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Abstract

The key to reliable simulations of flow in fractured porous media is the proper design, anal-
ysis and implementation of numerical methods. These methods should take into account the
specific properties of the underlying model, while at the same time be flexible enough to
handle variability of the model’s components. The particular features of fractured porous
media we concern ourselves with are the complex geometry of the fracture network and the
disparity in scales in the model parameters. The model we study is based on interpretation
of fractures and the porous rock as a mixed-dimensional geometry, and the resulting system
of partial differential equations is highly coupled and parameter-dependent. In this thesis,
we build upon the common approaches to discretization of the flow problem and deliver a
numerical solution by constructing efficient numerical solvers and preconditioners. The two
main topics of our research are the design of preconditioners to finite element discretiza-
tion of the linear flow model and the development of linearization methods to the non-linear
model.

In the first part, we consider the fact that our flow problem reveals the saddle-point struc-
ture. This motivates to see how some established approaches to preconditioning saddle-point
problems work under the mixed-dimensional complexity. We construct the preconditioners
to the classical solving approaches, such as Krylov subspace methods, based on the well-
posedness of our saddle-point system. As the goal of any preconditioner is to approximate
the inverse of the coefficient operator of the system, the principal idea of our approach is to
find that inverse mapping that is equivalent in terms of norms on the given function spaces.
In this way, we can ensure that the preconditioned numerical solvers will converge more
rapidly, independently of values of the discretization and physical parameters. In our case,
we are able to derive two such preconditioners by identifying two different topologies on
the given discrete finite-element spaces. In fact, one of the approaches leads to a general
framework to preconditioning mixed-dimensional elliptic problems that can be applied to
other problems with a similar hierarchical structure as the model of flow in fractured porous
media.

Finally, we study a choice of non-linear and time-dependent flow models that appear in
cases of enhanced conductivity of the fractures and compressibility of the fluid. The devel-
opment of the iterative solution methods for our problem considers the natural domain de-
composition setting imposed by the fracture network and the standard linearization methods
are adapted to the mixed-dimensional setting. By using non-matching grids, we can employ
a multiscale method to the interface problem to handle the dominating computational cost
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in each iteration of the non-linear solver, namely the repeated solving process on the rock
matrix subdomains. The flexibility of the method is showcased by successfully applying it
to several non-linear flow models.



Outline

This dissertation consists of two parts. Part I introduces the background theory covered in
the scientific results in Part II.

Part I consists of four chapters. Chapter 1 introduces the subject of flow in a porous medium
with fractures and how it is encompassed in an broader application of subsurface energy stor-
age. In Chapter 2, we present the governing laws in amathematical setting, from a continuous
model to a discrete system of equations. Then, we provide in Chapter 3 a set of computa-
tional methods and preconditioning techniques that serve as linear and non-linear solvers for
the systems of equations arising in Chapter 2. Finally, Chapter 4 contains short summaries
of scientific papers included in Part II, as well as an outlook on future research.

Part II presents the main results of the dissertation collected in five scientific articles:

Paper A A. Budiša, X. Hu, Block Preconditioners for Mixed-Dimensional Discretiza-
tion of Flow in Fractured Porous Media, Computational Geosciences, in re-
view. arXiv:1910.04704 [math.NA].

Paper B A. Budiša, W. M. Boon, X. Hu,Mixed-Dimensional Auxiliary Space Precon-
ditioners, SIAM Journal on Scientific Computing, in review.
arXiv:1905.13513 [math.NA].

Paper C E. Ahmed, A. Fumagalli, A. Budiša (2019), AMultiscale Flux Basis for Mor-
tar Mixed Discretizations of Reduced Darcy-Forchheimer Fracture Models,
Computer Methods in Applied Mechanics and Engineering 354, 16–36.
doi: 10.1016/j.cma.2019.05.034.

Paper D E. Ahmed, A. Fumagalli, A. Budiša, E. Keilegavlen, J. M. Nordbotten,
A. F. Radu,Robust LinearDomainDecomposition Schemes for ReducedNon-
linear Fracture Flow Models, SIAM Journal on Numerical Analysis, in re-
view. arXiv:1906.05831 [math.NA].
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Chapter 1

Introduction

In industry and research, simulations of physical phenomena play an important role in ob-
serving, understanding and utilizing the world we live in. It can lead us to answers to fun-
damental questions, design and implementation of scientific experiments, but also decision-
making and realization of projects in practice. Therefore, the simulations need to be reliable
and computationally feasible. In order to provide that, we turn to developing computational
techniques using a range of mathematical tools to accurately describe physical processes of
our interest.

These processes are commonly represented as systems of partial differential equations.
As any equations, we aim to determine that the (unique) solution exists, but actually finding
the exact solution is rarely possible. Discrete approximations, however, turn the continuous
problem into a system of algebraic equations that can be solved by a variety of numeri-
cal methods. Regardless of choice of the discretization, these algebraic systems inevitably
become large and demand generous computational power and memory. In particular, the
higher accuracy of the approximative solution is required, the larger the resulting number
of unknowns in the system. Thus, the numerical methods we use have to be scalable while
preserving the fidelity of the numerical solution.

The typical approach to finding the numerical solution is to construct new or modify the
existing iterative methods. In many situations they are often a flexible and computationally
cheap choice, but still the major cost of these methods is the number of iterations needed
to converge. The iteration count is closely related to the number of unknowns and disparity
in magnitudes between possibly many parameters in the system. A remedy to scalability
issues of the iterative methods is preconditioning. The idea of imposing preconditioners to
iteratively solving large systems of equations is to achieve convergence with hopefully a
handful of iterations needed, independently of the size of the system and given parameters.
Hence, the preconditioners are usually dependent on the problem in hand, although it is
desirable to provide general design techniques. In fact, they can directly follow from the
properties of system of equations we seek to solve.
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1.1 Motivation

In this thesis, we argue that we can derive iterative solution methods and preconditioners
with mentioned features in applications to fluid flow in porous media with fractures or, more
generally, thin inclusions. We describe the main characteristics of this physical process, its
relevance in most common real-life applications, and the main developments of our work
related to its simulations.

1.1.1 Subsurface Energy Storage

The simulations of fluid flow processes in fractured porous media are without doubt a crucial
part of various applications in biomedicine, geology and engineering. Many of them related
to subsurface fractured reservoirs, such as CO2 and energy storage, nuclear waste disposal
and geothermal energy production, depend on accurate predictions of flow patterns within
to enhance the storage capacity or to avoid potential leakage hazard. The application that
served as the main motivation to work in this thesis is the thermo-mechanical subsurface
energy storage (TheMSES).

TheMSES concerns storage and production of thermal and mechanical energy by inject-
ing and extracting fluids under high temperature and pressure into the subsurface reservoirs.
This is especially attractive in storing the excess energy from sources that are subject to
great production variability in time. For example, the renewable energy sources, such as
wind and solar power, depend on favorable weather conditions for energy production and
that sometimes does not match the energy demand in the society. For that, the natural sub-
surface permeable layers can provide a large storage capacity to balance between different
time scales of energy consumption and supply. In addition, by increasing the use of energy
from sustainable resources, it decreases the need for the use of fossil fuels. This can in turn
lower our carbon footprint and contribute to mitigating climate change effects. The suitable
storage sites can be found globally in different geological formations in shallow and deeper
subsurface, for example depleted oil and gas reservoirs and salt caverns. The implementa-
tion of the TheMSES requires structured planning, economical assessment and above all
scientific analysis of energy storage options. Although similar technologies has been already
been studied to a certain degree [10, 63], there are still many open challenges in research
and engineering regarding the applications of TheMSES.

There are many features of TheMSES which must be studied in developing accurate
scientific models, including hydraulic, mechanical, thermal, chemical and microbial effects.
To start building up such complexmodels, we need to first consider the dominating process in
our system – fluid flow. The geological formations that we are interested in are constituted of
porous materials that transmit the fluid through the subsurface reservoir. Often these porous
materials also contain large connected pathways, called fractures, that are distinguishable by
their dominating influence on the flow behavior. Therefore, this thesis focuses on the aspects
of flow within the fractured rock, more specifically the computational side of the fracture
fluid flow modeling.
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1.1.2 Flow in Fractured Porous Media

In the context of porous media, the particular characteristic of fractures is their large-aspect-
ratio in relation to the surrounding material due to their long but very thin appearance. They
are often intertwined forming complex networks and may be empty or filled with material,
meaning can be considered as a porous medium in itself. Moreover, they are typically more
conductive than of the surrounding rock so we expect that the overall fluid flow behavior
will be mostly stimulated by the fracture flow. On the other hand, they can act as natural
barriers and drastically divert or stop the flow pathways. As such, their impact depends on
their size and conductivity properties which can scale individually over several orders of
magnitude. In order to perform simulations of flow in fractured porous media, we rely on
mathematical models and numerical representations that exploit all the aspects of this phys-
ical phenomenon, ranging from geometry, material properties to governing flow processes.
An overview of common modeling approaches can be found in [12].

One of the main components of any model of flow in fractured porous media is the dis-
tinctive geometry of the problem. Since fractures have a dominating effect on the flow pat-
terns in the system, it motivates to consider them as an explicit part of the model. Those
models, often referred to as Discrete Fracture Model (DFM), represent the fractures sepa-
rately from the rock domain. However, it is not always feasible in practice to incorporate all
fractures, especially very small ones. The common approach is to include a small number of
them, based on some selection criteria often related to length or connectivity properties, and
upscale the rest as a part of the rock domain. In this way, the conceptual model of fractured
porous media can be applied to cases when the rock is considered practically impermeable.

Furthermore, fractures act as thin inclusions within the medium, with their width size,
called aperture, significantly smaller than the other lateral extensions. Therefore, it is only
natural to represent them as separate lower-dimensional geometrical entities. This kind of a
fracture model have been introduced in [3, 4] and have gained a lot of interest in research
recently. The benefits of this approach are numerous, especially regarding separate meshing
and flexibility of incorporating different material properties and governing laws on each frac-
ture. The significant research efforts have gone into developing adapting flow models, both
single-phase and multiphase, and developing new discretization methods to the reduced ge-
ometry. Some contributions can be found in [16, 20, 27, 31, 56] and in the benchmark studies
[11, 25].

Due to the vast amount of literature on the topic, it is undeniable that much has been
invested into proper numerical methods for flow problems in fractured porous media. Still,
the common challenge faced in the majority of them is the computational efficiency. Our
goal is to apply those numerical methods in large-scale simulations of subsurface processes,
where even today the limitations of technology are present in terms of memory and CPU
power consumption. As mentioned, the algebraic systems of equations resulting from the
discretization approaches to DFM often contain large number of unknowns to solve for and
proper computational methods need to be developed. This refers to both iterative methods
and preconditioning techniques. The most common approach is still to directly use the stan-
dard solving methods, such as domain decomposition and multigrid methods, but they are
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not adapted to all the specific features of the models of fractured porous media that in many
cases greatly diminish their efficiency. For example, the heterogeneity in the physical pa-
rameters often influences the stability of the methods, meaning that they may have difficulty
to deliver an accurate enough solution. The fractured porous media models suffer from this
problem so we need to adapt the methods to our problem or develop new ones. Although
the importance of it has lately been recognized [5, 8], little has been done so far in that di-
rection. Therefore, the work in this thesis aim to bridge that gap by providing the analytical
and computational tools for efficient simulations of flow processes in a porous medium with
fractures.

The main contributions of this dissertation are the following:

1. Constructing parameter-independent preconditioners formixed-dimensional lin-
ear flowmodels.We propose a set of block preconditioners for Krylov subspace meth-
ods for solving the linear system of equations arising from the mixed finite element
discretization of our linear flow model. They are based on the chosen weighted norms
in which our discrete system is well-posed, independently of discretization and physi-
cal parameters. Beside being theoretically robust, the preconditioners can also be im-
plemented straightforwardly and effectively by taking advantage of the block structure
of the problem.

2. Developing preconditioners for finite-element discretizations of general mixed-
dimensional elliptic problems. Using the established auxiliary space theory and the
mixed-dimensional finite element exterior calculus, we provide a general approach to
preconditioning mixed-dimensional elliptic partial differential equations. For the pur-
pose, we extend the stable regular decomposition to the mixed-dimensional geome-
tries in continuous and discrete sense. With that, we are able to construct parameter-
independent preconditioners that can be used as a component to block precondition-
ers derived for mixed-dimensional flow problems. Although only implemented on the
fractured porous media model, the preconditioners can directly be applied to more
general elliptic problems.

3. An analysis and comparison of numerical schemes for non-linear flowmodels.We
provide several approaches to linearization of a selection of non-linear fracture flow
models. Based on the non-overlapping domain decomposition framework, we analyze
and implement linearization schemes on the non-linear fracture interface problem that
at the same time handle the inter-dimensional coupling between fractures and the rock
matrix. We are also able to extend the schemes to the model that incorporates fluid
compressibility with a discretization scheme in time.



Chapter 2

Mathematical Model of Flow in
Fractured Porous Media

This chapter starts with a brief description of mathematical aspects of the governing laws
of flow in fractured porous media. The systems of equations arising from the mathemati-
cal model are the main study points of this thesis and their properties are what leads us to
designing fast and robust solvers for simulating the underlying physical processes.

We first present how complex fractured domains can be modeled as composite mixed-
dimensional geometrical structures. After that has been set, we continue with introducing the
linear single-phase flow model, both in strong and weak formulation, and complete it with
choices of discretization and the resulting algebraic block form. Then, the linear model is
extended to non-linear and time-dependent cases with their respective discrete formulations.

2.1 Mixed-Dimensional Geometry
The geometrical interpretation of the fractured rock forms the basis of our model. Unlike
methods that deal with fractures at discretization step [20, 26, 57], we incorporate the fracture
network into a geometrical feature that handles in whole the complex structure of the rock,
fractures and their intersections before introducing the flow model. In this way we gain on
the flexibility when meshing, but also it allows us to impose different governing laws and
material properties on each part of the geometry.

The fractures can be interpreted as thin inclusions in a porous medium due to their large
aspect ratios. A commonway to accurately represent fractures is the so-called reducedmodel
approach as developed in [3, 4, 27] and expanded more recently in [16, 47]. Therefore, we
model them as lower-dimensional manifolds embedded in a porous medium domain. For ex-
ample, within a three-dimensional permeable rock, the fractures are seen as two-dimensional
features that can decompose the rock domain. This structure is inherited when fractures in-
tersect, making it a one-dimensional manifold, and repeated until we reach a point manifold
of dimension zero.

Formally, consider Ω ⊂ Rn to be a domain of the fractured rock of dimension n = 2
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or n = 3. For d ≤ n and i in an index set Id , denote Ωd
i as a d-dimensional manifold or a

subdomain contained in Y . Intersections of several d-dimensional manifold create separate
(d−1)-dimensional manifolds, which in turn makes allΩd

i disjoint. Union over the subscript
set Id represents all d-dimensional subdomains Ωd =

⋃
i∈Id
Ωd

i . To account for the coupling

between codimension one subdomains, we introduce the interfaces Γdij between Ω
d
i and ad-

jacent Ωd+1, for j in index set Jd
i of all neighboring higher-dimensional subdomains. The

interfaces Γdij coincide with the subdomain Ωd
i , but they note the side on which the interface

with Ωd+1 is taking place, see Figure 2.1. We collect all interfaces of Ωd
i with a union set

Γdi =
⋃

j∈Jd
i

Γdij , while the union Γ
d =

⋃
i∈Id
Γdi represents all d-dimensional interfaces. More-

over, let ν be the outward unit normal vector to Ωd on the boundary ∂Ωd . Specifically, it
means that on Γdi the normal vector points from Ωd+1 toward the lower-dimensional subdo-
main Ωd

i . Summing up the decomposition, the fractured porous medium domain Ω with the
boundary ∂Ω and the interface Γ is given as

Ω =

n⋃
d=0
Ω

d, ∂Ω =

n⋃
d=1

∂Ωd\Γd−1, Γ =

n−1⋃
d=0
Γ
d . (2.1)

Lastly, assume that the boundary of Ω can be partitioned to ∂Ω = ∂ΩD ∪ ∂ΩN such that
∂ΩD ∩ ∂ΩN = ∅. We adopt the notation for each subdomain, that is, ∂Ωd

iD = ∂Ω
d
i ∩ ∂ΩD

and ∂Ωd
iN = ∂Ω

d
i ∩ ∂ΩN for i ∈ Id , 0 < d ≤ n. This partition of the external boundary will

later be important in the flow model to set pressure boundary conditions on ∂ΩD and flux
boundary conditions on ∂ΩN .

Figure 2.1: We illustrate the hierarchical structure of the mixed-dimensional decomposition
of a fractured porous medium. On the left, the two-dimensional setting shows a fracture
as a one-dimensional feature and interfaces that it shares with the porous medium domain.
On the right, a sketch of a fracture network in three dimensions shows how the manifolds
decompose the porous medium domain, as well as how they are split by intersection lines
and a intersection point.
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Throughout the thesis, omitting subdomain subscripts and dimension superscripts notes
a parameter or a variable defined on the union of geometric features over those indices. We
bring back the notation with indices in cases when clarification is necessary.

2.2 Linear Flow Model
Now that we have set up the dimensional decomposition framework, we introduce the gov-
erning laws in the subdomains and fractures. First, we start with a linear flow model.

We assume that the material permeability Kd and normal permeability Kd
ν tensors are

bounded both above and below, symmetric and positive definite. Furthermore, denote with
γdij the distance from Γdij to Ω

d
i , which for d = n − 1 represents the fracture aperture. In

theory, the physical parameters Kd , Kd
ν and γdij can vary spatially, however, we consider

them to take constant values on each subdomain in Ω as it is usually the case in the papers
in Part II.

In each subdomainΩd , we introduce the governing laws of the single-phase incompress-
ible flow model – Darcy’s law and mass conservation [49, 65]. It states to find fluid velocity
or flux ud and pressure pd that satisfy

ud = −Kd∇pd, in Ωd, 0 < d ≤ n, (2.2a)
∇ · ud + ~ud+1 · ν� = f d, in Ωd, 0 ≤ d ≤ n, (2.2b)

with the jump term ~·� defined as

~ud+1 · ν� |Ωd
i
= −

∑
j∈Jd

i

(ud+1 · ν) |Γdi j , i ∈ Id, 0 ≤ d ≤ n − 1. (2.3)

that represents the in-flow source from the adjacent (d + 1)-dimensional subdomains. Bear
in mind that although there is no flow in the point Ω0, to complete the model we set u0 to
zero and then (2.2b) reads ~u1 · ν� = f 0, which is actually balancing the inflow and outflow
sources inΩ0. In the samemanner, since there is no notion of interface Γn, the (2.2b) reduces
only to ∇ · un = f n.

Furthermore, we introduce an additional interface conditions on Γdij to describe the notion
of normal flux due to difference in pressure from Ωd

i to Ωd+1,

(ud+1 · ν) |Γdi j = −K
d
ν

pd
i − pd+1 |Γdi j

γdij
, on Γdij, j ∈ Jd

i , i ∈ Id, 0 ≤ d ≤ n − 1, (2.4)

where pd+1 |Γdi j
is the trace of pressure pd+1 on the interface Γdij , assuming sufficient regularity

to take such trace. To complete the system, an example of boundary conditions is given with

pd = gd, on ∂Ωd
D, 0 ≤ d ≤ n, (2.5a)

ud · ν = 0 , on ∂Ωd
N, 0 < d ≤ n. (2.5b)
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Here, we have used ud as the flux integrated over the direction normal to Ωd and pd as
averaged pressure in each Ωd , 0 ≤ d ≤ n. Therefore, the reduced equations on each Ωd for
d , n require scaling of the permeability tensors Kd and Kd

ν with the cross-sectional area
of order O(γn−d). A more detailed discussion on the scaling is given in [16].

There are several ways to set weak formulations of the above flow model that are mu-
tually equivalent, that is, have the same unique solution. Each of them motivates a different
kind of discretization scheme that can be used to approximate the solution of the continuous
problem, that are not necessarily equivalent. Hence, the resulting algebraic formulation may
have different properties, such as definiteness and eigenvalue spectrum, that in turn require
different linear and non-linear solvers. In the following, we will give a few possible choices
of the weak and discrete formulations of the problem (2.2)–(2.5) that are considered in the
papers in Part II.

2.2.1 Variational Formulation
We begin with defining the necessary function spaces. For any open bounded set ω ∈ Rn,
let L2(ω) be the space of square-integrable functions on ω, which is a Hilbert space with
the inner product ( f , g)ω =

∫
ω

f g dx and induced norm ‖ f ‖2ω = ( f , f )2
ω . Furthermore,

we require a function space H (div, ω), a subspace of (L2(ω))n of functions with square-
integrable divergence, that is, for f ∈ (L2(ω))n we have ∇ · f ∈ L2(ω). The function space
H (div, ω) is also a Hilbert space with the inner product ( f , g)H (div,ω) = ( f , g)ω + (∇ · f ,∇ ·
g)ω .

To find a weak and, subsequently, a discrete solution to (2.2)–(2.5), we extend this con-
cept to the mixed-dimensional framework. On the mixed-dimensional geometry Ω with the
interface Γ, the L2 function spaces are composed as

L2(Ω) =
n∏

d=0
L2(Ωd), L2(Γ) =

n−1∏
d=0

L2(Γd), (2.6)

with the inner products

(·, ·)Ω =
n∑

d=0
(·, ·)Ωd , (·, ·)Γ =

n∑
d=0

(·, ·)Γd , (2.7)

and the induced norms

‖ · ‖2
Ω
=

n∑
d=0
‖ · ‖2

Ωd , ‖ · ‖2Γ =

n∑
d=0
‖ · ‖2

Γd
. (2.8)

We define also the mixed-dimensional divergence

D · f = ∇ · f + ~ f · ν�, (2.9)

that operates as a combination of a standard divergence ∇ tangentially on each Ωd and a
jump of normal traces of functions on Ωd+1 across the common part of the interface Γd .
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Therefore, the functions that we can take mixed-dimensional divergence of are contained in
the function space

H (D · ,Ω) =
n∏

d=1
{ f d ∈ H (div,Ωd) : ( f d · ν) |Γd−1 ∈ L2(Γd−1)}. (2.10)

The relevant function spaces for the variational formulation now are

V = {v ∈ H (D · ,Ω) : (v · ν) |∂ΩN = 0},
Q = L2(Ω),

for flux u and pressure p, respectively.
The variational formulation of (2.2)–(2.5) states: Find u ∈ V and p ∈ Q such that

(K−1u, v)Ω + (K−1
ν u · ν, v · ν)Γ − (p,D · v)Ω = −(g, v · ν)∂ΩD ∀v ∈ V, (2.11a)

(D · u, q)Ω = ( f , q)Ω ∀q ∈ Q, (2.11b)

with f ∈ L2(Ω) and g ∈ H
1
2 (∂ΩD ). To show the uniqueness of the solution, we rewrite the

system (2.11) and make use of the theory of saddle point problems.
Define bilinear forms a(·, ·) : V × V → R and b(·, ·) : V ×Q → R as

a(u, v) = (K−1u, v)Ω + (K−1
ν u · ν, v · ν)Γ, (2.12a)

b(v, p) = −(p,D · v)Ω. (2.12b)

Then the saddle point form of system (2.11) reads: Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = −(g, v · ν)∂ΩD , ∀ v ∈ V, (2.13a)
b(u, q) = −( f , q)Ω, ∀ q ∈ Q. (2.13b)

In order to prove that the above problem admits a unique solution to the , two conditions on
the bilinears forms a and b are sufficient:

1. (Coercivity): There exists a constant Ca > 0 such that it holds

a(v, v) ≥ Ca‖v‖
2
V , (2.14)

for v ∈ V such that b(v, q) = 0 for any q ∈ Q.

2. (Inf-sup): There exists a constant Cb > 0 such that it holds

inf
q∈Q

sup
v∈V

b(v, q)
‖v‖V ‖q‖Q

≥ Cb . (2.15)

In [16] it has been shown that the these conditions are indeed satisfied and, following the clas-
sical Brezzi theory [13, 18], we conclude that the saddle point system (2.13) is well-posed.
That is, the unique solution of (2.13) exists, which is by equivalence the unique solution of
(2.11).
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2.2.2 Conforming Discretization
The dual variational formulation (2.13) describes the solution as two variables, which mo-
tivates the same structure of the solution in the discrete sense. Therefore, the discretization
schemes we mainly consider are mixed finite element pairs that satisfy discrete versions of
the conditions (2.14) and (2.15).

Let T d
Ω

be a d-dimensional shape-regular simplicial tesselation of Ωd and TΩ =
n⋃

d=0
T d
Ω

the complete mixed-dimensional grid. The grids are constructed so that they are matching
along the interface. Let h = max

0≤d≤n
hd be the characteristic mesh size parameter the subscript

h describe the discrete entities. Consider Vh ⊂ V and Qh ⊂ Q to be the lowest-order stable
mixed finite element approximations on TΩ: Vh = RT0(TΩ) as the lowest-order Raviart-
Thomas-Nédélec spaces [46, 54] and Qh = P0(TΩ) as the space of piecewise constant poly-
nomials.

The finite element approximation of the system (2.11) is formulated as follows: Find
(uh, ph) ∈ Vh ×Qh such that,

a(uh, vh) + b(vh, ph) = −(g, vh · ν)∂ΩD , ∀ vh ∈ Vh, (2.16a)
b(uh, qh) = −( f , qh)Ω, ∀ qh ∈ Qh . (2.16b)

Due to our choice of the finite element spaces, the conditions on the bilinear forms are
preserved directly. For further details, we refer the reader to [13, 15, 16, 18].

Finally, we give a block formulation of the discrete saddle point system (2.16). Denote
V ′
h
and Q′

h
to be the dual spaces of Vh and Qh , respectively, and 〈·, ·〉 the duality pairing. We

define the linear operators Au : Vh → V ′
h
and B : Vh → Q′

h
such that

〈Auuh, vh〉 = a(uh, vh) uh, vh ∈ Vh, (2.17a)
〈Bvh, ph〉 = b(vh, ph) ph ∈ Qh . (2.17b)

Then, (2.16) takes the following equivalent form

A
(
uh
ph

)
=

(
G
F

)
with A =

(
Au BT

−B 0

)
, (2.18)

where the right hand side is defined as G(vh) = −(g, vh · ν)∂ΩD and F (qh) = ( f , qh)Ω.
The well-posedness conditions (2.14)–(2.15) ensure thatA is an isomorphism from Vh×

Qh to V ′
h
×Q′

h
, therefore the unique solution to (2.16) is also the unique solution to (2.18).

Although we have concluded that the unique solution of the linear system (2.18) ex-
ists, the question of finding it is still open. Looking back at the construction of this linear
system, we see that it is highly coupled over interfaces of subdomains, its underlying frac-
ture network geometry can be complex and simultaneously contain very long and very small
fractures, and it incorporates physical parameters that can vary spatially on several orders of
magnitude. This makes the linear system (2.18) very difficult to solve. Thus, to attain the so-
lution efficiently, we have to address all of these features in the numerical methods that we
use. Such methods are provided mainly in Paper A and B and shortly described in Chapter 3,
more specifically in Section 3.2.
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2.2.3 Non-matching Grids
The advantage of having separate manifolds for each subdomains is that we can construct
separate grids that do not necessarily match on the interface. This setting can be desirable
if certain parts of the mixed-dimensional domain Ω require finer meshing while the rest
should remain unchanged and even allows coarsening. For example, we can have a more
heterogeneous and non-linear flow patterns within the fractures, while the rock matrix flow
still exhibits a slower and stable profile. Here, we give a concise presentation on how the
flow problem (2.2)–(2.5) can be modified to incorporate non-matching grids, while a more
detailed description and analysis can be found in e.g. [16, 37, 48].

To couple the non-matching grids, we introduce an auxiliary mortar variable λ on Γ.
Specifically, λdij represents the flux across Γdij between the two subdomains Ωd

i and Ωd+1
j .

Therefore, we can define the mortar variable as

λdij = (ud+1 · ν) |Γdi j , j ∈ Jd
i , i ∈ Id, 0 ≤ d ≤ n − 1. (2.19)

Based on the choice of function space for u, we have that λ lies in the space Λ = L2(Γ).
Taking V0 = {v ∈ V : (v · ν) |Γ = 0}, the variational formulation (2.11) can equivalently be
written as: Find u = (u0, λ) ∈ V0 × Λ and p ∈ Q such that

(K−1(u0 +Rλ), v0 +Rµ)Ω + (K−1
ν λ, µ)Γ − (p,D · v)Ω = −(g, v0 · ν)∂ΩD

∀v ∈ V0 × Λ, v = (v0, µ), (2.20a)
(D · u, q)Ω = ( f , q)Ω ∀q ∈ Q, (2.20b)

whereR is an extension operator from Λ to V · ν, the space of normal traces of functions in
V . Additionally, the saddle point structure in (2.13) stays the same considering the bilinear
forms

a(u, v) = (K−1(u0 +Rλ), v0 +Rµ)Ω + (K−1
ν λ, µ)Γ, (2.21a)

b(v, p) = −(p,D · v)Ω = −(p,∇ · v0 + ~µ�)Ω. (2.21b)

Now, let TΓ =
n−1⋃
d=0

T d
Γ
represent the additional grids on Γ. Notice that the normal traces of

the flux variable vh ∈ Vh are piecewise constant, so we can take the discrete approximation
of the function space Λ as Λh = P0(TΓ). Let V0h represent the functions in Vh with zero
normal trace on Γ. The discrete formulation is then equivalent to (2.16) considering the
modified bilinear forms (2.21) and the solution in spaces uh = (u0h, λh) ∈ V0h × Λh and
ph ∈ Qh . This formulation is considered in Paper A.

On the other hand, it is also possible to use the pressure in the lower-dimensional subdo-
mains as the coupling mortar variable. That is, in the interface equation (2.4) we can instead
take

λdi = pd
i , i ∈ Id, 0 ≤ d ≤ n − 1. (2.22)

Then, the mortar function space Λ is a subspace of the pressure space Q, or more precisely

Q = Qn × Λ = L2(Ωn) ×
n∏

d=0
L2(Ωd). (2.23)
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Notice that it is not necessary to extend λ to Γ since in the variational formulation we use
the jump operator ~·� to map the normal flux u · ν to the lower-dimensional subdomains.
Specifically, the bilinear form b is modified to

b(v, p) = −(pn,∇ · vn)Ωn −
∑

0<d<n
(λd,∇ · vd)Ωd −

∑
0≤d<n

(λd, ~vd+1 · ν�)Ωd , (2.24)

for v ∈ V and p = (pn, λ) ∈ Q as in (2.23).
Although not immediately following from the variational problem in Section 2.2.1, this

approach is more common in modeling fractures as interfaces [3, 27]. In fact, it leads to the
traditional domain decomposition setting based on imposing the continuity of pressure over
the interface, and it allows to reduce the system (2.16) to an interface problem. We describe
this setting in Section 3.3 and use it in Papers C and D.

2.3 Non-linear and Time-Dependent Flow Models
The linear Darcy’s law (2.2a) is most commonly used as the constitutive law for flow in
(fractured) porous media. However, it does not account for all flow patterns, such as the ones
influenced by high-velocity and non-linear flow or the fluid compressibility. Here, we give
an overview of several other flow models that are considered in this thesis, namely in Papers
C and D.

2.3.1 Non-linear Fracture Flow Models
The fractures often exhibit a higher hydraulic conductivity than in the surrounding medium
and consequently the fracture flow may dominate the total flow process. However, due to a
higher flow velocity, the fracture flow patterns may deviate from the standard Darcy’s law,
which indicates deriving different flow models in the fractures. In particular, a non-linear
flow behavior can be observed in case of high-velocity flows. The simplest proposed models
concern correcting the permeability term in (2.2a) to

k (u) = K−1 + ξ (u). (2.25)

This influence the form a(·, ·) in (2.12a) that now becomes

a(u, v) = (k (u)u, v)Ω + (K−1
ν u · ν, v · ν)Γ . (2.26)

Depending on the choice of the correction term ξ (u), we derive different flow models. One
of the common corrections is the Forchheimer term

ξ (u) = ζ |u |I, (2.27)

where ζ > 0 is a scalar Forchheimer coefficient and | · | denotes the Euclidean norm. Com-
bining (2.27) in fracture subdomains Ωd

i for d < n with the standard Darcy’s law given in
(2.2a) in the rock matrix subdomains d = n, the new flow model can be identified as the
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Darcy-Forchheimer flow model for fractured porous media [28, 38]. Moreover, a more gen-
eral law that incorporates changes in fluid viscosity considers a Cross’ law [24] correction
term

ξ (u) =
υ0 − υ∞

1 + K |u |2−r
, (2.28)

with υ0, υ∞ and r are fluid-type dependent physical parameters. Many other flow models are
possible, including multiphase and unsaturated flow [2, 9, 31, 42], however they are outside
the scope of this thesis.

2.3.2 Compressible Flow Model
Another modification to the flowmodel is to consider the changes in fluid density or the rock
porosity in time [49, Section 2.2]. In short, it comprises an additional compressibility term
for pressure in the mass conservation equation (2.2b),

s0
∂pd

∂t
+ ∇ · ud + ~ud+1 · ν� = f d, in I ×Ωd, 0 ≤ d ≤ n. (2.29)

where I = (0 ,T] is given time interval and s0 is the specific storativity constant. To complete
the model, we need to set an initial condition on the pressure, i.e.

pd (0 , ·) = pd
0 , in Ωd, 0 ≤ d ≤ n. (2.30)

For the variational formulation, we need to extend the spatial function spaces to include
the time component. The time derivative only concerns the pressure variable, therefore we
search for solution (u, p) in the space L2(0 ,T ; V ) × H1(0 ,T ; Q). With defining the bilinear
form c : Q ×Q → R as

c(p, q) = (s0p, q)Ω p, q ∈ Q, (2.31)

the updated saddle-point formulation (2.13) takes the following form

a(u, v) + b(v, p) = −(g, v · ν)∂ΩD , ∀ v ∈ V, (2.32a)
c(∂tp, q) + b(u, q) = −( f , q)Ω, ∀ q ∈ Q. (2.32b)

with p0 ∈ L2(Ω), f ∈ L2(0 ,T ; L2(Ω)) and g ∈ L2(0 ,T ; H
1
2 (∂ΩD )).

Similarly, we can extend the mixed finite element spatial discretization to approximate
the time derivative of the pressure with the backward Euler method. For an integer M , let
(τm)0≤m≤M be the discrete time steps such that T =

∑M
m=1. The discrete times are set as

t0 = 0 and tm =
∑m

j=1 τ
j with discrete time intervals Im = (tm−1, tm]. The fully discrete

formulation of (2.32) states that assuming p(m−1)
h

is given, at each time step iteration m ≥ 1
find (u(m)

h
, p(m)

h
) ∈ Vh ×Qh such that

a(u(m)
h
, vh) + b(vh, p(m)

h
) = −(g, vh · ν)∂ΩD , ∀ vh ∈ Vh, (2.33a)

c(p(m)
h
− p(m−1)

h
, qh) + τmb(u(m)

h
, qh) = −τm( f , qh)Ω, ∀ qh ∈ Qh . (2.33b)

Still, the system (2.33) is non-linear because of (2.26) and, to find the solution at each
time step, we first need to linearize it. In Papers C and D we provide several linearization
methods designed for solving (2.33), which we also describe in short in Section 3.4.
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Chapter 3

Solvers and Preconditioners

To simulate the mathematical models described in the previous chapter, we rely on linear
and non-linear solvers, that is the numerical methods used to compute the solution of linear
or non-linear systems of equations. Based on the choice of discretization and basis func-
tions, the systems of partial differential equations turn into large sparse algebraic systems
that are often difficult to solve using classical solving approaches. In our case, the geometry
of the fractured rock is often complex and the models can contain heterogeneous physical
parameters, which largely affect the structure and the properties of the resulting algebraic
system.

To overcome this issue, a design of problem-specific solvers is required. In this chapter,
we propose several direct and iterative approaches to solving the linear system (2.18), but
also the linearization schemes to solving (2.33). In particular, we give focus on improving the
performance of the standard iterative methods by applying preconditioners in each iteration
of the chosen method.

In Section 3.1, we first introduce what the direct and iterative methods are, as well as how
preconditioners come into play, and present several standard approaches often used in general
applications. The main contribution of Section 3.2 is a class of preconditioners specifically
designed for the discretizations of the model given in Section 2.2. The saddle-point struc-
ture of the mixed finite element problem (2.18) gives rise to parameter-independent, namely
robust, preconditioners based on the well-posedness of the problem. Finally, after introduc-
ing the concept of domain decomposition, in Section 3.4 we present the non-linear solvers
for non-linear models that were given in Section 2.3.

As for the implementation, the solvers proposed in this thesis are mainly implemented
using two softwares developed in two programming languages. One of them is PorePy [37]
that is based in Python and provides the mixed-dimensional geometry and discretization of
the models presented in the previous chapter. Also, we use Python to implement the non-
linear solvers. On the other hand, the iterative methods and preconditioners given later in
Section 3.2 are developed using HAZMATH [1] solver library that is built in C.
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3.1 Direct and Iterative Methods
In this section, we give a short overview of some classical numerical methods to find the
solution x ∈ Rn to the algebraic linear system

Ax = b, (3.1)

where b ∈ Rn given and A ∈ Rn×n is an invertible sparse matrix. The sparse structure is
common in many applications when numerically solving partial differential equations, for
example when using finite element method where basis functions have small support. In
large-scale systems, this is beneficial since sparse matrices require less storage space, but it
is often necessary to use specialized algorithms to take advantage of the sparsity patterns in
the system.

Depending on the properties of the matrix A, many solving techniques have been devel-
oped over the years to approximate the solution x = A−1b that can be classified into direct
and iterative methods [32, 33].

3.1.1 Sparse Direct Solvers
The direct methods for solving (3.1) concern computing the solution with a finite number of
operations, which is exact up to rounding errors. The most common direct computation of
x is to use the sparse LU decomposition of the matrix A. Although the standard LU decom-

position has ≈
2
3

n3 computational cost, the sparse version of the algorithm can significantly
reduce the required number of floating-point operations and memory usage. It can be found
in many linear algebra libraries, such as SuperLU [41], SuiteSparse [21] and Pardiso [40].
Specifically, the software PorePy [37], as one of the implementation tools in our work, uses
the Python library SciPy [36] that has an interface with the SuperLU library. Hence, in the
following we give a simply description of the algorithm.

Using sparse Gaussian eliminations, the algorithm is given in two parts:

1. Compute the factorization PrDrADcPc = LU, where we have premultiplied A with
row and column permutation matrices Pr and Pc and scaled rows and columns with
diagonal matrices Dr and Dc . These matrices are specially constructed to improve nu-
merical stability and parallelism of the factorization. The factorization itself produces
a lower triangular matrix L, with ones on the diagonal, and an upper triangular matrix
U.

2. Compute the solution as

x = (D−1
r P−1

r LUP−1
c D−1

c )−1b = (Dc (Pc (U−1(L−1(Pr (Drb)))))).

The sparse direct methods show a solid performance in common applications. However,
the major drawback of direct methods is still the excessive computational cost that occurs in
large-scale simulations in comparison to iterative methods that exhibit ≈ n2 complexity or
better.
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3.1.2 Iterative Methods
To find an iterative solution of the system (3.1) means to generate a sequence of approxi-
mations {x(k)} for k = 1, 2, . . . from the initial guess x(0) , where each x (k) is closer to the
exact solution x. We say that the iterative solution has converged if it approximates the ex-
act solution up to a prescribed tolerance, usually measured in the magnitude of the residual
r(k) = b − Ax(k) .

The iterative methods exploit the fast matrix-vector product computation. Efficient it-
erative methods usually require only a very few products with the stiffness matrix A, while
also keeping the number of iterations needed to reach convergence minimal. This is typically
done by transforming the original system (3.1) to

BAx = Bb, (3.2a)

or

ABy = b, x = By. (3.2b)

which may be more suitable for iterative computations. The matrix B is called a precondi-
tioner matrix and should in some way approximate the inverse of A. The form (3.2a) gives a
left preconditioner and (3.2b) a right preconditioner. In Section 3.2 we also present the pre-
conditioners in a more general setting regarding linear operators defined on Hilbert spaces.

Considering this, the basic iterative methods then solve the system

x(k) = x(k−1) + B(b − Ax(k−1)), m ≥ 0. (3.3)

If we take B = A−1, we see that the method will converge to the solution x in one iteration.
Therefore, a requirement that the application of the preconditioner should closely resemble
to an application of the inverse of the system matrix is highly beneficial. In the following,
we explain how this is achieved in some classical iterative techniques that have also served
as a tool in the work of this thesis.

Stationary iterative methods. To find B, these methods typically consider a certain
splitting of the matrix A. For example, let A allow the following splitting

A = D + L + U, (3.4)

where D is the diagonal of A, and L and U are the strictly lower and upper triangular part
of A, respectively. Depending on the choice of B, we can get different iterative methods,
such as Jacobi method for B = ωD−1 and Gauss-Seidel method for B = (ω−1D + L)−1, for
given ω > 0. The weight constant ω is chosen so that the iterative methods are guaranteed
to converge, although it is usually limited to a small class of matrices. See, for example, [33]
for more details on the convergence of the stationary iterative methods. A more efficient and
often better approximation B can be derived by constructing a hierarchy of grids.
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Algebraic multigrid method (AMG). The AMG method was developed to achieve an
automatic coarsening process based on the underlying matrix of the given system of equa-
tions. Instead of operating on a hierarchy of geometrical grids, as the case in geometric
multigrid methods, AMG can directly be applied to problems with complex unstructured
meshes and jumping coefficients. Although applications are many, it has been mostly devel-
oped to efficiently solve systems of equations that are symmetric positive definite. Therefore,
we present in short the main idea of AMG on (sparse) symmetric positive definite problems
and refer to the relevant literature [61, 67] for more information on the topic.

We focus on two-level methods in an operator setting and assume that the extension to a
multi-level method (e.g. V-cycle orW-cycle algorithms) can be done by recursively applying
the two-level algorithm. Let V a finite-dimensional vector space (usually V = Rn in matrix
setting) and V ′ its dual space (usually V = V ′). Let x ∈ V be the solution of the linear system

Ax = b, (3.5)

with b ∈ V ′ and A : V → V ′. The main ingredients of a two-level AMG method to solve the
above linear system are:

• A smoother R : V ′ → V , as a relaxation operator;

• A coarse space Vc , not necessarily a subspace of V ;

• A prolongation operator P : Vc → V ;

• A coarse space solver Bc : V ′c → Vc , an approximation of the inverse of Ac = PTAP.

A two-level AMG algorithm can be characterized as a application of an operatorB : V ′ → V
that should approximate A−1. Given b ∈ V ′, the action Bb is given with

1. Compute a coarse grid correction: w = PBcPTb;

2. Smoothen the residual: Bb = w + R(b − Aw).

If Vc ⊂ V , the prolongation operator P can be chosen as the inclusion ιc : Vc → V . Then,
the error propagation operator of the two-level AMG is

E = I − BA = (I − RA)(I − Πc), (3.6)

where Πc = ιcA−1
c ιTc A. Therefore, to design a fast converging AMG method, we need to

minimize ‖E‖A. Without going into a detailed convergence analysis, see e.g. [67, Section
5.2], it can already be observed from (3.6) that the key to an efficient AMG method is to
balance the interplay between the smoother R and the coarse space Vc . A common choice
is to fix the smoother, such as Jacobi or Gauss-Seidel method, and then choose a suitable
coarse space that minimizes ‖E‖A.

However, it is often simpler and more efficient to accelerate the multigrid methods by
using them as preconditioners in other iterative methods, such as the Krylov subspace meth-
ods which we introduce directly after. This way, we can save on optimizing the interplay
between multigrid components but rather improve the convergence of the chosen iterative
method. We consider this approach in some of the work in this thesis, for example in Paper
A and B.
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Krylov subspace methods. The principal idea of these methods is to produce a se-
quence {x(k)} of approximative solutions where we look for each x(k) in the Krylov subspace
of order k

Kk (A, b) = {b,Ab,A2b, . . . ,Ak−1b}, (3.7)

byminimizing the residual over the subspace. Particularly, ifA is symmetric positive definite,
the unique solution to (3.1) can be characterized as a minimization problem

x = arg min
y∈Rn

r(y), (3.8)

where r(y) = yTAy − 2yTb. The k-th approximation is then a solution x(k) ∈ Kk to (3.8)
where we have minimized over all y ∈ Kk . In fact, it means that each x(k) is the best approx-
imation of x in Kk .

The rate of the convergence of Krylov subspace methods is usually characterized by the
condition number κ(A) = |||A||| |||A−1 ||| for some consistent matrix norm ||| · |||. For example,
a method resulting from (3.8) called the conjugate gradient method (CG) [34] generates a
sequence {x(k)} such that

‖x − x(k) ‖A ≤ 2 *
,

√
κ(A) − 1√
κ(A) + 1

+
-

k

‖x − x(0) ‖A (3.9)

for any initial guess x(0) and ‖y‖2A = xTAy.
Similar methods exist for matrices that are not symmetric positive definite. For indefinite

matrices, one can useminimal residual method (MINRES) [50]. If they are also not symmet-
ric, generalized minimal residual (GMRES) [55] is the most common choice. In those cases,
it is possible to derive a similar estimate on the convergence rate as in (3.9), that depends
only on κ(A). In particular, the systems that we consider fit in these categories, therefore we
discuss the implementation of MINRES and GMRES to our problems in Section 3.2.

