + α∇ · uτ ) , wτ

〉
dτ +

∫

In

〈∇ · qτ , wτ 〉dτ =

∫

In

〈fm, wτ 〉dτ,

for all vτ ∈ Yr−1
τ

(
H1

0 (Ω)
)
, zτ ∈ Yr−1

τ (H (div; Ω)) and wτ ∈ Yr−1
τ

(
L2 (Ω)

)
, and

satisfying the continuity constraints uτ |In(tn−1) = uτ |In−1
(tn−1), qτ |In(tn−1) =

qτ |In−1
(tn−1) and pτ |In(tn−1) = pτ |In−1

(tn−1).

We represent uτ |In , qτ |In , and pτ |In in terms of the basis functions with respect to

the time variable of X rτ
(
H1 (Ω)

)
, X rτ (H (div; Ω)), and X rτ

(
L2 (Ω)

)
, respectively. For

this, let tjn, for j = 0, . . . , r be the (r+ 1) Gauss quadrature points on In. We define

ψjn to be the Lagrange polynomial of degree r, which satisfies ψjn(tin) = δ̂ji, with δ̂

being the Kronecker symbol. Now we express our variables as a linear combination

of the basis functions

uτ |In(t) =

r∑

j=0

ujnψ
j
n(t), qτ |In(t) =

r∑

j=0

qjnψ
j
n(t), pτ |In(t) =

r∑

j=0

pjnψ
j
n(t).

Then, by taking vτ = vψin, zτ = zψin and wτ = wψin,i = 0, . . . , r in the semi-discrete

problem above, we get the equivalent formulation on each time interval In:
Find ujn ∈ H1

0 (Ω), qjn ∈ H (div; Ω) and pjn ∈ L2 (Ω) for every j = 0, ..., r such that

2µ〈ε(uin), ε(v)〉+ 〈λ∇ · uin − αpin,∇ · v〉 = 〈fσ,v〉,
〈k−1qin, z〉 − 〈pin,∇ · z〉 = 〈ρfg, z〉,

r∑

j=0

{
αij〈cMpjn + α∇ · ujn, w〉

}
+ βii〈∇ · qin, w〉 = βii〈fm, w〉.

holds true ∀i = 0, .., r and for all v ∈ H1
0 (Ω), z ∈ H (div; Ω) and w ∈ L2 (Ω). The

coefficients above are defined by αij :=
∫
In
∂t(ψ

j
n)ψindt and βii :=

∫
In
φinψ

i
ndt, see

[13, 14] for more details.

3.1.2 Semi-Discretization in time: discontinuous Galerkin dG(r)

We can now state a semi-discrete variational form of the system (3.1) using discon-

tinuous Galerkin finite elements in time. We mention that the test functions ψn are

vanishing on I\In. The semi-discrete scheme reads as:
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Find uτ ∈ Yrτ
(
H1 (Ω)

)
, qτ ∈ Yrτ (H (div; Ω)) and pτ ∈ Yrτ

(
L2 (Ω)

)
, such that

2µ

∫

In

〈ε(uτ ) : ε(vτ )〉dτ +

∫

In

〈λ∇ · uτ + αpτ ,∇ · vτ 〉dτ =

∫

In

〈fσ,vτ 〉dτ,
∫

In

〈k−1qτ , zτ 〉dτ −
∫

In

〈pτ ,∇ · zτ 〉dτ =

∫

In

〈ρfg, zτ 〉dτ,
∫

In

〈
∂

∂t
(cMpτ + α∇ · uτ ) , wτ

〉
dτ +

∫

In

〈∇ · qτ , wτ 〉dτ

+〈[cMpτ + α∇ · uτ ]n−1 , wτ (t
+
n )〉 =

∫

In

〈fm, wτ 〉dτ,

for all vτ ∈ Yrτ
(
H1

0 (Ω)
)
, zτ ∈ Yrτ (H (div; Ω)) and wτ ∈ Yrτ

(
L2 (Ω)

)
. We also

use the notations [wτ ]n−1 = w+
τ (tn−1) − w−τ (tn−1), w+

τ (tn−1) = wτ |In (tn−1) and

w−τ (tn−1) = wτ |In−1
(tn−1).

We represent uτ |In , qτ |In , and pτ |In in terms of the basis functions with respect to

the time variable of Yrτ
(
H1 (Ω)

)
, Yrτ (H (div; Ω)), and Yrτ

(
L2 (Ω)

)
, respectively. For

this, let tjn, for j = 0, . . . , r be the (r+ 1) Gauss quadrature points on In. We define

ψjn to be the Lagrange polynomial of degree r, which satisfies ψjn(tin) = δ̂ji, with δ̂

being the Kronecker symbol. Now we express our variables as a linear combination

of the basis functions

uτ |In(t) =

r∑

j=0

ujnψ
j
n(t), qτ |In(t) =

r∑

j=0

qjnψ
j
n(t), pτ |In(t) =

r∑

j=0

pjnψ
j
n(t).

Then, by taking vτ = vψin, zτ = zψin and wτ = wψin,i = 0, . . . , r in the semi-discrete

problem above, we get the equivalent formulation on each time interval In:
Find ujn ∈ H1

0 (Ω), qjn ∈ H (div; Ω) and pjn ∈ L2 (Ω) for every j = 0, ..., r such that

2µ〈ε(uin), ε(v)〉+ 〈λ∇ · uin − αpin,∇ · v〉 = 〈fσ,v〉,
〈k−1qin, z〉 − 〈pin,∇ · z〉 = 〈ρfg, z〉,

r∑

j=0

{
αij〈cMpjn + α∇ · ujn, w〉

}
+ βii〈∇ · qin, w〉 = βii〈fm, w〉

− ψin(t
+
n−1)

〈
cMp

−
n−1 + α∇ · u−

n−1+), w
〉
,

holds true ∀i = 0, .., r and for all v ∈ H1
0 (Ω), z ∈ H (div; Ω) and w ∈ L2 (Ω). The

coefficients above are defined by αij :=
∫
In
∂t(ψ

j
n)ψindt + ψj+n (tn−1)ψi+n (tn−1) and

βii :=
∫
In
φinψ

i
ndt, see [13, 14] for more details.

3.1.3 Discretization in space: cG(p+1)-MFEM(p)

Let Kh be a regular decomposition of Ω into quadrilateral elements K for d = 2,

and hexahedral elements for d = 3. We use quadrilateral and hexahedral elements

because the implementation in deal II is tailored to it [10]. We denote by hK the

diameter of the element K, and by h the global discretization mesh diameter by
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h = maxK∈Kh
hK . We introduce the next finite element spaces following lines of

Brezzi & Fortin [31]

Pp1,p2(K) :=



φ : K → R

∣∣∣∣∣∣
φ(x) =

p1∑

i=0

p2∑

j=0

φi,jx
i
1x
j
2, φi,j ∈ R



 and

Pp1,p2,p3(K) :=



φ : K → R

∣∣∣∣∣∣
φ(x) =

p1∑

i=0

p2∑

j=0

p3∑

k=0

φi,j,kx
i
1x
j
2x
k
3 , φi,j,k ∈ R



 ,

which are spaces of polynomials of degree p1, p2, and p3 for the component x1, x2,

and x3 of the position vector x. With that, we define the following vector-valued

space

Qdp(K) :=

{{
φ : K → R2 |φ ∈ Pp,p(K)× Pp,p(K)

}
, if d = 2

{
φ : K → R3 |φ ∈ Pp,p,p(K)× Pp,p,p(K)× Pp,p,p(K)

}
, if d = 3.

which is a space of vector-valued polynomials of degree p at each component.

Continuous Galerkin cG(p) Here, we present the space we use for the discretization

of the mechanics problem. For any arbitrary polynomial degree p ≥ 0, the continuous

Galerkin (cG(p)) space is defined as

Vp
h :=

{
vh ∈ C(Ω)

∣∣vh|K ∈ Qdp(K), ∀K ∈ Kh
}
.

Mixed finite element method MFEM(p) In this section, we present spaces for

the approximation of H(div; Ω) that we use for the spatial discretization of the flow

problem. These spaces are called Raviar-Thomas (RT) for d = 2, or Raviar-Thomas-

Nedelec (RTN) for d = 3, and they are defined as follows:

RTp(K) :=
{
φ : K → R2 |φ ∈ Pp+1,p(K)× Pp,p+1(K)

}
and

RTNp(K) :=
{
φ : K → R3 |φ ∈ Pp+1,p,p(K)× Pp,p+1,p(K)× Pp,p,p+1(K)

}
.

Then, for any arbitrary polynomial degree p ≥ 0, the mixed finite element

(MFEM(p)) spaces are defined as

Zph :=

{{
zh ∈ H(div; Ω)

∣∣zh|K ∈ RTp(K), ∀K ∈ Kh
}
, if d = 2

{
zh ∈ H(div; Ω)

∣∣zh|K ∈ RTNp(K), ∀K ∈ Kh
}
, if d = 3,

and

W p
h :=

{{
wh ∈ L2(Ω)

∣∣wh|K ∈ Pp,p(K), ∀K ∈ Kh
}
, if d = 2

{
wh ∈ L2(Ω)

∣∣wh|K ∈ Pp,p,p(K), ∀K ∈ Kh
}
, if d = 3.

The spaces cG(p+1) and MFEM(p) are not uniformly inf-sup stable for porome-

chanics problems. However, a small enough h can be used to avoid oscillations [105].
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We now proceed by formulating a fully discrete scheme dG(r)-cG(p+1)-MFEM(p)

for solving (3.1). The fully discrete scheme for solving (3.1) on each time interval In
reads as follows:

For every i ∈ {0, ..., r}, find uin,h ∈ Vp+1
h , qin,h ∈ Zph and pin,h ∈W p

h , such that:

2µ〈ε(uin,h), ε(vn,h)〉+ 〈λ∇ · uih − αpin,h,∇ · vn,h〉 = 〈fσ(tn,i),vh〉

〈k−1qin,h, zh〉 − 〈pin,h,∇ · zh〉 = 〈ρfg, zh〉,
r∑

j=0

{
αij〈cMpjn,h + α∇ · ujh, wh〉

}
+ βii〈∇ · qin,h, wh〉 = βii〈fm(tn,i), wh〉

+ ψin(t
+
n−1)

〈
(cMp

−
n−1 + α∇ · u−

n−1), wh
〉
.

for all vh ∈ Vp+1
h , zh ∈ Zph and wh ∈W p

h .

It is beyond the scope of this work to give a comprehensive review on all spatial

discretization. However, we mention discretizations that have been developed and

analyzed for Biot’s equations: finite volumes [66, 87], mixed finite elements methods

[6, 76, 85, 86], nonconforming finite elements [62], the MINI element [104], continuous

or discontinuous Galerkin [38, 39, 41, 101, 111, 122, 131], high-order methods [21],

Galerkin least squares [73], isogeometric analysis [123, 124], multiscale methods [34,

35, 47], and combinations of the above-mentioned ones [17, 76, 84, 91–94, 128].

Adaptive computations were considered, for example, in the work of Ern and Meunier

[52]. A Monte Carlo approach was proposed in the work of Rahrah and Vermolen

[100]. For a discussion on the stability of different spatial discretizations, we refer to

the recent papers [59, 105].

3.1.4 Lower order space-time discretization dG(0)-cG(1)-MFEM(0)

For the lowest polynomial degree in time and space, r = p = 0, we have the following

nodal point t̂0 = 1
2 and quadrature weights ŵ0 = 1. Here, the test and trial time’s

functions are ψ̂0 = 1, then the assemblies in time are evaluated as α0,0 = 1, β0,0 = τn.

Find u0
n,h,∈ V1

h, q0
n,h ∈ Z0

h and p0
n,h ∈W 0

h , such that

2µ〈ε(u0
n,h), ε(vn,h)〉+ 〈λ∇ · u0

n,h − αp0n,h,∇ · vn,h〉 = 〈fσ(tn,0),vh〉, (3.2)

〈K−1q0
n,h, zh〉 − 〈p0n,h,∇ · zh〉 = 〈ρfg, zh〉, (3.3)

〈cMp0n,h + α∇ · u0
h, wh〉+ τn〈∇ · q0

n,h, wh〉 =
〈
cMp

−
n−1 + α∇ · u−

n−1, wh
〉

+ τn〈fm(tn,0), wh〉, (3.4)

for all vn,h ∈ V1
h, zn,h ∈ Z0

h and wn,h ∈W 0
h .

Backward Euler. The scheme above is algebraically equivalent to a backward

Euler scheme, and both are linearly convergent with respect to the time variable.
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The only difference lies on the nodal point of the time interval, where t̂0 = 1 for

backward Euler. In other words, backward Euler calculates the solution at the end

point of the time interval, while dG(0) calculates it for the middle point of the time

interval.

3.2 Solvers for coupled problems

Coupled problems are present in many physical examples. For instance, the models

presented in chapter 2.6 show the coupling between fluid flow and mechanical de-

formation in a porous domain. There are two approaches that can be used to solve

coupled problems, the monolithic (fully coupled) scheme and the splitting (weakly

coupled) scheme. In general, the monolithic schemes ensure that the numerical solu-

tion is consistent with the underlying continuous differential equations. Despite ob-

vious advantages, the monolithic solver for fully coupled problems is more difficult

to implement, and have difficulties solving the resulting linear system, particularly

in the context of existing legacy code for separate physics. Due to the complexi-

ties associated with the fully coupled scheme, weakly coupled or iteratively coupled

approaches are still used as industry standard [37, 42, 65, 68, 69, 80, 82, 90–92, 106–

108, 125, 130]. An iteratively coupled approach takes somewhat of a middle path;

at each time step, it decouples the flow and mechanics, but iterates so that con-

vergence is achieved. Different alternation of iterative cycles in flow and mechanics,

i.e., single- [4] and multi-rate schemes [3, 5, 48, 74], multiscale methods [47] and al-

gebraic solvers can be considered. General Schur complement based preconditioners

[8, 36, 37, 40, 58, 58, 94, 126, 127] and preconditioners which are robust with respect

to the model parameters [1, 9, 60, 61, 77, 102, 103] are examples of algebraic solvers.

For other splitting schemes, see for example the works of Turska et al. [118, 119].

We will be using the following algebraic system of equations (Eqs. 3.5), in order

to illustrate the monolithic and splitting approach. Nevertheless, these approaches

can also be translated to the variational formulation of a coupled problem, see Paper

A-F. Let A ∈ Rn×n be the algebraic elastic operator from the mechanics problem,

C ∈ Rm×m be the algebraic operator from the flow problem and B ∈ Rn×m be the

coupling term. The vector solution x = {u} represents the discrete approximation of

the mechanics deformation and y = {q, p}> represents the discrete approximation

of the flow problem solution. Find x ∈ Rn and y ∈ Rm such that

A x−B y = b,

B>x + C y = c,
(3.5)

for the given discrete approximation of the right hand side b ∈ Rn and c ∈ Rm.

3.2.1 Monolithic scheme

A monolithic scheme solves Problem 3.5 in a fully coupled way. This provides an

unconditionally stable approach. However, it requires assembling of a bigger matrix
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M ∈ R(n+m)×(n+m), composed by smaller block matrices

M :=

(
A −B

B> C

)
.

In practice, this scheme is typically difficult to solve iteratively, leading to an ill-

conditioned system which needs the use of preconditioners [53, 54, 107]. Therefore,

construction of efficient preconditioning techniques for the algebraic systems is an

open question and a matter of ongoing scientific research, see for example [36, 56,

126].

3.2.2 Splitting scheme

Jacobi and Gauss-Seidel methods are examples of iterative splitting schemes. The

stability of these iterative methods depends on the matrix involved. There are also

more sophisticated methods like Successive over-relaxation method (SOR), that adds

a parameter in order to stabilize the iterative method [117]. Splitting schemes extend

to systems of equations that have a block structure (3.5). For instance, one of these

splitting schemes is the exact Uzawa type splitting scheme [57, 120].

Solve for x and y

(
A −B

0 (C + S)

)(
x

y

)
=

(
b

c−B>A−1b

)
,

where S = B>A−1B. This method is exact and converge in one iteration. Nev-

ertheless, A−1 is practically unavailable in poromechanics problems. We therefore

introduce an Inexact Uzawa splitting scheme [114, 132]. This scheme is obtained

by approximating operator S. In this case, we consider a diagonal approximation of

S ≈ s I, with the stabilization parameter s ≥ 0, and B>A−1b ≈ B>xi−1 − Syi−1.

