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Abstract

Numerical simulations have become essential in the planning and execution
of operations in the subsurface, whether this is geothermal energy produc-
tion or storage, carbon sequestration, petroleum production, or wastewater
disposal. As the computational power increases, more complex models be-
come feasible, not only in the form of more complicated physics, but also
in the details of geometric constraints such as fractures, faults and wells.
These features are often of interest as they can have a profound effect on
different physical processes in the porous medium.

This thesis focuses on modeling and simulations of fluid flow, transport
and deformation of fractured porous media. The physical processes are
formulated in a mixed-dimensional discrete fracture matrix model, where
the rock matrix, fractures, and fracture intersections form a hierarchy of
subdomains of different dimensions that are coupled through interface laws.

A new discretization scheme for solving the deformation of a poroelastic
rock coupled to a Coulomb friction law governing fracture deformation is
presented. The novelty of this scheme comes from combining an existing
finite-volume discretization for poroelasticity with a hybrid formulation
that adds Lagrange multipliers on the fracture surface. This allows us
to formulate the inequalities as complementary functions and solve the
corresponding non-linear system using a semi-smooth Newton method.

The mixed-dimensional framework is used to investigate non-linear cou-
pled flow and transport. Here, we study how highly permeable fractures
affect the viscous fingering in a porous medium and show that there is a
complex interplay between the unstable viscous fingers and the fractures.

The computer code of the above contributions of the thesis work has
been implemented in the open-source framework PorePy. The introduc-
tion of fractures is a challenge to the discretization and the implemen-
tation of the governing equations, and the aim of this framework is to
enable researchers to overcome many of the technical difficulties inherent
to fractures, allowing them to easily develop models for fractured porous
media.

One of the large challenges for the mixed-dimensional discrete fracture
matrix models is to create meshes that conform to the fractures, and we
present a novel algorithm for constructing conforming Voronoi meshes.
The proposed algorithm creates a mesh hierarchy, where the faces of the
rock matrix mesh conform to the cells of the fractures, and the faces of the
fracture mesh conform to the cells of the fracture intersections.

The flexibility of the mixed-dimensional framework is exemplified by
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the wide range of applications and models studied within this thesis. While
these physical processes might be fairly well known in a porous medium
without fractures, the results of this thesis improves our understanding as
well as the models and solution strategies for fractured porous media.
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Chapter 1

Introduction

A porous medium is a material filled with small pores that fluids can
flow through. Porous media are found everywhere around us; man-made
materials such as concrete or mortars [66] and natural materials such as
rocks, soils, and biological tissues [23, 50] can all be considered porous
media. While there are many different types of porous media, the main
focus of this thesis is on porous media in the form of subsurface fractured
rocks. The terminology used in this thesis follows from that. However,
even if the focus of this thesis is on fractured rocks, many of the main
ideas and contributions can be extended to other applications, and the
content should therefore be of interest to a broader audience.

The first section of this chapter motivates the topic of this thesis. The
following section list the main contributions of this thesis, while the final
section gives an outline of the remainder of the thesis.

1.1 Motivation

The study of fluid flow, transport, and deformation of porous media is of
importance to many different subsurface applications, including subsurface
energy storage, geothermal systems, oil and gas production, CO2 storage,
and wastewater disposal and management. In all of these applications,
mathematical modeling and numerical simulations play an important role
when assessing the financial and environmental risks and benefits of dif-
ferent scenarios. Mathematical models can also help us to understand and
explain physical processes and direct measurements.

The first mathematical model of fluid flow through a porous medium

3



4 Chapter 1. Introduction

was formulated by Darcy [25], and the model describes a single-phase fluid
flowing through homogeneous sand. When the first computers became
available for scientific computing, the same equation was solved on a grid
consisting of tens or so grid cells. In the decades that followed, the com-
putational resources underwent a revolutionary change. Today, the state
of the art simulations can solve three-dimensional (3d) multi-component
models with hundreds of millions of grid cells [29]. The growth in computer
power has not only increased the feasible number of cells in the compu-
tations, but also allowed for more complex features to be included in the
models.

One of these features is macroscopic fractures in the porous medium,
which over the last three decades have seen an increase in attention. Frac-
tured porous media is of importance in many subsurface applications. Per-
haps the most known is hydraulic fracturing, where fluids are injected into
shale reservoirs at high pressures in order to create new fractures. This
process has allowed for the extraction of shale oil and gas that previously
have been inaccessible [7]. Another important subsurface application is
enhanced geothermal systems (EGS), where the natural temperature gra-
dient of the earth’s crust is utilized to harness the internal energy of the
earth. In EGS, cold water is pumped into the geothermal reservoir and
hot water retrieved. The reservoirs used for EGS are typically naturally
highly fractured, however, the permeability is usually very low. In order to
achieve economically viable flow rates, the reservoir must be stimulated. A
common stimulation technique is low-pressure hydraulic stimulation that
induces shear slip of the fractures. This result in a dilation of the fracture
aperture, which increases the effective permeability of the reservoir [84].
The drawback is that the stimulation process may cause seismic activ-
ity [22, 63], and concerns about the damage caused by seismicity have
caused the shutdown of EGS projects [26]. In addition to producing en-
ergy from subsurface reservoirs, it has been proposed to use permeable
layers such as saline aquifers or depleted oil and gas reservoirs to store
energy. Hot fluids are then injected at elevated pressures during spikes in
the energy production, and the energy can be retrieved at a later time.
This is seen as a possible solution to compensate the energy production
spikes that will occur as the fraction of renewable energy sources increases.

Development of mathematical models and simulations tools is impor-
tant for engineering of all subsurface resources; see e.g., [80]. Numerical
simulations can help answer key questions that can increase the efficiency
and evaluate the risk of subsurface operations. Common for the examples
mentioned above is that flow in and deformation of fractures play impor-
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tant roles for the processes of interest. Fractures may form the main flow
paths through the reservoir, and it is important to include them in the
model to get the correct hydraulic and thermal properties of the reservoir.
Further, the fractures are not only static constraints that affect the fluid
flow through the reservoir, but the fractures are also evolving. Including
fractures in the numerical simulations thus introduces several challenges:
First of all, fractures may have large aspect ratios, the aperture is typically
on the order of millimeters, while the fracture lengths can span hundreds of
meters [10, 91], which makes them difficult to represent numerically. Sec-
ondly, the properties and/or physical processes in the fractures are often
(very) different from those in the surrounding rock matrix. The perme-
ability in the fractures can be orders of magnitude higher than in the
rock matrix, or if the fractures contains sediments, they can block the
fluid from crossing them [57]. In some cases both highly conductive frac-
tures and blocking fractures can exist in the same domain, which requires
robust numerical methods [33, 24, 34, 79]. Further, fractures act as dis-
continuities for the deformation of the rock as they can open or slide under
friction [52, 41]. Thirdly, the physical processes of interest in a fractured
porous medium are often nonlinear coupled multiphysics problems, such
as interaction between flow, geo-chemistry, and geo-mechanics. Lastly, the
geometry of fractures and fracture networks are often complex and dy-
namic, which must be accounted for in the mesh generation and numerical
discretizations.

Due to the reasons mentioned above, developing new mathematical
models and numerical schemes for fractured porous media can be a tremen-
dous task. Despite the efforts already given to fractured porous media, the
development of reliable numerical methods and simulation tools for frac-
tured porous media remains a formidable challenge. This thesis tackles
parts of these challenges by considering three main issues.

The first issue is modeling of fracture deformation in a poroelastic
medium. We limit our discussion to the deformation of pre-existing frac-
tures in the form of sliding or opening of fractures, and we do not consider
the growth or nucleation of fractures. The major modeling efforts of frac-
tured poroelastic rocks have been given to open fractures [73, 72]. This
might be due to the fact that this is a common assumption in hydraulic-
fracturing scenarios where the injected fluid pressure is higher than the
maximum principle stress. On the other hand, the models of the low-
pressure stimulation used for EGS consider fractures under compression,
however, the pore-pressure effect on the rock deformation outside the frac-
tures is usually disregarded [96, 67]. Only limited attention is given to
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fractured poroelastic rock under compression [38], and we develop a new
discretization scheme to solve poroelastic rock deformation coupled to frac-
ture deformation governed by a Coulomb friction law.

The second issue is coupled non-linear flow in fractured porous media.
We study unstable displacement processes in the form of viscous fingering,
which is related to many important applications in the subsurface. In CO2

storage, unstable displacement can greatly improve the mixing rates of the
CO2 with water [31], which improves storage security. In high tempera-
ture EGS, the viscosity difference between the injected cold water and hot
water can be large, which must be considered in the numerical models.
Solving the non-linear equations resulting from the unstable displacement
in a fractured porous medium requires a robust framework and advanced
numerical schemes, which are developed in this thesis.

The third issue is meshing of fractured porous medium. The geometric
constraints imposed by fracture networks can be extremely complicated,
and in order to simulate realistic domains and fracture networks, a ro-
bust meshing algorithm is needed. A new meshing algorithm that creates
Voronoi meshes conforming to fractures is presented.

Finally, to solve the governing equations in a porous media one often has
to resort to numerical approximations due to complicated geometries and
spatially varying parameters. In addition, the processes in the subsurface
often give non-linear couplings that must be handled by robust numerical
schemes. This has led to a wide range of softwares that are specialized
at solving models of porous media, see, e.g., the TOUGH2 [102] family
of codes, DuMux [32], MOOSE [39], OpenGeoSys [97], PFLOTRAN [42],
Flow123d [20], MRST [61], and PorePy [47]. All methods developed in
this thesis project have been implemented and are available in PorePy and
MRST.

1.2 Main contributions

The main contributions of this thesis are:

A new finite-volume discretization for coupled poromechanics
and contact mechanics. First, Paper A presents an improvement to
the estimation of a step-length parameter in an iteration scheme used
to solve the inequality constraints resulting from the contact problem
with friction in an fractured elastic domain [96]. However, this iteration
scheme has several drawbacks, and in order to improve the speed and
accuracy of the solution procedure, a new discretization of the problem
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is developed and presented in Paper B. More precisely; an existing finite-
volume discretization suitable for poroelastic deformation is coupled to
Lagrangian multipliers on the fracture interfaces. This allows for solving
the Biot equations in the rock matrix coupled to the fracture deformation
through a hybrid formulation. The fracture deformation is governed by a
nonpenetration condition and a Coulomb-type friction law, which results
in a set of inequality constraints. The inequalities are reformulated as
complimentary functions, and a semi-smooth Newton method is used to
solve the system of equations.

A study of the effect of fractures on viscous fingering. Fractures
can act as highly permeable channels through a porous rock, and despite
their relative small volumes compared to the rock matrix, the fractures
can have a profound effect on the flow paths through the domain. A fun-
damentally different type of preferential flow path is formed by viscous
fingers that might occur when a less viscous fluid is displacing a more
viscous fluid. By employing the numerical tools described in Paper D,
the interaction of fracture networks and the highly nonlinear viscous
fingering is studied in Paper C. We identify the dimensionless numbers
governing the behavior of the system, and while clear viscous finger-
ing and fracture flow regimes appear in the limiting cases, the crossover
regime shows a complex interaction between the two physical processes.

Open-source code for mixed-dimensional DFM models. The
computer code developed in the above contributions is implemented in
the open-source software PorePy1. The conceptual ideas behind the
modeling framework and its realization in form of PorePy is presented
in Paper D. Paper D and PorePy is the joint effort of several authors,
and this thesis can only take a fraction of the credits. To be specific, the
implementations done in PorePy related to this thesis are:

• Improvements, development, and maintenance of the finite-volume
discretizations for flow and mechanics.

• Implementation of the contact mechanics module (which has been
extended by other authors).

• Implementation of the automatic differentiation module.
• Models for coupled multiphysics models of flow, transport and de-

formation.
• Post-possessing of the mesh returned from Gmsh (splitting the frac-

ture faces).
1https://github.com/pmgbergen/porepy
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• Implementing parts of the mortar meshes (mortars between subdo-
mains of equal dimension).

• General code maintenance.

Algorithm for creating conforming Voronoi meshes. In Paper E,
new techniques are developed to create unstructured Voronoi meshes
conforming to geological structures. Two types of conformity are con-
sidered: (i) control-point alignment of the cell-centers to represent, e.g.,
multilateral wells, and (ii) boundary alignment where the faces of the
mesh conform to cells defined by lower-dimensional surfaces (e.g., frac-
tures). The algorithm presented builds the mixed-dimensional mesh
(as defined in Chapter 4) from the lowest-dimension to the highest-
dimension in such a way that the faces of each consecutive dimension
conform to the cells of the lower dimension.

1.3 Outline

This thesis is divided into two parts. Part I is an introduction to the phys-
ical models, mathematical formulations, and numerical methods used in
Part II. The main scientific contribution is presented in Part II in the form
of three papers that are either published or submitted to scientific journals,
one peer reviewed book chapter, and one journal article in preparation.

The remainder of Part I is organized as follows:

Chapter 2 gives a brief overview of different conceptual models for frac-
tured porous media, where the main focus is on the mixed-
dimensional discrete fracture matrix model that is used in
this thesis.

Chapter 3 describes the mathematical equations for fluid flow, trans-
port, and poroelastic deformation in fractured porous media.

Chapter 4 introduces the discretizations of the mathematical models
given in Chapter 3.

Chapter 5 gives a summary of each of the papers in Part II and their
scientific contributions.



Chapter 2

Conceptual models for
fractured porous media

The purpose of a conceptual model is to describe a set of physical pro-
cesses and/or geometrical structures relevant for a specific purpose and
scale of interest. A conceptual model is only an approximation of the re-
ality. However, a model can give important insight in physical processes
and allow for representation of the quantity of interest at the scale of in-
terest sufficiently well. The conceptual model defines the framework of the
mathematical models, the discretization of the mathematical models, and
the implementation in a computer program, thus, the choice of conceptual
model must be discussed in light of the complete modeling process.

In this chapter, the most common macroscopic models for a fractured
porous medium are described based on the discussion in [28, 89]. After
the introduction to the different models, Section 2.2 gives more details on
the mixed-dimensional Discrete Fracture Matrix (DFM) model that is used
throughout this thesis. The purpose of this thesis is not to describe and
develop new conceptual models, and this chapter rather serves as a brief
introduction to prepare the reader for the mathematical modeling concepts
in Chapter 3 and the discretization in Chapter 4, which both depend on
the choice of conceptual model.

2.1 Macro-scale models

The following paragraphs discuss different conceptual models for fractured
porous media. For a visual summary, see Figure 2.1.

9
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Original fractured
porous medium

Single-continuum
model

Dual-continuum
model

DFN model

DFM model

Idealization

Figure 2.1: Conceptual models of a fractured porous medium. The full
complexity of the porous medium is too demanding to resolve. Instead,
different idealized models can be used depending on the relative importance
of small-scale and large-scale fractures and rock matrix permeability. The
figure is adapted from Figure 1.4 in [89]
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A porous rock consists of microscopic pores between rock grains and
fractures within the rock that allow for fluid flow. Despite the enormous
increase in computer power the latest decades, it is not feasible to include
an explicit description of micro-scale features in a porous medium, except
in some special small-scale cases such as core samples. Moreover, the geom-
etry of the microscopic pore structure is usually not available, and models
that require explicit knowledge of the pore-structure would be in vain.
Instead, macroscopic models consider the average behavior of the micro-
scale features, and the quantity of interest is the upscaled behavior of the
medium. This gives rise to continuum models. For fluid flow, the preva-
lent continuum model reduces the complex structures of a porous medium
to a single number (in general a tensor) called the permeability [9]. This
conceptual model has been extended to a wide range of applications, such
as, inhomogeneous, anisotropic porous media, multi-phase flow, reactions,
and transport.

The first attempts to model fractures in a porous medium tried to fit
the fractures into the same conceptual model as the rock matrix pore-
structure. Similar to the pore-structure, the dynamical processes in the
fractures were upscaled and represented as a continuum [8]. For small-
scale and poorly connected fracture networks, a single continuum might
represent both the flow in the rock matrix and the fractures. However, due
to the fundamentally different structures and dynamics in the fractures
versus the rock matrix, it is difficult to represent the combined structure
with a single continuum. E.g., the time-scale of transport in the fractures
can be orders of magnitude different from the time-scale of transport in the
rock matrix. For densely populated fracture networks, a better approach is
to represent the fractures and rock matrix by different continuum models,
where the interaction between the continuum is handled by constitutive
interaction laws. This gave rise to the dual-continuum model pioneered
by Barenblatt et al. [6]. In order to handle non-isothermal and multiphase
flow, the multiple interacting continua (MINC) models were developed [83].
This concept can be further generalized by multi-continuum models that
allows for fractures on more than one scale [28].

While the continuum models have been used with great success, they
have several drawbacks. First of all, fractures in a porous medium can span
all length scales, including the reservoir scale, which makes upscaling of the
fractures to a continuum unfeasible. Thus capturing the preferential flow
paths defined by macroscopic fractures can be difficult, or even impossible,
in standard grid-block numerical models. Secondly, the accuracy of the
model is dependent on the upscaling procedure, which can be challenging
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for nonlinear flow and complex geometries. This is illustrated by the flow
paths of the viscous fingering in the fracture networks presented in Paper C.
Thirdly, without an explicit representation of the fractures, it is difficult to
model fracture evolution effects; the models for fracture slip and opening
presented in Papers A, B, and D are highly dependent on the fracture
geometry and the orientation of the fractures in the stressfield.

To overcome some of these problems, a different conceptual model is
needed. Instead of considering the averaged behavior of the fractures,
fractures are explicitly represented in the model. These models are called
discrete fracture models (as opposed to continuum) and come in two main
categories. The first is the Discrete Fracture Network (DFN), model where
it is assumed that the physical processes in the rock matrix are negligible,
and only the fractures are represented [87]. The second model is the Dis-
crete Fracture Matrix (DFM) model, which is a combination of the DFN
model and the continuum approach for the rock matrix [76, 28]. In the
DFM model, small-scale fractures are typically upscaled into an effective
permeability and represented either as a single continuum together with the
background permeability of the rock matrix, or as a dual-continuum [81],
and the large-scale dominant fractures are represented explicitly in the
model.

2.2 Mixed-dimensional DFM model

The work of this thesis is concerned with the macro-scale behavior of frac-
tured porous media, and the conceptual model is chosen with this in mind.
We consider a mixed-dimensional DFMmodel; the small-scale fractures are
upscaled into an effective matrix permeability, and the macro-scale frac-
tures are represented explicitly as lower-dimensional surfaces. The effective
matrix permeability takes into account both the upscaled small-scale frac-
tures and the background permeability of the pores in the rock matrix.
Two assumption are made for the explicitly represented fractures in the
mixed-dimensional DFM model; see Figure 2.2. The first assumption is
that the microscopic structure of the fractures can be upscaled into effec-
tive fracture parameters, and the second assumption is that fractures can
be assumed lower-dimensional.

The motivation of the first assumption is similar to how the pore-
structure of the rock matrix is upscaled to effective parameters. The struc-
ture of a fracture surface is in general not known, in addition, the spatial
variation of fracture parameters can be orders of magnitude smaller than
the macroscopic scale of interest. As an example of such upscaling, the
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Figure 2.2: A fracture (left) in a mixed-dimensional DFM model (right).
The fracture is represented by a lower-dimensional surface (in this case a
1d line in the 2d rock matrix) by integrating the properties in the fracture
over the width. The small-scale features of the fracture are upscaled into
effective fracture parameters.

fluid flow in the fractures can often be represented by Darcy’s law, where
the roughness of the fractures (together with potential mineral deposits)
is upscaled and represented by an effective permeability [86, 104].

In addition to upscaling the properties of fractures, the dimensionality
of the fractures is reduced by the second assumption made in the mixed-
dimensional DFM model [35, 85, 79]. The ratio of the length scale of
the fractures and the aperture (the width) of the fractures can be orders
of magnitude. Resolving the averaged spatial width of the fractures in
the computational mesh would require very small cells in and around the
fractures, which in most cases would be computational infeasible. Under
the assumption that fractures are thin inclusions in the rock matrix, the
variability of quantities across a fracture (e.g., the fluid pressure) is approx-
imately constant compared to the lateral variation, thus, it is reasonable
to model fractures as lower-dimensional surfaces. The properties repre-
sented in the fractures must therefore be considered as integrated over the
fracture aperture.

Fractures in a porous medium can intersect in complex patterns which
can induce headache to anyone who wish to set up a model, mesh the
domain, and discretize the corresponding equations. As an example of
some of the difficulties that must be handled, the fracture network in Fig-
ure 2.3 has Y-intersections, X-intersections, and T-intersections. For flow
and transport, intersections define direct connections between fractures,
and it can be crucial to include the connections in the model. A conse-
quence of modeling fractures as lower-dimensional surfaces of co-dimension
one with respect to the rock matrix, is that the intersection of two fractures
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Figure 2.3: The left figure shows an outcrop of a fractured rock where the
length scale of the fractures is tens of meters. The middle figure shows
the dominant fractures traced by black lines. The right figure shows a
conceptual model of an imagined 3d fractured porous medium. In the
conceptual model the rock matrix is 3d, the fractures are 2d surfaces, and
the intersections of the fractures are 1d (blue) lines.

is a lower-dimensional inclusion of co-dimension one with respect to the
fractures. To illustrate this with an example, consider a fracture network
embedded in a 3d rock matrix. In general, the full geometry is described by
the 3d rock matrix, 2d surfaces (the fractures), 1d lines (the intersections
of the fractures), and 0d points (the intersections of the intersections). We
call this structure the mixed-dimensional DFM model.

For many practical applications, the main physical processes are re-
stricted to the rock matrix and the fractures, thus, the 1d lines and 0d
points can often be neglected. To some extent, this defines a minimum
adaptation of fixed-dimensional models (models where the spatial dimen-
sion of all subdomains is the same), and has been a popular choice for flow
and transport [65, 46, 88, 19]. However, the lack of representation of the
intersection lines often has several drawbacks. In particular, it is difficult
to account for the interaction between fractures, especially for fractures
with different permeabilities, and in 3d where the intersection geometry
can be complicated [92].

In this thesis, the full hierarchy of all dimensions is included. Thus,
the mathematical models and equations in the following chapter are for-
mulated for the mixed-dimensional domain of rock matrix, fractures and
intersections. Correspondingly, Chapter 4 discusses the meshing and dis-
cretization of such domains.



Chapter 3

Mathematical models

Conservation laws form the framework of many physical models and in-
clude conservation of mass, conservation of energy, conservation of momen-
tum, and conservation of electric charge. While the conservation principles
are fundamental and valid in general, they are often not sufficient to de-
scribe the physical process of interest. In addition, constitutive laws and
boundary conditions have to be included. The constitutive laws are usu-
ally based on experiments and/or simplification of physical processes and
valid under certain assumptions. As an example, Darcy’s law, presented
later in this chapter, is valid for creeping flow in a porous medium; if the
flow is faster, other constitutive laws should be used (e.g., the Forchheimer
equations [98]).

In the mixed-dimensional DFM model, the rock matrix, the fractures,
the intersection of fractures, and the intersections of intersections are all
described as separate subdomains. To couple the subdomains together we
adapt a mortar technique that was first formulated for domain decompo-
sition methods [12, 11], and proposed used for fractures by Martin et al.
[65] and Frih et al. [35]. In the mortar formulation, a mortar domain is
associated with each interface, and interface variables on the mortar do-
main couples different subdomains. In the discrete formulation, the mortar
domain is assigned a mesh similarly to the subdomains. Specifically, this
allows for non-matching meshes between the different subdomains.

The remainder of this chapter is laid out as follows. First, we discuss
the mixed-dimensional geometry and define the different geometric objects
and the notation used to label them. In Sections 3.2-3.4, we present the
equations describing fluid flow, transport, and poroelasticity in a mixed-
dimensional DFM model.
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(a)

∂jΩh

Ωl

Γj
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Figure 3.1: (a) Illustration of a 2d domain containing four fractures and
one fracture intersection. (b) Illustration of the interface Γj between the
lower-dimensional subdomain Ωl and the higher dimensional subdomain
Ωh. Note that the domain Ωl, the interface Γj , and the boundary ∂jΩh all
coincide geometrically, but they have been offset in the illustration for the
purpose of visualization.

