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Abstract

Previous research has demonstrated that people with Parkinson’s disease (PD) have diffi-

culties with the perceptual discrimination of rhythms, relative to healthy controls. It is not

however clear if this applies only to simpler rhythms (a so called “beat-based” deficit), or if it

is a more generalized deficit that also applies to more complex rhythms. Further insight into

how people with PD process and perceive rhythm can refine our understanding of the well

known problems of temporal processing in the disease. In this study, we wanted to move

beyond simple/complex-dichotomy in previous studies, and further investigate the effect of

tempo on the perception of musical rhythms. To this end, we constructed ten musical

rhythms with a varied degree of complexity across three different tempi. Nineteen people

with PD and 19 healthy controls part-took in an internet based listening survey and rated 10

different musical rhythms for complexity and likeability. In what we believe is the first study

to do so, we asked for the participants subjective ratings of individual rhythms and not their

capacity to directly compare or discriminate between them. We found an overall between-

group difference in complexity judgments that was modulated by tempo, but not level of

complexity. People with PD rated all rhythms as more complex across tempi, with significant

group differences in complexity ratings at 120 and 150bpm, but not at 90bpm. Our analysis

found a uniform elevated baseline for complexity judgments in the PD-group, and a strong

association between the two groups’ rank-ordering the rhythms for complexity. This indi-

cates a preserved ability to discriminate between relative levels of complexity. Finally, the

two groups did not significantly differ in their subjective scoring of likeability, demonstrating

a dissimilarity between judgment of complexity and judgment of likeability between the two

groups. This indicates different cognitive operations for the two types of judgment, and we

speculate that Parkinson’s disease affects judgment of complexity but not judgment of

likeability.
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Introduction

In Parkinson’s disease (PD), death of dopaminergic neurons in the substantia nigra pars com-

pacta in the basal ganglia disrupts several subcortico-cortical loops in motor, associative, and

limbic circuitry [1–3]. This leads to motor and non-motor symptoms that increase their sever-

ity with disease progression [4, 5]. While some motor symptoms in PD, such as bradykinesia

and tremor, are relatively dopamine responsive [5, 6] other gait-specific symptoms, such as

postural instability and balance problems [7], are relatively unresponsive to pharmacological

treatment [8, 9]. Cognitive impairments are well documented in PD [10, 11], so is the effect of

dopaminergic medication on cognitive functions [12]. The intimate relationship between gen-

eral cognitive functioning and timing deficits in PD [13, 14] has made rhythm processing

increasingly more central in the study of cognition in PD [15].

Pathologically, key brain areas and networks involved in rhythm processing in healthy sub-

jects are found to be dysfunctional in PD. Imaging studies of rhythm processing in healthy sub-

jects have found a crucial role for the basal ganglia in detection of auditory sequences, beat

generation and beat prediction [16–18]. Involvement of cerebellar [19–22], cortical motor [23–

25] and prefrontal areas [17, 26] in rhythm processing tasks have been demonstrated. These are

areas directly or indirectly connected to the basal ganglia-circuitries affected in PD, where

abnormal activations in cerebellar [27–29], cortical motor [29] and prefrontal areas [30] have

been shown. In a recent study we have shown widespread differences in brain activation during

rhythm processing in PD, including cortical areas in parietal, auditory, motor, prefrontal, cin-

gulate and in the basal ganglia [31]. PD pathology thus affects many areas and networks associ-

ated with rhythm processing on several levels. It might therefore seem as paradoxical that while

many people with PD have problems with voluntarily self-paced movement, they can synchro-

nize to external auditory cues [32]. This effect is often explained as entrainment [33] to an exter-

nal rhythmic stimuli by an intrinsic timekeeper capacity, which is disrupted in PD [34],

possibly through the activation of compensatory circuitries [35]. An increasing number of stud-

ies has shown how cue-based music and rhythm therapies has positive effects on gait-symptoms

[34, 36–39]. Interplay between common mechanisms in cognition and rhythm entrainment has

been explored to investigate the potential of cue-based therapies to improve non-motor, cogni-

tive functioning [35, 40, 41], i.e., that symptom reduction in one domain can benefit others.

At the core of many studies on rhythm processing is the question of differential processing

of simple and complex rhythms, with imaging and behavioral studies using three levels of

complexity: metric simple, metric complex and non-metric rhythms [23–25, 42, 43]. One

study on rhythm processing in PD, found that people with PD are impaired in discriminating

between strongly metric (isochronous or simple) rhythms relative to healthy controls, coining

this as a “beat-based deficit” [44]. In discrimination of complex and non-metrical rhythms,

people with PD were comparable to healthy controls [44]. The strictly metric (simple rhythms)

condition of this study was recently replicated as part of another study [15]. A follow up [45]

of the original study [44], using a subset of the original stimuli, with only simple/complex

rhythms, testing for the effect of being on/off L-DOPA-medication on discrimination abilities,

failed however to reproduce the “beat-based deficit” in the original study [44],—i.e., people

with PD did not have significantly greater problems discriminating simple compared to com-

plex rhythms, relative to controls. No interaction between group, session (ON/OFF medica-

tion) and metricality (simple/complex) were reported, and only a general discrimination

deficit in people with PD relative to controls was found (main effect of group p = .0.001), irre-

spective then of metrical complexity [45].

This conflicting evidence in the literature motivated the current study, and the aim was to

move beyond the dichotomy of simple/complex [45]. To this end we chose a model from the
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literature (Pressing, 1999) to construct the set of stimuli with varied complexity across 10

rhythms (see Method section for details) with the aim to compare the rank-order (and range-

normalized ratings) of complexity judgments between the PD-group and the healthy control

group. A pool of stimuli with more varied rhythmic complexity would allow for a more fine-

grained examination of the ability of people with PD to judge complexity along a spectrum,

i.e., to investigate if there is a certain point along this spectrum where complexity becomes

problematic for people with PD or whether the difficulties in rhythm processing is a general

deficit, independent of level of complexity.

Another important finding in the study mentioned [45] was the finding that no significant

difference was found between people with PD and controls in the Beat Alignment Test (BAT),

where participants are to judge if an added a sequence of regular tones overlaid on clips of

“real” musical excerpts, are aligned or misaligned with the musical beat of the music. The

authors speculate that the richness of real music offer more cues, facilitating beat perception in

people with PD, a statement which also find support in studies showing how acoustic compo-

nents such as “fullness”, “brightness” and “timbral complexity” activate larger brain-networks

(outside the basal ganglia), including cerebellar areas [46]. One study speculates that the activa-

tion of a compensatory cerebellar–thalamocortical network during musically cued gait train-

ing might explain the positive effect of auditory cues in therapy in PD [35], compensating for

the damaged striato-thalamo-cortical network, hypothesized to be involved in relative, beat-

based timing [19]. A claim that more musical stimuli should have positive therapeutic benefits,

also finds support in studies claiming that ecological valid auditory stimuli is beneficiary for

movement facilitation in PD [47]. For the stimuli constructed for the current study we added

ecological validity by using samples of real drum sounds, simple piano-chords to mark the

start of the rhythmic patterns, as well as synthesized bass sounds added to the beat sequences,

with the intent to study beat-perception differences in musical rhythms, as compared to

sequence perception of sinusoid synthesized sounds. It is however important to note that in

our stimuli only the rhythmic structure were manipulated; all other (intensities, timbre) were

the same across the stimuli. In line with previous research, we hypothesized that using more

ecological valid stimuli would make the task easier for people with PD, thereby potentially

making differences in rhythm perception judgment smaller or even disappear. If differences

were still to be found, these would speak to a “real” difference in rhythm perception abilities in

PD that could not fully be compensated though the use of real music.

We hasten to add that the aim of the current study is not to discuss therapy, but to address

the question of subjective judgment of complexity in rhythms in PD, something that has not

been investigated in PD previously. Rhythm processing deficits in PD does not necessarily

translate into self-reported, subjective judgments, since dysfunction at one system level (dopa-

mine depletion in the basal ganglia) does not necessarily show itself as impairment on another

system level (subjective judgment). Nevertheless, measuring self-reported judgment of com-

plexity in rhythm will potentially show if and how rhythm-processing impairments manifests

on a phenomenological level and lend detail to our understanding of the specificity of the

problems of temporal processing in PD [13, 48].

In this context we were also interested in investigating was the effect of tempo in rhythm

processing in PD. The two studies referred to above (bpm calculated on the millisecond mea-

sures stated in the articles) used tempi between 111 to 136bpm (in approx. 5bpm steps) [44]

and 102, 129, and 150bpm [45] respectively. These tempi are interesting in lieu of rhythmic

auditory stimulation studies performed on people with PD, where studies have found that a

rhythmic auditory cues at 100% compared to a patients normal gait cadence was beneficiary to

stride length and swing [38, 39, 49], velocity and cadence [49]. In these studies, natural gait

cadence was found to be, on average, 111, 107 and 114bpm respectively, and in the two first of

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 3 / 21

https://doi.org/10.1371/journal.pone.0221752


these studies, an increase to 110% of natural gait tempi (122bpm and 111bpm respectively)

also significantly reduced the variability in gait. This indicates that the tempo of auditory sti-

muli has manifest effects on movement in PD, and we were interested in investigating whether

tempo also had an effect on the perception of rhythmic complexity in people with PD.

We therefore distributed our stimuli across three different tempi to investigate whether

there was an effect. The three tempi chosen were 90bpm, 120bpm and 150bpm. The first

tempo significantly slower than those found for natural gait, the second an average of the three

studies mentioned above (at 110%), and the third significantly faster than natural gait. In addi-

tion, a tempo at 120bpm is seen as a general tempo of human locomotion [50] and salient

when walking to music [51]. As a strong auditory-motor area coupling is a dominant explana-

tory model for beat perception [16, 17, 52, 53], and the slightly increased tempo of 110% com-

pared to natural gait was found to decrease movement problems in PD, we hypothesized that

stimuli played at this tempo would be experienced as less complex than the slower and faster

tempi, in both groups.

Perception of complexity has been found to be influenced by the listeners preference of

music, with many studies showing that the level of perceived complexity is related to prefer-

ence in an inverted U-curve (or Wundt-curve), with listeners preferring medium complexities

to more simple or more complex rhythms [54], [55, 56]. Research into the relationship

between rhythmic complexity and a feeling of “wanting to move” (i.e., dance) to music has

shown similar results [57]. In this latter study, the stimuli used were at 120bpm, a tempo that is

close to what another study indicates as an “optimal tempo for groove”, i.e., the feeling that

induces body movement [58]. In sum, studies such as these point to a complex relationship

between subjective preference, rhythmic complexities and body movements.