For i > 0, given x0 and y0, solve for xi and yi until convergence

(
A −B

0 (C + S)

)(
xi

yi

)
=

(
b

c + Syi−1 −B>xi−1

)
. (3.6)

It is essential to understand the efficiency, stability and convergence of these iterative

splitting schemes applied to poromechanics problems, in order to ensure the robust-

ness and accuracy of the resulting computations. Papers A, C, D and E develop,

study, and analyse monolithic and splitting schemes for poromechanics problems.

Fixed-stress splitting method The fixed-stress splitting method is the most widely

used solver for poromechanics. It consists of solving the flow problem by first fixing

the volumetric mean total stress, and then the mechanics problem is solved from the

values obtained at the previous flow step. The method can be written algebraically

as Eq. (3.6) where the stabilization parameter is given by s = α2

λ and the matrix is

given by

S =

(
0 0

0 sCp

)
,
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where the matrix Cp represents the algebraic operator of the flow problem corre-

sponding to the pressure component.

A lot of research has been done on this method in recent years. The uncon-

ditional stability of the fixed-stress splitting method is shown in [69], using a von

Neumann analysis. In addition, the stability and convergence of the fixed-stress split-

ting method was rigorously established in [80]. In Paper E, we prove the convergence

of the fixed-stress split method in energy norm for linear and heterogeneous porome-

chanics problems.

3.3 Linearizations schemes

In Section 2, we discussed the equations that govern fluid flow in deformable porous

media. Some of these equations are non-linear, leading to non-linear variational

problems. Here, we will use a prototype non-linear problem (Eq. 3.7) to illustrate

two linearization techniques: Newton’s method and the L-scheme.

For V and W , two normed vector spaces U ⊂ V , find x ∈ U such that

F(x) = 0, (3.7)

given a non-linear function F : U →W .

The function F is called Fréchet differentiable at x if there exists a bounded

operator A : V →W such that

lim
‖h‖V→0

‖F(x + h)− F(x)−Ah‖W
‖h‖V

= 0.

If such operator A exists and is unique, we write DF(x) = A. Similarly to the Fréchet

derivative on a Banach space, the Gateaux derivative is often used to formalize the

directional derivative.

DF(x; y) = lim
h→0

‖F(x + hy)− F(x)‖W
h

.

The Gateaux derivative generalized the idea of directional derivatives and it is useful

for problems that has complicated non-linearities, for instance Eqs. (2.18).

3.3.1 Newton’s method

The first choice of a linearization method is the well-recognized Newton method. In

this case, a solution x ∈ U of Eq. (3.7) is approximated iteratively as follows:

For i > 0, given x0 ∈ U , find xi+1 ∈ U such that

F(xi) +DF(xi; δxi+1) = 0, (3.8)

where δxi+1 = xi+1 − xi and i is the iteration index.

This method has quadratic convergence, but the convergence is local. This means

that the starting value for the iterations should not be too far from the (unknown)
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solution. To increase the robustness of the Newton method, one can first perform

some L-scheme iterations, which are later described, and then switch to Newton’s

method [78]. Another way to increase the robustness of Newton’s method is by

applying line search strategy [29, 30].

3.3.2 L-scheme

The idea of the L-scheme [78, 95] is to solve the non-linear problem (3.7) iteratively

by linearising in the following way:

For i > 0, given x0 ∈ U , find xi+1 ∈ U such that

F(xi) + Lδxi+1 = 0, (3.9)

where L ∈ R is a linearization parameter of choice.

When i → ∞, we must have xi → x, obviously ensuring the consistency of the

scheme. The L-scheme can be interpreted as either a stabilized fixed-point method or

as quasi-Newton method. Additionally, it is very robust but only linearly convergent.

It can be applied to non-smooth, but monotonically increasing scalar functions F(·)
[95]. For the case of Hölder continuous but not Lipschitz functions F(·), we refer to

[28, 98]. The L-scheme can be speeded up by using the Anderson acceleration [7, 29].

The main advantages of the L-scheme are

• It does not involve the computation of derivatives.

• The arising linear systems are well-conditioned.

• It can be applied to non-smooth non-linearities.

• It is easy to understand and implement.

The L-scheme is currently being used for: transport of a surfactant in variably

saturated porous media [64, 83], Biot’s model coupled with heat equation [32] and

two phase flow in porous media [109]. Also, this method can perfectly be used in com-

bination with other methods, like domain decomposition [109] and preconditioning

[2].



Chapter 4

Introduction to the papers

Here we will summarize the scientific results. We first show the convergence of the

L-scheme for a non-linear Biot model in Paper A. Second, we extend the results

from Paper A to a higher order discretization in time. Third, in Paper C, we will

analyze Newton’s method and extend the model in Paper A to Biot’s model under

large deformation. And fourth, we will develop a new splitting scheme that allows

parallel computations in the time domain.

Additionally, we will show two collaborative papers. The first one, Paper E,

is related to optimizing the fixed stress splitting method through a stabilization

parameter. The second one, Paper F, is a short conference paper that compiles

and discusses the theoretical convergence of L-scheme and Newton’s method in the

monolithic and splitting version.

4.1 Main results

4.1.1 Paper A: Robust iterative schemes for non-linear porome-
chanics

Authors: M. Borregales, F.A. Radu, K.Kumar and J.M. Nordbotten

Journal: Computational Geosciences 22, 4 (2018)

In this paper, we proposed and analyzed two linearization schemes for a non-linear

extension of Biot’s model. We consider the case when the relative density of the flow

and the bulk modulus in the porous material are non-linear. These non-linearities

are the first but necessary steps to, later on, consider extensions of Biot’s model to

multiphase flow, elastodynamics, and poromechanics under large deformation.

The paper combines linearization techniques [78, 98, 99] and splitting schemes

(fixed-stress and undrained splitting schemes) [70, 82] for solving Biot’s model. We

proposed a monolithic and a splitting L-scheme for solving a non-linear Biot model.

The existence and uniqueness of a solution for both schemes, as well as their global,
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linear, and robust convergence, is shown rigorously. Concretely, by robust, it is meant

that the convergence of the schemes proposed is guaranteed regardless of the starting

guess for the iteration (global convergence) and independently of the discretization

parameters.

We performed an implicit discretization in time using backward Euler, linear

conformal Galerkin elements for the space discretization of the mechanics problem

and mixed finite elements (the lowest order Raviart-Thomas elements) for the flow

problem. Two illustrative numerical examples, an academic one and a non-linear

extension of Mandel’s problem, were implemented for testing the performance of the

schemes. Both examples show results in agreement with the convergence analysis

developed in the paper.

4.1.2 Paper B: Higher order space-time elements for a non-linear
Biot model

Authors: M. Borregales and F.A. Radu.

Journal: Numerical Mathematics and Advanced Applications ENUMATH 2017,

Lecture Notes in Computational Science and Engineering.

In this paper, we applied the monolithic and splitting L-scheme developed in Paper

A to a higher order finite element space-time discretization. We note that the non-

linear Biot model in Paper A can be understood as the singular limit of the fully

dynamic Biot-Allard system [81]. The quasi-static characteristic of the Biot model

comes in due to neglecting the solid’s velocity in the mechanical problem Eq. 2.4.

In this regard, the non-linear Biot model in Paper A does not allow application to

problems with higher dynamics in the solids deformation.

Here, we applied a higher order space-time discretization to a non-linear Biot

model [11, 12, 14] linearized by L-scheme. We believe that this methodology can

be extended for more complex non-linear models, elastodynamics and to the fully-

dynamic Biot-Allard system [81].

The major challenge we faced in this work was related to the implementation

of the numerical experiment. We use the open-source finite element library deal.II

[10] in all our implementations, but it does not allow d + 1 mesh for a space-time

domain. Therefore, we used the DTM++ framework [71, 72] in order to incorporate

a family of continuous and discontinuous high order finite element methods for the

time discretization.

The most important observation of this work is that the convergence of the mono-

lithic and splitting L-scheme are not affected by the mesh size and time step size.

These results are in accordance with the theoretical results from Paper A. However,

the convergence is slightly dependent on the order of the spatial discretization.
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4.1.3 Paper C: Iterative solvers for Biot model under small and
large deformation

Authors: M. Borregales, K.Kumar, J.M. Nordbotten and F.A. Radu.

Journal: arXiv:1905.12996

In this paper, we proposed and analyzed several iterative schemes for solving Biot’s

model under small and large deformation. This paper extends the non-linear Biot

model in Paper A to include geometrical non-linearities. We proposed two lineariza-

tion schemes based on Newtons methods: a monolithic Newton method and the

alternate Newton’s method. Additionally, we proposed two linearization schemes

based on the L-schemes proposed in Paper A.

The linear Biot model is a good model for small deformations, but it becomes

inappropriate for moderate to large deformations, which are common in the context

of phenomena such as swelling and damage, and for soft materials such as gels and

tissues. The non-linearities for the Biot model under large deformations are more

complex than the ones encountered in Paper A, and they include geometrical non-

linearities for both the flow and the mechanics problem.

The main contribution of this paper is the convergence analysis of the mono-

lithic Newton method and the alternate Newton’s method under the assumption

of small deformation. The analysis in this paper showed second order convergence

for the monolithic Newton method and linear convergence for the alternate Newton

method. The alternate Newton method requires a stabilization parameter, based on

the undrained splitting scheme [68], otherwise the convergence cannot be guaran-

teed. Two numerical examples for large deformation (2D and 3D) show agreement

between convergence analysis and the computations.

4.1.4 Paper D: A parallel-in-time fixed-stress splitting method for
Biot’s consolidation model

Authors: M. Borregales, K. Kumar, F.A. Radu, C. Rodrigo and F.J. Gaspar

Journal: Computers & Mathematics with Applications (2018)

In this paper, we proposed and analyzed a new splitting scheme that allows parallel

computation. The partially parallel fixed-stress exploit the quasi-static nature of

the mechanics problem. This new approach forgets about the sequential nature of

the temporal variable and considers the time direction as a further direction for

parallelization.

Among splitting schemes for Biot model, the fixed-stress splitting method is the

most widely used [26, 70, 80]. This sequential-implicit method basically consists of

solving the flow problem first by fixing the volumetric mean total stress, and then the

mechanics part is solved from the solution obtained at the previous flow step. The

multirate iterative coupling schemes [3, 5], where multiple finer time steps for flow
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are taken within one coarse mechanics time step, exploit the different time scales

for the mechanics and flow problems. In [37], the authors present a very interest-

ing approach which consists of re-interpreting the fixed-stress splitting scheme as a

preconditioned-Richardson iteration with a particular block-triangular precondition-

ing operator. Recently, in [56], an inexact version of the fixed-stress splitting scheme

has been successfully proposed as smoother in a geometric multigrid framework,

which provides an efficient monolithic solver for Biots problem.

All the previously mentioned algorithms are based on a time-marching approach,

in which each time step is solved after the other in a sequential manner. Therefore,

they do not allow the parallelization of the temporal variable. Parallel-in-time in-

tegration methods, however, are receiving a lot of interest nowadays because of the

advent of massively parallel systems with thousands of threads, permitting to reduce

drastically the computing time [55].

As the main contribution, we develop a new version of the fixed-stress splitting

method for poromechanics problems where it is partially parallel-in-time. We further

rigorously show its convergence. Another contribution of this paper is a new proof

for the convergence of the fixed-stress splitting algorithm in the semi-discrete case.

The theoretical results are sustained by numerical computations. Moreover, a fully

parallel-in-time version of the presented method is introduced.

The main benefit of the new method is that the mechanics can be solved in a

parallel-in-time manner. We have rigorously analyzed the convergence of the pro-

posed method. If the chosen stabilization term is large enough, the method is shown

to be convergent. The theoretical results indicates a similar behavior as when using

the classical fixed-stress splitting method, in terms of convergence rate and stabiliza-

tion parameter size. We further performed numerical tests by using two well-known

benchmark problems. The numerical results confirm the theoretical findings. We ob-

serve that the new scheme is very efficient, using around 20% of the wall time of the

classic fixed-stress scheme. Nevertheless, the parallel implementation has still to be

optimized.

4.2 Related work

4.2.1 Paper E: Robust fixed stress splitting for Biots equations in
heterogeneous media

Authors: J.W. Both, M. Borregales, J.M. Nordbotten K. Kumar, and J.M. Nord-

botten

Journal: Applied Mathematics Letters (2017)

In this paper, we proposed an optimized fixed stress splitting method. The fixed

stress method has been the standard splitting method for Biot’s model. Neverthe-

less, it was designed based on a physical notion. The method is based on imposing



4.3 Conclusions and outlook 29

constant volumetric mean total stress in the first half step of fluid flow. By inter-

preting the fixed stress method as a stabilized fixed point iteration, we are able to

study it in a more rigorous mathematical setting.

The main contribution is the global and linear convergence in energy norms

of the fixed stress method. Additionally, we propose a new optimized stabilization

parameter. This parameter depends on all mechanical parameters and shows stable

iteration counts. Numerical test cases show no significant increase of iterations when

switching from a homogeneous to a heterogeneous medium or from two to three

dimensions, demonstrating the robustness of the splitting scheme with respect to

heterogeneities. Still, further numerical studies of the fixed stress method [27, 112]

show that the optimal stabilization parameter does not solely depend on the Lamé

parameters, but also other physical material parameters, the physical characteristics

of the problem and numerical discretization parameters.

4.2.2 Paper F: L-scheme and Newton based solvers for a nonlinear
Biot model

Authors: F.A. Radu, M. Borregales, F.J. Gaspar, K. Kumar and C. Rodrigo.

Journal: Proceedings: 6th European Conference on Computational Mechanics

(Solids, Structures and Coupled Problems), 7th European Conference

on Computational Fluid Dynamics (2018)

In this paper, we propose convergent iterative solvers based on the L-scheme and

Newton’s method for a nonlinear Biot model. More precisely, the first Lamé coeffi-

cient (λ) and the fluid compressibility are assumed to be nonlinear.

An important assumption is that the nonlinearities are required to be monoton-

ically increasing and Lipschitz continuous. For a justification of the validity of the

considered model, we refer to the book [115]. We remark that the results of the

present paper can easily be extended to a model containing geometrical nonlinear-

ity in the mechanics equation (Paper C), as long as it is monotonically increasing,

Lipschitz continuous, and the coupling term remains linear.

The main contribution of this paper is the compilation of different nonlinear

solvers based on the L-scheme, the Newton method, and the undrained splitting

method. The only quadratic convergent scheme is the monolithic Newton. The split-

ting Newton method also requires a stabilization parameter, otherwise the linear

convergence cannot be guaranteed. The analysis of the schemes and illustrative nu-

merical experiments were presented in Paper C.

4.3 Conclusions and outlook

This thesis concerns iterative solvers for poromechanics problems. We proposed sev-

eral solvers based on the L-scheme, Newton method, monolithic and splitting meth-
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ods. The convergence and the performance of each solver were rigorously analyzed

for linear and non-linear poromechanics problems.

The monolithic L-scheme is easy to understand, easy to implement, and it is

computationally efficient. Nevertheless, the stability of the scheme had to be studied

to assure convergence. We showed that it is globally convergent, and it is robust

for different parameters, space discretizations, and time discretizations if the non-

linearities are monotonically increasing. In contrast, the monolithic Newton method

shows quadratic convergence and the convergence is warranted for small deformation

poromechanics and relatively small time-steps.

Splitting schemes are attractive for solving coupled problems because the pre-

vious knowledge of solving each separate problem can be used straight forward.

They are also computationally efficient because one needs to solve smaller problems.

However, the splitting schemes show stability problems, especially when the cou-

pling between flow and mechanics is strong. We combined splitting schemes with

linearization schemes for solving poromechanics problems.

The monolithic and splitting L-scheme have similar linear convergence rate. How-

ever, the splitting version is much faster, and it is suitable for preconditioning mono-

lithic L-scheme or Newton’s method. The global, linear, and robust convergence of

the L-scheme is warranted if the non-linearities are monotonically increasing. How-

ever, the non-linearities presented for large deformation poromechanics are not nec-

essarily monotone. Still, the L-scheme shows convergence and excellent performance

for the example we considered.

We believe that the solvers developed here will bring excellent performance in

the case of multi-phase flow and reactive transport combined with deformation. In

these cases, the non-linearities arise in the flow model in the diffusion term, in the

time derivative term, and/or in the Biot’s coupling term. By incorporating these

non-linearities, the numerical models for CO2 storage might bring better predic-

tions. In the case of hyperelastic porous material, the new solvers might increase the

understanding of the mechanical behaviour of biological tissues. However, the tech-

niques for convergence analysis must be further developed to consider non-monotone

non-linearities.