3.1 Geometry

Before the mathematical models can be introduced, we present the nota-
tion used to describe the geometry of a fractured porous medium, as shown
in Figure 3.1. The rock matrix, the fractures, the intersection of fractures,
and the intersections of intersections are all described as separate subdo-
mains. A generic subdomain is marked by the subscript i and denoted by
Ωi. A generic interface between two subdomains is denoted Γj , identified
by the subscript j. When the couplings between subdomains are discussed,
the higher-dimensional subdomain is denoted by Ωh and the-lower dimen-
sional subdomain is denoted by Ωl. Finally, the part of the boundary of
Ωh that coincides with the interface Γj is denoted by ∂jΩh.

In the mathematical models formulated in this chapter, the interaction
between subdomains can only happen through an interface. Thus, to de-
scribe couplings between two subdomains, we define projection operators
between subdomains and interfaces; see Figure 3.2. A projection opera-
tor from an interface to a subdomain is denoted by Ξ, and a projection
operator from a subdomain to an interface is denoted by Π. The pro-
jection operators are given a subscript, j, to indicate the interface and a
superscript, i, to indicate the subdomain. The exact construction of the
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Figure 3.2: Conceptual representation of a higher-dimensional subdomain,
Ωh, a lower-dimensional subdomain, Ωl and the interface, Γj coupling them
together. The projection operators Ξhj and Ξlj maps from the interface to
the subdomains and the projection operators Πl

j and Πh
j maps from the

subdomains to the interface. The figure is taken from Paper D

projection operator will depend on the structure of the specific problem.
In this thesis we only consider the lowest-order projections, and the dis-
crete construction of the operators can be done by identifying overlapping
areas between cells and faces. The actual implementation of the projection
needs to consider the nature of the variable to project, being of intensive
or extensive kind.

In the continuous case, the projection operators maps variables between
different subdomains. Let Ωl be the lower-dimensional subdomain that
coincides with the interface Γj , and let L2(Ωl) and L2(Γj) be the space of
square integrable functions in Ωl and on Γj , respectively. The projection

Ξlj : L2(Γj)→ L2(Ωl),

maps functions on the interface onto the lower-dimensional subdomain.
Similarly, when Ωh is a higher-dimensional subdomain, the mapping

Ξhj : L2(Γj)→ L2(∂jΩh),

maps functions from the interface, Γj , onto the part of the boundary of
Ωh that coincides with the interface. The mappings from the subdomains
to the interface are denoted by

Πl
j : L2(Ωl)→ L2(Γj), Πh

j : L2(∂hΩh)→ L2(Γj).

For the mechanical problem the vectorized version of these operators are
needed; the extension is straightforward.
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As a final definition, we divide the set of interfaces associated with
the subdomain Ωi into the set of interfaces that map to lower-dimensinal
subdomains and the set of interfaces that map to higher-dimensional sub-
domains. The first set, denoted by Ši, contains the indices j of all the
interfaces that are one dimension lower than the subdomain, Ωi. The sec-
ond set, denoted by Ŝi, contains the indices j of the interfaces that have
the same dimension as Ωi. Thus, for an interface, Γj , j ∈ Ši, the projec-
tion Ξij maps to the boundary ∂jΩi. And for an interface, Γj , j ∈ Ŝi, the
projection Ξij maps to the domain of Ωi.

In the following sections, we will use gradients and divergence opera-
tors to state the governing equations. The differential operators of a lower-
dimensional subdomain should be interpreted as the operators on the tan-
gent space of that subdomain. Similarly, a vector in a lower-dimensional
subdomain should be interpreted as the tangential vector of that subdo-
main.

3.2 Flow

3.2.1 Conservation of mass
The conservation of mass states that the change in mass within a volume
K ⊂ Ωi must equal the sum of the fluxes flowing over the boundary ∂K
and any sources and sinks within the volume:

∫

K

∂φρ

∂t
dV = −

∫

∂K

ρv · n dA+

∫

K

q̃ dV.

Here, φ is the porosity of the rock, ρ is the fluid density, v is the fluid flux,
n is the outwards pointing normal vector, and q̃ is any sources or sinks.
By applying the divergence theorem to the surface integral and using that
this is valid for any arbitrary volume K, we can remove the integral, and
by rearranging the terms write down the strong form of mass conservation

∂φiρi
∂t

+∇ · ρivi = q̃i in Ωi.

The variables are given the subscript i to indicate that they live in the
subdomain, Ωi. In general, both the porosity and density may depend on
the fluid pressure, thus, the mass conservation defines a nonlinear parabolic
equation.

In the mixed-dimensional setting, the source/sink term q̃l of a lower-
dimensional subdomain, Ωl, does not only consist of external sources ql
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(such as a well), but also includes the mass interchange with the higher-
dimension. The fluid flux crossing the interface Γj is denoted by λj and
appears as a source term, Ξijρjλj , in the mass conservation. Recall that a
lower-dimensional subdomain, Ωl, can have multiple interfaces that couple
the lower-dimensional subdomain with a higher-dimensional subdomain,
and the interfaces are given by the set Ŝl. Thus, a sum over all interfaces
in this set appears in the conservation of mass:

∂φlρl
∂t

+∇ · ρlvl −
∑

j∈Ŝl

Ξljρjλj = ql in Ωl. (3.1)

A similar system is formulated for a higher-dimensional subdomain Ωh,
however, the interaction with a lower-dimensional subdomain though an
interface flux λj now acts as a Neumann boundary condition:

vh · nh = Ξhj λj on ∂jΩh. (3.2)

3.2.2 Constitutive laws
In addition to the mass conservation given by Equation (3.1), constitutive
laws are needed. The most famous equation relating fluid flux to the fluid
pressure in porous media flow is Darcy’s law. Given the permeability Ki
of the porous medium, the viscosity µi of the fluid, and the gravitational
acceleration g, the fluid flux is given by

vi = −Ki
µi

(∇pi − ρig).

There are many common assumptions to simplify the mass accumu-
lation term ∂φiρi/∂t in the mass conservation equation (3.1); if the rock
matrix does not deform we can assume that the porosity, φi, is constant,
and for many fluids (including water) the density is approximated by an
exponential dependence on the pressure:

ρi(pi) = ρ0 exp(−cp(pi − p0)), (3.3)

where ρ0 is the density at the reference pressure, p0, and cp the fluid
compressibility.

Darcy’s law and the pressure dependent density are constitutive laws
that are typically used for traditional fixed-dimensional problems. In the
mixed-dimensional formulation, a constitutive law for the mortar flux, λj ,
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between the higher-dimensional subdomain, Ωh, and the lower-dimensional
subdomain, Ωl, is also needed. Here, a Darcy type law is used [65]:

λj = −Kj
µj

(Πl
jpl −Πh

j tr ph) on Γj , (3.4)

where Kj is the coupling permeability, and tr the trace operator. We have
here assumed a regularity of the pressure ph such that the trace is in L2.
We note that L2-functions do not necessary have a trace defined, however,
for example functions in the space H1(Ωi) do. Thus, the coupling condi-
tions will require a slightly higher regularity of the pressure solution of the
mixed-dimensional problems than of the corresponding fixed-dimensional
problem. This is related to the Robin-type nature of the coupling condi-
tions [65, 15].

3.2.3 Boundary conditions
To complete the mathematical model of fluid flow in fractured porous me-
dia, the mass conservation and constitutive laws must be supplemented by
appropriate boundary conditions. The boundary of a subdomain, Ωi, can
be divided into two disjoint subsets. The first subset is the part of the sub-
domain that coincides with any interface, and the second subset is the part
of the boundary that does not. For the first subset, we set a Neumann-type
condition given by the mortar flux, λj , as defined by Equation (3.2). The
second part of the boundary is further divided in the two parts ∂vΩi and
∂pΩi, for which a Neumann boundary condition and a Dirichlet boundary
condition are enforced, respectively:

vi · ni = gv on ∂vΩi, p = gp on ∂pΩi. (3.5)

The boundary of fractures and intersections of fractures may end inside
the rock matrix subdomain, e.g., as the right tip of Ω4 in Figure 3.1. For
these boundaries a zero-flux condition is given, i.e., vi · ni = 0.

3.2.4 The pressure equation
In most of this thesis, we assume that the fluid is either incompressible (ρ is
constant), or slightly compressible (v · ∇ρ� ρ∇ · v), neglect gravitational
terms, and assume no external sources and sinks. A simplified linear system
of equations is then obtained from the mass conservation, the constitutive
laws, and the boundary conditions given in the previous sections. For the
convenience of the reader, and as a reference later in this thesis, we write
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down the complete mixed-dimensional system of equations for fluid flow
here. For any subdomain, Ωi, the mixed-dimensional pressure equation is
given by

∂φicppi
∂t

+∇ · vi −
∑

j∈Ŝi

Ξijλj = 0 in Ωi

vi +
Ki
µi
∇pi = 0 in Ωi

λj +
Kj
µj

(Πi
jpi −Πh

j tr ph) = 0 on Γj , ∀j ∈ Ŝi

vi · ni = Ξijλj on ∂jΩi, ∀j ∈ Ši
vi · ni = gv on ∂vΩi

pi = gp on ∂pΩi.

(3.6)

The careful reader who is familiar with different models for flow in
fractured porous media might wonder why the fracture aperture does not
appear in Equation (3.6). The answer is that it does, but the aperture
is included implicitly in the permeability and porosity; see also [13]. Not
only does this make the equations much easier to read, it is also consistent
with the mixed-dimensional modeling approach where a fracture is consid-
ered a true lower-dimensional subdomain and not just a lower-dimensional
approximation. While some authors include this explicit dependence on
the aperture in the equations [65, 46], we have chosen to suppress it.

3.3 The transport equation

There exist many types of transport processes in a porous medium, e.g.,
transport of contaminants, transport of energy, and transport of mass. We
refer to transport as all processes governed by advective and diffusive pro-
cesses. Given the fluid flux field vi and the diffusivity Di in the subdomain
Ωi, the conservation of the scalar quantity ci is given by the conservation
equation

∂φici
∂t

+∇ · (civi −Di∇ci) = q̃c in Ωi, (3.7)

where q̃c is the source/sink term.
The extension to the mixed-dimensional setting follows the same proce-

dure as for the conservation of mass in Section 3.2.1. The diffusive mortar
flux βj of the interface Γj between the two subdomains Ωl and Ωh is defined
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as
Ξhj βj = −nh · Dh∇ci on ∂jΩh.

The advective flux across the interface is given by the concentration mul-
tiplied by the fluid flux mortar variable, cjλj . The conservation equation
in the subdomain Ωl is written as

∂φlcl
∂t

+∇ · (clvl −Dl∇cl)−
∑

j∈Ŝl

Ξlj(cjλj + βj) = qc in Ωl, (3.8)

where qc are external sources or sinks. The concentration on the interface,
denoted by cj , is given by an upstream weighting, which is discussed further
in Chapter 4.

Finally, the constitutive law for the diffusive mortar flux βj is given by

βj = −Dj(Πl
jcl −Πh

j tr ch) on Γj .

3.4 Poroelasticity

In the flow problem, the conductive property of the fractures is upscaled
and represented as Darcy flow in a lower-dimensional subdomain. Simi-
larly, the material properties of fractures can be modeled as thin inclusion
(imagine a plate reinforcement in concrete), e.g., as is done in [16]. This
might be relevant when modeling faults and the damage zones around
faults, or fractures that are consolidated by a mineral. We do not pursuit
these effects within this thesis, and the fractures are not given any elastic
properties. Thus, the equations defining the deformation of the domain
are only defined in the rock matrix, and fractures are considered as the
contact of two surfaces. An interface Γj is associated with each fracture,
and the two sides of the fracture are denoted by ∂+j Ωi and ∂−j Ωh. The
mappings from the fracture interface to the two sides are defined by

Ξ+
j : L2(Γj)→ L2(∂+j Ωh), Ξ−j : L2(Γj)→ L2(∂−j Ωh),

and the inverse mappings are given by

Π+
j : L2(∂+j Ωh)→ L2(Γj), Π−j : L2(∂−j Ωh)→ L2(Γj).

We decompose a variable on the fracture interface in a normal com-
ponent and a tangential component, indicated by the subscripts n and τ ,
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respectively. Given a generic vector variable ξ on Γj , the normal compo-
nent is defined from the outwards pointing normal vector on the positive
side of the fracture:

ξn = ξn ·Π+
j nh on Γj . (3.9)

The tangential components of the vector variable are defined by

ξτ = ξ − ξnΠ+
j nh on Γj . (3.10)

The displacement in the higher-dimensional subdomain is denoted by
uh and the displacement jump from the positive to the negative side of a
fracture, Γj , is given by the jump operator [·]j as

[uh]j = Π+
j tr uh −Π−j tr uh on Γj .

Thus, [uh]jn defines the normal opening of the fracture, and [uh]jτ defines
the tangential slip.

3.4.1 Conservation laws
In a poroelastic material, the fluid flow through the pores and the defor-
mation of the rock matrix form a coupled process. The derivation of the
poroelastic equations was first done by Biot [14], and a similar model was
presented by Terzaghi [94]. See also the textbook by Coussy [23] for an
introduction to poroelasticity.

Momentum

We restrict our attention to the case where inertia and gravity effects can
be disregarded. The pressure in the pores acts as an isotropic stress, and
the effective stress, or Biot stress, is a combination of the Cauchy stress
tensor σi and the pore pressure:

σpi = σi − αipiI in Ωi,

where αi ∈ [0, 1] is the Biot-Willis coefficient, pi the fluid pressure, and I
the second-order identity tensor. The conserved quantity in Biot’s theory
is the effective stress, and in the rock matrix subdomain, Ωh, this gives the
conservation law

∇ · σph = 0 in Ωh. (3.11)

A mortar variable λj is associated with the fracture interface Γj , and
the variable represents the contact pressure on the fracture surfaces:

Ξ+
j λj = σph · nh on ∂+j Ωh.
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Due to Newton’s third law, the forces on the negative side of the fracture
have to be equal and opposite to the forces on the positive side:

Ξ−j λj = −σph · nh on ∂−j Ωh.

We have here chosen a mixed formulation where the mortar variable
represents the traction on the interfaces. This is similar to how it is done in
Paper B. In Paper D a different approach is taken, and the same problem
is stated in a primal formulation where the mortar variable represents dis-
placement. For the finite-volume implementation used in the two papers,
these two formulations are equivalent up to the nuances in the implemen-
tation of Dirichlet and Neumann boundary conditions.

Fluid mass

The fluid mass conservation given by Equation (3.1) is also valid for a
poroelastic domain. In the derivation of the pressure Equation (3.6), it was
assumed that the porosity of the rock matrix is constant. This is no longer
true for a poroelastic domain, and the porosity is in general dependent
on the mechanical deformation of the rock matrix. In the linear elastic
regime, the change in volume is linearly dependent on the divergence of the
deformation. In the rock matrix subdomain Ωh, this gives the conservation
law for the fluid

∇ · αhu̇h + c0ṗh +∇ · vh = 0 in Ωh,

where c0 is the specific storage term, and the dot represents the time
derivative (e.g., ṗh = ∂p/∂t).

The mass conservation of the fluid in the fractures is dependent on
the displacement jump [uh]j . It is obvious that as the fracture opens,
i.e., [uh]jn < 0, the volume available for the fluid increases. In Paper A,
we also consider so-called shear dilation where the volume available for
flow increases when the fracture slides, i.e., ‖[uh]jτ‖ > 0. In general, the
volume might be dependent on a number of other factors as well [58], e.g.,
the normal traction, but for the purpose of this introduction it is sufficient
to specify that the change in volume is a given function, a([uh]j), of the
displacement jump. The mass conservation in the fracture subdomain Ωl
is then given by

ȧ([uh]j) + c0ṗl +∇ · vl −
∑

j∈Ŝl

Ξljλj = 0 in Ωl.
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Note that the scalar variable λj represents the fluid flux between the lower-
dimensional fracture and higher-dimensional rock matrix, and the vector
variable λj represents the surface traction on the fracture boundary of the
higher-dimensional subdomain.

3.4.2 Constitutive laws
As for the equations of flow and transport, we have to supplement the
conservation equations by constitutive laws. We assume that the relation
between the stress and the displacement, denoted by ui, can be written as

σi = Ci : ∇sui,

where Ci is a fourth-order symmetric positive definite tensor and ∇sui =
0.5(∇ui + (∇ui)>) is the symmetric gradient. A common assumption is
that the material is linear elastic and follows an extension of Hook’s law:

σi = Ci : ∇sui = Gi(∇ui + (∇ui)>) + LiTr(∇ui)I,

where Gi and Li are the Lamé parameters, Tr denotes the trace of a tensor,
and I is the second-order identity tensor.

The fluid flow follows the same constitutive laws as given in Section 3.2.2.

Contact problem

Constitutive laws for the fracture deformation are also needed. In this sec-
tion we give two laws, one in the direction normal to the fracture (denoted
by the subscript n as defined by Equation (3.9)), and one in the tangential
plane of the fracture (denoted by the subscript τ). The constitutive laws
formulated for fracture deformation are adapted from classical textbooks
within contact mechanics [51, 100]. For further references see the survey
contribution [99] or the references within Paper B.

The first constitutive law for fracture deformation is the nonpenetration
condition that says that the two sides of the fractures cannot penetrate each
other:

[uh]n ≤ 0, λjn + Πl
jαlpl ≤ 0, (λjn + Πl

jαlpl)[uh]n = 0 on Γj .

Here, Πl
j is the projection from the lower-dimensional fracture subdomain

to the interface that couples the positive and negative fracture sides, thus,
λhn + Πl

jαlpl gives the effective normal traction on the fracture. The
nonpenetration condition says that: (i) the fracture sides cannot penetrate
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each other, (ii) there are no cohesive forces, and (iii) if a fracture is open,
the contact pressure is given by the fluid pressure inside the fracture:

[uh]n < 0→ λjn + Πl
jαp = 0→ λjn = −Πl

jαlpl.

The second constitutive law for fracture deformation governs the sliding
of the fractures; the displacement jump in the tangential plane of the
fracture is given by a Coulomb friction law:





‖λjτ‖ ≤ −µ(λjn + Πl
jαlpl)

‖λjτ‖ < −µ(λjn + Πl
jαlpl)→ [u̇h]jτ = 0

‖λjτ‖ = −µ(λjn + Πl
jαlpl)→ κ ∈ R, κ2λjτ = −[u̇h]jτ

on Γj ,

which bounds the tangential contact pressure, λjτ , by the coefficient of fric-
tion, F , multiplied by the effective normal contact pressure, λjn + Πl

jαlpl.
The second condition says that if the friction bound is not reached, there is
no sliding. The third condition says that if the friction bound is reached,
the sliding is parallel to the tangential contact pressure. The Coulomb
friction is defined according to the sliding velocity [u̇h]j .

3.4.3 Boundary conditions
On the external boundary of the rock matrix subdomain Ωh, appropriate
boundary conditions must be given. The boundary ∂Ωh, is divided into
the fracture boundary ∂±j Ωh, and the non-fracture boundary. The contact
laws given in Section 3.4.2 and fluid coupling law in Equation 3.4 give
the boundary conditions on the fracture boundary, while the non-fracture
part of the boundary has to be given two boundary conditions, one for
the fluid and one for the deformation. The fluid is given a pressure (on
∂pΩh) or a flux boundary condition (on ∂vΩh), and the mechanics is given
a displacement (on ∂uΩh) or a stress boundary condition (on ∂σΩh):

uh = gu on ∂uΩh, σp · nh = gσ on ∂σΩh,

ph = gp on ∂pΩh, vh · nh = gv on ∂vΩh.
(3.12)

For the fluid flow, boundary conditions in the lower-dimensional subdo-
mains must also be given according to Equation (3.5).
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Numerical discretization

As mentioned in Chapter 2, the choice of the conceptual model cannot be
chosen independently of the mathematical model. Similarly, the choice of
the mathematical formulation restricts the choices for the discretization.
Further, the computer implementation and the data-structures should also
be chosen accordingly. When the conceptual model, mathematical model,
discretization, and implementation are consistent, we avoid ad hoc solu-
tions and may obtain a robust framework that allows for extensions to a
wide range of physical models.

The mathematical models presented in Chapter 3 all follow the same
structure. The fractured porous medium is divided into subdomains (rock
matrix, fractures, and intersections), on which standard conservation and
constitutive laws for porous media are stated. The interactions between
subdomains are represented by mortar variables that act as source terms in
the lower-dimensional subdomains and boundary conditions in the higher-
dimensional subdomains. In this chapter, we present the discrete versions
of the models presented in Chapter 3, and we take advantage of the given
mathematical structure. The discretization can be done in two steps. In
the first step, standard fixed-dimensional discretizations are used to dis-
cretize the conservation equations separately on each of the subdomains,
and in the second step the couplings between subdomains are discretized.
As long as the fixed-dimensional discretization in the first step can handle
source-terms and internal boundary conditions, the coupling becomes a
matter of applying the correct projection operators to the mortar variable.

Generating conforming mixed-dimensional meshes can be a formidable
challenge and is often cited as the main drawback of the mathematical
formulation used in this thesis. Not all discretizations of DFM models

27
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require conforming meshes; methods that handle non-conforming meshes
include the extended finite element method (XFEM) [36, 24], Lagrange
multiplier for finite elements [56], and the embedded discrete fracture ma-
trix model (EDFM) [60]. In XFEM and the Lagrange multiplier method,
the difficulties of meshing are traded for more complicated numerics [90].
The EDFM method was originally designed to handle highly permeable
fractures for single-phase flow, and including blocking fractures or multi-
phase flow requires adaptation of the method [45]. If the challenges of the
meshing are overcome, the numerics on conforming meshes are much easier
and flexible, which are demonstrated by the wide range of applications in
the Papers A-E, which all fit into the same framework using conforming
meshes.

The first topic of this chapter is on the mixed-dimensional meshes used
for the discretizations. Sections 4.2 and 4.3 give a brief overview over
classical discretizations on fixed-dimensional meshes. For details on the
discretizations, we refer to Paper B. Finally, the full discretization of a
mixed-dimensional problem is presented in Section 4.4; for further details
see Paper D.

4.1 Mixed-dimensional meshes

The discretizations in the following sections require a computational mesh
of each subdomain and a mortar-mesh of each interface. It is required
that the faces of each mesh conform to all subdomains that are of a lower
dimension. I.e., for a 3d problem, the faces of the rock matrix mesh should
conform to the fractures, the faces of the fracture meshes should conform to
the fracture intersections, and the faces of the fracture intersection meshes
should conform to the 0d points corresponding to intersections of inter-
sections. While it is necessary for the faces of a mesh to conform to the
geometry of the lower-dimensional manifold, it is not a requirement for
the different meshes to be matching. An example of a mixed-dimensional
mesh is shown in Figure 4.1. In this example, the faces of the 3d mesh do
not match the 2d cells, but the faces do conform to the geometry of the
fractures as well as the 1d intersections and 0d point.

There exist many different softwares that can generate simplex meshes
conforming to lower-dimensional surfaces [82, 95]. Unless otherwise stated,
Gmsh [40] is used for triangular meshes within this thesis. An issue with
simplex meshes is that the most used finite volume-discretization in porous
media, the two-point flux approximation (TPFA), is not consistent unless
the mesh is K-orthogonal [1, 54], which is in general not the case for sim-
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(a) (b)

3d

2d

1d

0d

(c)

Figure 4.1: (a) A fractured porous medium defined by the 3d rock matrix
(not shown), the 2d fractures, the 1d fracture intersections, and the 0d
intersection of intersections. (b) Illustration of the graph representation
of the mixed-dimensional mesh. The colors of the nodes of the graph
correspond to the color of the meshes in (c). The gray nodes correspond
to the 2d meshes of the same shape. (c) The corresponding 3d, 2d, 1d and
0d meshes. The 3d mesh is opened along the disk-fracture to reveal the
fractures. Note that the 3d mesh conforms to the fracture surfaces, but
the faces of the 3d mesh do not match the cells of the 2d mesh. The figure
is adapted from Paper E.
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Kk Kl
γkl

nkl

Figure 4.2: Two grid-cells Kk and Kl. Their shared boundary is denoted
by γkl and the normal vector pointing from Kk to Kl is denoted by nkl.

plices. There exist modifications to the two-point flux approximation that
attempts at resolving this issue, either by placing the degree of freedom
at the circumcenter or by introducing a non-linear transmissibility [77].
An alternative is to use conforming polyhedron meshes, which is the main
topic of Paper E.