Studies on musical preference in relation to rhythmic cued or music therapies in PD is lim-

ited, and in relation to processing and perception (or as in our case subjective judgement)

scarce. One study on PD suggested using self-selected (preferred) music did not give benefi-

ciary effects in therapy [59], while another found positive effects of taking into consideration

tempo-to-cadence matched songs, and preference and listening habits [49]. While simple, iso-

chronous pulsed or beat-based rhythmic stimuli have been found to be very effective in thera-

peutic settings [60], newer research points to a combination of cue-continuity (simplicity) and

action-relevance (i.e., ecologic valid sounds such as music [47]) to be a more successful combi-

nation than any one factor alone [61].

It seems logical that the relationship between preference and rhythmic complexity should

play an important role in rhythm processing in PD. As a proxy or operationalization for pref-

erence, we therefore asked the participants also to rate the different stimuli for likeability.

Through this, we wanted to investigate whether the relationship between likeability and rhyth-

mic complexity was different in people with PD compared to controls. We speculated that a

judgment of likeability constituted a cognitively different operation than judgment of com-

plexity, since it does not involve a judgment of a specific temporal relationship of qualities

within the stimuli itself (i.e., a cognitive “analysis” of a particular feature, complexity), but

rather an overall more intuitive or emotional response. As a somewhat open question, we were

therefore interested in investigating whether an inverted U-curve relationship between com-

plexity and likeability would differ between the two groups. We hypothesized that if the subjec-

tive judgment of complexity in rhythm is a more general deficit in PD (independent of level of

complexity) and the subjective judgment of likeability is unaffected by the pathology, a possible

U-curve for the relationship between the two judgments would have the same shape, but, in

the case of PD, displaced on the axis of complexity.

As with the ratings of complexity, we additionally wanted to investigate whether tempo

affected ratings of likeability differently in people with PD compared to controls. Previous
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research into the effect of tempo on preference from children [62] to college students [63], and

into the emotional impact of tempo [64] (the latter study using the three tempos 90, 120,

150bpm), all hint to increased preference and in general more positive emotional valence as

tempo increases, and we therefore expected to find similar results in our study, i.e., that the

higher the tempo, the higher the likeability-ratings would be, in both groups.

Finally, we wanted to briefly to address the relationship between clinical scores, cognitive

abilities and rhythm processing. One study found a correlation between UPDRS-III scores and

rhythm discrimination abilities [45], while another study indicate that rhythmic processing in

Parkinson’s disease can be used as predictors for other cognitive operations, particularly for

working memory operations [15]. In addition to the UPDRS-III clinical scores and time since

diagnosis, we therefore included a small neuropsychological test battery. Since the task of judg-

ing complexity of the individual rhythms at some level must involve a covert comparison

between them, the ability to encode and retain recently presented items could also affect the

ability of such a covert comparison. One study indicates a separate working memory system

for rhythm [65], overlapping with areas affected by PD. Of particular interest to us therefore,

are findings on deficits in working memory (WM) in PD [66, 67], indicating that working

memory deficits in PD are predominantly in the encoding stage [68]. Indeed, working mem-

ory networks have phasic dynamics that develop differently for time-dependent parts for

encoding, maintenance and retrieval stages [69], also in auditory working memory [70] and

during time perception [71]. Time-dependent changes in WM networks might in turn be

modulated by stimuli-related cognitive load [72], and can furthermore be related to large-scale

network dynamics, as there are indications that working memory networks de-couples from

both default mode network and executive network during maintenance, possibly to avoid or

minimize any external or internal distraction [69]. De-coupling of dopaminergic circuits in

the basal ganglia from other networks during prolonged listening to rhythmic music [73], indi-

cate that establishing stable temporal structures involves self-reinforcing, and perhaps rhythm

specific, WM network mechanisms. Interactions between frontal areas and the basal ganglia

play a crucial role in working memory [74, 75], and the temporal dynamics of basal ganglia

activity during WM operations [76] shows phasic dysfunction in PD [77], and distinct phasic

differences in brain activity patterns in PD during early stages of rhythm processing include

differences in pre/motor, auditory, prefrontal, inferior frontal and basal ganglia areas [31],

areas that overlap with WM circuitries.

A simple measure of memory and learning abilities is the California Verbal Learning Test-

II (CVLT-II) and this test was administered to check for correlations between complexity rat-

ings and verbal memory, as an indirect measure of general auditory working memory and

learning impairment [68] (i.e., encoding). The test was chosen because it has previously been

used in PD [78] and is also part of the standard PD assessment at the hospital where this study

was undertaken. A Stroop-test [79] was administered to test for correlations with set-shifting

abilities as a measure of attention and executive function [80].

Methods and material

Participants

Twenty-three volunteers with PD were recruited with the help of the National Parkinson’s

Association in Norway. The results of three participants were removed due to problems per-

forming the online test. Twenty healthy controls were recruited, and matched for age, sex, edu-

cation level, as well as for musical expertise when possible. In two cases however female HCs

were matched to male people with PD. This skewed the matching of the two groups, and we

have taken this into consideration in the analyses by adding sex as a between-subject factor.
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Additionally one female PD and one female HC were removed when it was discovered they

had not used the required time to perform the test (i.e., rushing through the test and not listen-

ing to the complete stimuli). Thus, 19 people with PD and 19 healthy controls were included

in the analysis. For all participants, a minimum Mini Mental Status (MMS) [81] score of 24

was set, to exclude people with cognitive impairment indicative of dementia in both groups.

All people with PD were rated with the Unified Parkinson’s disease rating scale, part III

(UPDRS-III) [82]. All people with PD were in medication regimens (L-DOPA, D2-antago-

nists, MAO-inhibitors and or COMT-inhibitors). All procedures were approved by the

Regional Committee for Medical and Health Research Ethics WEST, Medical Faculty, Univer-

sity of Bergen / Haukeland University Hospital (REK no 2014/1915) and carried out in accor-

dance with the code of Ethics of the World Medical Association, Declaration of Helsinki.

Before the tests, all participants gave written informed consent to participate in the study. Par-

ticipants were compensated with 100NOK for participation in this study. (See Table 1 for an

overview of the participants).

Stimuli construction

Using Steinberg Cubase 7 (http://www.steinberg.net), we created 10 rhythms in 4/4 time signa-

tures, in two modes (major/minor), each in three different tempi (90, 120 and 150 beats per

minute, bpm), making a total of 60 stimuli. Each stimulus consisted of eight repetitions of the

rhythm, and the stimuli lasted approx. 22, 16 and 13 seconds for 90, 120 and 150 bpm respec-

tively. Rhythms were created with sampled drum sounds and modes where constructed by

alternating between simple two-note piano chords at the 1st beat-position of every bar. Major/

minor modes were used to make the stimuli pool a slightly more varied listening experience,

to avoid repetition of the exact same sound stimuli, while allowing us to present each rhythm

twice at each tempo. No analysis was planned or performed for modes. The three tempi chosen

were all well within the boundaries of music (see Introduction for more details on tempo). To

make the stimuli more musical (and ecological more valid), a bass synth sound was superim-

posed on each drum onset, alternating between two tones in the set mode of the stimuli.

Although the addition of musical instruments added complexity to the stimuli, and potentially

added melodic accents that might have influenced the perception of the rhythms [83, 84], we

would argue that the uniformity of the stimuli (i.e., no expressive timing, uniform volume on

each sound onset and the uniformity of the alternations) strongly limited these as confounding

factors, and preserved the role of onsets as the dominant source of temporal or rhythmic infor-

mation. For complexity ratings of the rhythmic patterns, we used a model by Jeff Pressing,

found in [85] (which, in reference to the point above on melodic accents, explicitly uses alter-

nating notes as examples). In this model, rhythmic complexity theoretically is understood as

“cognitive costs incurred in maintaining the metrical framework, motor and cognitive costs in

the physical production of the pattern, and cognitive costs in reconciling the pattern’s place-

ment within the metrical framework.” It is this latter cost of reconciliation that is the basis of

his complexity measures, where combinations of onset positions in sub-divisions of a bar, are

given a score, and the sum of these scores give a one-dimensional score for complexity for the

whole phrase. The rhythms in our studies are all based on a 4/4 metric structure, so cognitive

cost of maintenance of the metrical framework should be equal between them. Since our stud-

ies are passive by design, meaning they were simply listening and not performing the rhythms,

they also do not involve physical production costs. The reconciliation cost is therefore–theo-

retically–an ideal measure of the “cost” or cognitive load of perceptual complexity. Pressing’s

model thus allowed us to construct a pool of stimuli by manipulating the sequential onset posi-

tions of the auditory events. The ‘scaffolding’ for 10 different rhythms in 4/4 time signatures
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was produced using Pressings complexity scores, where combinations of onset positions in

sub-divisions of a bar are given a score, and the sum of these scores gives a one-dimensional

score for complexity for the whole bar. To exemplify, in Table 2, rhythm #1 has four identical

bars, each with onset only on the first position. In Pressing’s model this sub-bar is given the

value of zero, thus the whole rhythm is given the complexity score of zero. In rhythm #10, the

first sub-division has onsets in position 1 and 4, giving a “Pressing-score” of 4.5; the second

and third sub-division have onsets only in position 3, with a score of 5; the last sub-division

has an onset in the second position, with a score of 7.5. This gives rhythm #10 a total ‘Pressing-

score’ of 22 for the whole bar (4.5 + 5 + 5 + 7.5). We chose Pressing’s model because it allows

for a pragmatic a priori ranking of stimuli complexity. We would however want to stress that

the motivation for this study was to investigate if people with PD and HCs judged complexity

in different ways, not whether Pressing’s model itself was correct. We will also refrain from

comparing this model to other models, although we recognize the vast number of studies and

approaches in the field [86–98]. For further details on Pressing’s model, we will refer to the

original paper [85] as well as Toussaint’s use of it and his comparison to other models [98].