For further research, the convergence analysis of these solvers can also be ex-

tended to poromechanics problems with other dynamic models. This is particularly

useful for wave propagation and dynamic permeability in deformable porous media.

An example of that is liquefaction occurring during earthquakes. Several approaches

can be considered in this case. For instance, different time discretization order be-

tween the flow and mechanics problem can be applied. Another interesting approach

is obtaining a parallel solver by decoupling the flow and mechanics problem in the

time domain. In this way, a parallel solver can exploit efficiently the computational

resources we have access to nowadays.
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1 Introduction

The coupling of flow and mechanics in a porous medium, typically referred
to as poromechanics, plays a crucial role in many socially relevant applica-
tions. These include geothermal energy extraction, energy storage in the
subsurface, CO2 sequestration, and understanding of biological tissues. The
increased role played by computing in the development and optimisation
of (industrial) technologies for these applications implies the need for im-
proved mathematical models in poromechanics and robust numerical solvers
for them.

The most common mathematical model for coupled flow and mechanics
in porous media is the linear, quasi-stationary Biot model [8, 9, 10, 52].
The model consists of two coupled partial differential equations, representing
balance of forces for the mechanics and conservation of mass and momentum
for (single-phase) flow in porous media.

In terms of modelling, Biot’s model has been extended to unsaturated flow
[14, 37], multiphase flow [27, 28, 34, 36, 48], thermo-poro-elasticity [19], and
reactive transport in porous media [33, 49], where nonlinearities arise in the
flow model, specifically in the diffusion term, the time derivative term and/or
in Biot’s coupling term. The mechanics model can also be extended to the
elasto-plastic [3, 56], the fracture propagation [35] and the hyperelasticity [20,
21], where the nonlinearities appear in the constitutive law of the material, in
the compatibility condition and/or the conservation of momentum equation.
Furthermore, elastodynamics or non-stationary Biot, i.e. Biot-Allard model
[38], includes a convolution in the coupling term of both mechanics and flow
equations. In this paper, we are going to explore a general case that allows
large deformations. The mechanical deformation follows the Saint Venant-
Kirchoff constitutive law and the fluid compressibility in the fluid equation is
assumed to be nonlinear. This model formulation is needed to later consider
extensions of Biot’s model to plasticity, more general hyperelastic materials,
and elastodynamics.

Finding closed-form solutions for coupled problems is very difficult, and
commonly based on various simplifications. We, therefore, resort to nu-
merical approximations. In general, there are two approaches to solve such
problems, the fully coupled and the weakly coupled scheme. In general the
fully coupled schemes for fluid potential and mechanical deformation are sta-
ble, have excellent convergence properties, and ensure that the numerical
solution is consistent with the underlying continuous differential equations
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[29, 55]. Despite obvious advantages, the monolithic solver for the fully cou-
pled problem are more difficult to implement, and have difficulties solving the
resulting linear system, particularly in the context of existing legacy codes for
separate physics. In the weakly coupled approach, while marching in time,
we time-lag the flow problem (or the mechanics), thereby fully decoupling
the two problems. Due to the complexities associated with the fully coupled
scheme, the industry standard remains to use weakly coupled or iteratively
coupled approaches [18, 42, 51, 59]. An iteratively coupled approach takes
somewhat of a middle path; at each time step, it decouples the flow and
mechanics, but iterates so that the convergence is achieved. Weakly coupled
schemes, wherein there are not iterations within time step, have in particu-
lar been questioned in previous works [17, 22, 42, 45]; they have been shown
to lack robustness and even convergence, if not properly designed. In order
to ensure the robustness and accuracy of the resulting computations, it is
therefore essential to understand the efficiency, stability, and convergence of
iterative coupling schemes, in particular in the presence of nonlinearities.

In this work, we present monolithic and splitting approaches for solv-
ing this nonlinear system, that is, nonlinear compressibility and the Saint
Venant-Kirchoff constitutive law for stress-strain. Moreover, we rigorously
study the convergence of our schemes, including the Newton based ones, un-
der the assumption of small deformations. As for splitting approach, we use
the undrained split method, see [31, 39]. We use linear conformal Galerkin
elements for the discretization of the mechanics equation and mixed finite
elements for the flow equation [7, 23, 30, 43, 58]. Precisely, the lowest order
Raviart-Thomas elements are used [16]. We expect, however, that the so-
lution strategy discussed herein will be applicable to other combinations of
spatial discretizations such as those discussed in [40, 50] and the references
therein. Backward Euler is used for the temporal discretization.

To summarise, the new contributions of this paper are

• We propose Newton and L-scheme based monolithic and splitting schemes
for solving the Biot model under small or large deformation.

• The convergence analysis of all schemes is shown rigorously under the
assumption of small deformations.

• We provide a benchmark for the convergence of splitting algorithms for
a general nonlinear Biot model that includes large deformations.
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We mention some relevant works in this direction. For the convergence
analysis of the undrained split method applied to the linear Biot model, we
refer to [5, 6, 12, 24, 25, 39]. For a discussion on the stabilization/tuning
parameter used in the undrained split approach, we refer to [12, 15]. A
theoretical investigation on the optimal choice for this parameter is performed
in [53]. The linearization is based on either Newton’s method, or the L-
scheme [37, 44, 48] or a combination of them [14, 37]. For monolithic and
splitting schemes based solely on L-scheme, we refer to [11]. Multirate time
discretizations or higher order space-time Galerkin method has also been
proposed for the linear Biot model in [1] and [6], respectively.

The paper is structured as follows. In the next section, we present the
mathematical model. In Section 3, we propose four iterative schemes. Section
4 shows the analysis of iterative schemes under the assumption of small
deformations. Numerical results are presented in Section 5 followed by the
conclusion in Section 6.

2 Governing equations

We consider a fluid flow problem in a poroelastic bounded reference domain
Ω ⊂ Rd, d ∈ {2, 3} under large deformation. A Lagrangian frame of reference
is used to keep track of the invertible transformation x := {x(X, t) = X +
u(X, t) : X ∈ Ω→ x ∈ Ωt}, where Ωt is the deformed domain at time t and
u represents the deformation field. The gradient of the transformation and
its determinant are given by F = ∇ x(X, t) and J = det(F). All differentials
are with respect to the undeformed coordinates X, unless otherwise stated.

We will now write the conservation of momentum and mass equation in
Ω. The conservation of momentum represents the balance between the first
Piola-Kirchhoff poroelastic stress Π in Ω and the forces acting on Ωt, and is
given by

−∇ ·Π = ρbg, (1)

where ρb = J%b is the bulk density in Ω, %b is the bulk density in Ωt and g is
gravity.

We exploit the relation Π = FΣ since the constitutive laws are developed
for the second Piola-Kirchhoff poroelastic stress Σ. This stress tensor is
composed of the effective mechanical stress Σeff and the pore pressure p by
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the following relation
Σ = Σeff − JF−1F>p,

where JF−1F> ensures that pressure p exerts an isotropic stress in Ωt. We
assume an isotropic poroelastic material with constant shear modulus µ and
a nonlinear function of the volumetric strain c(·) [11, 54]. The effective stress
is given by Saint Venant-Kirchhoff constitutive law: Σeff = 2µE + c (tr(E)) ,
where the Green strain tensor E is defined by
E = 1

2

(
∇u +∇>u + (∇u)>∇u

)
.

The conservation of fluid mass is given by

Γ̇ +∇ · q = Sf . (2)

We consider a fluid mass Γ = Jρfφ of a slightly compressible fluid, where φ is
the porosity and ρf the fluid density and Sf the source term in Ω respectively.
The time derivative of the fluid content Γ̇ = Γ̇(u, p) is considered to be a
function of the pressure and the pore volume change due to the deformation
field. We consider Darcy’s law

q = −K(u) (∇p− ρfg0) , (3)

where the flux variable q is the first Piola transform of the corresponding
flux variable in Ωt, K = JF−1kF−> is the corresponding transformation of
the mobility tensor k in Ωt and Υ = F>g. Finally, the general nonlinear Biot
model considered in this paper reads as:

Find (u,q, p) such that

−∇ ·Π (∇u, p) = %bg, in Ω×]0, T [,

q = −K(u) (∇p− ρfΥ) , in Ω×]0, T [, (4)

Γ̇(u, p) +∇ · q = Sf , in Ω×]0, T [.

To complete the model we consider Dirichlet boundary conditions (BC) and
initial conditions given by (u0, p0) such that Γ(u0, p0) = Γ0 and Π(u0, p0) =
Π0 at time t = 0. The functions Γ0 and Π0 are supposed to be given (and
to be sufficiently regular).

In practice, the initial data u0 and p0 are not independent and can be
obtained by solving the flow equation for p0 and then solving the mechanics
equation for getting u0.
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3 Iterative schemes

In this section, we present several monolithic and splitting iterative schemes
for solving Eqs. (4). First, we propose the Newton method which is well
known for having quadratic convergence. Secondly, we combine the New-
ton method with a stabilized splitting scheme based on the undrained split
method. Finally, for the third and fourth schemes, we propose monolithic
and splitting L-schemes. The iterative schemes will be written using an incre-
mental formulation. In this regard, we introduce naturally defined residuals
for the nonlinear Eqs. (4).

Fmech(u, p) = −∇ ·Π (∇u, p)− ρbg,
Fdarcy(u, p) = q + K(u) (∇p− ρfΥ) ,

Fmass(u, p) = Γ̇(u, p) +∇ · q− Sf .
(5)

We will denote by δ(·)i = (·)i − (·)i−1 the incremental operator, i the incre-
mental counter, ∂(·) the partial derivative operator respect to (·).

3.1 A monolithic Newton solver

The Newton method is usually the first choice of the linearization meth-
ods due to its quadratic convergence. However, the convergence is local
and it requires relatively small time steps to ensure the quadratic conver-
gence [47]. The method starts by using initial solution (u0,q0, p0), solves for
(δui, δqi, δpi) satisfying

−∇ ·
(
∂uΠ

(
∇ui−1, pi−1

)
∇δui − ∂pΠ

(
∇ui−1, pi−1

)
δpi

)
= −Fmech(ui−1, pi−1),

δqi + K(ui−1)∇δpi−1 + ∂uK(ui−1)∇pi−1δui = −Fdarcy(ui−1, pi−1),

∂pΓ̇(ui−1, pi−1)δpi + ∂uΓ̇(ui−1, pi−1)δui + ∇ · δqi = −Fmass(ui−1, pi−1),

(6)

and finally updates the variables
(
ui,qi, pi

)
=

(
ui−1,qi−1, pi−1

)
+
(
δui, δqi, δpi

)
.

3.2 A splitting Newton solver

The splitting Newton method combines a splitting method with the Newton
linearization. We introduce a stabilization parameter Ls ≥ 0 to stabilize the
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mechanics equation. The precise condition on Ls to ensure convergence is
shown in Theorem 2. The method consists on two steps: starting with the
initial condition (u0,q0, p0):

Step 1: solve for (δqi, δpi)

δqi + K(ui−1)∇δpi−1 = −Fdarcy(ui−1, pi−1),

∂pΓ̇(ui−1, pi−1)δpi +∇ · δqi = −Fmass(ui−1, pi−1),
(7)

and update the variables

(
qi, pi

)
=

(
qi−1, pi−1

)
+
(
δqi, δpi

)
.

Step 2: solve for δui satisfying

−∇ ·
(
∂uΠ

(
∇ui−1, pi

)
∇δui − Ls(∇ · δui) I

)
= −Fmech(ui−1, pi), (8)

and update the variable

ui = ui−1 + δui.

The stability of the scheme is controlled by Ls as it is shown in [47].

3.3 A monolithic L-scheme

The L-scheme can be interpreted as either a stabilized Picard method or a
quasi-Newton method. This scheme is robust but only linearly convergent.
Moreover, it can be applied to non-smooth but monotonically increasing
nonlinearities. For example, for the case of Hölder continuous (not Lipschitz)
nonlinearities we refer to [13]. As it is a fixed point scheme, it can be speeded
up by using the Anderson acceleration [2, 15]. To summarize, the main
advantages of the L-scheme are:

• It does not involve computation of derivatives.

• The arising linear systems are well-conditioned.

• It can be applied to non-smooth nonlinearities.

• It is easy to understand and implement.
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A monolithic L-scheme requires three constant tensors Lu, Lp, Lq ∈ Rd×d

and two positive constants Lp and Lu as linearization parameters. A practi-
cal choice of the linearization parameters will be discussed in the numerical
section. We refer to [11, 22] for a discussion regarding the best choice for the
linearization parameters Lp and Lu.

The method starts with the given initial solution (u0,q0, p0) and solve for
(δui, δqi, δpi)

−∇ · Lu∇δui −∇ · Lpδp
i = −Fmech(ui−1, pi−1),

δqi + K(ui−1)∇δpi + Lqδu
i = −Fdarcy(ui−1, pi−1),

Lpδp
i + Luδu

i +∇ · δqi = −Fmass(ui−1, pi−1),

(9)

and then update the variables

(
ui,qi, pi

)
=

(
ui−1,qi−1, pi−1

)
+
(
δui, δqi, δpi

)
.

3.4 A splitting L-scheme

The splitting scheme requires less linearization terms: two constants Lu ∈
Rd×d, Lp ≥ 0 and a positive stabilisation term Ls. This makes it suitable for
quick implementation since there is no need to calculate any Jacobian. The
method is split in two steps, given initial solution (u0,q0, p0):

Step 1: solve for (δqi, δpi)

δqi + K(ui−1)∇δpi = −Fdarcy(ui−1, pi−1),

Lpδp
i +∇ · δqi = −Fmass(ui−1, pi−1),

(10)

update the variables

(
qi, pi

)
=

(
qi−1, pi−1

)
+
(
δqi, δpi

)
.

Step 2: solve for δui

−∇ ·
(
Lu∇δui + Ls(∇δ · ui) I

)
= −Fmech(ui−1, pi), (11)

and then update the variables

ui = ui−1 + δui.
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4 The Biot model under small deformations

The convergence analysis of the iterative schemes proposed cannot be ad-
dressed with standard techniques [11, 15, 14, 37, 39]. This is due to the
nonlinearities being non-monotone. Nevertheless, a rigorous analysis can be
performed for the case of small deformations. Accordingly, we assume the
porous medium to be under small deformation and present the convergence
of the iterative schemes proposed in the previous section.

Under small deformation, the different between Ωt and Ω can be ne-
glected. The gradient of the transformation is approximated by F ≈ I
and the determinant of the transformation by J ≈ 1. Additionally, the
Green strain tensor E can be approximated by the infinitesimal strain ten-
sor E ≈ ε = 1

2

(
∇u + (∇u)>

)
. Then, the poroelastic stress tensor can be

expressed by

Π(u, p) = σ(u, p) = 2µε(∇u) + c(tr(ε(∇u)))− αpI, (12)

where α is the Biot constant. The mobility tensor is considered isotropic
K(u, p) = kI, but the results of the convergence analysis can be extended
without difficulties to a more general anisotropic case. Additionally, the time
derivative of the volumetric deformation is approximated by J̇ ≈ ∇ · u̇. In
this regard the fluid mass can be expressed as

Γ(u, p) = Γ0 + cf (b(p)− b(p0)) + α∇ · (u− u0) , (13)

where the relative density b(·) is a nonlinear function of the pressure p. The
variational formulation for the Biot model, under small deformation, reads
as follows:

For each t ∈ (0, T ], find u(t) ∈ (H1
0 (Ω))

d
, q ∈ H1(div,Ω) and p(t) ∈

L2(Ω) such that there holds

(ε(u), ε(v)) + (c(∇ · u)− αp,∇ · v) = (ρbg,v), ∀v ∈ (H(Ω))d ,

(K−1q, z)− (p,∇ · z) = (ρfg, z) , ∀z ∈ H1(div,Ω),
(
ḃ(p)) + α∇ · u̇, w

)
+ τ (∇ · q, w) = τ (Sf , w) , ∀w ∈ L2(Ω),

(14)

with the initial condition

(b(p0)) + α∇ · u0, w) = 0, ∀w ∈ L2(Ω). (15)
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In the above, we have used the standard notations. We denote by L2(Ω)
the space of square integrable functions and by H1(Ω) the Sobolev space
H1(Ω) = {v ∈ L2(Ω) ; ∇ v ∈ L2(Ω)d}. Furthermore, H1

0 (Ω) will be the space
of functions in H1(Ω) vanishing on ∂Ω and H(div; Ω) the space of vector
valued function having all the components and the divergence in L2(Ω). As
usual we denote by (·, ·) the inner product in L2(Ω), and by ||·|| its associated
norm.

Next, we make structural assumptions on the nonlinearities:

(A1) c, b : R→ R differentiable with c′ and b′ Lipschitz continuous.