One can significantly accelerate the convergence of the Krylov subspace methods by us-
ing preconditioners. If N is the dimension of the solution space, then KN builds a basis for
the whole space, which consequently means that the Krylov subspace methods are guaran-
teed to converge in at most N iterations. On the other hand, as also representing the number
of unknowns in the system, N can get very large in general applications. Thus, the aim of
the preconditioners is to affect the rate of convergence, as seen in (3.9), by directly reducing
the condition number of the system (hence, "pre-conditioning").

These preconditioners are usually problem-specific, however their construction often in-
corporates (a combination of) standard solving techniques, such as the onesmentioned earlier
in this section. The following section, though, provides a general approach to designing the
preconditioners to Krylov subspace methods for saddle point problems, and how it can be
applied to our system (2.18).
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3.2 Block Preconditioners
The block formulation (2.18) naturally motivates a preconditioning framework that treats
each block of the coefficient operator of the linear system.We first introduce a general setting
of this framework as preconditioners for Krylov subspace methods that are based on the well-
posedness of the underlying discrete problem. We show how our linear system fits within
the framework and present two approaches to block preconditioners that can be applied to
the system. Most importantly, we present methods to implement the preconditioners in a
computationally feasible and efficient way.

3.2.1 The General Theory
To design the block preconditioners, we require some analytical tools in a more general
saddle point problem setting given in [45]. Assume that we have a real separable Hilbert
space X with an inner product (·, ·)X that induces the norm ‖ · ‖X . Let X ′ be its dual space
and let 〈·, ·〉 the duality pairing between them. Also, assume that there is a symmetric bilinear
form L(·, ·) on X that satisfies the well-posedness conditions similar to (2.14)–(2.15),

|L(x, y) | ≤ α‖x‖X ‖y‖X, and inf
x∈X

sup
y∈X

L(x, y)
‖x‖X ‖y‖X

≥ β, ∀x, y ∈ X, (3.10)

for α, β > 0. Denote a right hand side b ∈ X ′ and a linear operatorA : X → X ′ induced by
the bilinear form L(·, ·) such that 〈Ax, y〉 = L(x, y). We aim to iteratively solve the linear
system

Ax = b. (3.11)

As mentioned before, efficient methods for such systems are the Krylov subspace methods
that often require preconditioners to obtain faster convergence. In this case, the conditions
(3.10) ensure that A is a bounded, symmetric and isomorphic linear operator and the sys-
tem (3.11) has a unique solution. However,A maps the functions in X to the dual space X ′,
which is often much bigger than the original space, so the convergence of the Krylov sub-
space methods is not well defined. Thus, the preconditioner applied to (3.11) should be an
isomorphic mapping from X ′ back to X .

Consider a symmetric positive definite linear operator B : X ′ → X which induces an
inner product (x, y)B−1 = 〈B−1x, y〉 on X and corresponding norm ‖x‖2B−1 = (x, x)B−1 . In
turn, BA : X → X is a symmetric isomorphism with respect to (·, ·)B−1 , and the precondi-
tioned system

BAx = Bb (3.12)

can be solved with the MINRES method. Consequently, if B also satisfies

c1‖x‖
2
X ≤ ‖x‖

2
B−1 ≤ c2‖x‖

2
X, (3.13)

thenA and B are referred to as norm equivalent and, with (3.10), we can get a bound on the
condition number of the system as

κ(BA) ≤ ‖BA‖L (X,X ) ‖(BA)−1‖L (X,X ) ≤
c2α

c1 β
. (3.14)
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Here, L (X, X ) denotes the set of all bounded linear operators on X and, for any Ã ∈

L (X, X ), the corresponding operator norm is defined as ‖Ã‖L (X,X ) = sup
0,x∈X

‖Ãx‖X
‖x‖X

.

The natural choice of B is the Riesz operator BD corresponding to the inner product
(·, ·)X ,

(BD f , x)X = 〈 f , x〉, ∀ f ∈ X ′, x ∈ X . (3.15)

Then, it follows from the definition of the operator norm and the inner product (·, ·)B−1 that
(3.13) holds with constants c1 = c2 = 1, that is κ(BDA) ≤

α

β
.

It is often the case in discretizations of saddle point systems that they may depend on
a number of parameters, for example physical and discretization parameters. Let us assume
that applies to the linear system (3.11). The direct consequence of (3.14) is that, if the well-
posedness constants α,β and the norm-equivalence constants c1, c2 are independent of these
parameters, the convergence of theMINRESmethod is uniform and B provides a robust pre-
conditioner. We will show that our preconditioners for (2.18) presented later in Section 3.2.3
and Section 3.2.4 fit into that category.

In addition to the norm equivalent kind, another class of field-of-values equivalent (FoV-
equivalent) preconditioners [22, 23, 44] can be applied in (3.12). These preconditioners usu-
ally arise from the norm equivalent ones and have similar properties, but they are not neces-
sarily symmetric.

Consider a bounded linear operator BL : X ′ → X in the preconditioned system (3.12).
If for any x ∈ X the operator BL satisfies

ξ1 ≤
(BLAx, x)B−1

(x, x)B−1
, and

‖BLAx‖B−1

‖x‖B−1
≤ ξ2, (3.16)

for constants ξ1, ξ2 > 0, then we say that BL and A are FoV-equivalent. From [22, 23] we
have that BL is a left preconditioner for the GMRES method with the convergence rate

‖BLA(x − x (k))‖2B−1 ≤
*
,
1 −

ξ2
1

ξ2
2

+
-

k

‖BLA(x − x (0))‖2B−1 . (3.17)

Similarly, consider BU : X ′ → X in the preconditioned system

ABU y = b, x = BU y, (3.18)

and define an inner product on X ′ as (x ′, y ′)B := 〈x ′,By ′〉, for x ′, y ′ ∈ X ′. Then, BU and
A are FoV-equivalent if for any x ′ ∈ X ′

ξ1 ≤
(ABU x ′, x ′)B

(x ′, x ′)B
, and

‖ABU x ′‖B
‖x ′‖B

≤ ξ2, (3.19)

and BU can be used as a uniform right preconditioner for the GMRES method.
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3.2.2 Application to the Mixed-Dimensional Problem
After preparing the grounds in the previous section, we continue now with applying the gen-
eral theory to design the block preconditioners for our mixed-dimensional problem (2.18).
Take X = Vh ×Qh and define an energy norm as

‖x‖2X = ‖(uh, ph)‖2X = ‖uh ‖
2
V + ‖ph ‖

2
Q, x ∈ X . (3.20)

It follows that the coefficient operator A : X → X ′ in (2.18) is induced by the bilinear form

L(x, y) = L((uh, ph), (vh, qh)) = a(uh, vh) + b(vh, ph) − b(uh, qh) x, y ∈ X . (3.21)

Furthermore, the conditions (2.14)–(2.15) imply that A satisfies the well-posedness condi-
tions (3.10), with the corresponding constants independent of physical and discretization
parameters.

This formulation induces two different ways of deriving preconditioners for (2.18).
Roughly speaking, one strategy is to give more weight to the matrix block concerning the
flux variable uh , while the other looks more closely at the pressure block.

"Flux-based" block preconditioner. Applying directly the theory from Section 3.2.1,
the Riesz operator corresponding to the norm (3.20) takes the form

BD =

(
Au + BT B 0

0 Ap

)−1

, (3.22)

where Ap is the identity operator with regards to the norm on Q, i.e. 〈Apqh, qh〉 = ‖qh ‖2Q for
qh ∈ Qh . In the piecewise constant basis of the discrete space Qh , the matrix representation
of this operator is a diagonal matrix which is easy to invert. Therefore, the main challenge
in implementation of this preconditioner is how to apply the inverse of the block Au + BT B
that corresponds to a mixed-dimensional H (div) problem. For small enough systems it is
possible to use any direct method, but the typical applications result in a large number of
degrees of freedom and the direct methods may not be a feasible solution. Another way is to
approximate the inverse with another iterative method. However, to conserve the robustness
of the preconditioner, we require that the approximation is spectrally equivalent.

To that end, we consider the following preconditioner

MD =

(
Mu 0
0 Mp

)
, (3.23)

where the diagonal blocks Mu and Mp are symmetric positive definite and spectrally equiv-
alent to diagonal blocks in A + BT B and Ap , respectively. Specifically, it means that

c1,u〈Muuh, uh〉 ≤ 〈(Au + BT B)−1uh, uh〉 ≤ c2,u〈Muuh, uh〉, (3.24a)
c1,p〈Mpqh, qh〉 ≤ 〈A−1

p qh, qh〉 ≤ c2,p〈Mpqh, qh〉, (3.24b)

for some positive constants c1,u , c1,p , c2,u , and c2,p . The applications of the diagonal
blocks Mu and Mp are often implemented as another level of iterative methods within
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the outer Krylov subspace method of choice. Notice that MD is also a norm-equivalent
preconditioner. In fact, we get that the condition number κ(MDA) satisfies (3.14) with
c1 = min{c1,u, c1,p} and c2 = max{c2,u, c2,p}. As before, we require the constants to be
independent of discretization and physical parameters to obtain a robust preconditioner. One
way to design MD as a spectrally equivalent approximation of (3.22) is to use auxiliary
space theory [35, 39], which is the topic of Paper B and further discussed in Section 3.2.4.

Remark 3.2.1 Since our discrete system (2.16) is a parameter-dependent problem, depend-
ing on the physical parameters K and Kν , this reflects in the norms used to design a norm
equivalent preconditioner BD . For that, a more suitable preconditioner is given with

BD =

(
Au + εBT B 0

0 ε−1 Ap

)−1

, (3.25)

where ε > 0 is a constant depending on the eigenvalues of K and Kν . However, we continue
this section with deriving a spectrally equivalent analogue to (3.22) and refer to Paper B for
the discussion on the choice of ε.

Once we have MD , we can easily derive the FoV-equivalent preconditioners. Taking
(3.23) into account, the left preconditionerML equivalent toBL and the right preconditioner
MU equivalent to BU are given with

ML =

(
M−1

u 0
−B M−1

p

)−1

and MU =

(
M−1

u BT

0 M−1
p

)−1

. (3.26)

"Pressure-based" block preconditioner. On the other hand, we can reformulate our
discrete problem to obtain a simpler, but still a efficient and robust preconditioner. Consider
a block preconditioner

BD =

(
Au 0
0 BA−1

u BT

)−1

. (3.27)

Notice that the diagonal block BA−1
u BT is symmetric positive definite and can be seen as a

mixed-dimensional equivalent to a Laplacian operator ∆ = div grad. This may be beneficial
since the standard Krylov subspace methods work well with second-order elliptic operators.
Though, we still need to show that the above preconditioner fits within the theory in Sec-
tion 3.2.1.

The general block preconditioner is based on the choices of norms on the discrete spaces
where we look for our solution. In the case of (3.27), it is assumed that choice of function
space Xh allows for a primal formulation for pressure variable, that is, that we look for ph

in a discrete approximation of the space H1(Ω) =
n⊕

d=0
H1(Ωd). If that is true, BD is a Riesz

mapping corresponding to the norm

‖x‖2X = ‖uh ‖
2
L2 (Ω) + ‖ph ‖

2
H1 (Ω)

= ‖uh ‖
2
L2 (Ω) + ‖ph ‖

2
L2 (Ω) + ‖Dph ‖2L2 (Ω) . (3.28)
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However, this is not obvious since Qh , as a space of piecewise constants, is not a subspace of
H1(Ω). Still, it is possible to introduce a mixed-dimensional discrete gradient operator Dh

such that Qh ∈ H (Dh,Ω) and the bound on the condition number (3.14) is preserved. Paper
A provides a detailed analysis and implementation of this preconditioner, though we shortly
discuss the idea in the following Section 3.2.3.

Lastly, it is also possible and preferable in this case to derive a spectrally equivalent pre-
conditioner MD and FoV-equivalent preconditioners ML and MU . They take a similar
form to (3.23) and (3.26), but the diagonal blocks Mu and Mp should now be equivalent
to the diagonal blocks in (3.27). We refer the reader to Papers A and B for a more thor-
ough presentation and provide a derivation of only the block diagonal preconditioners in the
following sections.

3.2.3 Preconditioners Based on an Alternative Formulation
We first take a closer look at the "pressure-based" block preconditioners to solving (2.18).
We begin with defining a bilinear form

aD (uh, vh) B (K−1uh, vh)D,Ω + (K−1
ν uh · ν, vh · ν)Γ, (3.29)

where

(K−1uh, vh)D,Ω B
n∑

d=0




∑
T d ∈T d

Ω



∑
fd ∈∂T d

(uh · νfd )(vh · νfd )(K−1φfd ,φfd )T d





. (3.30)

With Td ∈ T d
Ω

we denote a d-dimensional simplicial element of the grid, with fd ∈ ∂T a
face of the element Td , with ν f d the outer unit normal of face fd , and with φfd ∈ RT0(Td)
the basis function on face fd .

Then, we can introduce the discrete gradient operator Dh : Qh → Vh such that for any
vh ∈ Vh ,

aD (Dhph, vh) B b(vh, ph) = − (ph,D · vh)Ω . (3.31)

Using the discrete gradient operator, an alternative formulation to (2.16) is given as follows:
Find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + aD (Dhph, vh) = −(g, vh · ν)∂ΩD , ∀ vh ∈ Vh, (3.32a)
aD (Dhqh, uh) = −( f , qh)Ω, ∀ qh ∈ Qh . (3.32b)

Notice that the above alternative formulation is by definition equivalent to the original for-
mulation (2.16) and, therefore, well-posed with respect to the norm (3.20). Consequently,
the norm equivalent preconditioner in this case is still the Riesz mapping (3.22). However,
we want to derive a preconditioner similar to (3.27) that should work well with the Krylov
subspace methods. For that purpose, we consider an new energy norm different to (3.20) and
show the well-posedness with the new norm.

Consider an alternative energy norm

|||x |||2 = |||(uh, ph) |||2 = ‖uh ‖2a + ‖Dhph ‖2aD, x ∈ X, (3.33)
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where ‖uh ‖2a = a(uh, uh) and ‖uh ‖2aD = aD (uh, uh). The reason why this norm is of
interest is that it can be shown that the forms a(·, ·) and aD (·, ·) are spectrally equivalent.
That is,

c1,D ‖vh ‖aD ≤ ‖vh ‖a ≤ c2,D ‖vh ‖aD , ∀vh ∈ Vh, (3.34)

holds for constants c1,D, c2,D > 0, depending only on the shape regularity of the mesh TΩ.
Based on this, in Paper Awe show that another version of the inf-sup condition (2.15) regard-
ing the discrete gradient Dh holds. It states that there exists a constant βD > 0 independent
of the discretization and physical parameters, but depending on the shape regularity of the
mesh, such that

inf
qh ∈Qh

sup
vh ∈Vh

aD (Dhqh, vh)
‖vh ‖a‖Dhqh ‖aD

≥ βD . (3.35)

In turn, the bilinear form

L(uh, ph; vh, qh) := a(uh, vh) + aD (Dhph, vh) + aD (Dhqh, uh), (3.36)

corresponding to the alternative formulation (3.32) satisfies the well-posedness conditions
(3.10), induced by (3.35), in the new energy norm ||| · |||.

Finally, we derive the preconditioner. Let DAu : Vh → V ′
h
be defined as

〈DAu uh, vh〉 = aD (uh, vh), uh, vh ∈ Vh . (3.37)

In fact, by definitions of a(·, ·) and aD (·, ·), it follows that the matrix representation of linear
operator DAu is exactly the diagonal of the matrix representation of linear operator Au .
Therefore, by (3.31) we have for any qh ∈ Qh

‖Dhqh ‖2aD = 〈DAuDhqh,Dhqh〉 = 〈BT qh, D−1
Au

BT qh〉 = 〈BD−1
Au

BT qh, qh〉, (3.38)

and the norm (3.33) yields the Riesz mapping

BD = *
,

Au 0
0 BD−1

Au
BT

+
-

−1

. (3.39)

As discussed in Section 3.2.1, BD is a norm equivalent preconditioner for solving the
system (2.18) and the condition number κ(BDA) is uniformly bounded, although the bound
requires a shape regular mesh on Ω. Still, the numerical results in Paper A show that the
requirement on the mesh regularity may be strict, since the preconditioner (3.39) performs
well even when the mesh contains a small percentage of bad elements.

3.2.4 Auxiliary Space Preconditioners
Let us now go back to MD in (3.23), the spectrally equivalent approximation of the Riesz
mapping (3.22) corresponding to the norm ‖ · ‖X in (3.20). Since the inverse of the operator
Ap is trivial to implement, we can take Mp = A−1

p . However, as discussed before, finding a
good approximation of the operator Au + BT B requires looking into what it means to solve
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a problem on the function space H (D · ,Ω), the mixed-dimensional analogue to the H (div)
space.

The classical solution techniques are designed to work well with problems with a second-
order differential operator that has strong ellipticity properties, such as the Laplacian operator
∆ on the standard H (grad) space. In contrast to that, in the H (div) space, the main difficulty
in developing solvers and preconditioners is that the kernel of the div operator is a much
larger space containing all rotations. Hence, it requires a development of special solving
methods that treat this large kernel separately. One of the ways it can be resolved is by ob-
serving that functions in H (div) allow for a stable decomposition into components of higher
regularity and a vector potential, hence called regular decomposition. By stable we mean
that the decomposition is bounded in terms of norms. Based on that, suitable precondition-
ers would contain components spectrally equivalent to a second order differential operator
where then the standard solution techniques can be applied. Still, using this approach in a
discrete setting is not immediate and this is where the auxiliary space methods [66] turn out
to be especially useful. To shorten the presentation, we refer the reader to [7, 35, 39, 62] for
more details on the analysis and implementation of these methods and restrict to the appli-
cation in the mixed-dimensional case.

Auxiliary Space Methods. We first present the general framework of the auxiliary
space preconditioning. Assume V is a separable Hilbert space with an inner product a(·, ·)
that induces a norm ‖ · ‖A and a symmetric positive definite operator A : V 7→ V ′ as
〈Au, v〉 = a(u, v). We aim to find u ∈ V that for a given right hand side f ∈ V ′ solves

Au = f . (3.40)

Consider another inner product s(·, ·) on V different from a(·, ·). For l = 1, 2, . . . , L, let Wl

be additional Hilbert spaces with an inner product al (·, ·) that induces the linear operator
Al : Wl 7→ W ′

j . Also, assume that there exist transfer operators Πl : Wl 7→ V . Define the
auxiliary product space V̄ = V × W1 × W2 × · · · × WL . Then, we can represent the inner
product on V̄ as

ā(v̄, v̄) = s(v, v) +
L∑
l=1

al (wl,wl) v̄ = (v,w1, . . . ,wL ) ∈ V̄ . (3.41)

Using V̄ , the auxiliary space preconditioner B : V ′ 7→ V for the linear problem (3.40) takes
the following form

B = S−1 +

L∑
l=1
Πl A−1

l Π
∗
l , (3.42)

where Π∗
l
is the adjoint of Πl and the S : V 7→ V ′ is called the smoother operator and is

induced by the inner product s(·, ·). If the following conditions are satisfied

(i) There exist cl > 0, l = 1, . . . , L such that ‖Πlwl ‖A ≤ cl ‖wl ‖Al
, ∀wl ∈ Wl;

(ii) There exist cs > 0 such that ‖v‖A ≤ cs ‖v‖S, ∀v ∈ V ;
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(iii) For every v ∈ V , there exists a decomposition v = v0 +
L∑
l=1

wl, v0 ∈ V, wl ∈ Wl and

c0 > 0 such that

‖v0‖
2
S +

L∑
l=1
‖wl ‖

2
Al
≤ c0‖v‖

2
A;

then we get a uniform bound on the condition number κ(BA) ≤ c2
0 (c2

s + c2
1 + · · · + c2

L ) [66].
Note that we can replace each A−1

l
by spectrally equivalent preconditioners Bl by replacing

the inner product al (·, ·) on Wl with an spectrally equivalent inner product bl (·, ·).
We apply this method in our mixed-dimensional norm equivalent preconditioner (3.23).

More specifically, we use it as the operator Mu , which is the spectrally equivalent approxima-
tion of the first block in the Riesz mapping (3.22) corresponding to the flux variable uh . The
main ingredient of the implementation of the auxiliary space method in our case is the reg-
ular decomposition of functions in the finite element approximation of the space H (D · ,Ω)
defined in (2.10).

Regular Decomposition. Similar to the fixed-dimensional case, the regular decompo-
sition of functions in the mixed-dimensional space H (D · ,Ω) is based on the properties of a
cochain complex known as de Rham complex [15, 59]. In particular, in the three-dimensional
setting, the complex can be represented as

H (D ,Ω) H (D× ,Ω) H (D · ,Ω) L2(Ω).←
→

D ←
→

D× ←
→

D · (3.43)

In particular, this means that D · (D× f ) = 0 for any f ∈ H (D× ,Ω), and for each function
u ∈ H (D · ,Ω) with D · u = 0 there exist a function fu ∈ H (D× ,Ω) such that D× fu = u.
Notice that the last statement implies that any function u ∈ H (D · ,Ω) can be decomposed
into two orthogonal parts: a ∈ H (D · ,Ω) such thatD · a = D · u, and a (D · )-free partD× c
for some c ∈ H (D× ,Ω).

Although not necessarily orthogonal, the general idea of the regular decomposition is
to ensure a similar partition, but with the components that have a slightly higher regularity.
The higher regularity here, in terms of H (grad) functions, helps with implementing auxiliary
space methods in the preconditioner to H (div) problems. The reason is that the application
of the operators Al on the auxiliary product space will closely resemble the application of
the Laplacian or the vector-Laplacian operator. We refer to [35] and the preliminaries of
Paper B to see how this works in the fixed-dimensional setting, while we concentrate on the
mixed-dimensional case. We remind that our goal is to combine this newmixed-dimensional
regular decomposition and the auxiliary space method into Mu , that should give an efficient
way to approximate the first (flux) block in the Riesz mapping preconditioner (3.22).

Let H1(D · ,Ω) ⊂ H (D · ,Ω) and H1(D× ,Ω) ⊂ H (D× ,Ω) be the subspaces of func-
tions with H1 regularity locally on each subdomain Ωd

i . Then, in the continuous setting,
we have shown that for any function u ∈ H (D · ,Ω), there exist a ∈ H1(D · ,Ω) and
c ∈ H1(D× ,Ω) such that

u = a + D× c, and ‖a‖H1 (D · ,Ω) + ‖c‖H1 (D× ,Ω) ≤ C‖u‖H (D · ,Ω), (3.44)
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for some constant C > 0.
In the discrete setting, we look at the mixed-dimensional finite element exterior calculus,

namely the discrete mixed-dimensional de Rham complex [15]. Following that structure, we
have that the finite element approximation Hh (D · ,Ω) ⊂ H (D · ,Ω) consists of lowest-order
face-based Nedelec elements for dimension d = 3, lowest-order Raviart-Thomas elements
for d = 2 and linear Lagrange elements for d = 1. To approximate the subspaces of increased
regularity, we define another finite element approximations H1

h
(D · ,Ω) ⊂ H1(D · ,Ω) and

H1
h

(D× ,Ω) ⊂ H1(D× ,Ω), consisting of tuples of nodal linear Lagrange elements on each
subdomain Ωd

i . Then, the discrete analogue of the decomposition (3.44) states that for any
uh ∈ Hh (D · ,Ω), there exist functions ah ∈ H1

h
(D · ,Ω) and ch ∈ H1

h
(D× ,Ω) and high-

frequency functions bh ∈ Hh (D · ,Ω) and dh ∈ Hh (D× ,Ω) such that

uh = Π
D ·
h ah + bh + D×(ΠD×

h ch + dh), and (3.45a)

‖ah ‖H1 (D · ,Ω) + ‖h
−1bh ‖L2 (Ω) + ‖ch ‖H1 (D× ,Ω) + ‖h

−1dh ‖L2 (Ω)

≤ Ch ‖uh ‖H (D · ,Ω), (3.45b)

for some constant Ch > 0 independent of the discretization parameter h. Here, we have
denoted with ΠD ·

h
: H (D · ,Ω) → Hh (D · ,Ω) and ΠD×

h
: H (D× ,Ω) → Hh (D× ,Ω) the

stable projection operators from the continuous to the corresponding discrete spaces.
We observe that the above regular decomposition satisfies the conditions (i)–(iii) of the

general framework of the auxiliary space methods. More specifically, take V = Hh (D · ,Ω),
W1 = H1

h
(D · ,Ω), W2 = Hh (D× ,Ω), W3 = H1

h
(D · ,Ω), and take the transfer opera-

tors Π1 = Π
D ·
h

restricted to H1
h

(D · ,Ω), Π2 = D× and Π3 = D×ΠD×
h

restricted to
H1
h

(D× ,Ω). Let AD · and AD× represent the inner products on the spaces H1
h

(D · ,Ω) and
H1(D× ,Ω), respectively, and choose smoother operators SD · and SD×. Then, our precondi-
tioner Mu as part of the Riesz mapping (3.23) is given with

Mu = Π
D ·
h A−1

D ·(Π
D ·
h )∗ + S−1

D · + ((D×)ΠD×
h ) A−1

D×((D×)ΠD×
h )∗ + (D×)S−1

D×(D×)∗. (3.46)

The conditions (i)–(iii) directly imply that Mu is spectrally equivalent to the upper block
Au + BT B in the Riesz mapping (3.22). Therefore, MD in (3.23) is a norm equivalent pre-
conditioner for the system (2.18). Moreover, the bound in (3.45) ensures that the condition
number κ(MDA) is uniform and MD is a robust preconditioner.

Implementing (3.46) often requires to replace the inverses with spectrally equivalent op-
erators. Usually, we substitute A−1

D · and A−1
D× each with the AMG method, since both matri-

ces act as second-order elliptic operators and AMG methods perform well in those cases, as
discussed in Section 3.1.2. However, we note that the performance of AMG in the mixed-
dimensional setting has not yet been investigated fully. We reserve this as a topic of future
research, as outlined in Section 4.2.

Common implementation of smoothers SD · and SD× are either one Jacobi or Gauss-
Seidel iteration. Paper B presents in detail the analysis and implementation of the mixed-
dimensional auxiliary space preconditioners in a more general setting.
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Remark 3.2.2 In Paper B, we develop the mixed-dimensional regular decomposition and
the auxiliary space preconditioners for any systems of mixed-dimensional elliptic partial
differential equations. In particular, these preconditioners can also be applied to H (D× ,Ω)
problems or even coupled mixed-dimensional problems. The implementation is, however, a
possible prospect in future research, see Section 4.2.

3.3 Domain Decomposition Method
In contrast to the previous sections, here we aim to exploit more the distinctive geometri-
cal structure of fractured porous media in the numerical solvers. The approach we present
is straightforwardly imposed by the fracture network as decomposing the rock domain into
separate parts that exchange information over the network. Therefore, the domain decompo-
sition methods are shown to be the perfect candidate. In the following, we introduce the idea
of general domain decomposition methods, demonstrate how they work on an example of
porous media flow without fractures, and finally apply the framework to our problem with
fracture flow.

3.3.1 General Approach
Domain decomposition methods have been developed for solving systems of equations that
are too large to be solved with traditional techniques. The principal idea is to benefit from the
multiprocessor architecture of modern computers by decomposing a large problem into sev-
eral smaller subproblems that can be solved in parallel. These subproblems are then coupled
through the unknowns at the shared interfaces. Moreover, in this way, each subproblem can
represent different kinds of processes in the system, making domain decomposition methods
applicable to a wide range of physical phenomena, such as our flow model.

In the simplest setting of a domain decomposition method, we assume that a bounded
open domain Ω can be partitioned into two subdomains Ω1 and Ω2 that share a common
interface Σ = Ω̄1 ∩ Ω̄2, see Figure 3.1. We aim to reformulate a general problem

Au = f in Ω, (3.47)

for u the unknown solution, f a given right hand side and A represents a differential operator,
by splitting it into two problems on the two subdomains. Let ui and f i be the restriction of
the solution u and right hand side function f on each Ωi , i = 1, 2, respectively. Then (3.47)
is equivalent to the multi-domain problem

Au1 = f1 in Ω1, (3.48a)
Au2 = f2 in Ω2, (3.48b)

with interface conditions

Φ(u1) = Φ(u2) on Σ, (3.48c)
Ψ(u1) = Ψ(u2) on Σ, (3.48d)
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where the functions Φ and Ψ depend on the nature of the problem in hand. The conditions
(3.48c)–(3.48d) are called the transmission conditions and they usually express a certain
continuity of the solution over the interface between the subdomains.With that, these domain
decomposition methods solve the subdomain problems explicitly or iteratively by coupling
the subdomain solutions in a special interface problem.

Figure 3.1: A simple domain decomposition of a bounded set Ω.

For easier implementation of the method to our problem, let us first demonstrate how the
concept of domain decomposition works on a standard flow in porous media model without
fractures. This method was introduced in [64]. The equations (3.48a)–(3.48b) are replaced
by

ui = −K∇pi in Ωi, (3.49a)
∇ · ui = f i in Ωi, (3.49b)

for i = 1, 2, and the transmission conditions are given as the continuity of pressure and
normal flux over Σ,

p1 = p2 on Σ, (3.49c)
u1 · ν1 = −u2 · ν2 on Σ. (3.49d)

For simplicity, assume that pi = 0 and ui · ν = 0 on rest of the boundary of Ωi .
Let λ indicate the unknown pressure on the interface Σ in (3.49c). Also, take Vi =

H (div,Ωi), Qi = L2(Ωi) and Λ = H
1
2 (Σ). Similar as in Section 2.2.1, the variational for-

mulation of the above problem states to find (ui, pi) ∈ Vi × Qi and the interface pressure
λ ∈ Λ such that for i = 1, 2,

(K−1ui, vi)Ωi − (pi,∇ · vi)Ωi + (λ, ui · νi)Σ = 0 ∀vi ∈ Vi, (3.50a)
(∇ · ui, qi)Ωi = ( f i, qi)Ωi ∀qi ∈ Qi . (3.50b)
2∑
i=1
〈ui · νi, µ〉 = 0 ∀µ ∈ Λ. (3.50c)

The equation (3.50c) balances the contributions from the subdomains by imposing the weak
continuity of the normal flux. However, we still cannot solve separately the subdomain prob-
lems since they are coupled over (3.50c). Therefore, we reformulate the system (3.50) by
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reducing it to an interface problem. Define a linear operator S : Λ→ Λ′ such that for given
λ ∈ Λ

〈Sλ, µ〉 = −
2∑
i=1
〈u∗i · νi, µ〉 µ ∈ Λ, (3.51)

where (u∗i , p∗i ) ∈ Vi ×Qi solve

(K−1u∗i , vi)Ωi − (p∗i ,∇ · vi)Ωi + (λ, u∗i · νi)Σ = 0 ∀vi ∈ Vi, (3.52a)
(∇ · u∗i , qi)Ωi = 0 ∀qi ∈ Qi . (3.52b)

Also, let (u0
i , p0

i ) ∈ Vi ×Qi solve

(K−1u0
i , vi)Ωi − (p0

i ,∇ · vi)Ωi = 0 ∀vi ∈ Vi, (3.53a)
(∇ · u0

i , qi)Ωi = ( f i, qi)Ωi ∀qi ∈ Qi . (3.53b)

Take χ ∈ Λ′ such that 〈χ, µ〉 =
2∑
i=1
〈u0

i · νi, µ〉. Then (3.50) is equivalent to finding λ ∈ Λ in

〈Sλ, µ〉 = 〈χ, µ〉 ∀µ ∈ Λ, (3.54)

and the subdomain solutions are given with ui = u0
i + u∗i and pi = p0

i + p∗i .
The operator S is called the Steklov-Poincaré operator. An evaluation of S includes:

(i) Use the given interface pressure λ as a pressure boundary condition on Σ for the sub-
domain problems;

(ii) Solve the two subdomain problems to get (u∗i , p∗i ) for i = 1, 2;

(iii) Map back the normal trace of the flux −u∗i · νi to the interface.

The equation (3.54) makes sure that the normal fluxes from (3.52) and (3.53) are balanced
in a weak sense. A similar procedure can be retrieved in the discrete setting, giving a system
of equations that can be reduced to a smaller system for the interface degrees of freedom.

The evaluation of the discrete Steklov-Poincaré operator can be achieved with a direct or
an iterative approach. The direct approach includes explicitly computing the application of
the operator S to each degree of freedom on the interface but, in the case when that number
of degrees of freedom is large, we rely on iterative methods to solve (3.54). See [6, 51, 53] for
more examples of domain decomposition methods in applications to flow in porous media.

3.3.2 Application to the Fracture Flow Model
In the case where the interface Σ contains a fracture, we have to also account for the flow
contributions tangentially along the interface in (3.54). In fact, it is exactly what happens in
(2.2b) for d = n− 1. Following the guidelines in the previous section, we derive the reduced
interface problem for our mixed-dimensional model (2.2). For simplicity, we restrict the
setting to a two-dimensional problem with one fracture dividing the rock matrix domain
into two parts, as in Figure 3.2. Also, we jump straight to the discrete formulation of our
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problem that can be related to the non-matching form in Section 2.2.3. Note that we slightly
change the notation and remove the dimensional superscripts, but rather denote the fracture
subdomain with an subscript f . This will be clearer in Section 3.4 where we are required to
introduce extra indices in the new iterative procedures.

Figure 3.2: A simple domain decomposition of a bounded set Ω containing a fracture Ω f .

Let Ω1,Ω2 be the two rock matrix subdomains that share an interface with a fracture
Ω f , see the illustration in Figure 3.2. If we write down each equation in (2.16), the mixed-
dimensional discrete fracture flow problem states to find (uh,i, ph,i) ∈ Vh,i ×Qh,i for i = 1, 2
and (uh, f , ph, f ) ∈ Vh, f ×Qh, f such that

(K−1uh,i, vh,i)Ωi + K−1
ν 〈uh,i · νi, vh,i · νi〉Γi

−(ph,i,∇ · vh,i)Ωi − 〈ph, f , vh,i · νi〉Γi = 0 ∀vh,i ∈ Vh,i, (3.55a)
(∇ · uh,i, qh,i)Ωi = ( f , qh,i)Ωi ∀qh,i ∈ Qh,i, (3.55b)

(K−1uh, f , vh, f )Ω f − (ph, f ,∇ · vh, f )Ω f = 0 ∀vh, f ∈ Vh, f , (3.55c)
(∇ · uh, f , qh, f )Ω f + (~uh,i · νi�, qh, f )Ω f = ( f , qh, f )Ω f ∀qh, f ∈ Qh, f . (3.55d)

Here, we have assumed homogeneous pressure boundary conditions in (2.5a) to simplify the
formulation. The equations (3.55a)–(3.55b) represent the local problems on the subdomains
Ω1 and Ω2, while (3.55c)–(3.55d) contain the fracture flow problems and the balancing of
contributions from the subdomains. Similar as in (3.51), take λh = ph, f and Λh = Qh, f , and
define the Steklov-Poincaré operator S : Λh → Λ

′
h

〈Sλh, µh〉 = −
2∑
i=1
〈u∗h,i · νi, µh〉 µh ∈ Λh, (3.56)

where (u∗
h,i
, p∗

h,i
) ∈ Vh,i ×Qh,i solve

(K−1u∗h,i, vh,i)Ωi + K−1
ν 〈u

∗
h,i · νi, vh,i · νi〉Γi

−(p∗h,i,∇ · vh,i)Ωi − 〈λh, vh,i · νi〉Γi = 0 ∀vh,i ∈ Vh,i, (3.57a)

(∇ · u∗h,i, qh,i)Ωi = 0 ∀qh,i ∈ Qh,i . (3.57b)
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Also, let (u0
h,i
, p0

h,i
) ∈ Vh,i ×Qh,i solve

(K−1u0
h,i, vh,i)Ωi + K−1

ν 〈u
0
h,i · νi, vh,i · νi〉Γi

−(p0
h,i,∇ · vh,i)Ωi = 0 ∀vh,i ∈ Vh,i, (3.58a)

(∇ · u0
h,i, qh,i)Ωi = ( f , qh,i)Ωi ∀qh,i ∈ Qh,i . (3.58b)

Take χh ∈ Λ′h such that 〈χh, µh〉 =
2∑
i=1
〈u0

h,i
· νi, µh〉. Then (3.55) is equivalent to finding

(uh, f , λh) ∈ Vh, f × Λh such that

(K−1uh, f , vh, f )Ω f − (λh,∇ · vh, f )Ω f = 0 ∀vh, f ∈ Vh, f , (3.59a)
(∇ · uh, f , µh)Ω f + 〈Sλh, µh〉 = ( f , µh)Ω f + 〈χh, µh〉 ∀µh ∈ Λh . (3.59b)

and the subdomain solutions are given with uh,i = u0
h,i
+ u∗

h,i
and ph,i = p0

h,i
+ p∗

h,i
.

Notice that the application of the operator S replaces the jump term in equation (3.55d),
which represents the influx contributions of the subdomains to the balancing of forces in
the fracture domain. What differs the equations (3.59) from (3.54) is that now we need to
solve the entire Darcy flow problem in the fracture. This can be done with a direct or an
iterative method, though in each approach the dominating computational cost comes from
the evaluation of the operator S. As described in Section 3.3.1, the step (ii) of the evaluation
requires solving the subdomain problems. The following section describes in short one of
the approaches to explicitly compute the evaluation of the Steklov-Poincaré operator, which
will be useful in the context of the linearization methods in Section 3.4.

Remark 3.3.1 In many cases, the interface problem (3.59) can contain a large number of
unknowns and it can become too ill-conditioned to solve with iterative methods. To resolve
that issue, we need to impose a preconditioner in (3.59). One option is to use the block
preconditioners developed in Section 3.2 in the case of mixed finite element discretizations,
though other preconditioning approaches in the context of domain decomposition methods
are possible [53].

3.3.3 Multiscale Flux Basis
We remind that, to explicitly compute the application of the Steklov-Poincaré operator S,
we need to evaluate it at each interface degree of freedom. This can get computationally
expensive, especially if this needs to be repeated within an iterative method, such as the
linearization methods in Section 3.4. One way to reduce the computational cost is to consider
a coarser grid in the fracture domain and by employing the multiscale flux basis from [29].
In this way, we can pre-compute and store the subdomain responses associated with each
fracture pressure degree of freedom before the iterative process. We apply this approach in
Papers C and D.

Let H ≥ h be the typical mesh size of the fracture domain grid. Following [29], we
define (φH, f ,` )N f

`=1 to be the set of basis functions on the interface pressure space ΛH , where
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Nf is the number of pressure degrees of freedom on Ω f . That is, we have for any λH ∈ ΛH

λH =

N f∑
`=1

λ`HφH, f ,` . (3.60)

with some constant coefficients λ`H for 1 ≤ ` ≤ Nf . Furthermore, introduce the projection
operatorsΠH,i : ΛH → Vh,i ·νi as the L2-projections from the interface pressure space to the
normal velocity trace on Γi . These projections are stable meaning that the unique solution
of (3.59) still exists even with a coarser mesh on the interface [6, 16].

We can compute the multiscale flux basis functions (ψH, f ,` )N f

`=1 with the following algo-
rithm:

Algorithm 3.3.1 Enter a basis (φH, f ,` )N f

`=1 and set ` = 0.
Do
1. Increase ` → ` + 1.
2. Project φH, f ,` on the subdomain boundary Γi: φH, f ,`

ΠH, i
−→ λh,i .

3. Solve the subdomain problems (3.57) with a boundary condition λh,i on Γi .
4. Project the boundary flux −u∗

h,i
· νi onto the dual of the fracture pressure space:

−u∗
h,i
· νi

ΠT
H, i
−→ ψH, f ,` .

While ` ≤ Nf .

Since the operator S is linear, we have that for λH in (3.60)

〈SλH, µH 〉 = 〈S
N f∑
`=1

λ`HφH, f ,`, µH 〉 =

N f∑
`=1

λ`H 〈SφH, f ,`, µH 〉 =
N f∑
`=1

λ`H 〈ψH, f ,`, µH 〉. (3.61)

3.4 Linearization Methods
In this section, we finalize the presentation on numerical solvers with a choice of lineariza-
tion methods to solve the non-linear fracture flow models introduced in Section 2.3. As de-
scribed there, the non-linearity term (2.25) is imposed in the permeability coefficient in the
fracture domain, while the rock matrix subdomains still preserve the standard Darcy’s law.
Therefore, the only change in the interface problem (3.59) is replacing the permeability K−1

with the term k (u) = K−1 + ξ (u) to get

(k (uh, f )uh, f , vh, f )Ω f − (λh,∇ · vh, f )Ω f = 0 ∀vh, f ∈ Vh, f , (3.62a)
(∇ · uh, f , µh)Ω f + 〈Sλh, µh〉 = ( f , µh)Ω f + 〈χh, µh〉 ∀µh ∈ Λh . (3.62b)

Themethods mentioned up to this point are designed to solve linear systems of equations,
sowe cannot straightforwardly apply them to the above problem. For that matter, we first need
to linearize the non-linear terms in the system. In the following, we describe three approaches
to linearization of the problem (3.62). Note that it is also possible to use these approaches
in a time-dependent problem, such as the case of compressible flow in Section 2.3.2. That
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is, in each time step, we solve the system (2.29), which basically expands (3.62) to a multi-
fracture case andwith an extra pressure term. Thus, to shorten the presentation, we only show
how the linearization methods work on the problem (3.62). Also, we only give the iterative
formulations of these methods applied to (3.62), while a thorough analysis of convergence
and implementation can be found in Papers C and D.

The linearization methods considered in the following sections are the fixed-point
method, Newton’s method, and the L-scheme.

3.4.1 Fixed-point method

The simplest approach to linearize the term (k (uh, f )uh, f , vh, f )Ω f is to use the fixed-point
method. In general, the fixed-point method, as the name suggests, aims to find a fixed point
of a given function. Let a continuous real valued function f have a fixed point x, meaning
that f (x) = x. The fixed-point iterations produce a sequence (x (k))k≥0 of approximations of
x from a given initial guess x (0) such that in each iteration

x (k) = f (x (k−1)), k = 1, 2, . . . (3.63)

With certain conditions on the function f , it can be proven that this series linearly converges
to the fixed point x. Moreover, if the function f is Lipschitz continuous, it converges to a
unique fixed point.

To apply the fixed-point method to (3.62), give a initial guess (u(0)
h, f
, λ (0)

h
). Then, in each

iteration k = 1, 2, . . . we solve

(k (u(k−1)
h, f

)u(k)
h, f
, vh, f )Ω f − (λ (k)

h
,∇ · vh, f )Ω f = 0 ∀vh, f ∈ Vh, f , (3.64a)

(∇ · u(k)
h, f
, µh)Ω f + 〈Sλ

(k)
h
, µh〉 = ( f , µh)Ω f + 〈χh, µh〉 ∀µh ∈ Λh, (3.64b)

till convergence to a prescribed tolerance on the residual r (k) = (u(k)
h, f
−u(k−1)

h, f
, λ (k)

h
−λ (k−1)

h
).

In each iteration k, the above linear system can now be solved directly or iteratively. For ex-
ample, we can use the GMRES method since the system (3.64) has a saddle-point structure,
making it indefinite. The evaluation of the operator S can be done with the multiscale flux ba-
sis described in Section 3.3.3. The initial guess u(0)

h, f
can be arbitrary, although it is preferable

to start relatively close to the right solution. In Paper C we consider u(0)
h, f

to be the solution
of the linear interface problem (3.59).

The result of this procedure is then used to generate the solution in the subdomains

uh,i = u∗, (∞)
h,i

+ u0
h,i, (3.65a)

ph,i = p∗, (∞)
h,i

+ p0
h,i, (3.65b)

where u∗, (∞)
h,i

and p∗, (∞)
h,i

indicate the solutions of (3.57) with the value of interface pressure
λ (∞)
h

given at convergence of (3.64).
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3.4.2 Newton’s method
In the second approach, we use a special case of the fixed-point method called the Newton’s
method. Here, the basic idea is to provide a sequence of approximative solutions, with each
new solution constructed as the root of the linear approximation of the non-linear function at
the solution of the previous iteration. More specifically, let f be continuously differentiable
function of real value x and let x̄ be its unique root. With a given current approximation
x (k−1) of x̄, the next better approximation is computed with

x (k) = x (k−1) −
f (x (k−1))
f ′(x (k−1))

, (3.66)

where f ′ denotes the derivative of f . This procedure can be applied for general non-linear
functions F : Rn → Rn, provided that its derivative J, called the Jacobian, is invertible in
each approximation x (k−1) . In this case, in each iteration we compute the new approximation
with

x (k) = x (k−1) − J (x (k−1))−1F (x (k−1)). (3.67)

The major advantage of the Newton’s method in comparison to many other linearization
methods is its quadratic convergence. However, this fast convergence depends on how close
the initial guess x (0) is to the root we aim to find and to some properties of the function F
itself. For example, if F has many roots, the initial guess x (0) should be sufficiently close to
the root we want to find.