Rhythms #4, 6, 7, 8, 9 and 10 in Table 2 were taken from examples in the literature [98],

while the remaining four rhythms were constructed based on Pressing’s model. An example of

the stimuli used can be found in the supplementary material, as can an overview of the sub-

division values in Pressing’s model (S1 and S2 Figs).

Table 1. Group characteristics.

N (f) Age (sd/min/max) Edu (sd/min/max) MMS (sd/min/max) MUSLEN (sd/min/max)

PD 19 (6) 65.26 (11.54/40/81) 14.21 (4.01/9/18) 27.79 (1.62/24/30) 12.47 (16.17/0/63)

HC 19 (8) 65.47 (12.28/40/84) 15.79 (3.13/9/18) 28.52 (1.26/25/30) 14.84(20.68/0/66)

p < 0.957 0.191 0.127 0.696

PD Group UPDRS-III (SD/min/max) Symptoms (SD/min/max) Diagnosis (SD/min/max)

19.33 (6.01/11/34) 8.11 (4.4/1/17) 6.22 (3.66/2/15)

PD: Parkinson’s group. HC: Healthy controls. f: Females. Muslen = years playing an instrument. Other columns: Means (standard deviations / minimum / maximum).

Edu: Years of education. MMS: Minimal mental-state test. MUSLEN: Length of playing an instrument. UPDRS-III: Unified Parkinson’s disease rating scale, Part III.

Symptoms: Years since first self-perceived symptoms. Diagnosis: Years since diagnosis.

https://doi.org/10.1371/journal.pone.0221752.t001

Table 2. Overview over the 10 rhythmic patterns used.

Rhythm Complexity Integer ratios

1 X x x x 0 4:4:4:4

2 x x x x x x 2 4:2:2:2:2:4

3 x x x x x 6 2:4:2:4:4

4 x x x x x 6 4:2:4:2:4

5 x x x x x 7,5 4:3:5:1:3

6 x x x x x 14,5 3:3:4:2:4

7 x x x x x 15 3:3:4:1:5

8 x x x x x 17 3:4:3:2:4

9 x x x x x 19,5 3:3:4:4:2

10 x x x x x 22 3:3:4:3:3

Black boxes on top signifies quarter notes of each 4/4 bar, and x’s signifies sound onsets. The complexity scores according to Jeff Pressing’s model [85] in the right

column.

https://doi.org/10.1371/journal.pone.0221752.t002
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The online survey

The online survey was programmed on a LAMP-platform (Linux, Apache, MySQL, Php),

using HTML and JavaScript, ensuring that it ran on most popular operating systems and

browser combinations. Stimuli sound files were compressed to mp3-format (320kbp,

44.1kHz). The participants completed the survey at home, using their own equipment. Due to

unfamiliarity in using computers and a computer mouse, three of the participants (one PD

and two HCs) performed the listening test under the supervision of the first author by giving

oral response to the questions and rating schemes.

Participants filled out an online questionnaire with questions about sex, age, handedness,

height, weight, education and musical background. The question on musical background

included how often participants listened to music in their everyday, if and for how long the

participant had played an instrument or sung, whether they considered themselves music-lov-

ers, and which level of musicianship they perceived they had. Additional questions about time

since first self-perceived symptoms and time since diagnosis, use of music in therapy, and

medication use were added for the people with PD. As stated above all people with PD

included in the study were in medication regimens when undertaking the online survey, and

were asked to do the test in a strong ON period of medication. All participants in both groups

were right handed.

Participants rated the 60 stimuli, presented in a random order and were given no other

instructions than “How complex do you perceive this rhythm to be?”, and “How much do you

like this rhythm”. Ratings were done on 11-point Likert-scales (ranging from “Very simple”/

”Very complex” and “Not at all”/”A lot” respectively). The survey started and ended with the

presentation of four rhythms on one screen, giving the participants an opportunity to get a

“feel” for the range of stimuli complexity, but no explicit indication of the different levels of

complexity of the four samples were given.

The California Verbal Learning Test-II [78] and Stroop-test [79] were done in separate ses-

sions, simultaneously with Mini Mental Test and UPDRS-III examination [82] for the people

with PD. Due to scheduling problems, UPDRS-scores for one patient are missing.

Analysis

We first compared neuropsychological test-scores between the two groups for baseline pur-

poses. For our main research question, i.e., whether the PD-group ratings of the rhythmic sti-

muli would be influenced by level of complexity and tempo, we performed a series of planned

between-group comparisons of complexity-ratings and likeability- ratings, both across tempi

and across the varied complexity of the ten rhythms. Secondly, we compared the relationship

between complexity and likeability ratings between the two groups. Thirdly, correlation and

regression-analyses were performed to investigate closer the relationships between different

clinical and cognitive scores, and complexity ratings.

Statistical analyses were done using SPSS (Version 24.0.0.0 / IBM). Permutation-tests and

graphical representations t-tests were done using R version 3.5.2 (The R Foundation for Statis-

tical Computing).

Results

Neuropsychological tests

For the California Verbal Learning Test-II (CVLT-II) [78], we concentrated on three measures

aimed to assess different memory and learning related processes, as utilized in [68]. The

CVLT-II started with the examiner reading out a list of 16 words to be immediately repeated
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by the participant. This procedure was repeated five times (trials 1–5), and the number of cor-

rectly remembered words were scored per trail. The sum score of trials 1–5 is sensitive to gen-

eral memory impairment, while the sum score of trials 2–5 is a composite measure of memory

and learning, and finally the learning slope of trials 1–5 is a measure of encoding ability [68].

The Stroop test measures set-shifting abilities [79], and for this test we calculated the inference

score (IG) proposed by Golden (1978). This test has previously been used as a measure of

attention [80]. At baseline, no significant between-group results were found for any of the

neuropsychological test scores (see Table 3).

Planned comparisons

A repeated measures-ANOVA, with ratings as a dependent factor, and task (with two levels—

ratings for complexity and likeability), rhythm (with ten levels for gradient rhythms) and

tempi (three levels—90, 120 and 150bpm) as within-subject factors, and group as between-sub-

ject factor was done. Mauchly’s test showing violations of the assumption of sphericity, and

Greenhouse-Geisser estimates were used to correct the degrees of freedom. Results at a 95%

confidence interval found a significant between-subject effect for group (F(1, 36) = 4.112, p =

.05, ηp2 = 0.103). Significant within-group main effects were found for rhythm (F(5.68,

204.38) = 8.49, p<.001, ηp2 = 0.19) and tempo (F(1.39, 50.22) = 11.14, p<.001, ηp2 = 0.24).

Significant two-way interactions were found for tempo and group (F(1.39, 50.22) = 3.93,

p = 0.04, ηp2 = 0.10), tempo and rhythm (F(7.61, 273.94) = 10.17, p<0.001, ηp2 = 0.22), task

and rhythm (F(6.25, 224.91) = 7.17, p<.001, ηp2 = 0.17), task and tempo (F(1.39, 49.92) =

23.35, p<.001, ηp2 = 0.39). A three-way interaction was found for task, tempo and rhythm (F
(6.60, 237.47) = 5.61, p<.001, ηp2 = 0.13).

Our main analysis was a series of planned, between- and within-group t-tests on tempo and

rhythm across the two tasks (i.e., complexity and judgment ratings). Unless otherwise indi-

cated, all t-tests were two-sided, and reported with uncorrected p-values. The exception are

the planned comparisons for each individual rhythm, where, because of our strong hypothesis,

one-sided t-tests and false-discovery rate (fdr) q-values are used.

Overall effects of judgment type, and judgment type across tempi. For complexity rat-

ings (across all rhythms and tempi), there was a significant between-group difference (p =

.019, Cohen’s d = 0.80), where the Parkinson’s group as expected judged the rhythms more

complex than the healthy controls. For likeability ratings (across all rhythms and tempi) there

were no between-group difference (p = 0.522, d = 0.21) (Fig 1a).

Table 3. Difference between neurological test-scores.

PD mean (sd) HC mean (sd) p =

CVLT-II (1–5) 39.89 (11.3) 47.68 (14.83) 0.08

CVLT-II (2–5) 34.79 (9.68) 41.79 (13.24) 0.07

CVLT-II (Slope) 1.26 (0.61) 1.36 (0.65) 0.48

Stroop1 80.89 (18.83) 86.37 (12.68) 0.29

Stroop2 55.89 (14.48) 58.05 (12.64) 0.63

Stroop3 29.89 (13.09) 29.84 (12.04) 0.99

Stroop IG -2.53 (10.59) -4.48 (9.72) 0.56

CVLT-II: California Verbal learning test. CVLT-II (1–5) total sum for trials 1–5. CVLT-II (2–5) total sum for trials

2–5. CVLT-II (Slope): Learning slope trials 1–5. Stroop1-3: The three parts of the Stroop test. Stroop IG = Inference

score (Golden 1978). Stroop 2,3 and IG scores for one participant in the PD-group is missing (and excluded in that

comparison).

https://doi.org/10.1371/journal.pone.0221752.t003
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For group differences for complexity ratings per tempo, we found significant between-

group differences for the two fastest tempi (120bpm p = 0.011, d = 0.87 and 150bpm p = .01,

d = 0.88), but not for the lowest tempo (90bpm, p = 0.068, d = 0.61). For both groups there

were within-group differences between the two fastest tempi (120<150bpm, PD: p = 0.001 /

HC: p<.001), while only the healthy control group showed a significant difference between

90bpm and 120bpm (p = 0.008). Neither group showed significant differences between 90 and

150bpm. For both groups, the medium tempo (120bpm) demonstrated lower complexity rat-

ings in absolute numbers than the other two tempi (Fig 1b).

For likeability ratings per tempo there were no significant between-group differences for

any tempo, but both groups showed significant within-group differences between 90/120bpm

(PD: p<0.001 / HC: p = 0.005) and 90/150bpm (PD: p<0.001 / HC: p = 0.025), but not between

120/150bpm. Both groups judged the lowest tempo the least likeable. The control group judged

150bpm slightly more likeable than 120bpm in absolute numbers (Fig 1c).