(A2) There exists a constant αc such that c′(ξ) > αc, ∀ ξ ∈ R.

(A3) There exists a constant αb such that b′(ξ) > αb, ∀ ξ ∈ R.

(A4) There exists constant km > 0 and kM such that km ≤ k(~ξ) ≤ kM ,

∀~ξ ∈ Ω.

For the discretization of problem (14) we use conformal Galerkin finite
elements for the displacement variable and mixed finite elements for the flow
[23, 43]. More precisely, we use linear elements for the displacement and
lowest order Raviart-Thomas elements [16] for the flow. Backward Euler is
used for the temporal discretization.

Let Ω = ∪K∈ThK be a regular decomposition of Ω into d-simplices. We
denote by h the mesh size. The discrete spaces are given by

Vh := {vh ∈ H1(Ω)
d

; vh|K ∈ Pd1 , ∀K ∈ Th},
Wh := {wh ∈ L2(Ω) ; wh|K ∈ P0 , ∀K ∈ Th},
Zh := {~zh ∈ H(div; Ω) ; ~zh|K(~x) = ~a+ b~x, ~a ∈ Rd, b ∈ R, ∀K ∈ Th},

where P0,P1 denote the spaces of constant functions and of linear polynomi-
als, respectively. For N ∈ N, we discretize the time interval uniformly and
define the time step τ = T

N
and tn = nτ . We use the index n for the primary

variable un, qn and pn at corresponding time step tn. In this way, the fully
discrete weak problem reads:

For n ≥ 1 and given
(
un−1
h ,qn−1

h , pn−1
h

)
find (unh,q

n
h, p

n
h) ∈ (Vh,Zh,Wh),

such that
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(ε(unh), ε(vh)) + (c(∇ · unh),∇ · vh)− α (pnh,∇ · vh) = (ρbg,vh),

(K−1qnh, zh)− (pnh,∇ · zh) = (ρfg, zh) ,
(
b(pnh)− b(pn−1

h ), wh
)

+ α
(
∇ · (unh − un−1

h ), wh
)

+τ (∇ · qnh,∇wh) = τ(Sf , wh),

(16)

for all (vh, zh, wh) ∈ (Vh,Zh,Wh).
Following the notation previously introduced, we denote by n the time

level, whereas i will refer to the iteration number of the Newton method. We
further denote the approximate solution of the linearized problem (16) by
(un,ih ,q

n,i
h , p

n,i
h ). At this stage we can introduce the notations

en,iu = un,ih − unh,

en,iq = qn,ih − qnh,

en,ip = pn,ih − pnh.

These will be used subsequently in the convergence analysis of the monolithic
Newton method and the alternate version. For the monolithic and splitting
L-scheme the convergence analysis can be found in [11].

4.1 Convergence analysis of the monolithic Newton
method

In this section, we analyse the monolithic Newton method introduced in Sec-
tion 3 used for solving the simplified nonlinear Biot model given in (16).
As we have previously stated, we perform the analysis for the case of small
deformation. Here we present a variational formulation of the scheme and
demonstrate its quadratic convergence in a rigorous manner. The Newton
scheme reads as follows:

For i = 1, 2, . . . solve
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(
ε(un,ih ), ε(vh)

)
+

(
c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇ · δun,ih ,∇ · vh

)

−
(
αpn,ih ,∇ · vh

)
= (ρbg,vh),

(
K−1qn,ih , zh

)
−

(
pn,ih ,∇ · zh

)
= (ρfg, zh) ,

(
b(pn,i−1

h ) + b′(pn,i−1
h )δpn,ih − b(pn−1

h ), wh
)
+

(
α∇ · (un,ih − un−1

h ), wh
)

+τ
(
∇ · qn,ih ,∇wh

)
= τ(Sf , wh),

(17)

∀ (vh, zh, wh) ∈ (Vh,Zh,Wh), where the initial approximation (un,0h qn,0h , pn,0h )
is taken as the solution at the previous time step, that is (un−1

h ,qn−1
h , pn−1

h ).

In order to prove the convergence of the considered Newton method, the
following lemmas will be used.

Lemma 1. Let {xn}n≥0 be a sequence of real positive number satisfying

xn ≤ ax2
n−1 + bxn−1 ∀n ≥ 1, (18)

where a, b ≥ 0. Assuming that

ax2
0 + b ≤ 1

holds, then the sequence {xn}n≥0 converges to zero.

Proof. The result can be shown by induction, see page 52 in [46] for more
details.

Lemma 2. If f : R → R is differentiable and f ′ is Lipschitz continuous,
then there holds

|f(x)− f(y) + f ′(y)(y − x)| ≤ Lf ′

2
|y − x|2, ∀ x, y ∈ R.

Proof. See page 350 in [32], for example.

Next, the following result provides the quadratic convergence of the Newton
method (17) for τ sufficiently small.

Theorem 1. Assuming (A1)-(A4), the Newton method in (17) converges
quadratically if τ = O(hd).
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Proof. By subtracting equations (16) from (17), taking as test functions en,iu ,
en,iq and en,ip and rearranging some terms to the right hand side we obtain,

(
ε(en,iu ), ε(en,iu )

)
+
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)
− α

(
en,ip ,∇ · en,iu

)

=
(
c(∇ · unh)− c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇ · en,i−1

u ,∇ · en,iu

)
, (19)(

K−1en,iq , en,iq

)
−
(
en,ip ,∇ · en,iq

)
= 0, (20)

(
b′(pn,i−1

h )
(
pn,ih − pnh

)
, en,ip

)
+ α

(
∇ · en,iu , en,ip

)
+ τ

(
∇ · en,iq , en,ip

)

=
(
b(pn,i−1

h )− b(pn−1
h ) + b′(pn,i−1

h )
(
pn,i−1
h − pnh

)
, en,ip

)
, (21)

where we have rewritten,

c′(∇ · un,i−1
h )∇ · δun,ih = c′(∇ · un,i−1

h )∇ · (un,ih − un,i−1
h )

= c′(∇ · un,i−1
h )(∇ · un,ih −∇ · unh)

−c′(∇ · un,i−1
h )(∇ · un,i−1

h −∇ · unh)

= c′(∇ · un,i−1
h ) (∇ · en,iu −∇ · en,i−1

u ) ,

We obtain an analogous expression for the term with b′(·). From (A1), c(·)
is differentiable with c′(·) Lipschitz continuous, then from Lemma 2 we have,

|c(x)− c(y) + c′(y)(y − x)| ≤ Lc′

2
|x− y|2, ∀ x, y ∈ R, (22)

where Lc′ represents the Lipshitz constant of c′(·). Then, by using Young’s

inequality (a, b) ≤ ||a||
2

2γ
+
γ||b||2

2
, for γ ≥ 0, and by choosing x = ∇ · unh

and y = ∇ · un,i−1
h in (22), from (19) we obtain the following bound, for any

γ ≥ 0

||ε(en,iu )||2 +
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)
− α

(
en,ip ,∇ · en,iu

)

≤ L2
c′

8γ
||∇ · en,i−1

u ||4L4(Ω) +
γ

2
||∇ · en,iu ||2.

(23)

Next, by using the inverse inequality for discrete spaces ||·||L4(Ω) ≤ Ch−d/4||·||
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[41], (pg. 111) the latter reads,

||ε(en,iu )||2 +
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)
− α

(
en,ip ,∇ · en,iu

)

≤ C1h
−dL

2
c′

8γ
||∇ · en,i−1

u ||4 +
γ

2
||∇ · en,iu ||2.

(24)

Finally, by using (A2) and choosing γ = αc, we obtain the following inequal-
ity,

||ε(en,iu )||2 +
αc

2
||∇ · en,iu ||2 − α

(
en,ip ,∇ · en,iu

)
≤ C1h

−d L
2
c′

8αc

||∇ · en,i−1
u ||4. (25)

In a similar way, we obtain the following expression from (21),

τ
(
∇ · en,iq , en,ip

)
+
αb

2
||en,ip ||2 + α

(
∇ · en,iu , en,ip

)
≤ C2h

−d L
2
b′

8αb

||en,i−1
p ||4. (26)

Adding (25), (26), and (20) multiplied by τ yields,

αc
2
||∇ · en,iu ||2 + αb

2
||en,ip ||2 +

(
K−1en,iq , en,iq

)
≤ C1h

−d L
2
c′

8αc
||∇ · en,i−1

u ||4

+C2h
−d L2

b′
8αb
||en,i−1
p ||4.

(27)

By defining αc,b = min
(
αc, αb,

τ
kM

)
and Cc,b = max

(
C1L2

c′
αc

,
C2L2

b′
αb

)
we can

rewrite (27) as

‖∇ · en,iu ‖2 + ‖en,ip ‖2 + ‖en,iq ‖2 ≤ Cc,bh
−d

αc,b

(
‖∇ · en,i−1

u ‖4 + ‖en,i−1
p ‖4

)
. (28)

Using ‖∇ · en,0u ‖ ≤ Cτ , ‖en,0p ‖ ≤ Cτ (which can be proven) and Lemma 1,
the quadratic convergence of Newton’s method is ensured if

Cc,bh
−d

αc,b

τ 2 ≤ 1

which holds true for τ = O(h
d
2 ).
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4.2 Convergence analysis of the alternate splitting New-
ton scheme

In this section we present the splitting Newton scheme for solving the non-
linear Biot model given in (16). We present the solver in a variational form
and demonstrate its linear convergence.
Let i ≥ 1, Ls ≥ 0 and (un,i−1

h ,qn,i−1
h , pn,i−1

h ) ∈ (Vh,Zh,Wh) be given.
Step 1: find (qn,ih , p

n,i
h ) ∈ (Zh,Wh) such that

(
K−1qn,ih , zh

)
−

(
pn,ih ,∇ · zh

)
= (ρfg, zh) ,

(
b(pn,i−1

h ) + b′(pn,i−1
h )δpn,ih − b(pn−1

h ), wh
)
+ τ

(
∇ · qn,ih ,∇wh

)

+α
(
∇ · (un,i−1

h − un−1
h ), wh

)
= τ(Sf , wh),

(29)

∀ (zh, wh) ∈ (Zh,Wh)
Step 2: find un,ih ∈ Vh such that

(
ε(un,ih ), ε(vh)

)
+
(
c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇ · δun,ih ,∇ · vh

)

+
(
Ls∇ · δun,ih ,∇ · vh

)
− α

(
pn,ih ,∇ · vh

)
= (ρbg,vh),

(30)

∀vh ∈ Vh.

Theorem 2. Assuming (A1)-(A4) and Ls ≥ α2

αb
, the alternate Newton split-

ting method in (29)-(30) converges linearly if τ is small enough.

Proof. The proof is similar to that of Theorem 1. Nevertheless, for the sake
of completion we give it in Appendix A.

5 Numerical examples

In this section, we present numerical experiments that illustrate the perfor-
mance of the proposed iterative schemes. We study two test problems: a
2D academic problem with a manufactured analytical solution, and a 3D
large deformation case on a unit cube. All numerical experiments were im-
plemented using the open-source finite element library Deal II [4]. For all
numerical experiments, a Backward Euler scheme has been used for the time
discretization. We consider continuous linear Galerkin FE for u, lowest order
of Raviart-Thomas FE and discontinuous Galerkin FE for q and p. However,
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we would like to mention that any stable discretization can be considered in-
stead. For all cases, as stopping criterion for the schemes, we use

‖pi − pi−1‖+ ‖qi − qi−1‖+ ‖ui − ui−1‖ ≤ 10−8.

Test problem 1: an academic example for Biot’s model under small
deformation

We solve the nonlinear Biot problem under small deformation in the unit-
square Ω = (0, 1)2 and until final time T = 1. This test case was proposed in
[11] to study the performance of the monolithic and splitting L-scheme. We
extend the Newton method and the alternate Newton method described in
Section 4.

Here, we introduce a manufactured right hand side such that the problem
admits the following analytical solution

p(x, y, t) = tx(1− x)y(1− y), q(x, y, t) = −k∇p,
u1(x, y, t) = u2(x, y, t) = tx(1− x)y(1− y),

which has homogeneous boundary values for p and u.
For infinitesimal deformations and rotations, there is no distinction be-

tween the reference and the deformed domains. In this regard, we solve
problem (16) using the iterative schemes proposed in Section 4. The mesh
size and the time step are set as h = τ = 0.1. For this case, all initial con-
ditions are zero. The linearization parameters Lp and Lu are equal to the
Lipschitz constant Lb and Lc corresponding to the nonlinearities b(·) and c(·)
[11].

In order to study the performance of the considered schemes, we propose
four coefficient functions for b(·) and two for c(·), and define four test cases as
given in Table 1. Figure 1 shows the performance of the numerical methods at
the last time step T = 1. The monolithic Newton method shows quadratic
convergence in all cases. Nevertheless, the alternate Newton and the L-
scheme methods show linear convergence as predicted in Section 4.

Figure 2 shows the performance of the considered schemes for different
time steps. The Newton method has better convergence for smaller time
steps while the L-scheme has it for larger time steps; all this is in agreement
with the Theorems 1 and 2. The performance of the considered schemes are
independent of the mesh discretization.
Test problem 2: a unit cube under large deformation
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Table 1: The coefficient functions b(·), c(·) for test problem 1.

Case b(p) c(∇ · u)
1 ep (∇ · u)3 +∇ · u
2 ep (∇ · u)3

3 ep
3
√
∇ · u5 +∇ · u

4 p2 ∇ · u2
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Figure 1: Iterative error at each iteration for different methods: to the right
b(p) = ep, c(∇ · u) =

3
√

u5 +∇ · u, to the left b(p) = p2, c(∇ · u) = ∇ · u2.

We now solve a large deformation problem on the unit-cube Ω = (0, 1)3.
A Lagrangian frame of reference is necessary to keep track of the deformed
domain Ωt at time t. We study the performance of the iterative schemes
presented in Section 3 for solving Eqs. (4). The material is supposed to
be isotropic and with constant Lamé parameters µ and c(·). We consider a
Lagrangian fluid mass mf = ρfJφ of a slightly compressible fluid, where φ is
the porosity. Under this assumption, the time derivative of the fluid content
reads as

Γ̇(u, p) = cpJ(u)φṗ+ cαJ̇(u),

where the compressibility cp and Biot’s coefficient cα = J ∂φ
∂J

+ φ ≈ 1 for
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Figure 2: Number of iteration for different time steps: to the right b(p) = ep,
c(∇ · u) =

3
√

u5 +∇ · u, to the left b(p) = p2, c(∇ · u) = ∇ · u2.

simplicity. We will compare the iterative schemes for a torsion case on a
unit cube. On the top face, we apply the rotation tensor R(θ) of a time
dependent angle θ(t) = π/4 t, which gives a rotation of π/4 at T = 1. We
set homogeneous initial condition for (q0, p0) and ∇u0 = (R(θ)− I). In
the alternate Newton method, the stabilization parameter is set to Ls =
1. In the L-scheme method, the linearisation tensor parameters are set as
follows: Lu = ∂uΠ (∇u0, p0) , Lp = ∂pΠ (∇u0, p0) , Lq = ∂pK (∇u0) , Lp =
∂pΓ (∇u0, p0) and Lu = ∂uΓ (∇u0, p0). The mesh size and the time step are
set as h = τ = 2−3. We denote by top face of the unit-cube the region z = 1,
the bottom face z = 0 and the lateral faces are x = 0, x = 1, y = 0 and
y = 1. The boundary conditions are listed in Table 2 and the displacement
and pressure field are shown in Figure 4.

We compare the performance of the schemes proposed in Section 3 and
we observe that the numerical convergence is in accordance with the theory
developed in Section 4, even though the analysis is done for small deforma-
tion. Newton’s method has quadratic convergence for the smaller time steps
and linear convergence for the larger time steps. In contrast, the monolithic
L-scheme has the same rate of convergence regardless of size of the time
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Table 2: Boundary conditions for Traction and Rotation case respectively.

Face Flow Mechanics
Top p = 0 u = (R(θ(t))− I)X0

Bottom p = 0 u · ~n = 0

Lateral p = 0 ~Π · ~n = 0

Figure 3: Magnitude of the deformation field and the fluid flow field for
torsion.
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step (see Figure 4). All splitting schemes have better convergence when the
stability term is used (we use Ls = 1.0).

6 Conclusions

We considered Biot’s model under small and large deformation. Differ-
ent nonlinear solvers based on the L-scheme, Newton’s method, and the
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Figure 5: Number of iterations at time t = 1.0 using different time steps: to
the left h = 1/23, and h = 1/24 to the right.

undrained splitting method were presented. The only quadratic convergent
scheme is the monolithic Newton method. The splitting Newton method also
requires a stabilization parameter, otherwise the (linear) convergence cannot
be guaranteed. The analysis of the schemes and illustrative numerical exper-
iments were presented.

