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Abstract

Abrupt changes in Earth’s climate have occurred repeatedly throughout the geological
record. Evidence from paleoclimate data has revealed that climate changed most dra-
matically during the last glacial period, associated with the Dansgaard-Oeschger (D-O)
events. These are characterized by large and rapid fluctuations in North Atlantic cli-
mate, with regional warming of up to 15◦C over Greenland, within a few decades. The
main hypotheses for these abrupt climate changes in the past, centers around changes
in the Atlantic Meridional Overturning Circulation (AMOC) and its influence on pole-
ward ocean heat transport. Recently, the role of sea ice has also been recognized as a
critical player for the D-O events; linking the abrupt changes in Greenland temperature
to a retreat of Northern Hemisphere sea ice, driven by internal variability of the cou-
pled ice-ocean and atmosphere system. However, the mechanism for triggering rapid
changes in sea ice, and how it is linked to ocean circulation changes, remains elusive.

This thesis focuses on the interaction between ocean circulation, sea ice and high-
latitude climate in the context of abrupt climate changes in the past. The main goal
is to improve our understanding of how internal dynamics of the coupled climate sys-
tem can lead to rapid and unforced changes in climate. The first part of this thesis
explores the mechanism behind abrupt changes in sea ice by studying the formation of
open-ocean polynyas in the Southern Ocean. The second and third part, focuses on the
dynamics of large-scale ocean circulation and its sensitivity to ocean bathymetry and
the distribution of diapycnal mixing in the ocean interior.

We find that open-ocean polynyas in the Southern Ocean provide a mechanism to trig-
ger abrupt sea ice retreat, similar to that seen during the last glacial period. These
events drive increased bottom water formation, thereby impacting the large-scale ocean
circulation. The formation of the polynya is preconditioned by a gradual build-up of
subsurface heat and salt beneath the ice cover. This destabilizes the water column, trig-
gering enhanced vertical mixing and causing the polynya to open. Our findings suggest
that open-ocean polynyas, driven by internal ocean-sea ice dynamics, may play a fun-
damental role in abrupt climate changes such as D-O events.

It is demonstrated that ocean basin geometry has a major impact on ocean circulation.
In particular, the presence of the Greenland-Scotland Ridge affects the location of deep
water formation and plays a fundamental role in shaping the AMOC and high-latitude
climate. Interestingly, the strength of the AMOC at 26◦N is largely decoupled from
deep water formation north of the ridge, and the AMOC plays a relatively small role in
transporting heat northward across the Greenland-Scotland Ridge. This calls into ques-
tion the role of the AMOC as the main driver of past abrupt changes in high latitude
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climate.

Finally, the distribution and magnitude of vertical mixing in the ocean is found to play
a central role in the stability of the coupled climate system and for the existence of the
D-O events. Unforced and self-sustained «DO-like» oscillations can occur when ther-
mocline mixing is low and the AMOC is reduced, allowing heat to accumulate below
the sea ice, thereby preconditioning the system for an abrupt change. In addition, we
find that changes in the abyssal mixing do not have a large impact on AMOC strength
and surface climate.

In summary, the results presented in this thesis confirm that ocean circulation has
played a persistent and central role in abrupt climate change in the past, but emphasizes
that variations in AMOC strength might not be the main trigger. In addition, the thesis
highlights changes in sea ice as a necessary condition to drive large and rapid changes
in high latitude climate. Such changes may occur in response to unforced and self-
sustained oscillations of the coupled atmosphere-ocean-sea ice system, demonstrating
that abrupt climate change can occur without being subject to large external forcing.
This has important implications for predicting future abrupt changes in climate as a re-
sponse to anthropogenic forcing, noting that the dynamics of abrupt changes as seen in
the past can also operate in a warming climate.
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Chapter 1

Introduction

Large and abrupt changes in earth’s climate have occurred repeatedly throughout the
geological record, with regional temperature changes up to 16◦C in a matter of only 10
years or less. Evidence from the paleo record suggests that such climate changes in-
volve the entire coupled climate system, including atmosphere and ocean circulation,
the cryosphere and biological systems. A central question of present climate research
is whether such abrupt changes in climate might occur in the future and if their like-
lihood increases as the climate continues to warm. Meanwhile, the mechanisms that
lead to such rapid changes in the past is not yet fully understood, and makes predicting
the impact of potential abrupt change in the future difficult. The current generation of
state-of-the-art climate models, similar to those used for making projections of future
climate, typically underestimate the magnitude and abruptness of these past changes
(Seager and Battisti, 2007). Hence, an increased understanding of the possible drivers
of past abrupt climate change and their impacts, is crucial to improve climate predic-
tions and asses the likelihood of rapid and potentially catastrophic changes occurring
in the future.

Recent scientific evidence emerging from research over the past decade, have shown
that non-linear abrupt climate change can occur even due to slow, gradual forcing such
as continental drift or orbital forcing, pushing the earth system across a critical thresh-
old or “tipping point” (e.g., Rose et al., 2013; Stärz et al., 2017). The mechanisms
that causes the climate system to transition into a new state may have natural causes
(e.g. changes in solar insolation, or even stochastic processes internal to the climate
system) or could be triggered by human-induced alterations of the earth system (e.g.
greenhouse-gas emissions). Hence, the rapid increase in greenhouse gases and the on-
going global warming may increase the probability of crossing such a threshold and
trigger large and abrupt climate shifts in the future (Broecker, 1997; National Research
Council, 2002). If such changes occur too rapidly and unexpectedly, societal and eco-
logical systems will have trouble adapting and could have catastrophic consequences
for e.g., agriculture and food availability.

Observations from the historical record reveals that abrupt shifts in regional climate al-
ready occurs as a consequence of human-induced forcing of the climate system and
share many of the same features as those observed in the past (Voelker, 2002). In the
Arctic regions, in particular, the impacts of anthropogenic climate change is more evi-
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dent than anywhere else on the globe due to the decline of Arctic sea ice (Holland and
Bitz, 2003). In recent decades, the Arctic has experienced unprecedented sea ice loss
and surface warming (e.g., Serreze et al., 2007; Stroeve et al., 2012). The abruptness
and magnitude of the ongoing Arctic warming is not unlike those observed during the
last glacial period (Jansen et al., 2019). Climate model projections into the near-future
forecasts summer Arctic ice-free conditions by the year 2050 (Holland et al., 2006;
Smedsrud et al., 2008), with the possibility of a critical threshold causing a rapid and
complete disappearance of the Arctic sea ice cover (Eisenman and Wettlaufer, 2009).
Understanding how the ongoing changes in Arctic sea ice can trigger non-linear and
abrupt changes in future climate is of major concern, and requires an increased under-
standing of the ocean-atmosphere interactions underlying these changes as well as their
impacts outside the polar regions.

To put these recent changes in perspective, it is instructive to look into the paleoclimate
record, where the earth system is unperturbed by human activity, thereby offering crit-
ical information about the role of natural climate variability in abrupt climate change.
This chapter gives a brief overview of what is known about abrupt climate change in
the past inferred from the paleoclimate record, focusing in particular on the abrupt cli-
mate fluctuations in the North Atlantic region during the last glacial period (section 1.1)
and introduces some of the main hypotheses that have been invoked to explain them.
Section 1.2 focuses on the link between large-scale ocean circulation and glacial cli-
mate variability, while section 1.3 introduces the role of sea ice as a potential trigger
for abrupt climate change.

1.1 Abrupt climate change in the past

During the last glacial period (60-27 ka; also known as Marine Isotope Stage 3, MIS
3) climate was much more variable compared with the warm and stable climate of the
Holocene. This is evident in the δ 18O record from Greenland ice cores, which shows
that North Atlantic climate fluctuated between cold (stadial) and relatively warm (in-
terstadial) conditions (Fig. 1.1). These fluctuations are known as Dansgaard-Oeschger
(D-O) events and can be identified as abrupt transitions between stadial and intersta-
dial conditions occurring 25 times throughout the last glacial period (Rasmussen et al.,
2014; Wolff et al., 2010). The D-O cycle is characterized by an abrupt warming from
stadial to interstadial conditions with an amplitude varying from 5◦C and 16◦C com-
pleted in a few decades. This is followed by a slow cooling on a centennial timescale
back to stadial conditions (Landais et al., 2004; Lang et al., 1999). This characteristic
"saw-tooth" shape of the D-O cycle, with abrupt warming followed by gradual cooling,
is a prominent feature of glacial climate variability and presents an essential clue to un-
derstand the dynamics underlying them (Seager and Battisti, 2007).