Let us now apply the Newton’s method to our problem (3.62). We can rewrite this prob-
lem to a form suitable for using the procedure (3.67): find (uh, f , λh) ∈ Vh, f ×Λh that satisfies

F
[
(uh, f , λh), (vh, f , µh)

]
= 0, ∀(vh, f , µh) ∈ Vh, f × Λh, (3.68)

where F is given as

F
[
(uh, f , λh), (vh, f , µh)

]
= (k (uh, f )uh, f , vh, f )Ω f + 〈Sλh, µh〉 + (∇ · uh, f , µh)Ω f

− (λh,∇ · vh, f )Ω f − ( f , µh)Ω f − 〈χh, µh〉. (3.69)

Let (u(k−1)
h, f

, λ (k−1)
h

) be the current approximation of the solution (uh, f , λh). For simplicity
of notation, we introduce the following

k−1, (k−1) = K−1 + ξ (u(k−1)
h, f

), and k−1, (k−1)
∂

=
∂k−1, (k−1)

∂u(k−1)
h, f

= ξ ′(u(k−1)
h, f

). (3.70)

The Jacobian J
[
(u(k−1)

h, f
, λ (k−1)

h
); (δuh, f , δλh), (vh, f , µh)

]
is given by taking the Gâteaux

variation of F
[
(uh, f , λh), (vh, f , µh)

]
at (uh, f , λh) = (u(k−1)

h, f
, λ (k−1)

h
) in the direction of

(δuh, f , δλh):

J
[
(u(k−1)

h, f
, λ (k−1)

h
); (δuh, f , δλh), (vh, f , µh)

]
=

[F
[
(u(k−1)

h, f
+ εδuh, f , λ

(k−1)
h

+ εδλh), (vh, f , µh)
]
− F

[
(u(k−1)

h, f
, λ (k−1)

h
), (vh, f , µh)

]

ε

]

ε→0
.

(3.71)
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In our case, this definition yields

J
[
(u(k−1)

h, f
, λ (k−1)

h
); (δuh, f , δλh), (vh, f , µh)

]
=

([k−1, (k−1) + k−1,(k−1)
∂

⊗ u(k−1)
h, f

]δuh, f , vh, f )Ω f + 〈Sδλh, µh〉

+ (∇ · δuh, f , µh)Ω f − (δλh,∇ · vh, f )Ω f , (3.72)

where ⊗ denotes the standard tensor product. Hence, at each Newton iteration, we solve the
following linear problem: find (δuh, f , δλh) ∈ Vh, f × Λh such that

J
[
(u(k−1)

h, f
, λ (k−1)

h
); (δuh, f , δλh), (vh, f , µh)

]
= −F

[
(u(k−1)

h, f
, λ (k−1)

h
), (vh, f , µh)

]

∀(vh, f , µh) ∈ Vh, f × Λh . (3.73)

This system can be solved using a suitable direct or iterative method. Finally, the new ap-
proximation (u(k)

h, f
, λ (k)

h
) is constructed as

u(k)
h, f
= u(k−1)

h, f
+ δuh, f , (3.74a)

λ (k)
h
= λ (k−1)

h
+ δλh, (3.74b)

and the procedure is repeated until we reach the prescribed tolerance on the current residual
r (k) = (δuh, f , δλh). At convergence, the subdomain solutions can again be retrieved via
(3.65).

3.4.3 L-scheme

The remaining linearization method we present concerns the L-scheme. This method modi-
fies the basic fixed-point iterations by adding a stabilization term. That is, for some constant
L > 0, the algorithm (3.63) is updated to

x (k) = f (x (k−1)) + L(x (k) − x (k−1)), k = 1, 2, . . . (3.75)

with a given initial guess x (0) . If the function is Lipschitz continuous, the parameter L can
be seen as the Lipschitz constant and the above iterations converge to a unique fixed point
of f . In fact, the L-scheme can be seen as a quasi-Newton method with the parameter L
mimicking the Jacobian. Therefore, the L-scheme is simpler and cheaper to implement in
comparison to the Newton’s method, but the quadratic convergence rate is reduced to only
linear convergence, which also depends on the value of the stabilization parameter L. More-
over, the L-scheme can be used in combination with the Newton’s method, by first perform-
ing a few iterations with the L-scheme and then switching to the Newton’s method. In this
way one increases the robustness of the Newton’s method, see [43]. A more detailed analy-
sis of the convergence of the L-scheme in the context of porous media can also be found in
[17, 42, 52, 58, 60] and in Paper D.
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Lastly, we apply the L-scheme to our non-linear problem (3.62). Given an initial guess
(u(0)

h, f
, λ (0)

h
) and the parameter L > 0, the k-th L-scheme iteration considers solving

(k (u(k−1)
h, f

)u(k−1)
h, f

,vh, f )Ω f + (L(u(k)
h, f
− u(k−1)

h, f
), vh, f )Ω f

− (λ (k)
h
,∇ · vh, f )Ω f = 0 ∀vh, f ∈ Vh, f , (3.76a)

(∇ · u(k)
h, f
, µh)Ω f + 〈Sλ

(k)
h
, µh〉 = ( f , µh)Ω f + 〈χh, µh〉

∀µh ∈ Λh, (3.76b)

until a prescribed tolerance on the residual r (k) = (u(k)
h, f
− u(k−1)

h, f
, λ (k)

h
− λ (k−1)

h
) is reached.

Again, the above linear system can now be solved directly or iteratively, and the subdomain
solutions can be retrieved with (3.65).



Chapter 4

Summary and Outlook

We finalize Part I with a short overview of the scientific results of the thesis. We first sum-
marize the main findings that are presented as five scientific articles in Part II, and then end
with an outlook on the future research related to those findings.

4.1 Summary of the Papers

Paper A: Block Preconditioners for Mixed-Dimensional Discretization of Flow
in Fractured Porous Media

In this paper, we provide a set of block preconditioners for Krylov methods based on the
inf-sup stability of the mixed finite element discretization of the mixed-dimensional flow
problem in [16].

To derive the preconditioners, we use the general approach to preconditioning saddle
point problems [45]. Such problems, as the one in our paper, often consist of a coefficient
operator with an unbounded spectrum. Therefore, the condition number of the linear sys-
tem tends to infinity when refining the mesh, which makes the Krylov subspace methods
difficult to converge. Using the well-posedness theory, this approach delivers a precondi-
tioner that bounds the condition number of the preconditioned system independently of the
discretization parameter. The structure of the preconditioner is based on the energy norm
used in which the system is well-posed, hence the name norm-equivalent preconditioner.
The standard choice is the Riesz operator corresponding to the inner product on the chosen
discrete space, which is studied in Paper B, however here we derive simpler and efficient
preconditioners that are easier to implement by reformulating the discrete problem.

We show that the alternative formulation of the discrete problem is still well-posed, but
in different norms. These norms are based on the equivalency of the L2-inner product on the
flux space with a diagonal approximation. In the norm induced by the new inner product, we
define a discrete gradient operator and a "broken" H1 norm on the discrete pressure space.
The inf-sup condition is now satisfied in these new norms and the constants are independent
of the discretization and physical parameters, but remain dependent on the shape regularity
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of the mesh. Using the well-posedness theory, we can derive a norm-equivalent robust block
diagonal preconditioner for our problem that resembles a Schur complement with regards to
the pressure variable. In the similar manner, we derive block triangular preconditioner that
are field-of-value equivalent to the block diagonal one using the theory in [44].

Several numerical examples justify the theoretical results of this paper. We show on both
two- and three-dimensional porous medium domains with fractures that the performance of
the block preconditioners is stable and robust. We also show that the computational time
of the preconditioned GMRES method has linear dependency on the number of degrees of
freedom. Lastly, we test the dependency on the mesh shape regularity in an example of a
complex fracture network structure and observe that even with a significant percentage of
badly shaped elements, the block preconditioners still converge, but require a higher number
of iterations.

Paper B: Mixed-Dimensional Auxiliary Space Preconditioners

As a follow-up to Paper A, this paper introduces nodal auxiliary space preconditioners for
discretizations of mixed-dimensional partial differential equations.

The key ingredient to our preconditioners is the extension of the regular decomposition
of differential k-forms to a mixed-dimensional setting. In the continuous case, we first in-
troduce the space of regular mixed-dimensional k-forms as a product space of local regular
subspaces on each sub-manifold of the mixed-dimensional domain. Such a construction al-
lows to prove a mixed-dimensional regular decomposition exists since it can be combined
from the conventional regular decompositions on each sub-manifold. Furthermore, we use
the conforming mixed finite element spaces in [15] to obtain a discrete decomposition based
on nodal Lagrange elements.

Having this at hand, we derive preconditioners for mixed-dimensional elliptic problems
based on auxiliary space theory in [35]. We use the derived regular decomposition to make
the auxiliary product space with a composite auxiliary inner product bounded by the in-
ner product on the original function space. The linear operator induced by the auxiliary
inner product is then a good approximation of the coefficient operator of our elliptic prob-
lem, which makes it possible to use it as a preconditioner. The bound is independent of dis-
cretization parameter, therefore making it a robust preconditioner and the condition number
unconditionally bounded.

We apply the theory to a practical problem of flow in fractured porous media. As men-
tioned in Paper A, using the well-posedness theory we can derive a norm-equivalent pre-
conditioner with a block diagonal structure. The blocks correspond to norms used to show
that the inf-sup condition holds, that in this case are a mixed-dimensional H (div)-norm for
the flux variable and a L2-norm for the pressure. The main challenge of implementing a
preconditioner on a discrete H (div) space is overcome by the proposed auxiliary space pre-
conditioner. In this way, the preconditioner is decomposed into inverses of several operators,
including a smoother operator to handle high-frequency terms and additional operators pro-
jected from face or edge to nodal degrees of freedom. Computation-wise, the inverses are
then replaced by the spectrally equivalent operators using standard solving techniques, such
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as algebraic multigrid method (AMG).
The appropriate choice of the spectrally equivalent operators still requires investigation

and a thorough comparison, however we rely on the available methods to show the robustness
of the preconditioners. This is evident in several numerical examples in the context of flow
in fractured porous media.

Paper C: A Multiscale Flux Basis for Mortar Mixed Discretizations of Reduced
Darcy-Forchheimer Fracture Models

Paper C proposes a domain decomposition method to solve a non-linear flow problem in
fractured porous media based on the multiscale mortar mixed finite element method in [30].

The mixed-dimensional linear flow model is extended to account for large flow rates in
the conductive fractures. Therefore, Darcy’s law is replaced by Forchheimer’s law for mod-
eling the flow in the fractures, while in the surrounding rock matrix we still keep the standard
Darcy’s law. The coupling between the models in the rock matrix and fractures is imposed
by Robin type conditions on normal flux and pressure across the interface. We discretize the
problem with stable mixed finite element pair – lowest order Raviart-Thomas-Nedelec finite
elements for the flow velocity, and piecewise constants for the pressure variable. We also
consider non-conforming grids between the rock matrix subdomains and the fracture net-
work using the mortar variable as fracture pressure. The resulting system of equations is a
large, non-linear and coupled problem. We reformulate the coupled system into an interface
problem by eliminating the rock matrix variables via an linear Robin-to-Neumann operator.
We are left with a smaller but still non-linear fracture flow problem that requires a robust
solver and adequate handling of the contributions from the rock matrix subdomains.

The main novelties of this paper are the following. Firstly, we present and analyze two
methods to solve the non-linear interface problem. In Method 1, we use the fixed-point
method to linearize the interface problem, and the resulting linear system in each iteration
is then solved by the GMRES method. On the other hand, in Method 2, the linearization is
done by the Newton’s method which in each iteration requires solving a linear system with
a Jacobian. This can again be solved by the GMRES method. Although the proposed meth-
ods result in different linear systems, in each of them the inner iterations of the GMRES
method consist of several actions of the Robin-to-Neumann operator that handles the mixed-
dimensional coupling. This operator maps the fracture pressure data as on the interface of
each rock matrix subdomain, solve the rock subdomain problems with fracture contributions
as Robin boundary conditions, and then project back to the interface the normal flux subdo-
main contributions. Therefore, it is evident that the main computational cost of both methods
are the actions of the Robin-to-Neumann operator in each of the inner GMRES iterations.

Secondly, we reduce the computational cost of both methods by introducing multiscale
flux basis. In particular, we separate the linear and non-linear part of the interface problem.
Linear part that consists of the rock matrix subdomain contributions is then computed offline
before the iterations of the linearizationmethods start. This is possible since the non-linearity
only occurs in the fractures and interface variable can be decomposed as the linear combina-
tion of the multiscale flux basis functions, one per each interface degree of freedom. Then,
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the action of the Robin-to-Neumann operator can be computed on each of the basis functions
and, due to linearity of the operator, the discrete version of the mapping can be stored and
used in each GMRES iteration within both of the linearization methods. This can be used
regardless of the model imposed within the fracture network, which allows an easy imple-
mentation in the more general fracture flow models, as it is done in Paper D. Additionally,
using the mortar method on the interface, it is possible to coarsen the mortar grid to have
a smaller basis and, hence, less storage and time consumption of the action of the interface
mapping operator.

We investigate the performance of the proposed methods on several numerical examples
where the performance measure is set to be the rock matrix subdomain solves, as they are by
far the most costly part of the both methods. We show that using multiscale flux basis elim-
inates the unnecessary repeated computations of the rock matrix subdomains contributions
which reduces the computational cost of GMRES solver in comparison to the standard do-
main decompositionmethod. This can also be seen in the study on coarsening and refinement
of the mortar grid. The efficiency of the proposed methods combined with the multiscale flux
basis is shown. Moreover, we study the effects effect of the physical parameters, such as the
fracture permeability and the non-linearity constant. However, strong non-linearity and high
permeability influence the total number of iterations of the solver, thus we aim to improve it
in Paper D.

Paper D: Robust Linear Domain Decomposition Schemes for Reduced Non-
linear Fracture Flow Models

In extension to Paper C, this paper considers a general non-linear flow model in the fracture
network. In addition to that, a compressibility term is added to both rock matrix and frac-
tures domain, making the problem mixed-dimensional, non-linear and time-dependent. We
develop two algorithms based on the domain decomposition approach in Paper C and the
so-called L-scheme [52].

Firstly, the discrete problem is set up with mortar mixed finite element method in space
and backward Euler method in time. Then, we reduce the problem to only the fracture net-
work and consider the contributions from the rock matrix via the Robin-to-Neumann oper-
ator. In each time step, we end up with a non-linear problem that we linearize in two ways.
In the monolithic method called MoLDD, we employ the L-scheme only as the linearization
procedure similar to the Newton’s method in Paper C, but with using a parameter L > 0 in-
stead of a full Jacobian.MoLDDmethod shows to be unconditionally stable, but still requires
an inner linear solver, such as GMRES, where again the computational cost is dominated by
repeatedly solving the rock matrix subdomain problems. It is resolved by using multiscale
flux basis functions in each time step as in Paper C, but strong non-linearity and conductivity
of the fracture network can deteriorate the efficiency of the solver. Therefore, we also pro-
pose iterative method named ItLDD, where L-scheme is used both to handle the non-linear
term and the coupling between the rock and the matrix imposed by the Robin-to-Neumann
operator. In this way, the linearization and the domain decomposition part of the algorithm
are combined in a single loop. If a fixed time step is used, the multiscale flux basis can be
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computed once for all time steps, reducing significantly the computational cost of the meth-
ods.

In the numerical examples, we study the performance of of the proposed methods on
two flow models in the fractures, Forchheimer’s law and Cross’ law. In accordance with the
theoretical results, the methods show to be stable and robust with regards to discretization
and physical parameters. Since both methods require a choice on the parameters for the L-
scheme, we show that we can indeed optimize the methods for a specific parameter setup that
is close to the theoretically derived one.MoLDDmethod shows a slightly better performance
than the ItLDD method in most of the tests, especially when considering non-conforming
grids between the rock matrix and the fracture network.

4.2 Outlook
The investigations into preconditioners and solvers for the mixed-dimensional flow models
open up many possible directions to future research in the field. We provide an overview of
some more immediate extensions, motivated by the findings of the scientific papers in this
thesis.

First, there is still an open question on the optimal solver for the mixed-dimensional
second-order elliptic problems. In Paper B, we have considered auxiliary space precondition-
ers that assume a good numerical method for the composite Laplacian-type problem is avail-
able. In fixed-dimensional case, a common choice is to apply AMG methods as spectrally
equivalent approximations of the inverse of the second-order elliptic operator, which have
shown to be quite fast and stable. However, this may not be the case in mixed-dimensional
setting, which could cause the slow convergence of the AMG methods and, in turn, slow
down the whole preconditioned iterative method. Therefore, it is important to investigate
into the design of a proper method to solve such a composite problem with codimension one
coupling.

Furthermore, a natural extension to the flow problem is to consider coupled models in
the mixed-dimensional setting, such as the coupling with linear elasticity into a Biot’s con-
solidation model or coupling Stokes flow inside the fracture to the porous medium flow in
the rock. This still results in a saddle-point problem where the theory on preconditioning
in Papers A and B can be applied. This is also important in general realistic applications of
the mixed-dimensional theory in the subsurface reservoir models since many other physical
processes drive the fluid flow, e.g. transport and chemical reactions.

On the other hand, the general framework presented in Paper B gives new insights into
preconditioners for other mixed-dimensional elliptic problems that do not have to concern
the application in porous media. For example, the linear elasticity models that describe the
deformation of composite materials with thin inclusions [14] orMaxwell’s equations of elec-
tromagnetic scattering by perfectly conducting screens [19].

Finally, it is possible to update the method in Papers C and D by introducing a multi-rate
approach with domain decomposition in time. This way we can handle fast and slow flow
within the fractures on different time scales. In addition, it may be beneficial to develop an
adaptive stopping criteria for the iterative method using a posteriori error estimate theory.
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age and production. It has become clear that the dominating role of fractures
in the flow process in the porous medium calls for reexamination of existing
mathematical models, numerical methods and implementations in these cases.

Considering modeling and analysis, a popular and effective development
is reduced fracture models [9, 18, 22] that represent fractures and fracture
intersections as lower-dimensional manifolds embedded in a porous medium
domain. The immediate advantages of such modeling are in more accurate
representation of flow patterns, especially in case of highly conductive frac-
tures, and easier handling of discontinuities over the interfaces. This has also
allowed for implementation of various discretization methods, from finite vol-
ume methods [22, 30] to (mixed) finite element methods [18] and other meth-
ods [17,19]. These methods mostly differ in two aspects: whether the fractures
conform to the discrete grid of the porous medium [9] or are placed arbitrarily
within the grid [12,16,31], or whether pressure or flux continuity is preserved.
Comparison studies of different discretization methods and their properties
can be found in [5, 15,28].

Although there is a wide spectrum of discretization methods, little has
been done to develop robust and efficient solvers. This aspect of implementa-
tion can be very important since applications of fractured porous media usu-
ally include large-scale simulations of subsurface reservoirs and the resulting
discretized linear systems of equations can become ill-conditioned and quite
difficult to solve. The linear system represents a discrete version of the partial
differential equation (PDE) operator that has unbounded spectrum. Thus, its
condition number tends to infinity when the mesh size is approaching zero.
Moreover, the variability of the physical parameters, such as the permeabili-
ties and aperture, can additionally influence the scale of the condition number
of the system. Instead of using direct methods, we consider Krylov subspace
iterative methods to solve such large scale problems. Since the convergence
rate of the Krylov subspace methods depends on the condition number of the
system, suitable preconditioning techniques are usually required to achieve a
good performance. A recent study on a geometric multigrid method [4] for the
fracture problem shows how standard iterative methods can be extended and
perform well on mixed-dimensional discretizations, but still there are limita-
tions that need to be overcome for general fractured porous media simulations.

In this paper, we aim to provide a general approach to precondition-
ing the mixed-dimensional flow problems based on suitable mixed finite el-
ement method discretization developed in [9]. Beside introducing the mixed-
dimensional geometry, the main aspects of the discretization are flux coupling
between subdomains using a mortar variable and inf-sup stability of the asso-
ciated saddle-point problem. Moreover, this framework has been shown to be
well incorporated within functional analysis as a concept of mixed-dimensional
partial differential equations [8], allowing even further applications in poroe-
lasticity and transport problems.

We propose a set of block preconditioners for Krylov subspace methods for
solving the linear system of equations arising from the chosen discretization.
Following the theory in [26] and [25], we derive uniform block precondition-
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ers based on the well-posedness of an alternative but equivalent formulation.
Proper weighted norm is chosen so that the well-posedness constants are ro-
bust with respect to the physical and discretization parameters but depend
on the shape regularity of the meshes. Both block diagonal and triangular
preconditioners are developed based on the framework [25, 26]. Those block
preconditioners are not only theoretically robust and effective but can also be
implemented straightforwardly by taking advantage of the block structure of
the problem.

The rest of the paper is organized as follows. In Section 2 we first in-
troduce the mixed-dimensional geometry and the governing equations of the
single-phase flow in fractured porous media followed by the variational for-
mulation and the stable mixed finite element discretization of the problem.
The framework of the block preconditioners is briefly recalled in Section 3 and
its application to mixed-dimensional discretization of flow in fractured porous
media is proposed and analyzed in Section 4. We verify the theoretical results
by testing several numerical examples in Section 5 and finalize the paper with
concluding remarks in Section 6.

2 Preliminaries

In this section, we set up the problem of flow in fractured porous media fol-
lowing [9]. Let Ωn be a domain of the porous medium of dimension n “ 2, 3
that can be decomposed by fractures into Ωn

i , i P In. The fractures and their
intersections are represented as lower d-dimensional manifolds Ωd

i , i P Id,
0 ď d ă n, and inherit the similar decomposition structure as the porous
medium Ωn (see Figure 1). Here, we use Id as a local index set in dimen-
sion 0 ď d ď n. Furthermore, we define Γ d

ij for j P Jd
i Ď Id as interfaces

between Ωd`1
i and adjacent Ωd

j . Union over the subscript set Id represents all
d-dimensional subdomains, that is

Ωd “
ď

iPId

Ωd
i , (2.1)

Γ d “
ď

iPId

Γ d
i “

ď

iPId

ď

jPJd
i

Γ d
ij . (2.2)

Finally, the fractured porous medium domain Ω with interface Γ is defined as

Ω “
nď

d“0

Ωd, Γ “
n´1ď

d“0

Γ d. (2.3)

Remark 2.1 . Even though the theoretical results in [8, 9] allow for a more
complex geometrical structure, for the sake of simplicity we restrict the model
to domains of rectangular type. That is, we approximate fractures as lines on a
plane for n “ 2 or flat surfaces in a box for n “ 3. However, we allow for any
configuration of fractures or fracture intersections within, for example, very
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Fig. 1: An illustration of the dimensional decomposition of the domain of the fractured
porous media, in two (left) and three (right) dimensions. The dimension of each subdomain
Ωd is given in the superscript d. In the case of intersecting fractures, Γ d is set as a union of
interfaces adjacent to all subdomains Ωd.

acute angles of fracture intersections, multiple intersecting fractures or T-type
intersections.

Now that we have set up the dimensional decomposition framework for the
fractured porous medium, we introduce the governing laws in the subdomains
and fractures. First, notation and properties of the physical parameters are in-
troduced. For the sake of simplicity, we slightly abuse the notation by omitting
subdomain subscripts and dimension superscripts in the following definitions.
We only keep the indices in certain cases when clarification is necessary.

Assume that the boundary of Ω can be partitioned to BΩ “ BΩD Y BΩN

such that BΩD X BΩN “ H and BΩD is of positive measure. We adopt the
notation in each dimension 0 ă d ď n , that is

BΩd
iD “ BΩd

i X BΩD, BΩd
iN “ BΩd

i X BΩN . (2.4)

The material permeability K and normal permeability Kν tensors are con-
sidered to be bounded both above and below, symmetric and positive definite,
and we denote ν as an outward unit normal on Ω. Furthermore, let γdij be the

distance from Γ d
ij to Ωd

i , which for d “ n´ 1 represents the fracture aperture.
The physical parameters K and γ may vary spatially. However, to simplify
the analysis, we assume that they are constant on each subdomain in each
dimension.

In each Ωd, we introduce the governing Darcy’s law and mass conservation,
find fluid velocity ud and pressure pd that satisfy

ud “ ´K∇pd, in Ωd, 0 ď d ď n, (2.5a)

∇ ¨ ud ` JλdK “ fd, in Ωd, 0 ď d ď n, (2.5b)

where we introduce an additional mortar variable λd, defined as

λd|Γd
ij
“ λdij “ ud ¨ ν, on Γ d

ij , j P Jd
i , i P Id, 0 ď d ď n´ 1, (2.6)
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to account for the mass transfer across each interface Γ d
ij , and a jump operator

J¨K : L2pΓ dq Ñ L2pΩdq as

JλdK|Ωd
i
“ ´

ÿ

jPJd
i

λdij , i P Id, 0 ď d ď n. (2.7)

Since there is no notion of interface Γn or flow in a point Ω0, we extend the
definion of λn and u0 by setting them equal to zero.

An additional interface law on Γ d
ij is introduced to describe the normal

flow due to the difference in pressure from Ωd
i to Ωd`1,

λdij “ ´Kν

pdi ´ pd`1|Γd
ij

γdij
, on Γ d

ij , j P Jd
i , i P Id, 0 ď d ď n´ 1. (2.8)

Finally, proper boundary conditions are needed. For example,

pd “ gd, on BΩd
D, 0 ď d ď n, (2.9)

ud ¨ ν “ 0, on BΩd
N , 0 ď d ď n. (2.10)

Remark 2.2 . In the previous equations, we have used ud as integrated flux
and pd as averaged pressure in each Ωd, 0 ď d ď n. Therefore, the scaling
with the cross-sectional area ε of order Opγn´dq due to the model reduction
has been accounted for within the permeability parameters K and Kν .

2.1 Variational formulation

Now we consider the variational form of the problem (2.5)–(2.10). For any
open bounded set ω P Rn, let L2pωq and Hspωq denote the L2 space and the
standard Sobolev spaces on functions defined on ω, respectively. Also, denote
H

1
2 pBωq as the space of L2-traces on the boundary Bω of functions in H1pωq.

Let p¨, ¨qω be the L2-inner product and } ¨ }L2pωq the induced L2-norm. We
define

V d “ tv P pL2pΩdqqd : ∇ ¨ v P L2pΩdq, pv ¨ νq|BΩd
N
“ 0u, 1 ď d ď n,

Λd “ L2pΓ dq, 0 ď d ď n´ 1,

Qd “ L2pΩdq, 0 ď d ď n,

where V d representing the flux function space on Ωd, Qd the pressure space on
Ωd, and Λd the function space of normal flux across interface Γ d. Furthermore,
let V d

0 be a subspace of V d containing functions v0 such that v0 ¨ ν “ 0 on
Γ d´1. In addition, define the extension operator Rd : Λd Ñ V d`1 as

Rdλd ¨ ν “
#
λd, on Γ d,

0, elsewhere.
(2.11)
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To summarize the formulation, we compose function spaces over dimensions

V “
nà

d“1

V d, V0 “
nà

d“1

V d
0 , Λ “

n´1à
d“0

Λd, Q “
nà

d“0

Qd, (2.12)

and associate composite L2-inner products

p¨, ¨qΩ “
nÿ

d“0

p¨, ¨qΩd “
nÿ

d“0

ÿ

iPId

p¨, ¨qΩd
i
, p¨, ¨qΓ “

n´1ÿ

d“0

p¨, ¨qΓd “
n´1ÿ

d“0

ÿ

iPId

ÿ

jPJd
i

p¨, ¨qΓd
ij
.

and induced composite L2-norms

} ¨ }2L2pΩq “
nÿ

d“0

} ¨ }2L2pΩdq, } ¨ }2L2pΓ q “
nÿ

d“0

} ¨ }2L2pΓdq

Finally, let R : ΛÑ V be defined as R “
n´1À
d“0

Rd.

The system (2.5)–(2.10) in the weak formulation reads: Find pu0, λ, pq P
V0 ˆ ΛˆQ that satisfies

`
K´1pu0 `Rλq,v0

˘
Ω
´ pp,∇ ¨ v0qΩ “ ´ pg,v0 ¨ νqBΩD

, @v0 P V0,

(2.13a)
`
K´1pu0 `Rλq, Rµ

˘
Ω
´ pp,∇ ¨RµqΩ

` `
γK´1

ν λ, µ
˘
Γ
´ pp, JλKqΩ “ 0, @µ P Λ,

(2.13b)

´p∇ ¨ pu0 `Rλq, qqΩ ´ pJλK, qqΩ “ ´ pf, qqΩ , @ q P Q,
(2.13c)

with g P H 1
2 pBΩDq and f P L2pΩq. As before, functions u0

0,v
0
0 , λ

n and µn are
set to zero.

We end this section by observing the saddle point structure of the system
(2.13). First, let W “ V0 ˆ Λ be the function space of all flux variables, in-
cluding mortar variable, and define the mixed-dimensional divergence operator
D¨ : W Ñ Q as

D ¨w “D ¨ ru0, λs “ ∇ ¨ u0 ` JλK, w PW . (2.14)

Define the following two bilinear forms

apw, rq “ `
K´1pu0 `Rλq,v0 `Rµ

˘
Ω
` `

γK´1
ν λ, µ

˘
Γ
, (2.15a)

bpr, pq “ ´ pp,D ¨ rv0 `Rµ, µsqΩ . (2.15b)

Then the saddle point form of system (2.13) reads: Find pw, pq PW ˆQ such
that

apw, rq ` bpr, pq “ ´pg,v0 ¨ νqBΩD
, @ r PW , (2.16a)

bpw, qq “ ´pf, qqΩ , @ q P Q. (2.16b)
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It has been shown in [9] that the bilinear forms ap¨, ¨q and bp¨, ¨q are continuous
with respect to the following norms for r “ rv0, µs PW and q P Q,

}r}2W “ }K´ 1
2 pv0 `Rµq}2L2pΩq ` }γ

1
2K

´ 1
2

ν µ}2L2pΓ q
` }D ¨ rv0 `Rµ, µs}2L2pΩq, (2.17a)

}q}2Q “ }q}2L2pΩq. (2.17b)

In addition, ap¨, ¨q is shown to be coercive on the kernel of bp¨, ¨q in [9] as well.
Finally, the following theorem states that bp¨, ¨q satisfies the inf-sup condition.

Theorem 2.1 [9]. Let the bilinear form bp¨, ¨q be defined as in (2.15b). Then
there exists a constant β ą 0 independent of the physical parameters K, Kν

and γ such that

inf
qPQ sup

rPW
bpr, qq

}r}W }q}Q ě β. (2.18)

Following the classical Brezzi theory [6, 11], we conclude that the saddle
point system (2.16) is well-posed, i.e., there exists a unique solution of (2.16).

2.2 Discretization

We continue this section with discretizing the problem (2.16) by the mixed
finite element approximation. Let T d

Ω and T d
Γ denote a d-dimensional shape-

regular triangulation of Ωd and Γ d, and h “ max
0ďdďn

hd the characteristic mesh

size parameter. Consider V d
h Ă V d, V d

0h Ă V d
0 , Qd

h Ă Qd and Λd
h Ă Λd to

be the lowest-order stable mixed finite element approximations on subdomain
mesh T d

Ω and mortar mesh T d
Γ . That is, V d

h “ RT0pT d
Ωq, Λd

h “ P0pT d
Γ q and

Qd
h “ P0pT d

Ωq, where RT0 stands for lowest-order Raviart-Thomas(-Nédélec)
spaces [27,29] and P0 for the space of piecewise constants. Furthermore, define
pΠd
h : Λd

h Ñ V d`1
h ¨ ν|Γd to be the L2-projection operator such that, for any

µd
h P Λd

h,

p pΠd
hµ

d
h ´ µd

h,v ¨ νqL2pΓdq “ 0, @v P V d`1
h . (2.19)

Then we can define the discrete extension operator Rd
h : Λd

h Ñ V d
h ,

Rd
hλ

d ¨ ν “
#
pΠd
hλ

d, on Γ d,

0, elsewhere.
(2.20)

Analogous to the continuous case, we define the discrete composite spaces

Vh “
nà

d“1

V d
h , V0h “

nà
d“1

V d
0h, Λh “

n´1à
d“0

Λd
h, Qh “

nà
d“0

Qd
h, (2.21)

and the linear operators pΠh “
n´1À
d“0

pΠd
h and Rh “

n´1À
d“0

Rd
h.
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With Wh “ V0h ˆ Λh, the finite element approximation of the system
(2.13) is formulated as follows: Find pwh, phq PWh ˆQh such that,

apwh, rhq ` bprh, phq “ ´pg,v0h ¨ νqBΩD
, @ rh PWh, (2.22a)

bpwh, qhq “ ´pf, qhqΩ , @ qh P Qh. (2.22b)

Due to our choice of the finite element spaces, the continuity of ap¨, ¨q and
bp¨, ¨q and the coercivity of ap¨, ¨q on the kernel of bp¨, ¨q are preserved naturally.
To show the well-posedness of the discrete saddle point system (2.22), we need
the inf-sup condition to hold on the discrete spaces as well. This has been
shown in [9] and is stated in the following theorem.

Theorem 2.2 [9]. There exists a constant β ą 0 independent of the discretiza-
tion parameter h and the physical parameters K, Kν and γ such that

inf
qhPQh

sup
rhPWh

bprh, qhq
}rh}Wh

}qh}Qh

ě β. (2.23)

Therefore, the finite element method (2.22) is well-posed by the Brezzi
theory [6, 11].

We finalize this section with the block formulation of the discrete saddle
point system (2.22). Let linear operators A : Wh Ñ W 1

h and B : Wh Ñ Q1h
be defined as xAwh, rhy “ apwh, rhq and xBrh, phy “ bprh, phq, respectively.
Here W 1

h and Q1h denote the dual spaces of Wh and Qh, respectively, and x¨, ¨y
denotes the duality pairing. Then (2.22) is equivalent to the following operator
form,

A
ˆ
wh

ph

˙
“

ˆ
G
F

˙
with A “

ˆ
A BT

´B 0

˙
, (2.24)

with Gprv0h, λhsq :“ ´pg,v0h ¨ νqBΩD
and F pqhq :“ pf, qhqΩ .

The well-posedness of the system (2.22) ensures that A is an isomorphism
from WhˆQh to its dual W 1

hˆQ1h and, therefore, (2.24) has a unique solution
pwh, phq PWh ˆQh.

3 Block preconditioners

In this section, we briefly present the general preconditioning theory for de-
signing block preconditioners of Krylov subspace iterative methods [25, 26],
which introduces necessary tools for the analysis in the following section.

The block preconditioning framework [25,26] is based on the well-posedness
theory. Therefore, we first introduce the setup of the problem. Let X be a real
separable Hilbert space and p¨, ¨qX represent the inner product on X that
induces the norm } ¨ }X . Furthermore, denote X 1 as a dual space to X and
x¨, ¨y as the duality pairing between them. Let Lp¨, ¨q be a bilinear form on X
that satisfies the continuity condition and the inf-sup condition,

inf
xPX sup

yPX
Lpx,yq
}x}X}y}X ě β and |Lpx,yq| ď α}x}X}y}X , @x,y PX, (3.1)
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for α, β ą 0. We aim to construct a robust preconditioner for the linear system

Ax “ b, (3.2)

where A : X ÑX 1 is induced by the bilinear form Lp¨, ¨q such that xAx,yy “
Lpx,yq. The properties of the bilinear form ensure that A is a bounded and
symmetric linear operator and the system (3.2) is well-posed. Our goal is to
develop block preconditioners for solving (3.2).

3.1 Norm-equivalent Preconditioner

Consider a symmetric positive definite operator M : X 1 Ñ X which induces
an inner product px,yqM´1 :“ xM´1x,yy on X and corresponding norm
}x}2M´1 :“ px,xqM´1 . Naturally, MA : X ÑX is symmetric with respect to
p¨, ¨qM´1 and we can use M as a preconditioner for the MINRES algorithm
whose convergence rate is stated in the following theorem.

Theorem 3.1 [20]. Let xm be the m-th iteration of the MINRES method
preconditioned with M and x be the exact solution, it follows that

}Apx´ xmq}M ď 2ρm}Apx´ x0q}M,

where ρ “ κpMAq´1
κpMAq`1 and κpMAq denotes the condition number of MA.

As shown in [26], if (3.1) holds and M satisfies,

c1}x}2X ď }x}2M´1 ď c2}x}2X , (3.3)

then A and M are called norm-equivalent and κpMAq ď c2α
c1β

. Thus, if the
well-posedness constants α and β and the norm-equivalence constants c1 and
c2 are all independent of the physical and discretization parameters, then M
provides a robust preconditioner.

One natural choice of the norm-equivalent preconditioner is the Riesz op-
erator B : X 1 ÑX corresponding to the inner product p¨, ¨qX

pBf ,xqX “ xf ,xy, @f PX 1, x PX. (3.4)

It is easy to see that if we choose M “ B, then (3.3) holds with constants
c1 “ c2 “ 1 and, therefore, the preconditioned system

BAx “ Bb (3.5)

has a bounded condition number

κpBAq “ }BA}L pX,Xq}pBAq´1}L pX,Xq ď α

β
. (3.6)

If the constants α and β are independent of the discretization and physical
parameters, we obtain a robust preconditioner.
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3.2 Field-of-values-equivalent Preconditioner

In this section, we recall the class of field-of-values-equivalent (FOV-equivalent)
preconditioners which allow more general preconditioners than the norm-equivalent
ones.

Consider a general operator ML : X 1 ÑX which can be used as a precon-
ditioner for the GMRES method. The following theorem, developed in [13,14],
characterizes the convergence rate of the GMRES method.

Theorem 3.2 [13, 14]. Let xm be the m-th iteration of the GMRES method
preconditioner with ML and x be the exact solution, it follows that

}MLApx´ xmq}2M´1 ď
ˆ
1´ Σ2

Υ 2

˙
}MLApx´ x0q}2M´1 ,

where, for any x PX,

Σ ď pMLAx,xqM´1

px,xqM´1

,
}MLAx}M´1

}x}M´1

ď Υ.

ML is referred to as an FOV-equivalent preconditioner if the constants Σ
and Υ are independent of the physical and discretization parameters. Usually
ML provides a uniform left preconditioner for GMRES.

In a similar manner, we can introduce a right preconditioner for GMRES,
MU : X 1 ÑX and consider the preconditioned system

AMUy “ b, x “MUy.

By introducing an inner product on X 1, defined as px1,y1qM :“ xx1,My1y, we
say MU and A are FOV-equivalent if, for any x1 PX 1,

Σ ď pAMUx
1,x1qM

px1,x1qM ,
}AMUx

1}M
}x1}M ď Υ,

where the constants Σ and Υ are independent of the physical and discretization
parameters. Therefore, MU can be used as a uniform right preconditioner for
GMRES.

In many cases [1,2,25], the FOV-equivalent preconditioners can be derived
based on the Riesz operator and the FOV-equivalence can be shown based on
the well-posedness conditions (3.1).

4 Robust Preconditioners for Mixed-dimensional Model

In this section, we design block preconditioners based on the general framework
mentioned in the previous section. Consider the finite element approximation
(2.22). In this case, define X “Wh ˆQh associated with the following norm

}y}2X “ }prh, qhq}2X “ }rh}2W ` }qh}2Q. (4.1)
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Then, the operator A : X ÑX 1 in (2.24) is induced by the bilinear form

Lpx,yq “ apwh, rhq ` bprh, phq ´ bpwh, qhq, (4.2)

and satisfies the well-posedness conditions (3.1) due to Theorem 2.2, the con-
tinuity of the bilinear forms ap¨, ¨q and bp¨, ¨q, and the coercivity of ap¨, ¨q on the
kernal of bp¨, ¨q. Moreover, the constants α and β are independent of parameters
h, K, Kν and γ.

The Riesz operator corresponding to the norm } ¨ }X in (4.1) is

B “
ˆ
A`BTB 0

0 Ip

˙´1

, (4.3)

where A and B are defined as in (2.24) and Ip is the identity operator on
Q, i.e., xIpqh, qhy “ }qh}2Q. The main challenge in implementation of this

preconditioner is to solve for the upper block A ` BTB that corresponds to
I`grad div problem. One way of resolving this is to use auxiliary space theory
(see for example [21,24]). However, in our case, additional theory resulting from
the mixed-dimensional exterior calculus in [8] is needed, which is the topic
of our ongoing work [7]. However, in this paper, we consider an alternative
formulation of the problem (2.22) and show the well-posedness with respect to
a different weighted norm, which allows for a simpler robust preconditioner.

4.1 An Alternative Formulation

In order to introduce the alternative formulation, we need to define a discrete
gradient operator Dh : Qh ÑWh such that, for rh “ rv0h, µhs,

aDpDhph, rhq “ bprh, phq “ ´ pph,D ¨ rv0h `Rhµh, µhsqΩ , (4.4)

where, for wh “ ru0h, λhs and rh “ rv0h, µhs,

aDpwh, rhq :“ pK´1pu0h `Rhλhq,v0h `RhµhqD,Ω ` pγK´1
ν λh, µhqΓ ,

with

pK´1pu0h `Rhλhq,v0h `RhµhqD,Ω :“
nÿ

d“0

$
&
%

ÿ

TdPT d
Ω

»
– ÿ

fdPBTd

ppu0h `Rhλhq ¨ νfdqppv0h `Rhµhq ¨ νfdqpK´1φfd ,φfdqTd

fi
fl
,
.
- .

Here T d P T d
Ω is either a tetrahedron for d “ 3, a triangle for d “ 2 or a line

segment for d “ 1. Furthermore, fd P BT corresponds to a face of the element
T d, νfd denotes the unit outer normal of face fd, and φfd P RT0pT dq is the
basis function on face fd. Using the discrete gradient operator, an alternative
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formulation of the system (2.22) is given as follows: Find pwh, phq PWh ˆQh

such that,

apwh, rhq ` aDpDhph, rhq “ ´pg,v0h ¨ νqBΩD
, @ rh PWh, (4.5a)

aDpDhqh,whq “ ´pf, qhqΩ , @ qh P Qh. (4.5b)

The well-posedness of the alternative formulation (4.5) with respect to the
norm (4.1) follows directly from the well-posedness of the original formula-
tion (2.22) because the two formulations are equivalent. However, in order to
derive a block preconditioner different from (4.3), we shall consider the same
coefficient operator A (2.24) with a different weak interpretation and the well-
posedness in a different setting.

The alternative weighted norm we consider for the alternative formula-
tion (4.5) is defined as

|||prh, qhq|||2 :“ }rh}2a ` }Dhqh}2aD , (4.6)

where }rh}2a :“ aprh, rhq and }rh}2aD :“ aDprh, rhq. In order to show (4.5)
(or the operator form (2.24)) is well-posed with respect to this alternative
norm (4.6), we need the following two lemmas. The first lemma shows that
the forms ap¨, ¨q and aDp¨, ¨q are spectrally equivalent.

Lemma 4.1 . There exist constants c1, c2 ą 0, depending only on the shape
regularity of the mesh TΩ, such that the following inequalities hold,

c1}rh}aD ď }rh}a ď c2}rh}aD , @ rh PWh. (4.7)

Proof. Recall that

}rh}2a “ aprv0h, µhs, rv0h, µhsq
“ pK´1pv0h `Rhµhq, pv0h `RhµhqqΩ ` pγK´1

ν µh, µhqΓ ,
}rh}2aD “ aDprv0h, µhs, rv0h, µhsq

“ pK´1pv0h `Rhµhq, pv0h `RhµhqqD,Ω ` pγK´1
ν µh, µhqΓ .

Obviously, (4.7) holds if pK´1pv0h`Rhµhq, pv0h`RhµhqqΩ and pK´1pv0h`
Rhµhq, pv0h `RhµhqqD,Ω are spectrally equivalent. Note that

pK´1pv0h`Rhµhq,v0h`RhµhqΩ “
nÿ

d“0

ÿ

TdPT d
Ω

pK´1pv0h`Rhµhq,v0h`RhµhqTd ,

where

pK´1pv0h `Rhµhq,v0h `RhµhqTd “
ÿ

fd,f̃dPBTd

ppv0h `Rhµhq ¨ νfdqppv0h `Rhµhq ¨ νf̃dqpK´1φfd ,φf̃dqTd .
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and

pK´1pv0h`Rhµhq,v0h`RhµhqD,Ω “
nÿ

d“0

ÿ

TdPT d
Ω

pK´1pv0h`Rhµhq,v0h`RhµhqD,Td ,

where

pK´1pv0h `Rhµhq,v0h `RhµhqD,Td “
ÿ

fdPBTd

ppv0h `Rhµhq ¨ νfdqppv0h `Rhµhq ¨ νfdqpK´1φfd ,φfdqTd .