We tested the performance of the schemes on two test problems: a unit
square under small deformation and a unit cube under large deformation. To
summarise, we make the following remarks:

• Monolithic and splitting L-schemes are robust with respect to the
choice of the linearization parameter, the mesh size, and time step
size.

• The stabilization parameter Ls has a strong influence on the speed of
the convergence of the splitting Newton scheme.

• The splitting L-scheme can be used both as a robust solver or even
as a preconditioner (as it is established in [26, 57]) to improve the
performance of the monolithic Newton method and the L-scheme.
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A Convergence proof of the alternate New-

ton method

The following result provides the linear convergence of the alternate Newton
method in (29)- (30) for τ sufficiently small.

Theorem 3. Assuming (A1)-(A4) and Ls ≥ α2

αb
, the alternate Newton split-

ting method in (29)-(30) converges linearly if τ is small enough.

Proof. By subtracting problems (29)-(30) and (16), taking as test functions
en,iq , en,ip and en,iu , and rearranging some elements to the right hand side we
obtain,

(
K−1en,iq , en,iq

)
−
(
en,ip ,∇ · en,iq

)
= 0, (31)

(
b′(pn,i−1

h )(pnh − pn,ih ), en,ip
)

+ α
(
∇ · en,i−1

u , en,ip
)

+ τ
(
∇ · en,iq , en,ip

)

=
(
b(pnh)− b(pn,i−1

h )− b′(pn,i−1
h )(pnh − pn,i−1

h ), en,ip
)
.

(32)

The mechanics equation then gives,

(ε(en,iu ), ε(en,iu )) +
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)

+Ls
(
∇ · δun,ih ,∇ · en,iu

)
− α

(
en,ip ,∇ · en,iu

)

=
(
c(∇ · unh)− c(∇ · un,i−1

h ) + c′(∇ · un,i−1
h )∇ · en,i−1

u ,∇ · en,iu

)
.

(33)

By using similar steps as in Theorem 1, we obtain the following

||ε(en,iu )||2 +
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)

+Ls (∇ · (en,iu − en,i−1
u ),∇ · en,iu )− α

(
en,ip ,∇ · en,iu

)

≤ L2
c′

8γ1

||∇ · en,i−1
u ||4L4(Ω) +

γ1

2
||∇ · en,iu ||2.

(34)

Next, by using the inverse inequality || · ||L4(Ω) ≤ Ch−d/4|| · || [41], and by

using the following formula (x−y, x) =
||x||2

2
+
||x− y||2

2
− ||y||

2

2
, by choosing

x = ∇ · eu
n,i and y = ∇ · en,i−1

u , we obtain from (34)
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||ε(en,iu )||2 +
(
c′(∇ · un,i−1

h )∇ · en,iu ,∇ · en,iu

)
+ Ls

2
‖∇ · (en,iu − en,i−1

u )‖2

Ls
2
‖∇ · en,iu ‖2 − α

(
en,ip ,∇ · en,iu

)
+ ≤ C1h

−d L
2
c′

8γ1

||∇ · en,i−1
u ||4

+γ1
2
||∇ · en,iu ||2 + Ls

2
‖∇ · en,i−1

u ‖2.

(35)

Finally, by reorganizing (35), using (A2) and choosing γ1 = αc, we obtain
the following inequality,

||ε(en,iu )||2 +
(
αc+Ls

2

)
‖∇ · en,iu ‖2 + Ls

2
‖∇ · δen,iu ‖2

≤ C1h
−d L

2
c′

8αc

||∇ · en,i−1
u ||4 +

Ls
2
‖∇ · en,i−1

u ‖+ α
(
en,ip ,∇ · en,iu

)
.

(36)

In a similar way, we obtain the following expression from (21),

τ

kM
||en,iq ||2 +

αb

2
||en,ip ||2 ≤ C2h

−d L
2
b′

8αb

||en,i−1
p ||4 − α

(
∇ · en,i−1

u , en,ip
)
. (37)

Adding equations (36) and (37) yields,

τ
kM
||en,iq ||2 + αb

2
||en,ip ||2 + ||ε(en,iu )||2 + Ls

2
‖∇ · δen,iu ‖2 +

(
αc+Ls

2

)
‖∇ · en,iu ‖2

≤ C2h
−d L

2
b′

8αb

||en,i−1
p ||4 + C1h

−d L
2
c′

8αc

||∇ · en,i−1
u ||4

+Ls
2
‖∇ · en,i−1

u ‖2 + α
(
∇ · δen,iu , en,ip

)
.

(38)

By using Young’s inequality (a, b) ≤ ||a||
2

2γ
+
γ||b||2

2
, for γ > 0 and choosing

b = en,ip and a = ∇ · δen,iu we bound the coupling term (for γ2 > 0),

α
(
∇ · δen,iu , en,ip

)
≤ α2

2γ2

‖∇ · δen,i−1
u ‖2 +

γ2

2
‖en,ip ‖2. (39)

Then by using (39) and choosing γ2 = αb

2
we obtain from (38)

τ
kM
||en,iq ||2 + αb

4
||en,ip ||2 + ||ε(en,iu )||2 +

(
Ls
2
− α2

2αb

)
‖∇ · δen,iu ‖2

+
(
αc+Ls

2

)
‖∇ · en,iu ‖2 ≤ h−d

8

(
C2

L2
b′
αb
||en,i−1

p ||4 + C1
L2
c′
αc
||∇ · en,i−1

u ||4
)

+Ls
2
‖∇ · en,i−1

u ‖2.

(40)
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Since Ls ≥ α2

αb
, we obtain

τ
kM
||en,iq ||2 + αb

4
||en,ip ||2 +

(
αc+Ls

2

)
‖∇ · en,iu ‖2

≤ h−d
8

(
C2

L2
b′
αb
||en,i−1

p ||4 + C1
L2
c′
αc
||∇ · en,i−1

u ||4
)

+Ls
2
‖∇ · en,i−1

u ‖2.

(41)

By using ‖∇ · en,0u ‖ ≤ Cτ , ‖en,0p ‖ ≤ Cτ wich can be proven and the estimate

in Lemma 1, the convergence is ensured if τ = O(h
d
2 ).
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a b s t r a c t

In this work, we study the parallel-in-time iterative solution of coupled flow and ge-
omechanics in porous media, modelled by a two-field formulation of Biot’s equations. In
particular, we propose a new version of the fixed-stress splitting method, which has been
widely used as solution method of these problems. This new approach forgets about the
sequential nature of the temporal variable and considers the time direction as a further
direction for parallelization. Themethod is partially parallel-in-time.We present a rigorous
convergence analysis of themethod and numerical experiments to demonstrate the robust
behaviour of the algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The coupled poroelastic equations describe the behaviour of fluid-saturated porous materials undergoing deformation.
Such coupling has been intensively investigated, starting from the pioneering one-dimensional work of Terzaghi [1], which
was extended to a more general three-dimensional theory by Biot [2,3]. Biot’s model was originally developed to study
geophysical applications such as reservoir geomechanics, however, nowadays it is widely used in the modelling of many
applications in a great variety of fields, ranging from geomechanics and petroleum engineering, to biomechanics or food
processing. There is a vast literature on Biot’s equations and the existence, uniqueness, and regularity of their solutions, see
Showalter [4], Phillips and Wheeler [5] and the references therein.

Reliable numerical methods for solving poroelastic problems are needed for the accurate solution of multi-physics
phenomena appearing in different application areas. In particular, the solution of the large linear systems of equations arising
from the discretization of Biot’smodel is themost consuming part when real simulations are performed. For this reason, a lot
of effort has been made in the last years to design efficient solution methods for these problems. Two different approaches
can be adopted, the so-called monolithic or fully coupled methods and the iterative coupling methods. The monolithic
approach consists of solving the linear system simultaneously for all the unknowns. The challenge here, is the design of
efficient preconditioners to accelerate the convergence of Krylov subspace methods and the design of efficient smoothers
in a multigrid framework. Recent advances in both directions can be found in [6–9] and the references therein. These
methods usually provide unconditional stability and convergence. Iterative coupling methods, however, solve sequentially
the equations for fluid flow and geomechanics, at each time step, until a converged solution within a prescribed tolerance is
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achieved. They offer several attractive features as their flexibility, for example, since they allow to link two different codes
for fluid flow and geomechanics for solving the coupled poroelastic problems. The most used iterative coupling methods
are the drained and undrained splits, which solve the mechanical problem first, and the fixed-strain and fixed-stress splits,
which on the contrary solve the flow problem first [10–12].

Among iterative coupling schemes, the fixed-stress splitting method is the most widely used. This sequential-implicit
method basically consists of solving the flow problem first fixing the volumetric mean total stress, and then the mechanics
part is solved from the values obtained at the previous flow step. In the last years, a lot of research has been done on this
method. The unconditional stability of the fixed-stress splitting method is shown in [11] using a von Neumann analysis. In
addition, stability and convergence of the fixed-stress splitting method have been rigorously established in [13]. Recently,
in [14] the authors have proven the convergence of the fixed-stress splitmethod in energy norm for heterogeneous problems.
Estimates for the case of themultirate iterative coupling scheme are obtained in [15],wheremultiple finer time steps for flow
are taken within one coarse mechanics time step, exploiting the different time scales for the mechanics and flow problems.
In [16], the convergence of this method is demonstrated in the fully discrete case when space–time finite element methods
are used. In [17], the authors present a very interesting approach which consists of re-interpreting the fixed-stress splitting
scheme as a preconditioned-Richardson iteration with a particular block-triangular preconditioning operator. Recently,
in [18] an inexact version of the fixed-stress splitting scheme has been successfully proposed as smoother in a geometric
multigrid framework, which provides an efficient monolithic solver for Biot’s problem. Finally, we mention that the fixed-
stress splittingwas recently applied to a non-linear poromechanicsmodel in [19] and to consolidation of unsaturated porous
media in [20].

All the previously mentioned algorithms are based on a time-marching approach, in which each time step is solved after
the other in a sequentialmanner, and therefore they donot allow the parallelization of the temporal variable. Parallel-in-time
integration methods, however, are receiving a lot of interest nowadays because of the advent of massively parallel systems
with thousands of threads, permitting to reduce drastically the computing time [21]. There are various different methods
introducing concurrency along the temporal dimension. The most well-known time-parallelization methods include the
parallel full approximation scheme in space and time (PFASST) [22], the Parareal method [23], the Multigrid Reduction in
Time algorithm (MGRIT) [24], the Space–time Multigrid method (STMG) [25], and the Space–time concurrent multigrid
waveform relaxation (WRMG) with cyclic reduction [26,27]. Due to the mixed elliptic–parabolic structure of Biot’s problem,
the development of parallel-in-time algorithms is not intuitive.

In the present work, we introduce a very simple version of the fixed-stress splitting method for the poroelasticity
problem which is partially parallel-in-time. We further show rigorously its convergence. Techniques similar with the ones
from [13,14,16] are used. For completeness, in Section 3, we include a new proof for the convergence of the fixed-stress
splitting algorithm in the semi-discrete case. The theoretical results are sustained by numerical computations. Moreover, a
fully parallel-in-time version of the presented method is introduced.

The remainder of the paper is organized as follows. In Section 2we briefly introduce the poroelasticitymodel and present
the considered finite element discretizations. Section 3 is devoted to the description of the classical fixed-stress splitting
algorithm. In Section 4, the partially parallel-in-time new approach based on the fixed-stress splitting algorithm is presented
and its convergence analysis is derived. Section 5 illustrates the robustness of the proposed parallel-in-time fixed-stress
splitting method through two numerical experiments. Finally, some conclusions are drawn in Section 6.

2. Mathematical model and discretization

The equations describing poroelastic flow and deformation are derived from the principles of fluid mass conservation
and the balance of forces on the porous matrix. More concretely, according to Biot’s theory [2,3], and assumingΩ a bounded
open subset of Rd, d ∈ {2, 3}, with regular boundary Γ , the consolidation process must satisfy on the space–time domain
Ω × (0, T ] the following system of partial differential equations:

equilibrium equation: −div σ′ + α∇ p = ρg,

constitutive equation: σ′ = 2Gε(u) + λ div(u)I,
compatibility condition: ε(u) =

1
2 (∇u + ∇ut ),

Darcy’s law: q = −
1
µf

K
(
∇p − ρf g

)
,

continuity equation: ∂
∂t

(
1
β
p + α∇ · u

)
+ ∇ · q = f ,

(1)

where I is the identity tensor, u is the displacement vector, p is the pore pressure, σ′ and ε are the effective stress and strain
tensors for the porous medium, g is the gravity vector, q is the percolation velocity of the fluid relative to the soil, µf is the
fluid viscosity and K is the absolute permeability tensor. The Lamé coefficients, λ and G, can be also expressed in terms of
Young’s modulus E and the Poisson’s ratio ν as λ = Eν/((1 − 2ν)(1 + ν)) and G = E/(2 + 2ν). The bulk density ρ is related
to the densities of the solid (ρs) and fluid (ρf ) phases as ρ = φρf + (1− φ)ρs, where φ is the porosity. β is the Biot modulus
and α is the Biot coefficient given by α = 1 − Kb/Ks, where Kb is the drained bulk modulus, and Ks is the bulk modulus of
the solid phase.
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If considering the displacements of the solid matrix u and the pressure of the fluid p as primary variables, we obtain the
so-called two-field formulation of the Biot’s consolidation model. With this idea in mind, the mathematical model (1) can
be rewritten as

− div σ′ + α∇p = ρg, σ′ = 2G ε(u) + λ div(u)I, (2)
∂

∂t

(
1
β
p + α∇ · u

)
− ∇ ·

(
1
µf

K
(
∇p − ρf g

))
= f . (3)

The most important feature of this mathematical model is that the equations are strongly coupled. Here, the Biot parameter
α plays the role of coupling parameter between these equations. In order to ensure the existence and uniqueness of solution,
we must supplement the system with appropriate boundary and initial conditions. For instance,

p = 0, on Γp and
K
µf

(
∇p − ρf g

)
· n = 0, on Γq,

u = 0, on Γu and σ′ n = 0, on Γt ,

(4)

where n is the unit outward normal to the boundary, Γp ∪ Γq = Γt ∪ Γu = Γ , and Γp ∩ Γq = Γt ∩ Γu = ∅ with Γp, Γq, Γu
and Γt subsets of Γ having non null measure. For the initial time, t = 0, the following condition is fulfilled(

1
β
p + α∇ · u

)
(x, 0) = 0, x ∈ Ω. (5)

Results about existence and uniqueness of the solution of the Biot’s model (2)–(3) with initial condition (5) can be found in
the works by Showalter [4] and Zenisek [28].

2.1. Semi-discretization in space

To introduce the spatial discretization of the Biot model, we choose the finite element method. We define the standard
Sobolev spaces V = {u ∈ (H1(Ω))d | u|Γu = 0}, and Q = {p ∈ H1(Ω) | p|Γp = 0}, with H1(Ω) denoting the Hilbert subspace
of L2(Ω) of functions with first weak derivatives in L2(Ω). Then, we introduce the variational formulation for the two-field
formulation of the Biot’s model as follows: Find (u(t), p(t)) ∈ C1([0, T ];V ) × C1([0, T ];Q ) such that

a(u(t), v) − α(p(t), div v) = (ρg, v), ∀ v ∈ V , t ∈ (0, T ], (6)

α(div ∂tu(t), q)+
1
β
(∂tp(t), q)+b(p(t), q) = (f , q)

+(Kµ−1
f ρf g, ∇q), ∀q ∈ Q , t ∈ (0, T ], (7)

where (·, ·) is the standard inner product in the space L2(Ω), and the bilinear forms a(·, ·) and b(·, ·) are given as

a(u, v) = 2G
∫

Ω

ε(u) : ε(v) dΩ + λ

∫
Ω

div u div v dΩ,

b(p, q) =

∫
Ω

K
µf

∇p · ∇q dΩ.