Evidence from different paleoclimate archives around the globe suggest that the dra-
matic and abrupt changes documented in the Greenland ice cores was not only confined
to the North Atlantic region, but had a global footprint seen as large-scale changes
in precipitation patterns, surface air temperature, wind-stress and atmospheric green-
house gas concentrations (see e.g., Clement and Peterson, 2008; Voelker, 2002, for a
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Figure 1.1: Profiles of δ 18O recorded in Greenland ice cores for the last 123,000 years. The
δ 18O record is a proxy for surface temperature and offers a unique insight into Greenland
climate during the last glacial period, which is characterized by rapid fluctuations between
warm and cold conditions known as Dansgaard-Oeschger events. Source: Centre for Ice and
Climate (2008)

review). For example, ice core records from Antarctica show a similar, but out-of-
phase temperature response compared to Greenland (Barbante et al., 2006), indicating
an antiphase coupling between the northern and southern hemisphere on centennial
timescales known as the bipolar see-saw (see Pedro et al. (2018) for a review).

Over the past decades, considerable progress has been made in understanding the origin
of the D-O events. In the following, some of the proposed mechanisms for explaining
the rapid fluctuations in glacial climate will be discussed in more detail.

1.2 The Atlantic Meridional Overturning Circulation and abrupt cli-
mate change

The Atlantic Meridional Overturning Circulation (AMOC) consists of two overturn-
ing cells: an upper cell associated with a northward flow of relative warm surface
waters, which sinks at high latitudes forming North Atlantic Deep Water (NADW),
returning as a southward flow at depth and; a lower cell representing the northward
flow of cold, dense Antarctic Bottom Water (AABW) formed in the Southern Ocean
(Kuhlbrodt et al., 2007). This is shown in Fig. 1.2a, illustrating the global overturn-
ing circulation. Because the upper overturning cell spans a large temperature gradient
between the surface and the deep ocean, it transports a large amount of heat from the
tropics to the northern high latitudes, thus playing a key role for the global energy bud-
get and especially North Atlantic climate (Buckley and Marshall, 2015).

The northern branch of the AMOC regulates the poleward transport of heat and salt
to the Nordic Seas and Arctic Ocean via the Atlantic inflow. In the present climate
about 2/3 of the Atlantic inflow can be attributed to an overturning circulation, associ-
ated with deep water formation in the Nordic Seas (Eldevik et al., 2013). These cold,
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Figure 1.2: (a) Simplified schematic of the global overturning circulation, showing the main
flow patterns associated with the large-scale ocean circulation and deep water formation sites.
(b) Conceptual model of the three hypothesized states of the Atlantic meridional overturning
circulation (AMOC) in last glacial period. Shown is a section along the Atlantic; the rise
in bottom topography symbolizes the shallow sill between Greenland and Scotland (i.e. the
Greenland-Scotland Ridge). North Atlantic overturning is shown by the red line, Antarctic
bottom water by the blue line. Modified from (Rahmstorf, 2002).

dense waters subsequently spill over the Greenland-Scotland Ridge (GSR) and into the
North Atlantic, where it mixes and entrains relatively warm ambient waters, contribut-
ing to the southward volume transport of NADW (see Hansen and Østerhus (2000)
and Furevik et al. (2007) for a comprehensive review). Here, the GSR represents a
topographic barrier that constricts the exchange between the North Atlantic and high
latitudes thereby modulating the Nordic Seas overflow and potentially AMOC strength.
As a consequence, variations in the depth of the GSR, is thought to have played a cen-
tral role in the long-term evolution of North Atlantic and global climate (e.g., Stärz
et al., 2017; Uenzelmann-Neben and Gruetzner, 2018). Meanwhile, roughly 1/3 of the
Atlantic inflow occurs via a freshwater-sustained eustarine circulation, which leaves
with the East Greenland Current and is independent of deep water formation at high
latitudes (Eldevik et al., 2013).

Due to its control on the meridional heat transport, variations in the strength of the
AMOC has long been the prevailing explanation for the abrupt changes in North At-
lantic climate of the last glacial period (see e.g., Clark et al., 2002; Rahmstorf, 2002, for
a review). In this traditional view, the AMOC exhibits a bi-stability with three different
modes of operation over the last glacial cycle (Fig. 1.2b): a warm mode typical of the
interstadials, characterized by a strong and deep AMOC with dense water formation in
the Nordic Seas; a cold mode with a shallower and weaker circulation which prevailed
during the stadials, where deep water formation occurred through open-ocean convec-
tion in the subpolar North Atlantic; and finally an off (or Heinrich) mode which fol-
lowed after large freshwater input typically during Heinrich stadials (Heinrich, 1988).
The existence of these different AMOC modes of the last glacial is largely based on
ocean sediment records (e.g., Henry et al., 2016; Lynch-Stieglitz, 2016).
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Transitions between stadial and interstadial conditions is thought to arise from abruptly
switching between cold and warm circulation states, associated with latitude shifts in
the location of deep water formation (Dokken and Jansen, 1999). Traditionally, fresh-
water perturbations are invoked to trigger transitions between the two AMOC states
by weakening or shutting down NADW formation. This has long been motivated by
the occurrence of ice-rafted debris (IRD) in marine sediment cores, indicating periodic
iceberg discharge into the North Atlantic from the surrounding ice sheets during the
cold phase of the D-O cycle (Bond et al., 1995; Broecker, 1994; Heinrich, 1988). Such
ice rafting events may arise due to internal ice-sheet oscillations (MacAyeal, 1993) or
ice-shelf instabilities driven by ocean subsurface warming (Marcott et al., 2011; Shaf-
fer et al., 2004). The concept described by Broecker (1994), suggests that introducing
large amounts of freshwater from melting icebergs into the North Atlantic results in a
disruption of deep-water formation and leads to a weakening or even complete collapse
of the thermohaline circulation. As a consequence, the northward ocean heat transport
is reduced and causes a strong cooling of the Northern Hemisphere.

The idea that the AMOC is bi-stable and may switch in response to anomalous fresh-
water forcing, is supported by early conceptual and simple models first described by
Stommel (1961). Over the past couple of decades, this inspired several "water-hosing"
experiments with ocean and fully-coupled climate models (e.g., Ganopolski and Rahm-
storf, 2001; Manabe et al., 1995; Stouffer et al., 2006), which confirm that a large fresh-
water input to the North Atlantic can trigger AMOC shut-down and drive widespread
cooling of the high-latitude surface ocean in agreement with proxy data. However,
the spatial imprint of the AMOC response varies substantially between models and is
mostly confined to the North Atlantic region (e.g., Kageyama et al., 2013). Other mod-
els have demonstrated that AMOC weakening can also be attained by adding freshwa-
ter in the Southern Ocean, through the bipolar see-saw mechanism (e.g., Swingedouw
et al., 2009).

Meanwhile, proxy-data indicate that large reductions in AMOC strength only occurred
during Heinrich stadials (Lynch-Stieglitz, 2016), and the evidence for large AMOC
changes during the D-O events is less clear. Several recent studies have thus ques-
tioned the role of the AMOC as the main trigger for D-O events (e.g., Barker et al.,
2015; Clement and Peterson, 2008; Seager and Battisti, 2007; Wunsch, 2006). Seager
and Battisti (2007) pointed out that the amount of freshwater used in most state-of-the-
art climate models (e.g., Cheng et al., 2007) to obtain D-O warming or cooling events
is unrealistic. Models using a more realistic amount (e.g., Stouffer et al., 2006), show
a more modest AMOC weakening and produce a surface climate response that is much
weaker than suggested by the proxy data. In addition, the hosing experiments does
not seem to capture the abrupt warming at the stadial-interstadial transition, which is
characteristic of the D-O cycle (Seager and Battisti, 2007). The second issue, is con-
nected to the timing of the surface climate transition relative to the changes in AMOC
and ice-rafting events. A recent proxy-based study by Barker et al. (2015) revealed
that the input of freshwater, derived from melting icebergs, systematically lags the on-
set of North Atlantic cooling, and concluded that icebergs do not trigger cold events
in the North Atlantic. Similarly, Marcott et al. (2011) found that the arrival of ice-
bergs (i.e. the Heinrich event) is preceded by an AMOC slowdown by about 1,000
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years. This questions the causality between past AMOC changes and meltwater dis-
charge from Northern Hemisphere ice sheets as the primary trigger for D-O events,
and suggests that other mechanisms must be involved to explain the abrupt changes in
North Atlantic climate. Nevertheless, the freshwater input probably plays a big role in
setting the timescale of the D-O cycles by prolonging and amplifying stadial conditions.

