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Preface 

From the autumn of 2018 to the autumn of 2019, the Centre for the Science of Learning and Technology 

(SLATE), University of Bergen studied the adaptive teaching program “Multi Smart Øving” (MSØ). The 

Adaptive Learning in Mathematics (ALMATH) project was lead by Researcher Kjetil Egelandsdal and was an 

independent research project fully financed by SLATE. ALMATH has resulted in two research reports: 1) an 

evaluation report by Professor Chronis Kynigos at the University of Athens and Professor II at SLATE, and 2) 

an empirical report by SLATE researchers.  

This is the evaluation report where Kynigos situates MSØ in the international landscape of digital teaching 

tools. The report includes a review of digital technologies for mathematics education. 

About Multi Smart Øving 

Multi Smart Øving (MSØ) is a Norwegian adaptive learning system, developed by Gyldendal Norsk Forlag 

AS, for Norwegian mathematics education that is built on a platform developed by the New York–based 

company Knewton. The system is created for primary schools, first to seventh grade, where the age of the 

pupils ranges from 5–13 years old. According to Gyldendal, 188,000 students and 9,822 teachers have 

licenses for the program. As this represents over 40% of all Norwegian pupils in primary school, it can be 

said that the program is widely distributed.  

MSØ is built around individual task solving and is considered by Gyldendal as a digital workbook for practicing 

mathematics. Each pupil works with one task at a time and is given three attempts to answer correctly. If the 

pupil answers correctly, or incorrectly three times, she or he is presented with a new task.  

As an adaptive learning program, the intention behind MSØ is that the tasks are constantly adapted to the 

individual pupil’s abilities and needs. A pupil who shows mastery of a task receives a new task that is 

increasingly advanced, while a pupil who struggles with a certain type of task will receive other tasks adapted 

to his or her competence. In this way, the intention is that the tasks are aligned to the individual pupil’s level 

of performance. 

This individual customisation is based on a competence profile developed for each pupil. The profile changes 

continuously in line with how the pupil solves the tasks, and the teacher is presented with an overview of the 

competency of each pupil (and the class) and how the pupils are progressing. In addition, the teacher can 

see with which learning objectives the pupil is working, the number of correct and wrong answers, and how 

long the pupil has worked with MSØ. The pupil can send tasks, along with comments, to the teacher if she 

or he wishes, for instance, to discuss a particular task with the teacher. 
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1. How should a specific medium be used for mathematics in school?  

It has now been around 50 years since digital technology was seriously considered as a tool for mathematical 

activity for learners (Papert, 1972, 1980). In this time, there has been a great diversity of digital media and 

approaches to the ways in which they can be used for learning mathematics. Indeed, these approaches have 

been influenced by varying standing points on the nature of mathematics and of the learning and teaching of 

mathematics, as well as on the role digital media can play regarding the influence on and intervention in 

educational practice.  

In reviews on the uses of digital media for mathematics education over the last decade, this complexity in the 

adopted approaches has been addressed in different ways. With this context in mind, the current report 

constitutes a meta-review that is aimed at illuminating and supporting decisions on whether and how to use 

a specific medium or configuration of diverse media in a school or classroom. Who should decide which 

medium/media to employ in mathematics courses in a particular classroom? Based on what criteria? How 

should they be supported to make such decisions?  

To address these questions, a careful selection was made of a group of important, but divergent reviews over 

the last decade (see the 'Primary References' section). These were used to organize this report primarily in 

relation to a key dichotomy:  

 

Is a medium going to be used to change or enhance 

exiting educational practices in a classroom? 

 

Subsequently, the current report analyses the diverse affordances of media designed for mathematics 

education in connection with the above dichotomy. This is followed by a different perspective, that of the 

temporal evolution of the ways in which technologies have been used in mathematics education, specifically 

in connection to the technological developments, and in education in general. The most popular productions 

are listed and characterized in relation to the above issues. A comprehensive, overall suggestion is finally 

made as to how to make decisions on the available avenues to integrate technology use in the mathematics 

classroom. 

In educational systems around the world, mathematics education is a practice that is mostly associated with 

a discontent that is expressed by all kinds of stakeholders and, most importantly, the students themselves. 

The frustration pertains to the diversity of issues associated with the relevance of the mathematics education 

paradigm in the digital era. Symptomatically, specific issues are being questioned, ranging from the content 

and structure of mathematics curricula (Goldenberg, 1999) to the practice of teachers and their available 

initial training and in-service professional development and support, the understanding and the assessment 

performance of students, and, finally, to the validity of the assessment methods themselves (Pimm & 
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Johnston-Wilder, 2005; Trouche, Drijvers, Gueudet & Sacristan, 2013). To most students, mathematics 

provokes stress, anxiety, a sense of helplessness, and a lack of relevance to their social and intellectual lives, 

doing little to spark their curiosity and creativity (Papert, 1980; Klein, 2002). Doing mathematics is painstaking 

and is associated with learned helplessness, reprimand avoidance, provoking judgment, and a general sense 

of failure and low self-esteem (Dreyfus, 1999; Topcu, 2011). However, most of all, there is a growing concern 

regarding the epistemology of mathematics, of what it means to engage in mathematical thinking and of what 

type of mathematical education might be of value and relevance in the current era (Chevallard, 2012; 

Schoenfeld, 1992). The educational paradigm in mathematics education is openly under question, with Alan 

Schoenfeld calling it “the math wars” (Schoenfeld, 2004, p. 253).  

Digital technologies play an important role in this reflective process, providing the tools for potential solutions 

both to the proponents of making traditional processes more effective and to the proponents of paradigm 

transformation (Ainley et al., 2011; Conole, 2008; Olive et al., 2010; Puentedura, 2006; Yelland, 2005). 

Therefore, no school should just go ahead and use a particular type of technology over others, ignoring the 

pedagogy associated with its designs and the kinds of pedagogies that might be compatible with its use. 

Furthermore, pedagogy should come first: a district, a school, or a teacher should have a clear idea of the 

kind of education they wish to provide their students with and then make an educated choice regarding the 

diverse technologies and other resources appropriate for that pedagogy.  

As will be shown, Multi Smart Øving (MSØ) is clearly a tool for the proponents of enhancing traditional 

approaches to mathematics education. Designed to be used for the augmentation of students’ rote learning 

of mathematical routines, it is coupled with an automated and traditional type of assessment that also embeds 

adaptivity based on a generalized recommender system applied in mathematics education.  