Differences between all ten rhythms, across tempi. Based on previous findings in the lit-

erature, our a priori prediction was that the PD-group would give higher complexity ratings

for the rhythmic stimuli. While our other t-tests (above) were done as two-sided tests, the com-

parison of the ten individual rhythms where performed as one-sided t-tests for the complexity

judgments, using fdr-correction for multiple comparison (q-values). Comparisons of the like-

ability ratings were done with two-sided t-tests, since we did not have any strong hypothesis

about these ratings. Including all 10 rhythms across all tempi, we found significant between-

group differences for 8 of the 10 rhythms (Fig 2). For likeability ratings we did not find any sig-

nificant difference for any of the ten rhythms. Testing for tempi, only one rhythm showed a

significant group difference for complexity ratings at the slowest tempo (90bpm, #4 q = 0.040).

For 120bpm, six of the rhythms were significantly different (#1–4, #6 and #10). For 150bpm

eight rhythms were significantly different (#1–4,6,7,9,10). For likeability ratings, no significant

differences were found between any of the rhythms at individual tempi.

Rating of complexity and likeability. To test how well the two groups rated the ten

rhythms for complexity, compared to our a priori ranking and to test how the two groups

Fig 1. Between-groups differences for complexity and likeability ratings across all rhythms. Two-sided t-tests for between-group differences for

overall complexity and likeability ratings (1.a), between-group differences for overall complexity (1.b) and likeability ratings (1.c) for three different

tempi. Error bars represent 1 standard error of the mean (SEM).

https://doi.org/10.1371/journal.pone.0221752.g001
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compared to each other (summed across all tempi), a linear-trend analysis was performed. A

significant Mantel-Haenszel linear-by-linear association between Pressing-rank (Table 2) and

group averaged rankings were found both for the PD-group (M2 = 5.33, df = 1, p = 0.021) and

the HC-group (M2 = 7.42, df = 1, p = 0.006). A significant between-group association was also

found (M2 = 6.85, df = 1, p = 0.009). Range normalization–a way of scaling data with different

ranges into the same unit interval–allows a more direct comparison of the relative intervals

between scores across the 10 rhythms. We range normalized the “pressing-scores” and the sub-

jective scores (by group) into a unit interval ranging from 0 to 1 and repeated the above analy-

sis. Again a significant association between the Pressing-rank and complexity ratings in both

groups was found (PD: M2 = 5.02, df = 1, p = 0.025 / HC: M2 = 5.68, df = 1, p = 0.017), with a

between-group association (M2 = 8.12, df = 1, p = 0.004). For likeability ratings, neither group

showed any association with Pressing’s ranking of complexity, for neither rank ordered or

range-normalized data, which we also would not assume since Pressing’s scores are for com-

plexity, but the analysis showed a significant between-group association for both rank ordered

(M2 = 6.03, df = 1, p = 0.014) and range-normalized data (M2 = 4.16, df = 1, p = 0.041).

Relationship between complexity and likeability-scores. Examining the relationship

between complexity ratings and likeability ratings to check for a hypothesized inverted U-

curve, we did regression analysis of average complexity and likeability ratings for each partici-

pants in each group. In both groups a quadratic model yielded poor model fit with an adjusted

R2 = 0.16 for both groups. They were however both significant (F(2,187) = 18.89, p<0.001 for

the PD-group and F(2,187) = 18.96, p<0.001 for the healthy controls). There was no statistical

difference between the curves for the two groups, but as Fig 3 shows, there shift towards higher

complexity rating can be seen in the PD-group.

Fig 2. Between-group differences for complexity ratings. Between-groups fdr q-values from one-sided t-test p-values for averaged complexity ratings

for each of the 10 individual rhythms. Error bars indicate 95% confidence interval. Y-axis indicates ratings of complexity (0–10) while X-axis are the 10

rhythms, ordered by increasing complexity ratings in the control group.

https://doi.org/10.1371/journal.pone.0221752.g002
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Correlations between subject judgment-scores and other factors. Pearson’s correlation

tests were carried out within the two groups to check for correlations between overall complex-

ity and likeability ratings respectively, with age, sex, education, years of playing an instrument,

neuropsychological test scores (CVLT-II-scores (1–5, 2–5 and slope), Stroop-tests (inference

score), and MMS scores), and disease length (years since diagnosis) and UPDRS-II scores for

the PD-group. No significant correlations where found (all p>0.087 and p>0.103 for the

healthy controls and the PD-group respectively).

Regression analyses

A forward stepwise linear regression analyses was carried out to examine whether results in

neuropsychological test-scores could predict complexity ratings (using complexity ratings as

Fig 3. Likeability vs complexity-scores. Quadratic curve-fit for both groups shows inverted U-curves (Wundt-curves) for the relationship between

likeability scores (y-axis) and complexity scores (x-axis).

https://doi.org/10.1371/journal.pone.0221752.g003
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dependent and CVLT-II, Stroop, and MMS-scores as independent variables), but yielded no

significant predictor variables.

Forward stepwise binary logistic regression analysis was carried out to examine whether

group could be predicted from complexity ratings, years of playing an instrument, CVLT-II

(1–5,2–5,slope), Stroop (IG), and MMS-scores. Stroop-scores from on participant was missing,

but the analysis excluding this participant showed that Stroop was not a significant predictor

variable, and this variable was removed so that the analysis could be done with all participants.

A model including CVLT(2–5) and complexity ratings was significant (χ2(2) = 10.83,

p<0.004), and better than complexity ratings alone (χ2(1) = 5.95, p<0.015), and explained

33% (Nagelkerke R2 = 0.331) of the variance and correctly classified group-belonging with

68.4% (in comparison with 19% and 63.2% respectively for the simpler model that just

included complexity ratings).

To assess the reliability of the observed effect in the above analysis, we randomly permuted

the group labels 1000 times and ran logistic regressions based on the model including the

CVLT(2–5) and the complexity ratings. Permuting the data like this generated a null distribu-

tion of the complete data-set, and if the observed effect were higher than the last 5% if the null

distribution (expressed as p-values), this would be a strong indicator that the observed effect is

reliable. We thus compared both the observed accuracy (68.4%) and the R2 (33%) with the per-

muted results, and found that the observed R2 value was significant (p<0.006) while the accu-

racy of classifying group-belonging was not, although close to trending (p<0.085). Running

the permutation on the reduced model, including only the complexity ratings, found that both

the observed accuracy of classifying group-belonging (63.2%) and the R2 (19%) to be signifi-

cant (p<0.023 and p<0.045 respectively).

Discussion

Previous research is not conclusive about whether the level of complexity differentially affects

the ability for discrimination, i.e., whether–in a binary fashion–people with PD have greater

difficulties discriminating simple than complex rhythms relative to healthy controls (a “beat-

based impairment” [15, 44]) or whether this impairment is of a more general nature, as sug-

gested in a recent study [45]. The “beat-based impairment” hypothesis indicates that people

with PD, compared to healthy controls and, in a binary fashion, are more impaired on dis-

crimination on strongly metric (simple or isochronous) rhythms than more complex rhythms.

If this assumption was correct, we would expect to find that the statistical difference between

the two groups would be significantly larger for the rhythms judged least compared to those

judged more complex. Furthermore, should this “beat-based impairment” not be exclusively

binary, but nonetheless still depend on the relative level of complexity of the rhythms, one

would assume that the group differences would inversely scale with the level of complexity. As

our results show, we found that the PD-group gave similar overall higher complexity-ratings

both for simple and complex rhythms, and that the group difference did not scale with com-

plexity. Our findings are thus not consistent with a “beat-based impairment” [15, 44], but

points to a more overall, generalized impairment [45], independent of complexity levels, at

least in the pure subjective, perceptual judgment of rhythm in a musical context.

The results were also modulated by tempo, a variable not investigated in previous research

on rhythm perception in Parkinson’s disease. When taking tempo into consideration, our

analysis showed no significant overall between-group difference at the lowest tempo (90bpm),

while the group-difference remained intact for the two faster tempi. Across the ten rhythms,

our analysis of the more varied complexities gave a more fine grained understanding, particu-

larly of the effect of tempo. The number of rhythms showing significant differences increased
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with tempo, from one at the slowest tempo, six at the medium tempo and eight at the fastest

tempo. This indicates an effect of the interaction between complexity and tempo. Interestingly,

complexity ratings were not associated with tempo–in fact both the slowest and the fastest

tempi were judged as overall more complex than the middle tempo of 120bpm (or 2Hz) in

both groups. This tempo is viewed as a key spontaneous tempo of human locomotion [50],

particularly salient when walking to music [51] and has also been used to investigate percep-

tion of rhythm in relation to complexity [57]. As a strong auditory-motor area coupling is a

dominant explanatory model for beat perception [16, 17, 52, 53], music at a tempo close to

that of natural gait or dancing might be experienced as less complex than slower and faster

tempi. The effect of tempo on perceived complexity should be investigated further in future

studies, perhaps also by including tempi matched to the natural gait of the participants.

Both groups showed a significant association with the a priori Pressing-ranking, and we

note that this indicates that Pressing’s model holds a potential as a simple and useful tool for

stimuli construction for more varied complexities. More telling is the strong association

between the two groups in their ranking of the complexities of the ten rhythms. We believe

this is an indication that the PD-group in fact has a preserved ability for relative complexity

judgments, with a consistent elevated baseline for complexity judgments, again inconsistent

with the simple dichotomy that underlies the idea of a potential “beat-based deficit”. The

tempo-dependent judgments and the elevated baseline-level in PD for complexity in rhythm

should be investigated in other modalities using for example temporal visual and tactile para-

digms, to see if this effect is confined to the auditory domain alone, or whether it is an expres-

sion of a domain-independent cognitive impairment, since impairments of judgment of

complexity could simply be the result of a general cognitive impairment in the PD-group.

The dissimilarity between complexity and likeability ratings, where the PD-group gave

higher ratings for all complexity ratings, but similar ratings for likeability ratings relative to the

healthy controls, indicate that judgment of complexity and judgment of likeability are two cog-

nitively different operations. Both groups showed hints of an inverted U-curve previously

found in the literature, where medium complexities are preferred to too simple or too complex

rhythms. This further points to a preserved, although displaced, relationship between com-

plexity and likeability in PD.

It is tempting to speculate that this indicates that PD-pathology affects the neural underpin-

nings for complexity-judgments but not the neural underpinnings for likeability-judgments,

perhaps due to differential involvement of basal ganglia-loops for the different operations. To

this, we will add that as judgment of complexity asked the participant to address one particular

quality of the stimuli, this could be seen as a more cognitively demanding task than judging for

likeability, and in addition, the quality we asked to be judged (complexity) spoke directly to

well known temporal processing impairments in Parkinson’s disease [13, 48].