Alternatively, some models have suggested that self-sustained oscillations between
warm and cold AMOC states can occur without invoking external freshwater pertur-
bations, but are instead caused by internal variations in the North Atlantic heat and
freshwater transports (de Verdière and Raa, 2010; Loving and Vallis, 2005; Wang and
Mysak, 2006). Such oscillations strongly depend on the background climate state (e.g.
Li and Born, 2019; Schmittner et al., 2003; Tziperman, 1997), and may be sensitive to
ice-sheet and CO2 configurations (Klockmann et al., 2018), which could explain why
D-O events only occur under very specific glacial boundary conditions (VanMeerbeeck
et al., 2009). To understand how such oscillations may arise, it is instructive to review
the mechanisms that drive the overturning circulation.

1.2.1 Drivers of the AMOC

Although changes in deep water formation in the North Atlantic has received most at-
tention in connection to abrupt climate change (Rahmstorf, 2002), other factors may be
important for modulating AMOC strength in the past. Currently, the global meridional
overturning circulation (MOC) is considered to be driven by two main processes: di-
apycnal mixing of heat and salt in the ocean interior; and wind-driven upwelling in the
Southern Ocean. Meanwhile, the formation of dense waters at high latitudes largely de-
termines the properties of the circulation (Kuhlbrodt et al., 2007; Wunsch and Ferrari,
2004).

Diapycnal mixing

Diapycnal mixing provides the energy to mix dense water masses, formed through
high-latitude convection, across the deep stratification thereby controlling the rate of
which bottom water is raised through upwelling into the low latitude thermocline
(Munk, 1966). Warm surface waters are subsequently advected polewards into high lat-
itudes, where it is transformed into deep waters by surface buoyancy forcing, thus clos-
ing the overturning loop (Stommel and Arons, 1959). This concept has been confirmed
by model simulations (e.g. Bryan, 1987; Jayne, 2009; Scott and Marotzke, 2002), high-
lighting the role of diapycnal mixing in determining the strength of the MOC and its
implications for past climate variability (Nilsson et al., 2003; Schmittner et al., 2015).

Based on tracer observations from the Pacific Ocean, Munk (1966) estimated a con-
stant value of 1.3× 10−4m2 s−1 for the vertical diffusivity (κv) in the modern ocean.
More recent observations have shown that vertical mixing is non-uniform, but varies
both temporally and spatially (Munk and Wunsch, 1998; Polzin et al., 1997). Mixing is
generally weak in the main thermocline and increases towards the bottom, where inter-
nal waves generated by the tides interact with the bottom topography and values as high
as 10−3m2 s−1 has been observed (Polzin et al., 1997). During the last glacial period,
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on the other hand, the distribution of diapycnal mixing may have been significantly dif-
ferent due to a lower sea level relative to present, with potentially large consequences
for the MOC and glacial surface climate (e.g., Green et al., 2009). However, there is
still no clear consensus on the relationship between vertical mixing and glacial ocean
circulation (Schmittner et al., 2015).

Southern Ocean winds

The second mechanism is wind-induced upwelling in the Southern Ocean proposed by
Toggweiler and Samuels (1995). Based on observations, they argued that the amount
of interior mixing is insufficient to maintain the observed overturning circulation of
15-20 Sv in the Atlantic ocean. Thus, an additional source of energy is required to
close the overturning loop, which is provided by the strong Southern Hemisphere west-
erly winds, driving upwelling of deep waters formed in the North Atlantic. Due to a
northward Ekman transport in the Southern Ocean, cold surface waters are forced equa-
torwards and is balanced by a poleward flow of deep water. In this view, the strength of
the overturning is largely determined by the magnitude of the Southern Ocean winds,
while the distribution of surface buoyancy fluxes and sea ice in the upwelling region
has a big impact on its structure (Ferrari et al., 2014; Jansen and Nadeau, 2016).

While the relative contributions from Southern Ocean winds and diapycnal mixing re-
mains poorly constrained, the current understanding is that both processes are important
for maintaining the global overturning circulation (Kuhlbrodt et al., 2007; Marshall and
Speer, 2012). Hence, both of these processes, in addition to changes in high-latitude
deep water formation, are likely to have contributed to abrupt AMOC changes in the
past (e.g., Nilsson et al., 2003; Wunsch, 2006).

1.3 The sea ice hypothesis for stadial-interstadial transitions

An alternative hypothesis relates the Dansgaard-Oeschger events to spontaneous and
self-sustained oscillations in glacial climate, building on the concept of multiple equi-
libria of the climate system (e.g., Ferreira et al., 2018, 2011). As opposed to being exter-
nally forced, i.e. by freshwater or some other external forcing, models have shown that
abrupt changes may arise from internal variability of the coupled ocean-atmosphere-
sea ice system (Broecker et al., 1990; de Verdière and Raa, 2010; Peltier and Vettoretti,
2014), and may even occur under pre-industrial boundary conditions (e.g., Kleppin
et al., 2015; Martin et al., 2015). The existence of these internal oscillations is strongly
linked to changes in the Northern Hemisphere sea ice cover.

1.3.1 Evidence from proxies and models

Recent proxy-based and numerical studies have shown that periodic retreat and ad-
vance of sea ice in Nordic Seas and North Atlantic play a critical role in driving the
abrupt warming in Greenland temperature associated with the D-O events (Broecker,
2000; Dokken et al., 2013; Gildor and Tziperman, 2003; Hoff et al., 2016; Li et al.,
2010, 2005). Based on a high-resolution sediment core from the Norwegian margin,
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Figure 1.3: Schematic adapted from Dokken et al. (2013), illustrating the connection between
stadial-interstadial transitions and intrinsic changes in Nordic Seas sea ice cover. Stadial: Dur-
ing stadial conditions the Nordic Seas are ice-covered and oceanic heat accumulates beneath
the sea ice. Deep convection is absent. Interstadial: The build up of subsurface heat triggers
convective overturning and leads to abrupt sea ice retreat, surface warming and active deep
convection in the Nordic Seas.

Dokken et al. (2013) suggest that interstadial and stadial phases of the D-O cycle are as-
sociated with fluctuations between relatively ice-free and fully ice-covered conditions
in the Nordic Seas, illustrated in Fig. 1.3. During cold stadial conditions the Nordic
Seas are covered by an extensive sea ice cover, maintained by the presence of a strong
halocline. As the stadial phase progresses warm Atlantic waters gradually accumulates
beneath the ice cover (Fig. 1.3; left hand side). Eventually, the subsurface warming
destabilizes the water column, oceanic heat is rapidly mixed up into the surface layer,
causing sea ice to retreat and marks the transition to interstadial conditions (Fig. 1.3;
right hand side). The hypothesis proposed by Dokken et al. (2013) suggest that the
subsurface warming plays a critical role for triggering stadial-interstadial transitions,
and relies on ocean-sea ice interactions intrinsic to the Nordic Seas and are thus inde-
pendent of large-scale ocean circulation changes. This concept is confirmed by model
simulations from Li et al. (2005), who showed that removing sea ice in the Nordic Seas
can drive warming up to 10◦C on Greenland on a timescale consistent with the ice core
data. Li et al. (2010) further showed that removing sea ice in the Nordic Seas produced
a significantly greater warming on Greenland, compared to when sea ice is removed in
the western North Atlantic.