This report attempts to place MSØ within the context of the diverse digital media for mathematics education, 

providing useful classifications that are connected to pedagogy and examples of diverse, digital solutions. It 

also aims to provide a picture of the potential best practices in classrooms today, aiming for reform, but also 

maintaining relevance to current norms, especially regarding traditional assessments. In a nutshell, the 

current report concludes that MSØ could have a role as an integrated solution involving a range of digital 

tools used to make rote learning more effective so as to leave time for transformative experiences for students 

to engage with meaningful mathematics and mathematical thinking.  

There are several initiatives and institutions claiming to have approaches that can address the problem of 

mathematics education and even solutions to specific aspects, such as the ubiquitous availability of high-

quality video explanations of distinct mathematical concepts (see https://www.khanacademy.org/).  

This problematic area of education, however, has inspired the generation and development of a scientific 

field studying mathematical teaching and learning and a multiplicity of aspects of mathematics education. 

This field is young, compared with, for instance, the field of mathematics itself. As a field of scientific study it 

can be said that it was initiated either by  

https://www.khanacademy.org/
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• the theory suggested in the 1950s by Jean Piaget (e.g. Piaget, 1955) regarding the nature and 

process of rational logical thinking and understanding in humans or  

• in 1976, the date of the first Conference in the Psychology of Mathematics Education 

(http://www.igpme.org/), a community of researchers engaged in scientific study that is focused on 

the teaching and learning of mathematics.  

Despite its relatively recent emergence, the field of mathematics education has been developing and 

generating an impressive volume of work, either with a diagnostic or an illuminative approach, or a design or 

interventionist approach (Von Glaserfeld, 1989; Walkerdine, 1988; Cobb, 1994; Noss & Hoyles, 1996). The 

diagnostic and illuminative approaches attempted to help us understand learners' understanding of 

mathematics either by identifying misconceptions or by studying the mathematical thinking that learners 

actually engage with, respectively. The design approach involves the study of educational practice put into 

effect as a result of a carefully designed intervention to transform traditional everyday practices. Most of this 

work, however, perceives mathematics education as a dynamic body of values, institutions processes, and 

practices warranting fundamental change. Mathematics education should be a service to young generations 

that are under pressure to transform, rather than to enhance the existing features and practices.  

Inevitably, digital solutions—including artifacts, services, and tools—have been an important part of the 

development of efforts to address the problem found by mathematics education stakeholders, such as 

education system policy bodies and the corporate sector who identify potential markets through perceived 

user needs. Often, however, these efforts by-pass or simply ignore the knowledge emerging from the 

scientific field of mathematics education.  

The scientific field of mathematics education has developed theories pertaining to the learning of mathematics 

through the use of digital media and has designed original pedagogically principled solutions. Furthermore, 

a new research method termed design research (Cobb et al, 2003) was developed with the aim of producing 

“frameworks for action,” that is, theoretical constructs and lenses with which to design innovations that take 

part in their implementation; another goal of design research is studying mathematical learning taking place 

within the new dynamics of the ensuing educational practices (DiSessa & Cobb, 2004). Thus, the current 

report is based on the knowledge emerging from the academic field of mathematics education and the 

growing number of empirical studies of mathematical educational practice within and out of the classroom.  

From a realistic and practical point of view, it is worth considering problems faced in real classrooms, where 

the school or individual teachers have taken initiative to use a particular type of digital technology in 

mathematics courses. For any given school or group of students, the typical approaches that have proven 

ineffective are the following:  

• Employing a single digital tool designed for one particular approach to mathematics education, that 

is, to enhance traditional practices or to pursue a transformative intervention 

• Employing a tool designed for a particular approach and then assessing students’ learning with 

methods and principles belonging to a different approach  

http://www.igpme.org/
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• Employing a tool without much thought as to the kind of pedagogy for which it has been designed  

• Allowing the emergence of a “quick fix” type of expectation in parents and educational administration 

and policy makers, such as “use this tool and student performance will improve”  

• Expecting a clear, quick, and sustainable result from the use of one tool and assigning a causal frame 

to the tool itself without paying much notice to the ways it is being used and adopted  

In the current report, MSØ is evaluated with respect to its potentially beneficial use in a transformative 

intervention; indeed, MSØ is looked upon as part of a diversity of digital tools and a pedagogy attempting to 

make rote learning more effective. In this way leaving space for deeper, more relevant kinds of learning that 

can help with the growth of a sustainable rationality, rigor, economy, proof, and mathematical justification; 

generalization and problem posing; and solving given, predefined problems.  
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2. The nature of transformation sought in mathematics education 

2.1 Epistemology of mathematics and of the learning of mathematics 

Over the past 40 years, there have been a growing number of voices questioning traditional assumptions 

about the nature of mathematics and of doing mathematics. This is having a fundamental influence on the 

academic community in mathematics education and, in turn, on educational reform initiatives in policy by 

stakeholders. Until the beginning of the twentieth century, mathematics was considered to be a positivist 

discipline, a collection of irrefutable truths based on axiomatic systems embedding robust sets of rules that 

are mediated by an arbitrary but agreed set of representations. In school, it was inevitably considered and 

taught as such, that is, as a set of arbitrary, fixed truths to be understood, even at the rote level, by students 

so that they can give correct answers on standardized tests and assessment procedures. 

The argument on the nature of mathematics began with scholars such as Foucault (1984),  Kitcher (1985), 

Papert (1972), and Lakatos, (1976). Synthetically, they argued that is makes more sense to think of 

mathematics as a human intellectual construct, one that is essentially fallible (in the sense of Ernest, 1991; 

that is, each mathematical definition, lemma, theorem, and proof has the status of a proposition for others 

to try to refute. Even in cases where theorems are proven and problems are solved, these problems wait for 

other mathematicians to question the process, the context, the point of view of articulating the question, 

and the assumptions. This process is essentially part of doing mathematics, and it does not matter whether 

and to what extent an axiomatic system remains robust or a theorem is proven to have a shaky foundation 

(see also Kynigos, 2015). Engaging in mathematical activity necessarily involves the process of refutation 

together with logical thought, deduction, generalization, and proof. At the time, Lakatos (1976) was 

provoking in his book proofs and refutations, where he analysed mathematicians’ activity as a process of 

conjecture, showing it to be a public expression of thought and subsequent engagement with a cycle of 

refutation, redrafting–drafting, and new proofs: 

…deductivist style tears the proof generated definitions off their “proof-ancestors” presents them out of the blue 

in an artificial and authoritarian way. It hides the global counter examples that led to their discovery. Heuristic 

style, on the contrary, highlights these factors. It emphasizes the problem situation: it emphasizes the “logic” 

which gave birth to the new concept (Lakatos, 1976, p. 144) 

This reflection and questioning of the nature of mathematics and doing mathematics fundamentally 

influenced thinkers in the academic field of mathematics education. In the ensuing years, it has permeated 

reform agendas and even practices in schools, including the use of digital media.  