Finally, the initial condition is given by(
1
β
p(0) + α∇ · u(0), q

)
= 0, ∀ q ∈ L2(Ω). (8)

It is important to consider a finite element pair of spaces V h × Qh satisfying an inf–sup condition. One very simple choice
would be the stabilized P1–P1 scheme firstly introduced in [29] and widely analysed in [30], in which V h consists of the
space of piecewise (with respect to a triangulation T h) linear continuous vector valued functions on Ω and the space Qh
consists of piecewise linear continuous scalar valued functions. Other choices would be P2–P1, that is, piecewise quadratic
continuous vector valued functions for displacements and piecewise linear continuous scalar valued functions for pressure,
widely studied byMurad and Loula [31–33]; or the so-calledMINI element [30] inwhichV h = V l⊕V b, whereV l is the space
of piecewise linear continuous vector valued functions and V b is the space of bubble functions. Discrete inf–sup stability
conditions and convergence results for the stabilized P1–P1 and the MINI element were recently derived in [30].

The semi-discretized problem can be written as follows: Find (uh(t), ph(t)) ∈ C1([0, T ];V h) × C1([0, T ];Qh) such that

a(uh(t), vh)−α(ph(t), div vh)= (ρg, vh), ∀ vh ∈ V h, t ∈ (0, T ], (9)

α(div ∂tuh(t), qh)+
1
β
(∂tph(t), qh)+b(ph(t), qh)= (fh, qh)

+(Kµ−1
f ρf g, ∇qh), ∀qh ∈ Qh, t ∈ (0, T ], (10)
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giving rise to the following fully coupled algebraic/differential equations system,[
0 0
B Mp

][
u̇h

ṗh

]
+

[
A Bt

0 −C

][
uh

ph

]
=

[
gh
f̃h

]
, (11)

where we have denoted u̇h ≡ ∂tuh(t) and ṗh ≡ ∂tph(t).

Remark 1. Wewish to emphasize that the solver based on the fixed-stress splitting method, which we are going to propose
in this work, can be applied to other different discretizations of the problem, for example, mixed finite-elements or finite
volume schemes.

3. The fixed-stress splitting algorithm for the semi-discretized problem

A popular alternative for solving the poroelasticity problem in an iterative manner is the so-called fixed-stress splitting
method. This scheme is based on solving the flow equation by adding the stabilization term L ∂p

∂t on both sides of the equation:(
1
β

+ L
)

∂p
∂t

− ∇ ·

(
1
µf

K
(
∇p − ρf g

))
= f − α

∂

∂t
(∇ · u) + L

∂p
∂t

, (12)

where L is a parameter to fix, and then, the mechanics problem is solved using updated pressure. For more details about the
algorithm and how to fix parameter L, see [11,13,14,16]. Thus, given an initial guess (u0

h(t), p
0
h(t)), the fixed-stress splitting

algorithm gives us a sequence of approximations (ui
h(t), p

i
h(t)), i ≥ 1 as follows:

Step 1: Given (ui−1
h (t), pi−1

h (t)) ∈ C1([0, T ];V h) × C1([0, T ];Qh), find pih(t) ∈ C1([0, T ];Qh) such that

(
1
β

+ L)(∂tpih(t), qh) + b(pih(t), qh) + α(div ∂tui−1
h (t), qh) = L(∂tpi−1

h (t), qh) +

(fh, qh) + (Kµ−1
f ρf g, ∇qh), ∀ qh ∈ Qh, t ∈ (0, T ], and (13)

pih(0) = p0.

Step 2: Given pih(t) ∈ C1([0, T ];Qh), find ui
h(t) ∈ C1([0, T ];V h) such that

a(ui
h(t), vh) = α(pih(t), div vh) + (ρg, vh), ∀ vh ∈ V h, t ∈ (0, T ]. (14)

The algorithm starts with an initial approximation (u0
h(t), p

0
h(t)) defined along the whole time-interval. A natural choice is

to take this approximation constant and equal to the values specified by the initial condition, (u0
h(t), p

0
h(t)) = (u0, p0), t ∈

(0, T ].

3.1. Convergence analysis in the semi-discrete case

Let δui
h(t) = ui

h(t) − ui−1
h (t) and δpih(t) = pih(t) − pi−1

h (t) denote the difference between two successive approximations
for displacements and for pressure, respectively.

Theorem 1. The fixed-stress splitting method given in (13)–(14) converges for any L ≥
α2

2( 2Gd +λ)
. There holds∫ t

0
∥∂tδpih(s)∥

2 ds ≤
L

( 1
β

+ L)

∫ t

0
∥∂tδpi−1

h (s)∥2 ds. (15)

Proof. We take the time derivative of the difference of two successive iterates of the mechanics equation (14) and test the
resulting equation by vh = ∂tδui−1

h to get

2G(ε(∂tδui
h), ε(∂tδu

i−1
h )) + λ(∇ · ∂tδui

h, ∇ · ∂tδui−1
h ) − α(∂tδpih, ∇ · ∂tδui−1

h ) = 0. (16)

By taking the difference between two successive iterates of the flow Eq. (13) and testing with qh = ∂tδpih, we obtain

1
β

∥∂tδpih∥
2
+ L(∂t (δpih − δpi−1

h ), ∂tδpih) + b(δpih, ∂tδp
i
h) + α(∇ · ∂tδui−1

h , ∂tδpih) = 0. (17)

After summing up Eqs. (16) and (17), and using the identities

(σ , ξ ) =
1
4
∥σ + ξ∥

2
−

1
4
∥σ − ξ∥

2, (σ − ξ, σ ) =
1
2

(
∥σ∥

2
− ∥ξ∥

2
+ ∥σ − ξ∥

2) , (18)

one has
G
2

∥ε(∂tδui
h + ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h + ∂tδui−1
h )∥2

+
1
β

∥∂tδpih∥
2
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+
1
2

d
dt

∥δpih∥
2
B +

L
2
(∥∂tδpih∥

2
− ∥∂tδpi−1

h ∥
2
+ ∥∂tδpih − ∂tδpi−1

h ∥
2)

=
G
2

∥ε(∂tδui
h − ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h − ∂tδui−1
h )∥2. (19)

Next, we consider the time derivative of the difference of two successive iterates of the mechanics equation (14) and test by
vh = ∂tδui

h − ∂tδui−1
h . By applying the Cauchy–Schwarz inequality, it follows

∥∇ · (∂tδui
h − ∂tδui−1

h )∥ ≤
α

2G
d + λ

∥∂tδpih − ∂tδpi−1
h ∥. (20)

Inserting equality (16) into Eq. (19) and by applying Cauchy–Schwarz and (20) inequalities, we obtain

G
2

∥ε(∂tδui
h + ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h + ∂tδui−1
h )∥2

+
1
β

∥∂tδpih∥
2

+
1
2

d
dt

∥δpih∥
2
B +

L
2
(∥∂tδpih∥

2
+ ∥∂tδpih − ∂tδpi−1

h ∥
2)

≤
L
2
∥∂tδpi−1

h ∥
2
+

α2

4( 2Gd + λ)
∥∂tδpih − ∂tδpi−1

h ∥
2.

Discarding the first three positive terms, taking L ≥
α2

2( 2Gd +λ)
, and integrating from 0 to t we finally obtain (15). It implies

that the scheme is a contraction. Following the same technique as in [15], from the contractive property of scheme (13)–(14)
one can establish that it is convergent and show that the converged quantities satisfy the variational formulation of the
semi-discretized problem (9)–(10). This completes the proof. □

Remark 2. It is easy to see that the fixed-stress splitting method in the semi-discrete case is an iterative method based on
a suitable splitting for solving the differential/algebraic equation system (11). In detail, the iterative method can be written
in the form[

0 0
0 (1 + L)Mp

][
u̇i
h

ṗih

]
+

[
A Bt

0 −C

][
ui
h

pih

]
=

[
0 0

−B LMp

][
u̇i−1
h

ṗi−1
h

]
+

[
gh
f̃h

]
. (21)

4. The parallel-in-time fixed-stress splitting algorithm for the fully discretized problem

4.1. Parallel-in-time algorithm

For time discretization we use the backward Euler method on a uniform partition {t0, t1, . . . , tN} of the time interval
(0, T ] with constant time-step size τ , Nτ = T . Then, we have the following fully discrete scheme corresponding to (9)–(10):
For n = 1, 2, . . . ,N , find (un

h, p
n
h) ∈ V h × Qh such that

a(un
h, vh) − α(pnh, div vh) = (ρg, vh), ∀ vh ∈ V h, (22)

α(div ∂̄tun
h, qh) +

1
β
(∂̄tpnh, qh) + b(pnh, qh) = (f nh , qh) + (Kµ−1

f ρf g, ∇qh), ∀ qh ∈ Qh, (23)

where ∂̄tun
h := (un

h − un−1
h )/τ and ∂̄tpnh := (pnh − pn−1

h )/τ .
We now discuss a partially parallel-in-time version of the fixed-stress splitting method. This algorithm arises in a natural

way from the iterative method (21) by discretizing in time. In this way, given an initial guess {(un,0
h , pn,0h ), n = 0, 1, . . . ,N},

the new fixed-stress splitting algorithm gives us a sequence of approximations {(un,i
h , pn,ih ), n = 0, 1, . . . ,N}, i ≥ 1, as

follows:

Step 1: Let p0,ih = p0, for all i ≥ 0. For i ≥ 1, given {(un,i−1
h , pn,i−1

h ), n = 0, 1, . . . ,N}, find pn,ih ∈ Qh, n = 1, . . . ,N, such that
∀ qh ∈ Qh there holds(

1
β

+ L
)(

pn,ih − pn−1,i
h

τ
, qh

)
+ b(pn,ih , qh) = α

(
div

un,i−1
h − un−1,i−1

h

τ
, qh

)

+L

(
pn,i−1
h − pn−1,i−1

h

τ
, qh

)
+ (f nh , qh) + (Kµ−1

f ρf g, ∇qh). (24)

Step 2: Given pn,ih ∈ Qh, n = 1, . . . ,N, find un,i
h ∈ V h, n = 1, . . . ,N, such that

a(un,i
h , vh) = α(pn,ih , div vh) + (ρg, vh), ∀ vh ∈ V h. (25)
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Remark3. Wewish to emphasize that the proposedmethod is partially parallel-in-time in contrast to the classical sequential
fixed-stress splitting method based on time-stepping. Notice that in the Step 2 of the new algorithm, N − 1 independent
elliptic problems can be easily solved in parallel. Also the flow problem in Step 1 can be solved by using some of the well-
known parallel-in-timemethods for parabolic problemsmentioned in the introduction: PFASST, parareal, WRMG,MGRIT, or
STMG. In this work, however, this step is implemented in a classical (non-parallel) form to keep the implementation simple,
since the aim of this research is to present this new version of the fixed-stress iteration.

Remark 4 (A Fully Parallel-in-time Fixed-stress Scheme). The scheme (24)–(25) can be made fully parallel by replacing
everywhere pn−1,i with pn−1,i−1. The following scheme arises:

Step 1: Let p0,ih = p0, for all i ≥ 0. For i ≥ 1, given {(un,i−1
h , pn,i−1

h ), n = 0, 1, . . . ,N}, find pn,ih ∈ Qh, n = 1, . . . ,N, such that
∀ qh ∈ Qh there holds(

1
β

+ L
)(

pn,ih − pn−1,i−1
h

τ
, qh

)
+ b(pn,ih , qh) = α

(
div

un,i−1
h − un−1,i−1

h

τ
, qh

)

+L

(
pn,i−1
h − pn−1,i−1

h

τ
, qh

)
+ (f nh , qh) + (Kµ−1

f ρf g, ∇qh). (26)

Step 2: Given pn,ih ∈ Qh, n = 1, . . . ,N, find un,i
h ∈ V h, n = 1, . . . ,N, such that

a(un,i
h , vh) = α(pn,ih , div vh) + (ρg, vh), ∀ vh ∈ V h. (27)

The fully parallel-in-time scheme needs for the numerical examples considered more iterations (for the same tuning
parameter) than the partially parallel scheme. A throughout analysis of this second scheme is beyond the aim of this paper.

4.2. Convergence analysis of the partially parallel-in-time scheme

Let δun,i
h = un,i

h − un,i−1
h and δpn,ih = pn,ih − pn,i−1

h denote the difference between two succesive approximations for
displacements and for pressure, respectively.

Theorem 2. The fixed-stress splitting method given in (24)–(25) is convergent for any stabilization parameter L ≥
α2

2( 2Gd +λ)
. There

holds
N∑

n=1

τ∥∂̄tδp
n,i
h ∥

2
≤

L
( 1
β

+ L)

N∑
n=1

τ∥∂̄tδp
n,i−1
h ∥

2. (28)

Proof. Similarly to the proof of Theorem 1, we take the difference of two successive iterates of the mechanics equation
(25) and the flow equation (24), and test the resulting equations by vh = ∂̄tδun,i−1

h and qh = ∂̄tδp
n,i
h respectively to get for

n = 1, 2, . . . ,N,

2G(ε(∂̄tδun,i
h ), ε(∂̄tδun,i−1

h )) + λ(∇ · ∂̄tδun,i
h , ∇ · ∂̄tδun,i−1

h )

−α(∂̄tδp
n,i
h , ∇ · ∂̄tδun,i−1

h ) = 0. (29)

1
β

∥∂̄tδp
n,i
h ∥

2
+ L(∂̄t (δp

n,i
h − δpn,i−1

h ), ∂̄tδp
n,i
h ) + b(δpn,ih , ∂̄tδp

n,i
h )

+α(∇ · ∂̄tδun,i−1
h , ∂̄tδp

n,i
h ) = 0. (30)

After summing up Eqs. (29) and (30), and using the identities in (18) one has

G
2

∥ε(∂̄tδun,i
h + ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h + ∂̄tδun,i−1
h )∥2

+
1
β

∥∂̄tδp
n,i
h ∥

2

+
L
2
(∥∂̄tδp

n,i
h ∥

2
+ ∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2) +
1
2τ

(∥δpn,ih ∥
2
B + ∥δpn,ih − δpn−1,i

h ∥
2
B)

=
G
2

∥ε(∂̄tδun,i
h − ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h − ∂̄tδun,i−1
h )∥2

+
L
2
∥∂̄tδp

n,i−1
h ∥

2
+

1
2τ

∥δpn−1,i
h ∥

2
B. (31)
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Next, we consider the difference of two successive iterates of themechanics equation (25) and test by vh = ∂̄tδun,i
h −∂̄tδun,i−1

h
to get

2G∥ε(∂̄tδun,i
h − ∂̄tδun,i−1

h )∥2
+ λ∥∇ · (∂̄tδun,i

h − ∂̄tδun,i
h )∥2

= α(∂̄tδp
n,i
h − ∂̄tδp

n,i−1
h , ∇ · (∂̄tδun,i

h − ∂̄tδun,i−1
h )). (32)

From this equality, by applying Cauchy–Schwarz inequality, it is easy to see

∥∇ · (∂̄tδun,i
h − ∂̄tδun,i−1

h )∥ ≤
α

2G
d + λ

∥∂̄tδp
n,i
h − ∂̄tδp

n,i−1
h ∥. (33)

Inserting equality (32) into Eq. (31) and by applying Cauchy–Schwarz inequality and (33), we obtain

G
2

∥ε(∂̄tδun,i
h + ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h + ∂̄tδun,i−1
h )∥2

+
1
β

∥∂̄tδp
n,i
h ∥

2

+
L
2
(∥∂̄tδp

n,i
h ∥

2
+ ∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2)+
1
2τ

(∥δpn,ih ∥
2
B+∥δpn,ih − δpn−1,i

h ∥
2
B)

≤
L
2
∥∂̄tδp

n,i−1
h ∥

2
+

1
2τ

∥δpn−1,i
h ∥

2
B +

α2

4( 2Gd + λ)
∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2.

Discarding positive terms, taking L ≥
α2

2( 2Gd +λ)
, and summing up from n = 1 to N , we finally obtain (28). This implies that the

scheme is a contraction and therefore convergent. This completes the proof. □

Remark 5. Notice that the values of parameter L turn out to be the same as in the classical fixed-stress splitting scheme.

5. Numerical experiments

In this section, we present two numerical experiments with the purpose of illustrating the performance of the partially
parallel-in-time fixed-stress splitting (PFS) method described in Section 4. We compare the PFS method with the classical
fixed-stress splitting (FS), see e.g. [14]. As first test problem, we use Mandel’s problem, which is a well-established 2D
benchmark problemwith a known analytical solution [34,35]. This problem is very often used in the community for verifying
the implementation and the performance of the numerical schemes, see e.g. [5,10,30,36]. As a second test, we use a three-
dimensional problem on a L-shaped domain with time dependent boundary conditions, see e.g. [16,37]. For both numerical
experiments, a stabilized P1–P1 scheme has been used here for spatial discretization. However, we would like to mention
that any stable pair could be considered instead.