After the meshes of all subdomains are generated, they must be stored
in some data-structure. There can be hundreds of fractures and thousands
of fracture intersections in a mixed-dimensinal DFM model, and keeping
track of the subdomains and interfaces can be overwhelming unless a fea-
sible data-structure is used. The data-structure used in this thesis and
implemented in the PorePy software (presented in Paper D) is a graph.
Each subdomain is associated with a node in the graph, and the interfaces
of the subdomains are associated with the edges of the graph. Examples
of the graph structure are shown in Figures 4.1 and 4.3, and this topic is
discussed further in Section 4.4.

In the following sections, the fixed-dimensional discretizations are pre-
sented, and we conclude this section by giving the notation needed to
define the relations between the cells, the faces, and the variables of a
given (fixed-dimensional) mesh. Let us consider the two grid-cells Kk and
Kl depicted in Figure 4.2. In the finite-volume discretizations presented in
this chapter, the discrete variables are all associated with the cell-centers.
We refer to a variable associated with the cell-center of cell Kk by a cor-
responding subscript (e.g., the pressure of cell Kk is denoted pk). Some
discrete quantities are also defined on the faces of the cells. In particular,
for the flow and transport equations this will be the fluid flux, v, and for
the mechanics traction is defined on the faces. The discrete quantity on
the face between cell Kk and Kl is identified by the superscript kl (e.g.,
the fluid flux across face γkl is denoted vkl).
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4.2 Elliptic discretization

In all the papers, finite-volume methods are used to discretize elliptic op-
erators. This includes the pressure equation, the poroelastic equation, and
the diffusive part of the transport equation. The general structure of all
these equations is equivalent, and to derive a discretization for them we
start by defining the general steady-state conservation equation

∇ · F = q̃, (4.1)

where F is the flux of the conserved quantity and q̃ is a source/sink term.
We express the conserved quantity in terms of the potential, denoted by ξ,

F = −T ∇ξ,

where T is a given symmetric positive definite tensor. If we consider the
pressure equation given by Equation (3.6), the conserved quantity is the
fluid flux, F = v, the symmetric positive tensor is the permeability divided
by the viscosity, T = K/µ, and the potential is the pressure, ξ = p.

A finite-volume discretization of Equation (4.1) is obtained by inte-
grating the equation over each computational cell, K, and applying the
divergence theorem:

−
∫

∂K

F · n dA =

∫

K

q̃ dV.

The integral over the source term q̃ is easily obtained by appropriate
quadrature rules, thus, the main concern here is the approximation of
the boundary integral

∫
∂K
F · n dA. In the finite-volume schemes consid-

ered in this thesis, the discrete flux over a face γkl, denoted by F kl, is
approximated by the potential, ξ, in the cells:

1

|γkl|

∫

γkl

F · n dA ≈ F kl =

nc∑

m=1

tklmξ
m, (4.2)

where |γkl| is the area of the face, nc is the number of cells, and tklm is the
face transmissibility. To achieve a sparse discretization, the transmissibil-
ities, tklm, are normally different from zero for only a few cells per face. All
finite-volume schemes considered in this thesis follow this general struc-
ture, the difference is in how the transmissibilies are calculated. For the
scalar problems (fluid flow and diffusive flux) the two-point flux approx-
imation [74, 89] and the multi-point flux approximation [2, 30, 53] are
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used. For the poroelastic equations (3.11)-(3.12) a generalization of the
multi-point stress approximation is used [78, 49]. Paper B gives details on
how the transmissibilities are computed and the boundary conditions are
included.

Assembling the transmissibilities and considering all control-volumes,
we obtain a linear system given by the potential:

Aξ = b, (4.3)

where A is the discretization matrix, ξ is the vector of potentials associated
with each cell, and b is integrated source/sink term as well as possible
boundary conditions.

4.3 Hyperbolic discretization

The finite-volume discretization for the transport equation (3.7) is obtained
by integrating the equation over a control volume K, and applying the
divergence theorem to the advective and diffusive terms:

∫

K

∂φc

∂t
dV −

∫

∂K

n · cv dA−
∫

∂K

n · D∇c dA =

∫

K

qc dV.

This equation consists of three parts: a time derivative, an advective term
and a diffusive term. The diffusive term,

∫
∂K
n · D∇c dA, has an elliptic

structure, equivalent to the pressure equation (3.6), and can be discretized
by the procedure in Section 4.2. The remainder of this section is therefore
concerned with the discretization of the temporal and advective term.

4.3.1 Temporal discretization
Consider the time derivative of an unknown quantity of interest ξ, given
by a function S,

∂ξ

∂t
= S(ξ).

The time derivative can be approximated by a finite difference scheme.
The unknown solution at the next time step, ξk+1, is obtained from the
solution at the current time step, ξk, by the theta scheme:

ξk+1 − ξk
∆t

= θS(ξk+1) + (1− θ)S(ξk),

where ∆t is the length of the time step, and θ is a given parameter. If
θ = 1 the implicit Euler scheme is obtained, if θ = 0 the explicit Euler
scheme is obtained, and if θ = 0.5 the Crank-Nicolson scheme is obtained.
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4.3.2 Upwind discretization
The advective flux over a face, kl, is approximated by

1

|γkl|

∫

γkl

nkl · cv dA ≈ cklvkl,

where ckl is the concentration evaluated at the face. We have already
obtained a discrete expression for the fluid flux across the face, vkl, given
by Equation (4.2). To evaluate the concentration at the face, the natural
choice is an upwind scheme [59, 18], that is, the concentration at a face is
defined by the cell the fluid is flowing out from:

ckl =

{
ck, if vkl > 0

cl, if vkl ≤ 0.

4.4 Mixed-dimensional discretization

The brief introduction of the discretizations in the previous sections all
consider a fixed-dimensional mesh, and these discretizations form the main
building block of the mixed-dimensional discretization. The main question
to be answered in this section is how the different fixed-dimensional dis-
cretizations can be included in the global system to formulate the complete
mixed-dimensional discretization.

At this point it can be beneficial to consider a concrete example. Let the
mixed-dimensional subdomain consist of a 2d rock matrix, Ωh, a single 1d
fracture, Ωl, and the interface connecting them, Γj , as shown in Figure 4.3.
Let us define the incompressible flow Equation (3.6) in both the rock matrix
and fracture subdomain (assuming unit viscosity to simplify notation)

−∇ · Kh∇ph = 0 in Ωh,

−∇ · Kl∇pl = Ξljλj in Ωl,

−Kh∇ph = Ξhj λj on ∂jΩh,

(4.4)

and the Darcy type coupling law given by Equation (3.4) on the interface:

λj = −Kj(Πl
jpl −Πh

j tr ph) on Γj . (4.5)

We can discretize the pressure Equation (4.4) in the two subdomains sep-
arately, e.g., by using the finite-volume scheme described in Section 4.2.
This results in the two discretization matrices Ah and Al, as well as the
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Ωh

Ωl

(a)

Ωl
Γ−
j Γ+

j

(b)

Ωl

Ωh

Γj

(c)

Figure 4.3: (a) A mixed-dimensional subdomain consisting of the 2d rock
matrix Ωh and the single fracture Ωl. The two subdomains are coupled
by the interface Γj . (b) The 2d mesh of Ωh, the 1d mesh of Ωl, and the
interface Γj between the two subdomains. The interface Γj is given by the
union of the two sides of the fracture, Γ+

j , Γ−j . (c) The graph representation
of the mixed-dimensional subdomain.

right-hand sides bh and bl, as given by Equation (4.3). In the lower-
dimensional subdomain, the mortar flux λj is added as a source contribu-
tion, and in the higher dimensional subdomain λj is added as a Neumann
boundary condition. The discretization of the coupling term given by
Equation (4.5) results in the discrete system of equations

Djλj = −(Πl
jPlpl −Πh

jPhph),

where Ph is the discrete representation of the pressure trace of Ωh, and Pl
gives the pressure unknowns of the lower-dimensional subdomain Ωl. The
matrix Dj , that has diagonal elements 1/Kj , represents the inverse normal
permeability of the interface. The global system for the mixed-dimensional
discretization then takes the form




Ah 0 NhΞhj
0 Al SlΞ

l
j

−Πh
jPh Πl

jPl Dj





ph
pl
λj


 =



bh
bl
0



,

where Nh is the discretization of Neumann boundary conditions on the
higher-dimensional grid, Ωh, and the matrix Sl is the discretization of
source terms in the lower-dimensional subdomain, Ωl. Note that the dis-
crete reconstruction of the pressure trace Ph might for some finite-volume
discretizations (e.g., the multi-point flux approximation) have a contribu-
tion from the boundary conditions as well as the mortar flux λj . The
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contribution from the boundary condition gives a non-zero right-hand side
for the discrete coupling law, and the dependence of the mortar flux on
the pressure trace modifies the matrix Dj .

For the simple example in the previous paragraph it is trivial to write
down the equations on each subdomain and assemble them “by hand” in
the global discretization matrix. However, for more complicated domains
with many fractures and fracture-intersections, this would be a tedious job.
Even for the relatively simple domain given in Figure 4.1, there are eight
subdomains to be discretized and twelve couplings between subdomains. A
good data structure is therefore needed to represent the mixed-dimensional
subdomains. As mentioned, we have chosen to represent the geometry as
a graph. The mixed-dimensional discretization is then a matter of filling
out block matrices as given by the graph structure. First, we loop over
all nodes in the graph and discretize the given equations using standard
fixed-dimensional discretizations, which fill out the block-diagonal of the
global discretization matrix. Then, we loop over all edges of the graph and
discretize the coupling equations, which fill out the off-diagonal blocks of
the global discretization matrix. See also [48] for more details about the
relation between the graph structure and the global discretization.

The incompressible flow example considered above is the simplest of all
models presented in this thesis. However, the discretization of the trans-
port equation and poroelasticity follow the same procedure; see Papers B
and D for details. This is the great benefit we get from choosing a dis-
cretization and implementation that resemble the mathematical models so
closely. This framework facilitates code reuse and prototyping of mixed-
dimensional PDEs, with no need to invent new complicated numerical
methods and discretizations for different physical processes.
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Chapter 5

Summary and outlook

5.1 Summary of papers

Paper A

Title: Reactivation of Fractures in Subsurface Reservoirs – A Nu-
merical Approach Using a Static-Dynamic Friction Model

Authors: Runar L. Berge, Inga Berre, Eirik Keilegavlen
Book: Numerical Mathematics and Advanced Applications ENU-

MATH 2017
DOI: 10.1007/978-3-319-96415-7_60

In Paper A, we consider the deformation of a fractured porous medium
due to fluid injections. The problem statement is similar to the problem in
Paper B, however, the focus is more towards applications, with stimulation
of EGS reservoirs as the main motivation. The porous material is modeled
as a linear elastic material, and the deformation of the fractures is governed
by a Coulomb friction law. Fluid is injected into the fracture network, and
the elevated fluid pressure reduces the effective normal traction on the
fractures which causes them to slide. To solve the inequalities resulting
from the Coulomb friction, we use an iterative scheme as suggested in [96].
In this scheme, the sliding at each iteration is estimated based on how
much the friction bound is violated. The scheme has been popular [68, 69],
partly due to its simplicity which makes it easy to implement. The main
contribution of Paper A is an improvement to the scheme where we show
how a step-length parameter used in the fixed-point scheme is dependent

37
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on the mesh-size, as well as the Lamé parameters. An optimal value for
the step-length is suggested, and the choice is confirmed by numerical
experiments that show that a significantly reduction in the number of
iterations may be obtained.

Paper B

Title: Finite volume discretization for poroelastic media with frac-
tures modeled by contact mechanics.

Authors: Runar L. Berge, Inga Berre, Eirik Keilegavlen, Jan-Martin
Nordbotten, Barbara Wohlmuth

Journal: Accepted to International Journal for Numerical Methods in
Engineering

DOI: 10.1002/nme.6238

One of the disadvantages of the scheme presented in Paper A is that it still
might require many iterations to converge, further, it only approximate the
inequality constraints as it overshoots the slip distance. In Paper B, we de-
velop a new discretization for fractured poroelastic rock. The deformation
of the fractures is governed by a nonpenetration condition in the normal
direction and a Coulomb friction law in the tangential direction. A hybrid
formulation is used to discretize the contact mechanics governing fracture
deformation [44, 99], and to discretize the poroelastic equations the finite-
volume scheme multi-point stress approximation (MPSA) is used [78, 49].
The main contribution of this paper is the combination of the hybrid for-
mulation with MPSA. The discretization introduces additional degrees of
freedom on the contact interface in the form of a Lagrange multiplier repre-
senting the contact pressure. The Lagrange multiplier is naturally included
in the local systems of MPSA as a Neumann boundary condition. One of
the desirable features of the discretization is that it is locally mass and
momentum conservative despite the cell-centered degrees of freedom.

We observe that the convergence of the Newton solver in Paper B is
much faster than the fixed-point type iteration presented in Paper A. Fur-
ther, the method in Paper B satisfy the discrete inequality constraint ex-
actly. Paper B also shows by numerical experiments that the convergence
rates of the MPSA scheme do not deteriorate by the introduction of the
Lagrange multiplier by examining both 2d and 3d cases.

The methods developed in Paper B have recently been extended to
include thermoelasticity, which is mathematically very similar to poroelas-
ticity [93].
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Paper C

Title: Viscous fingering in fractured porous media
Authors: Runar L. Berge, Inga Berre, Eirik Keilegavlen, Jan-Martin

Nordbotten
Journal: In preparation

Paper C studies unstable viscous flow through fractured porous media.
When a less viscous fluid displaces a more viscous fluid, hydromechanical
instabilities can create viscous fingers, and as the fingers grow, they define
dynamic preferential flow paths through the porous media [43, 4]. Viscous
fingering has been extensively studied, and we refer to the introduction
of Paper C, and the references therein, for an overview. Despite all the
attention given to viscous fingering, little has been done on the interaction
between viscous fingering and fractures. Budek et al. [21] consider viscous
fingering in micro channels, but not consider flow in the areas between
the channels. Viscous fingering for radial flow in a fractured medium is
considered by Zhang et al. [103], where they employ a fractal growth model
to simulate the displacement processes.

The main focus of Paper C is given to the interaction between the
fixed preferential flow-paths defined by the fracture geometry, and the
dynamic preferential flow paths given by the viscous fingers. We present
the dimensionless numbers that governs the behavior of the system, and
identify two distinct flow regimes. In the first regime, the dynamic is given
by the viscous instability, while in the second regime the dynamic is given
by the geometry of the fracture network. In the cross-over regime, there
is a complex interplay between the viscous instabilities and the fracture
network giving very different flow patterns, even for small changes to the
fracture network geometry.

Paper D

Title: PorePy: An Open-Source Software for Simulation of Multi-
physics Processes in Fractured Porous Media

Authors: Eirik Keilegavlen, Runar L. Berge, Alessio Fumagalli, Michele
Starnoni, Ivar Stefansson, Jhabriel Varela, Inga Berre

Journal: Submitted to Computational Geosciences
arXiv: 1908.09869 [math.NA]

Computer softwares for simulating flow in porous media have been around
for decades. The first simulations were of simple 1d or 2d models of
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the porous media, but as the computational resources have increased, so
has the sophistication of the softwares. Today, there exist many different
frameworks for simulating flow in porous media, some are highly special-
ized commercial codes, while others are more general finite element codes.
What is common for most of these softwares is that they are made for
solving problems of a fixed dimension, and the softwares do not necessary
fit well into the mixed-dimensional modeling presented within this thesis.
In Paper D, we discuss the implementation of mixed-dimensional models,
exemplified through the software PorePy. The software is released open-
source and can be downloaded from www.github.com/pmgbergen/porepy
or from Zenodo [47]. Paper D demonstrates the flexibility of the mathe-
matical framework presented in Chapter 3 by considering several different
physical processes, including flow, transport and poroelasticity.

Except from the gridding algorithm presented in Paper E, the computer
code developed during this thesis work has been developed and maintained
in PorePy. Paper D thus serves as an overview to many of the main ideas
of this thesis, and the paper works to some extent as a summary of Part I.

Paper E

Title: Unstructured Voronoi grids conforming to lower dimensional
objects

Authors: Runar L. Berge, Øystein S. Klemetsdal, Knut-Andreas Lie
Journal: Computational Geosciences, volume 23, issue 1, pp 169–188,

2019
DOI: 10.1007/s10596-018-9790-0

The generation of meshes that conform to lower-dimensional fractures is
often listed as one of the main challenges or drawbacks for the mixed-
dimensional DFM model. Due to the complex geometry of fracture net-
works, the development of fast, robust, and flexible conforming meshing
algorithms has been and is a formidable challenge. For subsurface ap-
plication, polyhedron meshes are usually the mesh type of choice, since
finite-volume methods often do not perform well on simplex meshes. For
example, the two-point flux approximation, which is the industry stan-
dard, is in most cases not consistent on simplices, which can lead to large
discretization errors [101, 54]. Paper E aims at constructing unstructured
Voronoi meshes (or PEBI-grids, as they are often called in the petroleum
industry), that conform to lower-dimensional surfaces. Previously, many
different methods for construction conforming Voronoi meshes have been
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proposed, however, these have been limited to either 2d [17, 37, 64] or just
approximations of the surfaces in 3d [70, 71]. Very recently, Abdelkader
et al. [3] presented a similar algorithm to the one in Paper E, however, the
focus is rather on the conforming 3d mesh and not the full hierarchy of
meshes.

The main idea of the algorithm presented in Paper E is very much
inspired by the mixed-dimensional models for fracture porous media pre-
sented in Part I and Paper D. The Voronoi meshes are built in ascending
order based on the dimension of the subdomains, from the 0d intersections
to the 3d mesh. The Voronoi mesh of each subdomain is constructed such
that the faces of the mesh conform to the cells of the subdomains of one
dimension lower. In this way, we can show under certain assumptions that
we not only construct a 3d mesh that conforms to the 2d surfaces, but we
build the full hierarchy of meshes, where the 1d meshes conform to the 0d
points, the 2d meshes conform to the 1d lines, and the 3d mesh conforms
to the 2d surfaces.

In the introduction to this thesis, open-source development is listed as
one of the main contributions. The implementation of the meshing algo-
rithms presented in Paper E has been released as a module in MRST [61],
and the module is used by a number of other authors, including [55, 5, 75,
62].

5.2 Outlook

The demand for fast, robust, and accurate simulation tools for fractured
porous media will continue to grow in the coming years. This thesis has
covered a broad range of topics within fractured porous media including
poromechanics, unstable displacement processes, and meshing. A great
deal can be said about possible continuations of the scientific work, and a
selection of these continuations are summarized in this section.

To include thermal effects can be important for the stimulation pro-
cesses of EGS as cooling of the rock cause it to shrink and cause further
slip of the fractures. The discretization of the poroelastic equations with
contact mechanics in Paper B can be expanded to include thermoelasticity
as the structure of the thermoelastic and poroelastic equations are very
similar. A first step towards this direction is done in [93]. One of the ad-
vantages of the formulation presented in Paper B is that all non-linearities
can be solved in the same Newton iteration. This will be of importance if
the method is expanded to more complicated non-linear models, e.g., by
including a non-constant coefficient of friction such as the rate and state
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model [27]. Combining our discretization with a rate and state model
could be used to improve the simulations of the seismic activity related
the stimulation of EGS reservoirs.

The study in Paper C demonstrates that the mixed-dimensional frame-
work can be used for complicated physical processes. The results in the
paper clearly show that it is crucial to include the geometry of the fracture
network in the simulations; the different fracture networks affect the vis-
cous fingering in different ways and create non-trivial flow paths through
the porous media. This shows that including the explicit representation
of the fractures in simulations is of great importance, as it is very hard to
upscale the effects observed in Paper C. Continuations of the work in Pa-
per C include improvements to the quantification of the results to pinpoint
where the border between different regimes happens, systematic study of
how changes in geometry effects the flow, e.g., by rotating the geometries
of the used fracture networks, and study stochastically generated fracture
networks.

In Paper E, we give a condition (called the fracture condition) that
guarantees a conforming mesh if it is satisfied. The condition is easy to
test, however, the condition does not give a solution to how the mesh can
be changed if the condition is not met. One way to improve the meshing
algorithm would be by including information between the meshes of the
same dimension to better estimating the correct local mesh size. A method
in 2d is presented in the paper, and this method could be extended to
3d. Another possible extension is to use the refinement method presented
by Abdelkader et al. [3] for the Voronoi sites that do not satisfy the fracture
condition.

The work of this thesis joins the trend of releasing scientific computer
codes open-source. Within the context of porous media, there already exist
many open-source initiatives, and the main parts of this thesis have been
developed and maintained in the open-source software PorePy. While it
requires a large effort to release such a open-source code, it is not only ben-
eficial to the users of the code, but also to the developers and community
as a whole.

Sharing code is not the only reason we believe that the number of
open-source scientific codes will continue to grow in the future. Another
reason, that might be even more important, is reproducibility of scientific
results. Using PorePy and fractured porous media as an example, the
development of a computer code for the mathematical models presented
in Chapter 2 is an enormous effort and cannot be completed by any single
PhD-student alone. The development of open-source code is therefore
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essential to facilitate reproducibility. If it requires thousands of hours to
develop the framework needed to produce the results of a paper, it is
(practically) impossible to reproduce the results, unless the framework is
publicly available.

As a final note, we also believe (and hope) that in the future it will
become more common to also make the examples and numerical experi-
ments presented in papers publicly available. This is not only a matter
of releasing the source code, but also cleaning up the code and making it
feasible to run. Dependencies on obscure packages and outdated versions
can make any installation a pain. From the experiences made during this
thesis, tools like Docker can help overcome many of these technical difficul-
ties. Hopefully, we will in the coming years see many more works released
open-source for the benefit of other researches and the reproducibility of
scientific results.
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Abstract

A fractured poroelastic body is considered where the opening of the fractures is governed by a nonpenetration
law while slip is described by a Coulomb-type friction law. This physical model results in a nonlinear variational
inequality problem. The variational inequality is rewritten as a complementary function, and a semismooth
Newton method is used to solve the system of equations. For the discretization, we use a hybrid scheme where
the displacements are given in terms of degrees of freedom per element, and an additional Lagrange multiplier
representing the traction is added on the fracture faces. The novelty of our method comes from combining the
Lagrange multiplier from the hybrid scheme with a finite volume discretization of the poroelastic Biot equation,
which allows us to directly impose the inequality constraints on each subface. The convergence of the method is
studied for several challenging geometries in 2d and 3d, showing that the convergence rates of the finite volume
scheme do not deteriorate when it is coupled to the Lagrange multipliers. Our method is especially attractive
for the poroelastic problem because it allows for a straightforward coupling between the matrix deformation,
contact conditions, and fluid pressure.

1 Introduction

Slip and opening of fractures due to fluid injection is of relevance to a number of subsurface engineering processes.
In hydraulic reservoir stimulation, the effect is deliberately induced, while in storage operations and wastewater
disposal, avoiding reactivation and opening of fractures is important for preserving caprock integrity. In any
circumstance, triggering of larger slip events in the form of elevated levels of seismicity must be avoided. The
mathematical model of fracture resistance, slip and opening results in a strongly coupled nonlinear variational
inequality, which requires advanced numerical schemes to solve. The purpose of this work is to describe and
implement a numerical method to solve this problem considering a poroelastic matrix. The fractures are a set of
predefined surfaces in the domain, and the nucleation or growth of fractures is not considered.

The flow and mechanics of poroelastic media and the contact mechanics of elastic bodies are well-developed
research fields. For a porous or poroelastic medium, we refer to the classical textbooks [12, 4]. There exists an
extensive number of discretizations for the elliptic equations describing fluid flow in a porous medium, and they all
have different merits. The most popular discretizations are the so-called locally conservative discretizations [42],
which include mixed finite elements [41], control-volume finite elements [11], and finite volume methods [1]. For the
coupled poroelastic problem, without considering fractures, it is known that a naive discretization of the coupling
terms of the fluid pressure and the solid displacement leads to stability issues for finite element schemes [46]. Several
different methods have been proposed to remove these oscillations [21, 36, 2]. Recently, a finite volume method
called the multipoint stress approximation was introduced for elastic deformations [38, 26]. This method has been
extended to the poroelastic Biot equations and shown to be stable without adding any artificial stabilization terms
in the limit of incompressible fluids and small time steps [37].