The kind of mathematical activity described by Lakatos and almost concurrently by Davis and Hersch (1981) 

was not only addressed by mathematicians’ activities, but was also connected to the essence of learning 

mathematics. Papert (1972) argued that this kind of activity cultivates learning not only in established 

mathematicians, but for all, even for young children. He went further, saying that this activity is natural and 

that traditional schooling denies students the opportunity and encouragement to engage in the logic that 

gives birth to mathematical concepts (Papert, 1980). As Lakatos put it, traditional perceptions of 
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the nature of mathematics imposes an artificial picture of mathematics to be the practice of trying to 

understand the abstract and irrelevant products of mathematical activity rather than the activity itself.  

Like Papert, Foucault (1984) and Kitcher (1985) maintained that mathematical activity and mathematical 

learning emerge as a result of generating mathematical meaning and engaging in negotiation regarding 

mathematical meaning. In this framework, mathematics itself has the status of transparency and 

negotiability, rather than that of an arbitrary and irrefutable truth.  

Negotiating mathematical meaning requires a means of externalizing thought through semiotic mediation 

(Vygotsky, 1978; Bartolini-Busi & Mariotti, 1997; Berger, 2005). Digital media are perceived of as a new set 

of semiotic registers, a means to negotiate mathematical meanings with (Marriotti, 2006). Varying the 

expressive medium results in a restructuration of mathematical meaning-making and in alternative ways of 

knowing (Willensky & Papert, 2010; Noss & Hoyles, 1996, Noss et al, 2007). Brown (1994) proposed that 

mathematical learning should be perceived as a kind of immersion into a mathematical culture of people 

using media to negotiate mathematical meanings and that the teacher should facilitate this process rather 

than try to control it with the rote memorization of mathematical fact.  

Regarding the uses of digital media for generating and negotiating meanings, apart from Papert (1980) and 

Noss and Hoyles (1996), there are other important approaches, that of instrumental genesis (Star & 

Griesmeyer, 1985; Artigue, 2010; Trouche, 2005; Verillon & Rabardel, 1995) and humans-with-media 

(Borba & Villareal, 2005). Instrumental genesis allows us to understand and illuminate how a learner uses a 

digital medium. Once learners pick up a specific digital artifact they develop a scheme of use; a conceptual 

construct of the purpose, meanings, and situations this artifact is useful for. Thus, each individual develops 

his or her own schema, turning the artifact into a unique instrument that is associated with the individual. In 

this process, the artifact does not remain unaltered; it is also shaped reciprocally with the generation of the 

instrument in a process called instrumentalisation. Therefore, each individual makes his or her own sense of 

a tool, moulding the tool itself. Good digital media designs when it comes to learning mathematics are thus 

those that usefully support this process: they are malleable, afford deep structural access to users, and yet 

have embedded powerful mathematical ideas. Humans-with-media is an approach of perceiving 

mathematical meaning-making as residing in the ways in which collectives of people interacting with each 

other and with digital media reorganize their reasoning and thinking in an on-going process. Meanings are 

negotiated through discourse, communication, and the interactions with media (i.e., by creating or tinkering 

with mathematical models and their embedded operational rules and properties by handling data, by 

generating experiments with models, by outsourcing computational process, and so forth (Steele, 2001). To 

generate dense mathematical learning, we need pedagogical interventions that involve collectives of 

students, teachers, and experts in mathematical application domains, all of whom discuss a problem and 

mutually re-organize their understandings as a reciprocal process of communication and tool use.  
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2.2 Approaches toward mathematical learning with digital media  

Mathematics education research has compellingly showed that mathematical thinking and the use of 

mathematical concepts as tools and as objects (Douady, 1985) are hard for most learners. The main aspects 

of mathematics, generalization, rigor, economy, mathematical proofs, and the sense of certainty focus on the 

process of doing mathematics rather than the ability to reproduce routines or memorize factual information 

(Radford, Bardini & Sabena, 2007; Sfard, 1991; Hoyles, 2016). Without personal experience in engaging with 

mathematical thinking and being able to appreciate the practical and cultural communicational empowerment 

that these aspects generate, it is impossible for learners to conceptualize abstract concepts and the process 

of abstraction itself. 

Therefore, an education system promoting rote learning in effect hinders engagement with mathematical 

thinking. As Bray and Tangney pointed out (2017), from the point of view of the mathematics education 

community, the most important problem hindering students’ understanding of the mathematics subject is the 

widespread belief that mathematics in school should be a stably structured collection of abstract concepts 

and rules to be memorized, including solutions to predefined exercises involving procedures leading to one 

correct and unquestioned answer (Hoyles, 2016; Noss & Hoyles, 1996; Ernest, 1998 Maas & Artigue, 2013). 

Regarding teaching and learning, in many countries, mathematics has been emphasized as a scientific 

production, a formal and abstract body of knowledge to be understood and digested by students. The teacher 

is viewed as the authority on the subject, and the teacher’s primary mission is to deliver this knowledge to 

the students by explaining and transmitting information. To fit in large-scale traditional assessment methods 

and tools (Sinclair et al., 2010), mathematics is seen as a disjointed set of rules and procedures, rather than 

a complex grid of concepts that can be structured in a variety of ways. Recent curriculum reforms, however, 

recognize that a view of mathematical competence as solely related to procedures and concepts that can be 

accumulated with practice is naïve and incomplete (Contreras, 2014). Students do not generate experiential 

meaning related to mathematical concepts; they are not able to use math in realistic problem situations, 

hence becoming disenchanted and losing motivation.  

Although the importance of embedding mathematics in meaningful contexts so that it can be experienced 

and used by students has been recognized (Kolb, 1984; Boaler, 2008), the related task designs to achieve 

this have fallen short of meaning-making. One of the reasons is that the concepts in their abstract and formal 

form still remain a key objective, resulting in the production of pseudo-real-world problems that are hardly 

motivating for the students.  

Hence, strategically, the mathematics education community has turned to the question of whether—and if 

so how—digital technologies can provide added value to the design of contexts for mathematical meaning-

making in situations where mathematical concepts and mathematical, rational thinking can be experienced 

and put to use for relevant and realistic purposes (Clements, 2000). This strategic challenge is becoming 

more and more clear thanks to research in the field, which has been changing the paradigm. However, 

developing tools to observe the results is proving to be a difficult, nonlinear, and lengthy process, and digital 

media have been addressed as tools that have the potential to facilitate this strategic change.  
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The affordances of such tools are an important factor, and these are analysed further in a subsequent section. 