Therefore, we can immediately observe that it is enough to show that pK´1pv0h`
Rhµhq,v0h`RhµhqTd and pK´1pv0h`Rhµhq,v0h`RhµhqD,Td are spectrally
equivalent on each element T d, 0 ă d ď n. In addition, by using the scaling ar-
gument [10, Section 4.5.2], we only need to show they are spectrally equivalent
on a reference element T̂ d, i.e.,

c̃1pK´1pv0h `Rhµhq,v0h `RhµhqD,T̂d

ď pK´1pv0h `Rhµhq,v0h `RhµhqT̂d (4.8)

ď c̃2pK´1pv0h `Rhµhq,v0h `RhµhqD,T̂d .

We show the proof for d “ n “ 3. For other cases the proof follows similarly.
For d “ n “ 3, the reference element T̂ d is a tetrahedron with vertices

p0, 0, 0q, p1, 0, 0q, p0, 1, 0q and p0, 0, 1q in the Cartesian coordinates. The local
matrix AT̂d , representing pK´1pv0h`Rhµhq,v0h`RhµhqT̂d , takes the following
form

AT̂d “ K´1

120

¨
˚̊
˝

18
?
3
?
3
?
3?

3 16 ´4 ´4?
3 ´4 16 ´4?
3 ´4 ´4 16

˛
‹‹‚,

By the definition, pK´1pv0h ` Rhµhq,v0h ` RhµhqD,T̂d is represented by

the diagonal of AT̂d , which we denote as DA
T̂ d
“ K´1

120 diagp18, 16, 16, 16q. To
show (4.8) on T̂ d, it is enough to notice that, under our assumption that K
is constant on each T d, the generalized eigenvalue problem AT̂dy “ χDA

T̂ d
y

gives all eigenvalues χ ą 0 independent of physical and discretization parame-
ters. Therefore, (4.8) holds with c̃1 “ ?χmin and c̃2 “ ?χmax, where χmin and
χmax denote the smallest and largest eigenvalue, respectively. The spectral
equivalent result (4.7) follows directly by the scaling argument [10, Section
4.5.2] and summing over all T d P T d

Ω , 0 ď d ď n. The constants c1 and c2
depend on the shape regularity of the mesh due to the scaling argument but
do not depend on the physical and discretization parameters. [\

Based on the spectral equivalence Lemma (4.1), we have the following inf-
sup condition regarding the discrete gradient Dh.
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Lemma 4.2 . Let the discrete gradient operator Dh be defined as in (4.4).
Then there exists a constant β‹ ą 0 independent of the discretization and
physical parameters such that

inf
qhPQh

sup
rhPWh

aDpDhqh, rhq
}rh}a}Dhqh}aD

ě β‹. (4.9)

Proof. Using Lemma 4.1, we have for any qh P Qh

sup
rhPWh

aDpDhqh, rhq
}rh}a ě sup

rhPWh

aDpDhqh, rhq
c2}rh}aD

“ c´1
2 }Dhqh}aD .

Now the result follows taking infimum over all qh P Qh and β‹ “ c´1
2 . [\

Based on Lemma 4.1 and 4.2, by Babuska-Brezzi theory [6, 11], we can
conclude that the alternative formulation (4.5) is well-posed with respect to
the norm (4.6) as stated in the following theorem.

Theorem 4.3 . Consider the composite bilinear form on the space WhˆQh,

Lpwh, ph; rh, qhq :“ apwh, rhq ` aDpDhph, rhq ` aDpDhqh,whq.
It satisfies the continuity condition and the inf-sup condition with respect to
|||prh, qhq|||, i.e., for any pwh, phq PWh ˆQh and prh, qhq PWh ˆQh,

|Lpwh, ph; rh, qhq| ď α|||pwh, phq||||||prh, qhq|||,
inf

prh,qhqPWhˆQh

sup
pwh,phqPWhˆQh

Lpwh, ph; rh, qhq
|||pwh, phq||||||prh, qhq||| ě β,

with constants α and β dependent on the shape regularity of the mesh but
independent of discretization and physical parameters.

4.2 Block diagonal preconditioners

The well-posedness Theorem 4.3 provides alternative block preconditioners for
solving the linear system (2.24) effectively. To this end, we introduce a linear
operators DA : Wh Ñ W 1

h which is defined as xDAwh, rhy “ aDpwh, rhq
for wh, rh P Wh. The reason we use the notation DA here is that, by the
definitions of ap¨, ¨q and aDp¨, ¨q, the matrix representation of linear operator
DA is exactly the diagonal of the matrix representation of linear operator A.
Then, by the definition of the discrete gradient operator Dh (4.4), we have
DADh “ BT and, therefore,

}Dhqh}2aD “ xDADhqh,Dhqhy “ xBT qh, D
´1
A BT qhy “ xBD´1

A BT qh, qhy,
for qh P Qh. Based on the above operator form of the } ¨ }aD norm, the Riesz
operator corresponding to the |||¨||| norm (4.6) is
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BD “
ˆ
A 0
0 BD´1

A BT

˙´1

. (4.10)

As discussed in Section 3.1, BD is a norm-equivalent preconditioner for
solving the system (2.24) and we have the following theorem regarding the
condition number of BDA.

Theorem 4.4 . Let BD be as in (4.10). Then κpBDAq ď α

β
.

Remark 4.1 . Notice that Theorem 4.3 (essentially Lemma 4.1) ensures that
κpBDAq is bounded independently of h and parameters K, Kν and γ, but
remains dependent on the shape regularity of the mesh.

In practice, applying the preconditioner BD implies inverting the diagonal
block exactly, which can be expensive and sometimes infeasible. Thus, we
consider the following preconditioner

MD “
ˆ
Hw 0
0 Hp

˙
, (4.11)

where the diagonal blocks Hw and Hp are symmetric positive definite and
spectrally equivalent to diagonal blocks in A and BD´1

A BT , respectively, i.e.

c1,wpHwrh, rhq ď pA´1rh, rhq ď c2,wpHwrh, rhq, (4.12a)

c1,ppHpqh, qhq ď ppBD´1
A BT q´1qh, qhq ď c2,ppHpqh, qhq, (4.12b)

where the constants c1,w, c1,p, c2,w, and c2,p are independent of discretization
and physical parameters. In practice, Hw can be defined by a diagonal scaling,
i.e., D´1

A and Hp can be defined by standard multigrid methods. In general,
the choice of Hw and Hp are not very restrictive, provided it handles possible
heterogeneity in physical parameters K, Kν , and γ.

MD is a norm-equivalent preconditioner as well. Following [26], we can
directly estimate the condition number of MDA in the following theorem.

Theorem 4.5 . Let MD be as in (4.11) and let (4.12) hold. Then it follows
that κpMDAq ď αc2

βc1
, where c2 “ maxtc2,w, c2,pu and c1 “ mintc1,w, c1,pu.

Remark 4.2 . Again, κpMDAq is bounded independently of h and parameters
K, Kν and γ, but remains dependent on the shape regularity of the mesh.

4.3 Block triangular preconditioners

In this subsection, we consider the block triangular preconditioners based on
the FOV-equivalent preconditioners we discussed in Section 3.2. Here, we an-
alyze the robustness of block triangular preconditioners and show the corre-
sponding FOV-equivalence, which leads to uniform convergence rate of the
GMRES method.
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The block lower triangular preconditioners take the following form

BL “
ˆ
A 0
´B BD´1

A BT

˙´1

and ML “
ˆ
H´1

w 0
´B H´1

p

˙´1

. (4.13)

On the other hand, the block upper triangular preconditioners are given as

BU “
ˆ
A BT

0 BD´1
A BT

˙´1

and MU “
ˆ
H´1

w BT

0 H´1
p

˙´1

. (4.14)

Basically, ML and MU are inexact versions of BL and BU when the diagonal
blocks are replaced by spectrally equivalent approximations (4.12).

Next theorem shows that BL and A are FOV-equivalent.

Theorem 4.6 . There exist constants ξ1, ξ2 ą 0, independent of discretization
and physical parameters, such that for every x “ pwh, phq PWhˆQh, x ‰ 0,

ξ1 ď
pBLAx,xqB´1

D

px,xqB´1
D

, and
}BLAx}B´1

D

}x}B´1
D

ď ξ2.

Proof. By the definition of the linear operators A and DA, we naturally
have }wh}a “ }wh}A and }wh}aD “ }wh}DA

, respectively. Here }wh}2A :“
xAwh,why and }wh}2DA

:“ xDAwh,why for wh PWh.

Then Lemma 4.1 states that the norms } ¨ }DA
and } ¨ }A are equivalent,

which also implies the equivalence between the norms } ¨ }D´1
A

and } ¨ }A´1 ,

which are defined as }w1h}2A´1 :“ xA´1w1h,w1hy and }w1h}2D´1
A

:“ xD´1
A w1h,w1hy

for w1h PW 1
h.

Using that and Cauchy-Schwarz inequality, we have

pBLAx,xqB´1
D
“ }wh}2A ` xBT ph,why ` }BA´1BT ph}2
ě }wh}2A ´ }BT ph}A´1}wh}A ` }BT ph}2A´1

“
ˆ }wh}A
}BT ph}A´1

˙T ˆ
1 ´ 1

2´ 1
2 1

˙ˆ }wh}A
}BT ph}A´1

˙

ě 1

2
p}wh}2A ` }BT ph}2A´1q

ě 1

2
p}wh}2A ` c´1

2 }BT ph}2D´1
A

q
ě ξ1}x}2B´1

D

,
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with ξ1 “ 1

2
min

 
1, c´1

2

(
. On the other hand, again using the Cauchy-Schwarz

inequality and equivalence of the norms } ¨ }D´1
A

and } ¨ }A´1 we get

pBLAx,yqB´1
D
“ xAwh, rhy ` xBT ph, rhy ` xBA´1BT ph, qhy
ď }wh}A}rh}A ` }BT ph}A´1}rh}A ` }BT ph}A´1}BT qh}A´1

ď `}wh}2A ` 2}BT ph}2A´1

˘ 1
2
`
2}rh}2A ` }BT qh}2A´1

˘ 1
2

ď
´
}wh}2A ` 2c´1

1 }BT ph}2D´1
A

¯ 1
2
´
2}rh}2A ` c´1

1 }BT qh}2D´1
A

¯ 1
2

ď ξ2}x}B´1
D
}y}B´1

D
,

for each y “ prh, qhq P Wh ˆ Qh,y “ 0 with ξ2 “ max
 
2, 2c´1

1

(
, which

concludes the proof. [\

The next theorem states that if the conditions (4.12) hold then ML and
A are FOV-equivalent.

Theorem 4.7 . If the conditions (4.12) hold and }I ´ HwA}A ď ρ for 0 ď
ρ ă 1, then there exist constants ξ1, ξ2 ą 0 independent of discretization and
physical parameters such that for every x “ pwh, phq PWh ˆQh, x ‰ 0,

ξ1 ď
pMLAx,xqM´1

D

px,xqM´1
D

, and
}MLAx}M´1

D

}x}M´1
D

ď ξ2.

Proof. From the assumptions of the theorem we have }HwA}A ď 1 ` ρ in
combination with Lemma 4.1, (4.12) and the Cauchy-Schwarz inequality, we
have that

pMLAx,xqM´1
D
“ }wh}2A ` xBT ph,why ` xBpHwA´ Iqwh, phy ` }BT ph}2Hw

“ }wh}2A ` xHwAwh, B
T phy ` }BT ph}2Hw

ě }wh}2A ´ p1` ρq}wh}A}BT ph}Hw ` }BT ph}2Hw

“
ˆ }wh}A
}BT ph}Hw

˙T ˆ
1 ´ 1`ρ

2´ 1`ρ
2 1

˙ˆ }wh}A
}BT ph}Hw

˙

ě 1´ ρ
2
p}wh}2A ` }BT ph}2Hw

q

ě 1´ ρ
2

´
c´1
2,w}wh}2H´1

w
` c1,wc´1

2 }BT ph}2D´1
A

¯

ě 1´ ρ
2

´
c´1
2,w}wh}2H´1

w
` c1,wc´1

2 c´1
2,p}ph}2H´1

p

¯

ě ξ1}x}2M´1
D

,

with ξ1 “ 1´ρ
2 min

 
c´1
2,w, c1,wc

´1
2 c´1

2,p

(
.
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Using the same conditions to show the upper bound, we obtain

pMLAx,yqM´1
D
“ xAwh, rhy ` xBT ph, rhy ` xBpHwA´ Iqwh, qhy ` xBHwB

T ph, qhy
ď }wh}A}rh}A ` }BT ph}A´1}rh}A ` }pHwA´ Iqwh}A}BT qh}A´1

` }BT ph}Hw}BT qh}Hw

ď }wh}A}rh}A ` }BT ph}A´1}rh}A ` ρ}wh}A}BT qh}A´1

` }BT ph}Hw}BT qh}Hw

ď `p1` ρ2q}wh}2A ` }BT ph}2A´1 ` }BT ph}2Hw

˘ 1
2

`
2}rh}2A ` }BT qh}2A´1 ` }BT qh}2Hw

˘ 1
2

ď
´
p1` ρ2qc´1

1,w}wh}2H´1
w
` c´1

1 p1` c´1
1,wq}BT ph}2D´1

A

¯ 1
2

´
2c´1

1,w}rh}2H´1
w
` c´1

1 p1` c´1
1,wq}BT qh}2D´1

A

¯ 1
2

ď
´
p1` ρ2qc´1

1,w}wh}2H´1
w
` c´1

1,pc
´1
1 p1` c´1

1,wq}ph}2H´1
p

¯ 1
2

´
2c´1

1,w}rh}2H´1
w
` c´1

1,pc
´1
1 p1` c´1

1,wq}qh}2H´1
p

¯ 1
2

ď ξ2}x}M´1
D
}y}M´1

D
.

This gives the upper bound with ξ2 “ maxt2c´1
1,w, c

´1
1,pc

´1
1 p1 ` c´1

1,wqu, which
concludes the proof. [\
Remark 4.3 . Due to Lemma 4.1, the constants ξ1 and ξ2 are independent
of h and parameters K, Kν and γ, but remain dependent on the shape regu-
larity of the mesh. This means that the convergence rate of the preconditioned
GMRES method with preconditioner BL or ML depends only on the shape
regularity of the mesh.

Similarly, we can derive the FOV-equivalence of BU and MU with A. Since
the proofs are similar to the two previous theorems, we omit them and only
state the results here.

Theorem 4.8 . There exist constants ξ1, ξ2 ą 0 independent of discretization
and physical parameters such that for any x1 “ B´1

U x with x “ pwh, phq P
Wh ˆQh, x ‰ 0,

ξ1 ď pABUx
1,x1qBD

px1,x1qBD

, and
}ABUx

1}BD

}x1}BD

ď ξ2.

Theorem 4.9 . If the conditions (4.12) hold and }I ´ HwA}A ď ρ for 0 ď
ρ ă 1, then there exist constants ξ1, ξ2 ą 0 independent of discretization and
physical parameters such that for any x1 “M´1

U x with x “ pwh, phq PWh ˆ
Qh, x ‰ 0,

ξ1 ď pAMUx
1,x1qMD

px1,x1qMD

, and
}AMUx

1}MD

}x1}MD

ď ξ2.
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Remark 4.4 . Similarly, the constants ξ1 and ξ2 here are independent of h
and parameters K, Kν and γ, but remain dependent on the shape regularity of
the mesh. This means that the convergence rate of the preconditioned GMRES
method with preconditioner BU or MU depends only on the shape regularity
of the mesh.

5 Numerical results

In this section, we propose several test cases to verify the theory on the ro-
bustness of the preconditioners derived above. Both two and three dimensional
examples emphasize common challenges in fracture flow simulations such as
large aspect ratios of rock and fractures, complex fracture network structures
and high heterogeneity in the permeability fields.

In each example below, a set of mixed-dimensional simplicial grids is gen-
erated on rock and fracture subdomains, where the coupling between the rock
and fracture is employed by a separate mortar grid. Since our main objective
is to show the robustness of our preconditioners for standard Krylov iterative
methods, for the sake of simplicity, we take the mortar grid to be matching
with the adjacent subdomain grids. However, the theory in Section 4 shows
no restrictions to relative grid resolution between the rock, fracture and mor-
tar grids. Furthermore, in [28] the discrete system remains well-posed with
varying coarsening/refinement ratio for non-degenerate (normal) permeability
values, which is one of our assumptions. Therefore, we expect that our block
preconditioners give similar performance for general grids between the rock,
fracture, and coupling part.

To solve the system (2.24), we use a Flexible Generalized Minimal Resid-
ual (FGMRES) method as an outer iterative solver, with the tolerance for the
relative residual set to 10´6. The block preconditioners designed in Section
4 are used to accelerate the convergence rate of FGMRES. Each precondi-
tioner BD,BL and BU requires inversion of the diagonal blocks corresponding
to flux and pressure degrees of freedom, while the spectrally equivalent ver-
sions MD,ML and MU approximate the inverses with appropriate iterative
methods. For that, we implement both exact and inexact inner solvers. Solving
each diagonal blocks exactly means we use the GMRES method with a relative
residual tolerance set to 10´10, while in the inexact case it is set to 10´3. Inner
GMRES is preconditioned with unsmoothed aggregation Algebraic Multigrid
method (AMG) in a W-cycle.

For obtaining the mixed-dimensional geometry and discretization, we use
the PorePy library [23], an open-source simulation tool for fractured and de-
formable porous media written in Python. Our preconditioners are imple-
mented in HAZMATH library [3], a finite element solver library written in
C, also where all solving computations are performed. The numerical tests
were performed on a workstation with an 8-core 3GHz Intel Xeon “Sandy
Bridge” CPU and 256 GB of RAM.
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5.1 Example: two-dimensional Geiger network

In the first example, we consider the test case presented in the benchmark
study [15]. The domain Ω “ p0, 1q2, depicted in Figure 2, has unitary perme-
abilityK “ I for the rock matrix and it is divided into 10 sub-domains by a set
of fractures with aperture γ. In our case, we set the tangential and normal per-
meability of the fractures to be constant throughout the whole network, and
vary the value from blocking to conducting the flow. The tangential fracture
permeability is denoted as Kf to avoid confusion with the rock permeability.
At the boundary, we impose zero flux condition on the top and bottom, uni-
tary pressure on the right, and flux equal to ´1 on the left. The boundary
conditions are applied to both the rock matrix and the fracture network. The
numerical solution to this problem is also illustrated in Figure 2.

Fig. 2: (Left) Graphical representation of the domain and fracture network geometry of
Example 5.1. (Right) Pressure solution for a case of conducting fractures.

Our goal is to investigate the robustness of the block preconditioners with
respect to discretization parameter h and physical parameters γ, Kf and Kν .
To this end, we generate a series of tests in which we vary the magnitude of
one of the parameters, while setting others to a fixed value. This also tests
the heterogeneity ratios between the porous medium and the fractures, since
we keep spatial and physical parameters of the porous medium unitary. We
compute and compare number of iterations of the outer solver for both exact
and inexact implementations of the proposed preconditioners. This way we
clearly see if the stability of the proposed preconditioners depends on one or
a combination of given parameters.

The results of these robustness tests on are summarized in Tables 1 – 3.
We start with setting Kf “ Kν “ I that, together with rock permeability K,
gives a global homogeneous unitary permeability field. We also fix the aperture
to γ “ 10´2. Refining the initial coarse grid by a factor of 2 recursively, Table
1 demonstrates the robustness of all block preconditioners with respect to the
mesh size h. Additionally, the different implementations of the preconditioners
result in similar behavior of the solver. We notice that the block triangular
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Inexact Exact

h MD ML MU BD BL BU

1{4 20 13 12 19 10 10
1{8 19 13 11 19 10 10
1{16 19 13 11 19 10 10
1{32 19 13 11 19 10 10
1{64 19 13 11 19 10 10

Table 1: Number of iterations of outer FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.1. Varying mesh size h while aperture is set to
γ “ 1{100 and all the permeabilities are set to K “ Kf “ Kν “ I.

Inexact Exact

γ MD ML MU BD BL BU

1 21 16 14 21 11 11
1{10 19 13 12 19 10 10
1{100 19 13 11 19 10 10
1{1000 19 13 11 19 10 10
1{10000 19 13 11 19 10 10

Table 2: Number of outer iterations of FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.1. Varying aperture γ while mesh size is set to
h “ 1{16 and all the permeabilities are set to K “ Kf “ Kν “ I.

preconditioners BL and BU show a slightly better performance compared the
block diagonal BD as expected. The same behavior can be observed for inexact
preconditioners ML and MU in comparison to MD. This is expected since
the block triangular preconditioners better approximate the inverse of the
stiffness matrix in (2.24). It is noteworthy to mention that the action of the
block triangular preconditioners is more expensive computationally than the
action of the block diagonal preconditioners. Similar performance can also
be observed in Table 2, where we scale down the fracture width on a fixed
grid of mesh size h “ 1{16. Lastly, in Table 3 we test the influence of the
heterogeneity in the permeability fields. We keep the mesh size to be h “ 1{16
and fracture aperture to be γ “ 10´2, while introducing both conducting
and blocking fracture network in the porous medium. Again, the robustness is
evident in terms of the number of outer FGMRES iterations with both exact
and inexact block preconditioners. The block triangular preconditioners, BL,
BU , ML, and MU , provide somewhat lower values comparing to their block
diagonal counterpart.

5.2 Example: two-dimensional complex network

This example is chosen to demonstrate the robustness of the block precondi-
tioners on a more realistic fracture network. Such a complex fracture config-
uration often occurs in geological rock simulations and the geometrical and
physical properties of the fracture network can significantly influence the sta-
bility of the solving method. This is especially seen in mpartitioning the frac-
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Inexact Exact

K MD ML MU BD BL BU

Kf “ 10´4I,Kν “ 10´4I 13 10 8 11 7 6
Kf “ 10´4I,Kν “ I 13 8 8 13 7 7
Kf “ 10´4I,Kν “ 104I 13 8 8 13 7 7
Kf “ I,Kν “ 10´4I 22 16 13 19 11 10
Kf “ I,Kν “ I 19 13 11 19 10 10
Kf “ I,Kν “ 104I 19 13 12 19 10 10
Kf “ 104I,Kν “ 10´4I 26 19 19 21 13 12
Kf “ 104I,Kν “ I 23 17 15 23 13 12
Kf “ 104I,Kν “ 104I 23 17 15 23 14 12

Table 3: Number of outer iterations of FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.1. Varying the permeability Kf and Kν while
mesh size is set to h “ 1{16 and aperture is set to γ “ 1{100.

tured porous medium domain where sharp tips and very acute intersections
may decrease the shape regularity of the mesh. Since our analysis shows that
the performance of our block preconditioners only depends on the shape reg-
ularity of the mesh, for this complex network example, we expect to see that
the preconditioners are still robust with respect to physical and discretization
parameters, but slightly more iterations may be required due to the worse
shape regularity of the mesh when comparing to Example 5.1.

Fig. 3: (Left) Graphical representation of the two-dimensional domain and fracture network
geometry of Example 5.2. (Right) Pressure solution for a case of conducting fractures.

This example is chosen from benchmark study [15] – a set of fractures from
an interpreted outcrop in the Sotra island, near Bergen in Norway. The set
includes 64 fractures grouped in 13 different connected networks. The porous
medium domain has size 700 m ˆ 600 m with uniform matrix permeability
K “ 10´14I m2. All the fractures have the same scalar permeability Kf “
10´8I m2 and aperture γ “ 10´2 m. Also, no-flow boundary condition are
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imposed on top and bottom, with pressure 1013250 Pa on the left and 0 Pa
on the right boundary.

Inexact

h MD ML MU

L{4 63 51 40
L{8 67 50 44
L{16 61 47 42
L{32 55 39 34
L{64 47 33 29

Fig. 4: (Left) Mesh around one of the complex tips in the fracture network, where h “
L{64. (Right) Number of outer iterations of FGMRES solver with exact and inexact block
preconditioners for the case study in Example 5.2. We refine the mesh relatively to domain
length L “ 600.

For the comparison with the previous example, we refine the mesh size
h with respect to the width of the domain L “ 600. However, due to the
complex fracture structure, it is possible to end up with smaller and badly
shaped elements in the rock matrix grid around the tips and intersections of
the fractures. For example, see Figure 4 on the left. The coarser the mesh is,
the more irregular the elements are, especially when partisioning in between
many tightly packed fractures. Therefore, we expect that the solver requires
more iterations to converge on coarser meshes. This is evident in the table
on the right in Figure 4. We see the reduction of number of iterations when
refining the mesh in all the cases, with the lowest number required by the block
upper triangular MU . We also notice that the solver manages to provide the
correct solution on all given meshes in an acceptable number of iterations.
The results are slightly worse than the previous example, but keep in mind
that the complex geometry is still an important factor in the mesh structure
and, therefore, influences the convergence rate since the shape regularity of
the mesh deteriorates. For complex fracture networks, it is beneficial to invest
in constructing a more regular mesh of the fractured porous medium and then
applying the proposed block preconditioners in the iterative solvers.

5.3 Example: three-dimensional Geiger network

This last example considers the simulations of a 3D problem taken from an-
other benchmark study [5], a three-dimensional analogue to the test case in
Subsection 5.1. The geometry is extended to the unit cube and the fracture
network now consists of nine intersecting planes (see Figure 5). As before, we
take the rock matrix permeability K to be the identity tensor, while we vary
the tangential Kf and the normal Kν permeability, as well as the fracture
aperture γ.
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Fig. 5: (Left) Graphical representation of the three-dimensional domain and fracture network
geometry of Example 5.3. (Right) Pressure solution for a case of conducting fractures.

For a fair comparison with the two-dimensional case, we perform similar
robustness tests of the preconditioners to study the effect of mesh refinement,
as well as permeability and aperture changes. However, we stick to only inexact
preconditioners MD, ML and MU since they are less computationally expen-
sive and perform comparably well, which makes them good choices in prac-
tice. The results are presented in Tables 4–6. We can see that the simulations
confirm the findings of Section 4: all block preconditioners show robustness
with respect to the discretization and physical parameters. The block diago-
nal preconditioner requires a slightly higher number of iterations to converge
compared to block triangular ones, as we saw in the previous example.

Inexact

h MD ML MU

1{4 26 18 15
1{8 26 17 15
1{16 24 16 14
1{32 24 16 13
1{64 24 16 12

Table 4: Number of outer iterations of FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.2. Varying mesh size h while aperture is set to
γ “ 1{100 and all permeabilities are set to K “ Kf “ Kν “ I.

In 3D simulations it is also important to study the overall computational
complexity of the solving method. For that, we analyze in Figure 6 the re-
quired CPU time of the FGMRES solver preconditioned with each block pre-
conditioner MD, ML and MU . All preconditioners show a optimal OpNdof q
complexity, where Ndof is the number of degrees of freedom of the discretized
system. Notice that even though the block triangular pair of preconditioners
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Inexact

γ MD ML MU

1 24 16 14
1{10 24 16 13
1{100 24 16 14
1{1000 26 16 14
1{10000 26 17 14

Table 5: Number of outer iterations of FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.3. Varying aperture γ while mesh size is set to
h “ 1{16 and all permeabilities are set to K “ Kf “ Kν “ I.

Inexact

K MD ML MU

Kf “ 10´4I,Kν “ 10´4I 28 19 20
Kf “ 10´4I,Kν “ I 26 17 14
Kf “ 10´4I,Kν “ 104I 28 17 14
Kf “ I,Kν “ 10´4I 26 21 18
Kf “ I,Kν “ I 24 16 14
Kf “ I,Kν “ 104I 26 17 14
Kf “ 104I,Kν “ 10´4I 24 16 17
Kf “ 104I,Kν “ I 22 15 13
Kf “ 104I,Kν “ 104I 22 15 13

Table 6: Number of outer iterations of FGMRES solver with exact and inexact block pre-
conditioners for the case study in Example 5.3. Varying the permeability Kf and Kν while
mesh size is set to h “ 1{16 and aperture is set to γ “ 1{100.

require solving a denser system, it is still time-wise less expensive due to a
lower number of iterations needed to converge.

6 Conclusions

We have presented block preconditioners for linear systems arising in mixed-
dimensional modeling of single-phase flow in fractured porous media. Our ap-
proach is based on the stability theory of the mixed finite element discretization
of the model which we extended to provide an efficient way to solve large sys-
tems with standard Krylov subspace iterative methods. We have thoroughly
analyzed the robustness of the derived preconditioners with regard to dis-
cretization and physical parameters by proving norm and field-of-value equiv-
alence to the original system. Our theory has also been supported by several
numerical examples of 2D and 3D flow simulations.

It is noteworthy to mention that even though our analysis depends on
a more regular mesh, the numerical results show that the preconditioners
still perform well since the mixed-dimensional discretization approach han-
dles fractures independently of the rock matrix and, therefore, generates sim-
pler meshes in most fracture network cases. The large aspect ratios that
parametrize the model then become the main stability problem, which we have
successfully overcome with the proposed block preconditioners. This is impor-
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Fig. 6: CPU time TCPU of the preconditioned FGMRES algorithm verses number of degrees
of freedom Ndof of the discretized system in Example 5.3.

tant for implementations in general geological simulations where the rock-
fracture configuration can be quite complex and can contain a large number
of fractures of different width and length.

We conclude by recalling that the alternative approach to block precondi-
tioners mentioned in the beginning of Section 3 is a non-trivial extension to
this work and a part of an ongoing research.
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Abstract

This work introduces nodal auxiliary space preconditioners for discretizations of mixed-
dimensional partial differential equations. We first consider the continuous setting and gen-
eralize the regular decomposition to this setting. With the use of conforming mixed finite
element spaces, we then expand these results to the discrete case and obtain a decomposition
in terms of nodal Lagrange elements. In turn, nodal preconditioners are proposed analogous
to the auxiliary space preconditioners of Hiptmair and Xu [16]. Numerical experiments show
the performance of this preconditioner in the context of flow in fractured porous media.

1 Introduction

In recent work [7,8,25], exterior calculus and its finite element discretization has been extended to
the mixed-dimensional geometries. More precisely, for an n-dimensional domain, sub-manifolds of
dimension n−1 and their intersections of dimension n−2, n−3, and so on are considered. Suitable
spaces of alternating k-forms are introduced and equipped with proper inner products and norms.
Based on well-defined differential operators and codifferential operators, a de Rham complex for
the mixed-dimensional geometry is proposed as well. Such a generalization of fixed-dimensional
finite element exterior calculus [4] provides a unified theoretical framework for mixed-dimensional
partial differential equations (PDEs) as well as their finite element discretizations. This has wide
applications in mathematical modeling and simulation, e.g., shells, membranes, fractures, and
geological formations [5, 10,26].

One important result in the fixed-dimensional finite element exterior calculus is the stable regu-
lar decomposition and its discrete variant [14,16]. Understanding the stable regular decompositions
is at the heart of designing robust preconditioners for solving H(∇×)- and H(∇·)-elliptic problems
based on the auxiliary space preconditioning framework [24, 29]. Based on the discrete regular
decomposition, preconditioners for H(∇×)- and H(∇·)-elliptic problems can be developed, which
consists of solving several H(∇)-elliptic problems and simple smoothing steps in the original space.
Numerical results [19,20] have shown the effectiveness of such preconditioners.

In this work, we extend the stable regular decomposition to the mixed-dimensional geome-
tries. Unlike the fixed-dimensional case, where the stable regular decomposition is usually derived
based on the corresponding regular inverse, in the mixed-dimensional setting, we construct the
regular decomposition directly by establishing such a regular decomposition on each individual
sub-manifold and then combining them together properly. Discrete regular decomposition is also
generalized to the mixed-dimensional geometries. The construction of the discrete version is similar
with the fixed-dimensional counterpart. The resulting discrete regular decomposition also involves
an extra high-frequency term comparing with the stable regular decomposition as expected. Based
on discrete regular decomposition and auxiliary space preconditioning framework, we are able to
develop robust preconditioners for solving abstract model mixed-dimensional PDEs (5.1).

In order to demonstrate the effectiveness of the proposed auxiliary space preconditioner for solv-
ing mixed-dimensional PDEs, we consider flow in fractured porous media as an example, which
is modeled by Darcy’s law and conservation of mass in the mixed-dimensional setting. After dis-
cretization, robust block preconditioners are designed based on the well-posedness of the discrete
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PDEs based on the framework developed in [22,23]. The mixed-dimensional auxiliary space precon-
ditioner is used to invert one of the diagonal blocks in the block preconditioners. The effectiveness
of the preconditioners are verified both theoretically and numerically.

The rest of the paper is organized as follows. Section 2 introduces the mixed-dimensional ge-
ometries and function spaces. Mixed-dimensional regular decomposition is derived in Section 3 and
the discrete version is proposed in Section 4. In Section 5, we describe the mixed-dimensional aux-
iliary space preconditioner for abstract mixed-dimensional PDEs and an example, flow in fractured
porous media, is introduced in Section 6. Numerical results are shown in Section 7 to demonstrate
the robustness and effectiveness of the proposed preconditioners, and the conclusions are given in
Section 8.

2 Preliminaries

In this section, we first introduce the definition of a mixed-dimensional geometry and the con-
ventions used when referring to certain structures. Next, we summarize the relevant concepts
from functional analysis for the fixed-dimensional case as well as the generalization to the mixed-
dimensional setting. For a more rigorous and detailed exposition of these results, we refer the
readers to [7].

2.1 Geometry

Given a contractible Lipschitz domain Y ⊂ Rn with n ≤ 3. Within Y , we introduce disjoint
manifolds Ωdii with i being the index from a global set I and di being the dimension. The superscript
generally is omitted. Let Id be the subset of I containing all indices i with di = d.

We refer to the union of all manifolds Ωi as the mixed-dimensional geometry Ω and denote the
subset of d-manifolds as Ωd, i.e.

Ω :=
⋃

i∈I
Ωi, Ωd :=

⋃

i∈Id
Ωi.

For each Ωi with i ∈ I, we form a connection to each lower-dimensional manifold that coincides
with (a portion of) its boundary. Each of these connections is endowed with a unique index j.
Then, let ij be the index of the lower-dimensional manifold such that Ωij ⊆ ∂Ωi. We denote ∂jΩi
as the corresponding boundary of dimension dj := dij .

For each i ∈ I and d < di, we define Idi as the set of indices j such that ∂jΩi is d-dimensional.
Moreover, let Ii contain all indices j for which ∂jΩi is not empty:

Idi :=
{
j : ∃ij ∈ Id such that ∂Ωi ∩ Ωij 6= ∅

}
, Ii :=

di−1⋃

d=0

Idi .

To exemplify a mixed-dimensional geometry Ω, let us consider Figure 1 and its corresponding
index sets Idi . In this case, we have I1

2 = {12, 13} with i12 = 5 and i13 = 3 and I0
2 = 16 with

i16 = 6. We note that two distinct portions of the boundary ∂Ω1 coincide geometrically with Ω4.
This is represented by the two indices {9, 10} ⊂ I1

1 with i9 = i10 = 4.

2.2 Function Spaces

The next step is to define a function a on the mixed-dimensional geometry. We do this using
the language of exterior calculus [27]. We first introduce local function spaces on each subdomain
which form the building blocks for the mixed-dimensional generalization.

For i ∈ I, let Λk(Ωi) denote the space of differential k-forms on Ωi. Let L2Λk(Ωi) denote the
space of square integrable k-forms and HΛk(Ωi) denote its subspace of forms with square integrable
differential. In other words, let

L2Λk(Ωi) := {ai ∈ Λk(Ωi) : ‖ai‖L2(Ωi) <∞},
HΛk(Ωi) := {ai ∈ L2Λk(Ωi) : dai ∈ L2Λk+1(Ωi)}.
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Figure 1: Example of a mixed-dimensional geometry with n = 2. On the left, Ωi labels each
di-manifold with i ∈ I. The index sets Id for this geometry are as follows. I2 = {1, 2} represents
the 2-manifolds, I1 = {3, 4, 5} denotes the 1-manifolds and the 0-manifolds in this geometry have
indices i ∈ I0 = {6, 7}. The middle of the figure illustrates the enumeration of boundaries ∂jΩi
for i ∈ I2 and j ∈ I1

i . On the right, the indices j are shown with the property ij = 6.

With the exterior derivative d, the spaces HΛk form a cochain complex, known as the de Rham
complex:

HΛ0(Ωi) HΛ1(Ωi) · · · HΛdi−1(Ωi) HΛdi(Ωi).

←d ←d ←d ←d

We often use the correspondence of this complex to conventional Sobolev spaces. For di = 3, this
representation of the de Rham complex is given by

H(∇,Ωi) H(∇×,Ωi) H(∇·,Ωi) L2(Ωi).

←∇ ←∇× ←∇· (2.1)

Here, L2(Ωi) is the space of square-integrable functions on Ωi and the spaceH(∇,Ωi) is its subspace
of functions with square-integrable gradients, typically denoted by H1(Ωi). The spaces H(∇×,Ωi)
and H(∇·,Ωi) are defined analogously.

We use the local spaces L2Λk and HΛk to introduce the Sobolev spaces containing mixed-
dimensional differential k-forms on Ω. For brevity, we omit the reference to the geometry and
define

L2Lk :=
∏

i∈I
{ai ∈ L2Λki(Ωi) : Trjai ∈ L2Λki(Ωij ), ∀j ∈ Ii},

HLk :=
∏

i∈I
{ai ∈ HΛki(Ωi) : Trjai ∈ HΛki(Ωij ), ∀j ∈ Ii},

with ki := di−(n−k). Here, and in the following, we interpret Λk(Ωi) as zero for k < 0 and k > di.
Thus, we emphasize that HLk is zero on manifolds Ωi with di < n−k. The operator Trj is a trace
operator that restricts a form ai to ∂jΩi. We emphasize that for a given a = (ai)i∈I ∈ HLk, the
component ai has a well-defined trace on each ∂jΩi for j ∈ Ii with ki ≤ dj < di by definition.

The Gothic font is used to denote a mixed-dimensional differential form a ∈ HLk and we revert
to classic fonts with a subscript i to denote its component defined on Ωi. In the analysis, we often
use the corresponding restriction operator ιi defined such that

ιia = ai.

Next, we define the jump operator d : HLk 7→ HLk+1. For each i ∈ I, let

ιida = (−1)n−k
∑

l∈Idi+1

∑

{j∈Il: ij=i}
Trjal.

For more details on the definition of d, we refer to [7]. The mixed-dimensional differential d is
formed as the sum of d and the exterior derivative d such that

ιida = dai + ιida, i ∈ I.
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We introduce the following norms for a ∈ HLk:

‖a‖2L2Lk :=
∑

i∈I
‖ai‖2L2(Ωi)

+

di∑

d=ki

∑

j∈Idi

‖Trjai‖2L2(Ωij ),

‖a‖2HLk := ‖a‖2L2Lk + ‖da‖2L2Lk+1 .

The inner products that naturally induce these norms are denoted by (·, ·)L2Lk and (·, ·)HLk ,
respectively. The spaces HLk form a cochain complex which we refer to as the mixed-dimensional
de Rham complex:

HL0 HL1 . . . HLn−1 HLn.←d ←d ←d ←d (2.2)

This complex has several key properties, which we present in the following Lemma.

Lemma 2.1. The complex (2.2) satisfies the following:

• All exact forms are closed: each a ∈ HLk satisfies

d(da) = 0. (2.3)

• All closed forms are exact: for each a ∈ HLk with da = 0, there exists a b ∈ HLk−1 such
that

db = a, ‖b‖HLk−1 . ‖a‖HLk (2.4)

Proof. The proof can be found in [7].

We represent this complex in terms of local spaces for each dimension. For n = 3, these local
spaces are then organized in the following diagram:

HL0 H(∇,Tr; Ω3)

HL1 H(∇×,Tr; Ω3) H(∇⊥,Tr; Ω2)

HL2 H(∇·,Tr; Ω3) H(∇·,Tr; Ω2) H(∇·,Tr; Ω1)

HL3 L2(Ω3) L2(Ω2) L2(Ω1) L2(Ω0)

←d ←∇

←

d

←d ←∇×

←

d ←∇⊥

←

d

←d ←∇·

←

d ←∇·

←

d ←∇·

←

d

(2.5)

Here, ∇· denotes the divergence tangential to each manifold Ωi, regardless of dimension. The curl
is denoted by ∇× in three dimensions and is given by the rotated gradient ∇⊥ on two-dimensional
manifolds. The operator ∇ at the top of the diagram represents the gradient on three-dimensional
subdomains.

The local function spaces are given by subspaces of conventional Sobolev spaces with extra
trace regularity. By defining ν as the outward, unit normal vector on ∂Ωi for i ∈ I, we define

H(∇·,Tr; Ωi) := {ai ∈ H(∇·,Ωi) : (ν · ai)|∂jΩi ∈ L2(Ωij ), ∀j ∈ Idi−1
i },

H(∇×,Tr; Ωi) := {ai ∈ H(∇×,Ωi) : (−ν × ai)|∂jΩi ∈ H(∇·,Tr; Ωij ), ∀j ∈ Idi−1
i },

H(∇⊥,Tr; Ωi) := {ai ∈ H(∇⊥,Ωi) : (ν⊥ai)|∂jΩi ∈ H(∇·,Tr; Ωij ), ∀j ∈ Idi−1
i },

H(∇,Tr; Ωi) := {ai ∈ H(∇,Ωi) : (ai)|∂jΩi ∈ H(∇×,Tr; Ωij ), ∀j ∈ Idi−1
i }.

The spaces in diagram (2.5) are then defined as the product of these spaces over all i ∈ Id for a
given dimension d.
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3 Regular Decomposition

The aim of this section is to show that the conventional regular decomposition of differential k-
forms can be generalized to the mixed-dimensional setting. For that purpose, we first recall the
fixed-dimensional regular decomposition in the continuous case. Then, we introduce the subspace of
HΛk, that contains functions with higher regularity, and the analogous subspace of HLk. In turn,
this gives the main ingredients in the derivation of the mixed-dimensional regular decomposition.

3.1 Fixed-dimensional Regular Decomposition

We start with presenting the regular decomposition in the context of the de Rham complex (2.1).
Given Ωi with di = 3, we follow the results in [16] and provide the regular decomposition of
H(∇·,Ωi) and H(∇×,Ωi) in the following theorems.

Theorem 3.1 (Regular decomposition of H(∇×,Ωi)). For any q ∈ H(∇×,Ωi), there exist func-
tions a ∈ (H(∇,Ωi))3 and c ∈ H(∇,Ωi) such that

q = a +∇c, (3.1a)

‖a‖H(∇,Ωi) + ‖c‖H(∇,Ωi) . ‖q‖H(∇×,Ωi). (3.1b)

Theorem 3.2 (Regular decomposition of H(∇·,Ωi)). For any q ∈ H(∇·,Ωi), there exist functions
a, c ∈ (H(∇,Ωi))3 such that

q = a +∇× c, (3.2a)

‖a‖H(∇,Ωi) + ‖c‖H(∇,Ωi) . ‖q‖H(∇·,Ωi). (3.2b)

Now, let H0(∇×,Ωi) and H0(∇·,Ωi) be the subspaces of H(∇·,Ωi) and H(∇×,Ωi), respec-
tively, with zero trace on the boundary ∂Ωi. Also, denote the vector function space H0(∇,Ωi) =
{u ∈ (H(∇,Ωi))3,u|∂Ωi = 0}. The ”boundary aware” regular decompositions from [15] are given
in the following theorems.

Theorem 3.3 (Regular decomposition of H0(∇×,Ωi)). For any q ∈ H0(∇×,Ωi), there exist
functions a ∈H0(∇,Ωi) and c ∈ H0(∇,Ωi) such that

q = a +∇c, (3.3a)

‖a‖H0(∇,Ωi) + ‖c‖H0(∇,Ωi) . ‖q‖H0(∇×,Ωi). (3.3b)

Theorem 3.4 (Regular decomposition of H0(∇·,Ωi)). For any q ∈ H0(∇·,Ωi), there exist func-
tions a, c ∈H0(∇,Ωi) such that

q = a +∇× c, (3.4a)

‖a‖H0(∇,Ωi) + ‖c‖H0(∇,Ωi) . ‖q‖H0(∇·,Ωi). (3.4b)

Our derivation of the mixed-dimensional regular decomposition relies on the fact that the
regular decompositions in above theorems are possible on the individual sub-manifolds Ωi and
then combined together, by taking special care of the traces.

3.2 Mixed-dimensional Regular Decomposition

For i ∈ I, let us first introduce the subspace of k-forms with increased regularity, denoted by
H1Λk(Ωi) ⊆ HΛk(Ωi) such that

H1Λk(Ωi) ∼= (H(∇,Ωi))Cdi,k .

Here the notation ∼= means that the spaces are isomorphic. The exponent is given by the binomial
coefficient Cdi,k :=

(
di
k

)
, which is the dimension of the space of differential k-forms on a di-manifold

(see e.g. [27], Thm 4-5). We consider the space as zero if the exponent is zero, e.g. if k > di.
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With the local spaces defined, let H1Lk ⊆ HLk be the space of regular mixed-dimensional
k-forms, given by

H1Lk :=
∏

i∈I
{ai ∈ H1Λki(Ωi) : Trjai ∈ H1Λki(Ωij ), ∀j ∈ Ii}, (3.5)

and endowed with the norm

‖a‖H1Lk :=
∑

i∈I
‖ai‖H1Λki (Ωi) +

∑

j∈Ii
‖Trjai‖H1Λki (Ωij ). (3.6)

We note two properties of the space H1Lk. First, in the special case of i ∈ In−k, we have
ki = 0. Since H1Λ0(Ωi) = HΛ0(Ωi), it follows that

ιiH
1Lk = ιiHLk, ∀i ∈ In−k. (3.7a)

Secondly, the jump operator preserves the increased regularity of H1Lk:

dH1Lk ⊆ H1Lk+1. (3.7b)

The following lemma provides the local regular decompositions on each Ωi by using the known
results in fixed-dimensional setting in Section 3.1.