However, the opposite might be true, that complexity-judgments are not so cognitively

demanding, and instead contingent on motor-abilities, as indicated in a recent study that

shows that rhythmic and musical skills in people with PD influence gait benefits of rhythmic

auditory cueing. We also do not know enough about the cognitive and neuronal underpin-

nings of likeability judgments to turn this speculation into a claim. This is however a topic that

would be highly interesting to investigate further, also in other pathologies, as it relates more

to affective traits than motor and temporal traits.

The all-round lack of between-group differences in likeability ratings indicate that the two

groups did not use the scales differently, i.e., that the method of investigation itself did not dis-

favor the PD-group. We would suggest that this similarity in judgment of likeability therefore

can serve as a control task for future research in perception of rhythmic complexity in Parkin-

son’s disease, and potentially also in other pathologies.
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UPDRS-III is a clinical assessment of level of all motor related problems, and has previously

been found to correlate with complexity discrimination [45], indicating that rhythm discrimi-

nation and motor symptoms could be related. In the current study, we did not find however

correlation between complexity judgments and UPDRS-III scores. A previous study [15] indi-

cated that rhythm perception impairment in Parkinson’s disease has certain specific qualities,

i.e., that rhythmic processing in Parkinson’s disease could be used as predictors for other cog-

nitive operations. We did not find correlations between complexity ratings and any of the

neuropsychological tests (CVLT-II, Stroop and MMS). Lack of correlations might be due to

the low number of participants in this study. We also used different tests, so our lack of signifi-

cant correlations does not refute the findings in those papers. However, as our regression anal-

ysis showed, a combination of specific cognitive tests scores and complexity ratings correctly

classified group belonging with almost 70% accuracy, and we firmly believe further research

into the specificity of the relation between various rhythmic tasks and cognitive testing in

other domains (such as learning, memory and attention) is a fruitful way forward to better

understand and identify the cognitive impact of Parkinson’s disease, using musical rhythms as

research tools.

Limitations

While most studies use “pure tone” (sinusoid synthesized sounds) stimuli, we opted for more

ecological valid stimuli using sampled drums and mode-dependent alternating piano and bass

sounds. This increased the spectral complexity in the stimuli and could have influenced the

results. It could also have altered the perception of rhythmic accents, although Pressing’s

model does not lend weight to these and on the contrary explicitly uses alternating notes in the

examples. We also used more repetitions than in previous studies. In the study by Grahn [44]

the stimuli are not repeated but played only twice with a pause between them. It is possible

that such a single repetition design in our study would have yielded other results.

Using an internet-based survey has some challenges in that we are moving outside the con-

trolled situation of the laboratory. We had no control over the quality of the equipment the

participants were using, and we cannot control the level of attention, distraction or other fac-

tors that might influence the responses of the participants. One important limitation to our

study is for example that we did not measure our participants ability for synchronization abili-

ties, and have no way of knowing whether the used covert or overt tapping or bodily move-

ments as an aid to assess the complexity of the rhythms.

On the other hand, allowing the participants to perform the test in their own, known envi-

ronment, might in fact increase the ecological validity of their judgments, in line with Honing

[99]. We would argue that performing these tests in the confines of the laboratory increase the

cognitive load, because the participants must then also address the novelty of the situation

(being in a new and unknown, often confined space). Using their own equipment (known

headphones and setting their own volume) also makes the sound characteristics more “famil-

iar”, easing the task. That the participants can do the test when they “feel up to it”, also means

that the participants are probably rested and more focused than attending to an otherwise

enforced time. Some of the participants also reported this sentiment. In addition, the practical

demands of getting to and from labs put additional demands on people with Parkinson’s dis-

ease, in both a physical and psychological sense. We will therefore argue that using an inter-

net-based tool, with highly motivated participants is a valid research tool in rhythm and music

perception studies, also in PD.

Another potential explanation for the elevated baseline of complexity in people with PD

could be that they were aware that they took part in a larger study on rhythm perception and
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projected their own phenomenological experience of having PD into their answers: a belief

that they should perceive it as more complex than what they really did, although this could also

be argued the other way: That they would defiantly try to disprove this assumption. Mental

states such as depression are well documented as frequent comorbidities in PD, and this could

therefore have influenced the ratings. We did not perform any tests for depression or quality

of life in the current study, and this would be a useful addition in future studies.

Conclusion

We found overall higher, but not complexity dependent, subjective ratings of complexity of

musical rhythms in the PD-group. Examining the effect of tempo as well as using a more var-

ied spectrum of complexity shows a more detailed picture than previous dichotomous simple/

complex conditions. The overall impairment in rhythm perception interacts with tempo. The

results in our study indicates that people with PD have a preserved ability for relative complex-

ity discrimination, but with an elevated baseline-level for complexity judgments. Furthermore,

the dissimilarity between judgments of complexity and judgments of likeability between the

two groups, indicates different neuronal underpinnings for the two different types of judg-

ment, where PD-pathology affects one but not the other. Future studies should investigate the

dissociation by comparing self-selected, familiar music, pure tone and metronome stimuli

across complexity- and tempo-variations, as well as explore the effect of repeated exposure in

stimuli presentation. More knowledge of these phenomena could potentially inform interven-

tion related designs through a more informed selection of music used in therapy.

Supporting information

S1 Fig. Stimuli construction, rhythm # 6.

(TIF)

S2 Fig. Pressing’s model, values of subdivisions. Pressing’s model of cognitive rhythmic

complexity. Calculations for values on sub-bars based on position. Scores on each sub-bar is

added up to give a total score for the whole phrase (64).

(TIF)

S1 File. Complete data set in .XLS format.

(XLSX)

S2 File. Online questionnaire in Norwegian (original) and English (translated).

(DOCX)

Acknowledgments

The authors would like to thank all people with PD and healthy controls who took part in this

study. We are grateful for the practical support of the Hordaland branch of the National Par-

kinson’s Association of Norway, and its leader, the late John Axel Sundal, in recruiting partici-

pants. The first author would also like to thank Nurse Marit Elise Arnevik Renså at the

department of Neurology, University Hospital of Haukeland, Bergen, for her invaluable help

in setting up examination rooms and aiding in performing the neuropsychological tests.

Author Contributions

Conceptualization: Kjetil Vikene, Geir Olve Skeie, Karsten Specht.

Data curation: Kjetil Vikene.

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221752.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221752.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221752.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221752.s004
https://doi.org/10.1371/journal.pone.0221752


Formal analysis: Kjetil Vikene, Karsten Specht.

Funding acquisition: Karsten Specht.

Investigation: Geir Olve Skeie, Karsten Specht.

Methodology: Kjetil Vikene, Karsten Specht.

Project administration: Kjetil Vikene.

Supervision: Kjetil Vikene, Geir Olve Skeie, Karsten Specht.

Writing – original draft: Kjetil Vikene.

Writing – review & editing: Geir Olve Skeie, Karsten Specht.

References

1. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking

basal ganglia and cortex. Annual review of neuroscience. 1986; 9:357–81. https://doi.org/10.1146/

annurev.ne.09.030186.002041 PMID: 3085570.

2. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain research

Brain research reviews. 2000; 31(2–3):236–50. http://dx.doi.org/10.1016/S0165-0173(99)00040-5.

PMID: 10719151.

3. Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Per-

spect Med. 2012; 2(12):a009621. https://doi.org/10.1101/cshperspect.a009621 PMID: 23071379

4. Aarsland D, Andersen K, Larsen JP, Perry R, Wentzel-Larsen T, Lolk A, et al. The rate of cognitive

decline in Parkinson disease. Archives of neurology. 2004; 61(12):1906–11. https://doi.org/10.1001/

archneur.61.12.1906 PMID: 15596611.

5. Xia R, Mao ZH. Progression of motor symptoms in Parkinson’s disease. Neuroscience bulletin. 2012;

28(1):39–48. https://doi.org/10.1007/s12264-012-1050-z PMID: 22233888.

6. Mazzoni P, Shabbott B, Cortes JC. Motor control abnormalities in Parkinson’s disease. Cold Spring

Harb Perspect Med. 2012; 2(6):a009282. https://doi.org/10.1101/cshperspect.a009282 PMID:

22675667

7. Knutsson E. An analysis of Parkinsonian gait. Brain: a journal of neurology. 1972; 95(3):475–86. https://

doi.org/10.1093/brain/95.3.475 PMID: 4655275.

8. Smulders K, Dale ML, Carlson-Kuhta P, Nutt JG, Horak FB. Pharmacological treatment in Parkinson’s

disease: Effects on gait. Parkinsonism & related disorders. 2016; 31:3–13. https://doi.org/10.1016/j.

parkreldis.2016.07.006 PMID: 27461783

9. Blin O, Ferrandez AM, Serratrice G. Quantitative analysis of gait in Parkinson patients: increased vari-

ability of stride length. Journal of the neurological sciences. 1990; 98(1):91–7. https://doi.org/10.1016/

0022-510x(90)90184-o PMID: 2230833.

10. Dubois B, Pillon B. Cognitive deficits in Parkinson’s disease. J Neurol. 1996; 244(1):2–8. https://doi.org/

10.1007/pl00007725

11. Biundo R, Weis L, Antonini A. Cognitive decline in Parkinson’s disease: the complex picture. 2016;

2:16018. https://doi.org/10.1038/npjparkd.2016.18 PMID: 28725699

12. Poletti M, Bonuccelli U. Acute and chronic cognitive effects of levodopa and dopamine agonists on

patients with Parkinson’s disease: a review. Therapeutic Advances in Psychopharmacology. 2013; 3

(2):101–13. https://doi.org/10.1177/2045125312470130 PMID: 24167681

13. Parker KL, Lamichhane D, Caetano MS, Narayanan NS. Executive dysfunction in Parkinson’s disease

and timing deficits. Frontiers in integrative neuroscience. 2013; 7:75. Epub 2013/11/08. https://doi.org/

10.3389/fnint.2013.00075 PMID: 24198770

14. Schwartze M, Kotz SA. Regional Interplay for Temporal Processing in Parkinson’s Disease: Possibili-

ties and Challenges. Front Neurol. 2015; 6(270):270. https://doi.org/10.3389/fneur.2015.00270 PMID:

26834692

15. Biswas A, Hegde S, Jhunjhunwala K, Pal PK. Two sides of the same coin: Impairment in perception of

temporal components of rhythm and cognitive functions in Parkinson’s disease. Basal Ganglia. 2016; 6

(1):63–70. https://doi.org/10.1016/j.baga.2015.12.001

16. Grahn JA. The Role of the Basal Ganglia in Beat Perception Neuroimaging and Neuropsychological

Investigations. In: DallaBella S, Kraus N, Overy K, Pantev C, Snyder JS, Tervaniemi M, et al., editors.