Indeed, they allow and encourage students to engage in modelling (Confrey & Maloney, 2007), in the 

visualization of abstract concepts (Confrey, Maloney, Ford & Nguyen, 2006), in the dynamic manipulation of 

mathematically constructed representations (Sacristan & Noss, 2008, Artigue, 2002), in testing out the 

students’ ideas, in handling large amounts of data (spreadsheets), and in seeing the mathematical in models 

of complex socio-scientific issues such as environmental sustainability. They also afford collaborative problem 

solving and posing (Conneely, Lawlor & Tangney, 2015), mathematical argumentation, and the expression 

of ideas (Wegerif, 2007). In effect, they are tools for expression, experimentation, model construction, and 

modification and are designed to allow for open-ended investigations and student choice of alternative routes 

to a solution. They not only allow, but also rather encourage, students to take some control over their activity 

and their progress, inspiring agency and meaning in their work. Therefore, students can make practical use 

of concepts and processes to achieve results, acquiring a sense of purpose and utility of mathematical 

thinking. These experiences have been found to deepen the students’ understanding and boost their 

confidence and enjoyment of thinking mathematically (Chance, Garfield & delMas, 2000; Clements, Sarama, 

Yelland & Glass, 2008; Roschelle, Kaput & Stroup, 2000; Sacristan & Noss 2008; Villarreal, 2000). 

This kind of medium, however, does not produce a mathematical experience on its own. The right kinds of 

tasks need to be designed in the form of authentic and interesting challenges, where mathematics provides 

a solution or a better understanding of the issues. Hence, a paradigm shift toward mathematical inquiry, 

problem solving and posing, curiosity, creativity, and imagination, can be accompanied by taking risks and 

perceiving errors and false avenues as opportunities for understanding and reflection (Battista, 1999; Hyde 

& Jones, 2013; Laborde, Kynigos, Hollebrands & Strasser, 2006; Lesh & Doer, 2003; Watson & Mason, 

2005) 

Furthermore, the teachers’ role and pedagogical interactions with the students needs to change and become 

resonant with this kind of mathematical activity (Walshaw, 2010; Boaler, 2003). Teachers need to act as 

facilitators in the mathematical experience by inspiring students to enjoy a challenge. All of these 

transformations are hard to design and even harder to implement. One important way of doing this is 

empowering teachers to engage in the design of tools for their students and take part in professional 

communities reflecting on these designs and classroom practice (Ruthven, 2011; Yackel, 2002, Koeler and 

Mishra, 2009).  

It is inevitable that these dynamic constructionist tools that allow for design at many levels have often been 

used not to transform the classroom experience but, on the contrary, to augment traditional teaching 

(Ruthven, Hennessy & Deaney, 2008). Therefore, professional support, carefully prepared analytical 

resources, and the design of alternative assessment methods, including student portfolios, are a key strategy 

for any organization or group developing digital media for transformational mathematics education.  

Not all digital media for mathematics education are designed for paradigm transformations. There are two 

main categories of such media outside this realm. One can be defined as media intended to help augment 

the creation of traditional instruction. The other involves media built in the context of other research fields or 
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agendas, such as AI, telecommunications, digital games (Kebritchi, Hirumi & Bai, 2010), or perceiving 

mathematics education as a field of application (Sinclair & Jackiw, 2005; Voogt & Roblin, 2012).  

The typical types of such tools are adaptive exercisers such as MSØ and computer-assisted instruction 

modules either embedding a model of “tutor” and “student” or that are based on recommender systems such 

as MSØ itself. These applications, however, are more implementations of other research fields, such as AI, 

with mathematics education being cast in the role of one such application domain. In this sense, they do not 

incorporate the reflections and aims of the mathematics education research field in the sense that has been 

analysed in the present report. Another important category of applications is large explanatory video portals 

such as Kahn Academy, which is an exemplary case of using technology to augment and make more effective 

the traditional approaches toward mathematical teaching and learning (Hampton, 2014).  

 



14 

 

3. The uses of digital media for mathematics education 

As mentioned in the introductory section, a large diversity of digital media has been developed over the years, 

addressing both transformative approaches toward mathematics education and, conversely, approaches 

aiming to enhance traditional schooling, epistemology, and pedagogy. This section provides the taxonomies 

regarding the diverse uses for which these media have been designed.  

In an excellent review of research using 

digital media for mathematics education, 

Bray and Tangney (2017) offered an overall 

hierarchy (see figure 1) that seems 

particularly suited to the problematic nature 

of the field; it is called “SAMR - Substitution, 

Augmentation, Modification, Redefinition” 

(Puentendura, 2006). They then developed an amalgamated classification based on SAMR, learning theory, 

technology, and purpose (see table 1). 

 

 

Figure 1 SAMR Classification Hierarchy  

Table 1 Intended uses of technology (summary of Bray & Tangney, 2017) 
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This hierarchy (see figure 1) refers to the intended use of a piece of software or a configuration of digital 

media in mathematics courses. The first category addresses media designed to facilitate transformative 

approaches, as analysed in the previous sections; this splits the category into two subcategories: one 

referring to the modification of activities, teaching methods, and assessment tools and the other addressing 

the diverse structures of mathematics curricula and the types of mathematical activity. The second category 

addresses the use of digital media to enhance existing practices and epistemologies, and these can be split 

into media designed to augment human roles, for example, the teacher, and into media designed to substitute 

for such roles (i.e., digital tutors).  

Having this hierarchy in mind, Bray and Tangney (2017) suggested alternative classifications regarding the 

specific views and interests of the intended uses of digital media (see Figure 2). One such classification has 

to do with the kinds of uses the technology affords. Another is the classification in relation to diverse learning 

theories and the intention or purpose behind the design of the digital medium, respectively. In fact, Bray and 

Tangney (2017) classified the behaviourist theory as standing on its own and connected the other three 

theories, i.e. cognitive, constructivist and constructionist, into one family.  

Thus, the two classifications of technology and learning theory provide a lens for the kinds of affordances (we 

elaborate on this notion later) of a digital medium and how these affordances connect to how learning 

mathematics is perceived. Bray and Tangney (2017) offered yet another classification in connection to the 

purpose of the intervention and the context in which the digital medium is used. This classification assumes 

that a digital medium is not just 

inserted seamlessly into an 

established, unchanging practice. 