Lemma 3.1. Given qi ∈ ιiHLk with i ∈ I, then there exists a pair (ai, ci) ∈ ιiH1Lk × ιiH1Lk−1

such that

qi = ai + dci and ‖ai‖H1Lk + ‖ci‖H1Lk−1 . ‖qi‖HLk .

Proof. We consider the four possible cases for n ≤ 3. With reference to diagram (2.5), these
cases are represented by the main diagonal (Case A) and the off-diagonal components in the three
bottom rows (Cases B–D).

Case A: k = n − di. We note that this means that ki = 0 and ιiHLk = ιiH
1Lk by (3.7a). Setting

ai := qi yields the result.

Case B: k = n, di > 0. In this case, we have qi ∈ L2(Ωi). We introduce ai ∈ H1
0 (Ωi) as the solution

to the following minimization problem,

min
ai∈H1

0 (Ωi)

1
2‖ai‖21,Ωi subject to ΠR,iai = ΠR,iqi, (3.8a)

with ΠR,i denoting the L2-projection onto constants on Ωi. Secondly, we define the bounded
ci ∈ (H1

0 (Ωi))
di such that

∇ · ci = (I −ΠR,i)(qi − ai). (3.8b)

Since the divergence represents the exterior derivative d in this case, it follows that qi =
ai+ dci with ai ∈ ιiH1Lk and ci ∈ ιiH1Lk−1. Importantly, ai and ci have zero trace on ∂Ωi.
This property will be advantageous in the remaining cases.

Case C: k = n−1, di > 1. In this case, we require L2 regularity of traces on manifolds of codimension
one. For j ∈ Idi−1

i , let us denote

qj := Trjqi.

By definition of HLn−1, we have that qj ∈ L2(Ωij ) = L2(∂jΩi). Since ∂jΩi is a manifold of
dimension di − 1, we can use Case B to find aj ∈ H1

0 (∂jΩi) and cj ∈ (H1
0 (∂jΩi))

di−1 such
that

qj = aj + dcj .
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Note that both aj and cj have zero trace on the boundary of ∂jΩi. Hence, all aj (respec-
tively cj) can be combined to form a function in H1(∂Ωi) (respectively (H1(∂Ωi))

di−1).
These boundary functions are extended harmonically into Ωi to form a∗i ∈ ιiH

1Lk and
c∗i ∈ ιiH1Lk−1 such that

Trja
∗
i = aj , Trjc

∗
i = cj , ∀j ∈ Idi−1

i

The regularity of these extensions in the domain Ωi is a result of the fact that all aj and cj
are zero at tips and reentrant corners.

Next, we note that qi − (a∗i + dc∗i ) has zero trace on ∂jΩi for all j ∈ Idi−1
i . Hence, we apply

a regular decomposition respecting homogeneous boundary conditions to obtain

qi − (a∗i + dc∗i ) = a0
i + dc0i ,

such that a0
i ∈ H1Λki(Ωi) and c0i ∈ H1Λki−1(Ωi) have zero trace on each ∂jΩi with j ∈ Idi−1

i .
It follows that a0

i ∈ ιiH1Lk and c0i ∈ ιiH1Lk−1. We conclude the construction by setting
ai := a∗i + a0

i and ci := c∗i + c0i .

Case D: k = n − 2, di > 2. The only case not covered so far is di = n = 3. Following the same
arguments as above, we first denote qj := Trjqi and then use the construction from Case C
to obtain

qj = aj + dcj , j ∈ I2
i .

Next, without loss of generality, we let j1, j2 ∈ I2
i and consider the index j1,2 ∈ I1

i such that
∂j1,2Ωi forms a one-dimensional interface between ∂j1Ωi and ∂j2Ωi. It follows that

Trj1,2aj1 = Trj1,2aj2 Trj1,2cj1 = Trj1,2cj2

since both traces are equal to the unique constructions on ∂j1,2Ωi from Case B, in particular
(3.8). This means that, when there are more interfaces, by combining all aj with j ∈ I2

i , a
function is formed in (H1(∂Ωi))

2. Analogously, the combination of all cj with j ∈ I2
i forms

a function in H1(∂Ωi).

The construction is finalized in the same way as in Case C. In short, we first introduce a
harmonic extension of the boundary functions to form a∗i ∈ ιiH

1Lk and c∗i ∈ ιiH
1Lk−1.

Then, a0
i ∈ ιiH

1Lk and c0i ∈ ιiH
1Lk−1 are constructed using a regular decomposition of

qi − (a∗i + dc∗i ) respecting homogeneous boundary conditions. Finally, we set ai := a∗i + a0
i

and ci := c∗i + c0i .

Remark 3.1. In the previous lemma, we have frequently used the fact that operators Tr and d
commute. The derivation of this property for functions on each Ωi is straightforward so, to shorten
the presentation, we leave it out and use the commutative property in the proofs when needed.

Now we are ready to present the main result of this section, namely the mixed-dimensional
regular decomposition, in the following theorem.

Theorem 3.5 (Mixed-dimensional Regular Decomposition). Given q ∈ HLk, then there exists a
pair (a, c) ∈ H1Lk ×H1Lk−1 such that

q = a + dc and ‖a‖H1Lk + ‖c‖H1Lk−1 . ‖q‖HLk

Proof. Given k, we construct a = (ai)i∈I and c = (ci)i∈I by marching through the corresponding
row in diagram (2.5). We initialize both functions as a = 0 and c = 0, and redefine each component
according to the following four, sequential steps.

1. If k > 0, consider i ∈ In. Lemma 3.1 gives us ai ∈ ιiH1Lk and ci ∈ ιiH1Lk−1 such that

qi = ai + dci. (3.9a)

We repeat the above for all i ∈ In and continue with step 2.
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2. If k > 1, consider i ∈ In−1. We use Lemma 3.1 to define ãi ∈ ιiH1Lk and ci ∈ ιiH1Lk−1

such that

qi = ãi + dci.

Noting that (qi − dci) ∈ ιiH1Lk and using (3.7b), we set

ai := qi − dci − ιidc. (3.9b)

where c has non-zero components cj , j ∈ In defined in step 1. We repeat this construction
for all i ∈ In−1 and continue with step 3.

3. If k > 2, repeat step 2 with i ∈ In−2 and continue with step 4.

4. In any case, consider i ∈ In−k. We have ki = 0 and note that ιiHLk = ιiH
1Lk from (3.7a).

Hence, we use (3.7b) to set

ai := qi − ιidc. (3.9c)

where c has non-zero components defined in steps 1–3. This construction is repeated for all
i ∈ In−k.

The four steps give us a := (ai)i∈I ∈ H1Lk and c := (ci)i∈I ∈ H1Lk−1 and we collect (3.9) to
conclude

q = a + dc.

The bound follows by the construction and Lemma 3.1.

A byproduct of the mixed-dimensional regular decomposition is the so-called regular inverse of
the mixed-dimensional differential d as shown in the following corollary.

Corollary 3.1 (Mixed-dimensional Regular Inverse). Given q ∈ HLk, then there exists a ∈ H1Lk

such that

d(q− a) = 0 and ‖a‖H1Lk . ‖q‖HLk

Proof. Follows from Theorem 3.5 and the fact that ddc = 0 from (2.3).

4 Discrete Regular Decomposition

In this section, we introduce the discrete version of the regular decomposition (Theorem 3.5). To
this end, let h be the typical mesh size and the subscript h describe discrete entities. We first present
the conventional discrete regular decomposition in a fixed-dimensional setting. Then, we introduce
the structure-preserving discretization of the mixed-dimensional geometry Ω and function spaces
HLk. We finalize the section with deriving the discrete mixed-dimensional regular decomposition.

4.1 Fixed-dimensional Discrete Regular Decomposition

Let Hh(∇,Ωi), Hh(∇×,Ωi), and Hh(∇·,Ωi) denote the conforming finite element approximations
of the functions spaces H(∇,Ωi), H(∇×,Ωi) and H(∇·,Ωi). In addition, let Π∇×h : H(∇×,Ωi)→
Hh(∇×,Ωi) and Π∇·h : H(∇·,Ωi)→ Hh(∇·,Ωi) be the stable projection operators. In connection
to Section 3.1, the discrete analogues of Theorem 3.1 and Theorem 3.2 are given below.

Theorem 4.1 (Regular decomposition of Hh(∇×,Ωi)). For any qh ∈ Hh(∇×,Ωi), there exist
vector functions ah ∈ (Hh(∇,Ωi))3, bh ∈ Hh(∇×,Ωi) and a scalar function ch ∈ Hh(∇,Ωi) such
that

qh = Π∇×h ah + bh +∇ch, (4.1a)

‖Π∇×h ah‖H(∇×,Ωi) + ‖h−1bh‖L2(Ωi) + ‖ch‖H(∇,Ωi) . ‖qh‖H(∇×,Ωi). (4.1b)
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Theorem 4.2 (Regular decomposition of Hh(∇·,Ωi)). For any qh ∈ Hh(∇·,Ωi), there exist vector
functions ah, eh ∈ (Hh(∇,Ωi))3, bh ∈ Hh(∇·,Ωi) and fh ∈ Hh(∇×,Ωi) such that

qh = Π∇·h ah + bh +∇× (Π∇×h eh + fh), (4.2a)

‖Π∇·h ah‖H(∇·,Ωi) + ‖h−1bh‖L2(Ωi) + ‖eh‖H(∇×,Ωi) + ‖h−1fh‖L2(Ωi) . ‖qh‖H(∇·,Ωi). (4.2b)

These discrete regular decompositions reveal the structure that we aim to preserve in the
mixed-dimensional setting. Specifically, the stability of the decompositions in the sense of bounds
(4.1b) and (4.2b) will in turn provide us with robust preconditioners by the theory of the auxiliary
space methods. We give a short overview of the auxiliary space preconditioning theory later in
Section 5.1 and focus first on the derivation of the mixed-dimensional analogue to Theorem 4.1
and Theorem 4.2.

4.2 Mixed-dimensional Discretization

First, we introduce a shape-regular simplicial partition of Ω, denoted by Ωh =
⋃
i∈I Ωi,h. The grid is

constructed such that it conforms to all lower-dimensional manifolds and all grids are matching. In
order to preserve the regular decomposition on the discrete level, structure preserving discretization
in the mixed-dimensional setting should be considered. Let us introduce HhL

k as the discretization
of HLk defined on Ωh. Using the notation of finite element exterior calculus [4], we consider the
family of reduced finite elements (i.e. elements of the first kind) and set

HhL
k =

∏

i∈I
P−r Λki(Ωi,h). (4.3)

The lowest-order case (r = 1) in the three-dimensional setting (n = 3) gives us the following,
discrete de Rham complex:

HhL
0 P1(Ω3

h)

HhL
1 Ne0(Ω3

h) P1(Ω2
h)

HhL
2 Nf0 (Ω3

h) RT0(Ω2
h) P1(Ω1

h)

HhL
3 P0(Ω3

h) P0(Ω2
h) P0(Ω1

h) P0(Ω0
h)

←d ←∇

←

d

←d ←∇×

←

d ←∇⊥

←

d

←d ←∇·

←

d ←∇·

←

d ←∇·

←

d

(4.4)

Here, P1, RT0, and P0 denote linear Lagrange, lowest-order Raviart-Thomas, and piecewise con-
stant finite element spaces, respectively. Ne0 and Nf0 represent the edge-based and face-based
Nédélec elements of lowest order, respectively.

We introduce the stable projection operators Πk
h : HLk 7→ HhL

k such that

‖(I −Πk
h)a‖L2Lk . h‖a‖H1Lk , ∀ a ∈ H1Lk, (4.5)

and the following diagram commutes,

HL0 HL1 HL2 HL3

HhL
0 HhL

1 HhL
2 HhL

3

←d

←Π0
h

←d

←Π1
h

←d

←Π2
h

←Π3
h

←d ←d ←d
(4.6)

In the mixed-dimensional setting, such a bounded projection can be constructed by combin-
ing fixed-dimensional cochain projections on each Ωi together. For the construction of fixed-
dimensional cochain projections, we refer to [11].
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Lemma 4.1 (Exactness). Given the commuting projection operators Πk
h exist, then all discrete

closed forms are exact. Thus, for each qh ∈ HhL
k with dqh = 0, there exists a ch ∈ HhL

k−1 such
that

dch = qh.

Proof. Assume qh ∈ HhL
k with dqh = 0 given. Since HhL

k ⊂ HLk, we use the exactness of the
mixed-dimensional De Rham complex (2.4) to find c ∈ HLk−1 such that

dc = qh.

Setting ch := Πk−1
h c, we obtain

dch = dΠk−1
h c = Πk

hdc = Πk
hqh = qh,

which completes the proof.

4.3 Mixed-dimensional Discrete Regular Decomposition

This section is devoted to deriving the discrete regular decomposition, i.e. the discrete analogue
to Theorem 3.5. We first require the following preparatory lemma.

Lemma 4.2. Given qh ∈ HhL
k, then there exists a semi-discrete pair (a, fh) ∈ H1Lk ×HhL

k−1

such that

qh = Πk
ha + dfh and ‖a‖H1Lk + ‖fh‖HLk−1 . ‖qh‖HLk .

Proof. Since qh ∈ HhL
k ⊂ HLk, we use Corollary 3.1 to construct a ∈ H1Lk such that

d(qh − a). = 0

Next, we use dHhL
k ⊆ HhL

k+1 and the commutativity of the projection operators to derive

dqh = Πk+1
h dqh = Πk+1

h da = dΠk
ha.

We thus have d(qh − Πk
ha) = 0, i.e. qh − Πk

ha is a closed form in HhL
k. From Lemma 4.1, a

fh ∈ HhL
k−1 exists such that

dfh = qh −Πk
ha.

By Corollary 3.1, we have ‖a‖H1Lk . ‖qh‖HLk . In addition, by (4.5), we have

‖dfh‖L2Lk . ‖qh‖L2Lk + ‖Πk
ha‖L2Lk ≤ ‖qh‖L2Lk + ‖a‖L2Lk + ‖(I −Πk

h)a‖L2Lk

. ‖qh‖L2Lk + ‖a‖H1Lk . ‖qh‖HLk .

Since the choice of fh is not unique, we choose a special fh such that the following Poincaré
inequality holds

‖fh‖HLk−1 . ‖dfh‖L2Lk .

Then we have ‖fh‖HLk−1 . ‖qh‖HLk , which completes the proof.

To further develop the decomposition in the discrete setting, let us introduce H1
hL

k ⊆ H1Lk as
the discretization of the regular k-forms from (3.5). For the given choice of discrete spaces (4.3),
the regular spaces are given by

H1
hL

k =
∏

i∈I
(P−r Λ0(Ωi,h))Cdi,ki .

Again, the exponent is given by Cdi,ki :=
(
di
ki

)
. In the lowest-order case with r = 1, this means

that

H1
hL

k =
∏

i∈I
(P1(Ωi,h))Cdi,ki .
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In other words, all discrete forms with increased regularity are given by (tuples of) nodal Lagrange
elements. Similar to (3.7), we note that

ιiH
1
hL

k = ιiHhL
k, i ∈ In−k, (4.7a)

dH1
hL

k ⊆ H1
hL

k+1. (4.7b)

Let Pkh be the projection operator onto the discretized space of regular k-forms. Pkh : H1Lk 7→
H1
hL

k is stable and has the following property:

‖Pkha‖H1Lk . ‖a‖H1Lk , ‖(I − Pkh)a‖L2Lk . h‖a‖H1Lk , (4.8)

for all a ∈ H1Lk. Now we are ready to present the mixed-dimensional discrete regular decomposi-
tion as follows.

Theorem 4.3 (Mixed-dimensional Discrete Regular Decomposition). Given qh ∈ HhL
k, then

there exists a pair (ah, fh) ∈ H1
hL

k ×HhL
k−1 and a high-frequency term bh ∈ HhL

k such that

qh = Πk
hah + bh + dfh and ‖ah‖H1Lk + ‖h−1bh‖L2Lk + ‖fh‖HLk−1 . ‖qh‖HLk .

Proof. Given the decomposition from Lemma 4.2, we further decompose a using the projection
operator Pkh from (4.8):

qh = Πk
hPkha + Πk

h(I − Pkh)a + dfh.

By defining ah := Pkha and bh := Πk
h(I − Pkh)a, we obtain the desired format. To prove the

boundedness, we use the stability of Pkh and approximation properties (4.5) and (4.8) to derive

‖ah‖H1Lk = ‖Pkha‖H1Lk . ‖a‖H1Lk . ‖qh‖HLk ,

‖h−1bh‖L2Lk = ‖h−1Πk
h(I − Pkh)a‖L2Lk . ‖h−1(I − Pkh)a‖L2Lk + ‖h−1(I −Πk

h)(I − Pkh)a‖L2Lk

. ‖a‖H1Lk + ‖(I − Pkh)a‖H1Lk . ‖a‖H1Lk .

Combining these estimates with the bound of Lemma 4.2 proves the result.

In practice, it is useful to integrate discrete regular decompositions so that all the components
have improved regularity except the high-frequency parts. Such a result is shown as follows.

Corollary 4.1 (Integrated Mixed-dimensional Discrete Regular Decomposition). Given qh ∈
HhL

k, then there exist a regular pair (ah, ch) ∈ H1
hL

k × H1
hL

k−1 and a high-frequency pair
(bh, eh) ∈ HhL

k ×HhL
k−1 such that

Πk
hah + bh + d(Πk−1

h ch + eh) = qh (4.9a)

‖ah‖H1Lk + ‖h−1bh‖L2Lk + ‖ch‖H1Lk−1 + ‖h−1eh‖L2Lk−1 . ‖qh‖HLk . (4.9b)

Proof. Since H1
hL

0 = HhL
0 by (4.7a), the result is trivial for k = 0. We use the same argument in

combination with Lemma 4.3 to conclude that the case k = 1 follows with eh = 0.
We continue with k > 1. Using the decomposition from Lemma 4.3, we obtain (ah, bh, fh) ∈

H1
hL

k ×HhL
k ×HhL

k−1 such that

qh = Πk
hah + bh + dfh,

with the associated bound. Applying Lemma 4.3 once more on fh ∈ HhL
k−1, we have (ch, eh, gh) ∈

H1
hL

k−1 ×HhL
k−1 ×HhL

k−2 such that

fh = Πk−1
h ch + eh + dgh

Due to (2.3), we have ddgh = 0 and the result follows.

Similarly, in the discrete case, we also have the regular inverse as the byproduct of the discrete
regular decomposition, which is stated in the following corollary.

Corollary 4.2 (Discrete Regular Inverse). Given qh ∈ HhL
k, then there exist ah ∈ H1

hL
k and a

high-frequency term bh ∈ HhL
k such that

d(qh −Πk
hah − bh) = 0 and ‖ah‖H1Lk + ‖h−1bh‖L2Lk . ‖qh‖HLk (4.10)

Proof. Follows from Theorem 4.1 and the fact that dd = 0 from (2.3).
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5 Mixed-dimensional Auxiliary Space Preconditioner

Based on the (discrete) regular decomposition, we develop robust preconditioners for solving the
following abstract mixed-dimensional problem: Find qh ∈ HhL

k, such that

(qh, q̃h)L2Lk + (dqh, dq̃h)L2Lk+1 = (f, q̃h)L2Lk ∀ q̃h ∈ HhL
k. (5.1)

This can be written into a linear system Akqh = f, where Ak = I + d∗d is a symmetric positive
definite operator on HhL

k, I is the identity mapping and d∗ is the adjoint of d. Our goal is to derive
a preconditioner B for the problem (5.1) based on the fictitious or auxiliary space preconditioning
theory developed in [16,24,29].

5.1 Abstract Theory of Auxiliary Space Preconditioning

We recall the framework of the auxiliary space theory. Assume V is a separable Hilbert space with
an inner product a(·, ·). We aim to find u ∈ V that solves

a(u, v) = (f, v) ∀v ∈ V, (5.2)

or equivalently

Au = f, (5.3)

where A : V 7→ V ′ is symmetric positive definite such that 〈Au, v〉 = a(u, v). Here V ′ is the dual
of V . Using A, the norm induced by a(·, ·) can be denoted by ‖ · ‖A and we also consider another
inner product s(·, ·) on V , which induces another norm ‖ · ‖S with S being symmetric positive
definite.

For designing auxiliary preconditioners, let W`, ` = 1, 2, . . . , L, be auxiliary spaces with inner
products a`(·, ·) that induces norms ‖ · ‖A` , where A` : W` 7→ W ′` are linear operators defined as
〈A`u`, v`〉 = a`(u`, v`), for u`, v` ∈ W`, ` = 1, 2, . . . , L. In addition, we assume that there are
transfer operators Π` : W` 7→ V . Finally, we define the auxiliary product space V̄ = V ×W1 ×
W2 × · · · ×WL, and then represent the inner product on V̄ as

ā(v̄, v̄) = s(v, v) +
L∑

`=1

al(w`, w`) ∀ v̄ = (v, w1, . . . , wL) ∈ V̄ .

Using the fictitious or auxiliary space method, the preconditioner B : V ′ 7→ V for the linear
problem (5.3) is defined as

B = S−1 +
L∑

`=1

Π`A
−1
` Π∗` , (5.4)

where S−1 is the so-called smoother operator. The following Lemma from [16], which can be viewed
as a special case of the fictitious lemma [24], gives a bound on the condition number κ(BA).

Lemma 5.1. Assume the following conditions hold:

1. There exist c` > 0, ` = 1, . . . , L such that ‖Π`w`‖A ≤ c`‖w`‖A` , ∀w` ∈W`.

2. There exist cs > 0 such that ‖v‖A ≤ cs‖v‖S , ∀ v ∈ V .

3. For every v ∈ V , there exists a decomposition v = v0 +
L∑
`=1

w`, v0 ∈ V, w` ∈ W` and c0 > 0

such that

‖v0‖2S +
L∑

`=1

‖w`‖2A` ≤ c0‖v‖2A.

Then κ(BA) ≤ c20(c2s + c21 + · · ·+ c2L).
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If all the bounds in Lemma 5.1 are independent of discretization parameter h (and any other
parameters), then B is a robust preconditioner for A in (5.3). The auxiliary space preconditioner
B (5.4) can be viewed as additive version. As mentioned in [16], naturally, we can also apply
auxiliary spaces successively to obtain a multiplicative auxiliary space preconditioner, which is
also robust under the same conditions, we refer to [17] for details. Note that instead of directly
applying operators A−1

` , we can replacing them by their spectrally equivalent approximations, B`.
As long as the constants in the spectral equivalence are independent of physical and discretization
parameters, the resulting auxiliary space preconditioners remain robust.

Remark 5.1. For example, [16] shows that the fixed-dimensional discrete regular decomposition
in Theorem 4.2 follows the conditions of Lemma 5.1. Let V = Hh(∇·,Ωi) and for u, v ∈ V let the
bilinear form a(u, v) = (u, v) + (∇·u,∇· v) in (5.2). The auxiliary space theory gives the following
preconditioner for solving (5.3). Take the auxiliary spaces W1 = (Hh(∇,Ωi))3, W2 = Hh(∇×,Ωi),
W3 = (Hh(∇,Ωi))3 and transfer operators Π1 = Π∇·h , Π2 = ∇×, Π3 = ∇ × Π∇×h . With certain
choices of smoothers S∇· and S∇× on Hh(∇·,Ωi) and Hh(∇×,Ωi) (for example, Jacobi smoother),
respectively, we get

B = (S∇·)−1 + Π∇·h A−1
reg(Π

∇·
h )∗ +∇× (S∇×)−1(∇×)∗ +∇×Π∇×h A−1

reg(∇×Π∇×h )∗, (5.5)

where Areg is the linear operator induced by the inner product on (Hh(∇,Ωi))3. In the following
section, we show that the similar preconditioner is feasible in the mixed-dimensional setting using
Theorem 4.3.

5.2 Mixed-dimensional Preconditioner

Let us apply the theory in Section 5.1 on the problem (5.1) to develop the auxiliary space precon-
ditioner in the mixed-dimensional setting. Following Theorem 4.3, for any qh ∈ HhL

k, there is a
pair (ah, fh) ∈ H1

hL
k × HhL

k−1 and a high-frequency term bh ∈ HhL
k that allows the following

decomposition
qh = bh + Πk

hah + dfh.

Now, besides the original space V = HhL
k, we have two auxiliary spaces W1 = H1

hL
k and W2 =

HhL
k−1. Furthermore, we take the transfer operator Π1 = Πk

h restricted to H1
hL

k, i.e. Πk
h :

H1
hL

k 7→ HhL
k, and Π2 = d. We write Akreg for the symmetric positive definite linear operator

defined by the inner product on the space H1Lk, which can be viewed as (vector) Laplacian
operators in the mixed-dimensional setting.

For the sake of simplicity, we consider the Jacobi smoother. For a function qh ∈ HhL
k, we have

qh =
∑

e q
e
h, where qeh ∈ span{e} where e denotes a degree of freedom defined on either a node,

edge, face or cell of Ωh. Then the smoothing operator is characterized by the inner product

s(qh, qh) =
∑

e

((qeh, q
e
h)L2Lk + (dqeh, dq

e
h)L2Lk+1) .

This leads to a smoother Sk, which, in matrix representation, coincides with the diagonal of Ak.
The auxiliary space preconditioner B : (HhL

k)′ 7→ HhL
k for (5.1) takes the following form

Bk = (Sk)−1 + Πk
h(Akreg)

−1(Πk
h)∗ + d(Ak−1)−1d∗. (5.6)

Here, ∗ denotes the adjoint with respect to the L2Lk inner product and is the standard matrix
transpose in the matrix representation.

In order to show the bound κ(BkAk) . 1, we need to verify the conditions in Lemma 5.1 and
the results are summarized in the following theorem.

Theorem 5.1. Using Bk from (5.6) as a preconditioner for solving the linear system (5.1) leads
to a condition number κ(BkAk) . 1, where the hidden constant depends only on Ω and shape
regularity of the mesh.

Proof. We verify the three conditions of Lemma 5.1:
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1. It follows from the properties of Πk
h and d that

‖Πk
hah‖2HLk = ‖Πk

hah‖2L2Lk + ‖dΠk
hah‖2L2Lk+1 . ‖ah‖2H1Lk + ‖dah‖2L2Lk+1 . ‖ah‖2H1Lk ,

(5.7)

‖dfh‖HLk = ‖dfh‖L2Lk ≤ ‖fh‖HLk−1 , (5.8)

for any ah ∈ H1
hL

k and fh ∈ HhL
k−1. This verifies the first condition of Lemma 5.1.

2. Since each element has a finite number of neighbors, there is a small constant cs > 0 such
that

(qh, qh)Ak = ‖∑eq
e
h‖2L2Lk + ‖∑edq

e
h‖2L2Lk+1 ≤ c2s

∑
e

(
‖qeh‖2L2Lk + ‖dqeh‖2L2Lk+1

)
= c2ss(qh, qh),

(5.9)

which verifies the second condition of Lemma 5.1.

3. Lastly, we can see from Theorem 4.3 that we only need to show the bound on ‖bh‖S ,

‖bh‖2S =
∑

e

‖beh‖2HLk =
∑

e

(
‖beh‖2L2Lk + ‖dbeh‖2L2Lk+1

)

(Inverse inequality) .
∑

e

(
‖beh‖2L2Lk + ‖h−1beh‖2L2Lk

)

(L2-stability of the bases) . ‖bh‖2L2Lk + ‖h−1bh‖2L2Lk

(Theorem 4.3) . ‖qh‖2HLk . (5.10)

Therefore, by applying Lemma 5.1, we have that κ(BkAk) . 1.

We note that it is possible to choose different smoother, such as Gauss-Seidel smoother. In
fact, one could use any s(·, ·) that is spectral equivalent to ‖h−1 · ‖2L2Lk + ‖ · ‖2L2Lk .

Finally, we can integrate the regular decomposition into the preconditioner by utilizing Corol-
lary 4.1 to further expand Bk. This will be especially useful in Section 6 when designing a
preconditioner for a parameter-dependent saddle point problem in practice. Similarly as before,
we set V = HhL

k, W1 = H1
hL

k, W2 = HhL
k−1 and W3 = H1

hL
k−1. The transfer operators are

then Π1 = Πk
h restricted to H1

hL
k, Π2 = d and Π3 = dΠk−1

h restricted to H1
hL

k−1. Again, we still
use Jacobi smoother for the sake of simplicity here. The preconditioner B now has the following
form

Bk = (Sk)−1 + Πk
h(Akreg)

−1(Πk
h)∗ + d(Sk−1)−1d∗ + dΠk−1

h (Ak−1
reg )−1(Πk−1

h )∗d∗. (5.11)

The next corollary shows the bound κ(BkAk) . 1 using Bk from (5.11).

Corollary 5.1. Using Bk from (5.11) as a preconditioner for solving the linear system (5.1) leads
to a condition number κ(BkAk) . 1, where the hidden constant depends only on Ω and shape
regularity of the mesh.

Proof. Since this preconditioner results from the one in (5.6) with further decomposing functions in
HhL

k−1, the conditions in Lemma 5.1 follow from (5.7)–(5.10), which gives the desired result.

Remark 5.2. We emphasize that instead of directly applying inverses of operators Akreg and Ak−1
reg ,

we can replace them by spectrally equivalent operators, i.e. spectrally equivalent inner products on
H1
hL

k and H1
hL

k−1. Possible choices are multigrid methods and domain decomposition methods.

Remark 5.3. For the sake of simplicity, we use model problem (5.3) to derive the mixed-dimensional
auxiliary space preconditioner. It is also applicable to the following general problem

τ(qh, q̃h)L2Lk + (dqh, dq̃h)L2Lk+1 = (f, q̃h)L2Lk ∀ q̃h ∈ HhL
k.

with τ > 0. In fact, such problem appears in the example presented in Section 6 when the mixed-
dimensional permeability is a constant.
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6 A Practical Example: Flow in Fractured Porous Media

This section presents a practical example in which the theory from the previous sections comes to
use. We consider the setting of flow in fractured porous media in which fractures and intersections
are modeled as lower-dimensional manifolds. The goal is to solve for a mass-conservative flow field
consisting of a flux and a pressure variable. The flux q is considered as a mixed-dimensional (n−1)-
form whereas the pressure distribution p is represented by a mixed-dimensional n-form [8,25]. With
respect to the diagram (2.5), this model therefore focuses on the bottom two rows.

We consider the natural case of n = 3. Then, the flux is defined as a 3-vector in the three-
dimensional surroundings, a 2-vector in the two-dimensional fractures, and a scalar in the one-
dimensional intersections between fractures. On the other hand, the pressure is defined as a scalar
on all manifolds Ωi with i ∈ I. In this case, in stead of using d, we denote D as the mixed-
dimensional differential, which is an analogue of the operator ∇. Then we represent the complex
(2.2) in the same manner as (2.1)

H(D,Ω) H(D×,Ω) H(D·,Ω) L2(Ω)

←D ←D× ←D·

The mixed formulation of a fracture flow problem governed by Darcy’s law and conservation of
mass is then given by: Find (q, p) ∈ H(D·,Ω)× L2(Ω) such that

(K−1q, q̃)L2L2 − (D · q̃, p)L2L3 = 0, ∀ q̃ ∈ H(D·,Ω), (6.1a)

(D · q, p̃)L2L3 = (f, p̃)L2L3 , ∀ p̃ ∈ L2L3, (6.1b)

where

(K−1q, q̃)L2L2 :=
n∑

d=1

∑

i∈Id
(K−1qi, q̃i)Ωi +

∑

j∈Id−1
j

(K−1
ν νj · qi, νj · q̃i)∂jΩi (6.2a)

(D · q, p̃)L2L3 , :=

n∑

d=0

∑

i∈Id
(ιi(D · q), p̃i)Ωi . (6.2b)

Here, f is a given source term. K is the mixed-dimensional permeability tensor given by a tangential
and a normal component, denoted by K and Kν , respectively.

6.1 Discrete Problem

For the discretization, we follow Section 4 and choose the finite element spaces given by the final
two rows in diagram (4.4). Note that this corresponds to the mixed finite element scheme presented
and analyzed in [8]. In short, we choose HhL

2×HhL
3 as in diagram (4.4) and consider the discrete

problem: Find (qh, ph) ∈ HhL
2 ×HhL

3 such that

(K−1qh, q̃h)L2L2 − (D · q̃h, ph)L2L3 = 0, ∀ q̃h ∈ HhL
2, (6.3a)

(D · qh, p̃h)L2L3 = (f, p̃h)L2L3 , ∀ p̃h ∈ HhL
3. (6.3b)

We briefly verify that problem (6.3) is well-posed. For that, we define the weighted norms

‖qh‖2HαL2 := ‖K− 1
2 qh‖2L2L2 + α‖D · qh‖2L2L3 , (6.4a)

‖ph‖2HαL3 := α−1‖ph‖2L2L3 . (6.4b)

Here, the scalar α is chosen such that α ≥ K−1
min with Kmin > 0 being the minimal eigenvalue of K.

In turn, we have

‖K− 1
2 qh‖2L2L2 ≤ α‖qh‖2L2L2 , ∀ qh ∈ HhL

2. (6.5)

A key result in the analysis of this problem is that the pair of finite element spaces HhL
2 ×HhL

3

satisfies the following inf-sup condition with respect to the weighted norms (6.4).
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Lemma 6.1. There exists a constant γB > 0 independent of the discretization parameter h and
the physical parameter K such that

inf
ph∈HhL3

sup
qh∈HhL2

−(D · qh, ph)L2L3

‖qh‖HαL2‖ph‖HαL3

≥ γB . (6.6)

Proof. For any given ph ∈ HhL
3, according to the inf-sup condition proven in [8] (Lemma 3.2),

there exists a qh ∈ HhL
2 such that

−(D · qh, ph)L2L3 = ‖ph‖2L2L3 ,

‖K− 1
2 qh‖2L2L2 + ‖D · qh‖2L2L3 . ‖ph‖2L2L3 .

Using these properties and (6.5), it follows that

−(D · qh, ph)L2L3 = ‖ph‖2L2L3

=
(
α−

1
2 ‖ph‖L2L3

)(
α

1
2 ‖ph‖L2L3

)

& ‖ph‖HαL3

(
α‖qh‖2L2L2 + α‖D · qh‖2L2L3

) 1
2

≥ ‖ph‖HαL3‖qh‖HαL2 .

This completes the proof.

Based on Lemma 6.1, we can show the well-posedness of problem (6.3) by introducing the
following spaces and weighted norms. Let X := HhL

2 ×HhL
3 and X′ be the corresponding dual

space. Let the energy norm on X be given by

|||x|||2X = |||(qh, ph)|||2X = ‖qh‖2HαL2 + ‖ph‖2HαL3 , (6.7)

which is induced by the inner product (·, ·)X, i.e. (x, x)X = |||x|||2X. In addition, let us introduce the
following composite bilinear form

L(x, y) := (K−1qh, q̃h)L2L2 − (D · q̃h, ph)L2L3 + (D · qh, p̃h)L2L3 , (6.8)

for x = (qh, ph) and y = (q̃h, p̃h). Now we can show the problem (6.3) is well-posed, as presented
in the following theorem.

Theorem 6.1. There exist constants β, γ > 0 independent of discretization parameter h and
physical parameter K such that

inf
x∈X

sup
y∈X

L(x, y)

|||x|||X|||y|||X
≥ γ and |L(x, y)| ≤ β|||x|||X|||y|||X, ∀ x, y ∈ X. (6.9)

Proof. Let x = (qh, ph) ∈ X. Due to the inf-sup condition in Lemma 6.1, there exists rh ∈ HhL
2

for this given ph such that

−(D · rh, ph)L2L3 ≥ γB‖ph‖2HαL3 , (6.10a)

‖rh‖2HαL2 = ‖ph‖2HαL3 . (6.10b)

Then, choose y = (q̃h, p̃h) such that q̃h = qh +γBrh and p̃h = ph +αD · qh, and use (6.10) together
with Cauchy-Schwarz inequality, we have

L(x, y) = (K−1qh, qh + γBrh)L2L2 − (D · (qh + γBrh), ph)L2L3 + (D · qh, ph + αD · qh)L2L3

= ‖K− 1
2 qh‖2L2L2 + γB(K−1qh, rh)L2L2 − γB(D · rh, ph)L2L3 + α‖D · qh‖2L2L3

≥ ‖K− 1
2 qh‖2L2L2 − 1

2
‖K− 1

2 qh‖2L2L2 − γ2
B

2
‖K− 1

2 rh‖2L2L2 + γ2
B‖ph‖2HαL3 + α‖D · qh‖2L2L3

≥ 1

2
‖K− 1

2 qh‖2L2L2 − γ2
B

2
‖rh‖2HαL2 + γ2

B‖ph‖2HαL3 + α‖D · qh‖2L2L3

=
1

2
‖K− 1

2 qh‖2L2L2 +
γ2
B

2
‖ph‖2HαL3 + α‖D · qh‖2L2L3

≥ 1

2
min{1, γ2

B}(‖qh‖2HαL2 + ‖ph‖2HαL3)

=
1

2
min{1, γ2

B}|||x|||2X.
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On the other hand, using continuity of the norms and Cauchy-Schwarz inequality, it is straigh-

forward to verify that |||y|||2X ≤
√

2

2
|||x|||2X, and that gives the first condition in (6.9). The same

arguments can be applied to get the second condition on L(·, ·) in (6.9), which concludes the
proof.

6.2 Block Preconditioners based on Auxiliary Space Preconditioning

Let 〈·, ·〉 denote the duality pairing between a function space and its dual. The discrete system
(6.3) can be represented by the following block operator form

A
(
qh
ph

)
=

(
0
f

)
with A :=

(
Aq −BT
B 0

)
, (6.11)

where 〈Aqqh, q̃h〉 := (K−1qh, q̃h)L2L2 and 〈Bqh, p̃h〉 := (D · qh, p̃h)L2L3 .
According to Theorem 6.1, A is an isomorphism with respect to the weighted energy norm (6.7).

Following the standard framework [23], the canonical block preconditioner for solving the linear
system (6.11) is the Riesz operator B : X′ 7→ X corresponding to the inner product (·, ·)X, i.e.,

(Bf, x)X = 〈f, x〉, ∀ f ∈ X′, x ∈ X.

It follows from Theorem 6.1 that,

κ(BA) = ‖BA‖L (X,X)‖(BA)−1‖L (X,X) ≤
β

γ
. (6.12)

If β and γ are independent of the discretization and physical parameters, then B is a robust
preconditioner for linear system (6.11). Based on the definition of the weighted energy norm (6.7),
the preconditioner B takes the following block diagonal form

B =

(
Aq + αBTB 0

0 α−1Ap

)−1

=

((
Aq + αBTB

)−1
0

0 αA−1
p

)
, (6.13)

where 〈Apph, ph〉 := (ph, ph)L2Ln .

Remark 6.1. The top block (Aq + αBTB)−1 in the preconditioner B corresponds to applying
the augmented Lagrangian method to a parameter-dependent problem (6.11). The method is well-
known and used in literature [13,21,28] for general elliptic problems since it effectively handles the
difficulties in convergence of general iterative methods, such as the physical parameter K affecting
the condition number of the linear system.

In practice, directly inverting the diagonal blocks in (6.13) might not be feasible. To overcome
this difficult, we replace the diagonal blocks by their spectrally equivalent approximation and
propose the following block diagonal preconditioner,

MD =

(
Mq 0
0 Mp

)
,

where

c1,q〈Mqqh, qh〉 ≤ 〈(Aq + αBTB)−1qh, qh〉 ≤ c2,q〈Mqqh, qh〉,
c1,p〈Mpph, ph〉 ≤ 〈αA−1

p ph, ph〉 ≤ c2,p〈Mpph, ph〉,

where c1,q, c1,p, c2,q, and c2,p are positive constants independent of discretization and physical
parameters. Following [9, 23] and using Theorem 6.1 and (6.12), the condition number of MDA
can be directly estimated as

κ(MDA) ≤ βc2
γc1

,

for c2 = max{c2,q, c2,p} and c1 = min{c1,q, c1,p}. Again, if β, γ, c1, and c2 are independent of the
discretization and physical parameters, then MD is a robust preconditioner as well.
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Now we discuss our choices of Mq and Mp. We start with Mp. Due to the fact that the choice of
finite element space for the pressure variable is piecewise constant, it follows that the corresponding
mass matrix is diagonal and thus, easily invertible. Therefore, we take Mp = αA−1

p and, naturally,
c1,p = c2,p = 1.

Regarding Mq, since the first block Aq + αBTB corresponds to the problem

(K−1qh, q̃h)L2L2 + α(D · qh,D · q̃h)L2L3 . (6.14)

It is quite challenging to solve it using traditional methods due to the large kernel of the operator
D·. Therefore, we propose to use the mixed-dimensional auxiliary space preconditioner (5.11),
derived in Section 5.2. The form (6.14) can be viewed as a special case of the mixed dimensional
problem (5.1) when n = 3, k = 2, and certain coefficients are added. Directly apply the auxiliary
space preconditioner (5.11), we have

B2 = (S2)−1 + Π2
h(A2

reg)
−1(Π2

h)∗ + (D×)(S1)−1(D×)∗ + (D×)(Π1
h)(A1

reg)
−1(Π1

h)∗(D×)∗.

The smoothers S2 and S1 are chosen to satisfy the second condition in Lemma 5.1. In our
implementation, we use symmetric Gauss-Seidel smoothers for both cases. Since the regular space
H1
hL

2 is given by di-tuples of linear Lagrange elements on each Ωi,h with i ∈ I and di ≥ 1
and H1

hL
1 is defined for i ∈ I3 (respectively I2) as a 3-vector field (respectively scalar field) of

linear Lagrange elements on Ωi,h, A2
reg and A1

reg represent the (weighted) inner products on these
spaces from (3.6). Moreover, it is often advantageous to further substitute spectrally equivalent
operators for (Akreg)

−1, k = 2, 1, denoted by Bk
reg, then the overall auxiliary space preconditioner

for solving (6.14) is

Bq := (S2)−1 + Π2
hB

2
reg(Π

2
h)∗ + (D×)(S1)−1(D×)∗ + (D×)(Π1

h)B1
reg(Π

1
h)∗(D×)∗. (6.15)

and our choice of Mq is defined as solving (6.14) by Generalize Minimal Residual (GMRES) method
with Bq as the preconditioner. In our implementation, Bk

ref , k = 2, 1, are defined by one W-
cycle unsmoothed aggregation algebraic multigrid method. A theoretical study of their spectrally
equivalence properties and thorough comparison of the different available choices is outside the
scope of this work and are subjects of our future work.

Lastly, we also consider two block triangular preconditioners

ML =

(
M−1

q 0

−B M−1
p

)−1

and MU =

(
M−1

q BT

0 M−1
p

)−1

,

whereML serves as a uniform left andMU as a uniform right preconditioner for solving (6.11). It
can be proven thatML andMU are so-called field-of-value (FoV) equivalent preconditioners based
on the well-posdeness conditions (6.9) and proper inner product induced by MD. We refer the
reader to [1, 2, 9, 22] for a more detailed theoretical analysis on these preconditioners and restrict
our focus on their numerical performances in the next section.

7 Numerical Examples

In this section, we propose several numerical tests to confirm the theory derived in previous sections.
These tests are designed to emphasize common challenges related to mixed-dimensional problems,
such as the geometric complexity and parameter heterogeneity. Also, the problems represent
simplified mathematical models of common applications, in this case the model of flow in fractured
porous media introduced in Section 6.

In each example, we generate separate simplicial grids on rock and fracture subdomains which
combined produce mixed-dimensional geometry Ω. For the sake of simplicity, we assume that Ω is
of rectangular type and all the adjacent grids are matching. We want to point out that the analysis
presented in this paper allows more flexibility in the geometrical structure.
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To solve the system (6.11), we use a Flexible Generalized Minimal Residual (FGMRES) method
as an outer iterative solver and set the tolerance to be the relative residual less than 10−6. We
precondition the outer FGMRES solver with the block preconditioners designed in Section 6.2, i.e.,
the block diagonal preconditionerMD and the block triangular preconditionersML andMU . As
mentioned, the pressure block α−1Ap is represented as a diagonal matrix using piecewise constant
finite elements, thus the inverse is given straightforwardly. On the other hand, the flux block
Aq + αBTB is approximated by Mq which is defined by GMRES method preconditioned by the
mixed-dimensional auxiliary space preconditioner Bq (6.15). We refer this as the inner solver with
a relative residual tolerance set to 10−3. To define Bq, we use symmetric Gauss-Seidel method as
smoothers (S2)−1 and (S1)−1, and one application of W-cycle unsmoothed aggregation Algebraic
Multigrid method (UA-AMG) as B2

reg and B1
reg.