Displacements in the Northern Hemisphere sea ice cover between stadials and intersta-
dials also affected deep water formation (Dokken and Jansen, 1999; Ezat et al., 2014;
Rasmussen and Thomsen, 2004), providing a possible link between changes in sea
ice and the different AMOC states illustrated in Fig. 1.2. During warm interstadi-
als, conditions were similar to today with deep-water formation through open-ocean
convection in the Nordic Seas, which contributes with a relatively large heat transport
to the northern high latitudes. The subsequent mixing and entrainment of the Nordic
Seas overflow downstream of the GSR provides a significant fraction to the volume
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transport of the AMOC’s lower limb (e.g. Hansen and Østerhus, 2000), thus maintain-
ing a strong AMOC. In contrast, during stadials the presence of sea ice in the Nordic
Seas and northern North Atlantic would have reduced ocean-atmosphere heat loss, and
deep-water formation shifted to the south of the GSR (Dokken and Jansen, 1999). Con-
sequently, the outflow from the Nordic Seas may have ceased (e.g., Rasmussen and
Thomsen, 2004), which likely contributed to a reduced heat transport across the GSR
as well (Sadatzki et al., 2019a). Furthermore, this may have lead to a weakening of
the AMOC during the stadial phase. However, the connection between the Nordic Seas
overflow and AMOC strength remains heavily debated, and at present no conclusive
evidence linking the two exists (e.g. Lozier et al., 2017; Moffa-Sanchez et al., 2015).
Alternatively, changes in wind-stress induced by displacements in sea ice may also af-
fect large-scale ocean circulation through interactions with the subpolar gyre (Li and
Born, 2019).

Several other mechanisms for triggering the abrupt sea ice retreat in the Nordic Seas
have been proposed including for example; changes in the subpolar gyre circulation
triggered by stochastic atmospheric forcing from the tropical Pacific (Kleppin et al.,
2015); wind stress changes (Li et al., 2005); a salt-oscillator in the North Atlantic
(Broecker et al., 1990; Peltier and Vettoretti, 2014) and ice-shelf instabilities induced
by subsurface ocean warming (Petersen et al., 2013). In addition, recent numerical
modeling studies by Vettoretti and Peltier (2016, 2018) have shown, that the rapid re-
treat of sea ice at the onset of the D-O warming phase may be initialized by large open-
ings within the extensive North Atlantic sea ice cover, known as open-ocean polynyas.
These studies indicate that open-ocean polynyas could be an integral part of glacial cli-
mate variability. Hence, understanding how and why these polynyas form in the present
day ocean can provide useful insight to the dynamics of the abrupt sea ice changes, that
occurred during the last glacial period.

1.3.2 Polynyas and abrupt climate change

A polynya is defined as an ice-free area surrounded by sea ice and typically ranges in
size from 10 to 105 km2 (Morales Maqueda et al., 2004). Generally, we differentiate
between two types of polynyas; latent heat (coastal) polynyas and sensible heat (open-
ocean) polynyas, illustrated in Fig. 1.4.

Latent heat polynyas are mechanically driven and are typically found along the coast
of the Antarctic continent, mainly in the Weddell and Ross Seas and over the continen-
tal shelves in the Arctic (Martin et al., 1998; Skogseth et al., 2004). They are created
by local offshore (i.e. katabatic) winds pushing newly formed sea ice away from coast,
resulting in more sea ice formation and brine rejection associated with freezing of sea
ice. In Antarctica, the cold and saline waters formed within coastal polynyas descend
over the continental slope as gravity currents, entraining the ambient warm deep waters
along the way. This process, known as continental shelf slope convection, is the dom-
inant contributor to the formation of AABW in the present climate (Killworth, 1983;
Orsi et al., 1999). In the Arctic, the brine release in coastal polynyas are important for
maintaining the Arctic halocline and stratification (e.g., Cavalieri and Martin, 1994),
and may have played a central role for the stability of the Nordic Seas ice cover during
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Figure 1.4: Schematic showing the two types of polynyas; latent heat (coastal) polynyas and
sensible heat (open-ocean) polynyas and the processes that causes them to form. Credit: Celine
Heuze (Heuze, 2016)

stadial times (Singh et al., 2014). In addition, coastal polynyas are important for Arctic
and Antarctic ecosystems as well (e.g., Deibel and Daly, 2007; Labrousse et al., 2018;
Morales Maqueda et al., 2004).

Sensible heat polynyas, on the other hand, form away from the continental shelf in
open-ocean regions mainly around Antarctica. These so-called open-ocean polynyas
are formed by thermodynamic processes, when relatively warm subsurface water
(which originates from the NADW) is injected into the surface layer causing sea ice
to melt or preventing it from forming (Fig. 1.4). In the absence of the protective sea ice
cover, the intense cooling at the air-sea interface causes surface waters to sink, forming
deep convective plumes that extend into the abyssal ocean. This provides a highly ef-
fective way of ventilating the deep and bottom waters in the Southern Ocean (Hirabara
et al., 2012; Wang et al., 2016; Zanowski et al., 2015), which plays an important role
in maintaining the global thermohaline circulation (Marotzke, 2000; Rahmstorf, 2002).
The processes of open-ocean polynya formation can be summarized as follows: 1)
preconditioning due to subsurface heat build-up below the sea ice and weak stratifica-
tion; 2) destabilization of the water column; 3) polynya formation due to upwelling of
relatively warm deep water; 4) open-ocean deep convection driven by intense surface
cooling; and 5) cessation of deep convection and closing of the polynya (Cheon et al.,
2017; Gordon, 1982; Martinson et al., 1981).

Open-ocean polynyas are a relatively unusual feature in the present climate system.
A persistent, large-scale open-ocean polynya has only been observed once during the
mid-1970’s in the Weddell Sea (Gordon and Comiso, 1988). This is known as the Wed-
dell Polynya (250,000 - 300,000 km2 in size), which persisted from 1974 to 1976 and
triggered deep-reaching convection down to ∼3000 m depth with significant impact on
Weddell Sea water mass properties and AABW (Gordon, 1982; Robertson et al., 2002;
Zanowski and Hallberg, 2017; Zanowski et al., 2015). Subsequently, a polynya of the
same size has not been observed, although smaller and short-term polynyas have oc-
curred over Maud Rise (a seamount located in the eastern Weddell Sea) latest in 2016
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and 2017 (e.g., Francis et al., 2019; Smedsrud, 2005; Swart et al., 2018).

In a recent modeling study, de Lavergne et al. (2014) suggested that the cessation of
open-ocean deep convection in theWeddell Sea since the 1970’s can be attributed to en-
hanced surface freshening of the Southern Ocean due to anthropogenic climate change.
This, in turn, implies that open-ocean polynyas would have been more frequent in the
past under pre-industrial conditions and may even have been the dominant mode of
AABW formation (Gordon, 2014). Increased surface freshening acts to strengthen the
stratification (i.e. the pycnocline) that separates the relatively warm and saline deep
water from the cold and fresh surface layer, and prevents polynyas from forming. Pro-
jections of climate models suggest that this effect will increase in the future due to
increased melt from the Antarctic ice sheet as well as an enhanced hydrological cycle
(de Lavergne et al., 2014).

Several mechanisms have been proposed for triggering the upwelling of warm deep
water leading to the formation of the Weddell Polynya including; wind-driven up-
welling of warm water in the Weddell Gyre through changes in the Southern Hemi-
sphere westerlies (Campbell et al., 2019; Cheon et al., 2017, 2015; Francis et al., 2019),
topographic induced eddy activity at Maud Rise (Cheon and Gordon, 2019; Holland,
2000), and changes in atmospheric conditions affecting freshwater budget and sea ice
formation (de Lavergne et al., 2014; Gordon et al., 2007). In addition, a number of
ocean and fully-coupled climate models have demonstrated that open-ocean polynyas
can arise from internal variability of the ocean-sea ice system occurring on a range of
different timescales (Dufour et al., 2017; Martin et al., 2013; Reintges et al., 2017).
In these models, subsurface heat slowly accumulates at intermediate depths and even-
tually destabilizes the water column triggering spontaneous open-ocean convection.
Convection remains active until the subsurface heat reservoir is depleted, after which
the polynya closes and heat starts accumulating again, thus reflecting a cycle between
convective and non-convective phases of Southern Ocean deep ventilation. However,
observational records remain too short to asses if these convective cycles are part of a
natural oscillation of the climate system (Campbell et al., 2019).