Rather, it perceives the use of a 

medium as an integral aspect of an 

intended pedagogical intervention, 

focusing on some change, 

improvement, or emphasis not given 

before.  Hence, digital media can be 

classified according to the purpose 

of the intervention for which it was 

designed.  

Bray and Tangney (2017) offered a 

set of two-way classifications, for example, the SAMR level and learning theory, as well as an approach taking 

all of these classifications into consideration. A further suggestion here would be to consider a wider 

taxonomy of digital media for mathematics education based on the SAMR classification, as in Figure 2. This 

classification allows for a consideration of which medium or configuration of media to use when planning an 

intervention according to the intent of the SAMR. For example, a school may wish to place emphasis on the 

use of an enhancer to make time for the use of a transformative medium, such as a programmable tool.  

Figure 2 Taxonomy of Digital Media for Mathematics education 
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4. The affordances of digital media for mathematics education  

The classifications in the previous section were broad and organized according to a diversity of interests and 

viewpoints; however, this was done in a way that considered the overall descriptions of the design features 

of digital media. In this section, we take a deeper look into the affordances of a medium, that is, the technical 

features pertinent to its intended use. First, the notion of affordance is addressed. To do this, we draw 

inspiration from Calder (2011) as a primary reference. Affordances are a “potential for action, the capacity 

of an environment or object to enable the intentions of the student within a particular problem situation” 

(Tanner & Jones, 2000, p. 78). We might consider them as the perceived opportunities offered through the 

pedagogical medium in relationship to the propensities and intentions of the user. Indeed, affordance implies 

the complementarity of the learner and the environment (Gibson, 1977).  

Calder (2011) elaborated that, as for Gibson (1977), affordances are a precondition for activity; they define 

potential, allowable actions between an environment or object and the person or animal acting. Affordances 

are not just abstract physical properties, but rather are the potential relationships between the user and the 

“artefact” (Brown, 1996). Indeed, affordances have been considered in general educational situations and 

are applicable wherever there is a relationship between an environment and a living entity. However, the 

existence of an affordance does not necessarily imply that an activity will occur. In a digital environment, 

affordances are the opportunities that the environment offers the learning process. Although the digital 

medium “exerts influence on the student’s approach, and hence the understanding that evolves, it is his/her 

existing knowledge that guides the way the technology is used and, in a sense, shapes the technology. The 

student’s engagement is influenced by the medium but also influences the medium (Hoyles & Noss, 2003).” 

(Calder & Campbell 2016, p 52).  

Given these considerations, it is illuminating to identify some key affordances in terms of the technological 

characteristics playing a pertinent role in the use of a medium. This approach is useful mainly for 

transformative media because enhancers are not designed to emphasize new types of interactions with a 

technology in connection to learning processes. For example, a traditional exerciser would not normally put 

emphasis on the ways in which an affordance is used by the learner; instead, it would try to minimize the 

importance of any special interaction by considering it a “noise” with respect to the purpose of the activity at 

hand, which is to solve the mathematical problem. Table 2 offers a set of example affordances, direct 

affordances (i.e., in terms of or in reference to technical specifications and indirect affordances (i.e., learning 

activities that are connected to technical features without the need to specify which ones in particular).  
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Table 2 Affordances of Digital Media 

AFFORDANCES OF DIGITAL MEDIA 

Direct Indirect 

• multiple interdependent representations 

(Sacristan & Noss, 2008) 

• dynamic manipulation (Granberg & Olsoon, 2015; 

Jackiw & Sinclair, 2006; Ruthven et al., 2008) 

• computer feedback  

• visualization (Villarreal, 2000) 

• exploratory and constructionist (Geraniou & 

Mavrikis, 2015) 

• offering deep structural access to students and 

teachers 

• low threshold, high ceiling  

• management of large amounts of realistic data  

• modeling of mathematical objects (geometrical–

algebraic graphical representations)  

• modeling of phenomena embedding mathematical 

properties, behaviors, and field properties 

(Gravemeijer, 2002) 

• modeling of socio-scientific issues, larger issues 

where mathematical ideas may reside  

 

• offering the possibility for multiple strategies  

• encouraging collaborative approaches, discourse, 

and argumentation around mathematical ideas  

• promoting accuracy, rigor, and economy of 

expression  

• promoting generalization  

• promoting conjecture building and proof  

• promoting constructionism (i.e., tinkering and 

changing of models by manipulating or redefining 

their constituent properties)  

• posing of problems  

• creating tension when learners get an unexpected 

output  

• fostering risk taking and experimentation (Calder, 

2011), allowing space for students to explore  

• imagining possibilities  

• integrating analytical thinking with more intuitive, 

creative approaches   

• formation of new teacher and learner communities 

• learning from feedback  

• observing patterns  

• seeing connections 

• working with dynamic images 

• exploring data 

• “teaching” the computer  
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5. The uses of digital media for enhancement and substitution: ITS for 

procedural knowledge in mathematics education 

The argumentation and framing of the potential uses of digital media for transformative education, has mainly 

been articulated by mathematics education researchers and theorists on mathematical teaching and 

learning. Other scientific communities, however, took educational practice at face value and as an 

unchanging given, focusing on the potential for digital technologies to enhance and augment traditional 

schooling. One community bases its approach on the behaviourist theorists Skinner (1953) and Thorndike 

(1898) and has done so since as early as the beginning of the twentieth century; another community has 

focused on the artificial intelligence community in the field of computer science. In both cases, the view of 

learning respectively perceives humans as dependent on responding to stimuli and as teaching as the 

intentional provision of stimuli designed to provide the right response. This is the view originally adopted by 

the field of artificial intelligence (AI). A founding application in the 1980s was called the PLATO system (see 

Hansen et al, 2013), which then developed into a variety of what were called intelligent tutoring systems (ITS). 

In mathematics education, this approach toward teaching and learning is best explained through its difference 

with transition-style approaches. Mavrikis and Holmes (2018) made a very clarifying distinction between ITS 

supporting procedural knowledge and transition-oriented exploratory learning environments supporting 

conceptual knowledge.  

5.1 Procedural vs. Conceptual knowledge and ITS 

Drawn from Hansen, Mavrikis, Mazziotti, and Rummel’s (2013) procedural knowledge in mathematics is the 

ability to apply procedures, that is, sequences of actions such as steps to solve a problem, the application of 

rules, and the routines leading to a solution (Rittle-Johnson & Alibali, 1999). Procedural knowledge becomes 

implicit with practice, and according to Skemp (1976), it does not require a deep understanding of the 

underlying concepts and is hence easy to apply in routine tasks; indeed, answers are quickly and reliably 

found, and students feel a sense of success when the answers are correct. Hansen et al. (2013) contrasted 

this to conceptual knowledge, that is, the deep understanding of principles and concepts underlying a 

mathematical domain (see also Fullan & Langworthy, 2014). Procedural knowledge is the type of 

mathematical knowledge that has traditionally been taught, supported, and assessed in schools all over the 

world.  