The contact mechanics problem, i.e., contact between two elastic bodies, is also the topic of several textbooks [27,
48]. A widely used solution strategy for the nonlinear variational inequalities resulting from the mathematical
formulation is the penalty method [28]. The basic idea is to penalize a violation of the inequality by adding
extra energy to the system. The solution depends then, in a very sensitive way, on the choice of the penalty
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parameter. If the value of the parameter is too small, the condition number of the algebraic system is extremely
poor, and the nonlinear solver converges slowly. If the value is too large, the accuracy of the solution is very
poor, and unphysical approximations can be obtained. Therefore, variationally consistent hybrid formulations have
gained interest recently. The hybrid formulations are based on the discretization of additional unknown Lagrange
multipliers added to the contact region. This method has been applied to, among others, the Signorini problem [5],
frictional contact [33], and large deformations [40]; see the survey contribution [47] and the references therein.

For a poroelastic domain including fractures, different models for the contact problem are developed [35, 34, 20,
17]. Most of these models, however, do not take into account the contact problem either by assuming the fractures
stick together [35] or that the fluid pressure inside the fractures is so large that the fracture surfaces are never in
contact [34, 20]. The full contact problem for a fractured poroelastic domain is considered by Garipov et al [17],
where they applied the penalty method to solve the nonlinear variational inequalities resulting from the contact
problem.

In the current work, we present a different numerical solution approach for poroelastic media with contact
mechanics. The discretization is based on a finite volume method for poroelasticity [37] combined with a variationally
consistent hybrid discretization [22, 47]. The hybrid formulation considered in this work can be regarded as a mortar
formulation [8] using matching meshes with the displacement as the primal variable and the surface traction as the
dual variable. The finite volume scheme has previously been extended to fracture deformation by adding additional
displacement unknowns on the fracture faces [45]. This formulation was successfully used to implement a fixed-point
type iteration to approximate the friction bound [43]; however, this formulation suffers from the fact that a step
length parameter needs to be tuned and that it might require many iterations to converge [6]. An advantage of
the scheme used in this work, where the Lagrange multiplier of the hybrid formulation is coupled with the surface
traction obtained from the finite volume scheme, is that it gives a natural formulation of the contact condition
per subface. This formulation allows us to rapidly solve the resulting nonlinear inequality problem by applying a
semismooth Newton method; see the work by Hüeber et al [22], among others [47, 23].

The remainder of this paper is structured as follows. First, we state the problem and give the governing
equations. Then, the discretization is presented, which is divided into two parts: (i) the finite volume discretization
for the Biot equations and (ii) the discrete hybrid formulation for the contact problem. We present four numerical
examples. The first two consider the dry case where the coupling between fluid pressure and deformation of the
rock is disregarded. The last two examples solves the poroelastic deformation of a 2d and 3d domain where the
deformation of fractures is governed by a Coulomb friction law. Finally, we give concluding remarks.

2 Problem statement

Let Ω be a fractured deformable porous body. The boundaries of the domain ∂Ω are divided into three disjoint open
sets, ΓD, ΓN , and ΓC , as illustrated in Figure 1: for the first set, a Dirichlet boundary condition is assigned; for
the second, a Neumann boundary condition is assigned; and the last is the internal fracture boundary. We consider
the Biot model for a poroelastic medium [9]:

−∇ · σ = fu in Ω,

C : (∇u+ (∇u)>)/2− αpI = σ in Ω,

c0ṗ+ α∇ · u̇+∇ · q = fp in Ω,

q = −K∇p in Ω,

u = gu,D on Γu,D,

σ · n = gu,N on Γu,N ,

p = gp,D on Γp,D,

q · n = gp,N on Γp,N .

(1)

The variables ṗ and u̇ are the time derivatives of the pressure and displacement, respectively. Throughout this
paper we apply a backward Euler time stepping, and ṗ and u̇ should be interpreted as the discrete derivatives

ṗ =
p− pi

∆t
, u̇ =

u− ui
∆t

, (2)
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ΓNΓD

Γ+

Γ−

g

ΓCΓC

Figure 1: A domain Ω where the external boundary is divided into two parts: ΓD and ΓN . Included in the domain
are two internal boundaries, or fractures, ΓC . The two sides of the internal boundaries are labeled Γ+ and Γ−, as
shown in the magnified circular region of the domain. The function g(x),x ∈ Γ+ gives the initial gap between the
two fracture sides. The left fracture has an initial gap g > 0, while the top right fracture has an initial gap g = 0.

for the previous time iterate i and time step length ∆t. Note that we have dropped the index for the current
time iterate, i + 1. All parameters are, in general, functions of space, e.g., C = C(x), x ∈ Ω; however, the
explicit dependence is suppressed to keep the notation simple. Parameters associated with the pressure p and
displacement u are given a subscript with the same symbol. The vector fu is a given body force, while fp is a given
source term. The stiffness tensor is denoted C, the Biot coupling coefficient α, the storage coefficient c0, and the
permeability K. Indicated by subscripts, g represents Dirichlet and Neumann boundary conditions for displacement
and pressure, while n is the outwards pointing normal vector. In this work, we use C : (∇u + (∇u)>)/2 =
G(∇u + (∇u)>) + Λtr(∇u)I, where G and Λ are the Lamé parameters. Traction can also be derived for other
material laws.

The fracture boundary, ΓC , is divided into a positive side Γ+ and a negative side Γ+. The choice of which side is
positive and which is negative is arbitrary and will only make a difference in the implementation. For the fracture
segments, a nonpenetration condition is enforced in the normal direction, meaning that the positive and negative
sides cannot penetrate each other. In the tangential direction, a Coulomb friction law divides the contact region
into a sliding part and a sticking part. To formulate these contact conditions, the normal vector for the contact
region is defined as the normal vector of the positive side n(x) = n+(x). Further, let

R : Γ+ → Γ− (3)

be a mapping that projects a point from the positive boundary onto the negative boundary as given by the normal
vector. The gap function, which will appear in the nonpenetration condition, is then defined as

g(x) = ‖x−R(x)‖ x ∈ Γ+,

where ‖·‖ is the Euclidean norm. Due to Newton’s third law, the surface traction, T = σ · n, on the contact
boundaries must be equal up to the sign

T+(x) = −T−(R(x)) x ∈ Γ+, (4)

and we use the notation TC = T+. The surface traction is divided into a normal and tangential part by

Tn(x) = TC(x) · n(x), Tτ (x) = TC(x)− Tn(x)n(x) x ∈ Γ+, (5)

and the displacement jump is defined as [u(x)] = u(x) − u(R(x)) for x ∈ Γ+. The normal and tangential
displacement jump is defined analogously to Equation (5):

[u(x)]n = [u(x)] · n(x), [u(x)]τ = [u(x)]− [u(x)]nn(x) x ∈ Γ+.
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The nonpenetration condition can now be formulated as





[u(x)]n − g(x) ≤ 0

Tn(x)([u(x)]n − g(x)) = 0

Tn(x) ≤ 0

x ∈ Γ+, (6)

where the first condition ensures that the two sides of the fracture cannot penetrate, the second ensures that either
the normal traction is zero or the fracture sides are in contact, and the last enforces a negative normal component
of the surface traction.

The tangential part of the surface traction is governed by a Coulomb friction law:





‖Tτ (x)‖ ≤ F (x)|Tn(x)|
‖Tτ (x)‖ < F (x)|Tn(x)| → [u̇(x)]τ = 0

‖Tτ (x)‖ = F (x)|Tn(x)| → ∃ ζ ∈ R : Tτ (x) = −ζ2[u̇(x)]τ

x ∈ Γ+, (7)

where F is the coefficient of friction, and u̇ is the displacement velocity approximated by the backward Euler scheme,
as given by Equation (2). The first equation gives the friction bound, the second ensures that if the friction bound
is not reached, then the surface is sticking, and the last equation ensures that if the friction bound is reached, then
the tangential sliding velocity is parallel to the tangential traction. In the static case, e.g., for the purely mechanical
problem when α = 0, the notion of a velocity does not exist. For these cases, it is common to replace the sliding
velocity, [u̇]τ , by the displacement jump, [u]τ , in Equation (7) [47].

For the fluid, the fractures are modeled as impermeable. This means that the fluid cannot flow in or across
the fractures, i.e., q(x) · n(x) = 0, x ∈ ΓC . To avoid excessive model complexity, we have chosen a model with
impermeable fractures. For possible methods to extend this work to include fracture flow, we refer to the work by
Dietrich et al [14], among others [44, 17, 32, 13].

3 Discretization

We define the triplet (T ,F ,V) as the cells, faces and vertices of our mesh. It is assumed that the mesh conforms to
the fractures; that is, the positive and negative sides of the fractures are tessellated by a subset of the faces of the
mesh. Before the discretization is described, we need to define some notation, and we start by giving the relation
between cells, faces and vertices using the standard notation for finite-volume methods [15, 37]:

• For a cell K ∈ T , we denote its faces by FK and its vertices by VK .

• For a face π ∈ F , we denote the neighboring cells as Tπ and its vertices as Vπ.

• For a vertex v ∈ V , we denote the adjacent cells by Tv and the adjacent faces by Fv.

In addition to the mesh triplet (T ,F ,V), we define the so-called subcells and subfaces illustrated in Figure 2:

• For a vertex v ∈ VK , we define a subcell of K identified by (K, v) with a volume mv
K such that

∑
v∈VK m

v
K =

mK =
∫
K

dx.

• For a vertex v ∈ Vπ, we associate a subface identified by (π, v) with an area mv
π such that

∑
v∈Vπ m

v
π = mπ =∫

π
dx.

The subfaces cannot be chosen arbitrary but should correspond to faces of the subcells; for the triplet (v, π,K),
the intersection of the boundary of the subcell (K, v) and the face π should equal the subface (π, v) = ∂(K, v) ∩ π.
Further, all subcells and subfaces are assumed to have a positive measure. Note that in an abuse of notation,
we use K for both indexing and the geometric object so that both VK and

∫
K

dx make sense. All subfaces
(π, v), π ∈ F , v ∈ Vπ are divided into three disjoint sets P,N , and R, where P contains all subfaces located on the
positive boundary Γ+, N contains all subfaces located on the negative boundary Γ−, and R contains the remaining
subfaces.

Finally, for each element K ∈ T , a cell center xK ∈ K is defined, and for each subface (π, v), we associate
a continuity point xvπ located at any point on the subface, (π, v), however, the distance to the vertex v must be
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xK

πK

v

πv

xvπ

Kv

Figure 2: Notation used to describe the mesh. For a cell K, face π and vertex v of the mesh, we associate a subcell
(K, v) and subface (π, v), as well as a cell center xK and continuity point xvπ. In this figure, the cell is the full
triangle, and the subcell is given by the gray area.

greater than zero. The unit normal for each face is denoted by nπ, which is equal to the subface normal of the face
nvπ. When it is necessary to distinguish the direction of the normal, it is defined as the outward pointing normal
nπK of a cell K ∈ Tπ. Note that for a face π, we have Tπ = {K,L}, nπK = −nπL.

In the implementation used in the examples of this paper, the following construction is employed: The face-
and cell-centers are chosen as the centroid of the corresponding face and cell. In 2d, the subface (π, v) is defined by
the convex-hull of the vertex v and the face-center xπ. In 3d, the subface is in addition defined by the midpoints
of the edges of the face π that are connected to v. For simplices, this construction partition each face into a set
of subfaces of equal area. The subcell (K, v) is defined by the convex-hull of the cell-center xK and the subfaces
(π, v), π ∈ Fv ∩ FK . The continuity point, xvπ, is taken to be one third the distance from the face-center to the
vertex, xvπ = xπ − (xπ − v)/3. An example of this construction is shown in Figure 2.

3.1 Finite volume discretization

We use a finite volume discretization [37] to discretize the Biot Equations (1). This is based on two discrete
variables, uK and pK , which are the cell-centered displacement and pressure, respectively. Within each subcell
(K, v), K ∈ T , v ∈ VK , it is assumed that the displacements and pressures are linear in each subcell, and the
discrete gradients are denoted by (∇̄u)vK and (∇̄p)vK , where the bar over the gradient operator is added to distinguish
it from the continuous gradients. For the mechanical stress, we adapt the notion of weak symmetry [26]; given the
volume weighted average

〈Ξ〉v =
1∑

K∈Tv m
v
K

∑

K∈Tv
mv
KΞvK ,

associated with a vertex v, the discrete weakly symmetric mechanical stress is given by

θvK = CK : (∇̄u)vK −
〈
C : (∇̄u)

〉
v
−
〈
C : (∇̄u)

〉>
v

2
. (8)

This is referred to as weak symmetry because
〈
θ − θ>

〉
v

= 0.

To simplify notation, the tensor CvK is referred to as the stress tensor, which acts to weakly symmetrize the stress:

θvK = CvK : (∇̄u)vK .

The expression CvK : (∇̄u)vK should not be interpreted as a single tensor vector product but as a weighted sum of
products given by Equation (8).

Using the weak symmetry, the flux and traction over each subface given by the discrete variables can be stated
as

qvK,π = −mv
πKK(∇̄p)vK · nπK , (9)

T vK,π = mv
π(CvK : (∇̄u)vK − αpKI) · nπK . (10)
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For a spatially varying permeability and stress tensor, we use the cell-center value to evaluate the parameters
KK = K(xK) for each cell.

The finite-volume scheme will be constructed such that the gradient unknowns can be eliminated by performing a
local static condensation. The following presentation on how we obtain the numerical gradients is designed to reflect
the computer implementation. This presentation is different from most classical papers on the used finite-volume
discretization [1], however, it is mathematically equivalent. After the numerical gradients are expressed in terms of
the cell-center unknowns, the finite volume structure of the discretization is obtained by enforcing mass/momentum
conservation for each cell. The final scheme will be locally conservative and given by the cell-centered displacement
and pressure. A detail that will be important when we introduce the hybrid discretization is the possibility of
exactly reconstructing the discrete gradients, and thus also the flux and traction, from the cell-centered variables
u and p.

The discrete fluid flux given in Equation (9) does not contain any dependence on the displacement, and it is
identical to the fluid flux for the uncoupled fluid pressure, i.e., α = 0. To discretize the flux, we use the MPFA-O
scheme for simplices [30, 16]. Each subcell gradient (∇̄p)vK is associated with a fluid flux as given in (9). Conservation
of mass is enforced for each internal subface. This requires the fluid flux for cells (K,L) ∈ Tπ sharing a face π to
be equal and opposite over each of their shared subfaces; that is,

−mv
πKK(∇̄p)vK · nπK = mv

πKL(∇̄p)vL · nπL. (11)

The pressure is not required to be continuous across the whole subface. Instead, pressure continuity is enforced at
the continuity points, xvπ, that is,

pK + (∇̄p)vK · (xvπ − xK) = pL + (∇̄p)vL · (xvπ − xL). (12)

Here, we have made use of the assumption that the pressure is linear in each subcell to write the pressure at the
continuity point xvπ as a function of the cell center pressure pK and gradient (∇̄p)vK . If a subface is on the Neumann
boundary, π ⊂ Γp,N , the flux over the subface is given by evaluating the boundary condition at the continuity point
and multiply the value with the subface area:

−mv
πKK(∇̄p)vK · nπK = mv

πgp,N (xvπ). (13)

If a subface is on the Dirichlet boundary, π ⊂ Γp,D, the pressure on the subface is given by

pK + (∇̄p)vK · (xvπ − xK) = gp,D(xvπ). (14)

Faces on the fracture boundary, (π, v) ⊂ Γ+∪Γ−, is given a zero Neumann boundary condition as we have assumed
impermeable fractures.

Around each vertex v we can now form a local linear system of equations from which the gradients (∇̄p)vK , K ∈ Tv
can be eliminated:

(∇̄p)v =

[
Qp
Dp,G

]−1([
gp,N
gp,D

]
−
[

0
Dp

]
p

)
. (15)

The first block Qp(∇̄p)v = gp,N in this linear system is the collection of all flux balance Equations (11) and (13)
for the vertex v. The next block Dp,G(∇̄p)v = gp,D − Dpp collects all the pressure continuity Equations (12)
and (14). Thus, (∇̄p)v is the vector of the subcell gradients (∇̄p)vK , the matrix Qp represents products of the form
mv
πn

π
KKK , the matrix Dp,G represents the distances xvπ − xK , the vectors gp,N and gp,D are possible boundary

conditions, and Dp has entries 1 for pvK and −1 for pvL.
The elimination of the displacement gradients (∇̄u)vK is similar to the elimination of the pressure gradients

∇̄pvK . First, the continuity of traction gives us for each internal subface

mv
π(CvK : (∇̄u)vK − αpKI) · nπK = −mv

π(CvL : (∇̄u)vL − αpLI) · nπL. (16)

It is worth pointing out that, for internal faces, the averaging part of the operator CvK : (∇̄u)vK is the same on the
right- and left-hand sides. Thus, the balance of traction can be written as

mv
π(CK : (∇̄u)vK − αpKI) · nπK = −mv

π(CL : (∇̄u)vL − αpLI) · nπL.
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However, for boundary faces, the complete Equation (16) must be used. Unlike the fluid fluxes in (9), the traction
is different from the uncoupled system due to the term αpKI. It is important to include the Biot stress in the
local systems to obtain the correct force balance in our method [37]. We will see later that this approach also gives
a higher-order term in the mass balance for the fluid, which acts analogously to the stabilization terms in other
colocated schemes. For the fluid pressure, displacement continuity is enforced at the continuity points xvπ:

uK + (∇̄u)vK(xvπ − xK) = uL + (∇̄u)vL(xvπ − xL). (17)

For a subface on the Neumann boundary, (π, v) ⊂ Γu,N , the boundary condition is evaluated at the continuity point
and multiplied with the subface area:

mv
π(CvK : (∇̄u)vK − αpKI) · nπK = mv

πgu,N (xvπ), (18)

For a subface on the Dirichlet boundary (π, v) ⊂ Γu,D the displacement vector at the continuity point is given:

uK + (∇̄u)vK(xvπ − xK) = gu,D(xvπ). (19)

Subfaces on the fracture boundary is given a Neumann condition defined by the Lagrange multiplier:

mv
π(CvK : (∇̄u)vK − αpKI) · nπK = mv

πλ
v
π (π, v) ∈ P ,

mv
π(CvK : (∇̄u)vK − αpKI) · nπK = −mv

πλ(R−1(xvπ)) (π, v) ∈ N .
(20)

The contribution to the negative side −λ(R−1(xvπ)) is just the mapping onto the Lagrange multiplier on the
corresponding positive subface as given by Equation (3).

A local elimination of the displacement gradients (∇̄u)vK can now be done around each vertex to express them
in terms of the cell-center displacement and pressure:

(∇̄u)v =

[
Qu
Du,G

]−1


[
gu,N
gu,D

]
−
[
P 0 −M±
0 DU 0

]

p
u
λ




 , (21)

The variable (∇̄u)v is the vector of the displacement gradients, (∇̄u)vK , around the vertex v, the matrix Qu
represents products of the form mv

πn
>CvK , the matrix Du,G represents the same distance vectors as in (15), the

vectors gu,N and gu,D are possible boundary conditions, and Du is a matrix with entries ±1. The term P is the
only difference between the coupled and uncoupled system and contains products of the form mv

παIn
v
π, and the

matrix M± contains the positive areas mv
π for the positive subfaces and the negative areas −mv

π for the negative
subfaces and represents the Lagrange multiplier contribution to the traction balance in Equation (20).

The finite-volume discretization of fluid flow is then obtained by expressing the fluid mass conservation over
each cell K in terms of the discrete variables,

∑

π∈FK

∑

v∈Vπ
−mv

πKK(∇̄p)vK · nπK +
∑

v∈VK
[mv

Kα(∇̄ · u̇)vK + c0m
v
K ṗK ] =

∫

K

fp dx. (22)

The pressure gradient (∇̄p)vK and displacement divergence (∇̄ · u)vK = tr(∇̄u)vK are obtained as linear functions
of the cell-centered pressures and displacements and Lagrange multipliers from the local systems given in (15)
and (21). The appearance of the pressure in the discrete displacement divergence is essential for the consistency of
the method and is similar to the artificially introduced stability terms in other methods; see, e.g., Gaspar et al [18].

For the mechanics, momentum is conserved for all cells K,

−
∑

π∈FK

∑

v∈Vπ
mv
πCvK : (∇̄u)vK · nπK =

∫

K

f dV. (23)

Note that the term αpKI from the Biot stress in (10) sums to zero over a cell due to Gauss’s theorem; however,
the pressure dependence on the subcell gradients gives the correct fluid pressure contribution to the mechanics.
Similarly, the dependence of the Lagrange multiplier on the subcell gradients gives the correct force contribution
to the momentum balance.
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To summarize, the finite volume scheme is constructed by defining a set of discrete pressure and displacement
gradients for each subcell. Flux and pressure continuity is enforced over each subface for the fluid, and traction
and displacement continuity is enforced for each subface for the solid. This defines a small local system around
each node from which the pressure and displacement gradients can be expressed as a linear combination of the
cell-centered pressure and displacement, and Lagrange multiplier and then eliminated. A stable coupling between
the fluid and solid is achieved by considering the Biot stress, i.e., C : (∇u+ (∇u)>)/2− αpI, for traction balance
of the local systems.

3.2 Hybrid formulation

To solve the contact conditions (6) and (7), we apply the active-set strategy, which is equivalent to a semismooth
Newton method described by Hüeber et al [22]. See also the paper by Wohlmuth [47]. We recapitulate the solution
strategy in this section for the completeness of this paper. The main difference in our approach is how the Lagrange
multipliers, which represent the surface traction, are coupled to the displacement unknowns in the surrounding
domain. In our finite volume scheme, the Lagrange multipliers enter into the local equations for the displacement
gradients.

A set of Lagrange multipliers is defined on the positive subface boundaries

λvπ = σvπ · nvπ, (π, v) ∈ P .

The normal λvπn and tangential λvπτ components of the Lagrange multiplier are defined analogously to (5). The
displacement on the subfaces, uvπ, is obtained as in Equation (19) for local systems.

The discrete formulation of the nonpenetration condition (6) can for each subface be written as





[uvπ]n − gvπ ≤ 0

λvπn([uπ]vn − gvπ) = 0

λvπn ≤ 0

(π, v) ∈ P , (24)

and the static Coulomb friction (7) as





‖λvπτ‖ ≤ F vπ |λvπn|
‖λvπτ‖ < F vπ |λvπn| → [u̇vπ]τ = 0

‖λvπτ‖ = F vπ |λvπn| → ∃ζ ∈ R : λvπτ = −ζ2[u̇vπ]τ

(π, v) ∈ P . (25)

Recall that for the static case, the sliding velocity is replaced by the displacement jump, [uvπ]τ . We define bv,kπ =
F vπ (−λv,kπn + c([uv,kπ ]n−gvπ)), which can be interpreted as the friction bound. The nonpenetration condition can now
be rewritten as the nonlinear complementary function

Cn([uvπ]n, λ
v
πn) = −λvπn −

1

F vπ
max{0, bv,kπ }, (26)

where c > 0 is a given numerical parameter and max{·, ·} is the maximum function. Similarly, we can now rewrite
the Coulomb friction as the complementary function

Cτ ([u̇vπ],λvπτ ) = max{bv,kπ , ‖−λvπτ + c[uvπ]τ‖}(−λvπτ )−max{0, bv,kπ }(−λvπτ + c[u̇vπ]τ ). (27)

The solution pair (uvπ,λ
v
π) satisfies the nonpenetrating condition (24) and Coulomb law (25) if and only if Cn([uvπ]n, λ

v
πn) =

0 and Cτ ([u̇vπ],λvπ) = 0. We apply a semismooth Newton method to this problem, which results in an active set
method. Given the solution (uk,λk) from the previous Newton iteration, we divide the contact subfaces into three
disjoint sets:

Ik+1
n = {(π, v) ∈ P : bv,kπ ≤ 0}
Ik+1
τ = {(π, v) ∈ P : ‖−λv,kπτ + c[u̇v,kπ ]τ‖ − bv,kπ < 0}
Ak+1 = {(π, v) ∈ P : ‖−λv,kπτ + c[u̇v,kπ ]τ‖ ≥ bv,kπ > 0}.