The mechanism described above has many similarities with the Dokken et al. (2013)
hypothesis, in which warm Atlantic waters accumulate below the Nordic Seas ice cover
until it is subsequently released, triggering rapid sea ice loss, surface warming and en-
hanced deep-ocean ventilation (i.e. Fig. 1.3). Until recently, however, research on
polynyas in the context of glacial climate variability was relatively unexplored. Using
the Community Earth System Model version 1 (CESM1) with Last Glacial Maximum
(LGM) boundary conditions, Vettoretti and Peltier (2016) showed that unforced D-
O like variability occurs spontaneously in the model, and found that the initial phase
of the D-O oscillation (i.e. abrupt warming), is characterized by the formation of a
massive "super polynya" in the North Atlantic. The polynya forms due to a thermo-
haline convective instability closely linked to a build-up of subsurface heat below the
ice cover, similar to (Dokken et al., 2013; Sadatzki et al., 2019a), leading to a large-
scale retreat of sea ice in the North Atlantic (Vettoretti and Peltier, 2016, 2018). In the
Southern Ocean, Martin et al. (2015) find that deep convection events, associated with
large open-ocean polynyas in the Weddell Sea, can drive variations in the AMOC on
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multi-centennial time-scales: episodes of enhanced deep convection leads to a stronger
AABW transport, which is compensated by a weaker southward flow of NADW (i.e.
the bipolar see saw, Broecker (1998)). This suggest a potential link between Southern
Ocean polynyas and AMOC variability, which may in turn explain the out-of-phase re-
lationship between Antarctic warming events of the last glacial period and abrupt D-O
events recorded in Greenland ice cores (Pedro et al., 2016).



Chapter 2

Motivation and objectives

There is now an emerging consensus from paleoproxy data and numerical models, that
abrupt climate change of the last glacial involves basin-scale reorganizations of ocean
circulation as well as rapid and large displacements in the Northern Hemisphere sea ice
cover. In addition, a growing number of climate models point to the possibility, that
the D-O events may be spontaneous oscillations of the glacial climate system, and can
be triggered without invoking large inputs of freshwater. Despite these significant ad-
vancements, some major challenges remain providing the basis for this thesis.

First, the mechanism causing rapid sea ice retreat in the Northern Hemisphere is miss-
ing. In particular, how a build-up of heat beneath the ice cover can trigger abrupt
changes in sea ice, and how it might be related to open-ocean polynyas. Secondly, the
role of the AMOC in transporting heat to the high-latitudes has recently been brought
into question (e.g., Li and Born, 2019; Wunsch, 2006). Naturally, the question arises
whether the AMOC is the primary driver for abrupt changes in high-latitude climate, or
just a passive response. Finally, it remains to be understood why some climate models
exhibit unforced and self-sustained DO-like oscillations, while others do not. Recent
studies have suggested that their existence may depend on the distribution of diapycnal
mixing in the glacial ocean (e.g., Peltier and Vettoretti, 2014). However, the physical
mechanism linking changes in ocean vertical mixing to abrupt glacial climate change
remains elusive, which calls for dedicated sensitivity studies testing the impact of ver-
tical mixing on glacial ocean circulation and sea ice.

2.1 Introduction to the papers

In this thesis, I present three papers that address each of the issues outlined above.
Rather than trying to give a complete explanation of the D-O events in particular, the
overall goal of the papers is to improve understanding of the dynamics of the coupled
climate system and highlight potential drivers of abrupt climate change observed in the
paleoclimate record.

Paper I, explores the dynamics of abrupt sea ice changes by studying the occurrence
of open-ocean polynyas in the Southern Ocean simulated in a coupled ocean-sea ice
model and discusses its implications for global ocean circulation. The main objective
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Figure 2.1: Schematic summarizing the three papers presented in this study and how they
connect to each other.

of this paper is to attain a deeper insight into the physical mechanisms that precondition
polynya formation and ultimately causes the polynya to open. Thus, the paper centers
on the following question:

– How can internal ocean-sea ice dynamics, associated with a gradual build-up of
subsurface heat (below the ice cover), trigger abrupt changes in sea ice?

Paper II looks at the role of ocean basin geometry in shaping ocean circulation and
climate, providing useful insights into the dynamics of the coupled climate system.
Through a set of idealized experiments with a coupled atmosphere-ocean-sea ice
model, this paper explores how the Greenland-Scotland Ridge (GSR) influences the
structure and strength of the AMOC and ocean heat transport. This modeling approach
allows us to address the question:

– What is the role of the AMOC in controlling ocean heat transport and high lati-
tude climate?

Finally, Paper III looks at the impact of ocean vertical mixing on glacial climate sta-
bility and aims to improve our understanding of the conditions necessary to obtain
self-sustained oscillations in climate. The aim of this study is to understand the possi-
ble link between the D-O events and the distribution and strength of diapycnal mixing
in the glacial ocean through its impact on the AMOC and Northern Hemisphere sea ice.
Hence, Paper III addresses the question:

– Under which conditions of vertical mixing can self-sustained oscillations of the
coupled climate system occur?

Together, these papers provide important insights into the dynamics of abrupt climate
change, and are summarized schematically in Fig. 2.1.



Chapter 3

Summary of results

Paper I: Internal ocean dynamics as a driver for open-ocean polynyas in the Weddell
Sea, In revision, Tellus A: Dynamic Meteorology and Oceanography

We investigate the dynamics of open-ocean polynyas in the Weddell Sea, focusing on
the role of internal ocean-sea ice dynamics in preconditioning and triggering open-
ocean polynyas and evaluate their potential impact on deep water formation and large-
scale ocean circulation. We employ a free-running 1300-year climate simulation with
the ocean-sea ice version of the Norwegian Earth System Model (NorESM-OC1.2)
where the atmospheric forcing is kept constant.

During the 1300-year simulation, two large open-ocean polynyas form in the Weddell
Sea. As opposed to being triggered by changes in atmospheric forcing (e.g. surface
winds or freshwater fluxes), the polynyas form due to internal ocean-sea ice dynamics,
driven by a gradual build-up of subsurface heat and salt. Eventually, the water col-
umn becomes unstable, triggering enhanced mixing of warm and saline waters into the
surface layer which melts sea ice causing the polynya to occur. Deep convection is
triggered after the polynya opens, driving a rapid sea ice retreat by upwelling of warm
deep water and leads to enhanced bottom water formation and changes in overturning
circulation.

We show that vertical mixing plays a key role in the polynya formation, by control-
ling vertical fluxes of heat and salt to the sea ice: strong stratification and weak vertical
mixing is necessary for building the subsurface heat reservoir, while enhanced mixing,
triggered by convective instabilities at mid-depth, can erode the halocline from below.
Our results further emphasize the role of salinity, and the subsurface salt reservoir, in
controlling Weddell Sea stratification and polynya formation.

The timescale of Southern Ocean deep-convective events in the model is determined
by the size of the previous polynya and stratification strength: large polynyas leave the
heat reservoir more depleted and the subsequent recharge process occurs on a slow,
centennial timescale determined by advective and diffusive processes in the ocean. A
stronger stratification (and reduced mixing) tends to suppress polynya formation and
prolongs the duration of the non-convective phase.
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Finally, the results demonstrate that open-ocean polynyas cannot form when the sub-
surface waters become too cold and fresh, implying that the ocean-sea ice system can
only sustain open-ocean convection due to polynyas within a relatively narrow window
of boundary conditions.

Paper II: Topological constraints by the Greenland-Scotland Ridge on AMOC and cli-
mate, Submitted to Journal of Climate

This study focuses on the Greenland-Scotland Ridge (GSR) and investigates its im-
pact on climate, including global circulation, heat transport, and water mass properties.
To this end, we use a coupled atmosphere-ocean-sea ice model with idealized Earth-
like geometry (MITgcm Aquaplanet), comprising two wide strips of land set 90◦ apart
extending from the North Pole to 40◦S. This separates the global ocean into a small
«Atlantic-like» and a large «Pacific-like» basin. In our experiment, we consider the ef-
fect of introducing a submarine ridge, mimicking the GSR, in the Atlantic-like basin,
thereby presenting a zonal barrier constricting the water exchange between the North
Atlantic and high-latitude ocean (i.e. the Nordic Seas).