Procedural knowledge is thus acquired through repeated structured practice and a deepening of problem-

solving procedures (Polya, 1945). With the use of ITS, it is facilitated by the drill and practice of routine 

problems, with hints and feedback given in support of students’ procedural knowledge. Some ITS systems 

adapt task selection and feedback to the individual learners’ cognitive skills by employing models about the 

learners themselves.  

Hansen et al.’s (2013) summary of how ITS supports procedural knowledge in juxtaposition to how 

exploratory and constructionist learning environments support conceptual knowledge clearly sets the picture, 

as seen in figure 3.  
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According to this summary, MSØ is a system supporting procedural mathematical knowledge in a variety of 

mathematical domains, ranging from arithmetic and algebra to geometry.  

5.2 Data driven vs. knowledge engineering ITS 

There are various ways to implement an ITS. The two most common are a) based on knowledge engineering 

or b) driven by data. Mavrikis and Holmes (2019) reported that in knowledge engineering methods, a detailed 

analysis of the task is required, and this must be combined with an understanding of students’ common 

misconceptions, difficulties on a particular task, and so forth to design the hints and other feedback 

messages. This often requires involving experts, teachers, or other domain experts in what is commonly 

referred to as knowledge elicitation. There are several approaches to knowledge elicitation that can be 

combined with the general design approaches in the field, here recognizing the need for iterative, agile 

processes (e.g., Good & Robertson, 2006; Sharples et al., 2002 Conlon & Pain, 1996) and iterative theory 

development that can explain the phenomena of interest (DiSessa & Cobb, 2004).  

In data-driven methods, generalizable applicable techniques such as machine learning are used to help the 

system “learn” from past behaviours (e.g., to predict the score of a student based on past data that can help 

decide which task to provide next, for example, by giving one of the appropriate difficulties). For detailed 

reviews of recommender systems that support learning, the reader is referred to a recent review of the field 

(Drachsler et al., 2015). MSØ falls clearly under this category because it uses a generalized recommender 

system that provides feedback to the user and also adapts the sequence of tasks according to user answers 

to questions.  

Figure 3 ITS support of procedural and conceptual knowledge 
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5.3 Examples of ITS in Mathematics Education  

Some examples of ITS in mathematics education that are drawn from the iTalk2Learn project review 

deliverable (Hansen et al., 2013) provide the area of affordances of this kind of tool, including language 

recognition, hints, tutorials, and, in some cases, embedding an overall theme of mathematical application 

such as “Animal Watch.” In most cases, the ITS system is focused on a specific domain, especially when it is 

based on knowledge engineering, which requires deep expertise in mathematics education for its 

development.  

• Active Math1: “Rechnen mit Brüchen: Addition und Subtraktion”, Adding & Subtracting fractions. 

The LeActiveMath project introduced tutorial dialogues to some structured problems. Immediate 

feedback, hints, worked examples, and mostly structured tasks. Some exploratory applets are 

provides and it uses an Open Student Model    

• RM Reasoning Mind2: Fractions and Mixed Numbers. Allows problem selection within a topic. Tasks 

are just one part of a richer learning environment.  

• Animal Watch3: Fractions; Partly spoken feedback, spoken worked examples (2 avatars), 

Multimedia tutorial resources (from text explanations to worked examples and interactive solutions). 

Problem solving in context of endangered species and tracing of their life. Includes some interactive 

games. Problem selection and difficulty according to skills observed. Basic problem solving skills 

development for pre- algebra topics. Motivation through understanding how mathematics could be 

applied in the real world (Cohen, Beal, & Adams, 2008)     

• Cognitive Tutors®4 (in general):  Fractions Tutor and Math Tutor include relevant content. Some 

versions provide spoken task description. Uses a cognitive model to provide feedback to students 

as they are working through problems and uses ‘model tracing’ to monitor progress and provide 

immediate hints and solution when needed (Anderson, et al., 1990). Structured questions broken 

down into steps. 

• Ms. Lindquist5: Focuses on writing expressions for algebraic word problems using typed natural 

language interaction. Uses concrete example, explanations, worked examples, decomposition 

substitution (Heffernan, 2003) and word problems to algebra expressions.  

 

 

                                                        
1 http://leactivemath.org/index_id_1435.html  
2 http://www.reasoningmind.org/syllabus/syllabus.php?n=2 
3 http://animalwatch.arizona.edu/an  imalwatch_learning_objectives  
4 http://ctat.pact.cs.cmu.edu/  
5 http://www.cs.cmu.edu/~neil/examplePage.html  

http://leactivemath.org/index_id_1435.html
http://www.reasoningmind.org/syllabus/syllabus.php?n=2
http://animalwatch.arizona.edu/an
http://ctat.pact.cs.cmu.edu/
http://www.cs.cmu.edu/~neil/examplePage.html
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6. The most popular pedagogically principled solutions so far 

This section contains a selection of important examples of digital media that are mainly used for 

transformational learning (except for Kahn Academy). The list is by no means exclusive, and there are no 

doubt other important that have been media developed and are used around the world. The list is meant to 

provide the reader with a scope of the diversity and quality of such media and, at the same time, instances 

of media that can be then considered against the classifications and considerations outlined earlier. Details 

of each medium can be found on their respective site. Some of them have obtained accreditations of 

popularity nationally and internationally, while others are exemplary cases used in academic research.  

To begin with, there are three open source solutions that stand out because they have hitherto gained 

outstanding popularity, having millions of active users. All three have been developed under the open access 

sustainability model.  

• Kahn Academy (augmentation): Video tutorial explanations with exercisers embedding analytics. This 

is developed by one central team under Zalman Kahn, a mathematician at MIT who began by making 

tutorials for his niece. It has over 100 million users.  

• Scratch (redefinition): Programmable constructionist medium for building models and games. Based 

at the Media Lab at MIT, it was launched in 2007 and is a successor of LCSI microworlds pro. It has 

been developed and is supported by a development team at the media lab led by Mitch Resnick, the 

successor of S. Papert’s chair. It has over 30 million users and is meant to attract everyone into 

programming activity, offering users the potential to develop their own simulations and games. In 

recent years, it has specifically been considered and used for mathematical learning integrated with 

the learning of programming via a curriculum designed and implemented in more than 100 schools 

in the UK (Benton, Hoyles, Kalas & Noss, 2017). 