(28)

The first set contains the subfaces not in contact. The second set contains the subfaces in contact whose friction
bound is not reached, i.e., they are sticking. The third set contains the subfaces in contact where the friction bound
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is reached, i.e., they are sliding. The new iterates ([uv,k+1
π ]τ ,λ

v,k+1
πτ ) in the semismooth Newton scheme are then

calculated depending on which set the subface belongs to. The update is found by calculating the derivative of the
complementary functions Cn and Cτ for each of the three sets. For the subfaces not in contact, zero traction is
enforced

λv,k+1
π = 0 (π, v) ∈ Ik+1

n . (29)

For the subfaces in contact and sticking, we enforce

[uv,k+1
πn ] = gvπ, [u̇v,k+1

π ]τ +
F vπ [u̇v,kπ ]τ

bv,kπ
λv,k+1
πn = [u̇v,kπ ]τ (π, v) ∈ Ik+1

τ . (30)

In the normal direction, this enforces the condition that the negative and positive subfaces must be in contact in the
next iteration k + 1. In tangential direction the enforced condition is dependent on the previous Newton iteration.
If the subface sliding velocity was zero in the previous iteration, [u̇v,kπ ] = 0, Equation (30) enforces the condition
that the tangential velocity is zero in the next iteration, [u̇v,k+1

π ] = 0. If the subface sliding velocity was different
from zero in the previous iteration, the Newton update does not immediately enforce zero sliding velocity, however,
as the algorithm converges we have F vπλ

v,k+1
πn = bv,kπ , and the sliding velocity, [u̇kπ], for the sticking subfaces is set

to zero. For subfaces in contact and sliding, we enforce

[uv,k+1
π ]n = gvπ,

λv,k+1
πτ + Lv,kπ [u̇v,k+1

π ]τ + F vπv
v,k
π λv,k+1

πn = rv,kπ + bv,kπ vkf ,
(π, v) ∈ Ak+1. (31)

Again, this enforces the condition that the negative and positive subfaces be in contact at the next iteration k+ 1.
In the tangential direction, the condition approximates the sliding direction and distance. The matrices and vectors
are:

Lv,kπ = c((Id−1 −Mv,k
π )−1 − Id−1) (32)

vv,kπ = (Id−1 −Mv,k
π )−1 −λv,kπτ + c[u̇v,kπ ]τ

‖−λv,kπτ + c[u̇v,kπ ]τ‖
rv,kπ = −(Id−1 −Mv,k

π )−1ev,kπ Qv,kπ (−λv,kπτ + c[u̇v,kπ ]τ ),

where Id−1 is the (d− 1× d− 1) identity matrix and Mv,k
π = ev,kπ (Id−1 −Qv,kπ ) with

Qv,kπ =
−λv,kπτ (−λv,kπτ + c[u̇v,kπ ]τ )>

bv,kπ ‖−λv,kπτ + c[u̇v,kπ ]τ‖
, ev,kπ =

bv,kπ

‖−λv,kπτ + c[u̇v,kπ ]τ‖
.

Regularization

For the subfaces in the inactive set Ik+1
n , i.e., the subfaces not in contact, the Newton update gives a homogeneous

Neumann boundary condition. For the subfaces in the contact sets Ik+1
τ and Ak+1, the Newton update gives a

Dirichlet condition in the normal direction and a Robin boundary condition in the tangential direction. This Robin
condition guarantees positive definiteness of the system only if Lv,kπ , defined by Equation (32), is positive definite.
In the converged limit, the matrix Lv,kπ is a positive definite matrix [22]. However, during the iterations, there is
no guarantee that this will hold. We therefore add a regularization to the Robin conditions by replacing Qv,kπ by

Q̃v,kπ =
−λv,kπτ (−λv,kπτ + c[u̇v,kπ ]τ )>

max(bv,kπ , ‖λv,kπτ ‖)‖−λv,kπτ + c[u̇v,kπ ]τ‖
,

which is only different from Qv,kπ when the inequalities in Equation (25) are violated. Further, we define

αv,kπ =
(−λv,kπτ )>(−λv,kπτ + c[u̇v,kπ ]τ )

‖λv,kπτ ‖‖−λv,kπτ + c[u̇v,kπ ]τ‖
, δv,kπ = min

(‖λv,kπτ ‖
λv,kπn

, 1

)
,

and

βv,kπ =

{
1

1−αv,kπ δv,kπ
, if αv,kπ < 0

1, otherwise.
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Using the notation that tilde (̃·) denotes the regularization, we have M̃v,k
π = ev,kπ (Id−1 − Q̃v,kπ ) and replace the

matrix Lv,kπ from Equation (32) by

L̃v,kπ = c((Id−1 − βv,kπ M̃v,k
π )− Id−1),

which guarantees its positive definiteness [22]. As the iterates (uk,λk) converge to the solution, the regularization
Q̃v,kπ → Qv,kπ , L̃v,kπ → Lv,kπ , and βv,kπ → 1, and we obtain the original system of equations.

3.3 Discrete system of equations

We end Section 3 with a summary of the discrete system of equations that is solved at each Newton iteration, and
we state the discrete linearized version of Equations (1)-(7) as:

Au+Bp+ Cλ = bu,

Du+ Ep+ Fλ = bp,

Gu+Hp+ Jλ = r.

(33)

The first line is the discrete momentum balance, and the matrices A, B, C, and the vector bu are obtained by
considering Equation (23) for all cells and assembling the coefficients in the global matrices. Similarly, the second
row corresponds to the discrete flux balance, and the equation is obtained by considering Equation (22) over all cells
and assembling the coefficients in the global matrices. The matrix F appears due to the dependence on λ in the local
systems for the displacement gradients, as given by Equation (21). It is worth pointing out that the matrices A, B,
D, and E are the same matrices as are obtained by the finite-volume scheme in a poroelastic domain without any
fractures [37]. The last row of Equation (33) corresponds to the linearization of the complementary functions (26)
and (27), and the matrices are obtained by assembling Equations (29)-(31) for each subface on the fracture. The
dependence of the pressure in the contact law, given by the matrix H, is due to the pressure dependence on the
poroelastic stress (see second row of Equation 1) as well as the pressure dependence on the displacement gradients
given by Equation (21).

From a computational point of view, it is worth noting that during the Newton iteration, only the matrices G,
H, J , and the vector r will change. This means that updating the discretization is inexpensive as it is only a local
update for the subcells bordering the fractures.

4 Numerical examples

Four numerical examples are given. For the first two, we neglect the fluid contribution to the mechanical stress
to investigate the performance of the numerical approach for the purely mechanical contact problem, i.e., we set
α = 0. In all of the examples, Young’s modulus is E0 = 4 GPa, the Poisson ratio is ν = 0.2, and the initial gap of
the fractures is g = 0. In our experience, the algorithm is quite robust with respect to the numerical parameter c,
and in the examples, it is fixed to c = 100 GPa/m.

We assign a space varying coefficient of friction so that the slip of the fractures will arrest before it reaches the
fracture tips. This choice of the friction coefficient is done to obtain a solution with high enough regularity to study
the convergence in stress. If the slip of the fractures reaches the fracture tips, the solution will contain singularities
in the stress, which reduces the regularity of our solution. Note that our method is not restricted to the regularized
solution, as discussed more thoroughly in Appendix A.

The discrete solution is denoted uh, which is interpreted as the piecewise constant function over each cell K 3 x
such that uh(x) = uK . The discrete solution λh for the Lagrange multiplier is defined as piecewise constant on
each face π on Γ+ and is equal to the area weighted sum of the subface values, λh(x)mπ =

∑
v∈Vπ m

v
πλ

v
π, x ∈ π.

Likewise, the displacement jump is defined as the piecewise constant on each face, π, on Γ+ corresponding to the
subface average, [uh(x)] = 1

|Vπ|
∑
v∈Vπ [uvπ], x ∈ π, where |Vπ| is the number of subfaces of the face, π, which is

equal to three if π is a triangle. The continuous solution is denoted by the pair (u,λ).
We define the relative error of a discrete variable ξh in a domain γ as

εγ(ξh, ξ) =
‖ξh − ξ‖γ
‖ξ‖γ

, (34)
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where ξ is a reference solution and || · ||γ is the L2 norm over the domain γ. The Newton iteration is terminated
when the change in the solution is below a given stopping criterion:

εΩ(uk+1
h ,ukh) < δ, (35)

where k is the Newton iteration index.
To solve the linear system of equations at each Newton iteration, a direct solver is used if the number of degrees

of freedom is less than 10 000, else, an iterative solver is used. The iterative solver uses a preconditioned GMRES
iteration that is based on a Schur complement strategy, where the mechanics-fluid subsystem is approximated by a
single fixed stress iteration, see [29, 10] for details. Within the fixed stress iteration, the mechanics problem is solved
by one AMG iteration, as implemented in [39], while a direct solver is applied to the flow problem. In the simpler
case of a pure mechanics problem, the fixed stress iteration is replaced with an AMG iteration on the mechanics
subproblem.

The computer code has been implemented in the open source Python toolbox PorePy [25], which has an interface
for meshing in Gmsh [19]. The run scripts for the examples are open source [7]. ParaView [3] was used to make
Figures 3 and 7.
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3.2

3.8

4.4

Figure 3: The fractured domain from Example 1. Left: The black box corresponds to the domain boundaries, while
the fractures, labeled by a number, are represented by lines. The fractures are colored in three colors; segments
that slip are red, segments that stick are green, and segments that open are blue. Right: Contour plot of the
x-component of the displacement u. The labels on the contours are given in millimeters. The red lines represent
the fractures.

4.1 Example 1

The first example is a domain 2 m × 1 m with six fractures, as depicted in Figure 3. This example includes
difficult cases such as a fracture with a kink and a fracture reaching the boundary. An advantage of our finite
volume method is that no special treatment is needed to handle these cases because the degrees of freedom are
located in the cell and subface centers and not on the nodes. In this example, we do not consider any fluid and
solve only for the linear elasticity in Equation (1) coupled to the contact conditions given in Equations (6) and (7).
The bottom boundary is fixed, the two vertical boundaries are free, and at the top boundary a Dirichlet condition
gu,D = [0.005,−0.002]> m is assigned. The initial guess in the Newton iteration is u = 0 m, λn = −100 Pa and
λτ = 0 Pa, i.e., zero displacement and all fractures in contact and sticking. The coefficient of friction is for each
fracture i = 1 . . . 6 set to Fi(x) = 0.5(1 + exp(−Di(x)2/0.005m2), x ∈ Γ+

i , where Di(x) is the distance from x to
the tips of fracture i. Note that the bend in Fracture 1 and the right end of Fracture 5 are not considered tips for
the distance function D, and thus the coefficient of friction at these points is F ≈ 0.5.

A contour plot of the solution is shown in Figure 3 where the discontinuous displacement over the sliding or
opening fractures can clearly be seen. To better visualize the different behaviors of the fractures, the fracture
regions that are slipping, sticking, and opening are plotted in different colors in Figure 3. For Fracture 1, the top
boundary is sliding to the right, while the bottom boundary is sliding to the left. This situation causes the fracture
to open in a small segment after the bend. Figure 4 shows the shear component of the Lagrange multiplier as well
as the friction bound and displacement jump. At the bend of fracture 1, there is a singularity in the stress that
causes the sharp increase in the Lagrange multiplier. For Fracture 2, we observe a change in the shear and normal
component of the Lagrange multiplier at approximately the midpoint that is caused by the opening of Fracture 6.
In the vicinity of the fracture tips, there is a sharp increase in the shear component of the Lagrange multiplier as
the fractures change behavior from sliding to sticking.
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Figure 4: Results from Example 1 showing λh and [uh] for the reference solution that has an average of 103 faces
along each fracture. The shear component of the Lagrange multiplier λhτ (green), friction bound ±Fλhn (red
dashes), tangential displacement jump [uh]τ (blue), and normal displacement jump [uh]n (black) for all fractures.
The x-axis shows the distance ψ from the leftmost end of the fracture. The subplots are arranged from top left to
bottom right according to the fracture number given in Figure 3.
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Figure 5: Convergence rates for the Lagrange multiplier λh (left) and the displacement jump [uh] (right) for each
separate fracture in Example 1. The error is measured as the relative errors εΓ+

i
([uh], [u]) and εΓ+

i
(λh,λ) for each

fracture Γ+
i . The line numbering corresponds to the fracture numbers given in Figure 3.
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Figure 6: Convergence rates for the cell-centered displacement in Example 1. The error is the relative error
εΩ(uh,u), as defined by Equation (34).

As a reference solution (u,λ), we use the solution calculated for a fine mesh using 1.7 million degrees of freedom.
The second finest mesh has 270 thousand degrees of freedom and is the mesh used for the results in Figure 4 and 3
. In Figure 5, the relative errors εΓ+

i
([uh], [u]) and εΓ+

i
(λh,λ), given by Equation (34), are plotted for each fracture

i = 1, . . . , 6. For the displacement jump, the convergence is of first-order for all fractures except Fracture 4, which
is correctly predicted to be sticking (and thus, the error is zero). For the Lagrange multiplier λh, we observe first-
order convergence for Fractures 4 and 5, while the error for Fracture 6 is zero. The convergence rates for traction
is typically observed to be of first-order in the L2 norm and second-order in the 2-norm for the finite-volume
scheme [26, 37], but the Lagrange multiplier for fractures 1, 2 and 3 shows somewhat lower convergence rates than
first-order. However, this is not surprising due to the low regularity of the Lagrange multipliers. Figure 6 shows
first-order convergence of the error for the discrete displacement uh in the 2d domain Ω. Finally, Table 2 shows
that the number of Newton iterations do not grow significantly when the mesh is refined.

4.2 Example 2

In this example Ω is a 3d domain (−200, 300)×(−200, 300)×(−300, 300) m with two circular fractures approximated
by polygons with 10 vertices. The location and geometry of the fractures are given in Table 1. As in the previous
example, no fluid is included. The bottom boundary is fixed, the four vertical boundaries are rolling, and at the top
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Table 1: Fracture geometry in Example 2 and 3. The strike angle is the rotation from x-axis in the x-y-plane
defining the strike line. The dip angle is rotation around the strike line.

Fracture 1 Fracture 2

Center −[10, 30, 80]> m [15, 60, 80]> m
Radius 150 m 150 m
Strike angle 81.8◦ 78.3◦

Dip angle 43.9◦ 47.1◦

[uh]τ
λλλhτ

Contact and sticking
Contact and sliding

Figure 7: Results from Example 2 using approximately 250 thousand degrees of freedom. Left: Displacement jump
‖[uh]‖ for the two fractures indicated by the fracture number. Parts of the 3d mesh are cropped to reveal the
fractures. Middle: The surface mesh of Γ+ of Fracture 1. The red lines show the tangential part of the Lagrange
multiplier λhτ while the black lines show the scaled displacement jumps 400[uh]τ . Right: Zoomed view of middle
figure.

boundary, a load is applied downwards by enforcing a Neumann condition gu,N = [0, 0,−4.5]> MPa. The coefficient
of friction is for the two fractures, i = 1, 2:

Fi(x) = 0.5 exp

(
10m

Ri −Di(x)
− 10m

Ri

)
,

where Ri is the radius of fracture i and Di(x) the distance from the center of the fracture to x.
Figure 7 shows the displacement jump [uh]τ and the shear component of the Lagrange multiplier λhτ . The

fractures are in contact, i.e., the normal displacement jump [uh]n = 0 is zero. Going from two dimensions to three
adds an additional challenge to the contact problem as we have to find not only the magnitude of the slip but also
the direction. The advantage of the hybrid formulation in combination with a semismooth Newton scheme is that
the same computer code can be used for any dimension, and as observed in the figure, the correct sliding direction
(parallel to the Lagrange multiplier) is found by the algorithm.

The errors are calculated by comparison to a reference solution that has 500 thousand degrees of freedom. The
relative errors εΓ+

i
([uh], [u]) and εΓ+

i
(λh,λ) for the two fractures, i = 1, 2, are shown in Figure 8. We observe

first-order convergence for the displacement jump, while the Lagrange multiplier shows a somewhat reduced order
of convergence. Finally, Table 2 shows the number of Newton iterations for each mesh, and we do not observe any
significant increase in the number of Newton iterations as the mesh is refined.

4.3 Example 3

In this example, we consider the same domain and material parameters as in Example 1, but add a fluid. The
permeability of the fluid is K = 10−8 m2Pa−1s−1, the storage coefficient is c0 = 1 · 10−10 Pa−1, and the Biot
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Figure 8: Convergence rates for the two fractures in Example 2. The error is measured as the relative errors,
εΓ+

i
([uh], [u]) and εΓ+

i
(λh,λ), for each fracture, Γ+

i , as given in Equation 34. The numbering of the lines correspond

to the fracture number.

Table 2: The number of Newton iterations used for the different mesh sizes in Example 1 and 2. The number of
fracture faces and number of cells are given in the table.

Example 1 Example 2

# fracture faces # cells # iterations # fracture faces # cells # iterations

176 4538 5 126 449 3
346 17482 4 450 1878 3
682 68330 5 1884 11825 3

1356 270756 7 7728 160417 4

coefficient is α = 1. The initial displacement and pressure is set to zero, and the end time of the simulation is set
to T = 5c0H

2/K, where H = 1 m is the height of the domain. For the fluid, we enforce homogeneous Neumann
conditions on all sides except the left boundary, where a zero pressure condition is given. For the mechanics, the
left and the right boundaries are given a homogeneous Neumann condition, and the bottom boundary is given a
zero Dirichlet condition. The top boundary is given a time varying boundary condition given by

gu,D(x, t) =

{
[0.005 m,−0.002 m]>2t/T, t < T/2

[0.005 m,−0.002 m]>, t ≥ T x on top boundary.

This condition enforces a linear increase of the boundary condition values in the first half of the simulation, and
after the boundary condition reaches the same value as in Example 1 we keep it constant for the remainder of the
simulation.

In the first half of the simulation, the domain is compressed and the fluid pressure in the domain increases. In
Figure 9, we plot the regions of the fractures that slip, stick and open for the two times t = T/2 and t = T . At the
time t = T/2, the boundary condition for the mechanics is the same as in Example 1, however, we see considerable
differences in the fracture displacement (compared to Figure 3) that are due to the introduction of the fluid. After
t = T/2 the displacement boundary condition is fixed at [0.005,−0.002]> m, and the fluid pressure decrease due
to the zero pressure condition on the left boundary. This causes further deformation of the fractures, and at the
end of the simulation the pressure in the whole domain is relatively close to zero, and the solution is approximately
equal the solution in Example 1.

The number of Newton iterations for each time step is shown in Figure 10. For most iterations, the Newton
solver converges in three iterations. The increase in the number of iterations needed at time t/T = 0.65 is believed
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Figure 9: The fractured domain from Example 3. The black box corresponds to the domain boundaries, while the
fractures, labeled by a number, are represented by lines. The fractures are colored in three colors; segments that
slip are red, segments that stick are green, and segments that open are blue. The left figure shows the deformation
half-way through the simulation, while the right figure, shows the deformation at the end time of the simulation.
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Figure 10: The number of Newton iterations at each time step for the simulation in Example 3.

to be related to Fracture 6 changing behavior from sliding to opening. At the end of the simulation the system is
close to steady state, and the Newton solver converges in one iteration.

4.4 Example 4

In this example, the same setup as in Example 2 is used, but a fluid is included. The domain is sealed for the fluid,
i.e., homogeneous Neumann conditions, for all sides except the top boundary, which is given a Dirichlet condition
gp,D = 0 Pa. The permeability is K = 10−8 m2Pa−1s−1, the storage coefficient c0 = 1 · 10−10 Pa−1, and the Biot
coefficient α = 1. The initial displacement and pressure is set to zero.

Without the fractures, this setup is equivalent to a consolidation problem, which can be found in standard
textbooks [24]. When the load is applied to the top surface at time t = 0, there is an instantaneous increase in the
pore pressure in the domain. The fluid will then drain slowly out from the top surface and finally relax back to the
initial condition. As this process occurs, the domain will continue to deform vertically increasing the mechanical
load on the fractures, which causes them to slip. Twenty time steps are taken, and the simulation is stopped after
625 minutes, at which time, for practical purposes, equilibrium is reached.

The slip over time is plotted in Figure 11. Initially, the pore pressure carries most of the applied load, and
the fractures are not sliding. As the fluid drains and the domain deforms, the tangential part of the Lagrange
multiplier on the fractures increases, and after approximately 150 minutes, the fractures start to slide. The sliding
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Figure 11: Results from Example 4. The length scale H = 600 m is the height of the domain. Left: Slip distance
as a function of time. Right: Convergence of the Newton solver. Each time step is represented by a rectangle, and
the y-axis shows the number of Newton iterations needed until the convergence tolerance is reached.

then gradually slows down and qualitatively reaches the solution of the drained medium, i.e., the solution from
Example 2. There are small differences between the solution from this example at the final time and the solution
of Example 2, which are caused by the use of a dynamic friction model in this example and a static friction model
in Example 2.

The number of iterations needed for convergence of the Newton solver at each time step is shown in Figure 11.
For the first time step, 6 Newton iterations are needed, which is twice as many as for any of the other time steps.
It is well known that the Newton strategy is very sensitive to the initial guess. A naive choice generally results in
an increase in the required number of Newton iterations for smaller mesh sizes. However, either in a dynamic or a
multilevel context, there are good options to set the initial guess [22, 47]. In this case, the initial condition at t = 0
is (λ = 0 and u = 0), which assigns all subfaces to the noncontact set, In, while those at the first time step belong
to the sticking set Iτ (see Equation (28)). During the dynamic sliding, the initial guess (the solution from the
previous time step) gives a good approximation of the solution in the current time step, and thus, fewer iterations
are needed. As the fractures start to slide at time step six, a few Newton iterations are needed for convergence.
However, when approaching steady state, the algorithm predicts the correct slip in just one iteration.

5 Conclusion

In this paper, we present an approach for solving the poroelastic Biot equations in a fractured domain. A classical
hybrid formulation for contact mechanics is combined with a finite volume discretization for poroelasticity. The
fractures are modeled as internal contact boundaries and are governed by a nonpenetration condition in the normal
direction and a Coulomb friction law in the tangential direction. The inequalities in the contact conditions are
handled by a semismooth Newton method. The finite volume discretization has several advantages for these types
of problems. The cell-center colocation of the discrete displacement and pressure variables gives a sparse linear
system, efficient data structures, and no need for staggered grids. Moreover, the contact conditions are obtained
naturally in the discretization as a condition per subface in the local systems. Thus, these conditions can be treated
in an equivalent manner to boundary conditions on the external boundary. Finally, there is no need for special
treatment of the contact conditions in the poroelastic case versus the purely elastic case, as the correct pressure
contribution to the effective stress is obtained in the local system.

We showed that the hybrid formulation coupled with the finite volume discretization handles a given spatially
varying coefficient of friction. The formulation is also suitable for other friction models such as rate and state
friction or temperature-dependent coefficient of friction.

Four numerical examples illustrate the method’s robustness and applicability to difficult cases. By comparison
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to a reference solution, the discrete solution shows first-order convergence in displacements and slightly less than
first-order convergence for the Lagrange multipliers. We also show that the method handles singularity in the
solution resulting from a piecewise linear fracture with a kink. Finally, a 3d example is presented where we study
the effect of the fluid pressure on the solution.

The model presented in this work is limited to fluid flow in the matrix. A natural extension is to include fluid
flow also in the fractures. The fluid pressure in the fracture will then act as a force on the fracture sides, effectively
reducing the normal traction. Experiments have also shown that asperities along fracture surfaces can have a very
important effect on both the opening and sliding of fractures. These effects can be included by adding a nonlinear
deformation model to the fractures. The advantage of our framework is that any nonlinear extensions to the model
can be included in the same Newton iteration, which might be crucial for the convergence of the resulting scheme.
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Figure 12: The shear component λτ (green), friction bound ±Fλn (red dashes), tangential displacement jump
[u]τ (blue), and normal displacement jump [u]n (black) for the fracture. The dots correspond to the face-centered
values. Left: Constant friction coefficient. Right: Regularized coefficient.