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 17 / 21

https://doi.org/10.1146/annurev.ne.09.030186.002041
https://doi.org/10.1146/annurev.ne.09.030186.002041
http://www.ncbi.nlm.nih.gov/pubmed/3085570
http://dx.doi.org/10.1016/S0165-0173(99)00040-5
http://www.ncbi.nlm.nih.gov/pubmed/10719151
https://doi.org/10.1101/cshperspect.a009621
http://www.ncbi.nlm.nih.gov/pubmed/23071379
https://doi.org/10.1001/archneur.61.12.1906
https://doi.org/10.1001/archneur.61.12.1906
http://www.ncbi.nlm.nih.gov/pubmed/15596611
https://doi.org/10.1007/s12264-012-1050-z
http://www.ncbi.nlm.nih.gov/pubmed/22233888
https://doi.org/10.1101/cshperspect.a009282
http://www.ncbi.nlm.nih.gov/pubmed/22675667
https://doi.org/10.1093/brain/95.3.475
https://doi.org/10.1093/brain/95.3.475
http://www.ncbi.nlm.nih.gov/pubmed/4655275
https://doi.org/10.1016/j.parkreldis.2016.07.006
https://doi.org/10.1016/j.parkreldis.2016.07.006
http://www.ncbi.nlm.nih.gov/pubmed/27461783
https://doi.org/10.1016/0022-510x(90)90184-o
https://doi.org/10.1016/0022-510x(90)90184-o
http://www.ncbi.nlm.nih.gov/pubmed/2230833
https://doi.org/10.1007/pl00007725
https://doi.org/10.1007/pl00007725
https://doi.org/10.1038/npjparkd.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/28725699
https://doi.org/10.1177/2045125312470130
http://www.ncbi.nlm.nih.gov/pubmed/24167681
https://doi.org/10.3389/fnint.2013.00075
https://doi.org/10.3389/fnint.2013.00075
http://www.ncbi.nlm.nih.gov/pubmed/24198770
https://doi.org/10.3389/fneur.2015.00270
http://www.ncbi.nlm.nih.gov/pubmed/26834692
https://doi.org/10.1016/j.baga.2015.12.001
https://doi.org/10.1371/journal.pone.0221752


Neurosciences and Music Iii: Disorders and Plasticity. Annals of the New York Academy of Sciences. p.

35–45.

17. Kung SJ, Chen JL, Zatorre RJ, Penhune VB. Interacting cortical and basal ganglia networks underlying

finding and tapping to the musical beat. Journal of cognitive neuroscience. 2013; 25(3):401–20. https://

doi.org/10.1162/jocn_a_00325 PMID: 23163420.

18. Grahn JA, Rowe JB. Finding and feeling the musical beat: striatal dissociations between detection and

prediction of regularity. Cerebral cortex. 2013; 23(4):913–21. https://doi.org/10.1093/cercor/bhs083

PMID: 22499797

19. Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based

auditory timing. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011;

31(10):3805–12. https://doi.org/10.1523/JNEUROSCI.5561-10.2011 PMID: 21389235

20. Grahn JA, Rowe JB. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians

during beat perception. The Journal of neuroscience: the official journal of the Society for Neuroscience.

2009; 29(23):7540–8. https://doi.org/10.1523/JNEUROSCI.2018-08.2009 PMID: 19515922

21. Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, et al. Neural representation of a

rhythm depends on its interval ratio. The Journal of neuroscience: the official journal of the Society for

Neuroscience. 1999; 19(22):10074–81. Epub 1999/11/13. PMID: 10559415.

22. Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory

and visual rhythm reproduction. Journal of cognitive neuroscience. 1998; 10(6):752–65. https://doi.org/

10.1162/089892998563149 PMID: 9831742.

23. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. Journal of cognitive neuro-

science. 2007; 19(5):893–906. https://doi.org/10.1162/jocn.2007.19.5.893 PMID: 17488212.

24. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain.

Cerebral cortex. 2008; 18(12):2844–54. https://doi.org/10.1093/cercor/bhn042 PMID: 18388350.

25. Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, et al. Listening to rhythms activates

motor and premotor cortices. Cortex; a journal devoted to the study of the nervous system and behavior.

2009; 45(1):62–71. Epub 2008/12/02. https://doi.org/10.1016/j.cortex.2008.07.002 PMID: 19041965.

26. Thaut MH, Trimarchi PD, Parsons LM. Human brain basis of musical rhythm perception: common and

distinct neural substrates for meter, tempo, and pattern. Brain sciences. 2014; 4(2):428–52. https://doi.

org/10.3390/brainsci4020428 PMID: 24961770

27. Elsinger CL, Rao SM, Zimbelman JL, Reynolds NC, Blindauer KA, Hoffmann RG. Neural basis for

impaired time reproduction in Parkinson’s disease: an fMRI study. Journal of the International Neuro-

psychological Society: JINS. 2003; 9(7):1088–98. https://doi.org/10.1017/S1355617703970123 PMID:

14738289.

28. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain: a journal of neurology. 2013; 136(Pt

3):696–709. https://doi.org/10.1093/brain/aws360 PMID: 23404337.

29. Yu H, Sternad D, Corcos DM, Vaillancourt DE. Role of hyperactive cerebellum and motor cortex in Par-

kinson’s disease. NeuroImage. 2007; 35(1):222–33. https://doi.org/10.1016/j.neuroimage.2006.11.047

PMID: 17223579

30. Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkin-

son’s disease. Reviews in the neurosciences. 2013; 24(3):267–78. https://doi.org/10.1515/revneuro-

2013-0004 PMID: 23729617

31. Vikene K, Skeie GO, Specht K. Abnormal phasic activity in saliency network, motor areas, and basal

ganglia in Parkinson’s disease during rhythm perception. Human brain mapping. 2018. https://doi.org/

10.1002/hbm.24421 PMID: 30375107.

32. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in

patients with Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry. 1997; 62(1):22–

6. https://doi.org/10.1136/jnnp.62.1.22 PMID: 9010395

33. Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhyth-

mic entrainment and the motor system. Frontiers in psychology. 2014; 5:1185. https://doi.org/10.3389/

fpsyg.2014.01185 PMID: 25774137

34. Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson’s dis-

ease? Neuroscience and biobehavioral reviews. 2013; 37(10 Pt 2):2564–70. https://doi.org/10.1016/j.

neubiorev.2013.08.003 PMID: 24012774.

35. Bella SD, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Par-

kinson’s disease: beyond a motor benefit. Annals of the New York Academy of Sciences. 2015;

1337:77–85. https://doi.org/10.1111/nyas.12651 PMID: 25773620.

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 18 / 21

https://doi.org/10.1162/jocn_a_00325
https://doi.org/10.1162/jocn_a_00325
http://www.ncbi.nlm.nih.gov/pubmed/23163420
https://doi.org/10.1093/cercor/bhs083
http://www.ncbi.nlm.nih.gov/pubmed/22499797
https://doi.org/10.1523/JNEUROSCI.5561-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21389235
https://doi.org/10.1523/JNEUROSCI.2018-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515922
http://www.ncbi.nlm.nih.gov/pubmed/10559415
https://doi.org/10.1162/089892998563149
https://doi.org/10.1162/089892998563149
http://www.ncbi.nlm.nih.gov/pubmed/9831742
https://doi.org/10.1162/jocn.2007.19.5.893
http://www.ncbi.nlm.nih.gov/pubmed/17488212
https://doi.org/10.1093/cercor/bhn042
http://www.ncbi.nlm.nih.gov/pubmed/18388350
https://doi.org/10.1016/j.cortex.2008.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19041965
https://doi.org/10.3390/brainsci4020428
https://doi.org/10.3390/brainsci4020428
http://www.ncbi.nlm.nih.gov/pubmed/24961770
https://doi.org/10.1017/S1355617703970123
http://www.ncbi.nlm.nih.gov/pubmed/14738289
https://doi.org/10.1093/brain/aws360
http://www.ncbi.nlm.nih.gov/pubmed/23404337
https://doi.org/10.1016/j.neuroimage.2006.11.047
http://www.ncbi.nlm.nih.gov/pubmed/17223579
https://doi.org/10.1515/revneuro-2013-0004
https://doi.org/10.1515/revneuro-2013-0004
http://www.ncbi.nlm.nih.gov/pubmed/23729617
https://doi.org/10.1002/hbm.24421
https://doi.org/10.1002/hbm.24421
http://www.ncbi.nlm.nih.gov/pubmed/30375107
https://doi.org/10.1136/jnnp.62.1.22
http://www.ncbi.nlm.nih.gov/pubmed/9010395
https://doi.org/10.3389/fpsyg.2014.01185
https://doi.org/10.3389/fpsyg.2014.01185
http://www.ncbi.nlm.nih.gov/pubmed/25774137
https://doi.org/10.1016/j.neubiorev.2013.08.003
https://doi.org/10.1016/j.neubiorev.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/24012774
https://doi.org/10.1111/nyas.12651
http://www.ncbi.nlm.nih.gov/pubmed/25773620
https://doi.org/10.1371/journal.pone.0221752


36. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in

gait training for Parkinson’s disease patients. Movement disorders: official journal of the Movement Dis-

order Society. 1996; 11(2):193–200. https://doi.org/10.1002/mds.870110213 PMID: 8684391.

37. Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: Can rhythm influence Parkinson’s dis-

ease? Neuroscience and biobehavioral reviews. 2013; 37(10):2564–70. https://doi.org/10.1016/j.

neubiorev.2013.08.003 PMID: 24012774

38. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimula-

tion modulates gait variability in Parkinson’s disease. The European journal of neuroscience. 2007; 26

(8):2369–75. https://doi.org/10.1111/j.1460-9568.2007.05810.x PMID: 17953624.