• Geogebra (modification): A dynamic manipulation medium for geometry, algebra, and models. It 

originated from students at the University of Linz and has now over 100 million users. It has a 

distributed development team.  

Other prominent pieces of digital media for mathematics education are as follows:  

• NETLOGO, https://ccl.northwestern.edu/netlogo/, a development team lead by Uri Willensky, 

focusing on the modelling of complex phenomena and based on the idea of parallel programming 

(redefinition).  

• Fathom, https://fathom.concord.org/, https://www.chartwellyorke.com/fathom.html. It was made by 

William Finzer; it is the best known tool for statistical investigations and large databases 

(modification). 

• Derive, https://www.chartwellyorke.com/derive.html. A well-established Computer Algebra Systems 

(CAS) from Canada (augmentation). 

https://ccl.northwestern.edu/netlogo/
https://www.chartwellyorke.com/fathom.html
https://www.chartwellyorke.com/derive.html
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• Maple, https://www.maplesoft.com/. Another well-established CAS advertised to provide 

affordances for system simulation, calculation management, and systems engineering 

(augmentation). 

• Stella, https://www.iseesystems.com/store/books/lessons-in-mathematics/. A CAS for algebra and 

calculus (augmentation). 

• Mathematica, https://www.wolframalpha.com/. A well-known programmable medium for algebra and 

calculus, mainly for undergraduate and postgraduate mathematics (modification). 

• Function Probe, https://dl.acm.org/citation.cfm?id=232036&dl=ACM&coll=DL. A lightweight tool for 

investigations around functions (modification); it was developed by a constructivist theoretician (J. 

Confrey) and A. Maloney. 

• Modellus, http://www.modellus.pt. A modeler of physical phenomena based on mathematical 

equations developed by V. Duarte Teodoro at the University of Lisbon (modification).  

• MaLT2, http://etl.ppp.uoa.gr/malt2. 3d Logo - Turtle Geometry tool integrating dynamic manipulation 

of variable values, made by C. Kynigos at the Educational Technology Lab, NK University of Athens 

(redefinition). 

• Tinkerplots, https://www.tinkerplots.com/. It is based on a proprietary sustainability model, affording 

investigations into data handling and statistics (modification). 

• Aplusix, https://www.chartwellyorke.com/aplusix/index.html. It is based on a proprietary 

sustainability model, a factorization speller based at the University of Grenoble; it was made by J.F. 

Nicaud (substitution). 

• Cabri Geometre, https://cabri.com/en/. It is based on a proprietary sustainability model, a very popular 

Dynamic Geometry Systems (DGS) system based at the University of Grenoble and originating from 

Collette Laborde and Jean Maria Laborde (modification). 

• Geometry Sketchpad, http://www.dynamicgeometry.com/. It is based on a proprietary sustainability 

model, an equally popular DGS originating from Sketchpad Technologies and Key Curriculum Press 

by Nicholas Jakiw (modification). 

• Autograph, http://www.autograph-maths.com. It is based on a proprietary sustainability model, a 

well-known CAS by Douglas Butler (augmentation). 

  

https://www.maplesoft.com/
https://www.iseesystems.com/store/books/lessons-in-mathematics/
https://www.wolframalpha.com/
https://dl.acm.org/citation.cfm?id=232036&dl=ACM&coll=DL
http://www.modellus.pt/
http://etl.ppp.uoa.gr/malt2
https://www.tinkerplots.com/
https://www.chartwellyorke.com/aplusix/index.html
https://cabri.com/en/
http://www.dynamicgeometry.com/
http://www.autograph-maths.com/
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7. Major temporal phases of digital solutions for mathematics education 

This section discusses a distinctly different angle to the question of what digital solutions to use for school 

mathematics and to what end, transformative or preservationist. It contains a review of the life and resilience 

of digital solutions in mathematics education given the wider temporal context involving changing 

sustainability models for such media and changing infrastructures for digital citizenship. An interesting review 

taking this angle can be found in Borba et al. (2017).  

Chronologically, the digital technologies designed to bring about added value in mathematics education first 

appeared early on. The first report of such use of technology was the ‘Brookline Logo Project’ in 1979, while 

the first application of the Logo programming language for engaging in mathematical constructionist thinking 

was announced earlier in 1969 and involved a computer giving commands to a robot vehicle; a screen version 

later appeared in 1972 (see, http://el.media.mit.edu/logo-foundation/what_is_logo/history.html).  

In the early 1980s, with the advent of personal computers, two widely different kinds of applications appeared. 

One was Logo-like constructionist software (see Kynigos et al., 1993; Jonassen, 1999) and the other was 

behaviourist computer-assisted instruction exercisers under the general characterization of computer-

assisted instruction. Very soon after, a next important phase came about with respect both to affordances 

and a pedagogical perspective. It was based on a representational affordance that acquired central kudos in 

mathematics education: dynamic manipulation (Hollebrands, 2003). This was first made available in the early 

1980s from two distinct sources, the Geometers’ Sketchpad from Nick Jakiw and Key Curriculum Press in 

California and the Cabri Geometre from the University of Grenoble, France. Graphic calculators were used 

for investigating functions. The affordances were quickly ported to computers in the form of digital media and 

have been maintained up until today (e.g., the “Desmos” web application, https://www.desmos.com/). All of 

the above solutions were perceived as products for sale accompanied by manuals and educational material. 

The sustainability model was a permutation of the classic revenue generation for the purchase of the product 

itself, while distribution was typically done through the shop, and the product itself was occasionally locked 

with a license for the number of devices it could be installed on (Desmos is an exception to this because it 

appeared very recently).  

The next phases were not necessarily based on affordances for mathematical expression per se but on more 

general advances in digital media affordances. The only exception was the advent of digital libraries 

consisting of learning objects, typically simulations in the form of interactive visualizations of a mathematical 

or physical object, or that have a setting with an embedded and narrowly defined mathematical concept or 

property. The main idea here came from the field of portal technology and was based on the accessibility, 

metadata, tagging, and user evaluation of such objects, including properties such as reusability. Typical 

examples of such libraries are the Multimedia Educational Resource for Learning and Online Teaching 

http://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://www.desmos.com/
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(MERLOT6,), the DME portal7 based at the Freudenthal Institute (Boon, 2006), the “Photodendro” portal8  of 

the Greek Ministry of Education, CTI-Diophantus , and the Khan Academy portal9 of short videos explaining 

mathematical concepts with exercisers and a student and teacher dashboard. 