Appendix A

When a fracture slides or opens, the linear elastic stress will contain a singularity at the fracture tips [31], which
causes challenges for any numerical method. We illustrate this in Figure 12, where we plot the typical stress and
displacement profiles for a sliding fracture and a constant friction coefficient F = 0.5. We observe small oscillations
in the Lagrange multiplier around the tips of the fracture. The issue is that as we approach the fracture tips,
an infinitesimal change in the displacement jump will induce an infinite change in the stress. These oscillations
are reflected in the errors plotted in Figure 13, where the error rate for the Lagrange multiplier deteriorates.
Convergence is not seen in the Lagrange multiplier. Because the face traction values away from the fracture tips are
almost constant, the error in this region is very small, and thus, the error in the Lagrange multiplier is completely
dominated by the oscillations near the tips. Note that the convergence rates for the displacement jump is of order
1, as expected. To study the convergence of the Lagrange multiplier, we can regularize the solution by increasing
the friction bound smoothly in a small region around the tips. In this example, this is done by setting

F (x) = 0.5(1 + 10 exp(−800 m−2D(x)2)) x ∈ Γ+,

where D(x) is the distance from x to the tips of the fracture. As seen in Figure 12, this arrests the fracture before
the tip, and the added regularity gives first-order convergence in both the Lagrange multiplier and displacements,
as shown in Figure 13.

The worst oscillations that we have encountered in 3d using our finite volume scheme coupled with the hybrid
formulation are shown in Figure 14. The setup in this example is the same as the setup in Section 4.2 but with only
Fracture 1 and a constant coefficient of friction, F = 0.5. Thus, we have sliding reaching the tip of the fractures. The
oscillations have an amplitude of approximately 5 percent from the mean traction and grow larger as we approach
the fracture tips. As in the 2d case, the displacement jump [uh] is not effected significantly by these oscillations.

Note that the singularity at the fracture tips is a challenge for any numerical method. Similar oscillations for
first- and second-order Galerkin finite elements are reported, for example, by Garipov et al [17], Fig. 8, for a setup
where they study a single sliding fracture.
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Abstract 
Development of models and dedicated numerical methods for dynamics in fractured rocks is an active 

research field, with research moving towards increasingly advanced process couplings and complex 

fracture networks. The inclusion of coupled processes in simulation models is challenged by the high 

aspect ratio of the fractures, the complex geometry of fracture networks and the crucial impact of 

processes that completely change characteristics on the fracture-rock interface. This paper provides a 

general discussion of design principles for introducing fractures in simulators, and defines a framework 

for integrated modeling, discretization and computer implementation. The framework is implemented 

in the open-source simulation software PorePy, which can serve as a flexible prototyping tool or 

multiphysics problems in fractured rocks. Based on a representation of the fractures and their 

intersections as lower-dimensional objects, we discuss data structures for mixed-dimensional meshes, 

formulation of multiphysics problems and discretizations that utilize existing software. We further 

present the implementation of these concepts in the PorePy open-source software tool, which is aimed 

at coupled simulation of flow and transport in three-dimensional fractured reservoirs as well as 

deformation of fractures and the reservoir in general. We present validation by benchmarks for flow, 

poroelasticity and fracture deformation in fractured porous media. The flexibility of the framework is 

then illustrated by simulations of non-linearly coupled flow and transport and of injection driven 

deformation of fractures. All results reported herein can be reproduced by openly available simulation 

scripts. 

Keywords: Fractured reservoirs; mixed-dimensional geometry; numerical simulations; multiphysics; 

discrete fracture matrix models; open-source software; reproducible science. 

1. Introduction 
Simulation of flow, transport and deformation of fractured rocks is of critical importance to several 

applications such as subsurface energy extraction and storage and waste disposal. While the topics have 

received considerable attention the last decade, the development of reliable simulation tools remains a 

formidable challenge. Many reasons can be given for this, we here pinpoint four possible causes: First, 

while natural fractures are thin compared to the characteristic length of the domains of interest, their 

extent can span through the domain of interest [1]. The high aspect ratios make the geometric 
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representation of fractures in the simulation model challenging. Second, the strongly heterogeneous 

properties of fractures compared to the matrix with respect to flow and mechanics call for methods that 

can handle strong parameter discontinuities as well as different governing physics for the fractures and 

the matrix, e.g. [2]–[4]. Third, phenomena of practical interest tend to involve multiphysics couplings, 

such as interaction between flow, temperature evolution, geo-chemical effects and fracture 

deformation [5]. Correspondingly, there is an ongoing effort to develop and introduce multiphysics 

couplings within simulation models [6]. Fourth, fracture networks have highly complex intersection 

geometries, which must be accounted for in the simulation models. We emphasize that, although the 

geometry of the walls of individual fractures can be complex by themselves, we will not consider this in 

any detail, but rather assume that averaged apertures etc. are available at the scale of discretizations. 

Traditionally, simulation of flow-driven dynamics in fractured media has been based on two conceptual 

models: First, in an upscaled representation, the fracture network geometry and dynamical processes 

taking place in the network are replaced by equivalent continuum models, which resemble those used in 

non-fractured porous media. As these models do not resolve the fracture geometry, they are 

computationally efficient, and have been extended to cover a wide range of multiphysics couplings, as 

exemplified by the TOUGH2 family of codes [7], PFLOTRAN [8], and also e.g. [9]. The accuracy of the 

simulation is however highly dependent on the quality of the upscaled model, which in turn depends on 

the fractured domain’s resemblance of a continuous medium with respect to the nature of the physical 

processes. In practice, the upscaling process ranges from treatable by analytical means for simple 

fracture geometries and dynamics [10], [11], to extremely challenging in the case of multiphysics 

couplings and complex fracture geometries [12], [13] . 

The second traditional class of models, known as the discrete fracture network (DFN) models, is 

constructed using an explicit representation of the fracture network in the simulation model, while 

ignoring the surrounding rock mass. The models combine highly accurate representation of dynamics in 

the fractures with computational efficiency from not having to deal with the rock matrix, which is highly 

desirable e.g. for fast model evaluation. DFN simulation models with a high level of sophistication have 

been developed, notably for coupled flow and transport, see for instance [14]–[16]. By themselves, DFN 

models cannot represent processes outside the fracture network; however, the models can be 

combined with continuum models to achieve fracture-matrix couplings.  

The respective limitations of upscaled and DFN approaches have over the last decade led to an 

increased interest in the class of discrete fracture matrix (DFM) models. In DFM models, the fractures 

are sorted in two classes according to their importance for the dynamics in question [17]. The most 

important fractures are represented explicitly, while upscaled models are applied for the remaining 

fractures and the host rock. As such, DFM models represent a flexible compromise between upscaling 

and explicit representations. The models can represent governing equations in the rock matrix, 

fractures, and generally also in the intersections between fractures. For computational efficiency, it is 

common to represent fractures and their intersections as lower-dimensional objects embedded in the 

three-dimensional rock matrix [18], [19]. We refer to this as a mixed-dimensional model [20], and 

conversely refer to a model of a domain where only a single dimension is considered as fixed-

dimensional.  

DFM models can further be divided into two subgroups, according to whether they explicitly represent 

the fracture surfaces in the computational grid [17]. Models that apply non-conforming meshing include 
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the Embedded Discrete Fracture Matrix model (EDFM) [21], and extended finite element methods 

(XFEM) [22], [23]. These methods avoid the complexities of conforming mesh generation discussed 

below, but must instead incorporate the fracture-matrix interaction in what becomes complex 

modifications of the numerical method for XFEM [24], or by constructing upscaled representation 

reminiscent of the challenge in continuum-type models [25]. For this reason, our interest herein is DFM 

methods with conforming meshes. By now, this type of DFM models have been developed for flow and 

transport, as well as mechanics and poroelasticity. Simulation models that incorporate DFM principles 

include DuMuX [26], CSMP [27], MOOSE-FALCON [28], [29], OpenGeoSys [30] and Flow123d [31]. 

The utility of a rapid prototyping framework is illustrated by the wide usage of the Matlab Reservoir 

Simulation Toolbox (MRST) [32], [33], mainly for non-fractured porous media. Similarly, research into 

strongly coupled processes in mixed-dimensional geometries will benefit from software of similar 

flexibility and with a structure tailored to the specific challenges related to fractured porous media.  

The goal of this paper is two-fold: First, we review challenges related to design of simulation frameworks 

for multiphysics couplings in mixed-dimensional geometries. Our aim is to discuss design choices that 

must be made in the implementation of any DFM simulator, including data structures for mixed-

dimensional geometries, and representation and discretization of multiphysics problems. Second, we 

describe a framework for integrated modeling, discretization and implementation, and an open-source 

software termed PorePy adhering to this framework. Key to our approach is a decomposition of the 

geometry into separate objects for rock matrix, individual fractures and fracture intersections. 

Governing equations can then be defined separately on each geometric object, as well as on the 

connection between the objects. This allows for significant code reuse from the discretization of fixed-

dimensional problems; thus, our design principles are also applicable to more general PDE software 

frameworks, such as FEniCS [34], Dune [35] and FireDrake [36]. Furthermore, for scalar and vector 

elliptic problems (flow and deformation) the models rest on a solid mathematical formulation [37]–[39].  

Built on the object-based mixed-dimensional geometry, PorePy offers several discretization schemes for 

mathematical models of common processes, such as flow, transport and mechanical deformation. 

Multiphysics couplings are easily formulated, and their discretization depends on the availability of 

appropriate discretization schemes. Moreover, the framework allows for different geometric objects to 

have different primary variables and governing equations. The software can be used for linear and non-

linear problems, with the latter treated by automatic differentiation. For DFM models that explicitly 

represent the fractures in the computational grid, meshing is a major technical challenge, in particular 

for 3d problems. PorePy offers automatic meshing of fractured domains in 2d and 3d, relying on the 

third-party software Gmsh to construct the mesh [40]. The software is fully open-source (see 

www.github.com/pmgbergen/porepy) and is released under the GNU General Public License (GPL).  

The paper is structured as follows: In Section 2, we present the principles whereupon we have built the 

mixed-dimensional framework in PorePy. Section 3 deals with modeling and discretization of physical 

processes central to fractured porous media: single-phase flow, heat transport, poroelastic rock 

deformation, and fracture deformation modeled by contact mechanics. In Section 4, we benchmark our 

approach and the library PorePy by well-established test cases. In Section 5, we present two complex 

examples to illustrate the potential of the framework with respect to advanced physical processes, 

followed by conclusions in Section 6. 
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2 Design principles for mixed-dimensional simulation tools 
A simulation model for a specific dynamical process in mixed-dimensional media requires three main 

ingredients: A representation of the mixed-dimensional geometry, governing equations for dynamics 

within and between the geometric objects (rock matrix, fractures, their intersections), and a strategy for 

discretization and assembly of the equations on the geometry. On the more fundamental level of 

simulator design, important questions to clarify include how much of the mixed-dimensional geometry 

to include, which type of couplings between different geometric objects to permit, and how to establish 

communication between the geometric objects.  

In this section, we discuss principles for process couplings in a general context of fractured rocks, 

together with representation of the geometry in a continuous and discrete setting. As we will see, the 

design choices cannot be done independently, for instance the coupling structure puts constraints on 

the representation and data structure for the geometry. We further present the specific models 

underlying PorePy, including mesh generation, construction of projection operators between geometric 

entities, and discretization and assembly on mixed-dimensional geometries. The general discussion 

herein is supplemented by concrete examples of modeling and discretization of important governing 

processes presented in Section 3. 

2.1 Representation of a mixed-dimensional geometry 
We consider the geometry of a fracture network embedded in a 3d domain; 2d domains are treated by 

the natural simplification. In general, the geometry formed by the fracture network consists of objects 

of dimension 2 (the fractures), 1 (fracture intersections) and 0 (intersections of intersection lines), in 

addition to the 3d domain itself. An important decision for the modeling of dynamics in the domain is 

which parts of the geometry to represent in the model. We emphasize that as our focus herein is DFM 

models, it is assumed that at least the fractures in question will be explicitly represented in the 

simulation model, and furthermore that the simulation grid will conform to the fractures. 

We differ between two approaches to representation of the fracture geometry: The first explicitly 

represents the full hierarchy of geometric objects (3d-0d) as described above. However, for many 

processes, one can to a good approximation assume that the main dynamics take place in the matrix or 

in the fractures, while objects of co-dimension more than 1 (intersection lines and points) mainly act as 

transition zones between fractures. This observation motivates the second approach: The matrix and 

fractures are represented explicitly, together with some model for direct fracture-fracture interaction.  

Representation only of matrix and fractures and not the intersections in some sense constitutes the 

minimal modification to an existing fixed-dimensional model and has been a popular choice e.g. for flow 

and transport problems [41]. The strategy has also been taken a long way towards practical applications, 

see for instance [42]. There are however drawbacks, notably in the treatment of fracture intersections: 

Without explicit access to the intersection objects, modeling of interaction between two fractures can 

be challenging. Significantly, the difficulties tend to increase with increasing complexity of the dynamics, 

such as countercurrent flow due to gravity and capillary forces, and when transitioning from 2d domains 

to 3d (i.e. the dimension of the intersections increases from zero to one). This has important 

consequences for model and method development, as issues related to ad hoc treatment of intersection 

dynamics may not manifest until relatively late in the development process. 
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Our preferred solution is to apply an equal representation of all geometric objects, independent of their 

dimension. This allows for flexible modeling of dynamics within all objects, and as we will see below, the 

implementation of couplings between geometric objects can be made independent of the objects’ 

dimensions. The design choice has further advantages in terms of reuse of discretizations, as will be 

discussed in Section 3. In this framework, variables follow the domain decomposition approach and are 

associated with single subdomains or interfaces. This is followed through in our implementation, where 

the solution vectors in different subdomains are represented by different objects, even if they represent 

parts of the same physical quantity, for instance pressure or temperature. 

Our approach to the geometry representation is illustrated in Figure 1, which shows the decomposition 

of a mixed-dimensional geometry into a hierarchy of geometric objects with accompanying meshes. 

 

Figure 1: Conceptual illustration of a fracture network, including meshing and lower-dimensional representation. a) Fracture 
network, the rock matrix is not visualized. b) Meshes of all subdomains. Fracture intersections (1d) are represented by colored 
lines, the 0d grid by a black circle. The 3d mesh is cut to expose the circular fracture. 

b) 

2d 

3d 

1d 

0d 

a) 
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2.2 Permissible coupling structures between geometric objects 
For modeling purposes, and for the choice of data structures discussed next, it is important to establish 

which types of couplings between subdomains are permitted. In our framework we impose the 

following constraints on the modeling: 

1. Only coupling between subdomains that are exactly one dimension apart is allowed. 

2. Interaction between subdomains should be formulated as models associated with the interface 

between the subdomains. This requires interface variables that represent the interaction 

between the subdomains. 

3. An interface law can depend on variables on the interface and the immediate subdomain 

neighbors, but not on variables associated with other subdomains or interfaces. 

These choices have several important consequences: First, our framework explicitly rules out direct 3d-

1d couplings. Although some of the ingredients presented herein could be of interest for such high 

dimensional gaps, notably a modified version of the mixed-dimensional grid structure presented below, 

the mathematical structure of the two problems is significantly different, and we have therefore not 

pursued a unified treatment. Second, our model does not permit direct coupling between objects of the 

same dimension, say, two fractures; the communication must go via a lower- or higher-dimensional 

object. Third, the restriction that couplings should be formulated in terms of interface variables makes 

the structure of the equations on a subdomain relatively simple, as the dynamics depends only on 

variables internal to the subdomain and on neighboring interfaces. 

2.3 Data structure for geometry and data 
The restrictions put on the coupling structure between subdomains give important guidance on the 

definition of a data structure for the compound mixed-dimensional grid, consisting of all subdomains 

and interfaces. As subdomains should only see neighboring interfaces, and the interfaces only 

communicate with their two neighboring subdomains, the grid can be represented in the simulation 

model as a graph, with the subdomains forming nodes, while interfaces are edges.  

The graph is now the natural place to store all kind of data relating to the simulation including grids, 

parameters and variables, as well as information on which equations to solve in each subdomain, and 

which discretization schemes to apply. The data structure is thus a natural framework for defining 

advanced simulation models, examples will be shown in Sections 4 and 5. While this flexibility can be 

gained by applying domain decomposition to any problem [43], for fractured domains it comes as an 

added feature from what is already a natural data structure for the geometry. 

2.4 Meshing and projections  
Having defined the data structure for the mixed-dimensional geometry, we proceed to discussing 

meshing of the geometric objects and establishing projection operators for communication between the 

objects. 

2.4.1 Mesh construction in mixed-dimensional geometries 
A major technical difficulty of conforming DFM models is the construction of meshes. Obtaining meshes 

that conform to all geometric objects requires first, identification of all intersection lines and points, 

then meshing of objects of all dimensions, and finally identification of neighboring cells and faces on 

different domains, so that inter-object interaction can be modeled. In principle, the computation of 
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fracture intersections is straightforward, following for instance [44]. In practice, this requires 

(automatic) decisions on when two objects should be considered distinct in the computational mesh; for 

complex networks this can be rather challenging. Notably, the question of whether objects should be 

considered spatially separated must be seen in connection with the prescribed mesh size, which puts 

practical constraints on how fine details can be resolved.  

From a geometric description with all intersections identified, meshes of all objects can be constructed; 

in PorePy this is handled by a backport to Gmsh [40]. As post processing of the Gmsh output, standard 

simulation meshes are generated for all subdomains: The mesh for the 3d subdomain consists of all 3d 

cells, while for each fracture a mesh is composed of all faces of the 3d grid that lie on the surface of the 

fracture. Similarly, meshes for 1d intersection lines are formed by edges of the 3d grid that coincide with 

the line, while point meshes for 0d intersections are identified by nodes in the 3d grid. For 2d domains 

with 1d fractures and 0d intersections, the construction is similar. We emphasize that each of the 

meshes is implemented as a standard fixed-dimensional mesh, so that when a discretization scheme is 

applied to a subdomain, this is indistinguishable from the traditional fixed-dimensional operation. In this 

spirit, the grid structure used for individual meshes is agnostic to spatial dimension, with an 

implementation heavily inspired by that of MRST [33]. This grid structure in many cases facilitates an 

implementation of discretization schemes which is independent of dimension. 

The meshes generated by Gmsh match between the subdomains. Moreover, the PorePy interface to 

Gmsh is restricted to simplex cells as these are most relevant for complex geometries. Non-matching 

grids can be introduced to PorePy by replacing meshes on individual subdomains; examples of 

computations on non-matching grids are given in Sections 4.1 and 5.1. 

We finally note that tuning of mesh sizes in parts of the domain so that the resulting grid both resolves 

the local geometry and provides the desired accuracy for numerical computations can be a delicate task. 

Within PorePy, we attempt to handle this by setting a minimal mesh size and target mesh sizes for the 

fractures and the global boundary (far-field conditions). Based on these three user-provided entries, 

mesh size parameters are computed for all points in the fracture geometry and provided as guidance to 

Gmsh. In practice, Gmsh may override the settings, but nevertheless, the mesh size tuning combined 

with the automatic processing of the fracture geometry is a major capability of PorePy. 

2.4.2 Mortar grids and projection operators 
In addition to meshing on the subdomains, the interfaces are assigned separate meshes. These are used 

for discretization of the interface variables and serve as mortar grids for the coupling between the 

subdomains. Specifically, as the mortar grids allow for non-matching grids between subdomains, 

computational speedups can be achieved by combining fine grids in fractures, which are often the main 

venue for dynamical processes, with relatively coarse grids in the matrix. When using mortar technology 

to combine non-matching grids, non-uniform discretizations or physics, it is important to carefully 

design the mortar space so that the coupling does not introduce instabilities, see e.g. [45]. 

Transfer of variables between an interface and its neighboring subdomain is handled by projection 

operators. In the subsequent parts we will apply four different classes of projections. We have the 

mapping from an interface to the related subdomains indicated with Ξ, with a subscript indicating the 

index of the interface and a superscript the index of the subdomain, see Figure 2 for an illustration. We 

also introduce the projection operators from neighboring subdomains of an interface to the interface 
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itself, denoted by the symbol Π with the same convention as before for sub- and superscripts. The actual 

definition of these objects is scope dependent and it will be specified when needed. In our 

implementation, we have only considered projections of lowest order which can be constructed by 

identifying overlapping areas between cells in the interface grid and faces and cells in the neighboring 

meshes. The actual construction of the projection needs to consider the nature of the variable to 

project, being of intensive or extensive kind. 

 

 

Figure 2: Generic geometry of a coupling between subdomains: An interface 𝛤𝑗 is coupled to a higher-dimensional subdomain 𝛺ℎ 

and a lower-dimensional subdomain 𝛺𝑙. The projection operators between interfaces and subdomains are denoted by 𝛱 
(interface to subdomain) and 𝛯 (subdomain to interface) with subscripts indicating the interface and superscript indicating the 
subdomain. In practice, 𝛤𝑗 will coincide with an internal boundary of 𝛺ℎ, which we will refer to as 𝜕𝑗𝛺ℎ. 

2.5 Governing equations and discretization 
With the above framework, the task of defining governing equations and their discretization is split into 

two operations that to a large degree are independent, although this naturally depends on the physical 

process to be modeled. First, on the subdomains, the governing equations can often be defined (and to 

a large degree discretized) as if the problem were fixed-dimensional, while interaction with the interface 

variables takes the form of boundary conditions and source terms or body forces. These are terms that 

can be handled by any standard numerical method, and so the coupling structure paves the way for 

considerable reuse of existing simulation code designed for fixed-dimensional problems. The second 

operation involves coupling conditions on the interface, including projections of variables on the 

neighboring subdomains. This operation generally has no clear parallels for fixed-dimensional problems.  

The details of the discretization can vary substantially depending on the governing equations and 

designated discretization schemes. We will give several examples of this in Section 3. 

2.6 Global assembly  
A global system of equations can be assembled from the components on individual subdomains and 

interfaces. The form and proper treatment of these equations differ according to whether the problem 

is stationary or time-dependent, linear or non-linear, but some ingredients of the implementation and 

structure of the problem are common. Specifically, for multiphysics problems with more than one 

primary variable, the global system of equations has a double block structure: One set of blocks stems 

from the geometric division into subdomains and interfaces. Within each subdomain and interface, 

there is a second set of blocks, with one block per variable. Access to this information is useful for design 

of tailored preconditioners and linear solvers, as well as post processing and visualization. PorePy has 
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implemented a global degree-of-freedom manager, that keeps track of the block structure of the system 

of equations, as well as the numbering of individual degrees of freedom.  

For visualization, an export filter to Paraview [46] is available. To aid analysis of simulation results, the 

export preserves the link between the data and its associated dimensions. 

3 Modeling, discretization and implementation 
In this section we apply the general framework presented above to three sets of governing equations, 

each of which is of high relevance for fractured porous media: The elliptic pressure equation, fully 

coupled flow and transport, and inelastic deformation of fractures due to poroelastic effects. As most of 

these processes are well established for fixed-dimensional, partly also for mixed-dimensional, problems, 

our main purpose is to cast the methodology in the general framework of Section 2, with discussions of 

modeling, extension of numerical methods designed for fixed-dimensional problems, and 

implementation aspects. The presentation of the three model problems will emphasize these 

ingredients in varying degrees, with the aim that the section in total should illustrate the full power of 

the modeling framework. 

The notation used for variables and subdomains is fixed as follows: Let Ω𝑖  denote a generic subdomain, 

with variables in Ω𝑖  marked by subscript 𝑖. A generic interface between two subdomains is represented 

by Γ𝑗, with subscript 𝑗 identifying interface variables. For a subdomain Ω𝑖, the set of neighboring 

interfaces is split into interfaces towards subdomains of higher dimensions, denoted �̂�𝑖, and interfaces 

towards subdomains of lower dimensions, represented by �̌�𝑖, see Figure 3. When discussing subdomain 

couplings for an interface Γ𝑗, we let the higher- and lower-dimensional subdomain be represented by Ωℎ 

and Ω𝑙, respectively, and associate variable subscripts ℎ and 𝑙, see Figure 2. Finally, the part of the 

boundary of Ωℎ that coincides with Γ𝑗 is denoted 𝜕𝑗Ωℎ. 