39. Arias P, Cudeiro J. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and with-

out freezing of gait. PloS one. 2010; 5(3):e9675. https://doi.org/10.1371/journal.pone.0009675 PMID:

20339591

40. Benoit CE, Dalla Bella S, Farrugia N, Obrig H, Mainka S, Kotz SA. Musically cued gait-training improves

both perceptual and motor timing in Parkinson’s disease. Frontiers in human neuroscience. 2014;

8:494. https://doi.org/10.3389/fnhum.2014.00494 PMID: 25071522

41. Kotz SA, Gunter TC. Can rhythmic auditory cuing remediate language-related deficits in Parkinson’s

disease? Annals of the New York Academy of Sciences. 2015; 1337:62–8. https://doi.org/10.1111/

nyas.12657 PMID: 25773618.

42. Geiser E, Ziegler E, Jancke L, Meyer M. Early electrophysiological correlates of meter and rhythm pro-

cessing in music perception. Cortex; a journal devoted to the study of the nervous system and behavior.

2009; 45(1):93–102. https://doi.org/10.1016/j.cortex.2007.09.010 PMID: 19100973.

43. Chen JL, Penhune VB, Zatorre RJ. Moving on Time: Brain Network for Auditory-Motor Synchronization

is Modulated by Rhythm Complexity and Musical Training. Journal of cognitive neuroscience. 2008; 20

(2):226–39. https://doi.org/10.1162/jocn.2008.20018 PMID: 18275331

44. Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex; a

journal devoted to the study of the nervous system and behavior. 2009; 45(1):54–61. https://doi.org/10.

1016/j.cortex.2008.01.005 PMID: 19027895.

45. Cameron DJ, Pickett KA, Earhart GM, Grahn JA. The Effect of Dopaminergic Medication on Beat-

Based Auditory Timing in Parkinson’s Disease. Front Neurol. 2016; 7:19. https://doi.org/10.3389/fneur.

2016.00019 PMID: 26941707

46. Alluri V, Toiviainen P, Jaaskelainen IP, Glerean E, Sams M, Brattico E. Large-scale brain networks

emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage. 2012; 59(4):3677–

89. https://doi.org/10.1016/j.neuroimage.2011.11.019 PMID: 22116038.

47. Rodger MWM, Craig CM. Beyond the Metronome: Auditory Events and Music May Afford More than

Just Interval Durations as Gait Cues in Parkinson’s Disease. Frontiers in Neuroscience. 2016; 10:272.

https://doi.org/10.3389/fnins.2016.00272 PMID: 27378841

48. Harrington DL, Castillo GN, Greenberg PA, Song DD, Lessig S, Lee RR, et al. Neurobehavioral Mecha-

nisms of Temporal Processing Deficits in Parkinson’s Disease. PloS one. 2011; 6(2). https://doi.org/10.

1371/journal.pone.0017461 PMID: 21364772

49. de Bruin N, Doan JB, Turnbull G, Suchowersky O, Bonfield S, Hu B, et al. Walking with music is a safe

and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single

and dual task walking. Parkinson’s disease. 2010; 2010:483530. https://doi.org/10.4061/2010/483530

PMID: 20976086

50. MacDougall HG, Moore ST. Marching to the beat of the same drummer: the spontaneous tempo of

human locomotion. J Appl Physiol (1985). 2005; 99(3):1164–73. https://doi.org/10.1152/japplphysiol.

00138.2005 PMID: 15890757.

51. Styns F, van Noorden L, Moelants D, Leman M. Walking on music. Human movement science. 2007;

26(5):769–85. https://doi.org/10.1016/j.humov.2007.07.007 PMID: 17910985.

52. Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music

perception and production. Nat Rev Neurosci. 2007; 8(7):547–58. https://doi.org/10.1038/nrn2152

PMID: 17585307.

53. Todd NP, Lee CS. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis

and future perspectives. Frontiers in human neuroscience. 2015; 9:444. Epub 2015/09/18. https://doi.

org/10.3389/fnhum.2015.00444 PMID: 26379522

54. Berlyne DE. Novelty, Complexity, and Hedonic Value. Perception & psychophysics. 1970; 8(5a):279–&.

https://doi.org/10.3758/Bf03212593

55. North AC, Hargreaves DJ. Subjective complexity, familiarity, and liking for popular music. US: The

Florida State University; 1995. p. 77–93.

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 19 / 21

https://doi.org/10.1002/mds.870110213
http://www.ncbi.nlm.nih.gov/pubmed/8684391
https://doi.org/10.1016/j.neubiorev.2013.08.003
https://doi.org/10.1016/j.neubiorev.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/24012774
https://doi.org/10.1111/j.1460-9568.2007.05810.x
http://www.ncbi.nlm.nih.gov/pubmed/17953624
https://doi.org/10.1371/journal.pone.0009675
http://www.ncbi.nlm.nih.gov/pubmed/20339591
https://doi.org/10.3389/fnhum.2014.00494
http://www.ncbi.nlm.nih.gov/pubmed/25071522
https://doi.org/10.1111/nyas.12657
https://doi.org/10.1111/nyas.12657
http://www.ncbi.nlm.nih.gov/pubmed/25773618
https://doi.org/10.1016/j.cortex.2007.09.010
http://www.ncbi.nlm.nih.gov/pubmed/19100973
https://doi.org/10.1162/jocn.2008.20018
http://www.ncbi.nlm.nih.gov/pubmed/18275331
https://doi.org/10.1016/j.cortex.2008.01.005
https://doi.org/10.1016/j.cortex.2008.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19027895
https://doi.org/10.3389/fneur.2016.00019
https://doi.org/10.3389/fneur.2016.00019
http://www.ncbi.nlm.nih.gov/pubmed/26941707
https://doi.org/10.1016/j.neuroimage.2011.11.019
http://www.ncbi.nlm.nih.gov/pubmed/22116038
https://doi.org/10.3389/fnins.2016.00272
http://www.ncbi.nlm.nih.gov/pubmed/27378841
https://doi.org/10.1371/journal.pone.0017461
https://doi.org/10.1371/journal.pone.0017461
http://www.ncbi.nlm.nih.gov/pubmed/21364772
https://doi.org/10.4061/2010/483530
http://www.ncbi.nlm.nih.gov/pubmed/20976086
https://doi.org/10.1152/japplphysiol.00138.2005
https://doi.org/10.1152/japplphysiol.00138.2005
http://www.ncbi.nlm.nih.gov/pubmed/15890757
https://doi.org/10.1016/j.humov.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17910985
https://doi.org/10.1038/nrn2152
http://www.ncbi.nlm.nih.gov/pubmed/17585307
https://doi.org/10.3389/fnhum.2015.00444
https://doi.org/10.3389/fnhum.2015.00444
http://www.ncbi.nlm.nih.gov/pubmed/26379522
https://doi.org/10.3758/Bf03212593
https://doi.org/10.1371/journal.pone.0221752


56. North AC, Hargreaves DJ. Complexity, prototypicality, familiarity, and the perception of musical quality.

US: The Florida State University; 1998. p. 77–80.

57. Witek MA, Clarke EF, Wallentin M, Kringelbach ML, Vuust P. Syncopation, body-movement and plea-

sure in groove music. PloS one. 2014; 9(4):e94446. https://doi.org/10.1371/journal.pone.0094446

PMID: 24740381

58. Etani T, Marui A, Kawase S, Keller PE. Optimal Tempo for Groove: Its Relation to Directions of Body

Movement and Japanese nori. Frontiers in psychology. 2018; 9(462). https://doi.org/10.3389/fpsyg.

2018.00462 PMID: 29692747

59. Brown LA, de Bruin N, Doan JB, Suchowersky O, Hu B. Novel challenges to gait in Parkinson’s disease:

the effect of concurrent music in single- and dual-task contexts. Archives of physical medicine and reha-

bilitation. 2009; 90(9):1578–83. https://doi.org/10.1016/j.apmr.2009.03.009 PMID: 19735787.

60. Thaut MH, McIntosh KW, McIntosh GC, Hoemberg V. Auditory rhythmicity enhances movement and

speech motor control in patients with Parkinson’s disease. Funct Neurol. 2001; 16(2):163–72. PMID:

11495422.

61. Young WR, Shreve L, Quinn EJ, Craig C, Bronte-Stewart H. Auditory cueing in Parkinson’s patients

with freezing of gait. What matters most: Action-relevance or cue-continuity? Neuropsychologia. 2016;

87:54–62. Epub 2016/05/11. https://doi.org/10.1016/j.neuropsychologia.2016.04.034 PMID: 27163397.

62. LeBlanc A, McCrary J. Effect of Tempo on Children’s Music Preference. J Res Music Educ. 1983; 31

(4):283–94. https://doi.org/10.2307/3344631

63. LeBlanc A, Colman J, McCrary J, Sherrill C, Malin S. Tempo Preferences of Different Age Music Listen-

ers. J Res Music Educ. 1988; 36(3):156–68. https://doi.org/10.2307/3344637

64. Fernández-Sotos A, Fernández-Caballero A, Latorre JM. Influence of Tempo and Rhythmic Unit in

Musical Emotion Regulation. Frontiers in computational neuroscience. 2016; 10:80-. https://doi.org/10.

3389/fncom.2016.00080 PMID: 27536232.

65. Jerde TA, Childs SK, Handy ST, Nagode JC, Pardo JV. Dissociable systems of working memory for

rhythm and melody. NeuroImage. 2011; 57(4):1572–9. https://doi.org/10.1016/j.neuroimage.2011.05.

061. PMID: 21645625

66. Gabrieli JDE, Singh J, Stebbins GT, Goetz CG. Reduced working memory span in Parkinson’s disease:

Evidence for the role of frontostriatal system in working and strategic memory. Neuropsychology. 1996;

10(3):322–32. https://doi.org/10.1037/0894-4105.10.3.321

67. Bublak P, Müller U, Grön G, Reuter M, von Cramon DY. Manipulation of working memory information is

impaired in Parkinson’s disease and related to working memory capacity. Neuropsychology. 2002; 16

(4):577–90. https://doi.org/10.1037/0894-4105.16.4.577 PMID: 12382995

68. Bronnick K, Alves G, Aarsland D, Tysnes OB, Larsen JP. Verbal Memory in Drug-Naive, Newly Diag-

nosed Parkinson’s Disease. The Retrieval Deficit Hypothesis Revisited. Neuropsychology. 2011; 25

(1):114–24. https://doi.org/10.1037/a0020857 PMID: 20954781

69. Piccoli T, Valente G, Linden DE, Re M, Esposito F, Sack AT, et al. The default mode network and the

working memory network are not anti-correlated during all phases of a working memory task. PloS one.