Without the ridge, deep water formation occurs close to the North Pole contributing
to a strong and deep overturning circulation in the Atlantic basin (i.e. an AMOC).
This drives a strong northward ocean heat transport, and the northern high latitudes are
warm. When the ridge is introduced, the high latitude overturning transport weakens
substantially and the main location of deep water formation shifts south of the ridge,
dramatically changing the structure of the AMOC. However, the maximum AMOC
strength at 26◦N does not change significantly.

In the absence of a zonal barrier in the Atlantic basin, the poleward heat transport is
large, and mainly driven by the deep overturning cell extending into the polar region.
When the ridge is present, the high-latitude heat transport is weaker and dominated
by the shallow gyre circulation. These results show, that the AMOC plays a rela-
tively small role in transporting heat into the high latitudes: despite a 64% reduction
in AMOC transport across the GSR, ocean heat transport only decreases by 30%. The
reduced transport across the GSR leads to cooling and freshening north of the ridge.
Outside the northern high latitudes, the surface climate response is small and the GSR
has no impact on global climate.

Our results highlight the possible disconnect between changes in the localization of
deep-water formation, the structure of the AMOC and changes in Northern Hemisphere
surface climate. They also underscore the necessary caution in interpreting paleoprox-
ies in terms of AMOC and its impact on high latitude climate.

Paper III: The impact of vertical mixing on glacial ocean circulation and sea ice,
Manuscript in preparation for Paleoceanography and Paleoclimatology

In this study, we explore the sensitivity of a glacial climate model simulation to changes
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in the background diapycnal mixing, focusing in particular on the impact on Northern
Hemisphere sea ice and the meridional overturning circulation. This builds on the find-
ings in Paper I; showing that vertical mixing is a central element in both preconditioning
and driving abrupt changes in sea ice. In Paper III, we test this hypothesis in a glacial
setting, assessing the role of vertical mixing in controlling glacial climate variability.

Using a coupled ocean-atmosphere-sea ice model with idealized geometry (the same
as in Paper II) and glacial-like boundary conditions, we consider three different config-
urations for vertical mixing: one with enhanced abyssal mixing and two experiments
where mixing is either enhanced or decreased throughout the water column, thus mainly
reflecting changes in thermocline mixing.

The imposed changes in diapycnal mixing lead to large changes in the overturning cir-
culation, in line with previous theoretical and model studies. When abyssal mixing is
increased, the abyssal overturning cell is strongly enhanced, while the strength of the
AMOC cell, poleward ocean heat transport, and surface climate is largely unaffected.
As a consequence, changes in abyssal mixing are not likely to play a role in abrupt cli-
mate changes, such as D-O events, during the glacial.

Conversely, changes in thermocline mixing greatly affects the overturning circulation
and surface climate; enhanced thermocline mixing strengthens the AMOC, drives a
larger poleward ocean heat transport, and leads to a retreat of Northern Hemipshere sea
ice. Reduced thermocline mixing, on the other hand, leads to a weaker and shallower
AMOC, reduced heat transport and sea ice advance.

When thermocline mixing and the AMOC is weak, the coupled ocean-sea ice system
is unstable and internal oscillations occur, associated with a gradual build-up and re-
lease of subsurface heat beneath an extensive Northern Hemisphere sea ice cover. This
is only possible because weak thermocline mixing allows the development of a shallow
subsurface current transporting warm subtropical water under sea ice; while high ther-
mocline mixing prevents the build-up of the necessary subsurface heat. This implies
that weak vertical mixing in the upper ocean, and a reduced overturning transport, are
critical for preconditioning abrupt transitions in Northern Hemisphere sea ice, such as
those observed in the paleoclimate record over the last glacial period.

3.1 Main conclusions

Based on the findings in the three papers outlined above, the main conclusions of this
thesis are:

• The formation of open-ocean polynyas provide a mechanism to trigger large and
abrupt changes in sea ice, release oceanic heat to the atmosphere and enhance
deep water formation through open-ocean deep convection (Paper I). Polynyas
are therefore likely to play a fundamental role in the dynamics of abrupt changes
in sea ice, including the Dansgaard-Oeschger events of the last glacial.
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• Open-ocean polynyas and rapid sea ice retreat can be triggered by internal ocean-
sea ice dynamics without the need of an external trigger (e.g. freshwater or atmo-
spheric forcing), but relies on weak diapycnal mixing, a build-up of subsurface
heat and salt beneath the ice cover, destabilizing the water column and triggering
enhanced fluxes of heat and salt to the surface.

• The presence of the Greenland-Scotland Ridge plays a fundamental role in shap-
ing the structure of the AMOC, the location of deep water formation, and high-
latitude climate (Paper II). However, changes in the height of the GSR have little
impact on maximum AMOC strength, and its effect on global climate is small.

• The AMOC plays a relatively small role in transporting heat across the Greenland-
Scotland Ridge and into the northern high latitudes. This questions the role of the
AMOC as the main driver of abrupt changes in high latitude climate, as often
inferred from paleoclimate records.

• The vertical distribution of turbulent mixing in the glacial ocean plays a central
role in glacial climate stability: unforced and self-sustained «DO-like» oscilla-
tions can occur when thermocline mixing is low and overturning circulation is
weak (Paper III). These conditions allow subsurface heat to accumulate beneath
the extensive Northern Hemisphere sea ice cover, which is critical for precondi-
tioning abrupt transitions (Paper I and III).

• Abyssal mixing leads to a stronger abyssal ocean circulation, but does not con-
tribute to the overall strength of the overturning circulation or the ocean’s merid-
ional heat transport. We conclude, that it is unlikely that changes in abyssal mix-
ing alone played an important role in the D-O oscillations as indicated by previous
studies (e.g., Peltier and Vettoretti, 2014).



Chapter 4

Perspectives and outlook

This section discusses some of the implications of the model results presented in this
thesis in the context of abrupt climate changes recorded in the paleoclimate record, and
its potential relevance for future climate.

4.1 The impact of the GSR on abrupt changes in the past

Paper II is in part motivated by the paleoclimate record indicating that changes in ocean
bathymetry has played a critical role in driving large and potentially abrupt changes in
climate throughout Earth’s history. Based on the model results, the following section
discusses the possibility that small, gradual changes in the height of the Greenland-
Scotland Ridge (GSR), may have triggered abrupt changes in global climate.

Note that, the aquaplanet model used in Paper II (and III) lacks some important aspects
of the North Atlantic-Nordic Seas circulation, e.g. the complex bathymetry, continen-
tal shelves, presence of an Arctic Ocean, sea ice dynamics, and the complex overflow
across the GSR. Despite these limitations, the model reproduces the general features of
the ocean (and atmosphere) circulation, providing important insights to the dynamics
of the coupled climate system in response to changes in bathymetry.

Although changes in sill-depth of the GSR occur on very slow timescales (over mil-
lions of years due to plate tectonics), these gradual changes have been shown to trigger
non-linear and rapid changes in ocean circulation (Stärz et al., 2017). This idea has
been invoked in several proxy-based studies (e.g., Davies et al., 2001; Via and Thomas,
2006; Wright and Miller, 1996), relating large and abrupt shifts in global climate over
the past 50 million years to small variations in sill-depth. For example, Abelson and
Erez (2017) argue that the onset of a modern-like AMOC at the Eocene-Oligocene tran-
sition (EOT), which marks the shift from a greenhouse to an icehouse Earth ∼33.7 Ma
ago (including the glaciation of Antarctica), may be triggered by deepening of the GSR.
While it is very likely that a reorganization of the AMOC was involved in the EOT, Pa-
per II suggest that the GSR might not be the main driver.

In our simulations, introducing the sill does not trigger large changes in AMOC, and
as a consequence the global climate response is small. We note, although not tested in
our model, that the overturning response might be more non-linear, when considering a
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gradual lowering from subaerial conditions (with virtually no connection between the
North Atlantic and Nordic Seas) to deeper sill-depths (e.g., Stärz et al., 2017). Results
from Stärz et al. (2017), however, show that even for very shallow sill-depths (<50 m),
there is substantial NADW formation and the AMOC remains relatively strong (11.3
Sv versus the pre-industrial 16.8 Sv; Supplementary Information in Stärz et al. (2017)).
This supports our conclusion that the height of the GSR does not control the maximum
AMOC strength.