For obtaining the mixed-dimensional geometry and discretization, we use the PorePy library
[18], an open-source simulation tool for fractured and deformable porous media written in Python.
The solving methods and preconditioners are implemented in HAZMATH library [3], a finite ele-
ment solver library written in C. The following numerical examples are performed on a workstation
with an 8-core 3GHz Intel Xeon ”Sandy Bridge” CPU and 256 GB of RAM.

7.1 Example: Three-dimensional Regular network

Figure 2: (Left) The three-dimensional unit cube domain in Example 7.1 is decomposed by 9
fracture planes, 9 intersection lines and 1 intersection point. (Right) Pressure solution is presented
for the case of a homogeneous permeability tensor K = I and a mesh size h = 1/16.

This example considers simulations of a 3D problem taken from the benchmark study [6], that
is, a three-dimensional Geiger fracture network. The rock domain is a unit cube intersected with
a fracture network that consists of nine intersecting planes. The physical parameters are set as
following: we take the fracture aperture to be 10−2 and the mixed-dimensional permeability tensor
is homogeneous K = I. Within K, we take into account that due to the reduced model scaling,
the tangential K and the normal component Kν represent the effective values of the permeability
field. See [6] for more details. Furthermore, in the heterogeneous case, we consider splitting the
tangential permeability into the rock matrix permeability Km and fracture permeability Kf to
allow for different flow patterns within the fracture network, either conducting or blocking the
flow in the tangential direction. Also, we consider higher or lower normal permeability Kν that
conducts or blocks the flow over the interface between the rock and the fractures. At the boundary,
we impose pressure boundary conditions with unitary pressure drop from x = 0 to x = 1 boundary
planes. The boundary conditions are applied to both the rock matrix and the fracture network. A
graphical illustration of the geometry and the numerical solution is given in Figure 2.

Our goal is to investigate the robustness of the block preconditioners in Section 5.2. with respect
to discretization parameter h and physical parameter K. We also vary the scaling parameter α to
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study the influence on the convergence rate of the solver and how it changes with the heterogeneous
permeability field. We compute and compare number of iterations of the outer and inner solver,
as well as the elapsed process (CPU) time of the solver with regards to the number of degrees of
freedom.

MD ML MU

h Ndof Nit Tcpu rate Nit Tcpu rate Nit Tcpu rate

1/4 7173 12 (5) 0.331 – 20 (5) 0.402 – 20 (4) 0.351 –
1/8 17172 11 (6) 0.580 0.643 19 (5) 0.617 0.492 19 (5) 0.553 0.523
1/16 89731 11 (6) 3.229 1.039 19 (7) 4.265 1.169 20 (5) 3.716 1.152
1/32 518291 11 (8) 31.569 1.300 17 (8) 39.499 1.269 18 (7) 37.431 1.317
1/64 3375415 11 (11) 356.098 1.293 17 (11) 482.206 1.335 18 (9) 436.261 1.311

Table 1: Performance of the outer FGMRES solver using preconditioners MD, ML and MU in
Section 7.1 with regards to mesh refinement. For each preconditioner, we report number of outer
(average inner) iterations Nit needed to reach the prescribed tolerance and overall elapsed CPU
time Tcpu. Last column presents the exponential rate of Tcpu of outer solver with regards to total
degrees of freedom Ndof . The permeability tensor is homogeneous and set to K = I and the scaling
parameter is set to α = 1.

The following tables consider the homogeneous permeability case with K = I and α = 1. In
Table 1, we present the results to study the robustness of the preconditioners with respect to the
mesh refinement, where each row stands for a mesh twice finer than the previous one. For each
preconditioner MD, ML and MU we give the number of iterations Nit of the outer FGMRES
solver followed by average number of iterations of the inner GMRES solver in brackets, as well as
the CPU time Tcpu of the solving process and the exponential rate of the CPU time with regards
to the number of degrees of freedom Ndof . We clearly see that all preconditioners show that the
number of iterations of the outer solver stays stable when refining the mesh, while there is a slight
increase of iterations in the inner solver, which is due to our choice of B2

reg and B1
reg. Therefore,

we can conclude that preconditioners are robust with regards to the mesh size h, but it suggests a
different choice of the inner solver. As mentioned before, the inner solver performance depends on
the choices of the spectrally equivalent approximations B2

reg and B1
reg of operators (A2

reg)
−1 and

(A1
reg)

−1, respectively. These operators are represented in the nodal basis giving a Laplacian-type
structure and thus, we have chosen UA-AMG as the approximation method. However, a further
analysis that this UA-AMG approximation is actually spectrally equivalent is needed. Although
the operators A2

reg and A1
reg act as a vector-Laplacian on each subdomain, they are still mixed-

dimensional, and the off-diagonal coupling between the subdomains is still present which possibly
diminishes the preferable structure for AMG methods. Moreover, this suboptimal behavior can be
seen in the exponential rates of the CPU time Tcpu of the total solving process with regards to the
total number of degrees of freedom Ndof . We expect Tcpu to scale as O(Ndof ), giving a rate ≈ 1,
but all preconditioners show rate closer to 1.3. This is also visible in Figure 3 where the increase in
Tcpu fairly follows, but does not match the linear rate line. Even with a suboptimal process time
performance, we still believe the preconditioners to be working well on the given problem setup,
and consider the investigating proper spectrally equivalent approximations of operators (A2

reg)
−1

and (A1
reg)

−1 in future research.
While still taking the permeability tensor to be homogeneous and unitary, we set the mesh

size to h = 1/32 and study the performance of the preconditioners with a range of values of
the parameter α. Although the theory suggests taking any α ≥ K−1

min, we consider instead α ≥
max{1,K−1

min} to achieve reasonable convergence of the underlying augmented Lagrangian method.
Table 2 shows the results of the overall outer (and average inner) number of iterations for both
diagonal and triangular preconditioners. As expected, the performance of block preconditioners
improves with higher values of α since, according to the theory of the augmented Lagrangian
method [13], the iterative method should converge faster in those cases. On the other hand,
increasing α gives more weight on the mixed-dimensional divergence part of the inner product
(6.14), which makes the problem at each inner iteration nearly singular [21,28]. This may slightly
deteriorate the performance of the inner GMRES method, that mostly affects the UA-AMG method
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Figure 3: CPU time Tcpu of FGMRES solver with block preconditioners compared to total number
of degrees of freedom Ndof of the linear system in Section 7.1. The values of Tcpu and Ndof are
taken from Table 1. We mark O(Ndof ) complexity with a black continuous line.

α MD ML MU

100 11 (8) 17 (8) 18 (7)
101 6 (9) 9 (9) 10 (8)
102 5 (10) 7 (10) 7 (8)
103 4 (12) 5 (11) 7 (9)
104 4 (13) 4 (13) 6 (10)

Table 2: Performance of the outer FGMRES solver using preconditioners MD, ML and MU

in Section 7.1 with regards to varying the scaling parameter α. For each preconditioner, we
report number of outer (average inner) iterations needed to reach the prescribed tolerance. The
permeability tensor is homogeneous and set to K = I and mesh size is set to h = 1/32.
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within it. Nevertheless, we find a good balance to performance of both the outer and inner solver
to be around α = max{1, 100K−1

min}. This can be observed in the study on the heterogeneous
permeability field in Table 3. Here, we set the tangential rock component of the permeability
to be Km = I, while the tangential fracture component Kf and the normal fracture component
Kν in conjunction assume different values, from low to high permeable case. The results show
similar behavior as in Table 2: we get a lower number of outer iterations for α � max{1,K−1

min},
but in turn the inner number of iteration increases. Therefore, in this example, we can conclude
that taking α = max{1, 100K−1

min} gives the optimal performance of the preconditioned iterative
method.

Kf = Kν

α 10−4 10−2 100 102 104

100 – – 11 (5) 5 (5) 5 (13)
102 – 11 (5) 5 (6) 4 (9) 4 (14)
104 11 (5) 5 (6) 4 (15) 4 (22) 4 (41)

Table 3: Performance of the outer FGMRES solver using preconditioners MD, ML and MU

in Section 7.1 with regards to varying the scaling parameter α and the lowest eigenvalue of the
permeability tensor Kmin. The variations in the eigenvalue spectrum come from the heterogeneity
of the fractured porous medium: the tangential rock component of the permeability is Km = I,
while we vary the tangential fracture component Kf and the normal fracture component Kν . For
each preconditioner, we report number of outer (average inner) iterations needed to reach the
prescribed tolerance. The mesh size is set to h = 1/16.

7.2 Example: Two-dimensional Complex Network

Figure 4: (Left) Graphical representation of the two-dimensional domain and fracture network
geometry of Example 7.2. (Right) Pressure solution profile.

We provide another example, chosen from the benchmark study [12], which contains a fracture
network from an interpreted outcrop in the Sotra island, near Bergen, Norway. The network
includes 63 fractures, all with different length. The porous medium domain spatial dimensions
are 700 m × 600 m with uniform matrix permeability Km = I m2. All the fractures have the
same scalar tangential and normal permeability Kn = Kf = 105I m2 and aperture ε = 10−2 m.
The permeability tensors Kn and Kf are considered to be the effective values, meaning that we
incorporate the aperture scaling with ε within the permeability values due to the reduced fracture
modeling. See [8,12] for the detailed description of the scalings. The pressure boundary conditions
are imposed on all boundaries, with a linear unitary pressure drop from the left to the right
boundary. Throughout all the tests, we use a fixed mesh grid with a typical mesh size h = 18.75
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m and total of 44765 degrees of freedom. See Figure 4 for an illustration of the domain, the mesh
and the numerical solution of this problem.

This more realistic case of a fracture network is chosen to demonstrate the robustness of our
auxiliary preconditioners, even with a larger number of fractures in the system and a complex
fracture network configuration. Large-scale simulations often require handling those features of
fractured porous media, as they often appear in geological rock formations in the subsurface and
can significantly influence the stability of the any given solving method. In this case, the sharp tips
and very acute intersections of fractures may decrease the shape regularity of the mesh, but also
increase the condition number of the system and the number of unknowns, as seen in this example
and Figure 4. Therefore, we aim to show that our preconditioners still show a good performance
under these challenging conditions.

α MD ML MU

102 40 (13) 78 (10) 79 (9)
103 15 (9) 24 (9) 25 (8)
104 8 (5) 10 (5) 11 (5)
105 5 (4) 8 (5) 4 (5)
106 6 (28) 7 (11) 12 (4)

Table 4: Performance of the outer FGMRES solver using preconditioners MD, ML and MU

in Section 7.2 with regards to varying the scaling parameter α. For each preconditioner, we
report number of outer (average inner) iterations needed to reach the prescribed tolerance. The
permeability tensors are set to Km = I, Kn = Kf = 105I and the mesh size is set to h = 18.75.

We first consider different values of the parameter α, with results given in Table 4. As be-
fore, the performance of the diagonal MD and triangular preconditioners ML and MU improves
with larger values of α, reaching relatively optimal value at α = 105 for all three preconditioners.
This is different from the previous example in Section 7.1 where the best results are given when
α = max{1, 100K−1

min}, considering that in this case we have K−1
min = 10−5. However, there are

many differences in the problem settings of these two examples that need to be taken into con-
sideration. First, according to Theorem 5.1 ,the performance of the mixed-dimensional auxiliary
space preconditioners can depend on the mixed-dimensional domain Ω and the regularity of the
corresponding mesh. In comparison to the example in Section 7.1, the ambient domain in this
example is two-dimensional, the domain is more rectangular-type and, due to the complex fracture
network configuration, the mesh is less regular. Therefore, we expect a different behavior of both
the outer FGMRES and inner GMRES solver in this example. Particularly, this can be seen in
Table 4, where the number of outer and inner iterations reduces for larger values of the scaling
parameter α, though it started with a large number of iterations in all preconditioners for α = 102,
and for α = 106 it get slightly larger again. We remind that although larger values of parameter
α should improve the performance of the block preconditioners, the divergence part of the inner
product (6.14) now dominates, which makes it harder for the inner solver to convergence because
of the problem becomes more nearly singular [21,28].

It is not only the case that the fracture network is more complex, we also have many more
fractures included in the domain. This factor should not affect the performance of the precondi-
tioners, which we aim to show in the next set of numerical tests. In the following, we only test the
block diagonal preconditionerMD since it shows overall best behavior in comparison to the block
triangular ones, this particularly evident from Table 4. We also set the scaling parameter α = 105.

We consider different numbers of fractures included in the original fracture network of 63
fractures in Figure 4. To this end, we randomly select and gradually add more fractures to the
network, starting from 1 fracture, to 5, 10, 20, 40 and ultimately all 63 fractures included. We
repeat the process four times, creating four different cases, each having either 1, 5, 10, 20 or 40
fractures. See Figure 5 for an illustration of pressure solutions to all four cases, each with 20
randomly selected fractures. The reason to constructing four cases is to eliminate bias in selecting
fractures in specific order. We report in Table 5, for all four cases, the number of degrees of freedom
Ndof and the number of outer (average inner) iterations Nit of the FGMRES (GMRES) method
preconditioned with the diagonal preconditioner MD. It is clear that the preconditioned outer
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MD

Case 1 Case 2 Case 3 Case 4
Nfracs Ndof Nit Ndof Nit Ndof Nit Ndof Nit

1 8241 6 (3) 8101 7 (2) 8891 6 (3) 8561 7 (3)
5 17661 7 (3) 10838 6 (3) 9300 6 (3) 11751 6 (3)

10 15809 6 (3) 14437 7 (3) 9180 6 (3) 11998 6 (3)
20 23083 7 (3) 19147 6 (4) 13659 7 (3) 17341 6 (4)
40 31295 5 (4) 25980 6 (4) 29032 7 (4) 27654 6 (4)
63 44765 5 (4) 44765 5 (4) 44765 5 (4) 44765 5 (4)

Table 5: Performance of the outer FGMRES solver using preconditioners MD, ML and MU

in Section 7.2 with regards to varying number of fractures Nfracs in the fracture network. For
each preconditioner, we report number of outer (average inner) iterations Nit needed to reach the
prescribed tolerance. The permeability tensors are set to Km = I, Kn = Kf = 105I, the mesh
size is set to h = 18.75 and the scaling parameter α = 105.

iterative method does not depend on the number of fractures in the fracture network, in all the
cases. The same can be seen in the inner solver showing a relatively even number of iterations.
Therefore, the robustness of the preconditioner MD with regards to the number of fractures in
the fracture network is shown, which is consistent with the analysis in the previous sections.

8 Conclusion

In this work, we have derived nodal auxiliary space preconditioners for discretizations of mixed-
dimensional partial differential equations. In order to do so, we have extended the stable regular
decomposition, both in continuous and discrete setting, to mixed-dimensional geometries. The
resulting decomposition differs from the fixed-dimensional case in the way that we do not consider
directly the regular inverse, but we establish the regular decomposition hierarchically by combining
the regular decompositions on each sub-manifold of the mixed-dimensional domain. Based on this
and the auxiliary space preconditioning framework, we propose robust preconditioners to solving
mixed-dimensional elliptic problems. We demonstrate how these preconditioners are derived and
implemented with an example of mixed-dimensional model of flow in fractured porous media.
The robustness of the preconditioners is also verified of two benchmark numerical experiments of
fractured porous media. From the numerical experiments, we also see the need of a robust method
for solving Laplacian problem in the mixed-dimensional setting in order to further improve the
robustness and effectiveness of the proposed preconditioners. This is the topic for our future work.
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Abstract

In this paper, a multiscale flux basis algorithm is developed to efficiently solve a flow problem in fractured porous media.
Here, we take into account a mixed-dimensional setting of the discrete fracture matrix model, where the fracture network is
represented as lower-dimensional object. We assume the linear Darcy model in the rock matrix and the non-linear Forchheimer
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consists of the flux response from each degree of freedom (DOF) on the fracture network. This delivers a conserve for the
basis that handles the solutions in the rock matrices for each degree of freedom in the fractures pressure space. Then, any
Robin sub-domain problems are replaced by linear combinations of the multiscale flux basis during the interface iteration. The
proposed approach is, thus, agnostic to the physical model in the fracture network. Numerical experiments demonstrate the
computational gains of pre-computing the flux exchange between the porous medium and the fracture network against standard
non-linear domain decomposition approaches.
c⃝ 2019TheAuthor(s). Published byElsevierB.V. This is an open access article under theCCBY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Reduced fracture models; Darcy–Forchheimer’s laws; Multiscale flux basis; Mixed finite element; Non-linear domain decomposition;
Newton–Krylov method

∗ Corresponding author.
E-mail addresses: elyes.ahmed@uib.no (E. Ahmed), alessio.fumagalli@uib.no (A. Fumagalli), ana.budisa@uib.no (A. Budiša).
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Fig. 1. Graphical example of problem (1.1)–(1.3).

1. Introduction

Using the techniques of domain decomposition [1], a first reduced model has been proposed for flow in a porous
medium with a fracture, in which the flow in the fracture is governed by the Darcy–Forchheimer’s law while that
in the surrounding matrix is governed by Darcy’s law.

We consider here the generalized model given in [2], for which we let Ω to be a bounded domain in Rd , d = 2, 3,
with boundary Γ := ∂Ω , and we let γ ⊂ Ω be a (d − 1)-dimensional surface that divide Ω into two sub-domains:
Ω = Ω1 ∪Ω2 ∪ γ , where γ := ∂Ω1 ∩ ∂Ω2 and Γi := ∂Ωi ∩ ∂Ω , i = 1, 2. The reduced model problem as presented
in [2] is as follows:

K−1
i ui + ∇ pi = 0 in Ωi , (1.1a)

∇ · ui = fi in Ωi , (1.1b)

pi = 0 in Γi , (1.1c)

for i = 1, 2, together with

(K−1
γ + βγ I |uγ |)uγ = −∇τ pγ in γ, (1.2a)

∇τ · uγ = fγ + (u1 · n1 + u2 · n2) in γ, (1.2b)

pγ = 0 in ∂γ, (1.2c)

and subject to the following interface conditions

− ui · ni + αγ pi = αγ pγ on γ, (1.3)

for i = 1, 2. Here, ∇τ denotes the (d − 1)-dimensional gradient operator in the plane of γ , the coefficient K i ,
i = 1, 2, is the hydraulic conductivity tensor in the sub-domain Ωi , and K γ is the hydraulic conductivity tensor in
the fracture, I ∈ Rd×d is the identity matrix, ni is the outward unit normal vector to ∂Ωi , and βγ is a non-negative
scalar known as the Forchheimer coefficient. In (1.3), the coefficient αγ is a function proportional to the normal
component of the permeability of the physical fracture and inversely proportional to the fracture width/aperture. We
refer to [3] for a more detailed model description. For illustration purposes, we give a simple graphical example of
a fractured porous medium in Fig. 1.

The system (1.1)–(1.3) can be seen as a domain decomposition problem, with non-standard and non-local
boundary conditions between the sub-domains Ωi , i = 1, 2. Eqs. (1.1) are the mass conservation equation and
the Darcy’s law equation in the sub-domain Ωi while Eqs. (1.2) are the lower-dimensional mass conservation and
the Darcy–Forchheimer equation in the fracture of co-dimension 1. The last Eq. (1.3) can be seen as a Robin
boundary condition for the sub-domain Ωi with a dependence on the pressure on the fracture γ . Clearly, if βγ = 0,
then (1.2) is reduced to a linear Darcy flow in the fracture. The homogeneous Dirichlet boundary conditions (1.1c)
and (1.2c) are considered merely for simplicity. The functions fi ∈ L2(Ωi ), i = 1, 2 and fγ ∈ L2(γ ) are source
terms in the matrix and in the fracture, respectively.

The mixed-dimensional problem (1.1)–(1.3) is an alternative to the possibility of using a very fine grid in the
physical fracture and a necessarily much coarser grid away from the fracture. This idea was developed in [4]
for highly permeable fractures and in [5] for fractures that may be highly permeable or nearly impermeable.
We also refer to [6–8] for similar models. For all of the above models, where the linear Darcy’s law is used
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as the constitutive law for flow in the fractures as well as in the surrounding domains, there are interactions
between fractures and surrounding domains. This coupling is ensured using Robin type conditions as in [9],
delivering discontinuous normal velocity and pressure across the fractures. Particularly, for fractures with large
enough permeability, Darcy’s law is replaced by Darcy–Forchheimer’s law as established in [2], which complicates
the coupling with the surrounding medium.

Several numerical schemes have been developed for fracture models, such as a cell-centred finite volume
scheme in [10], an extended finite element method in [11], a mimetic finite difference [12] and a block-centred
finite difference method in [13]. The aforementioned numerical approaches solve coupled fracture models directly.
However, different equations defined in different regions are varied in type, such as coupling linear and non-linear
systems, and often interface conditions involve new variables in different domains, which results in very complex
algebraic structures. Particularly, several papers deal with the analysis and implementation of mixed methods applied
to the above model problem in the linear case, on conforming and non-conforming grids [9,14–17]. In [1], the model
problem (1.1)–(1.3) was solved using domain decomposition techniques based on mixed finite element methods
(see [4] for the linear counterpart).

The purpose of this paper is to propose an efficient domain decomposition method to solve (1.1)–(1.3) based on
the multiscale mortar mixed finite element method (MMMFEM) [18]. The method reformulates (1.1)–(1.3) into an
interface problem by eliminating the sub-domain variables. The resulting interface problem is a superposition of a
non-linear operator handling the flow on the fracture and a linear operator presenting the flux contribution from the
sub-domains. When applying the MMMFEM, an outer–inner iterative algorithm like, the Newton-GMRes (or any
Krylov solver) method or fixed-point-GMRes method, is used to solve the interface problem. As an example, if a
fixed-point method (outer) is adopted, the linearized interface equation for the interface update can be solved with a
domain decomposition algorithm (inner), in which at each iteration sub-domain solves, together with inter-processor
communication, are required. The main issue of this outer–inner algorithm is that it leads to an excessive calculation
from the sub-domains, as the dominant computational cost is measured by the number of sub-domain solves.

The new implementation recasts this algorithm by distinguishing the linear and non-linear contributions in the
overall calculation and employing the multiscale flux basis functions from [18] for the linear part of the problem,
before the non-linear interface iterations begin. The fact that the non-linearity in (1.1)–(1.3) is only within the
fracture, we can adopt the notion that sub-domain problems can be expressed as a superposition of multiscale basis
functions. In our terminology the mortar variable considered in [18] becomes the fracture pressure, these multiscale
flux basis with respect to the fracture pressure can be computed by solving a fixed number of Robin sub-domain
problems, that is equal to the number of fracture pressure degrees of freedom per sub-domain. Furthermore, this is
done in parallel without any inter-processor communication.

An inexpensive linear combination of the multiscale flux basis functions then circumvents the need to solve any
sub-domain problems in the inner domain decomposition iterations. This procedure can be enhanced by applying
interface preconditioners as in [9,19,20] and by using a posteriori error estimates of [21] to adaptively refine the mesh
grids. This calculation made in an offline step typically spares numerous unnecessary sub-domain solves. Precisely,
in the original implementations, the number of sub-domain solves is approximately equal to

∑Nlin
k=1 N

i
dd, where Nlin

is the number of iterations of the linearization procedure, and N k
dd denotes the number of domain decomposition

iterations (GMRes or any Krylov solver). For the new implementation, the number of sub-domains solves will be
reduced if

∑Nlin
k=1 N

k
dd exceeds the maximum number of fracture pressure degrees of freedom on any sub-domain.

This step of freezing the contributions on the flow from the rock matrices can be easily coded, cheaply evaluated,
and efficiently used in practical simulations, i.e, it permits reusing the same basis functions to extend (1.1)–(1.3) by
simulating various linear and non-linear models for flow in the fracture, such as generalized Forchheimer’s laws:

(K−1
γ + βγ I |uγ | + ζγ I |uγ |

2)uγ = −∇τ pγ ,

(K−1
γ eζ pγ + βγ I |uγ |)uγ = −∇τ pγ ,

as well as exploring the fracture and barrier cases and comparing in a cheap way various non-linear solvers
to (1.1)–(1.3). Crucially, the present approach can naturally be integrated into discrete fracture networks (DFNs)
models [16,17,22,23], which in contrast to discrete fracture models (DFMs), do not consider the flow in the
surrounding sub-domains, but handle both a large number of fractures and a complex interconnecting network
of these fractures.
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For the present setting, we allow for the discretization of (1.1)–(1.3) by different numerical methods applied
separately in the surrounding sub-domains and in the fracture. We allow for the cases where the grids of the porous
sub-domains do not match along the fracture, where different mortar grid elements are used. We also investigate
the case where the permeability in the fracture K γ is much lower than the permeability in the surrounding matrix
K .

The library PorePy [24] has been used and extended to cover the numerical schemes and examples introduced in
this article. The main contribution to the library is the implementation of the multiscale and domain decomposition
frameworks. Even if we focus on lowest-order Raviart–Thomas–Néd élec finite elements, our implementation is
agnostic with respect to the numerical scheme. The example presented are also available in the GitHub repository.

This paper is organized as follows: Firstly, the variational formulation of the problem and the MMMFEM
approximation are given in Section 2. Therefore, the reduction of the original problem into non-linear interface
problem is introduced. The linearization–domain-decomposition procedures are formulated in Section 3. Section 4
describes the implementation based on the multiscale flux basis. We show that structurally the same implementation
can be extended for more complex intersecting fractures model. Finally, we showcase the performance of our method
on several numerical examples in Section 5 and draw the conclusions in Section 6.

2. Non-linear domain decomposition method

As explained earlier, it is natural to solve the mixed-dimensional problem (1.1)–(1.3) using domain decomposition
techniques. To this aim, we introduce the weak spaces in each sub-domain Ωi , i = 1, 2,

V i := H(div,Ωi ), Mi := L2(Ωi ),

and define their global versions by

V :=

2⨁
i=1

V i , M :=

2⨁
i=1

Mi .

Equivalently, we introduce the weak spaces on the fracture γ , i.e,

V γ := H(divτ , γ ), Mγ := L2(γ ).

Following [1,9], a mixed-dimensional weak form of (1.1)–(1.3) asks for (u, p) ∈ V × M and (uγ , pγ ) ∈ V γ × Mγ

such that, for each i ∈ {1, 2},

(K−1u, v)Ωi + α−1
γ ⟨u · ni , v · ni ⟩γ = (p, ∇ · v)Ωi − ⟨pγ , v · ni ⟩γ ∀v ∈ V ,

(∇ · u, q)Ωi = ( f, q)Ωi ∀q ∈ M, (2.1a)

⟨K−1(uγ )uγ , vγ ⟩γ = ⟨pγ , ∇τ · vγ ⟩
γ

∀vγ ∈ V γ , (2.1b)

⟨∇τ · uγ , qγ ⟩
γ

= ⟨ fγ + Ju · nK , qγ ⟩
γ

∀qγ ∈ Mγ , (2.1c)

where we introduced the functions K and f in Ω1 ∪ Ω2 such that K i = K |Ωi , and fi = f |Ωi , i = 1, 2. The jump
J·K is defined by

Ju · nK := u1 · n1 + u2 · n2,

with ni the outer unit normal vector of Ωi on γ , for i = 1, 2. Finally, the non-linear term is defined as

K−1(uγ ) := K−1
γ + βγ I |uγ |,

The reader is referred to [2] for proof of the existence and uniqueness of a solution to the variational formula-
tion (2.1).

2.1. The discrete problem

Let Th,i be a partition of the sub-domain Ωi into either d-dimensional simplicial and/or rectangular elements.
We also let Th,γ to be a partition of the fracture γ into (d − 1)-dimensional simplicial and/or rectangular elements.
Note that, for both partitions, general elements can be treated via sub-meshes, see [21] and the references therein.
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Moreover, we assume that each partition is conforming within each sub-domain as well as in the fracture. The
meshes Th,i , i = 1, 2, are allowed to be non-conforming on the fracture-interface γ , but also different from Th,γ .
We then set Th := ∪

2
i=1Th,i and denote by h the maximal element diameter in Th . For the scalar unknowns, we

introduce the approximation spaces Mh := Mh,1 × Mh,2 and Mh,γ , where Mh,i , i = 1, 2, respectively Mh,γ , is the
space of piecewise constant functions associated with Th,i , i = 1, 2, respectively Th,γ . For the vector unknowns,
we introduce the approximation spaces V h := V h,1 × V h,2 and V h,γ , where V h,i , i = 1, 2 and V h,γ , are the
lowest-order Raviart–Thomas–Néd élec finite elements spaces associated with Th,i , i = 1, 2 and Th,γ , respectively.
Clearly, in contrast to what is done in [18,25], we use the same order of the polynomials for the interface-pressure
and the normal traces of the sub-domain velocities on the interface.

The discrete mixed-dimensional finite element approximation of (2.1) is as follows: find (uh, ph) ∈ V h × Mh
and (uh,γ , ph,γ ) ∈ V h,γ × Mh,γ such that, for each i ∈ {1, 2},

(K−1uh, v)Ωi + α−1
γ ⟨uh · ni , v · ni ⟩γ = (ph, ∇ · v)Ωi − ⟨ph,γ , v · ni ⟩γ ∀v ∈ V h,

(∇ · uh, q)Ωi = ( f, q)Ωi ∀q ∈ Mh, (2.2a)

⟨K−1(uh,γ )uh,γ , vγ ⟩γ = ⟨ph,γ , ∇τ · vγ ⟩γ ∀vγ ∈ V h,γ , (2.2b)

⟨∇τ · uh,γ , qγ ⟩γ = ⟨ fγ + Juh · nK , qγ ⟩γ ∀qγ ∈ Mh,γ . (2.2c)

The next step in formulating a multiscale flux basis algorithm to solve (2.2) is to adopt domain decomposition
techniques to reduce the global mixed-dimensional problem to an interface problem posed only on the fracture [19].

2.2. Reduction to interface problem

We introduce the discrete (linear) Robin-to-Neumann operator SRtN
i , i = 1, 2:

SRtN
i : Mh,γ × Mi → Mh,γ , SRtN

i (λh,γ , f ):= −uh(λh,γ , f ) · ni ,

where (uh, ph) ∈ V h × Mh is the solution of the sub-domain problems with source term f , homogeneous Dirichlet
boundary condition on ∂Ω , and λ as a Robin boundary condition along the fracture γ , i.e, for i = 1, 2,

(K−1uh, v)Ωi + α−1
γ ⟨uh · ni , v · ni ⟩Ωi = (ph, ∇ · v)Ωi − ⟨λh,γ , v · ni ⟩γ ∀v ∈ V h,i ,

(∇ · uh, q)Ωi = ( f, v)Ωi ∀q ∈ Mh,i . (2.3a)

Then we set

SRtN(λh,γ , f ) :=

2∑
i=1

SRtN
i (λh,γ , fi ).

With these notations, we can see that solving (2.2) is equivalent to solving the following non-linear mixed interface
problem: find (uh,γ , ph,γ ) ∈ V h,γ × Mh,γ such that,

⟨K−1(uh,γ )uh,γ , vγ ⟩γ − ⟨ph,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (2.4a)

⟨∇τ · uh,γ , qγ ⟩γ + ⟨SRtN(ph,γ , f ), qγ ⟩γ = ⟨ fγ , qγ ⟩γ ∀qγ ∈ Mh,γ , (2.4b)

or equivalently

⟨K−1(uh,γ )uh,γ , vγ ⟩γ − ⟨ph,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (2.5a)

⟨∇τ · uh,γ , qγ ⟩γ + ⟨Sγ (ph,γ ), qγ ⟩γ = ⟨ fγ + gγ , qγ ⟩γ ∀qγ ∈ Mh,γ , (2.5b)

where we have set

Sγ (ph,γ ) := SRtN(ph,γ , 0) and gγ := −SRtN(0, f ). (2.6)

The above distinction is classical in domain decomposition techniques in which we split the sub-domain problems
into two families of local problems on each Ωi : one is with zero source and specified Robin value on the fracture-
interface, and the other is with zero Robin value on the fracture-interface and specified source. In compact form,
the mixed interface Darcy–Forchheimer problem (2.5) can be rewritten as[K−1(·) BT

γ

Bγ Sγ

] [
uh,γ

ph,γ

]
=

[
0

gγ + fγ

]
. (2.7)
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This system is a non-linear mixed interface problem [26] that can be solved iteratively by using fixed point
iterations or via a Newton–Krylov method. To present the two approaches, let us first consider the linear context,
i.e, suppose the operator K−1(·) is linear. Then (2.7) is the system associated to the linear mixed Darcy problem
on the fracture that can be solved using a Krylov type method, such as GMRes or MINRes. Given an initial guess
w

(0)
h,γ := [u(0)

h,γ , p(0)h,γ ]
⊤, the GMRes algorithm computes

w
(m)
h,γ := argmin

v ∈ w
(0)
h,γ

+Km (Aγ ,r(0)γ )

∥bγ − Aγ v∥2 for m ≥ 1, (2.8)

as an approximate solution to (2.7), where Aγ is the associated stiffness matrix of the linear system, bγ is
the right-hand side, and Km(Aγ , r (0)γ ) is the m-dimensional Krylov subspace generated by the initial residual
r (0)γ := bγ − Aγ w

(0)
h,γ , i.e,

Km(Aγ , r (0)γ ) := span(r (0)γ ,Aγ r (0)γ , . . . ,A(m−1)
γ r (0)γ ).

Clearly, each GMRes iteration needs to evaluate the action of the Robin-to-Neumann type operator Sγ via (2.6),
representing physically the contributions on the flow from the rock matrices, i.e, to solve one Robin sub-domain
problem per sub-domain. Thus the GMRes algorithm is implemented in the matrix-free context [18,27,28].

One can easily observe that the evaluation of Sγ dominates the total computational costs in (2.8). In practice, this
step is done in parallel and involves inter-processor communication across the fracture-interface [27]. To present
the evaluating algorithm of Sγ , we let D⊤

h,i : V h,i · ni |γ → Mh,γ be the L2-orthogonal projection from the normal
trace of the velocity space onto the mortar space normal trace of the velocity space in sub-domain Ωi , i = 1, 2,
onto the pressure space on the fracture Mh,γ . We then summarize the evaluation of the interface operator by the
following steps:

Algorithm 2.1 (Evaluating the Action of Sγ ).

1. Enter an interface data ϕh,γ .
2. For i = 1 : 2

(a) Project mortar data onto sub-domain boundary, i.e,

ϕh,γ

Dh,i
−→ λh,γ .

(b) Solve the sub-domain problem (2.3) with Robin boundary condition λh,γ and with f = 0.
(c) Project the resulting flux onto the mortar space Mh,γ , i.e,

−uh(λh,γ , 0) · ni
D⊤

h,i
−→ −D⊤

h,iuh(λh,γ , 0) · ni .

EndFor
3. Compute the flow contribution from the sub-domains to the fracture given by the flux jump across the fracture,

i.e,

Sγ (ϕh,γ ) =

2∑
i=1

−D⊤

h,iuh(λh,γ , 0) · ni .

3. Non-linear interface iterations

In this section, we form two linearization–domain-decomposition algorithms to solve the mixed interface
Darcy–Forchheimer problem (2.5). For the linearization (outer) of (2.5), a first algorithm based on a fixed-point
method is presented along with a second one based on Newton-GMRes method [29,30]. For the solver of the inner
systems (domain decomposition systems), both methods uses the GMRes method (2.8) to solve the reduced mixed
interface problems. Note that the two approaches have competitive performance for such non-linear model problems
and they lead to different applications of the multiscale flux basis functions of Section 4.
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3.1. Method 1: fixed-point-GMRes

We consider first a standard fixed-point approach to solve the interface Darcy–Forchheimer problem (2.5)
(see [30]). Given an initial value u(0)

h,γ , being the solution of a linear Darcy, for k = 1, 2, . . . , until convergence,
find (u(k)

h,γ , p(k)h,γ ) ∈ V h,γ × Mh,γ such that,

⟨K−1(u(k−1)
h,γ )u(k)

h,γ , vγ ⟩γ − ⟨p(k)h,γ , ∇τ · vγ ⟩γ = 0 ∀vγ ∈ V h,γ , (3.1a)

⟨∇τ · u(k)
h,γ , qγ ⟩γ + ⟨Sγ (p

(k)
h,γ ), qγ ⟩γ = ⟨ fγ + gγ , qγ ⟩γ ∀qγ ∈ Mh,γ . (3.1b)

This process is linear and can be solved using GMRes method (2.8), where each iteration needs to set up the action
of the Robin-to-Neumann operator Sγ using Algorithm 2.1. The above fixed-point-GMRes algorithm is iterated
until a fixed-point residual tolerance reaches some prescribed value.

The result of this procedure is then used to generate the solution in the sub-domains via

uh |Ωi = uh(p
(∞)
h,γ , 0)|Ωi + uh(0, fi ), (3.2a)

ph |Ωi = ph(p
(∞)
h,γ , 0)|Ωi + ph(0, fi ), (3.2b)

for i = 1, 2, requiring two additional sub-domain solves, and where p(∞)
h,γ indicates the fracture pressure at

convergence.

Remark 3.1 (An Alternative to (3.1)). A well-known drawback of GMRes algorithm for solving the interface-
fracture problem (3.1) is that the number of iterations depends essentially on the number of sub-domain solves. A
preconditioner is then necessary to reduce the iterations number to a reasonable level. To this aim, it is possible to
reformulate (3.1) into a primal problem: at the iteration k ≥ 1, by solving for the sole scalar unknown p(k)h,γ , such
that

−∇τ · [−K(p(k−1)
h,γ )∇τ p

(k)
h,γ ] + Sγ (p

(k)
h,γ ) = gγ + fγ on γ, (3.3a)

which can be discretized with a cell-centred finite volume method, leading to a symmetric and positive definite
system that can be solved with a CG method. The CG method can be equipped with a preconditioner being the
inverse of the discrete counterpart of the operator −∇τ · [−K(p(k−1)

h,γ )∇τ ] (see [19,31] for more details).

Remark 3.2 (The Total Computational Costs). The total computational costs in the inner–outer iterative ap-
proach (3.1) is dominated by the number of sub-domain solves required. Precisely, the total number of sub-domain
solves is given by

∑Nlin
k=1 N

k
dd, where Nlin is the number of iterations of the fixed-point procedure as outer-loop

algorithm, and N k
dd denotes the number of inner loop domain decomposition iterations (GMRes) at the fixed-point

iteration k ≥ 1.

3.2. Method 2: Newton-GMRes

In the second approach, we propose Newton’s method to solve the interface Darcy–Forchheimer problem (2.5).
For simplicity of notation, we introduce the following

K−1,(k)
:= K−1(u(k)

h,γ ) = K−1
γ + βγ I |u(k)

h,γ | and K−1,(k)
∂ :=

∂K−1,(k)

∂u(k)
h,γ

= βγ

u(k)
h,γ

|u(k)
h,γ |

.

The non-linear variational form (2.4) may be rewritten in the following canonical form: find uh,γ ∈ V h,γ and
ph,γ ∈ Mh,γ , such that

Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
= 0, ∀(vγ qγ ) ∈ V h,γ × Mh,γ ,

where Fγ is the residual expression from the mixed system given as follows:

Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
:= ⟨K−1(uh,γ )uh,γ , vγ ⟩γ + ⟨Sγ (ph,γ ), qγ ⟩γ

− ⟨ph,γ , ∇τ · vγ ⟩γ + ⟨∇τ · uh,γ , qγ ⟩γ − ⟨ fγ + gγ , qγ ⟩γ .
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In the next step, we calculate the Jacobian given by Jγ

[
(u(k)

h,γ , p(k)h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )
]
by taking the Gâteaux

variation of the residual Fγ

[
(uh,γ , ph,γ ), (vγ , qγ )

]
at uh,γ = u(k)

h,γ and ph,γ = p(k)h,γ in the directions of δuh,γ and
δph,γ , respectively. This can be formally obtained by computing

Jγ

[
(u(k)

h,γ , p(k)h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )
]

:=

[Fγ

[
(u(k)

h,γ + ϵδuh,γ , p(k)h,γ + ϵδph,γ ), (vγ , qγ )
]

− Fγ

[
(u(k)

h,γ , p(k)h,γ ), (vγ , qγ )
]

ϵ

]
ϵ→0

.

This definition yields

Jγ

[
(u(k)

h,γ , p(k)h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )
]

= ⟨(K−1,(k)
+ K−1,(k)

∂ ⊗ u(k)
h,γ )δuh,γ , vγ ⟩γ + ⟨Sγ (δph,γ ), qγ ⟩γ

− ⟨δph,γ , ∇τ · vγ ⟩γ + ⟨∇τ · δuh,γ , qγ ⟩γ ,

where ⊗ denotes the standard tensor product. At each Newton iteration, we solve the following linear variational
problem: find (δuh,γ , δph,γ ) ∈ V h,γ × Mh,γ , such that

Jγ

[
(u(k)

h,γ , p(k)h,γ ); (δuh,γ , δph,γ ), (vγ , qγ )
]

= −Fγ

[
(u(k)

h,γ , p(k)h,γ ), (vγ , qγ )
]
, ∀(vγ , qγ ) ∈ Mh,γ × V h,γ . (3.4)

In compact form, the linear system for the Newton step k ≥ 0 has the following mixed structure[J k
γ BT

γ

Bγ Sγ

] [
δuh,γ

δph,γ

]
=

[Ru,k
γ

Rp,k
γ

]
, (3.5)

where Ru,k
γ and Rp,k

γ are the residuals at the current Newton step formed from (3.4).
The interface system (3.5) is then solved with the GMRes iterations (2.8). On each GMRes iteration, we need

to evaluate the action of the Robin-to-Neumann operator Sγ using Algorithm 2.1. The solution of the interface
problem is therefore obtained in an iterative fashion using the following update equations until the Newton residual
reaches some prescribed tolerance:

u(k+1)
h,γ = u(k)

h,γ + δuh,γ and p(k+1)
h,γ = p(k)h,γ + δph,γ .

The result of this iterative approach is then used to infer the solution in the sub-domains using (3.2), which needs
two additional sub-domain solves.

Remark 3.3 (An Alternative to (3.4)). For the mixed Jacobian problem in the fracture (3.4), it is possible to adopt
the idea introduced in Remark 3.2 to reduce the computational cost by reformulating (3.4) into a cell-centred finite
volume problem with the pressure step δph,γ as the sole variable. The resulting system is also symmetric definite
and positive and can be solved with the CG method equipped with a local preconditioner.

4. Outer–inner interface iterations with multiscale flux basis

As noticed previously, the dominant computational cost in the above linearization–domain-decomposition
procedures comes from the sub-domain solves to evaluate the action of Sγ using Algorithm 2.1 (step 2(b)). We recall
that the number of sub-domain solves required by each method is approximately equal to

∑Nlin
k=1 N

i
dd, where Nlin

is the number of iterations of the linearization procedure, and N k
dd denotes the number of domain decomposition

iterations (GMRes or any Krylov solver). Even though all sub-domain solves can be computed in parallel, this
still be very costly; first, as the non-linear interface solver may converge very slowly and, second, that at each
linearization iteration the condition number of the linearized interface problem ((3.1) for Method 1 and (3.4) for
Method 2) is large due to a highly refined mesh.

One way to reduce the computational costs, is to employ the multiscale flux basis, following [18]. The motivation
of these techniques in this work stems from eliminating the dependency between the total number of solves and the
employed outer–inner procedure on the interface-fracture. This is easily achieved by pre-computing and storing the
flux sub-domain responses, called multiscale flux basis, associated with each fracture pressure degree of freedom
on each sub-domain.
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The multiscale flux basis requires solving a fixed number of linear sub-domain solves and permits retrieving
the action of Sγ on Mh,γ by simply taking a linear combination of multiscale flux basis functions. As a result,
the number of sub-domains solves is now independent of the used linearization procedure as well as of the used
solver for the inner domain decomposition systems. In practice, the number of sub-domains solves will be reduced
if

∑Nlin
k=1 N

k
dd exceeds the maximum number of fracture pressure degrees of freedom on any sub-domain.

4.1. Multiscale flux basis

Following [18], we define (Φℓ
h,γ )

Nh,γ

ℓ=1 to be the set of basis functions on the interface pressure space Mh,γ , where
Nh,γ is the number of pressure degrees of freedom on sub-domain γ . As a result, on the fracture-interface, we have

ph,γ :=

Nh,γ∑
ℓ=1

pℓ
h,γΦ

ℓ
h,γ .

We compute the multiscale flux basis functions corresponding to (Φℓ
h,γ )

Nh,γ

ℓ=1 using the following algorithm:

Algorithm 4.1 (Assembly of the Multiscale Flux Basis).

1. Enter the basis (Φℓ
h,γ )

Nh,γ

ℓ=1 . Set ℓ = 0.
2. Do

(a) Increase ℓ := ℓ + 1.
(b) Project Φℓ

h,γ on the sub-domain boundary, i.e,

Φℓ
h,γ

Dh,i
−→ λℓ

h,i .

(c) Solve problem (2.3) in each sub-domain Ωi with Robin boundary condition λℓ
h,i and with f = 0.

(d) Project the boundary flux onto the mortar space on the fracture, i.e,

−uh(λℓ
h,i , 0) · ni

D⊤
h,i

−→ Ψ ℓ
h,γ,i

While ℓ ≤ Nh,γ .
3. Form the multiscale flux basis for sub-domain Ωi , i.e,{

Ψ 1
h,γ,i ,Ψ

2
h,γ,i , . . . ,Ψ

Nh,γ

h,γ,i

}
⊂ Mh,γ .