The performance of both methods, FS and PFS, is similar if they are running sequentially. One of the main differences
between the two methods, however, is the memory consumption. While FS uses a fixed memory amount independent to
the time step, the PFS uses a memory amount proportional to the number of time steps. This is because PFS requires to store
each variable for all time levels. However, to have access to the variables at every time step allows that several tasks of the
implementation can run in parallel, mainly the solution of the mechanics problem at Eq. (25) for each time level and the
assembly of the right hand sides at each time step.

The schemes were implemented in the open-source software package deal.II [38] configured for multithreading. The
number of threads running in parallel simultaneously can be specified between 1 and 32 in a system of 4 × 8 cores Intel
Xeon 2.7 GHz. In this regard, PFS is set to use one thread to solve the flow problem and up to 32 threads to assemble the
right hand side, impose the boundary conditions, solve the mechanics problem and write the output results at each time
step, while FS is set to use only one thread for the same tasks. In both numerical experiments, we report the absolute wall
time of each method. We would like to mention that all the linear systems are solved by using a direct solver for simplicity
in the implementation. However, a preconditioned conjugate gradient would be a good alternative for the efficient solution
of such systems.

5.1. Test case 1: Mandel’s problem

Mandel’s problem consists of a poroelastic slab of extent 2a in the x-direction, 2b in the y-direction, and infinitely long in
the z-direction, and is sandwiched between two rigid impermeable plates (see Fig. 1a). At time t = 0, a uniform vertical load
of magnitude 2F is applied and an equal, but upward force is applied to the bottom plate. This load is supposed to remain
constant. The domain is free to drain and stress-free at x = ±a. Gravity is neglected.

For the numerical solution, the symmetry of the problem allows us to use a quarter of the physical domain as
computational domain (see Fig. 1b). Moreover, the rigid plate condition is enforced by adding constrained equations so
that vertical displacement uy(b, t) on the top is equal to a known constant value.

The application of a load (2F ) causes an instantaneous and uniform pressure increase throughout the domain [39]; this
is predicted theoretically [34] and it can be used as an initial condition
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Fig. 1. Mandel’s problem.

Table 1
Boundary conditions for Mandel’s problem.
Boundary Flow Mechanics

x = 0 q · n = 0 u · n = 0
y = 0 q · n = 0 u · n = 0
x = a p = 0 σ · n = 0
y = b q · n = 0 σ12 = 0; u · n = uy(b, t)

Table 2
Input parameter for Mandel’s problem.
Symbol Quantity Value Symbol Quantity Value

a Dimension in x 100 m b Dimension in y 10 m
K Permeability 100 D µf Dynamic viscosity 10 cp
α Biot’s constant 1.0 β Biot’s modulus 1.65 × 1010 Pa
ν Poisson’s ratio 0.4 E Young’s modulus 5.94 × 109 Pa
B Skempton coefficient 0.83333 νu Undrained Poisson’s ratio 0.44
c Diffusivity coefficient 46.526 m2/s F Force intensity 6.8 × 108 N/m
hx Grid spacing in x 2.5 m hy Grid spacing in y hx/10
τ Time step 1 s T Total simulation time 32 s

p(x, y, 0) =
FB(1 + vu)

3a
,

u(x, y, 0) =
( Fvux

2G ,
−Fb(1−vu)y

2Ga

)⊤
,

where B is the Skempton coefficient and νu =
3ν+B(1−2ν)
3−B(1−2ν) is the undrained Poisson ratio.

The boundary conditions are specified in Table 1 and the input parameters for Mandel’s problem are listed in Table 2. For
all cases, the following stopping criterion is used ∥δpn,i∥ + ∥δun,i

∥ ≤ 10−8.
In Fig. 2, the numerical and the analytical solutions of Mandel’s problem are depicted for different values of time. There

is a very good match between both solutions for all cases. Moreover, the results demonstrate the Mandel–Cryer effect, first
showing a pressure raise during the first 20 s and then, a sudden dissipation throughout the domain.

The number of iterations for PFS and FS are reported in Fig. 3 for different values of parameter L and various values of ν.
We remark a very similar behaviour of the two methods, with the optimal stabilization parameter L being in this case the
physical one Lphy := α2/

( 2G
d + λ

)
, see e.g. [10,13,14].

We remark that the mesh size and the time step τ do not influence the number of iterations. This can be seen in Table 3,
where we provide the number of iterations for both algorithms, varying the space and time discretization parameters.

Further, Fig. 4 shows the wall time for PFS reported for different mesh sizes and time steps (see Figs. 4a and 4b,
respectively). The figure shows how the wall time decreases proportionally to the number of threads being used. However,
the wall time does not decrease substantially when usingmore than 16 threads because of the sequential tasks that the code
still has to perform (for instance solving the flow problem).

Table 4 shows the wall time for both FS and PFS. Since FS is running sequentially, it is set to use one thread. As expected,
we clearly observe that PFS consumes around 20% of the wall time of FS. Furthermore, the more time steps are considered,
the more this time reduction increases.
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Fig. 2. Comparison of numerical and analytical solutions of the (a) pore pressure and (b) displacements for Mandel’s problem in different times with
ν = 0.2.

Fig. 3. Performance of the splitting schemes PFS and FS for different values of L, τ = 1[s], hx = 2.5 [m]. Both schemes have the same optimum value
Lopt = Lphy .

Table 3
Number of iterations for different values of τ , hx , ν.
ν = 0.49999, hx = 6.25 [m]. ν = 0.499, τ = 0.5 [s].

τ [s] PFS FS hx [m] PFS FS

1.000 2 2.10 12.5000 3 3.20
0.500 2 2.03 6.2500 3 3.20
0.250 2 2.02 3.1250 3 3.19
0.125 2 2.01 1.5625 3 3.19

5.2. Test case 2: Poroelastic L-shaped problem

The second numerical example is taken from [16,37]. It consists of a poroelastic L-shaped domain Ω ⊂ R3 (see Fig. 5),
with the long and short edges in the x and y-direction being 1 [m] and 0.5 [m] respectively and an extrusion of 0.5 [m] in the
z-direction. The boundary conditions, numerical solution and input parameters are shown in Figs. 5–6 and Table 5. Gravity
is neglected.

The number of iterations for the PFS method and the classical FS method are reported in Fig. 7 for different values of
parameters L and ν. The methods show again a very similar behaviour.
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Fig. 4. Wall time for different discretization parameters in space and time (first test).

Table 4
Wall time of FS/PFS for different time step sizes; hx = 6.25 [m].

τ [s] 1.0 0.5 0.25 0.125 0.0625

Method # Threads Wall time [s]
FS 1 43.3 78.6 146.0 281.0 499.0
PFS 1 48.0 85.7 160.0 316.0 574.0

2 27.3 47.8 86.1 179.0 298.0
4 17.8 28.0 50.9 109.0 191.0
8 11.2 19.9 37.4 72.8 115.0

16 13.6 20.5 31.1 63.5 97.7
32 10.8 19.7 33.3 63.1 92.9

Fig. 5. L-shaped domain and boundary conditions (symmetric in the z-direction).

Weremark again that themesh size and the time stepdonot influence thenumber of iterations. This canbe seen in Table 6,
where we provide the number of iterations for both algorithms, varying the space and time discretization parameters.

Fig. 8 shows the wall time of PFS for different time steps and mesh sizes. Again, we observe that as the number of time
steps increases the more threads are used the more the PFS reduces the wall time. In Table 7 we report the wall time of FS
vs. PFS, observing a similar behaviour as in the first experiment.
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Fig. 6. Numerical solutions at t = 0.26 and ν = 0.4, L = Lphy .

Table 5
Input parameters for L-shaped problem.
Symbol Quantity Value Symbol Quantity Value

K Permeability 1000 mD µf Dynamic viscosity 10 cp
α Biot’s constant 0.9 β Biot’s modulus 100 × 109 Pa
ν Poisson’s ratio 0.4 E Young’s modulus 100 × 109 Pa
h Grid spacing 1/25 m F Traction force constant 10 × 109 Pa
τ Time step 0.01 s T Total simulation time 0.5 s

Fig. 7. Performance of the splitting schemes PFS and FS for different values of L, τ = 0.02 [s], h = 0.03125 [m], Lopt =
Lphy
2 .

Table 6
Number of iterations for different values of τ , h, ν.
ν = 0.49999, h = 0.125 [m]. ν = 0.499, τ = 0.02 [s].

τ [s] PFS FS h [m] PFS FS

0.050 2 2.80 0.25000 3 3.82
0.020 2 2.84 0.12500 3 3.80
0.010 2 2.94 0.06250 3 3.78
0.005 2 2.97 0.03125 3 3.78
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Fig. 8. Wall time for different discretization parameters in space and time (second test).

Table 7
Wall time in seconds of FS/PFS for different time step sizes; h = 0.0625 [m].

τ [s] 0.02 0.01 0.005 0.0025 0.00125

Method # Trheats Wall time [s]
FS 1 10.6 17.1 31.2 63.6 115.0
PFS 1 11.5 19.2 35.5 68.7 136.0

2 8.5 12.1 22.3 44.1 86.4
4 7.2 11.7 17.9 30.2 57.4
8 7.1 8.7 14.7 21.6 39.6

16 5.7 7.6 11.9 19.3 29.1
32 6.5 6.2 11.0 16.3 26.4

6. Conclusions

We considered the quasi-static Biot model in the two-field formulation and presented a new fixed-stress type splitting
method for solving it. The main benefit of the newmethod is that the mechanics can be solved in a parallel-in-time manner.
We have rigorously analysed the convergence of the proposed method. If the stabilization term L is chosen big enough, the
method is shown to be convergent. The theoretical results are indicating a similar behaviour with the classical fixed-stress
splitting method (in terms of convergence rate and stabilization parameter size). We further performed numerical tests by
using two well-known benchmark problems. The numerical results confirm the theoretical findings. We observe that the
new scheme PFS is very efficient (around 20% of the wall time of FS). Nevertheless, the parallel implementation has still to
be optimized. A combination of the new scheme with a parallel algorithm for solving the flow (like e.g. PFASST, parareal,
WRMG, MGRIT, or STMG) would substantially increase the efficiency.
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a b s t r a c t

We study the iterative solution of coupled flow and geomechanics in heterogeneous
porous media, modeled by a three-field formulation of the linearized Biot’s
equations. We propose and analyze a variant of the widely used Fixed Stress
Splitting method applied to heterogeneous media. As spatial discretization, we
employ linear Galerkin finite elements for mechanics and mixed finite elements
(lowest order Raviart–Thomas elements) for flow. Additionally, we use implicit Euler
time discretization. The proposed scheme is shown to be globally convergent with
optimal theoretical convergence rates. The convergence is rigorously shown in energy
norms employing a new technique. Furthermore, numerical results demonstrate
robust iteration counts with respect to the full range of Lamé parameters for
homogeneous and heterogeneous media. Being in accordance with the theoretical
results, the iteration count is hardly influenced by the degree of heterogeneities.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The coupling of mechanics and flow in porous media is relevant for many applications ranging from
environmental engineering to biomedical engineering. The simplest model of real applied importance is the
quasi-static linearized Biot system, applicable for infinitesimally deforming, fully saturated porous media.
Existence, uniqueness and regularity for Biot’s equations have been investigated first by Showalter [1].

There are two approaches currently employed for solving Biot’s equations. They are referred to as fully-
implicit and iterative coupling [2]. The fully-implicit approach involves solving the fully coupled system of
governing equations simultaneously, providing the benefit of unconditional stability. It requires advanced
and efficient preconditioners. For this purpose, (Schur complement based) block preconditioners appear to
be a sound choice [3–6]. The iterative coupling approach involves the sequential-implicit solution of flow and
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mechanics using the latest solution information, iterating the procedure at each time step until convergence.
The sequential-implicit approach offers greater flexibility in code design than the fully-implicit approach. On
the other hand, being equivalent to a preconditioned Richardson method [7], sequential-implicit approaches
also provide a basis to design efficient block preconditioners for the fully-implicit approach [8,9]. Among
iterative coupling schemes, the widely used Fixed Stress Splitting method has been rigorously shown to
be unconditionally stable in the sense of a Von Neumann analysis [10] and globally convergent [11], when
considering slightly compressible flow in a homogeneous porous medium.

The new contributions of this work are:

• We prove global, linear convergence in energy norms of the Fixed Stress Splitting method applied to the
fully discretized three-field formulation of Biot’s equations for heterogeneous media, where linear finite
elements are employed for mechanics, mixed finite elements (lowest order Raviart–Thomas elements)
are employed for flow, and backward Euler time discretization is applied.

• We propose a new, optimized tuning parameter for heterogeneous media.

In the case of homogeneous media, the results are in consistency with previous numerical studies, cf., e.g., [12].
To the best of our knowledge, this is the first time the convergence of the Fixed Stress Splitting method is
rigorously shown for energy norms and considering heterogeneous media.

2. Mathematical model — Biot’s equations

We consider the quasi-static Biot’s equations [13,14], modeling a linearly elastic porous medium Ω ⊂ Rd,
d ∈ {2, 3}, saturated with a slightly compressible fluid. On the space–time domain Ω × (0, T ), the governing
equations read

− ∇ · [2µε(u) + λ∇ · u] + α∇p = f , ∂t

( p

M
+ α∇ · u

)
+ ∇ · w = Sf , K−1w + ∇p = ρf g. (1)

Here, u is the displacement, p is the fluid pressure, w is the Darcy flux, ε(u) = 0.5(∇u + ∇u⊤) is the
linearized strain tensor, µ, λ are the Lamé parameters, α is the Biot coefficient, M is the Biot modulus, ρf

is the fluid density, K is the permeability tensor divided by fluid viscosity, g is the gravity vector, and Sf

is a volume source term. For simplicity, we assume homogeneous boundary u = 0, p = 0 on ∂Ω × [0, T ] and
initial conditions u = u0, p = p0 in Ω ×{0}. We make the following assumptions on the effective coefficients:

(A1) Let ρf ∈ R, g ∈ Rd be constant.
(A2) Let M, α, µ, λ ∈ L∞(Ω) be positive, uniformly bounded, with the lower bound strictly positive.
(A3) Let K ∈ L∞(Ω)d×d be a symmetric matrix, which is constant in time and has uniformly bounded

eigenvalues, i.e., there exist constants km, kM ∈ R, satisfying for all x ∈ Ω and for all z ∈ Rd \ {0}

0 < kmz⊤z ≤ z⊤K(x)z ≤ kM z⊤z < ∞.

Below, we consider a numerical approximation of the weak solution of Biot’s equations as described above.

3. Fixed stress splitting for the fully discretized system

Let Th be a regular decomposition of mesh size h of the domain Ω . Furthermore, let 0 = t0 < t1 < · · · <

tN = T , N ∈ N, define a partition of the time interval (0, T ) with constant time step size τ = tk+1−tk, k ≥ 0.
In order to discretize Biot’s equations in space, we use linear, constant and lowest order Raviart–Thomas
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elements to approximate the displacement, pressure and flux, respectively. The corresponding discrete spaces
are given by

Vh =
{

vh ∈ [H1
0 (Ω)]d

⏐⏐ ∀T ∈ Th, vh|T ∈ [P1]d
}

, Qh =
{

qh ∈ L2(Ω)
⏐⏐ ∀T ∈ Th, qh|T ∈ P0

}
,

Zh =
{

zh ∈ H(div;Ω)
⏐⏐ ∀T ∈ Th, zh|T (x) = a + bx, a ∈ Rd, b ∈ R

}
,

where P0 and P1 denote the spaces of scalar piecewise constant and piecewise linear functions, respectively.
Additionally, we use backward Euler time discretization in order to discretize Biot’s equations in time.

Let ⟨·, ·⟩ denote the standard L2(Ω) scalar product. Then for given initial values (u0
h, v0

h, w0
h) ∈ Vh ×Qh ×

Zh, the fully-implicit discretization reads: For all n ∈ N, n ≥ 1, given (un−1
h , pn−1

h , wn−1
h ) ∈ Vh × Qh × Zh,

find the current displacement, pressure and flux fields (un
h , pn

h, wn
h ) ∈ Vh × Qh × Zh, satisfying for all

(vh, qh, zh) ∈ Vh × Qh × Zh

⟨2µε(un
h ) , ε(vh)⟩ + ⟨λ∇ · un

h , ∇ · vh⟩ − ⟨αpn
h, ∇ · vh⟩ = ⟨f , vh⟩, (2)⟨

1
M

pn
h, qh

⟩
+ ⟨α∇ · un

h , qh⟩ + τ⟨∇ · wn
h , qh⟩ = τ⟨Sf , qh⟩ +

⟨
1

M
pn−1

h , qh

⟩
+ ⟨α∇ · un−1

h , qh⟩, (3)

⟨K−1wn
h , zh⟩ − ⟨pn

h, ∇ · zh⟩ = ⟨ρf g, zh⟩. (4)

Instead of solving system (2)–(4) in a fully coupled manner, a popular alternative is to use iterative
methods, which decouple mechanics and flow problems and allow for an efficient solution of the separate
subproblems. Here, we limit our considerations to the widely used Fixed Stress Splitting method and adapt
the idea by Mikelić and Wheeler [11], which considers keeping an artificial volumetric stress constant.
Nevertheless, the same ideas can be also used to prove the convergence of the optimized Undrained Splitting
scheme.