We speculate, that the Southern Ocean might play a bigger role controlling AMOC
strength in our model (by surface momentum and buoyancy fluxes), as opposed to deep
water formation in the North Atlantic (Marshall and Speer, 2012). This favors the hy-
pothesis that the global cooling at the EOT is linked to tectonic gateway changes in the
Southern Ocean (e.g., Toggweiler and Samuels, 1995; Yang et al., 2014). Therefore,
in future studies we would like to test the sensitivity of the AMOC in the aquaplanet
model to changes in e.g. Southern Hemisphere winds.

The height of the GSR has important consequences for ocean heat transport, water mass
properties and surface climate at high northern latitudes. We speculate that the height
of the GSR could play a role for the D-O events. However, considering that bathy-
metric changes are driven by geological processes that are much slower compared to
the timescales of the D-O events (centennial to millenial), it can be assumed that the
GSR sill-depth has been relatively stable throughout the last glacial period. It is there-
fore unlikely that changes in the sill-depth have played a role in the D-O cycle. On
the other hand, other factors, such as sea level lowering in the last glacial could have
contributed to changing ocean basin geometry, affecting the background climate state
(e.g., Peltier and Fairbanks, 2006). For example, closing of the Bering Strait has been
shown to impact AMOC hysteresis and glacial climate stability (Hu et al., 2012). Sim-
ilarly, reduced water depth over the GSR (by up to ∼120 m at the LGM) as well as
a narrower Denmark Strait may have affected water exchange between the North At-
lantic and Nordic Seas in the glacial (e.g., Kösters et al., 2004).

Furthermore, in the context of D-O events, the GSR experiments offer a perspective on
the role of the Nordic Seas and its impact on deep water formation and AMOC strength.
Proxy-data from the Nordic Seas and North Atlantic show that stadial and interstadial
conditions are associated with latitudinal shifts in the location of NADW formation
(Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004). Such changes are often
linked to major changes in overturning circulation strength (see Fig. 1.2). The result
from Paper II, however, show that despite a shift in deep water formation from the polar
basin (i.e. the "Nordic Seas") to the subpolar North Atlantic, the maximum AMOC
strength remain relatively unchanged. Nevertheless, there is a substantial cooling of
the northern high latitudes, associated with the different modes of deep water formation
and changes in ocean heat transport. Therefore, our findings suggest that more work
is needed to understand the link between Nordic Seas deep water formation and past
variations in AMOC strength and its potential impact on climate. New data from ocean
monitoring systems such as the Overturning in the Subpolar North Atlantic Program
(OSNAP) will help answering these questions (Lozier et al., 2017, 2019).
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4.2 The role of vertical mixing for D-O events

The results from Paper I and III, suggest that vertical mixing, particularly in the ther-
mocline, is important for glacial climate variability. First of all, it has a direct impact
on sea ice by controlling vertical fluxes of heat and salt (Paper I), and secondly it plays
a fundamental role in determining the strength and structure of the overturning circu-
lation (Wunsch and Ferrari, 2004), which in turn has an indirect effect on sea ice by
affecting ocean heat transport (Paper III). What remains less clear is whether changes
in interior diapycnal mixing changes over the timescales of the Dansgaard-Oeschger
events, and what mechanisms would be responsible.

It is widely accepted that the distribution of diapycnal mixing was different at the last
glacial compared to present day, owing primarily to a ∼120 m drop in sea level, caus-
ing enhanced tidal energy dissipation in the deep ocean (e.g., Egbert et al., 2004; Green
et al., 2009). Meanwhile, sea level fluctuations between stadials and interstadials (i.e.
during MIS 3) are relatively modest (<50 m) (Siddall et al., 2008), suggesting that
the energy dissipation rate and the vertical mixing profile remained relatively constant.
Note, however, that LGM boundary conditions differ significantly from MIS 3 bound-
ary conditions in a number of other ways, e.g. the LGM had larger ice-sheets and
different orbital forcing and greenhouse gas concentrations (e.g., Van Meerbeeck et al.,
2009). Hence, the large changes in vertical mixing applied in Paper III are not likely
to occur on such short timescales, and should not be seen as a mechanism for trig-
gering transitions between stadials and interstadials. Rather, the experiments mainly
reflect how diapycnal mixing can affect the background climate state, thus precondi-
tioning the glacial climate system for abrupt transitions. Based on the results in Paper
III, we find that a low thermocline mixing is most likely to produce such "DO-like"
oscillations, because it allows the development of a subsurface heat reservoir at high
latitudes, preconditioning rapid changes in sea ice and AMOC.

That being said, there are at least two possible reasons why vertical mixing in the inte-
rior could have influenced stadial-interstadial cycles. First, changes in the geometry of
the AMOC, i.e. switching between "cold" (stadial) and "warm" (interstadial) modes,
could affect vertical mixing between deep water masses in the Atlantic by shifting the
boundary between the NADW and AABW cells away from regions of topographically
induced mixing in the deep ocean (Ferrari et al., 2014; Polzin et al., 1997). This could
have had a significant impact on the AMOC strength and the poleward OHT (e.g.,
Jansen, 2017); shoaling of the NADW cell could help sustain the weak AMOC mode
during stadials, and facilitating the development of an extensive sea ice cover.

Alternatively, changes in deep ocean stratification could affect the rate of diapycnal
mixing, as the vertical diffusivity is inversely proportional to the buoyancy frequency
(N2) (e.g., Osborn, 1980). This is demonstrated in Paper I, where enhanced vertical
mixing is triggered internally by a thermohaline convective instability at depth induced
by changes in stratification. This leads to an abrupt and extensive retreat of sea ice and
depletion of the subsurface heat reservoir. In the context of stadial-interstadial transi-
tions, this feedback mechanism (between stratification and vertical mixing) is therefore
likely to play a fundamental role in the abruptness of the D-O event. In comparison, for
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Paper III changes to the vertical diffusivity are imposed on the model and do not occur
spontaneously (except perhaps for the oscillations in the reduced mixing scenario). Be-
cause the vertical mixing profile was changed globally, the simulated sea ice changes
are mostly dominated by advective processes associated with changes in ocean circu-
lation (by the AMOC and the gyre circulation). We speculate, that this might lead to
a slower, and perhaps smaller sea ice retreat, compared to the convective heat release
seen in Paper I. On that note, the climate response might be fundamentally different,
if changes to the vertical mixing are only applied at high latitudes, e.g. under sea ice,
where its effect on the overturning circulation is likely to be small (e.g., Scott and
Marotzke, 2002). Indeed, several studies have shown that changes in diapycnal mix-
ing under sea ice can have a profound impact on water column stability, subsurface
heat content and sea ice thickness (e.g., Heuzé et al., 2015; Liang and Losch, 2018;
Zhang and Steele, 2007) and may even trigger remote changes in the AMOC (Kim
et al., 2015).

What can these results tell us about the role of vertical mixing for the D-O oscillations?
Both Paper I and III point to the fact that in order to sustain a large sea ice cover, upper
ocean mixing (i.e. in the thermocline) should be low, which also facilitates a build-up
of subsurface heat and salt. This is also supported by modern observations from the
Arctic (Fer, 2009), showing that weak mixing in the upper ocean stabilizes the halo-
cline and prevents sea ice melt. These results support the notion of a mixing-deprived
and less ventilated Nordic Seas during stadial times (e.g., Dokken and Jansen, 1999;
Dokken et al., 2013; Rasmussen and Thomsen, 2004; Sadatzki et al., 2019a). Under
such quiescent conditions, it is likely that vertical mixing (below the halocline) is gov-
erned by the background diffusivity (see also Singh et al., 2014). Based on our findings
in Paper I, we hypothesize that a slow upward mixing of warmer and saltier waters
could erode the halocline, thus preconditioning the sea ice cover for an abrupt retreat.
However, it may take several decades, or more, before the halocline is weak enough to
initiate deep convection and sea ice retreat; a similar response is also evident in Mar-
tin et al. (2013); Vettoretti and Peltier (2016); Zanowski et al. (2015). The timescale
would depend on the sea ice thickness, stratification strength, as well as the subsurface
heat (and salt) content (i.e. Paper I).