Once the multiscale flux basis functions are constructed for each sub-domain, the action of interface operator
SRtN
i , and then also the action of Sγ via (2.6), is replaced by a linear combination of the multiscale flux basis

functions Ψ ℓ
h,γ,i . Specifically, for an interface datum ϕh,γ ∈ Mh,γ , we have ϕh,γ :=

∑Nh,γ

ℓ=1 ϕℓ
h,γΦ

ℓ
h,γ , and for i = 1, 2,

SRtN
i (ϕh,γ , 0) := SRtN

i (
Nh,γ∑
ℓ=1

ϕℓ
h,γΦ

ℓ
h,γ , 0) =

Nh,γ∑
ℓ=1

ϕℓ
h,γSRtN

i (Φℓ
h,γ , 0) =

Nh,γ∑
ℓ=1

ϕℓ
h,γΨ

ℓ
h,γ,i .

Remark 4.2 (DOFs on γ ). We observe that each fracture pressure basis function Φℓ
h,γ on the fracture-interface

corresponds to exactly two different multiscale flux basis functions, one for Ω1 and one for Ω2. For the case of
a fractures network, say γ := ∪i ̸= jγi j , where γi j is the fracture between the sub-domain Ωi and Ω j , the previous
basis reconstruction is then applied independently on each fracture.

4.2. Application on intersecting fractures model: solving the DFNs system

In this part, we first introduce and describe the case of intersecting fractures, and then we provide our amendments
to the previous algorithms.
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Fig. 2. Representation of three possible fracture mesh configurations: on the left coarser, on the centre conforming, and on the right finer.
The triangles are represented in grey.

Fig. 3. On the left, graphical example of problem (1.1)–(1.3) along with (4.2) in case of intersecting fractures. On the right, example of
construction of a multiscale flux basis.

4.2.1. Mathematical model
For the sake of simplicity, we consider the Darcy–Forchheimer model in a two-dimensional geological domain

made up with three sub-domains Ωi , i = 1, 2, 3, physically subdivided by fractures γi, j , 1 ≤ i < j ≤ 3. The rock
matrix is now defined as Ω :=

∑3
i=1 Ωi , Ωi ∩ Ω j = ∅, where a single fracture is γi, j := ∂Ωi ∩ ∂Ω j , all fractures

that touch sub-domain Ωi are γi := ∂Ωi \ ∂Ω . Also, T := ∂γ1,2 ∩ ∂γ2,3 = ∂γ2,3 ∩ ∂γ1,3 = ∂γ1,3 ∩ ∂γ1,2 corresponds
to the intersection point of the fractures γi, j and Γi := ∂Ωi ∩ ∂Ω the boundary of each sub-domain Ωi . We impose
the Darcy model (1.1) in each sub-domain Ωi and the Darcy–Forchheimer model (1.2) in each fracture γi, j , with
unknowns denoted by (uγi, j , pγi, j ). See Fig. 3 (left) as an example.

They are coupled using the Robin boundary conditions given by

− ui · ni + αi, j pi = αi, j pγi, j on γi, j , (4.1)

for 1 ≤ i < j ≤ 3, where the coefficient αi, j can now be different in each fracture. To close the system, we need
to impose transmission conditions between the fractures at the (d − 2)-dimensional interface T . On the intersection
T , we set, for 1 ≤ i < j ≤ 3,

− uγi, j · ni, j + αγi, j pγi, j = αγi, j pT on T, (4.2a)∑
1≤i< j≤3

uγi, j · ni, j = 0 on T, (4.2b)

where αγi, j is a strictly positive constant, and ni, j is the outer unit normal vector to ∂γi, j .
For the partition of the sub-domain Ωi , 1 ≤ i ≤ 3, and the fractures γi, j , 1 ≤ i < j ≤ 3, we extend the notation

introduced in Section 2.1. We let Th,i be a partition of the sub-domain Ωi into 2-dimensional simplicial elements
and let Th,γi, j to be a partition of the fracture γi, j into 1-dimensional simplicial elements. Again, the meshes Th,i ,
1 ≤ i ≤ 3, are allowed to be non-conforming on the fractures γi, j , 1 ≤ i < j ≤ 3, but also different from those
used in γi, j , 1 ≤ i < j ≤ 3 (see Fig. 2 for more details). We also extend the same notation for the approximation
spaces in the sub-domains and in the fractures, and additionally we let Mh,T be the space endowed with constant
functions on T .
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4.2.2. Domain decomposition formulation
The extension of the reduced interface problem (2.5) to the present intersecting fractures setting is as follows:

find the triplet (uh,γ , ph,γ , ph,T ) ∈ V h,γ × Mh,γ × Mh,T such that, for each 1 ≤ i < j ≤ 3,

⟨K−1(uh,γ )uh,γ , vγ ⟩γi, j + α−1
γi, j

⟨uh,γ · ni, j , vγ · ni, j ⟩T − ⟨ph,γ , ∇τ · vγ ⟩γi, j

= −⟨ph,T , uγi, j · ni, j ⟩T ∀vγ ∈ V h,γi, j , (4.3a)

⟨∇τ · uh,γ , qγ ⟩γi, j + ⟨Sγi, j (ph,γ ), qγ ⟩γi, j = ⟨ fγi, j + gγi, j , qγ ⟩γi, j ∀qγ ∈ Mh,γi, j , (4.3b)∑
1≤i< j≤3

⟨uh,γi, j · ni, j , qT ⟩T = 0 ∀qT ∈ Mh,T . (4.3c)

On each fracture, the Robin-to-Neumann operator Sγi, j and the linear functional gγi, j , 1 ≤ i < j ≤ 3, are now
given by

Sγi, j (ph,γ ) :=

∑
l∈(i, j)

SRtN
γl

(ph,γ , 0) = −

∑
l∈(i, j)

uh,l(ph,γ , 0) · nl |γl ,

gγi, j :=

∑
l∈(i, j)

SRtN
γl

(0, fl) =

∑
l∈(i, j)

uh,l(0, fl) · nl |γi .

The above problem can be seen as a DFNs system on the set of fractures, and as a domain decomposition problem
between the 1-dimensional fractures γi, j , 1 ≤ i < j ≤ 3, cf. [16,17,22] for more details.

4.2.3. Iterative procedure
We propose to solve the non-linear domain decomposition problem (4.3) using the fixed-point approach in

Section 3.1. This iterative process is now equipped with the multiscale flux basis of Section 4 to lessen the interface
iterations. To this aim, we introduce

Sγ (ph,γ ) :=

∑
0≤i< j≤3

Sγi, j (ph,γ ) and gγ :=

∑
1≤i< j≤3

gγi, j ,

and let

ST (ph,T ) :=

∑
1≤i< j≤3

uh,γi, j · ni, j |T .

Applying the fixed-point algorithm on the set of interface Darcy–Forchheimer equations (4.3) can be interpreted
as follows: at the iteration k ≥ 1, we solve⎡⎣K−1,(k)

γ BT
γ ST

T
Bγ Sγ 0
ST 0 0

⎤⎦
⎡⎢⎣uk

h,γ

pkh,γ

pkh,T

⎤⎥⎦ =

⎡⎣ 0
fγ + gγ

0

⎤⎦ , (4.4)

using GMRes method until a fixed tolerance is reached. Again, the evaluation of Sγ in each interface GMRes
iteration dominates the total computational costs of this outer–inner procedure. Note that each inner iteration
also requires the evaluation of the Dirichlet-to-Neumann operator ST , which requires solves in the fractures. The
complete algorithm when equipped with multiscale flux basis is now given by the following algorithm.

Algorithm 4.3 (Fixed-point Algorithm with Multiscale Flux Basis for Fracture Network Model).

1. Enter the source terms and the permeabilities in the fractures and the rock matrices.
2. Choose the meshes Th,i , 1 ≤ i ≤ 3, and Th,γi, j , 1 ≤ i < j ≤ 3.
3. Calculate the right-hand-sides gγi, j , 1 ≤ i < j ≤ 3, by solving the Darcy sub-domain problem in Ωi with

source term fi and zero Robin value on the fracture-interface γi . Then, compute the resulting jump across
all sub-domain interfaces.

4. In the sub-domain Ωi , 1 ≤ i ≤ 3, let Nh,γi be the number of degrees of freedom in the space Mh,γi . Define
the basis (Φℓ

h,γi
)
Nh,γi
ℓ=1 . Set i = 0.

Do {Assembly of the multiscale flux basis}
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(a) Increase i := i + 1.
(b) Compute the multiscale flux basis functions (Ψ ℓ

h,γi
)
Nh,γi
ℓ=1 corresponding to (Φℓ

h,γi
)
Nh,γi
ℓ=1 using

Algorithm 4.1, i.e.,

Ψ ℓ
h,γi

:= SRtN
γl

(Φℓ
h,γi

, 0), ℓ = 1, . . . ,Nh,γi .

While i ≤ 3.
5. Given an initial guess u(0)

h,γi, j
, 1 ≤ i < j ≤ 3. Set k = 0.

Do {Fixed-point iterations}

(a) Increase k := k + 1.
(b) Solve the linear system on the fractures (4.4) using GMRes method (2.8), where in every iteration the

operator action Sγ on any ϕh,γ ∈ Mh,γ is computed with the following steps:

i. Use a linear combination of the multiscale flux basis to compute the action of SRtN
γi

by

SRtN
γi

(ϕh,γ,i , 0) =

Nh,γ,i∑
ℓ=1

ϕℓ
h,γ,iΨ

ℓ
h,γ,i .

ii. Compute the jump across all the fractures:

Sγ (ϕh,γ ) =

∑
0≤i< j≤3

∑
l∈(i, j)

SRtN
γl

(ϕh,γ , 0).

While
∥(pk,∞h,γ , uk,∞

h,γ ) − (pk−1,∞
h,γ , uk−1,∞

h,γ )∥∞

∥(pk−1,∞
h,γ , uk−1,∞

h,γ )∥∞

≥ εtol . (4.5)

5. Numerical examples

In this section, we validate the model and analysis presented in the previous parts by means of numerical test
cases. We have chosen three examples designed to show how the proposed linearization–domain-decomposition
approaches equipped with multiscale flux basis behaves versus the standard ones in various physical and geometrical
situations. To compare these approaches, the main criteria considers the number of solutions of the higher-
dimensional sub-problems since it constitutes the major computational cost. We consider solving the problem in the
network of fractures as negligible. Since each of the higher-dimensional sub-problem is linear and will be solved
many times, we consider an LU-factorization of the system matrix and a forward–backward substitution algorithm
to compute the numerical solution. It results in a computational cost reduced to O(n2) flops each time, where n is
the size of the matrix. For bigger systems, an iterative scheme is preferable.

We use the PorePy [24] library, which is a simulation tool for fractured and deformable porous media written
in Python. PorePy uses SciPy [32] as default sparse linear algebra. All the examples are reported in the GitHub
repository of PorePy, we want to stress again that even if we focus on lowest-order Raviart–Thomas–Néd élec finite
elements, our implementation is agnostic with respect to the numerical scheme.

For the multiscale flux basis scheme presented in Section 4, for a fixed rock matrix grid and normal fracture
permeability it is possible to compute once all the basis functions. The results in the next parts should be read
under this important property of the method, thus in many cases only a pure fracture network will be solved at a
negligible computational cost. The multiscale basis functions are computed and stored in an offline phase prior the
simulation (called online).

Unless otherwise noted, the tolerance for the relative residual in the inner GMRes algorithm is taken to be 10−6.
The same tolerance is chosen for the outer Newton/fixed-point algorithm. We consider an LU-factorization of the
fracture network matrix [33,34] as the preconditioner of the GMRes method. To illustrate the efficiency of the
proposed new implementation while preserving the accuracy of the MMMFEM, in Section 5.4 we distinguish two
cases: for high-permeable fractures, the mortar mesh is assumed to be conforming with the fine mesh in the rock
matrix, while for low-permeable fractures, a coarse scale of the mortar mesh is considered.

In the examples, we use the abbreviation MS when the linearization–domain-decomposition approach is equipped
with multiscale flux basis techniques, and DD for the corresponding classical approach.
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Fig. 4. Graphical representation of the domain and fracture network geometry (resulting into 10 sub-domains) common for all test cases.

Table 1
Definition of the cases for the examples.

K γ αγ

case (i) 104ϵ I 104/ϵ
case (ii) 10−4ϵ I 10−4/ϵ

case (iii) 104ϵ I 10−4/ϵ

case (iv) 10−4ϵ I 104/ϵ

Remark 5.1 (Fracture Aperture). Even if not explicitly considered in the previous parts of the work, we introduce
the fracture aperture ϵ as a constant parameter. This choice is based on the fact that geometries and (some) data of
the forthcoming examples are taken from the literature.

In 5.1 we describe the geometry and some data of the problem considered. Few subsections follow with an
increase level of challenge: linear case in 5.2, Forchheimer model in 5.3, Forchheimer model with heterogeneous
parameters in 5.4, to conclude with a generalized Forchheimer model in 5.5.

5.1. Problem setting

To validate the performance of the two proposed algorithms, we consider the first problem presented in the
benchmark study [35]. The unit square domain Ω , depicted in Fig. 4, has unitary permeability of the rock matrix
and it is divided into 10 sub-domains by a set of fractures with fixed aperture ϵ equal to 10−4. At the boundary,
we impose zero flux condition on the top and bottom, unitary pressure on the right, and flux equal to −1 on the
left. The boundary conditions are applied to both the rock matrix and the fracture network.

Contrary to what has been done in the benchmark paper, we consider four different scenarios for the fracture
permeabilities, by having high or low values in the tangential and normal parts. Thus, we have the case (i) with
high permeable fractures, case (ii) has low permeable fractures, while cases (iii) and (iv) have mixed high and low
permeability in normal and tangential directions. See Table 1 for a summary of the fracture permeability in each
case. Case (i) and (ii) have the same permeabilities used in the benchmark paper [35].

In the following examples, we consider the maximal number of rock matrix solves to be 104, and we mark with
∞ if this is exceeded.

5.2. Darcy model: βγ = 0

The first example considers the Forchheimer coefficient set to zero, thus the problem becoming linear. The results
for different level of discretization are reported in Table 2. We indicate by level 1 a grid with a total of 110 triangles
and 26 mortar edges, level 2 with 1544 triangles and 84 mortar edges, and level 3 with 3906 triangles and 138 mortar
edges.
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Table 2
Total number of the higher-dimensional problem solves for the case study of example
in Section 5.2. For each level of refinement cases marked in † share the same
multiscale flux basis, which can be constructed only once. The same is valid for §.

level 1 level 2 level 3

MS DD MS DD MS DD

case (i) 28† 10 86† 11 140† 11
case (ii) 28§ 81 86§ 112 140§ 189
case (iii) 28§ 22 86§ 28 140§ 29
case (iv) 28† 82 86† 61 140† 86

Table 3
Total number of the higher-dimensional problem solves for the case study of example
in Section 5.2. For each level of refinement we change the convergence tolerance
for the domain decomposition method.

Tolerance level 1 level 2 level 3

10−4 10−8 10−4 10−8 10−4 10−8

case (i) 8 11 9 12 9 12
case (ii) 42 105 82 ∞ 150 ∞

case (iii) 21 30 22 36 22 36
case (iv) 42 122 50 ∞ 70 ∞

Table 2 shows the results of this example for the physical considerations of Table 1. We notice that for high
permeable fractures (case (i) and (iii)), the standard domain decomposition method performs better than our method
with multiscale flux basis, while the opposite occurs for low permeable fractures. A possible explanation is related
to the ratio between normal and tangential permeability. The normal permeability determines how strong the flux
exchange is between the rock matrix and the fractures (thus, the communications at each DD iteration), while for
small values of the tangential permeability the fractures are more influenced by the surrounding rock matrices. The
opposite occurs in the case of high tangential permeability. Additionally, the choice of the preconditioner for DD
slightly goes in favour of high permeable fractures due to the dominating role of the fracture flow in the system.
We also recall that the number of higher-dimensional problem solves does not depend on the number of outer–inner
interface iterations, but only on the number of local mortar degrees of freedom on the fractures network. A further
important result in this experiments, is that case (i) and (iv) share the same value of αγ , thus the multiscale flux basis
are computed only once per level of refinement. The same applies to case (ii) and (iii). As a result, the developed
method is globally more efficient than the classical approach. That is, the results in Table 2 show a reduction of
the number of the higher-dimensional problem solves from 195 to 56 for level 1, from 212 to 186 for level 2, and
from 312 to 280 for level 3. Note that the two methods produce the same solution for all the cases, within the same
relative convergence tolerance. The numerical solution for all cases is reported in Fig. 5.

The next series of numerical experiments aims at assessing the stability of the domain decomposition approach
with respect to GMRes tolerance. The multiscale flux basis approach provides the extra flexibility to do such analysis
with negligible costs, by reusing the stored multiscale flux basis used for the results of Table 2 but now with different
tolerance for GMRes. Further, this set of test cases aims assessing how the overall gain for an entire simulation in
terms of number of higher-dimensional problem solves can be appreciated or depreciated with more or less stringent
stopping criteria for GMRes; this is a preparatory step to address the complete approaches of Section 3 for the full
non-linear problem, which requires several solves of linear Darcy problems, for which one should formulate the
stopping criteria very carefully. In Table 2, we have considered the relative residual to be below 10−6, while in
Table 3 we present the results in the case of 10−4 and 10−8. Based on the results of Table 3, we can conclude that
even with less stringent criterion, a considerable gain in terms of number of higher-dimensional problem solves
can be achieved. We also see that all the results are free of oscillations and neither the fracture, barrier, or the very
different tangential and normal permeabilities pose any problems for the domain decomposition approach. Based
on the above results and in what follows we consider 10−6 as tolerance for the GMRes algorithm.
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Fig. 5. Pressure and velocity solutions for the four cases: on the top-left case (i), on the top-right case (ii), on the bottom-left case (iii), and
on the bottom-right case (iv). In all the cases, the velocity is represented by arrows (purple for the fractures) proportional to its magnitude.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Total number of the higher-dimensional problem solves required by Method 1 for the
case study in Section 5.3. The number of the fixed-point iterations are in brackets.
Within each case the construction of the multiscale flux basis is done only once, we
mark by † (respectively §) common computations.

βγ case (i) case (iii)

MS DD MS DD

1 86† (2) 33 (2) 86§ (1) 56 (1)
102 86† (3) 44 (3) 86§ (2) 84 (2)
104 86† (8) 99 (8) 86§ (3) 115 (3)
106 86† (94) 1424 (94) 86§ (11) 457 (11)

5.3. Forchheimer model

In this second example we consider case (i) and (iii) for the fracture permeabilities since the Forchheimer model
requires high permeable fractures. In this problem, we fix the computational grid level 2 of Table 2 and we change
the value of βγ in order to compare the performances of Method 1 and Method 2 with and without multiscale flux
basis. The Forchheimer coefficient here varies as {1, 102, 104, 106}. These values are reasonable since in our model
we do not explicitly scale βγ by the aperture, as done in [2,3]. Therefore, the last two values are more realistic.
The stopping criteria for both methods is based on the relative residual criteria (4.5) with a threshold fixed as 10−6.
The initial guess is taken by solving the linear Darcy by taking βγ equal to zero.

For Method 1, the number of higher-dimensional problem solves is reported in Table 4. As expected, Method 1
equipped with multiscale flux basis (MS) performs all the higher-dimensional problem solves in the offline phase,
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Fig. 6. Pressure and velocity solutions for different configurations of example presented in Section 5.3. On the top case (i) and on the
bottom for case (iii). On the left, we consider value of the Forchheimer coefficient equal to βγ = 1 and on the right a high value βγ = 106.
In all the cases, the velocity is represented by arrows (purple for the fractures) proportional to its magnitude. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

thus the outer–inner interface iterations for the resulting fracture network problem do not influence the total
computational costs. On the contrary, the computational costs of the classical approach (DD) is influenced by the
non-linearity, by varying βγ , as well as by the ratio of the normal and tangential permeabilities, by varying K γ

and αγ . Particularly, the total gain of the new approach is more significant when the non-linear effects becomes
more important (by increasing the value of βγ ). Furthermore, for the entire simulation of each case of Table 4,
the multiscale flux basis are computed only once. As a conclusion, the entire simulation of case (i) required for
Method 1 1600 higher-dimensional problem solves, while for Method 1 with multiscale flux basis, this number is
reduced by 95%. For case (iii), we reduce the computational costs by 88%.

The numerical solution for two values of βγ is reported in Fig. 6 for both cases. Despite the different values
of βγ , we notice that the graphical results are very similar in the case of low αγ . While for high value of αγ , the
resulting apparent permeability given by K γ (1 + K−1

γ βγ |uγ |)−1 decreases (for a fixed |uγ |) and the fractures are
less prone to be the main path for the flow. Also as stated previously, since we do not explicitly scale βγ by the
aperture, values of βγ > 104 are more likely for real applications.

For Method 2, involving Newton’s method for the linearization step, the number of higher-dimensional problem
solves is reported in Table 5. As expected, Method 2 is more efficient than Method 1 in terms of the number of
higher-dimensional problem solves required, regardless of using multiscale flux basis in the domain decomposition
algorithm. Again, the number of solves for the classical approach(DD) depends on the used parameters. This table
demonstrates (as shown with Method 1) that as the value of βγ is increased, there is a point after which Method 2
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Table 5
Total number of the higher-dimensional problem solves required by Method 2 for
the case study in Section 5.3. The number of the Newton iterations is in brackets.
Within each case the construction of the multiscale flux basis is done only once, we
mark by † (respectively §) common computations.

βγ case (i) case (iii)

MS DD MS DD

1 86† (2) 20 (2) 86§ (1) 38 (1)
102 86† (2) 20 (2) 86§ (2) 71 (2)
104 86† (3) 31 (3) 86§ (2) 71 (2)
106 86† (7) 128 (7) 86§ (4) 266 (6)

Table 6
Total number of the higher-dimensional problem solves required by Method 1 for the
case study in Section 5.4. The number of the fixed-point iterations are in brackets.
Within each case the construction of the multiscale basis is done only once, we mark
by † common computations. A coarse scale of the mortar mesh is used on every
low-permeable fracture.

βγ MS DD

1 62† (2) 63 (2)
102 62† (3) 84 (3)
104 62† (8) 189 (8)
106 62† (64) 2372 (64)

with multiscale flux basis is more efficient than without multiscale flux basis. In that case, the gain in the number
of solves becomes more significant when decreasing the value of αγ . Note that, in practice, the simulations for
Method 2 with multiscale flux basis are performed with negligible computational costs as we reused the flux basis
inherited from Method 1. This point together with the fact that the total number of solves required by the entire
simulation of case (i) is now reduced by 57% as well as that of case (i) is reduced by 80% showcase the performance
of Method 2 with multiscale flux basis.

To sum up, equipping Method 1 and 2 with multiscale flux basis leads to powerful tools to solve complex
fracture network with important savings in terms of the number of higher-dimensional problem solves. Note that,
as known, one limitation of Method 2 involving Newton method is that a good initial value is usually required to
obtain a solution. A good combination of both methods can also be used, in which one can perform first some
fixed-point iterations and then switch to Newton method. Concerning the computational costs, let us point out
that the fixed-point algorithm of Method 1 requires at each iteration the assembly of the matrix corresponding to
the linearization of the Darcy–Forchheimer equations and the solution of a linear system. The Newton method in
Method 2 is slightly more expensive since one has to assemble two matrices at each iteration and to update the
right-hand side.

5.4. Heterogeneous Forchheimer model

In this example we assign high permeability to the two largest fractures (one horizontal and one vertical) while
to the others low permeability. For the highly permeable fractures we adopt the physical parameters of case (i),
while for those with lower permeabilities, the physical parameters corresponding to case (ii) together with zero
Forchheimer coefficient. In this case, we want to test the applicability of Method 1 with and without multiscale
flux basis on highly heterogeneous setting for both the permeability and the flow models. We then consider level
2 for the computation and, subsequently, use a coarse scale of the local grids of the low-permeable fractures, i.e,
the number of coarse scale elements being the half of the original number of elements from the fine scale (on the
subdomains); this results in 60 mortar elements instead of 84.

As usually, we compare the method with and without multiscale flux basis in terms of the number of higher-
dimensional problem solves. The results are represented in Table 6. In the present setting, we can see that the
classical approach is outperformed with the approach equipped with multiscale flux basis, particularly, the total
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Fig. 7. Pressure and velocity solutions for example presented in Section 5.4 for β = 102. The velocity is represented by arrows (purple for
the fractures) proportional to its magnitude. A coarse scale on the mortar mesh is used on every low-permeable fracture. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

computational costs is drastically reduced when the non-linear effects become more important. The entire simulation
of Table 6 required 2708 higher-dimensional problem solves for the classical approach while the same approach
equipped with multiscale flux basis required 62 solves. The overall gain is then of 94% which can also be appreciated
for level 3. Similar conclusions as above can be drawn for Method 2, namely in terms of reduction of the solves
(not shown). An example of solution is given in Fig. 7.

5.5. Generalized Forchheimer model

As stated previously, another advantage distinguishes our approach is that it can integrate easily more complex
problems. Here, we apply our procedure to a more general model describing the pressure–flow relation in the
fractures. Precisely, for larger fracture flow velocities, the drag forces (in the Forchheimer model proportional to
the velocity norm) require to consider an additional term proportional to the fluid viscosity. Considering the Barus
formula [36], we have an exponential relation between the fluid viscosity and the pressure. We consider problem
(2.1) where the non-linear term is as follows

K−1(uγ , pγ ) := K−1
γ eζ pγ + βγ I |uγ |,

where ζ being a model parameter. Thus, the non-linear effects are now dependent on both the pressure and the
velocity. For a more detailed discussion we refer to [37]. For the present setting, the fracture permeabilities are set
as in case (i) and (iii) of Table 1.

For the discretization of the mixed geometry, we consider level 2. We use Method 1 with and without multiscale
basis functions. Also, it was not necessary to recompute the basis functions, since we can reuse the stored multiscale
flux basis from the previous test case and solve then only on the fracture network the above more complex
Darcy–Forchheimer model. The total number the higher-dimensional problem solves for βγ = 20 and ζ ∈

(0.5, 5, 7.5) is reported in Table 7. As expected, for such a strong non-linearity, the results show that a considerable
gain in terms of higher-dimensional problem solves can be achieved. Particularly, for large values of ζ the classical
approach becomes uncompetitive to the new approach. In Fig. 8 we report the solution for ζ = 5.

6. Conclusions

In this work, we have presented a strategy to speed up the computation of a Darcy–Forchheimer model for flow
and pressure in fractured porous media by means of multiscale flux basis, that represents the inter-dimensional
flux exchange. The scheme transforms a computationally expensive discrete fracture model to a more affordable
discrete fracture network, where in the latter only a co-dimensional problem is solved. The multiscale flux basis is
computed in an offline stage of the simulation and, despite the particular choice done in this paper, are completely
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Table 7
Total number of the higher-dimensional problem solves required by Method 1 for
the case study in Section 5.5. The number of the fixed-point iterations is in brackets.
Within each case the construction of the multiscale basis is done only once, we mark
by † (respectively §) common computations.

ζ case (i) case (iii)

MS DD MS DD

0.5 86† (5) 71 (5) 86§ (4) 176 (4)
5 86† (4) 648 (4) 86§ (6) ∞

7.5 86† (3) 5317 (3) 86§ (4) ∞

Fig. 8. Pressure and velocity solutions for example presented in Section 5.5 for ζ = 5. The velocity is represented by arrows (purple for
the fractures) proportional to its magnitude. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

agnostic to the model in the fracture network. The numerical results show the speed-up gain compared to a more
classical linearization–domain-decomposition approaches, where solves in both the matrix and the fracture network
are required along the entire outer–inner iterative method. Crucially, an important number of the outer–inner interface
iterations may be spared.

With the proposed approach we are able to predict the computational effort needed to solve the problem since it is
directly related to the number of mortar grids in the fracture network. Furthermore, the multiscale flux basis can be
reused when the fracture network geometry, rock matrix properties, and normal permeability are fixed. Theoretical
findings and numerical results show the validity of the proposed approach and of its aforementioned properties.

Even if not explicitly considered in this work, it is possible to further increase the efficiency of the proposed
scheme by the following two steps. First, compute a multiscale flux basis only in the related connected part of the
rock matrix. Second, use an adaptive stopping criteria for the inner–outer iterative method based on a posteriori
error estimates. These enhancements are a part of future work along with the extension in three-dimensions.
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Abstract

In this work, we consider compressible single-phase flow problems in a porous media containing a
fracture. In the latter, a non-linear pressure-velocity relation is prescribed. Using a non-overlapping
domain decomposition procedure, we reformulate the global problem into a non-linear interface problem.
We then introduce two new algorithms that are able to efficiently handle the non-linearity and the
coupling between the fracture and the matrix, both based on linearization by the so-called L-scheme.
The first algorithm, named MoLDD, uses the L-scheme to resolve the non-linearity, requiring at each
iteration to solve the dimensional coupling via a domain decomposition approach. The second algorithm,
called ItLDD, uses a sequential approach in which the dimensional coupling is part of the linearization
iterations. For both algorithms, the computations are reduced only to the fracture by pre-computing,
in an offline phase, a multiscale flux basis (the linear Robin-to-Neumann co-dimensional map), that
represent the flux exchange between the fracture and the matrix. We present extensive theoretical
findings and in particular, the stability and the convergence of both schemes are obtained, where user-
given parameters are optimized to minimise the number of iterations. Examples on two important
fracture models are computed with the library PorePy and agree with the developed theory.

Key words: Porous medium; reduced fracture models; generalized Forchheimer’s laws; mortar mixed
finite element; multiscale flux basis; non-linear interface problem; non-overlapping domain decomposition;
L-scheme.

1 Introduction

Fractures are ubiquitous in porous media and strongly affect the flow and transport. Several energy and
environmental applications including carbon sequestration, geothermal energy, and ground-water contami-
nation involve flow and transport problems in a porous medium containing fractures. Typically, fractures
are thin and long formations that correspond to a fast pathway along which medium properties, such as
permeability or porosity, differ from the adjacent formations (the rocks) (see [5,19,38,43]). Since it appears
to be the cornerstone of many complex fracture models, we consider here (on the fractures) non-Darcy flow
generalized Forchheimer’s law [37].

1.1 Model problem

Let Ω be a bounded domain in Rd, d ∈ {2, 3}, with boundary Γ := ∂Ω. Furthermore, let T be the final
time simulation and I := (0, T ). Suppose that γ ⊂ Ω is a (d − 1)-dimensional surface that divides Ω into
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two subdomains: Ω = Ω1 ∪Ω2 ∪ γ, where γ := ∂Ω1 ∩ ∂Ω2 and Γi := ∂Ωi ∩ ∂Ω, i ∈ {1, 2}. Assume that the
flow in I × Ωi, i ∈ {1, 2}, is described by the system of equations

K−1
i ui +∇pi = 0 in I × Ωi, (1.1a)

∂tpi +∇ · ui = fi in I × Ωi, (1.1b)

pi = 0 in I × Γi, (1.1c)

pi(·, 0) = p0
i in Ωi, (1.1d)

and in I × γ, by the following equations

ξ(uγ) + K−1
γ uγ +∇τpγ = 0 in I × γ, (1.2a)

∂tpγ +∇τ · uγ = fγ + (u1 · n1 + u2 · n2) in I × γ, (1.2b)

pγ = 0 in I × ∂γ, (1.2c)

pγ(·, 0) = p0
γ in γ, (1.2d)

where the transmission conditions

−ui · ni + αγpi = αγpγ on I × γ, (1.3)

for i ∈ {1, 2}, are prescribed. Here, ∇τ denotes the (d − 1)-dimensional gradient operator in the plane
of γ, Kγ is the hydraulic conductivity tensor in the fracture, Ki is the hydraulic conductivity tensor in
the subdomain Ωi and ni is the outward unit normal vector to ∂Ωi, i ∈ {1, 2}. The function ξ is a non-
linear function extending the classical Forchheimer flow to more general laws. In (1.3), the coefficient αγ is
proportional to the normal component of the permeability of the physical fracture and inversely proportional
to the fracture width/aperture. The functions fγ and fi, i ∈ {1, 2}, are source terms in the fracture and in
the matrix, respectively. For simplicity we have imposed a homogeneous Dirichlet condition on the boundary
∂Ω. Finally, p0

γ and p0
i , i ∈ {1, 2}, are initial conditions.

The system (1.1)–(1.3) is a mixed-dimensional model for flow in fractured porous media: the equa-
tions (1.1b)-(1.1a) are the mass conservation equation and the Darcy’s law equation in the subdomain Ωi
while equations (1.2b)-(1.2a) are the lower-dimensional mass conservation and a non-Darcy flow generalized
Forchheimer’s law, in the fracture of co-dimension 1. Together, these equations form a non-standard trans-
mission problem where the fracture system sees the surrounding matrix system through the source term
(u1 · n1 + u2 · n2) in (1.2b), while the rock matrix system communicates to the fracture through Robin type
boundary conditions (1.3). Note that the restriction to only one fracture is made for the ease of presen-
tation, but the model and the analysis below can be extended straightforwardly to more fractures, see for
example [1, 43].

1.2 Assumptions on the data and weak formulation

Let D ⊆ Ω. For s ≥ 0, || · ||s,D stands for the usual Sobolev norm on Hs(D). If s = 0, || · ||D is simply the
L2 norm and (·, ·)D stands for the L2 scalar product. We define the weak spaces in Ωi for i ∈ {1, 2} as

Vi :=
{
v ∈ H(div,Ωi) : v · ni ∈ L2(γ)

}
and Mi := L2(Ωi),

where we have implicitly considered the trace operator of v ·ni. Moreover, we introduce their global versions
by V :=

⊕2
i=1 Vi and M :=

⊕2
i=1Mi. The mixed spaces on the fracture γ, are Vγ := H(divτ , γ) and Mγ :=

L2(γ). For simplicity of notation, we introduce the jump J·K given by Ju · nK := u1 · n1 + u2 · n2. and the
functions K and f in Ω1 ∪ Ω2 such that Ki := K|Ωi , and fi := f |Ωi , i ∈ {1, 2}. Throughout the paper, we
assume that the following assumptions hold true:

(A1) ξ : R→ R is C1, strictly increasing and Lipschitz continuous, i.e., there exist ξm > 0 and Lξ such that
ξm ≤ ξ′(u) ≤ Lξ < ∞. Otherwise, we require bounded flux for the differential problem (1.1)–(1.3),

i.e, u ∈ [L∞(Ω)]
d
, when ξ is simply an increasing function (ξ′ ≥ 0), and we let Lξ := sup|u|≤Cξ ξ

′(u),
where Cξ := supx∈Ω |u(x)|.
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(A2) K : Rd → Rd is assumed to be constant in time and bounded; there exist cK > 0 and CK such that
ζTK−1(x)ζ ≥ cK|ζ|2 and |K−1(x)ζ| ≤ CK|ζ| for a.e. x ∈ Ω1 ∪ Ω2, ∀ζ ∈ Rd.

(A3) Kγ : Rd−1 → Rd−1 is assumed to be constant in time and bounded; there exist cK,γ > 0 and CK,γ

such that ζTK−1
γ (x)ζ ≥ cK,γ |ζ|2 and |K−1

γ (x)ζ| ≤ CK,γ |ζ| for a.e. x ∈ γ, ∀ζ ∈ Rd−1.

(A4) The Robin parameter αγ is a strictly positive constant.

(A5) The initial conditions are such that p0
i ∈ L2(Ωi), i ∈ {1, 2}, and p0

γ ∈ L2(γ). The source terms are such
that fi ∈ L2(0, T ;L2(Ωi)), i ∈ {1, 2}, and fγ ∈ L2(0, T ;L2(γ)). For simplicity we further assume that
f and fγ are piecewise constant in time with respect to the temporal mesh introduced in Section 2.1.

Remark 1.1 (On assumptions). The Lipschitz-continuity of ξ is not true when the function ξ (therefore
the flux) is unbounded, as it is the case for generalized Forchheimer’s law. However, for bounded flux u, this
can be verified. Otherwise, this assumption can be recovered by truncating the original function ξ. Obviously,
the solution of the truncated problem will not in general solve the original one. See, for example [44].

We introduce the bilinear forms ai : Vi ×Vi → R, bi : Vi ×Mi → R and ci : Mi ×Mi → R, i ∈ {1, 2},

ai(u,v) := (K−1u,v)Ωi +
1

αγ
(u · ni,v · ni)γ , bi(u, q) := (∇ · u, q)Ωi , ci(p, q) := (p, q)Ωi . (1.4)

On the fracture, we define the bilinear forms aγ : Vγ ×Vγ → R, bγ : Vγ ×Mγ → R and cγ : Mγ ×Mγ → R,

aγ(u,v) := (K−1
γ u,v)γ , bγ(u, µ) := (∇τ · u, µ)γ , cγ(λ, µ) := (λ, µ)γ . (1.5)

With the above notations, a weak solution of (1.1)–(1.3) is given in the following.

Definition 1.2 (Mixed-dimensional weak solution). Assume that (A1)–(A5) hold true. We say that
(u, p) ∈ L2(0, T ; V)×H1(0, T ;M) and (uγ , pγ) ∈ L2(0, T ; Vγ)×H1(0, T ;Mγ) form a weak solution of (1.1)–
(1.3) if it satisfies, for each i ∈ {1, 2},

ai(u,v)− bi(v, p) + (pγ ,v · ni)γ = 0 ∀v ∈ Vi, (1.6a)

ci(∂tp, q) + bi(u, q) = (f, q)Ωi ∀q ∈Mi, (1.6b)

(ξ(uγ),v)γ + aγ(uγ ,v)− bγ(v, pγ) = 0 ∀v ∈ Vγ , (1.6c)

cγ(∂tpγ , µ) + bγ(uγ , µ)− (Ju · nK , µ)γ = (fγ , µ)γ ∀µ ∈Mγ , (1.6d)

together with the initial conditions (1.1d), and (1.2d) in a weak sense.

In this paper we assume that a weak solution by Definition 1.2 exists. For the static model, and when
ξ stems from the classical the Forchheimer’s law, the existence and uniqueness of a weak solution was
shown in [38]. That of the linear case, i.e., ξ := 0, was studied in [35]. Through the paper, we will also
consider the case of continuous pressure across γ by letting αγ → ∞ in (1.3). For this case, we will use
Definition 1.2 for the week formulation keeping in mind that in (1.4) ai is simply ai(u,v) := (K−1u,v)Ωi

and Vi := H(div,Ωi) for i ∈ {1, 2}.

1.3 Goal and positioning of the paper

The mixed-dimensional problem (1.1)–(1.3) is an alternative to the possibility to use fine grids of the
spatial discretization in the (physical) fracture and thus reduces the computational cost. This idea was
introduced in [5] for highly permeable fractures and in [6] for fractures that may be much more permeable
than the surrounding medium or nearly impermeable [26, 29, 48]. Particularly, for “fast-path” fractures,
Darcy’s law is replaced by the classical Darcy-Forchheimer’s law as established in [38]. We also refer
to [3,16,39,40,54] for extensions to other flow models. Here, we extend the model in [1,38] to unsteady non-
Darcy flow generalized Forchheimer’s law. The work can be extended straightforwardly to viscosity models
for generalized Newtonian fluids, including the Power law, the Cross model and the Carreau model [24,25].

Considerable research efforts have been conducted to mixed-dimensional fracture models. Several nu-
merical schemes for steady models have been proposed, such as a cell-centered finite volume scheme in [34],
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an extended finite element method in [21], a mimetic finite difference [8] and a block-centred finite difference
method in [42]. We also mention several contributions on the application of mixed methods, on conforming
and non-conforming grids [14,20,27,43]; see [13] for detailed account of major contribution on fracture mod-
els and discretization approaches. The aforementioned numerical approaches solve coupled fracture-matrix
models monolithically, which leads to a large system, particularly if mixed finite element (MFE) methods
are adopted [42]. This is especially the case when incorporating different equations varied in type, such as
coupling linear and non-linear systems, and where often interface conditions involve additional variables.
Domain decomposition (DD) is an elegant tool for modeling such a multi-physics problem and can provide
an effective tool for reducing computational complexity and performing parallel calculations. See [22,47] for
a general introduction of the subject. In [28], the authors combine domain decomposition techniques with
mixed finite element methods for the reduced Darcy-Forchheimer fracture model (see [5, 35] for the linear
case).

In this paper, we propose efficient DD methods to solve (1.6) combining the mortar mixed finite element
method (MMFEM) [10, 32, 55] with non-overlapping domain decomposition [1, 5, 45] and the L-scheme
method [41,46]. Our method first reformulates (1.6) into an interface problem by eliminating the subdomain
variables. The resulting problem posed only on the fracture is a superposition of a non-linear local flow
operator within the fracture and a linear non-local one handling the flux contribution from the subdomains
(Robin-to-Neumann type operator). After approximating this problem with the MMFEM in space and the
backward Euler scheme in time, we obtain a non-linear system to solve at each time step. A first algorithm
is then built with the L-scheme employed as a linearization procedure; a robust quasi-Newton method
with a parameter L > 0 mimicking the Jacobian from the Newton method [41, 46]. At each iteration of
the L-scheme, an inner iterative algorithm, such as GMRes or any Krylov solver, is used to solve the linear
interface problem [30]. The action of the interface operator requires solving subdomain problems with Robin
boundary condition on the fracture. This algorithm referred to henceforth as the Monolithic LDD-scheme
(MoLDD) is Jacobian-free and subdomain solves are done in parallel. This LDD scheme will be shown to
be unconditionally stable. Stability and condition number estimates of the inner DD system are obtained as
well as contraction estimates and rates of convergence for the outer scheme. While MoLDD offers an elegant
outer-inner approach to solve the interface-fracture problem, there is a computational overhead associated
with its non-local part (DD), see e.g. [1, 30]. Precisely, the dominant computational cost in this approach
is measured by the number of subdomain solves; increasing the non-linearity or DD strength and refining
the grids both lead to an increase in the number of iterations and the number of subdomain solves.

More recently, the L-scheme has gained attention as an efficient solver to treat simultaneously non-linear
and coupling effects in complex problems. See for example [49] for an application of the L-scheme on a
non-linear DD problem and [15] on a non-linear coupling one. Building further on this idea, we propose a
second algorithm, in which the DD step is part of the linearization iterations (see [4,17] for related works). In
other words, the L-scheme is now synchronizing linearization and domain decomposition through one-loop
algorithm. This approach referred as the Iterative LDD-scheme (ItLDD) differs from the one commonly
used when dealing with non-linear interface problems in the context of DD [2, 12]. At each iteration it
has the cost of the sequential approach, yet it converges to the fully monolithic approach. This approach
reduces the computational costs as no inner DD solver is required and only a modest number of subdomain
solves is required at each iteration, which still done in parallel. This algorithm increases local to non-local
cooperation and saves time if one process is dominating the whole problem.

The second contribution of this paper concerns the robust and efficient implementation of the LDD
schemes above. Precisely, the dominant computational costs in these schemes comes from the subdomain
solves. To reduce this computational cost, we make use of the multiscale flux basis framework from [32].
The fact that the non-linearity in (1.6) is only within the local operator on the fracture, we can adopt the
notion that the linear non-local contribution from the rock subdomains can be expressed as a superposition
of multiscale basis functions [1, 31, 32]. These multiscale flux basis consists of the flux (or velocity trace)
response from each fracture pressure degrees of freedom. They are computed by solving a fixed number of
steady Robin subdomain problems, which is equal to the number of fracture pressure degrees of freedom
per subdomain. An inexpensive linear combination of the multiscale flux basis functions then replaces the
subdomain solves in any inner/outer iteration of the algorithms. This step of freezing the contributions
on the flow from the rock matrices can be easily coded, cheaply evaluated, and efficiently used in all the
algorithms. That is, it permits reusing the same basis functions to compare MoLDD with ItLDD as well as
to simulate various linear and non-linear models for flow in the fracture by varying ξ and finally exploring
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high and low permeable fractures. This is in total conformity with the spirit of reduced basis [11, 52, 53].
Crucially, if a fixed time step is used, our multiscale flux basis applied to a non-linear time-dependent
problem are constructed only once in the offline phase. This should be kept in mind also for our numerical
results reported in the last section. Numerical results are computed with the library PorePy [36].

1.4 Outline of the paper

This paper is organized as follows: Firstly, the approximation of problem (1.6) using the MMFEM in space
and a backward Euler scheme in time is given in Section 2. Also, the reduction of this mixed-dimensional
scheme into a non-linear interface one is introduced. The LDD-schemes are formulated in Section 3. In Sec-
tion 4 and Section 5, the analysis of the schemes is presented. Section 6 describes the implementation based
on the multiscale flux basis framework. Finally, we showcase the performance of our methods on several
numerical examples in Section 7 and draw the conclusions in Section 8.

2 The DD formulation

As explained earlier, it is natural to solve the mixed-dimensional problem (1.6) using domain decomposition
techniques, especially as these methods make it possible to take different time grids in the subdomains and
in the fracture.