 
Figure3: Illustration of the interfaces neighboring a 1d fracture subdomain 𝛺𝑖. Interfaces towards higher-dimensional neighbors 

are represented by the index set �̂�𝑖, while the corresponding index set for lower-dimensional neighbors is denoted �̌�𝑖.  

3.1 Flow in fractured media 
We first consider flow in mixed-dimensional geometries, where we assume a Darcy-type relation 

between flux and pressure gradients in all subdomains. The model has been presented several times 

before, see e.g. [2], [47]; our presentation therefore emphasizes implementational aspects within the 

framework presented in the previous sections. Moreover, of the model problems considered in this 
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work, the flow problem by far has the best developed mathematical theory, and we therefore use this 

section to illustrate both variational and integral approaches to mixed-dimensional modeling and 

simulation. 

3.1.1 Governing equations 
To introduce the model, we first consider a domain with a single interface Γ𝑗, with neighboring 

subdomains Ωℎ and Ω𝑙, such that Ωℎ  is of one dimension higher than Γ𝑗 (which thus acts as an internal 

boundary) and Ω𝑙  geometrically coincides with Γ𝑗 as illustrated in Figure 2. The flow model presented 

below has been studied e.g. in [39], [47]. We denote the flux on Γ𝑗 by λ𝑗, we can formally write λ𝑗 =

Π𝑗
ℎ𝑡𝑟 𝑞ℎ ⋅ 𝑛ℎ, with 𝑛ℎ the unit normal of ∂𝑗Ωℎ pointing from Ωℎ to Ω𝑙  and 𝑡𝑟 a suitable trace operator 

from Ωℎ to 𝜕𝑗Ωℎ. First consider the strong form of the Darcy problem stated for Ω𝑙, which reads: find 

(𝑞𝑙 , 𝑝𝑙) such that 

𝑞𝑙 +
𝒦𝑙

𝜇𝑙
∇𝑝𝑙 = 0, 

∇ ⋅ 𝑞𝑙 − Ξ𝑗
𝑙λ𝑗 = 𝑓𝑙,      (3.1) 

where the differential operators are defined on the tangent space of Ω𝑙  and Ξ𝑗
𝑙 maps from Γ𝑗 to Ω𝑙. We 

have indicated with 𝑓𝑙 a scalar source or sink term, 𝜇𝑙  is the fluid viscosity, while 𝒦𝑙 represents the 

effective tangential permeability tensor, scaled by aperture, for more information see [48]. An 

analogous problem is written also for (𝑞ℎ, 𝑝ℎ), with the exception that Ξ𝑗
ℎ𝜆𝑗 is mapped to a boundary 

condition on 𝜕𝑗Ωℎ,  

𝑞ℎ ⋅ 𝑛ℎ|𝜕𝑗Ωℎ
= Ξ𝑗

ℎ𝜆𝑗.         (3.2) 

The flux  λ𝑗 is given by an interface condition of Robin-type on Γ𝑗 for Ωℎ, which reads 

λ𝑗 +
κ𝑗

𝜇𝑗
(Π𝑗

𝑙𝑝𝑙 − Π𝑗
ℎ𝑡𝑟 𝑝ℎ) = 0, 

     (3.3) 

where κ𝑗  indicates the normal effective permeability, and Π𝑗
𝑙 and Π𝑗

ℎ the normal projection operators to 

Γ𝑗 from Ω𝑙  and  𝜕𝑗Ωℎ, respectively. Equation (3.3) can be seen as a Darcy law in the normal direction 

associated to Γ𝑗. Several boundary conditions can be imposed on the external boundary of Ωℎ and Ω𝑙, 

for simplicity we limit ourselves to homogeneous pressure conditions in the following. If Ω𝑙  has a 

portion of the boundary which does not touch the external boundary, the so-called tip condition will be 

imposed being null flux. For notational convenience, we consider a unit viscosity for the remainder of 

this section; the viscosity is reintroduced in Section 3.2. 

The extension to problems with many subdomains is now immediate: The interface still relates to its 

two neighboring subdomains, while for a subdomain Ω𝑖  summation over all neighboring interfaces gives 

the problem: Find (𝑞𝑖, 𝑝𝑖) so that  

𝑞𝑖 + 𝒦𝑖∇𝑝𝑖 = 0, 

∇ ⋅ 𝑞𝑖 − ∑ Ξ𝑗
𝑖λ𝑗

𝑗∈�̂�
 = 𝑓𝑖, 
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𝑞𝑖 ⋅ 𝑛𝑖|𝜕𝑗Ω𝑖
= Ξ𝑗

𝑖𝜆𝑗   ∀𝑗 ∈ �̌�𝑖. 

(3.4) 

In the case of 𝑑 = 0, most of the above terms are void, and we are left only with the balance between 

the source term and fluxes from higher dimensions. 

3.1.2 Subdomain variational and integral formulation  
To move towards the numerical implementation, we introduce variational and integral formulations of 

the problem (3.4). Again, we focus on a domain with two subdomains and a single interface; the 

extension to several subdomains is straightforward.   

Let the mortar variable be represented by 𝜆𝑗 ∈ 𝑊(Γ𝑗) = 𝐿2(Γ𝑗), in this setting we can define more 

precisely the projections Ξ𝑗
𝑙: 𝐿2(Γ𝑗) → 𝐿2(Ω𝑙) and Ξ𝑗

ℎ: 𝐿2(Γ𝑗) → 𝐿2(∂𝑗Ωℎ) that map interface fluxes to 

the neighboring subdomains. We note that the fluxes are mapped to the boundary of Ωℎ but to the 

interior of Ω𝑙, hence 𝜆𝑗 acts as a boundary condition and a source term for the higher- and lower-

dimensional subdomain, respectively. We also particularize projections from subdomains to the 

interface, defined as Π𝑗
𝑙: 𝐿2(Ω𝑙) → 𝐿2(Γ𝑗) and Π𝑗

ℎ: 𝐿2(𝜕𝑗Ωℎ) → 𝐿2(Γ𝑗); we shall comment on the implied 

𝐿2 regularity on 𝜕𝑗Ωℎ below.  

We first develop a mixed variational formulation of (3.4), introducing the following functional spaces 

𝑉(Ωℎ) = {𝑣 ∈ 𝐻∇⋅(Ωℎ): 𝑡𝑟 𝑣 ⋅ 𝑛ℎ ∈ 𝐿2(𝜕𝑗Ωℎ)},  𝑉(Ω𝑙) = 𝐻∇⋅(Ω𝑙) and 𝑄(𝛺𝑙) = 𝐿2(Ω𝑙).  

Moreover, let the space Q(Ωℎ) be a subspace of 𝐿2(Ωℎ) such that it is possible to define the operator 

𝑡𝑟 𝑝ℎ with range at least in 𝐿2(𝜕𝑗Ωℎ). It is well known that the trace cannot be defined for 𝐿2-functions, 

however we note that, for example, the space 𝐻1(Ωℎ) fulfils the requirements. The extra request for 

𝑽(Ωℎ) on the interface is due to the low regularity of the trace on 𝐻∇⋅(Ωℎ), which is related to the 

Robin-type nature of the coupling condition, see [2], [49]. 

The weak formulation of the mixed-dimensional Darcy problem reads: find (𝑞ℎ, 𝑝ℎ , 𝑞𝑙 , 𝑝𝑙 , 𝜆𝑗) ∈

𝑉(Ωℎ) × 𝑄(Ωℎ) × 𝑉(Ω𝑙) × 𝑄(Ω𝑙) × 𝑊(Γ𝑗) such that 

(𝒦ℎ
−1𝑞ℎ, 𝑣)

Ωℎ
− (𝑝ℎ , ∇ ⋅ 𝑣)Ωℎ

+ (Ξ𝑗
ℎ𝜆𝑗, 𝑡𝑟 𝑣 ⋅ 𝑛ℎ)

𝜕𝑗Ωℎ
= 0                                         ∀𝑣 ∈ 𝑉(Ωℎ), 

−(∇ ⋅ 𝑞ℎ , 𝑤)Ωℎ
= −(𝑓ℎ, 𝑤)Ωℎ

           ∀𝑤 ∈ 𝑄(Ωℎ), 

(𝐾𝑙
−1𝑞𝑙, 𝑣)

Ω𝑙
− (𝑝𝑙 , ∇ ⋅ 𝑣)Ω𝑙

= 0                        ∀𝑣 ∈ 𝑉(Ω𝑙), 

 −(𝑤, ∇ ⋅ 𝑞𝑙)Ω𝑙
+ (Ξ𝑗

𝑙𝜆𝑗, 𝑤)
Ω𝑙

= −(𝑓𝑙, 𝑤)Ω𝑙
          ∀𝑤 ∈ 𝑄(Ω𝑙), 

(𝜅𝑗
−1𝜆𝑗, 𝜇)

Γ𝑗
+ (Π𝑗

𝑙𝑝𝑙 , 𝜇)
Γ𝑗

− (Π𝑗
ℎ𝑡𝑟 𝑝ℎ , 𝜇)

Γ𝑗
= 0                            ∀μ ∈ 𝑊(Γ𝑗). 

                (3.5) 

Here (⋅,⋅)𝐴 is the 𝐿2-scalar product on the set 𝐴. The problem is well posed as shown in [47]. We 

emphasize that, apart from the extra regularity assumptions on 𝜕𝑗Ωℎ, the variational formulation for the 

subdomains have the same structure as a fixed-dimensional problem.  
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Next, we state an integral formulation for the subdomain problems, expressed in primal form, that is, 

considering only the pressure variable. To that end, let 𝜔ℎ ⊂ Ωℎ and 𝜔𝑙 ⊂ Ω𝑙  be subdomains (grid cells 

in the discrete setting) in the higher- and lower-dimensional domains. Likewise, 𝜔𝛾 ⊂ Γ𝑗  is a subdomain 

of the interface. In the view of subsequent considerations, we assume that the subdomains 𝜔ℎ are non-

overlapping and fully cover Ωℎ, and similarly for 𝜔𝑙 and 𝜔𝛾. Additional requests on the shape regularity 

of 𝜔ℎ, 𝜔𝑙 and 𝜔𝛾 depend on the numerical scheme. The integral formulation of (3.4) then reads: find 

(𝑝ℎ , 𝑝𝑙 , λ𝑗) such that 

∫ 𝒦ℎ∇𝑝ℎ ⋅  𝑛𝜕𝜔ℎ
 dσ

∂𝜔ℎ∖𝜕𝑗Ωℎ 

+ ∫ Ξ𝑗
ℎ𝜆𝑗 dσ

𝜕𝜔ℎ ∩𝜕𝑗Ωℎ

= ∫ 𝑓ℎ d𝑥
𝜔ℎ

                             𝜔ℎ ⊂ Ωℎ , 

∫ 𝒦𝑙∇𝑝𝑙 ⋅  𝑛𝜕𝜔𝑙
 d𝜎

∂𝜔𝑙

− ∫ Ξ𝑗
𝑙𝜆𝑗 d𝑥

𝜔𝑙 

= ∫ 𝑓𝑙  d𝑥
𝜔𝑙

           𝜔𝑙 ⊂ Ω𝑙 , 

 ∫ 𝜅𝑗
−1λ𝑗 d𝑥

𝜔𝛾

+ ∫ Π𝑗
𝑙𝑝𝑙  d𝑥

𝜔𝛾

− ∫ Π𝑗
ℎ𝑡𝑟 𝑝ℎ  d𝑥

𝜔𝛾

= 0                               𝜔𝛾 ⊂ Γ𝑗, 

                  (3.6) 

where we have indicated with d𝑥 and dσ the infinitesimal measure for equi-dimensional and one co-

dimensional integrals, respectively, with respect to the considered cell dimension. The vector 𝑛∂𝜔 

denotes the outward unit normal of 𝜔. The equations are written on all subdomains 𝜔 and the global 

problem is given once the continuity of normal fluxes is imposed on each 𝜕𝜔.  

We make two remarks related to the discretization of the above equations. First, both the variational 

and integral formulations are very close to the corresponding fixed-dimensional problems, thus there is 

considerable scope for reuse of existing software as discussed below. Second, seen from the interface, 

the subdomain discretization acts as an unspecified Neumann-to-Dirichlet map that converts the 

interface fluxes into pressures to be projected to the interface. The formulation is independent of the 

actual discretization on the subdomains, and there is no requirement the same discretization be used on 

the two neighboring subdomains (of an interface).  For more information on the formulation, confer 

[39]. 

3.1.3 Implementation 
From the variational and integral formulations stated above, we see that for a discretization on a generic 

subdomain Ω𝑖  to interact with the interface problem, we need to provide operators which:  

1) Handle Neumann boundary data on the form Ξ𝑗
𝑖𝜆𝑗, for all interfaces Γ𝑗 for which Ω𝑖  is the higher-

dimensional neighbor. 

2) Handle source terms Ξ𝑗
𝑖𝜆𝑗 from interfaces Γ𝑗 for which Ω𝑖  is the lower-dimensional neighbor. 

3) Provide a discrete operator 𝑡𝑟 𝑝𝑖  so that Π𝑗
𝑖 can project the pressure trace from 𝜕𝑗Ω𝑖  to 

interfaces Γ𝑗 for which Ω𝑖  is the higher-dimensional neighbor. 

4) Provide a pressure 𝑝𝑖  so that Π𝑗
𝑖 can project the pressure to all Γ𝑗 for which Ω𝑖  is the lower-

dimensional neighbor. 

Of these, all but the third operation is readily available in any reasonable implementation of a 

discretization scheme for elliptic equations. For the discrete pressure trace there is some room for 

interpretation; the simplest approach is to associate the trace with the pressure in cells immediately 
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next to the interface. Higher-order trace reconstruction operators, utilizing the construction of the 

discretization scheme at hand, are also possible; our implementation of finite volume methods for flow 

allows for sub-cell variations in pressure so that the discrete pressure at 𝜕𝑗Ω𝑖  differs from the cell center 

pressure closest to the boundary. 

It is instructive to write out the structure of the coupled system for our case with two subdomains Ωℎ 

and Ω𝑙  separated by an interface Γ𝑗. Denote by 𝑦ℎ,  𝑦𝑙  and 𝜉𝑗the vectors of discrete unknowns in Ωℎ , Ω𝑙  

and on Γ𝑗, respectively. As we make no assumptions that the same discretization scheme is applied in 

both subdomains, these may contain different sets of unknowns. Specifically, the unknown can be cell 

center pressures only, or cell center pressure and face fluxes, depending on the discretization scheme 

applied. The discrete coupled system can then be represented on the generic form 

(

𝐴ℎ 0 𝑁ℎΞ𝑗
ℎ

0 𝐴𝑙 𝑆𝑙Ξ𝑗
𝑙

−Π𝑗
ℎ𝑃ℎ Π𝑗

𝑙𝑃𝑙 𝐷𝑗

) (

𝑦ℎ

𝑦𝑙

𝜉𝑗

) = (
𝑓ℎ

𝑓𝑙

0

).     (3.7) 

Here, 𝐴ℎ and 𝐴𝑙  are the fixed-dimensional discretizations on the subdomains, 𝑁ℎ is the discretization of 

Neumann boundary conditions on Ωℎ, and 𝑆𝑙 is the discretization of source terms in Ω𝑙. Furthermore, 𝑃ℎ 

provides a discrete representation of the pressure trace operator on Ωℎ and 𝑃𝑙  gives the pressure 

unknowns in Ω𝑙; the latter is an identity operator for the integral formulations presented on primal form 

and strips away flux unknowns in the dual formulation. Finally, 𝐷𝑗 is the discretization of (3.3). In 

accordance with the second constraint on mixed-dimensional modeling discussed in Section 2.2, there is 

no direct coupling between Ωℎ and Ω𝑙. Global boundary conditions are left out of the system; as a 

technical detail we note that for some discretization schemes, e.g. multi-point flux approximation 

(Mpfa) methods, the global boundary conditions can also give a contribution to the right-hand-side of 

the interface equation. 

The form (3.7) suggests an implementation strategy, based on the graph representation of the mixed-

dimensional domain, which also exploits reuse of software for fixed-dimensional problems: On the 

graph nodes, that is the subdomains, the pressure equation is discretized as if it were a fixed-

dimensional problem. The interface law is discretized by traversal of the graph edges; this operation will 

communicate with the discretizations in the neighboring subdomains to obtain the terms represented in 

the last column and row of (3.7). 

The PorePy implementation of the above method represents the mortar variable by piecewise constant 

functions. Due to the decoupling, there is no requirement that the same numerical method be used on 

all subdomains, and indeed PorePy gives complete flexibility in this respect by an implementation of the 

coupling structure (3.7) which is independent of the individual subdomain discretizations. PorePy offers 

four discretization schemes for the flow problem: Lowest order Raviart-Thomas mixed finite elements 

combined with a piecewise constant pressure approximation (RT0-P0) [49], the lowest order mixed 

virtual element method (Mvem) [50], [51], and two finite volume schemes: the two- and multi-point flux 

approximations (Tpfa, Mpfa) [52]–[54]. Our implementation for the coupled mixed-dimensional problem 

relies on the analysis carried out in [39], which provides a theoretical background to obtain a stable 

global scheme. 
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3.2 Fully coupled flow and transport 
We next turn to simulation of fully coupled flow and transport, as an example of a multiphysics problem 

with variable couplings within and between subdomains. We consider the mixing of two incompressible 

and miscible species of different viscosities. We put emphasis on the modeling of the mixed-dimensional 

dynamics and discuss some implementation aspects. For discretization, we limit ourselves to finite 

volume methods for the problem written in primal form. We present the governing equations on 

integral form only with details on how to handle the advective part at the interfaces. 

3.2.1 Continuous formulation 
We start by considering a single subdomain Ω𝑖. Denote the pressure in a subdomain 𝜔𝑖 ⊂ Ω𝑖 by 𝑝𝑖. We 

represent the species evolution by the mass concentration 𝑐𝑖 in 𝜔𝑖. By the incompressibility of the fluids, 

the conservation of total mass within 𝜔𝑖 can be written as  

 ∫ 𝑞𝑖 ⋅ 𝑛𝜕𝜔𝑖
 

𝜕𝜔𝑖

dσ = ∫ 𝑓𝑖

𝜔𝑖

d𝑥, 

     (3.8) 

where 𝑓𝑖 represents the total volumetric sources and sinks.  The Darcy flux 𝑞𝑖, depends on both pressure 

and mass concentration, via the fluid viscosity 𝜇 = 𝜇(𝑐𝑖), and is given by  

𝑞𝑖 +
𝒦𝑖 

𝜇(𝑐𝑖)
∇𝑝𝑖 = 0. 

(3.9) 

Here 𝒦𝑖 denotes the effective tangential permeability of Ω𝑖. Conservation of mass for each species is 

expressed by the equation  

∫ 𝜙𝑖

𝜔𝑖

𝜕𝑐𝑖

𝜕𝑡
 d𝑥 + ∫ 𝑤𝑖 ⋅ 𝑛𝜕𝜔𝑖

 

𝜕𝜔𝑖

dσ = ∫ 𝑔𝑖

𝜔𝑖

d𝑥 

      (3.10) 

Here, 𝜙𝑖 represents the effective porosity, 𝑔𝑖  denotes sources and sinks for the species, and the flux 𝑤𝑖 

is composed by a diffusive and an advective term 

𝑤𝑖 + 𝒟𝑖∇𝑐𝑖 − 𝑐𝑖𝑞𝑖 = 0,      (3.11) 

where 𝒟𝑖 is the effective diffusivity of Ω𝑖. We note that the equations are coupled via the concentration 

dependency of viscosity and the presence of the Darcy flux in the advective transport. 

The interaction between two neighboring subdomains Ωℎ and Ω𝑙  again goes via the common interface 

Γ𝑗. The total flux over Γ𝑗, denoted by 𝜆𝑗, is given by (3.3), where the interface viscosity 𝜇𝑗  is modeled as a 

function of the mean of the concentrations on the two sides,  

𝜇𝑗 = 𝜇𝑗 (
Π𝑗

𝑙𝑐𝑙 + Π𝑗
ℎ𝑡𝑟 𝑐ℎ

2
). 

(3.12) 
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Mass flux over Γ𝑗 is again governed by an advection-diffusion relation: The diffusion term 𝛽𝑗 is, in 

analogy with the corresponding term for the Darcy flux, given by 

𝛽𝑗 + 𝛿𝑗(Π𝑗
𝑙𝑐𝑙 − Π𝑗

ℎ𝑡𝑟 𝑐ℎ) = 0,      (3.13) 

with 𝛿𝑗  representing the effective diffusivity over the interface Γ𝑗. For the advective term 𝜂𝑗, we 

introduce an upstream-like operator based on the Darcy interface flux: 

𝑈𝑝(𝑐ℎ, 𝑐𝑙; 𝜆𝑗) = {
Π𝑗

ℎ𝑡𝑟 𝑐ℎ, if  𝜆𝑗 ≥ 0

      Π𝑗
𝑙𝑐𝑙 , if  𝜆𝑗 < 0.

      (3.14) 

With this, the advective interface flux 𝜂𝑗 is given by the relation  

𝜂𝑗 − 𝜆𝑗𝑈𝑝(𝑐ℎ , 𝑐𝑙; 𝜆𝑗) = 0.      (3.15) 

What remains in the problem formulation is to introduce the coupling terms in the subdomain 

equations and introduce global boundary conditions. As all the interface variables are fluxes, their 

treatment is analogous to that discussed for the flow problem in Section 3.1. For Ωℎ, the interface fluxes 

enter as flux boundary conditions for the total mass flux (𝜆𝑗) and mass concentration (𝛽𝑗, 𝜂𝑗) 

conservation equations, while for Ω𝑙, the fluxes enter as corresponding source terms. Finally, global 

boundary conditions are imposed in the standard way for elliptic and advection-diffusion problems, see 

e.g. [55]. With few modifications, our formulation can handle a purely advective problem, like transport 

of a passive scalar. In this case the elliptic operators (interface and mortar law included) are not 

considered. 

The equations (3.8)-(3.15) define the governing equations in all subdomains and on all interfaces. The 

only exception is 0d domains, wherein the fluid mass and concentration fluxes are void, and the 

governing equations simply balance the fluxes of neighboring interfaces with possible source terms in 

the point domain. 

3.2.2 Implementation 
The equations are discretized with finite volume methods, by letting 𝜔𝑖 represent a computational cell. 

To discretize the flux expression, we apply single point upstreaming for the advective flux [56] and Mpfa 

for the diffusive terms both in (3.8)-(3.9) and (3.10)-(3.11), as described in Section 3.1. These operations 

can be carried out independently on individual subdomains, thus they can readily reuse existing 

implementations for fixed-dimensional problems.  

To discretize the interface laws, we need projection operators for scalar quantities (pressure and mass 

concentration) from subdomains to interfaces, and projections of fluxes from interfaces back to 

subdomains. For the diffusive fluxes, the treatment is identical to that described in Section 3.1 for the 

elliptic equation. Similarly, the advective terms will appear respectively as flux boundaries and source 

terms for the higher- and lower-dimensional neighbors of an interface. Handling of these extra terms 

should be straightforward in any existing code for fixed-dimensional problems. 

Finally, we note that governing equations are non-linearly coupled via the viscosity and the presence of 

the Darcy flux in the advective transport terms. A non-linear solver is therefore needed. Within PorePy, 

this is most easily handled by an automatic differentiation module, which is used for the simulations 

reported in Section 5.1. 
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3.3 Poromechanical fracture deformation by contact mechanics 
Our final set of model equations considers poroelastic deformation of a fractured medium, where the 

fractures may open and / or undergo abrupt slip if the frictional forces are insufficient to withstand 

tangential tractions on the fracture surface. This process is important in applications such as geothermal 

energy extraction and CO2 storage. Moreover, modeling of the process leading up to and under sliding is 

non-trivial due to i) the coupled poreelastic processes, ii) heterogeneous modeling equations between 

subdomains, iii) the need to use non-standard constitutive laws to relate primary variables during 

sliding, iv) non-smooth behavior of the constitutive laws in the transition from sticking to sliding of a 

fracture. Modeling of this process is an active research field, see e.g. [57]–[59], and so this is an example 

where the availability of a flexible prototyping framework for this research is extremely useful. 