This concept is supported by unpublished sedimentological data from the eastern
Nordic Seas (Sadatzki et al., 2019b), showing that each stadial phase is characterized
by a strong aging of intermediate depth waters with benthic reservoir ages of up to 2500
years. These ages are too old to be explained by reduced ventilation by deep convection
during the stadial (the duration of the stadial phase is only a couple of hundred years
on average). Rather, the observed pattern is interpreted as a slow interior upward mix-
ing of very old, radiocarbon-depleted deep water (cold and salty) which helps to erode
the stratification from below, and contributes to the abrupt sea ice retreat at the intersta-
dial transition. This implies an important role of ocean mixing in the abrupt warming
on Greenland. However, the trigger mechanism for this deep ocean mixing still re-
mains unclear. Recently, Vettoretti and Peltier (2016) suggested that double-diffusive
mixing (related to the different diffusive properties of temperature and salinity respec-
tively) and thermobaric instabilities arising from the nonlinearity of the equation of
state could be potential mechanisms for instigating vertical mixing at depth. Similarly,
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Adkins et al. (2005) suggested that accumulation of geothermal heat in the deep ocean
(due to a strong salt-stratification in the glacial ocean) can trigger such thermobaric ef-
fects and cause a catastrophic release of heat. Note that these processes are not included
in any of the models used in this thesis. Rather, the instability leading to the polynya in
Paper I is related to changes in deep stratification through a positive feedback between
vertical mixing and stratification (see also Dufour et al., 2017).

To summarize, the discussion presented here demonstrates that small-scale turbulent
mixing in the ocean interior could play a key role in many aspects of abrupt climate
change during the glacial period. In particular, setting the timescale and magnitude of
the D-O events. Meanwhile, it implies that the parameterization of turbulent mixing in
numerical models can in principle be "tuned" to produce a timescale that is consistent
with the proxy-data (e.g., Peltier and Vettoretti, 2014). However, such experiments
require careful consideration and must be based on physical arguments.

4.3 The role of polynyas in glacial climate variability

Recent studies by Vettoretti and Peltier (2016) and Vettoretti and Peltier (2018) have
suggested that the occurrence of "super polynyas" in the glacial North Atlantic is central
to the D-O cycle, underlying the abrupt sea ice retreat at the stadial-interstadial tran-
sitions. Despite the fact that the polynyas described in Paper I occur in the Southern
Ocean, the dynamics are qualitatively consistent with the ones described in Vettoretti
and Peltier (2016), where the polynya forms in response to a thermohaline instabil-
ity. On a cautionary note, several studies have suggested that the formation of large
open-ocean polynyas in current climate models is unrealistic (e.g., Heuze et al., 2013),
reflecting inaccurate sensitivity to surface forcing conditions or missing physics (Du-
four et al., 2017). Others show that polynya formation can be sensitive to the mixing
parameterization in the models (Heuzé et al., 2015; Kjellsson et al., 2015; Timmermann
and Beckmann, 2004).

An interesting perspective, is that Southern Ocean deep convection events may actually
impact North Atlantic climate remotely by affecting the strength of the AMOC (e.g.,
Martin et al., 2015; Pedro et al., 2016) and also evident in Paper I although the AMOC
response is mostly confined to the South Atlantic. This mechanism is closely related
to the concept of the bipolar see-saw, which proposes a competition between the rela-
tive strength of the NADW and AABW circulation cells (Broecker, 1998). Based on a
climate model simulation, Martin et al. (2015) demonstrated that the enhanced AABW
production, associated with large open-ocean polynyas in the Weddell Sea, leads to
a decrease in the southward export of NADW (i.e. AMOC weakening), which con-
sequently reduces NADW formation and vice versa. This implies a southern "push"
that may help explain the changes in the geometry of the glacial AMOC between sta-
dials and interstadials (Fig. 1.2). Furthermore, this idea is supported by proxy-data
from the Weddell Sea indicating that open-ocean polynyas occurred repeatedly dur-
ing the glacial period (Smith et al., 2010) and may have been the dominant mode of
AABW formation when the continental shelf was covered by grounded ice (e.g., Evans
et al., 2005), thereby shifting the production of dense water into the open ocean. Since
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open-ocean deep convection is highly effective in producing bottom waters, it is likely
that the volume of AABW was increased in the glacial, consistent with an expansion
of Antarctic-sourced waters in the Atlantic at the LGM (e.g., Curry and Oppo, 2005).
While this mechanism remains highly speculative, it demonstrates that the Southern
Ocean exerts a major control on the AMOC (see also Buizert and Schmittner, 2015)
and implies that Dansgaard-Oeschger events may in fact be driven from the south, al-
though the relative timing of Northern and Southern Hemisphere climate changes are
still debated (e.g., Blunier and Brook, 2001; Buizert et al., 2015).

4.4 Outlook

This thesis has demonstrated that abrupt climate change can occur within the natural
and unforced climate system and underscores the importance of coupled atmosphere-
ice-ocean dynamics in driving such changes. However, this study has focused primar-
ily on the abrupt changes in glacial climate and it is less clear if the same mechanisms
are valid under non-glacial boundary conditions, questioning whether abrupt climate
change may occur in the future due to human-induced global warming. In particular,
we have shown that sea ice plays a key role in preconditioning large and abrupt changes
in high latitude climate with potential implications for large-scale ocean circulation.

Could the dramatic decline of Arctic sea ice seen in recent decades trigger such abrupt
changes in the future? While some models show that Arctic sea ice decline can in fact
induce AMOC slowdown (e.g., Liu et al., 2019; Sévellec et al., 2017), the impact is
likely to be less dramatic due to the fact that the present day sea ice extent is much
smaller compared to in glacial times (Gildor and Tziperman, 2003). On the other hand,
as the AMOC is projected to weaken under global warming (e.g., Schmittner et al.,
2005), the likelihood of an AMOC collapse may increase (Liu et al., 2017), although
most climate model projections only show moderate reductions in AMOC for the 21st
century (Collins et al., 2013). However, as shown here an AMOC weakening does not
necessarily imply weaker ocean heat transport to the northern high latitudes (see also
Årthun et al., 2019) , suggesting that high latitude climate can be disconnected from
changes in the AMOC (Paper II). Nevertheless, given the large consequences of such
abrupt changes, future research should aim to improve our understanding of the under-
lying physical processes, in order to develop appropriate strategies for adaptation and
mitigation.

As a concluding remark, I would like to present my recommendations for the direction
of future research in the context of the work presented in this thesis:

• More work is required to understand the role of ocean turbulent mixing for the
existence of the D-O events. In particular, how different mixing parameterizations
in climate models may or may not lead to unforced and abrupt transitions. Future
experiments should try to isolate the direct effect of vertical mixing on sea ice
(i.e. by changing vertical mixing only under the ice cover) from the indirect
changes in ocean circulation, as this may help constrain the Dansgaard-Oeschger
dynamics. Proxy-data might be able to constrain the magnitude and distribution
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of diapycnal mixing in the past and should be integrated in future paleo-climate
model simulations. Furthermore, additional sensitivity studies should consider
the relative role of vertical mixing on glacial climate stability to changes in other
boundary conditions, such as e.g., CO2, or ice-sheet configuration.

• The connection between open-ocean polynyas and millenial-scale glacial climate
variability remains relatively unexplored. The question remains if open-ocean
polynyas were a common feature of glacial climate and whether they played a
role in the D-O events. While the results presented in this thesis demonstrate,
that a build-up of subsurface heat alone is not enough to trigger polynyas, the
triggering mechanism is still not completely understood. More work is needed
exploring the relative role of ocean versus atmospheric forcing on the formation
of polynyas, as well as the long-term consequences for deep water formation and
ocean circulation. Employing fully hydrostatic models could provide additional
insight to the dynamics.

• Finally, a climate model intercomparison project focusing specifically on MIS
3 climate variability and D-O events should be initiated. This will be critical
for constraining potential mechanisms for the D-O events, and guiding future
research. This should include models that produce self-sustained D-O-like oscil-
lations as well as forced models (e.g. by freshwater), which could help isolate the
effect of freshwater forcing on stadial and interstadial durations.
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