The iterative scheme defines a sequence (un,i
h , pn,i

h , wn,i
h ), i ≥ 0. After initialization un,0

h = un−1
h ,

pn,0
h = pn−1

h , and wn,0
h = wn−1

h , each iterate is defined in two steps. First, the flow problem is solved
independently, keeping the artificial volumetric stress σβ = σ0 + Kdr∇ · u − αp constant, which introduces a
tuning parameter Kdr ∈ L∞(Ω) (classically the drained bulk modulus). Equivalently, we consider the tuning
parameter βF S = α2/Kdr. Second, the mechanics problem is solved using updated pressure and flux. For
fixed n, i ∈ N, the detailed splitting scheme reads as follows:
Step 1: Given (un,i−1

h , pn,i−1
h , wn,i−1

h ) ∈ Vh × Qh × Zh, find (pn,i
h , wn,i

h ) ∈ Qh × Zh s.t. for all (qh, zh) ∈
Qh × Zh it holds

⟨(
1

M
+ βF S

)
pn,i

h , qh

⟩
+ τ⟨∇ · wn,i

h , qh⟩ = τ⟨Sf , qh⟩ +
⟨

1
M

pn−1
h , qh

⟩
+ ⟨α∇ · un−1

h , qh⟩

+ ⟨βF Spn,i−1
h , qh⟩ − ⟨α∇ · un,i−1

h , qh⟩, (5)
⟨K−1wn,i

h , zh⟩ − ⟨pn,i
h , ∇ · zh⟩ = ⟨ρf g, zh⟩. (6)

Step 2: Given pn,i
h ∈ Qh, find un,i

h ∈ Vh such that for all vh ∈ Vh it holds

⟨2µε
(

un,i
h

)
, ε(vh)⟩ + ⟨λ∇ · un,i

h , ∇ · vh⟩ = ⟨f , vh⟩ + ⟨αpn,i
h , ∇ · vh⟩. (7)

In the following, we consider three tuning parameters — the classical, physically motivated choice βcl
F S , cf.,

e.g., [10], and the parameters βλ
F S , βopt

F S , revealed by the analysis of Mikelić and Wheeler [11,12], which is
valid for homogeneous Lamé parameters. The latter parameter is also revealed by the present convergence
analysis, valid for heterogeneous Lamé parameters. More precisely, the parameters are given by

βcl
F S = α2

2µ
d + λ

, βλ
F S = α2

2λ
, βopt

F S = α2

2
( 2µ

d + λ
) . (8)
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4. Convergence analysis

We prove linear convergence of the Fixed Stress Splitting method, when applied to Biot’s equations in
heterogeneous media. For this purpose, we show a contraction with respect to energy norms, making use
of the following lemma and remark. We refer to the Supplementary material (see Appendix A) for further
standard lemmas used in the proof. Furthermore, in the Supplementary material, the proof is repeated for
homogeneous media in a simpler, but a more detailed form.

Lemma 1 (Thomas’ Lemma, [15]). There exists a constant CΩ,d > 0 not depending on the mesh size h,
such that given an arbitrary qh ∈ Qh there exists zh ∈ Zh, satisfying ∇ · zh = qh and ∥zh∥ ≤ CΩ,d∥qh∥.

Remark 1 (Weighted L2(Ω)d Norms). Let k ∈ {1, d}. Let further A ∈ [L∞(Ω)]k×k be a symmetric,
uniformly positive definite matrix and let its eigenvalues be uniformly bounded, i.e., there exist constants
am, aM ∈ R such that for all eigenvalues λ(x) of matrix A(x), x ∈ Ω , it holds 0 < am ≤ λ(x) ≤ aM ≤ ∞.
Then, we define a weighted scalar product ⟨·, ·⟩A on L2(Ω)d by ⟨f , g⟩A = ⟨Af , g⟩, f , g ∈ L2(Ω)d. Let ∥ · ∥A
denote the corresponding norm. Then it holds ∀f , g ∈ L2(Ω)d

am∥f ∥2 ≤ ∥f ∥2
A ≤ aM ∥f ∥2, ⟨f , g⟩ ≤ ∥f ∥A∥g∥A−1 .

Theorem 2 (Linear Convergence for Fixed Stress Splitting). Assume (A1)–(A3). Let (un
h , pn

h, wn
h ) and

(un,i
h , pn,i

h , wn,i
h ) be the solutions of Eqs. (2)–(4) and Eqs. (5)–(7), respectively. Let ei

u = un,i
h − un

h ,
ei

p = pn,i
h − pn

h and ei
w = wn,i

h − wn
h denote the errors at current iteration. Then for all βF S ∈ L∞(Ω),

satisfying

βF S ≥ α2

2( 2µ
d + λ)

on Ω , (9)

for all i ≥ 1, it holds

∥ei
p∥2

βF S
≤



βF S
2

1
M + βF S

2 + τkm
C2
Ω,d


∞

∥ei−1
p ∥2

βF S
, (10)

∥ε
(
ei

u
)

∥2
2µ + ∥∇ · ei

u∥2
λ ≤ ∥ei

p∥2
α2

2µ
d

+λ

. (11)

Optimal convergence rates are obtained in case of equality in Eq. (9).

Proof. Due to Assumptions (A1)–(A3), all effective coefficients fulfill the requirements for defining weighted
L2(Ω)-norms, cf. Remark 1. Throughout the proof we make use of weighted norms without further comment.
Step 1: Flow and mechanics. By taking the differences of corresponding Eqs. (5)–(7) and Eqs. (2)–(4), testing
with vh = ei−1

u ∈ Vh, qh = ei
p ∈ Qh and zh = τei

w ∈ Zh and adding all together, we obtain

⟨ε
(
ei

u
)

, ε
(
ei−1

u
)
⟩2µ + ⟨∇ · ei

u , ∇ · ei−1
u ⟩λ + ∥ei

p∥2
1

M
+ τ∥ei

w∥2
K−1 + ⟨ei

p − ei−1
p , ei

p⟩βF S
= 0.

Using a polarization and binomial identity yields

1
4∥ε

(
ei

u + ei−1
u

)
∥2

2µ + 1
4∥∇ · (ei

u + ei−1
u )∥2

λ − 1
4∥ε

(
ei

u − ei−1
u

)
∥2

2µ − 1
4∥∇ · (ei

u − ei−1
u )∥2

λ

+ ∥ei
p∥2

1
M

+ τ∥ei
w∥2

K−1 + ∥ei
p∥2

βF S
2

+ ∥ei
p − ei−1

p ∥2
βF S

2
− ∥ei−1

p ∥2
βF S

2
= 0. (12)
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Step 2: Mechanics. Evaluating Eq. (7) at iteration i and i − 1, taking the difference and testing with
vh = ei

u − ei−1
u yields

∥ε
(
ei

u − ei−1
u

)
∥2

2µ + ∥∇ · (ei
u − ei−1

u )∥2
λ = ⟨ei

p − ei−1
p , ∇ · (ei

u − ei−1
u )⟩α.

Let γ ∈ L∞(Ω) with γ(Ω) ⊂ [0, 1] and fµ, fλ ∈ L∞(Ω), satisfying the assumptions of Remark 1. Then by
applying weighted Cauchy–Schwarz inequalities, cf. Remark 1, and an arithmetic mean-root mean square
inequality (AM-QM inequality), we obtain

∥ε
(
ei

u − ei−1
u

)
∥2

2µ + ∥∇ · (ei
u − ei−1

u )∥2
λ

= ⟨ei
p − ei−1

p , ∇ · (ei
u − ei−1

u )⟩γα + ⟨ei
p − ei−1

p , ∇ · (ei
u − ei−1

u )⟩(1−γ)α

≤ ∥ei
p − ei−1

p ∥
γα2f−1

µ
∥∇ · (ei

u − ei−1
u )∥γfµ + ∥ei

p − ei−1
p ∥(1−γ)α2f−1

λ
∥∇ · (ei

u − ei−1
u )∥(1−γ)fλ

≤ ∥ei
p − ei−1

p ∥
γα2f−1

µ
∥ε

(
ei

u − ei−1
u

)
∥γdfµ + ∥ei

p − ei−1
p ∥(1−γ)α2f−1

λ
∥∇ · (ei

u − ei−1
u )∥(1−γ)fλ

.

By applying Young’s inequality, rearranging terms and scaling, it holds for c ∈ (0, ∞) and γ, fµ, fλ as above

∥ε
(
ei

u − ei−1
u

)
∥2

c(2µ− 1
2 γdfµ) + ∥∇ · (ei

u − ei−1
u )∥2

c(λ− 1
2 (1−γ)fλ) ≤ ∥ei

p − ei−1
p ∥2

α2
2 c(γf−1

µ +(1−γ)f−1
λ

)
.

By choosing c, γ, fµ, fλ optimally, we finally obtain

1
4∥ε

(
ei

u − ei−1
u

)
∥2

2µ + 1
4∥∇ · (ei

u − ei−1
u )∥2

λ ≤ ∥ei
p − ei−1

p ∥2
α2

4
( 2µ

d
+λ

) . (13)

Step 3: Darcy. Taking the difference of Eqs. (6) and (4) yields for any zh ∈ Zh

⟨K−1ei
w , zh⟩ − ⟨ei

p, ∇ · zh⟩ = 0. (14)

Using Thomas’ Lemma, there exists a constant CΩ,d > 0 and a function z̃h ∈ Zh satisfying ∇ · z̃h = ei
p and

∥z̃h∥ ≤ CΩ,d∥ei
p∥. Then, together with Eq. (14) and Assumption (A3), after some rearranging, we obtain

km

C2
Ω,d

∥ei
p∥2 ≤ ⟨K−1ei

w , ei
w⟩. (15)

Step 4: Combining Step 1–3. Discarding the first two terms in Eq. (12), using Assumption (9), Eq. (13) and
inserting Eq. (15) yields

∥ei
p∥2

1
M + βF S

2 + τkm
C2
Ω,d

≤ ∥ei−1
p ∥2

βF S
2

.

By employing Remark 1, we obtain Eq. (10).
Step 5: Mechanics revisited. Taking the difference of Eqs. (7) and (2), tested with vh = ei

u yields

∥ε
(
ei

u
)

∥2
2µ + ∥∇ · ei

u∥2
λ = ⟨ei

p, ∇ · ei
u⟩α.

We repeat all steps from Step 2. Due to linearity, we obtain Eq. (11) analogously. □

Remark 2 (Discussion). The above analysis covers global convergence in energy norms for all considered
tuning parameters βcl

F S , βλ
F S and βopt

F S , where the first two only yield sub-optimal convergence rates in the
energy norms and the latter yields optimal rates, as shown by our proof. The parameter βλ

F S recovers
optimality in the limit of µ

λ ≪ 1. For soft materials, i.e., in the limit of µ
λ ≫ 1, we expect deteriorating

convergence rates due to lack of dependence on µ.



106 J.W. Both et al. / Applied Mathematics Letters 68 (2017) 101–108

Table 1
Problem parameters, chosen identically to [12].

Symb. Quantity Values [Unit]

E Bulk modulus 0.594 [GPa]
α Biot’s coefficient 1
M Biot’s modulus 1.65e10 [Pa]
K Permeability tensor 100I [mD/cP]

divided by fluid viscosity
g Gravity vector 0 [m/s2]
∆x, ∆y Grid spacing in x and y 0.025 [m]
τ Time step size 1 [s]
δa Absolute error tolerance 1e−6
δr Relative error tolerance 1e−6

5. Numerical results

We analyze the robustness of the Fixed Stress Splitting scheme with respect to different Lamé parameters
and compare the convergence behavior for the tuning parameters βcl

F S , βλ
F S and βopt

F S . For further test
cases with d ∈ {2, 3}, we refer to the Supplementary material (see Appendix A). Note, that convergence
has been already demonstrated by Mikelić et al. [12]. Focusing on the performance of the splitting
scheme, we employ direct solvers for all occurring subproblems. Furthermore, let (ui, pi, wi) denote the
solution coefficient vector in step i. Then given tolerances δa, δr > 0, we employ the stopping criterion
∥(ui, pi, wi) − (ui−1, pi−1, wi−1)∥ ≤ δa + δr∥(ui, pi, wi)∥. For the implementation we used the Dune
libraries [16].

5.1. Two-dimensional homogeneous medium — Constant Poisson’s ratio

Let Ω = (0, 1) × (0, 1) ⊂ R2. For given ξ ∈ R, we prescribe displacement, pressure and flux fields

u(x, y, t) = tx(1 − x)y(1 − y)
[
1 1

]⊤
, p(x, y, t) = ξ · tx(1 − x)y(1 − y), w = −K∇p (16)

and choose source terms, initial and Dirichlet boundary conditions such that Eq. (16) is the solution of
problem (1). We choose the same set of physical parameters as [12] apart from varying mechanical parameters
(see Table 1). Instead of considering the full range of Lamé parameters, it is equivalent to consider the range
ν ∈ (0, 0.5) for the Poisson’s ratio as ν = (2(1 + µ/λ))−1. For the rather realistic parameters, we choose
ξ = 1e8 to achieve convergence of the discretization.

The iteration count for different Poisson’s ratios and different tuning parameters is illustrated in Fig. 1.
Both βcl

F S and βopt
F S are robust with respect to the full range of Poisson’s ratios, whereas the parameter

βλ
F S shows deteriorating convergence rates for soft materials, demonstrating the general necessity of the

dependence of the tuning parameter on both Lamé parameters. As expected, in the limit, i.e., for ν → 0.5,
both parameters βλ

F S and βopt
F S yield identical iteration counts.

5.2. Three-dimensional heterogeneous medium — Jumping Poisson’s ratio

We compare Fixed Stress Splitting iteration counts for three-dimensional, heterogeneous media with
constant and non-constant Poisson’s ratios. We consider a cube Ω = (0, 1) × (0, 1) × (0, 1) ⊂ R3 discretized
by 20 × 20 × 20 hexahedra. For given ξ ∈ R, we prescribe displacement and pressure fields

u(x, y, z, t) = tx(1 − x)y(1 − y)z(1 − z)
[
1 1 1

]⊤
, p(x, y, z, t) = ξ · tx(1 − x)y(1 − y)z(1 − z) (17)

and a corresponding flux field w = −K∇p. Further, we proceed analogously to Section 5.1, also considering
the same physical parameters besides a locally varying Poisson’s ratio. For chosen ∆ν ∈ {0.0, 0.05, 0.1, 0.2}
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Fig. 1. Left and Center: Number of Fixed Stress iterations against Poisson’s ratio for the first time step for (left) the homogeneous
(Section 5.1) and (center) the heterogeneous (Section 5.2) test case. Right: Example for Poisson’s ratio distribution in the interval
[0.1, 0.4] (Section 5.2).

and ν ∈ (∆ν, 0.5 − ∆ν), we consider uniformly distributed Poisson’s ratios in the interval [ν − ∆ν, ν + ∆ν].
An example distribution is shown in Fig. 1. We note, that for ∆ν = 0 the medium is homogeneous.

The iteration counts for different values for ν and ∆ν are visualized in Fig. 1. We make two observations.
For homogeneous media, the iteration count is robust with respect to different Poisson’s ratios as it remains
almost constant, as already seen for the two-dimensional test case in Section 5.1. Furthermore, we note
that for heterogeneous media, the iteration count is bounded by the maximum of numbers of iterations
obtained for homogeneous media over all Poisson’s ratio values taken in the heterogeneous medium. This is
in accordance with the theoretical convergence result, as the theoretical convergence rate includes a infinity
norm, evaluating the worst case.

6. Conclusion

We have proposed an optimized Fixed Stress Splitting method for heterogeneous media. Its global
convergence has been shown in weighted energy norms. The optimized tuning parameter depends on all
mechanical parameters and shows stable iteration counts on the full range of Poisson’s ratios. Numerical
test cases show no significant increase of iterations when switching from a homogeneous to a heterogeneous
medium or from two to three dimensions, demonstrating the robustness of the splitting scheme with respect
to heterogeneities.
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