Coming back to the phases following the advent of the Internet, enthusiastic attention was given to the idea 

of computer-assisted collaborative learning, which in the mathematics education community gave rise to 

theory on the reorganization of the ways a learner can communicate and perceive of engagement with 

mathematical thinking through communication and collaboration with others (Albert & Kim, 2013; Borba & 

Villareal, 2005; Hunter, 2010; Sinclair, 2005; Kynigos & Moustaki, 2013). This was followed by the social 

media revolution. In addition, mathematics education was also highly influenced by the advent of blended 

learning, distance learning, and then MOOCs (Massive Open Online Courses).  

  

                                                        
6 https://www.merlot.org  
7 https://www.numworx.nl/ 
8 http://dschool.edu.gr 
9 http://www.kahnacademy.org 

https://www.merlot.org/
https://www.numworx.nl/
http://dschool.edu.gr/
http://www.kahnacademy.org/
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8. Suggestions for comprehensive interventions in schooling  

MSØ is a system designed to support procedural mathematical knowledge in arithmetic, early algebra, and 

geometry. It is based on a general data-driven recommender system for feedback and adaptivity and has 

diverse, linked representations for mathematical meanings that are not always cohesive or carefully thought 

through from a mathematics education science point of view. It has the technical readiness of a commercial 

product and can operate robustly in schools and from home.  

Decisions on how to use this system in a real school situation and in a sustainable way, that is, not as a one-

off trial or short-term intervention, should not be made by the vendor, nor as a result of some marketing 

campaign, but rather should be done through a process generating a comprehensive school pedagogy for 

transformation in mathematics education. In each school and education system, this can be different 

depending on a large variety of factors. Also, a particular school operates in the continuity of time, so the 

process of transformation is not linear, and the contextual factors may continually change. Therefore, schools 

need primarily to be supported by educational policy to have the required mechanisms to generate and 

maintain their own agenda for mathematics education.  

To change the balance between transformative and preservationist educational practice, a double emphasis 

is needed a) on the quality of transformative practice, including the tools used and the social orchestration 

between students and teacher and b) on the improvement of the effectiveness of support for procedural 

knowledge to make time and space for transformational practices supporting conceptual knowledge and 

meaning-making. MSØ can be effectively used in b), provided this is a part of a wider mathematics education 

policy in each school.  

Overall, in each school, the hardest thing to consider changing is the set mathematics curriculum, the time 

slots in the week for dedicated mathematics work, and the assessment system, which mainly focuses on a 

diagnosis of the level of procedural knowledge in students. To meet with these restrictions on the 

transformative process, a number of alternative solutions are available and are broadly termed as “blended 

learning” (Christensen, Horn & Staker, 2013; Horn & Staker, 2011). Digital media can be used to support 

engagement with either procedural or meaning-making discursive activity at home and in hours outside the 

school day. This can make homework much more effective and free up face-to-face time in the classroom for 

activities that are an alternative to frontal teaching and exercising.  

Drawn from Christensen et al. (2013, p. 26), see table 3, there are a number of models for applying blended 

learning in a school to implement a hybrid innovation, that is, an innovation that may be initially disruptive but 

leading to sustainability. These models are the Rotation Model, the Flex Model, the A La Carte Model, and 

the Enriched Virtual Model. 
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ROTATION MODEL 

The rotation model is one in which within a given course or subject (e.g., math), the students rotate on a fixed 

schedule or at the teacher’s discretion between learning modalities, at least one of which is online learning. 

Other modalities might include activities such as small-group or full-class instruction, group projects, individual 

tutoring, and pencil-and-paper assignments. The rotation model has four submodels— station rotation, lab 

rotation, flipped classroom, and individual rotation—as follows: 

The station rotation model is one in which students rotate within a contained classroom. 

The lab rotation model is one in which the rotation occurs between a classroom and a learning lab for 

online learning. 

The flipped classroom model is one in which the rotation occurs between the school for face-to-face 

teacher-guided practice (or projects) and the home or another off-site location for online content and 

instruction (see also Eisenhut & Taylor, 2015; Triantagyllou & Timcenko, 2015). 

The individual rotation model differs from the other rotation models because each student has an 

individualized playlist and does not necessarily rotate to each available station or modality. 

FLEX MODEL 

The flex model is one in which online learning is the backbone of student learning, even if it directs students to 

offline activities at times. Students move on an individually customized, fluid schedule among learning modalities, 

and the teacher of record is on-site. 

A LA CARTE MODEL 

The a la carte model is one in which students take one or more courses entirely online with an online teacher of 

record and, at the same time, continue to have brick-and-mortar educational experiences. Students may take 

the online courses either on the brick-and-mortar campus or off-site. 

ENRICHED VIRTUAL MODEL 

The enriched virtual model is a whole-school experience in which within each course (e.g., math), students 

divide their time between attending a brick-and-mortar campus and learning remotely using online delivery of 

content and instruction.  

 

Hence, within each school, a model needs to be built and sustained on how to use technology to make 

procedural learning more effective so as to make time for what’s more difficult to achieve yet is more 

important: meaning-making and exploratory and discursive learning. In this context, time will be made for 

students to work with expressive mathematical media such as Scratch, Geogebra, and MaLT2, and to gain 

experience in discursive activities, including the elaboration of a mathematical language to communicate 

ideas and concepts. This is crucial and will be achieved by means of the in-service education of teachers in 

the pedagogy of employing such media for transformative mathematics. The time for students to engage in 

Table 3 Models for applying blended learning (adapted from Christensen et al., 2013, p. 26) 
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this activity can be greatly enhanced by making the necessary procedural knowledge acquisition more 

effective through using video tutorials such as the Kahn Academy infrastructure and exercisers such as MSØ.  

Importantly, the corporate sector can contribute by developing technically robust solutions for both 

transformative and procedural approaches. However, in each case, silo solutions should be avoided, i.e. 

marketing the use of one specific vendor product. Instead, vendor products should be marketed as part of 

more comprehensive solutions that will inevitably comprise digital artifacts and tools that are either freely or 

commercially available not only by the company at hand, but also by other companies or research centres, 

such as the MIT Media Lab. New collaborations between companies and between companies and research 

institutions are necessary to provide schools with comprehensive avenues for transformative mathematics 

education. Otherwise, schools will be exposed to diverse chaotic marketing that conveys a fragmented 

picture of how technology can assist the teaching and learning of mathematics. In effect, this will be ultimately 

unsustainable, and schools will soon drop the use of such tools or engage in unwanted skewing of their 

educational services toward partial or ineffective solutions.  
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