Herein, we present a set of governing equations which borrows modeling concepts from contact 

mechanics to describe the sliding problem. Our formulation has no notion of a displacement inside the 

fracture, instead the fracture deformation is described by the displacement jump over the fracture 

surface. We show how the model is naturally formulated and implemented in our mixed-dimensional 

framework, by defining displacement variables on the matrix-fracture interface. 

3.3.1 Governing equations  
As modeling of deformation of intersecting fractures is non-trivial, we limit our exposition to media with 

non-intersecting fractures. Flow and deformation in the rock matrix, represented by the subdomain 

Ωℎ ∈ ℝ𝑛, are then governed by Biot’s equations for poroelasticity [60] 

∇ ⋅ (𝒞ℎ∇𝑠𝑢ℎ − 𝛼ℎ𝑝ℎ𝐼) = 𝑏ℎ,     (3.16) 

𝛼ℎ

𝜕(𝛻 ⋅ �̇�ℎ)

𝜕𝑡
+ 𝜃ℎ

𝜕𝑝ℎ

𝜕𝑡
− 𝛻 ⋅ (

𝒦ℎ

𝜇ℎ
𝛻𝑝ℎ) = 𝑓ℎ. 

Here, the first equation represents conservation of momentum, with the acceleration term neglected, 

while the second equation expresses conservation of mass. The primary variables are the displacements, 

𝑢ℎ, and the fluid pressure 𝑝ℎ. The stiffness matrix 𝒞ℎ can for linear isotropic media be expressed purely 

in terms of the first and second Lamé parameters, and the stress can be computed as 𝜎ℎ = 𝒞ℎ∇𝑠𝑢ℎ, 

where ∇𝑠 is the symmetric gradient. Furthermore, 𝛼ℎ  is the Biot constant, 𝐼 the second order identity 

tensor, 𝑏ℎ denotes body forces, 𝜃ℎ the effective storage term, 𝒦ℎ the permeability and 𝜇ℎ the viscosity. 

We also assume boundary conditions are given on the global boundary. 

Next, consider an interface Γ𝑗 between the higher-dimensional subdomain Ωℎ  and the lower-

dimensional domain Ω𝑙. Denote the displacement variable on Γ𝑗 by 𝑢𝑗. We emphasize that 𝑢𝑗 is a vector 

in ℝ𝑛, that is, it represents the displacement in both the tangential and normal direction of Ω𝑙. We will 

require continuity between 𝑢ℎ and 𝑢𝑗, expressed as  Π𝑗
ℎ𝑡𝑟 𝑢ℎ = 𝑢𝑗, where we recall that the trace 

operator maps to 𝜕𝑗Ωℎ, the part of the boundary of Ωℎ that coincides with Γ𝑗. We also need to introduce 

the jump in displacement, ⟦𝑢𝑗⟧, between the two interfaces on opposing sides of Ω𝑙, see Figure 4 for an 

illustration. The jump is decomposed into the tangential jump ⟦𝑢𝑗⟧
𝜏
 and the normal jump ⟦𝑢𝑗⟧

𝑛
.  

The mechanical state in Ω𝑙  is described by the contact pressure 𝜎𝑙, which again is a vector in ℝ𝑛, with 

tangential and normal components 𝜎𝑙,𝑛 and 𝜎𝑙,𝑡, respectively. Our model also includes fluid flow in the 

fracture Ω𝑙, which is governed by conservation of mass  
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𝜕

𝜕𝑡 
(𝑎(⟦𝑢𝑗⟧)) + 𝜃𝑙

𝜕𝑝𝑙

𝜕𝑡
− ∇ ⋅ (𝒦𝑙∇𝑝𝑙) − Ξ𝑗

𝑙λ𝑗 = 𝑓𝑙 . 

(3.17) 

 

Figure 4: Illustration of a lower-dimensional domain, 𝛺𝑙 , that has two interfaces, Γ𝑗
− and Γ𝑗

+, with a higher dimensional domain, 

𝛺ℎ. The inerfaces on opposing sides are identified by a positive and negative index. 

Here, the time derivative of the aperture 𝑎(⟦𝑢𝑗⟧) represents changes in the available volume due to 

changes in the displacement jump; in general this can be both reversible changes due to normal 

displacement of the fracture, and irreversible changes caused by shear dilation [3]. In the following, we 

only consider the normal part, i.e. 𝑎(⟦𝑢𝑗⟧) = ⟦𝑢𝑗⟧
𝑛

. Similarly, it can be of interest to consider changes in 

the permeability 𝐾𝑙 due to changes in aperture, although we shall not consider this topic herein. Finally, 

𝜃𝑙 denotes the effective storage term. As in the previous sections, the relation between the fluid 

pressures in Ωℎ and Ω𝑙  is governed by a flux law of the type (3.3), and we let 𝜆𝑗 denote the interface 

variable that represents fluid flux between the domains.  

The relation between 𝜎𝑙 and ⟦𝑢𝑗⟧ is modeled by borrowing techniques from contact mechanics as 

summarized here; for a full discussion see [61]. Balance of forces between the poroelastic stress in Ωℎ 

and the contact pressure in Ω𝑙  is expressed as 

Π𝑗
ℎ  𝑛ℎ ⋅ (𝜎ℎ − 𝛼ℎ𝑝ℎ𝐼) = Π𝑗

𝑙𝜎𝑙 −  (Π𝑗
ℎ  𝑛ℎ) (Π𝑗

𝑙𝛼𝑙𝑝𝑙)     on Γ𝑗.   (3.18) 

In the direction normal to Ω𝑙, the contact stress is zero only when the displacement jump is nonzero, 

that is  

⟦𝑢𝑗⟧
𝑛

≤ 0,     𝜎𝑙,𝑛 ≤ 0,      ⟦𝑢𝑗⟧
𝑛

𝜎𝑙,𝑛 = 0.     (3.19) 

The motion in the tangential direction is controlled by the ratio between the tangential force 𝜎𝑙,𝜏 and 

the maximum available frictional force 𝐹𝜎𝑙,𝑛, where 𝐹 is the friction coefficient. The time derivative of 

the displacement jump is zero until the frictional force is overcome; for larger tangential forces, the 

derivative of the displacement jump and tangential force are parallel: 

{

||𝜎𝑙,𝜏|| ≤ −𝐹𝜎𝑙,𝑛,

||𝜎𝑙,𝜏|| < −𝐹𝜎𝑙,𝑛 → ⟦�̇�𝑗⟧
𝜏

= 0,

||𝜎𝑙,𝜏|| = −𝐹𝜎𝑙,𝑛 →  ∃𝛼 ∈ ℝ,  𝜎𝑙,𝜏 = −𝛼2⟦�̇�𝑗⟧
𝜏
,

  (3.20) 
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where || ⋅ || represents the Euclidean norm and ⟦�̇�𝑗⟧
𝜏
 represents the sliding velocity. We emphasize that 

the contact conditions are formulated in terms of the contact pressure 𝜎𝑙, with no contribution from the 

fluid pressure 𝑝𝑙. 

3.3.2 Implementation in mixed-dimensional framework 
It is instructive to discuss implementation of poroelastic contact mechanics within our mixed-

dimensional modeling concept, starting from an existing implementation of poroelasticity in the matrix 

domain. This is a relevant case for many research codes, in particular the PorePy implementation for this 

problem was extended from a finite volume method, the multipoint stress approximation (Mpsa), 

originally developed for elastic and poroelastic deformation on a fixed-dimensional domain [62]–[64]. 

Below, we follow the equations presented above and identify variables and equations to be introduced.  

First, the variables 𝑝𝑙  and 𝜆𝑗 representing respectively fluid pressure in the fracture Ω𝑙  and the fluid flux 

on the interface Γ𝑗 between Ωℎ and Ω𝑙, are introduced as discussed in detail in Section 3.1. This implies 

that 𝜕𝑗Ωℎ is a Neumann boundary for fluid flow in Ωℎ. We reiterate that the couplings introduced by this 

approach is standard for any discretization scheme for single-phase flow.  

Second, the displacement in Ωℎ must be coupled to the mortar displacement 𝑢𝑗 on Γ𝑗. This is achieved 

by letting 𝜕𝑗Ωℎ be a Dirichlet boundary, so that the condition Π𝑗
ℎ𝑡𝑟 𝑢ℎ = 𝑢𝑗 can be enforced by the 

imposition of a boundary condition. The poroelastic stress at 𝜕𝑗Ωℎ is computed from variables in Ωℎ and 

on Γ𝑗, according to the discretization scheme applied in Ωℎ. We note that mapping of displacements 𝑢𝑗 

onto the boundary 𝜕𝑗Ωℎ, and later stresses from 𝜕𝑗Ωℎ to Γ𝑗 requires vectorized versions of the 

projection operators discussed in Section 2.4; this is a straightforward extension.  

Finally, the implementation must discretize the stress continuity as expressed by (3.18), and the relation 

between displacement jumps ⟦𝑢𝑗⟧ and contact pressure 𝜎𝑙 (3.19)-(3.20). Stress continuity is enforced by 

projecting the discrete representation of the poroelastic stress on 𝜕𝑗Ωℎ onto Γ𝑗, similarly projecting the 

discrete quantity 𝜎𝑙 − 𝑝𝑙𝑛 from Ω𝑙  to Γ𝑗 and enforcing equality. The contact conditions are discretized by 

projecting ⟦𝑢𝑗⟧ onto Ω𝑙, and then discretizing Equations (3.19) and (3.20). This is a non-linear term, in 

that the relation between ⟦𝑢𝑗⟧ and 𝜎𝑗 depends on whether the fracture is open, sticking or slipping. In 

our implementation we use a semi-smooth Newton method to deal with the discontinuities in the 

solution, for details we refer to [61], [65]. 

As a final remark on data structures, we note that the full discrete system is rather complex, with 

different governing equations in different subdomains, and non-trivial couplings between variables that 

live on different grids. As illustrated by the run scripts for the simulation presented in Section 5.2 (can be 

downloaded from [66]), the mixed-dimensional grid structure and modeling concept break the 

implementation into manageable parts. Moreover, due to the strong modularization of the model and 

implementation, experimentation with model variations etc. is handled with minimal needs for 

adjustments. 

4 Validation 
To validate our modeling framework and its implementation in PorePy, we consider three test cases: A 

benchmark for flow problems in 2d fractured media, Mandel’s problem for poroelasticity, and 

Sneddon’s problem for fracture deformation in elastic media. Together, these cases probe a wide range 
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of the capabilities of the modeling framework and its PorePy implementation, including discretization 

schemes, multiphysics problems and time-dependent problems. The cases thus supplement previous 

testing of PorePy, reported in [39], [67]–[69]. The supplementary material provides detailed setups, 

including parameters for all simulations in Section 4 and 5. Scripts that reproduce all results reported 

herein can be accessed at [66]; see that reference or the supplementary material for install instructions.  

 

Figure 5: Left: A solution obtained with Mpfa on the coarsest mesh, showing the fracture network and the problem setup. The 
red lines represent conductive fractures whereas the blue lines are blocking fractures. The yellow line indicates the line of the 
pressure profile. Right: Pressure profiles for the discretization schemes used in the validation.  

4.1 Flow in 2d fractured porous media  
To validate the mixed-dimensional flow discretization, we consider Benchmark 3 of [70], which describes 

an incompressible single-phase flow problem in a fractured domain. The fracture network contains 

intersecting and isolated fractures; see Figure 5 for an illustration of the domain together with the 

pressure solution for the Mpfa discretization. The network contains both highly conductive and blocking 

fractures, see the supplementary material for details. The normal permeability in the fracture 

intersections is given by the harmonic average of the permeabilities of the intersecting fractures as 

suggested in [70], [71].  

The aim of this case is twofold - we benchmark our code to well-established methods in the literature 

and present the full capability that our abstract structure can handle. For the latter, we consider four 

groups of discretization schemes and simulation grids: First, three homogeneous (the same for all the 

subdomains) discretizations: Tpfa, Mpfa and RT0-P0. Second, a case with the Mvem, where the cells of 

the rock matrix are constructed by a clustering procedure starting from a more refined simplicial grid, 

see [68] for details. Third, two heterogeneous discretizations where RT0-P0 and Mvem for the rock 

matrix are combined with Tpfa for the fractures (labeled Hete1 and Hete2, respectively). Fourth, a case 

where the fracture grid is twice as fine as the matrix grid, with the mortar grids non-conforming to the 

surrounding grids (Non-conf). In this case we consider the RT0-P0 scheme. We use simplex grids in all 

cases that do not involve Mvem. 

Figure 5 shows the domain with fractures, boundary conditions and a representative numerical solution. 

The figure also depicts a plot of the pressure along the line (0,0.5) − (1,0.9), with the reference 
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solution (equi-dimensional problem computed on a much finer grid) colored in black. We observe good 

agreement between the solutions obtained in PorePy and the reference solution. We also consider a 

sequence of grids to compute the error relative to the reference solution, as done in the original 

benchmark. Figure 6 shows the decay of the normalized 𝐿2 error for the rock matrix and the union of the 

fracture subdomains. In the former, we notice a first order of convergence for all the considered 

methods. The convergence rate for the fracture subdomains is sublinear, as was also observed in the 

original benchmark, see [70]. 

 

Figure 6: Left: Convergence of the pressure unknown for the matrix subdomain. Right: Convergence for the pressure unknown 
for the fracture subdomains. 

 

 

Figure 7: Mandel’s problem. Left: Schematic representation of the full and positive quarter domains, 𝛺 and 𝛺′. Right: Quarter 
domain showing the boundary conditions. 

4.2 Mandel’s problem in poroelasticity 
The next test case considers a poroelastic material, with a setup defined by Mandel’s problem [72], [73], 

for which an analytical solution is available. While the problem geometry does not include lower-

dimensional objects, the case tests the implementation of the poroelastic code and shows the 

framework’s flexibility to deal with coupled problems and time-dependent mixed boundary conditions. 
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The original problem consists of an isotropic poroelastic slab of width 2𝑎 and height 2𝑏 sandwiched by 

two rigid plates (Figure 7). Initially, two compressive constant loads of intensity 2𝐹 are applied to the 

slab at 𝑦 =  ±𝑏. At 𝑥 = ±𝑎, fluid is free to drain, and edges are stress free. Gravity contributions are 

neglected. 

This problem is modeled using the quasi-static Biot equations, as presented in Section 3.3.1. Exploiting 

the symmetry of the problem, we focus on the positive quarter domain Ω′, rather than the full domain 

Ω, see Figure 7 for an illustration, and for boundary conditions. Note that the vertical displacement at 

the top of the domain is time-dependent and given by the exact solution, see [74]. 

The simulation parameters were taken from [75], see also the supplementary material for details. The 

coupled problem is discretized in space using Mpsa/Mpfa for the mechanics and flow, respectively. For 

the time discretization we use implicit Euler. The computational mesh is unstructured and composed by  

622 triangular elements. The results are shown in FigureFigure 8 in terms of dimensionless quantities 

and are in good agreement with [75] for both pressure and displacement.  

 

Figure 8: Solutions to Mandel’s problem: Dimensionless pressure (left) and horizontal displacement (right) profiles for several 
times. 

 

4.3 Sneddon’s problem of fracture deformation 
In this example, a square domain with a single fracture located in the middle is considered. The fracture 

forms an angle β with the horizontal direction (see Figure 9) and is subjected to a constant pressure 𝑝0 

acting on its interior. This pressure can be interpreted as a pair of normal forces acting on either side of 

the fracture. An analytical solution for the relative normal displacement along the fracture was derived 

by Sneddon [76] for an infinite domain, and has the following form: 

⟦𝑢𝑗⟧
𝑛

(𝑑𝑓) =
(1 − 𝜈)𝑝0𝐿

𝐺 √1 −
𝑑𝑓

2

(
𝐿
2)

2 

(4.1) 
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Figure 9: Setup and convergence of Sneddon’s problem Left: Schematic representation of the domain. Right: Average 
convergence behavior of the relative normal displacement along the fracture. Each dot corresponds to the average of 140 
simulations. 

where 𝜈 and 𝐺 are the Poisson's ratio and shear modulus, respectively, 𝐿 is the fracture length, and 𝑑𝑓 

denotes the distance from the center of the fracture. 

In our calculations, the conditions of infinite domain are replaced with a Dirichlet boundary, where the 

prescribed displacement is set equal to the analytical solution calculated using the procedure illustrated 

in [77]. The accuracy of the numerical solution is very sensitive to the discretization, specifically the cell 

configuration, at the fracture tips [58]. To reduce the dependency on specific grid realizations, the 

values of the numerical solution reported in Figure 9 are the average of a group of 20 x 7 = 140 

computations per level of grid resolution, with 7 different fracture angles 𝛽 in the range 0° − 30° and 20 

grid realizations per fracture. With six levels of grid refinement, the full study contains 20 x 7 x 6 = 840 

simulations. Figure 9 summarizes the results in the form of the error in relative normal displacement 

between the analytical solution (4.1) and the numerical solution as a function of the fracture resolution, 

i.e. number of fracture elements. The method provides first-order convergence on average.  

5 Applications: Multiphysics simulations 
Having established the accuracy of PorePy for central test cases that involve mixed-dimensional 

geometries, we go on to present two multiphysics cases of high application relevance: A non-linearly 

coupled flow and transport problem, and fracture reactivation caused by fluid injection. The motivation 

for the simulations is to illustrate further capabilities of the modeling framework and its PorePy 

implementation, including simulations on complex 3d fracture networks, automatic differentiation 

applied to non-linear problems, non-matching grids, and simulation of fracture deformation in a 

poromechanical setting.  

5.1 Fully coupled flow and transport 
This example has two main purposes. First, we consider a non-linear coupled flow and transport process 

as described in Section 3.2. We apply the automatic differentiation functionality in PorePy to obtain the 

Jacobian of the global system of equations, which is then used in a standard Newton method to solve 
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the non-linear problem. Second, we illustrate the flexibility of the mixed-dimensional approach by using 

non-matching meshes on a relatively complex fracture network.  

We consider the injection of a highly viscous fluid into a domain initially filled with a less viscous fluid. 

The two fluids are miscible, with their distribution described by the mass concentration 𝑐 ∈ [0, 1], and 

with a viscosity ratio of the two fluids given by 𝜇(𝑐) = exp(𝑐). In the parameter regime studied in this 

example, the transport in the fractures is advection dominated, while the transport in the rock matrix is 

dominated by diffusion; see the supplementary material for the details about the parameters. We 

remark that PorePy has also been applied to study unstable displacement in 2d domains, see [78] for 

details.  

The mixed-dimensional domain considered in this example consists of one 3d domain, 15 2d fracture 

domains, 62 1d domains and 9 0d domains. On this geometry, two computational grids are constructed: 

The first has matching grids in all dimensions, with in total 20812 cells, out of which 16766 are 3d cells 

and 3850 are 2d fracture cells. The second mixed-dimensional grid has a 3d grid identical to the first 

grid, whereas the lower-dimensional objects are assigned refined grids with in total 13839 2d fracture 

cells, thus the 3d-2d interfaces have non-matching grids. The combination of the non-linearity and the 

non-matching grids provides a challenging test for the robustness of the PorePy implementation of 

subdomain couplings and provides an illustration of the framework’s flexibility.  

Figure 10 shows the average concentration profile in the fractures for the two meshes. There are no 

significant differences in the average concentration profiles in the two cases, indicating the stability of 

the implementation of the non-matching case. Figure 11 shows a snapshot of the concentration in the 

fractures and the rock matrix at time 𝑡 = 20. The diffusive front in the rock matrix has only moved a few 

grid cells at the break-through, however, due to the diffusion and advection from the fractures to the 

rock matrix, the concentration has increased in considerable parts of the rock matrix. We observe no 

irregularities for the solution produced on the non-matching grid, confirming PorePy’s ability to deal 

with non-standard grid couplings also for challenging physical regimes.  

 

 

Figure 10. Fully coupled flow and transport: Comparison of average concentration in the fracture network for a simulation with 
matching meshes and a simulation with non-matching meshes.  
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Figure 11. Fully coupled flow and transport: Concentration in the fractures (left) and in the rock matrix (right) for the coupled 
flow and transport problem given in Section 3.2 at the end time of the simulation (t=20). In the right figure the rock matrix 
domain is cropped, and the fractures removed to reveal the concentration inside the domain. The black lines indicate the domain 
boundary. A non-matching mesh is used where the mesh in the fractures are much finer than the mesh in the rock matrix. The 
increase in the concentration in the rock matrix is mainly due to advection and diffusion from the fractures.  

5.2 Poroelasticity and fracture deformation 
The final example aims at demonstrating the modelling framework's and PorePy's applicability to non-

standard combinations of physical processes in different domains and thereby its potential for method 

development and prototyping. With the critical events taking place on individual fractures as a result of 

processes in the rock matrix, it also serves as an example of the importance of incorporating dynamics of 

both the matrix and explicitly represented fractures, as done in DFM models. 

We consider a reservoir of idealized geometry containing three fractures numbered from 1 through 3, 

whereof the first contains an injection well, see Figure 12. On this geometry, we solve the governing 

equations presented in Section 3.3. We impose injection over a 25-day period and an anisotropic 

background stress regime, producing a scenario well suited to demonstrate different fracture dynamics. 

We investigate the dynamics both during a 25-day injection phase, and during the subsequent 25-day 

relaxation phase, at the end of which the pressure has almost reached equilibrium once more. The full 

set of parameters may be found in the supplementary material. 

The dynamics on the fractures throughout the simulation are summarized in Figure 12, while the spatial 

distribution of the fracture displacement jumps at the end of the injection phase is shown in Figure 13. 

During the injection phase, there are tangential displacement jumps on all three fractures, appearing 

first on the favorably oriented fractures 2 and 3, and then on fracture 1 (injection). Normal displacement 

jumps appear on fracture 1 along with the tangential jumps, and on fracture 3 somewhat later. On 

fracture 2, which is located furthest away from the injection point, no normal displacement jumps 

appear. During the relaxation phase, we note that while the normal displacement jumps vanish, all 

tangential jumps remain due to the friction. We also observe a slight increase in tangential displacement 

jumps on fractures 2 and 3 at the time of shut-in, as the normal jump on fracture 1 vanishes. 



25 
 

The example demonstrates how modeling of complex coupled processes in great detail is possible 

through the use of DFM models. Furthermore, the structure and modularity of PorePy makes it ideally 

suited for experimentation with mathematical models, as well as prototyping of simulation approaches.  

 

Figure 12: Left: Domain geometry with numbering of the three fractures. Fluid is injected in fracture 1 during the first 25 days, 
after which the well is shut. Right: 𝐿2norm normalized by fracture area of the normal (dashed lines) and tangential displacement 
jumps (solid lines) for each fracture. 

 

Figure 13: Normal and tangential displacements jumps on the fractures at the end of the injection phase to the left and right, 
respectively. The orientation of the fracture network corresponds to that in Figure 12, with the injection fracture to the right. 

6 Conclusions 
The complexity in modeling and simulation of multiphysics processes in fractured porous media, 

combined with a strong current research focus and corresponding developments, calls for flexible 

simulation tools that facilitate rapid prototyping of models and discretization methods. This paper 

presents design principles for simulation software for dynamics in fractured porous media, together 

with their implementation in the open-source simulation tool PorePy. The combined framework for 
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modeling and simulation is based on the Discrete Fracture Matrix model, where fractures and their 

intersections are represented as separate lower-dimensional geometric objects. The framework 

facilitates flexibility for multiphysics dynamics and reuse of existing code written for non-fractured 

domains; hence, it is well suited for extending other software packages to mixed-dimensional problems. 

The open-source software PorePy demonstrates the capabilities of the suggested framework: It provides 

automatic meshing of complex fracture networks in two and three dimensions, and contains 

implemented numerical methods for flow, transport, poroelastic deformation of the rock, and fracture 

deformation modeled by contact mechanics. The implementation performs well for benchmark 

problems in flow, poroelastic deformation and fracture deformation. Further, multiphysics simulations 

of fully coupled flow and non-linear transport, and of fracture deformation under poromechanical 

deformation of a domain demonstrates the versatility of the software.  
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