2015; 10(4):e0123354. Epub 2015/04/08. https://doi.org/10.1371/journal.pone.0123354 PMID:

25848951

70. Kumar S, Joseph S, Gander PE, Barascud N, Halpern AR, Griffiths TD. A Brain System for Auditory

Working Memory. The Journal of Neuroscience. 2016; 36(16):4492–505. https://doi.org/10.1523/

JNEUROSCI.4341-14.2016 PMID: 27098693

71. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nature

neuroscience. 2001; 4(3):317–23. Epub 2001/02/27. https://doi.org/10.1038/85191 PMID: 11224550.

72. Yu Y, FitzGerald TH, Friston KJ. Working memory and anticipatory set modulate midbrain and putamen

activity. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013; 33

(35):14040–7. https://doi.org/10.1523/JNEUROSCI.1176-13.2013 PMID: 23986240

73. Brodal HP, Osnes B, Specht K. Listening to Rhythmic Music Reduces Connectivity within the Basal

Ganglia and the Reward System. Frontiers in Neuroscience. 2017; 11:153. https://doi.org/10.3389/

fnins.2017.00153 PMID: 28400717

74. Baier B, Karnath H-O, Dieterich M, Birklein F, Heinze C, Müller NG. Keeping Memory Clear and Stable

—The Contribution of Human Basal Ganglia and Prefrontal Cortex to Working Memory. The Journal of

Neuroscience. 2010; 30(29):9788–92. https://doi.org/10.1523/JNEUROSCI.1513-10.2010 PMID:

20660261

75. Chatham CH, Frank MJ, Badre D. Corticostriatal output gating during selection from working memory.

Neuron. 2014; 81(4):930–42. Epub 2014/02/25. https://doi.org/10.1016/j.neuron.2014.01.002 PMID:

24559680

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 20 / 21

https://doi.org/10.1371/journal.pone.0094446
http://www.ncbi.nlm.nih.gov/pubmed/24740381
https://doi.org/10.3389/fpsyg.2018.00462
https://doi.org/10.3389/fpsyg.2018.00462
http://www.ncbi.nlm.nih.gov/pubmed/29692747
https://doi.org/10.1016/j.apmr.2009.03.009
http://www.ncbi.nlm.nih.gov/pubmed/19735787
http://www.ncbi.nlm.nih.gov/pubmed/11495422
https://doi.org/10.1016/j.neuropsychologia.2016.04.034
http://www.ncbi.nlm.nih.gov/pubmed/27163397
https://doi.org/10.2307/3344631
https://doi.org/10.2307/3344637
https://doi.org/10.3389/fncom.2016.00080
https://doi.org/10.3389/fncom.2016.00080
http://www.ncbi.nlm.nih.gov/pubmed/27536232
https://doi.org/10.1016/j.neuroimage.2011.05.061
https://doi.org/10.1016/j.neuroimage.2011.05.061
http://www.ncbi.nlm.nih.gov/pubmed/21645625
https://doi.org/10.1037/0894-4105.10.3.321
https://doi.org/10.1037/0894-4105.16.4.577
http://www.ncbi.nlm.nih.gov/pubmed/12382995
https://doi.org/10.1037/a0020857
http://www.ncbi.nlm.nih.gov/pubmed/20954781
https://doi.org/10.1371/journal.pone.0123354
http://www.ncbi.nlm.nih.gov/pubmed/25848951
https://doi.org/10.1523/JNEUROSCI.4341-14.2016
https://doi.org/10.1523/JNEUROSCI.4341-14.2016
http://www.ncbi.nlm.nih.gov/pubmed/27098693
https://doi.org/10.1038/85191
http://www.ncbi.nlm.nih.gov/pubmed/11224550
https://doi.org/10.1523/JNEUROSCI.1176-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23986240
https://doi.org/10.3389/fnins.2017.00153
https://doi.org/10.3389/fnins.2017.00153
http://www.ncbi.nlm.nih.gov/pubmed/28400717
https://doi.org/10.1523/JNEUROSCI.1513-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20660261
https://doi.org/10.1016/j.neuron.2014.01.002
http://www.ncbi.nlm.nih.gov/pubmed/24559680
https://doi.org/10.1371/journal.pone.0221752


76. Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity

during verbal working memory. NeuroImage. 2007; 34(3):1253–69. https://doi.org/10.1016/j.

neuroimage.2006.08.056 PMID: 17175179.

77. Marklund P, Larsson A, Elgh E, Linder J, Riklund KA, Forsgren L, et al. Temporal dynamics of basal

ganglia under-recruitment in Parkinsons disease: transient caudate abnormalities during updating of

working memory. Brain: a journal of neurology. 2009; 132:336–46. https://doi.org/10.1093/brain/

awn309 PMID: 19036762

78. Delis DC K J, Ober BA. CVLT II. California verbal learning test. Second edn. Adult version. San Anto-

nio: The Psychological Corporation: Harcourt Assessment Inc,. 2000.

79. Golden CJ, Freshwater SM. Stroop color and word test. 1978.

80. MacLeod CM. Half a century of research on the Stroop effect: An integrative review. Psychological bul-

letin. 1991; 109(2):163–203. https://doi.org/10.1037/0033-2909.109.2.163 PMID: 2034749

81. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. Journal of psychiatric research. 1975; 12

(3):189–98.

82. Fahn S E R, Committee MotUD. Unified Parkinson’s disease Rating Scale. In: Recent developments in

Parkinson’s disease Vol 2 Fahn S, Marsden C, Calne D, et al, eds Florham Park, NJ: Macmillan Health

Care Information. 1987:153–63.

83. Pfordresher PQ. The Role of Melodic and Rhythmic Accents in Musical Structure. Music Perception: An

Interdisciplinary Journal. 2003; 20(4):431–64. https://doi.org/10.1525/mp.2003.20.4.431

84. Dawe LA, Platt JR, Racine RJ. Harmonic accents in inference of metrical structure and perception of

rhythm patterns. Perception & psychophysics. 1993; 54(6):794–807. PMID: 8134249.

85. Pressing J. Cognitive complexity and the structure of musical patterns. 1999.

86. Cohen D, Katz R. Rhythmic patterns reflecting cognitive constraints and aesthetic ideals. J New Music

Res. 2008; 37(1):15–35. https://doi.org/10.1080/09298210802095635

87. Grube M, Griffiths TD. Metricality-enhanced temporal encoding and the subjective perception of rhyth-

mic sequences. Cortex; a journal devoted to the study of the nervous system and behavior. 2009; 45

(1):72–9. https://doi.org/10.1016/j.cortex.2008.01.006 PMID: 19058797.

88. Shmulevich I, Povel D-J. Complexity measures of musical rhythms. Rhythm perception and production.

2000:239–44.

89. Shmulevich I, Povel D-J, editors. Rhythm complexity measures for music pattern recognition. Multime-

dia Signal Processing, 1998 IEEE Second Workshop on; 1998: IEEE.

90. Shmulevich I, Povel DJ. Measures of temporal pattern complexity. J New Music Res. 2000; 29(1):61–9.

https://doi.org/10.1076/0929-8215(200003)29:01;1-P;Ft061

91. Shmulevich I, Yli-Harja O, Coyle E, Povel DJ, Lemstrom K. Perceptual issues in music pattern recogni-

tion: Complexity of rhythm and key finding. Comput Humanit. 2001; 35(1):23–35. https://doi.org/10.

1023/A:1002629217152

92. London J. Hearing in time: psychological aspects of musical meter. Oxford; New York: Oxford Univer-

sity Press; 2004. viii, 195 p. p.

93. Gabrielsson ALF. Similarity ratings and dimension analyses of auditory rhythm patterns. 1. Scandina-

vian journal of psychology. 1973; 14(1):138–60. https://doi.org/10.1111/j.1467-9450.1973.tb00105.x

94. Gabrielsson ALF. Similarity ratings and dimension analyses of auditory rhythm patterns. II. Scandina-

vian journal of psychology. 1973; 14(1):161–76. https://doi.org/10.1111/j.1467-9450.1973.tb00106.x

95. Ladinig O, Honing H. Complexity judgments as a measure of event salience in musical rhythms.

96. Liou CY, Wu TH, Lee CY. Modeling Complexity in Musical Rhythm. Complexity. 2010; 15(4):19–30.

https://doi.org/10.1002/cplx.20291

97. Temperley D. Modeling Common-Practice Rhythm. Music Perception. 2010; 27(5):355–76.

98. Toussaint GT. The geometry of musical rhythm: what makes a "good" rhythm good? Boca Raton, Fla.:

CRC Press; 2013. xvii, 347 s. p.

99. Honing H L O. The Potential of the Internet for Music Perception Research: A Comment on Lab-Based

Versus Web-Based Studies. Empirical Musicology Review. 2008; 3(1):4–7.

Subjective judgments of rhythmic complexity in Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0221752 September 3, 2019 21 / 21

https://doi.org/10.1016/j.neuroimage.2006.08.056
https://doi.org/10.1016/j.neuroimage.2006.08.056
http://www.ncbi.nlm.nih.gov/pubmed/17175179
https://doi.org/10.1093/brain/awn309
https://doi.org/10.1093/brain/awn309
http://www.ncbi.nlm.nih.gov/pubmed/19036762
https://doi.org/10.1037/0033-2909.109.2.163
http://www.ncbi.nlm.nih.gov/pubmed/2034749
https://doi.org/10.1525/mp.2003.20.4.431
http://www.ncbi.nlm.nih.gov/pubmed/8134249
https://doi.org/10.1080/09298210802095635
https://doi.org/10.1016/j.cortex.2008.01.006
http://www.ncbi.nlm.nih.gov/pubmed/19058797
https://doi.org/10.1076/0929-8215(200003)29:01;1-P;Ft061
https://doi.org/10.1023/A:1002629217152
https://doi.org/10.1023/A:1002629217152
https://doi.org/10.1111/j.1467-9450.1973.tb00105.x
https://doi.org/10.1111/j.1467-9450.1973.tb00106.x
https://doi.org/10.1002/cplx.20291
https://doi.org/10.1371/journal.pone.0221752