2.1 Discretisation in space and time

We introduce in this section the partitions of Ω and (0, T ), basic notation, and the mortar mixed finite
element discretization of the mixed-dimensional problem (1.6) .

Let Th,i be a partition of the subdomain Ωi into either d-dimensional simplicial or rectangular elements.
Moreover, we assume that these meshes are such that Th = ∪2

i=1Th,i forms a conforming finite element mesh
on Ω. We also let Th,γ be either a partition of the fracture γ induced by Th or slightly coarser. Denote h as
the maximal mesh size of both Th and Th,γ .

For an integer N ≥ 0, let (τn)0≤n≤N denotes a sequence of positive real numbers corresponding to the

discrete time steps such that T =
∑N
n=1 τ

n. Let t0 := 0, and tn :=
∑n
j=1 τ

j , 1 ≤ n ≤ N , be the discrete

times. Let In := (tn−1, tn], 1 ≤ n ≤ N .

2.1.1 Finite-dimensional spaces and projection operators

For the approximation of scalar unknowns, we introduce the approximation spaces Mh := Mh,1 ×Mh,2

and Mh,γ , where Mh,i, i ∈ {1, 2}, and Mh,γ are the spaces of piecewise constant functions associated with
Th,i, i ∈ {1, 2} and Th,γ , respectively. For the vector unknowns, we introduce the approximation spaces
Vh := Vh,1×Vh,2 and Vh,γ , where Vh,i, i ∈ {1, 2} and Vh,γ , are the lowest-order Raviart-Thomas-Nédélec
finite elements spaces associated with Th,i, i ∈ {1, 2} and Th,γ , respectively. Thus, Vh ×Mh ⊂ V×M and
Vh,γ ×Mh,γ ⊂ Vγ ×Mγ . For all of the above spaces,

∇ ·Vh = Mh, and ∇τ ·Vh,γ = Mh,γ , (2.1)

and there exists a projection Π̃i : H1/2+ε(Ωi)∩Vi → Vh,i, i ∈ {1, 2}, (for any ε > 0) see e.g. [31], satisfying
among other properties that for any u ∈ H1/2+ε(Ωi) ∩Vi

(∇ · (u− Π̃iu), q)Ωi = 0 ∀q ∈Mh,i, (2.2)

((u− Π̃iu) · ni,v · ni)∂Ωi = 0 ∀v ∈ Vh,i. (2.3)

We also note that if u ∈ Hε(Ωi) ∩Vi, 0 < ε < 1, Π̃iu is well-defined [51] and

||Π̃iu||Ωi . ||u||ε,Ωi + ||∇ · u||Ωi . (2.4)
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We introduce Qh,i the L2-projection onto Vh,i · ni and denote QT
h,i : Vh,i · ni →Mh,γ as the L2-projection

from the normal velocity trace on the subdomains onto the mortar space Mh,γ . Thus, for all λ ∈Mh,γ the
condition

||λ||γ . ||Qh,1λ||γ + ||Qh,2λ||γ , (2.5)

can easily be verified if the mesh on the fracture Th,γ matches the one resulting from the surrounding
subdomains, or if Th,γ is chosen slightly coarser [9, 14]. Note that (2.1) can be satisfied by choosing any
of the usual MFE pairs. That of the condition (2.5) can be satisfied even if the space Mh,γ is (not much)
richer than the space of normal traces on γ of elements of Vh [31, 32].

2.1.2 The discrete scheme

The fully discrete scheme of the mixed-dimensional formulation (1.6) based on the MMFEM in space and
the backward Euler scheme in time is defined through the following.

Definition 2.1 (The mixed-dimensional scheme). At each time step n ≥ 1, assuming (pn−1
h,γ , p

n−1
h ) is

given, we look for (unh, p
n
h) ∈ Vh ×Mh and (unh,γ , p

n
h,γ) ∈ Vh,γ ×Mh,γ such that, for i ∈ {1, 2},

ai(u
n
h,v)− bi(v, pnh) = −(pnh,γ ,v · ni)γ ∀v ∈ Vh. (2.6a)

ci(p
n
h − pn−1

h , q) + τnbi(u
n
h, q) = τn(fn, µ)Ωi ∀q ∈Mh, (2.6b)

(ξ(unh,γ),v) + aγ(unh,γ ,v)− bγ(v, pnh,γ) = 0 ∀v ∈ Vh,γ , (2.6c)

cγ(pnh,γ − pn−1
h,γ , µ) + τnbγ(unh,γ , µ)− τn(Junh · nK , µ)γ = τn(fnγ , µ)γ ∀µ ∈Mh,γ . (2.6d)

2.2 Reduction into an interface problem

Following the algorithm in [1], we reduce the mixed-dimensional scheme in Definition 2.1 into a non-linear
interface one posed on γ, which can be solved using an appropriate combination of a linearization method
and an iterative Krylov solver. For i ∈ {1, 2}, we let

pnh,i = p∗h,i(λ
n
h,γ) + p̄nh,i and unh,i = u∗h,i(λ

n
h,γ) + ūnh,i, 1 ≤ n ≤ N, (2.7)

where for λnh,γ ∈Mh,γ , (u∗h,i(λ
n
h,γ), p∗h,i(λ

n
h,γ)) ∈ Vh,i ×Mh,i solves

ai(u
∗
h,i(λ

n
h,γ),v)− bi(v, p∗h,i(λnh,γ)) = −(λnh,γ ,v · ni)γ ∀v ∈ Vh,i, (2.8a)

ci(p
∗
h,i(λ

n
h,γ), q) + τnbi(u

∗
h,i(λ

n
h,γ), q) = 0 ∀q ∈Mh,i, (2.8b)

and (ūnh,i, p̄
n
h,i) ∈ Vh,i ×Mh,i solves

ai(ū
n
i ,v)− bi(v, p̄nh,i) = 0 ∀v ∈ Vh,i, (2.9a)

ci(p̄
n
h,i − pn−1

h,i , q) + τnbi(ū
n
h,i, q) = τn(fn, µ)Ωi ∀q ∈Mh,i, (2.9b)

(p̄0
h,i, µ)Ωi = (p0

h,i, µ)Ωi ∀µ ∈Mh,i. (2.9c)

Define the forms sγ,i : Mh,γ ×Mh,γ → R, i ∈ {1, 2}, sγ : Mh,γ ×Mh,γ → R, and gnγ : Mh,γ → R,

sγ,i(λ
n
h,γ , µ) := (SRtN

γ,i (λnh,γ), µ)γ := −(u∗h,i(λ
n
h,γ) · ni, µ)γ , (2.10a)

sγ(λnh,γ , µ) := (SRtN
γ (λnh,γ), µ)γ :=

2∑

i=1

sγ,i(λ
n
h,γ , µ), (2.10b)

gnγ (µ) := (gnγ , µ)γ :=

2∑

i=1

(ūnh,i · ni, µ)γ , (2.10c)

where SRtN
γ,i : Mh,γ → Mh,γ , 1 ≤ i ≤ 2, and SRtN

γ :=
∑2
i=1 SRtN

γ,i are Robin-to-Neumann type operators.

Obviously, the operator SRtN
γ,i is linear. It is easy to verify that the non-linear mixed-dimensional scheme (2.6)

is equivalent to the non-linear interface scheme.
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Definition 2.2 (The reduced scheme). Given n ≥ 1 and λn−1
h,γ , find (unh,γ , λ

n
h,γ) ∈ Vh,γ ×Mh,γ such

that

(ξ(unh,γ),v)γ + aγ(unh,γ ,v)− bγ(v, λnh,γ) = 0 ∀v ∈ Vh,γ , (2.11a)

cγ(λnh,γ − λn−1
h,γ , µ) + τnbγ(unh,γ , µ) + τnsγ(λnh,γ , µ) = τn(fnγ + gnγ , µ)γ ∀µ ∈Mh,γ . (2.11b)

In the next section, we propose two iterative approaches based on the L-scheme to solve (2.11). The
first approach entails an inner-outer procedure of the form linearize → solve the DD → update, so that
the L-scheme is used for the outer loop and the GMRes or any Krylov solver for the inner loop. The
second approach is a one-loop procedure in which the L-scheme acts iteratively and simultaneously on the
linearization and DD.

3 Robust L-type Domain-Decomposition (LDD) schemes

For the presentation of the algorithms, we shall denote the time step simply by τ , keeping in mind it may
depend on n.

3.1 A monolithic LDD scheme

The monolithic LDD scheme (MoLDD) used to solve the interface problem (2.11) reads:

Algorithm 3.1 (The MoLDD scheme).
1. Give the initial data (λ0

h,γ , p
0
h) ∈ Mh,γ ×Mh, the stabilization parameter Lγ > 0 and the tolerance

ε > 0.
2. Do

(a) Increase n := n+ 1.
(b) Choose an initial approximation un,−1

h,γ ∈ Vh,γ of unh,γ . Set k := −1.
(c) Do

i. Increase k := k + 1.
ii. Compute (un,kh,γ , λ

n,k
h,γ) ∈ Vh,γ ×Mh,γ such that, for all (v, µ) ∈ Vh,γ ×Mh,γ ,

(ξ(un,k−1
h,γ ) + Lγ(un,kh,γ − un,k−1

h,γ ),v)γ + aγ(un,kh,γ ,v)− bγ(v, λn,kh,γ) = 0, (3.1a)

cγ(λn,kh,γ − λn−1
h,γ , µ) + τbγ(un,kh,γ , µ) + τsγ(λn,kh,γ , µ) = τ(fnγ + gnγ , µ)γ . (3.1b)

while
‖(un,kh,γ , λ

n,k
h,γ)− (un,k−1

h,γ , λn,k−1
h,γ )‖γ

‖(un,k−1
h,γ , λn,k−1

h,γ )‖γ
≥ ε.

(d) Update the subdomain solutions via (2.7).

while n ≤ N .

Remark 3.2 (Advantages of MoLDD-scheme). The advantages of Algorithm 3.1 are multiple: (i) the
algorithm is Jacobian-free and independent of the initialization, (ii) subdomain solves can be done in parallel,
(iii) we can reuse of existing d- and (d − 1)-dimensional codes for solving linear Darcy problem, and (iv)
optimal convergence rate is obtained with a stabilization amount determined efficiently through Lγ .

The MoLDD scheme involves the solution of a linear Darcy interface problem (3.1) at each iteration
k ≥ 0. To see that, we introduce the linear operators AL,γ : Vh,γ → Vh,γ and Bγ : Vh,γ → Mh,γ , defined
as (AL,γu,v)γ := aγ(u,v) + Lγ(u,v)γ , ∀u,v ∈ Vh,γ , and (Bγu, q) := bγ(u, q), ∀v ∈ Vh,γ , ∀q ∈ Mh,γ .
Now (3.1) becomes

ADD




un,kh,γ

λn,kh,γ


 :=




AL,γ BT
γ

Bγ SRtN
γ + I/τ






un,kh,γ

λn,kh,γ


 =

[
Lγu

n,k−1
h,γ − ξ(un,k−1

h,γ )

gnγ + fnγ + λn−1
h,γ /τ

]
:= Fγ , (3.2)
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which can solved using a Krylov type method, such as GMRes or MINRes. Given an initial guess w
(0)
h,γ =

[un,k,0h,γ , λn,k,0h,γ ]T, the GMRes algorithm generates a sequence of iterates {w(m)
h,γ }m≥1, where w

(m)
h,γ is a solution

of the finite-dimensional minimization problem

w
(m)
h,γ := arg min

Ψ∈w
(0)
h,γ+Km

||Fγ −ADDΨ||γ , (3.3)

as an approximate solution to (3.2), where Km is the m-th Krylov subspace generated by the initial residual

r
(0)
γ := Fγ −ADDw

(0)
h,γ , i.e.,

Km := Km(ADD, r
(0)
γ ) := span(r(0)

γ ,ADDr(0)
γ , · · · ,Am−1

DD r(0)
γ ).

At each GMRes iteration m ≥ 1, we need to evaluate the action of the Robin-to-Neumann type operator
SRtN
γ via (2.10), representing physically the contributions on the flow from the subdomains by solving

Robin subdomain problems (2.8). Therefore, the GMRes algorithm is implemented in the matrix-free
context [1, 30,32]. We summarize the evaluation of the interface operator by the following steps:

Algorithm 3.3 (Evaluating the action of SRtN
γ ).

1. Enter interface data λh,γ .
2. For i = 1 : 2

(a) Project mortar pressure onto subdomain boundary, i.e., ϕh,γ,i = Qh,i(λh,γ).
(b) Solve the subdomain problem (2.8) with Robin data ϕh,γ,i.
(c) Project the resulting flux onto the space Mh,γ , i.e., SRtN

γ,i (λh,γ) = −QT
h,iu

∗
h,i(ϕh,γ,i) · ni.

EndFor
3. Compute the flow contribution from the subdomains to the fracture given by the flux jump across the

fracture,

SRtN
γ (λh,γ) =

∑

i∈{1,2}
SRtN
γ,i (λh,γ).

Remark 3.4 (Computational cost). The evaluation of SRtN
γ dominates the total computational costs in

Algorithm 3.1 (step 2(b) of Algorithm 3.3). The number of subdomain solves required by this method at

each time step n ≥ 1 is approximately equal to
∑NnLin

k=1 N
k
DD, where NLin is the number of iterations of the

L-scheme, and Nk
DD denotes the number of inner DD iterations. To set-up the right-hand side term fnγ , we

need to solve once in the subdomains at each time step n ≥ 1.

3.2 A robust iterative LDD-scheme

An alternative LDD-scheme to solve the interface problem (2.11) is to let the L-scheme act iteratively
not only on the non-linearity as in Algorithm 3.1, but also on the fracture-matrix coupling. Additional
stabilization term is then required for the inter-dimensional coupling. This iterative scheme reads:

Algorithm 3.5 (The ItLDD scheme).
1. Give (λ0

h,γ , p
0
h) ∈Mh,γ ×Mh, the stabilization parameters (Lγ,p, Lγ,u) > 0, and the tolerance ε > 0.

2. Do

(a) Increase n := n+ 1.
(b) Choose an initial approximation (un,−1

h,γ , λn,−1
h,γ ) ∈ Vh,γ ×Mh,γ of (unh,γ , λ

n
h,γ). Set k := −1.

(c) Do

i. Increase k := k + 1.
ii. Compute (un,kh,γ , λ

n,k
h,γ) ∈ Vh,γ ×Mh,γ such that, for all (v, µ) ∈ Vh,γ ×Mh,γ ,

(ξ(un,k−1
h,γ ) + Lγ,u(un,kh,γ − un,k−1

h,γ ),v)γ + aγ(un,kh,γ ,v)− bγ(v, λn,kh,γ) = 0. (3.4a)

cγ(λn,kh,γ − λn−1
h,γ , µ) + τLγ,p(λ

n,k
h,γ − λ

n,k−1
h,γ , µ)γ + τsγ(λn,k−1

h,γ , µ)

+ τbγ(un,kh,γ , µ) = τ(fnγ + gnγ , µ)γ , (3.4b)
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While
‖(un,kh,γ , λ

n,k
h,γ)− (un,k−1

h,γ , λn,k−1
h,γ )‖γ

‖(un,k−1
h,γ , λn,k−1

h,γ )‖γ
≥ ε.

(d) Update the subdomain solutions via (2.7).

while n ≤ N .

Remark 3.6 (Computational cost). The linear problem (3.4) is solved with the GMRes iterations (3.3).
It requires at each iteration k ≥ 1 only one solve per subdomain to evaluate the action of SRtN

γ via Algo-
rithm 3.3 at the previous iteration, and this at each time step n ≥ 1.

Remark 3.7 (Advantages of ItLDD-scheme). The advantages of the iterative approach described in
Algorithm 3.5 are: (i) at each iteration k ≥ 1, the systems in the fracture and the rock matrices cooperate
sequentially in one loop and with negligible inter-processor communication, (ii) optimal convergence rate is
obtained with precise stabilization parameters (Lγ,p, Lγ,u), (iii) subdomain solves can be done in parallel,
and (iv) existing codes for d- and (d− 1)-dimensional Darcy problems can be cheaply combined and used for
practical simulations.

4 Analysis of MoLDD-scheme

The complete analysis of Algorithm 3.1 will be carried out in two steps: (i) we first study the stability of the
iterate DD scheme (inner solver) and estimate the condition number, and (ii) we prove the convergence of the
LDD scheme (outer solver), show the well-posedness of the discrete scheme, estimate the convergence rate
and subsequently determine the optimal stabilization parameter. Throughout the paper, we will frequently
use the standard identity

(a− b) · a =
1

2

(
a2 − b2 + (a− b)2

)
, a, b ∈ R, (4.1)

and inequality

|ab| ≤ 1

2δ
a2 +

2

δ
b2, a, b, δ ∈ R, δ > 0. (4.2)

A key point in the analysis of the methods below are inverse inequalities.

Lemma 4.1 (Inverse inequalities). There exist positive constants CdTr, Cinv > 0 depending only on the
shape regularity of the mesh such that

||uh · n||∂Ωi ≤ CdTrh
−1/2||uh||Ωi ∀uh ∈ Vh,i, (4.3)

||∇τ · uh,γ ||γ ≤ Cinvh
−1||uh,γ ||γ ∀uh,γ ∈ Vh,γ . (4.4)

4.1 Analysis of the DD step

To simplify the analysis, we rewrite problem (3.1) as: find (un,kh,γ , λ
n,k
h,γ) ∈ Vh,γ ×Mh,γ such that,

Aγ((un,kh,γ , λ
n,k
h,γ), (v, µ)) + sγ(λn,kh,γ , µ) = Fn,k−1

γ (v, µ) ∀(v, µ) ∈ Vh,γ ×Mh,γ , (4.5)

where

Aγ((uh,γ , λh,γ), (v, µ)) := aγ(uh,γ ,v) + Lγ(uh,γ ,v)γ +
1

τ
(λh,γ , µ)γ + bγ(uh,γ , µ)− bγ(v, λh,γ), (4.6a)

Fn,k−1
γ (v, µ) := (ξ(un,k−1

h,γ ) + Lγu
n,k−1
h,γ ,v)γ + (fnγ + gnγ , µ)γ . (4.6b)

Therein, Aγ is the linearized flow system on the fracture and sγ is the flow contribution from the rock
matrices. The first result concerns the properties of the coupling term sγ .

Lemma 4.2 (Properties of the DD operator). The interface bilinear form sγ satisfies:

• sγ is symmetric positive and semi-definite on L2(γ).
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• There exists a constant C1 > 0 independent of h such that, for all λh,γ ∈Mh,γ ,

(
C1

CK√
cK

+
1
√
αγ

)−2

||λh,γ ||2γ ≤ sγ(λh,γ , λh,γ) ≤ αγ ||λh,γ ||2γ . (4.7)

Proof. Recalling (2.10), we take v = u∗h,i(µ) and q = p∗h,i(µ) in (2.8) to see that the bilinear form sγ can be
expressed as

sγ(λh,γ , µ) =
2∑

i=1

{ai(u∗h,i(λh,γ),u∗h,i(µ)) + ci(p
∗
h,i(λh,γ), p∗h,i(µ))}. (4.8)

It is now easy to see that the bilinear form sγ is symmetric and positive semi-definite on L2(γ). We
now show that if sγ(λh,γ , λh,γ) = 0, then λh,γ = 0 on Mh,γ . Note that sγ(λh,γ , λh,γ) = 0 implies that
u∗h,i(λh,γ) = p∗h,i(λh,γ) = 0. Again, (2.8) implies (Qh,iλh,γ ,v · ni)γ = (λh,γ ,v · ni)γ = 0 for any v ∈ Vh,i.
Thus, we can find some v so that v · ni = Qh,iλh,γ and then ||Qh,iλh,γ ||γ = 0. Finally, (2.5) shows that
λh,γ = 0 on γ.
We now infer the upper bound on sγ . The assumption (A2) directly implies

cK||uh,i||2Ωi +
1

αγ
||uh,i · ni||2γ ≤ ai(uh,i,uh,i), ∀uh,i ∈ Vh,i. (4.9)

The definition (2.10) of sγ gives

sγ(λh,γ , λh,γ) := −
2∑

i=1

(λh,γ ,u
∗
h,i(λh,γ) · ni)γ ≤

2∑

i=1

||u∗h,i(λh,γ) · ni||γ ||λh,γ ||γ

≤
2∑

i=1

α1/2
γ ai(u

∗
h,i(λh,γ),u∗h,i(λh,γ))1/2||λh,γ ||γ . (4.10)

This result together with (4.8) lead to the upper bound in (4.7). We prove the lower bound by induction.
To this aim, we let (ψi, ri), i ∈ {1, 2}, be the solution of the auxiliary subdomain problem

ri + Ki∇ψi = 0, in Ωi, (4.11a)

∇ · ri = 0, in Ωi, (4.11b)

ψi = 0, on Γi, (4.11c)

ri · ni = Qh,iλh,γ , on γ. (4.11d)

For fracture network with immersed fractures or for subdomains with Γi = ∅, λh,γ approximates the
pressure on γ, which is determined up to a constant. This constant is fixed by a zero mean value constraint
for Mh,γ [9, 27]. Thus, the auxiliary problem is well-posed since (ri · ni, 1)∂Ωi = (Qh,iλh,γ , 1)∂Ωi = 0. Now,

we choose v = Π̃iri in (2.8), to obtain

||Qh,iλh,γ ||2γ = (λh,γ , Π̃iri · ni)γ = −ai(u∗h,i(λh,γ), Π̃iri) + bi(Π̃iri, p
∗
h,i(λh,γ))

= −ai(u∗h,i(λh,γ), Π̃iri),≤ CCK||u∗h,i(λh,γ)||Ωi ||ri||1/2,Ωi + α−1
γ ||u∗h,i(λh,γ) · ni||γ ||Qh,iλh,γ ||γ

≤
(
CCK||u∗h,i(λh,γ)||Ωi + α−1

γ ||u∗h,i(λh,γ) · ni||γ
)
||Qh,iλh,γ ||γ

≤
(
C
CK√
cK

+
1
√
αγ

)√
ai(u∗h,i(λh,γ),u∗h,i(λh,γ))||Qh,iλh,γ ||γ , (4.12)

where we used (4.9), assumption (A2) and the elliptic regularity (2.4) together with

||ri||1/2,Ωi . ||Qh,iλh,γ ||γ . (4.13)

The bound (4.12) in combination with (4.8)-(4.9) and (2.5) delivers the lower bound in (4.7).
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As announced in the introduction, it is interesting to study the robustness of Algorithm 3.1 and Algo-
rithm 3.5 for the limiting case in which the coefficient αγ → ∞ in the transmission conditions (1.3). This
case is physically corresponding to a continuous pressure over the fracture interface.

Lemma 4.3 (Parameter-robustness (αγ → ∞)). In the case of continuous pressure across γ, there
exists a constant C2 > 0 such that, for all λh,γ ∈Mh,γ ,

C2
cK
C2

K

||λh,γ ||2γ ≤ sγ(λh,γ , λh,γ) ≤ C2
dTr

cK
h−1||λh,γ ||2γ . (4.14)

Proof. Recalling the definition (2.10) of sγ , we have

0 ≤ sγ(λh,γ , λh,γ) = −
2∑

i=1

(λh,γ ,u
∗
h,i(λh,γ) · ni)γ ≤

2∑

i=1

||u∗h,i(λh,γ) · ni||γ ||λh,γ ||γ , (4.15)

≤
2∑

i=1

CdTrh
−1/2||uh,i(λh,γ)||Ωi ||λh,γ ||γ , (4.16)

where in that case we used the discrete trace inequality (4.3). This result together with (4.8) and (4.9) leads
to the upper bound in (4.14). By inspection of the proof of Lemma (4.2), starting as in (4.12) we promptly
get the lower bound of (4.14).

In the following, we denote by || · ||s,γ the induced semi-norm from sγ on L2(γ),

||µ||s,γ := sγ(µ, µ)1/2, ∀µ ∈ L2(γ). (4.17)

We will also consider the following discrete norms:

||(vh,γ , µh,γ)||20,τ,? := ||K−
1
2

γ vh,γ ||2γ + ||L
1
2
γ vh,γ ||2γ + ||τ− 1

2µh,γ ||2γ , (4.18a)

||vh,γ ||2Vh,γ
:= ||K−

1
2

γ vh,γ ||2γ + ||L
1
2
γ vh,γ ||2γ + ||τ 1

2∇τ · vh,γ ||2γ , (4.18b)

||µh,γ ||2Mh,γ
:= ||µh,γ ||2s,γ + ||τ− 1

2µh,γ ||2γ , (4.18c)

||(vh,γ , µh,γ)||21,τ,? := ||vh,γ ||2Vh,γ
+ ||µh,γ ||2Mh,γ

. (4.18d)

We start with the estimate below.

Lemma 4.4 (Inverse energy estimates). There holds for all (uh,γ , λh,γ) ∈ Vh,γ ×Mh,γ ,

||(uh,γ , λh,γ)||1,τ,? ≤
√

max((1 + CinvcK,γτh−2), (1 + αγτ))||(uh,γ , λh,γ)||0,τ,?. (4.19)

Furthermore, if 1/αγ → 0, there holds

||(uh,γ , λh,γ)||1,τ,? ≤
√

max((1 + CinvcK,γτh−2), (1 + C2
dTrc

−1
K τh−1))||(uh,γ , λh,γ)||0,τ,?. (4.20)

Proof. Owing to the inverse inequality (4.4), together with (4.7), we obtain (4.19), and if αγ →∞, we make
use (4.14) to get (4.20).

The following results are immediately verified.

Lemma 4.5 (Boundedness on Aγ). There holds for all (uh,γ , λh,γ), (vh,γ , µh,γ) ∈ Vh,γ ×Mh,γ ,

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) ≤ ||(uh,γ , λh,γ)||1,τ,?||(vh,γ , µh,γ)||1,τ,?. (4.21)

Lemma 4.6 (Positivity on Aγ). There holds for all (uh,γ , λh,γ) ∈ Vh,γ ×Mh,γ ,

Aγ((uh,γ , λh,γ), (uh,γ , λh,γ)) = ||K−
1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ + ||τ− 1

2λh,γ ||2γ . (4.22)
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The above results are then used to prove the following stability estimate for Aγ + sγ .

Theorem 4.7 (Stability results). Let (uh,γ , λh,γ) ∈ Vh,γ ×Mh,γ ,

1

6(1 + ταγ)2
||(uh,γ , λh,γ)||1,τ,? ≤ sup

(vh,γ ,µh,γ)∈Vh,γ×Mh,γ

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ)

||(vh,γ , µh,γ)||1,τ,?
.

(4.23)

If αγ →∞, we have

1

6(1 + C2
dTrc

−1
K

τ

h
)2
||(uh,γ , λh,γ)||1,τ,? ≤ sup

(vh,γ ,µh,γ)∈Vh,γ×Mh,γ

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ)

||(vh,γ , µh,γ)||1,τ,?
.

(4.24)

Proof. Let us first recall this inf-sup condition; given λh,γ ∈ Mh,γ , we construct an element rh,γ ∈ Vh,γ

such that

bγ(rh,γ , λh,γ) = ||λh,γ ||2γ , and ||λh,γ ||γ ≤ C(γ)||rh,γ ||γ . (4.25)

Let Ψγ ∈ H2
0 (γ) be the solution of −∆τΨγ = τ−1λh,γ . Pose rγ = −∇τΨγ and let rh,γ = Πh,γrγ , where Πh,γ

is the Raviart-Thomas projection onto Vh,γ [14,38]. Then, we have∇τ ·rh,γ = Πh,γ∇τ ·rγ = τ−1λh,γ . Hence,

bγ(rh,γ , λh,γ) = ||τ− 1
2λh,γ ||2γ . Furthermore, we have ||rh,γ ||2γ = ||Πh,γrγ ||2γ ≤ C||rγ ||21,γ = C||∇τΨγ ||21,γ ≤

C||Ψγ ||22,γ ≤ C(γ)||τ− 1
2λh,γ ||2γ .

Now, consider δ1, δ2 > 0, and let vh,γ = uh,γ − δ2rh,γ and µh,γ = λh,γ + δ1τ∇τ · uh,γ , where rh,γ is
from (4.25). We have

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ) = {Aγ((uh,γ , λh,γ), (uh,γ , λh,γ)) + sγ(λh,γ , λh,γ)}
+ δ1{Aγ((uh,γ , λh,γ), τ(0,∇τ · uh,γ)) + sγ(λh,γ , τ∇τ · uh,γ)}
− δ2{Aγ((uh,γ , λh,γ), (rh,γ , 0))}. (4.26)

For the first term on the right-hand side of (4.26), we obtain using estimate (4.22) together with (4.17),

Aγ((uh,γ , λh,γ), (uh,γ , λh,γ)) + sγ(λh,γ , λh,γ) = ||K−
1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ + ||τ− 1

2λh,γ ||2γ + ||λh,γ ||2s,γ .

For the second term, we get for all ε1 > 0,

{Aγ((uh,γ , λh,γ), τ(0,∇τ · uh,γ)) + sγ(λh,γ , τ∇τ · uh,γ)}
= ||τ 1

2∇τ · uh,γ ||2γ + (λh,γ ,∇τ · uh,γ)γ + sγ(λh,γ , τ∇τ · uh,γ)

≥ ||τ 1
2∇τ · uh,γ ||2γ − ||τ

1
2∇τ · uh,γ ||γ ||τ−

1
2λh,γ ||γ − αγτ ||τ

1
2∇τ · uh,γ ||γ ||τ−

1
2λh,γ ||γ

≥ (1− ε1
(1 + ταγ)

2
)||τ 1

2∇τ · uh,γ ||2γ −
(1 + ταγ)

2ε1
||τ− 1

2λh,γ ||2γ . (4.27)

where we have used the continuity of sγ , i.e.,

sγ(λh,γ , µh,γ) ≤ ||λh,γ ||s,γ ||µh,γ ||s,γ ≤ αγ ||λh,γ ||γ ||µh,γ ||γ . (4.28)

For the last term, using (A2) together with (4.25) (first equation), we obtain for all ε2 > 0,

Aγ((uh,γ , λh,γ), (rh,γ , 0)) ≤ 1

2ε2
(||K−

1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ) +

ε2
2

(||K−
1
2

γ rh,γ ||2γ + ||L
1
2
γ rh,γ ||2γ)− bγ(rh,γ , λh,γ)

=
1

2ε2
(||K−

1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ) +

ε2
2

(||K−
1
2

γ rh,γ ||2γ + ||L
1
2
γ rh,γ ||2γ)− ||τ− 1

2λh,γ ||2γ

≤ 1

2ε2
(||K−

1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ) +

ε2
2

(CK,γ + Lγ)C(γ)||rh,γ ||2γ − ||τ−
1
2λh,γ ||2γ .

(4.29)
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Thus, with (4.25) (second equation),

−δ2Aγ((uh,γ , λh,γ), (rh,γ , 0) ≥ δ2
(

1− ε2
C(γ)(CK,γ + Lγ)

2

)
||τ− 1

2λh,γ ||2γ −
δ2
2ε2

(||K−
1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ).

(4.30)

Collecting the previous results we get

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ)

≥
(

1− δ2
2ε2

)(
||K−

1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ

)
+ δ1

(
1− ε1

(1 + ταγ)

2

)
||τ 1

2∇τ · uh,γ ||2γ

+

(
1− δ1

(1 + ταγ)

2ε1

)
||τ− 1

2λh,γ ||2γ + ||λh,γ ||2s,γ + δ2

(
1− ε2

C(γ)(CK,γ + Lγ)

2

)
||τ− 1

2λh,γ ||2γ .
(4.31)

Now, let us choose the parameters εi and δi such that all the norms in (4.31) are multiplied by positive
coefficients. We choose ε1 = 1/(1 + ταγ) and δ1 = 1/(1 + ταγ)2, and then ε2 = 2/[C(γ)(CK,γ + Lγ)] and
δ2 = 2/[C(γ)(CK,γ + Lγ) + 1], to get

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ)

≥ C(γ)(CK,γ + Lγ) + 2

2(C(γ)(CK,γ + Lγ) + 1)

(
||K−

1
2

γ uh,γ ||2γ + ||L
1
2
γ uh,γ ||2γ

)
+

1

2(1 + ταγ)2
||τ 1

2∇τ · uh,γ ||2γ

+
1

2
||τ− 1

2λh,γ ||2γ + ||λh,γ ||2s,γ . (4.32)

Thus,

Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ) ≥ 1

2(1 + ταγ)2
||(uh,γ , λh,γ)||21,τ,?. (4.33)

We also have

||(vh,γ , µh,γ)||1,τ,? = ||(uh,γ − δ2rh,γ , λh,γ + δ1τ∇τ · uh,γ)||1,τ,?
≤ ||(uh,γ , λh,γ)||1,τ,? + δ1||(0, τ∇τ · uh,γ)||1,τ,? + δ2||(rh,γ , 0)||1,τ,?.

With simple calculations, it is inferred that

δ1||(0, τ∇τ · uh,γ)||1,τ,? ≤
1

(1 + ταγ)
3
2

||(uh,γ , λh,γ)||1,τ,?, (4.34a)

δ2||(rh,γ , 0)||1,τ,? ≤
2
√
C(γ)(CK,γ + Lγ) + 1

C(γ)(CK,γ + Lγ) + 2
||(uh,γ , λh,γ)||1,τ,?. (4.34b)

This implies that we have
||(vh,γ , µh,γ)||1,τ,? ≤ 3||(uh,γ , λh,γ)||1,τ,?. (4.35)

This result together with (4.33) leads to (4.23). For the limit case when αγ →∞, we repeat the same lines
as before while using (4.14) instead of (4.7), we promptly arrive to (4.24).

Lemma 4.8 (Well-posedness of the DD scheme). The domain decomposition scheme (4.5) is well-
posed, and all eigenvalues of the induced system Aγ + sγ are bounded away from zero.

Proof. The matrix associated to Aγ + sγ is non-singular, that is to say that the system (4.5) has a unique
solution. Moreover, the stability estimate (4.23) (also (4.24)) guarantees that the lowest eigenvalue is
bounded away from zero.
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Let us comment on the robustness of the stability estimate in Theorem 4.7. First, (4.23) states that,
regardless of the choice of the space and time discretization, the stability constant with respect to the norm
||(uh,γ , λh,γ)||1,τ,? is independent of the coefficients K, Kγ , and the stabilization parameter Lγ . One can
also show that this estimate is asymptotically robust and bounded independently of (τ, αγ , h)→ 0 and the
stability constant tends to 1/6. The only issue can happen having a large coefficient αγ , but this case is
resolved in (4.24). Therein, as the ratio τ/h→ 0, the stability constant is approximately 1/6.

Following the approach of Ern and Guermond [23], we now provide an estimate for the condition number
of the stiffness matrix associated with the domain decomposition system Aγ + sγ . This condition number
estimate is important in our analysis as any algorithm is stable if every step is well-conditioned. This will
also encourage the development of the flux basis framework in Section 6. Let us first introduce some basic
notation in order to provide the definition of the condition number. We recall the stiffness matrix ADD

introduced in (3.2) associated with the domain decomposition scheme (4.5),

(ADDV,W )N := Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ), (4.36)

for all (uh,γ , λh,γ), (vh,γ , µh,γ) ∈ Vh,γ ×Mh,γ , where (V,W )N :=
∑N
i=1 ViWi denotes the inner product in

RN and |V |2N := (V, V )N is the corresponding Euclidean norm. The condition number is defined by

κ(ADD) := |ADD|N |ADD|−1
N , (4.37)

where

|ADD|N := sup
V ∈RN\0

sup
W∈RN\0

(ADDV,W )N
|V |N |W |N

, (4.38)

which is equivalent to

|ADD|N := sup
V ∈RN\0

|ADD|N
|V |N

. (4.39)

We recall the following estimate that holds true for a conforming, quasi-uniform mesh Th [23]; there exists
cµ, Cµ > 0 such that the following equivalence holds

cµh
d/2|V |N ≤ ||V ||0,τ,? ≤ Cµhd/2|V |N . (4.40)

Theorem 4.9 (Condition number estimate). The condition number of the domain decomposition
scheme (4.5) is bounded as

κ(ADD) . 6(1 + ταγ)2 max((1 + CinvcK,γτh
−2), (1 + αγτ)). (4.41)

Furthermore, if αγ →∞,

κ(ADD) . 6(1 + C2
dTrc

−1
K τh−1)2 max((1 + CinvcK,γτh

−2), (1 + C2
dTrc

−1
K τh−1)). (4.42)

Proof. We need to bound |ADD|N and |ADD|−1
N . By definition, for all V,W ∈ RN ,

(ADDV,W )N = Aγ((uh,γ , λh,γ), (vh,γ , µh,γ)) + sγ(λh,γ , µh,γ),

≤ ||(uh,γ , λh,γ)||1,τ,?||(vh,γ , µh,γ)||1,τ,?,
≤ max((1 + CinvcK,γτh

−2), (1 + αγτ))||(uh,γ , λh,γ)||0,τ,?||(vh,γ , µh,γ)||0,τ,?,
. max((1 + CinvcK,γτh

−2), (1 + αγτ))hd|V |N |W |N , (4.43)

where the estimate (4.19) and the equivalence (4.40) were successively used. Consequently,

|ADD|N . max((1 + CinvcK,γτh
−2), (1 + αγτ))hd. (4.44)

To estimate |ADD|−1
N , start from (4.23) and use (4.40) to get

(ADDV,W )N ≥
1

6(1 + ταγ)2
||(uh,γ , λh,γ)||1,τ,?||(vh,γ , µh,γ)||1,τ,?,

≥ 1

6(1 + ταγ)2
||(uh,γ , λh,γ)||0,τ,?||(vh,γ , µh,γ)||0,τ,?,

& hd

6(1 + ταγ)2
|V |N |W |N , (4.45)
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and hence |V |N . 6(1 + ταγ)2h−d|ADDV |N . Now setting V = A−1
DDW , we easily conclude that |A−1

DD|N .
6(1 + ταγ)2h−d. Combining estimates for |A−1

DD|N and |ADD|N we get (4.41). The estimate (4.42) of the
limiting case αγ →∞ is obtained similarly by using (4.20) and (4.24) in the proof.

4.2 Convergence of MoLDD-scheme

The second step of our analysis is to prove the convergence of Algorithm 3.1. The idea is to prove that
this algorithm is a contraction and then apply the Banach fixed-point theorem [46]. To this purpose, we let

δku,h = un,kh,γ − un,k−1
h,γ and δkλ,h = λn,kh,γ − λ

n,k−1
h,γ be the differences between the solutions at iteration k and

k − 1 of the problem (3.1), respectively.

Theorem 4.10 (Convergence of MoLDD-scheme). Assuming that Assumptions (A1)–(A5) hold true
and that Lγ(ζ) = Lξ/2(1− ζ), with a parameter ζ ∈ [0, 1), Algorithm 3.1 defines a contraction given by

||δkλ,h||2γ + τ ||δkλ,h||2s,γ +

(
Lγ
2

+ cK,γ

)
τ ||δku,h||2γ ≤

(
Lγ
2
− ζξm

)
τ ||δk−1

u,h ||2γ , (4.46)

where ζ is chosen to improve the convergence rate of the scheme. Furthermore, the limit is the unique
solution of (2.11).

Proof. By subtracting (3.1) at k from the ones at k − 1, we obtain

(ξ(un,k−1
h,γ )− ξ(un,k−2

h,γ ),v)γ + Lγ(δku,h − δk−1
u,h ,v)γ + aγ(δku,h,v)− bγ(v, δkλ,h) = 0 ∀v ∈ Vh,γ , (4.47a)

cγ(δkλ,h, µ) + τbγ(δku,h, µ) + τsγ(δkλ,h, µ) = 0 ∀µ ∈Mh,γ . (4.47b)

Taking µ = δkλ,h in (4.47b) and v = τδku,h in (4.47a) and summing the equations gives

||δkλ,h||2 + τ ||δkλ,h||2s,γ + τaγ(δku,h,v) + τ(ξ(un,k−1
h,γ )− ξ(un,k−2

h,γ ), δku,h)γ + Lγτ(δku,h − δk−1
u,h , δ

k
u,h)γ = 0.

Following [50], we let ζ ∈ [0, 1) and split the third term while applying the lower bound of K−1
γ ,

||δkλ,h||2γ + τ ||δkλ,h||2s,γ + cK,γτ ||δku,h||2γ + ζτ(ξ(un,k−1
h,γ )− ξ(un,k−2

h,γ ), δk−1
u,h )γ

+ (1− ζ)τ(ξ(un,k−1
h,γ )− ξ(un,k−2

h,γ ), δk−1
u,h )γ + τ(ξ(un,k−1

h,γ )− ξ(un,k−2
h,γ ), δku,h − δk−1

u,h )γ

+ Lγτ(δku,h − δk−1
u,h , δ

k
u,h)γ ≤ 0. (4.48a)

We use the monotonicity and Lipschitz continuity of ξ given by (A1) together with the identity (4.1), to
get

||δkλ,h||2γ + τ ||δkλ,h||2s,γ + cK,γτ ||δku,h||2γ + ζξmτ ||δk−1
u,h ||2γ +

(1− ζ)

Lξ
τ ||ξ(un,k−1

h,γ )− ξ(un,k−2
h,γ )||2γ

+
Lγ
2
τ ||δku,h||2γ +

Lγ
2
τ ||δku,h − δk−1

u,h ||2γ ≤
Lγ
2
τ ||δk−1

u,h ||2γ − τ(ξ(un,k−1
h,γ )− ξ(un,k−2

h,γ ), δku,h − δk−1
u,h )γ .

(4.48b)

We apply Young’s inequality (4.2) for the last term in the right-hand side to obtain

||δkλ,h||2γ + τ ||δkλ,h||2s,γ + cK,γτ ||δku,h||2γ + ζξmτ ||δk−1
u,h ||2γ

+
(1− ζ)

Lξ
τ ||ξ(un,k−1

h,γ )− ξ(un,k−2
h,γ )||2γ +

Lγ
2
τ ||δku,h||2γ +

Lγ
2
τ ||δku,h − δk−1

u,h ||2γ

≤ Lγ
2
τ ||δk−1

u,h ||2γ +
Lγ
2
τ ||δku,h − δk−1

u,h ||2γ +
1

2Lγ
τ ||ξ(un,k−1

h,γ )− ξ(un,k−2
h,γ )||2γ . (4.48c)

We choose Lγ = Lξ/2(1− ζ), we immediately obtain (4.46). The inequality (4.46) imply that the sequence

δn,kλ,h tends to 0 in L2(γ) and δku,h tends to 0 in L2(γ). Now we choose µ = ∇τ · δku,h in (4.47b) to obtain

τ ||∇τ · δku,h||2γ = −cγ(δkλ,h,∇τ · δku,h)− τsγ(λn,kh,γ ,∇τ · δku,h),

≤ ||δkλ,h||γ ||∇τ · δku,h||γ + ταγ ||δkλ,h||γ ||∇τ · δku,h||γ .
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Thus,

τ ||∇τ · δku,h||γ ≤ (αγτ + 1)||δkλ,h||γ . (4.49)

Hence, by (4.46), we have ||∇τ ·δku,h||γ tends to 0 in L2(γ). This shows that δku,h tends to 0 in H(divτ , γ).

Corollary 4.11 (Optimal MoLDD-convergence rate). If ξm > 0, the minimum of the convergence
rate of Algorithm 3.1 is reached for the optimal parameter

ζ∗ = arg min
0<ζ<1

ρ(ζ) = 1 +
Lξξm −

√
(Lξξm)2 + 4Lξξ2

mcK,γ + 4Lξξmc2K,γ

4ξmcK,γ
, (4.50a)

where ρ(ζ) is the convergence rate from (4.46),

ρ(ζ) =
Lγ − 2ξmζ

Lγ + 2cK,γ
< 1. (4.50b)

Therefore, the optimal stabilization parameter is given by

Lγ,opt =
Lξ

2(1− ζ∗) . (4.50c)

Proof. Plugging Lγ = Lξ/2(1− ζ) in the contraction estimate (4.46) leads to ||δku,h||2γ ≤ ρ(ζ)||δk−1
u,h ||2γ , where

ρ(ζ) =
Lξ − 4(1− ζ)ξmζ

Lξ + 4(1− ζ)cK,γ
< 1, (4.51)

which clearly can be minimal when choosing the optimal value of ζ. To calculate ζ∗, we differentiate (4.51)
with respect to ζ and infer the resulting roots and we find that the minimum of (4.51) is obtained for
the optimal choice given by (4.50a). Replacing back the resulting value into Lγ(ζ) delivers the optimal
stabilization parameter (4.50c).

Lemma 4.12 (Well-posedness of the mixed-dimensional problem). There exists a unique solution
to the mixed-dimensional problem (2.6).

Proof. Problem (2.11) is equivalent to (2.6). Since we know from Theorem (4.10) that (2.11) has a unique
solution, this equivalence implies that (2.6) is uniquely solvable.

We continue with some important remarks concerning the results above and the implications to the
convergence rate of MoLDD-scheme.

Remark 4.13 (Dependence of the convergence rate). Obviously, the rate of convergence (4.50b)
depends only on the strength of the non-linearity (not on the domain decomposition as an inner solver) by
means of the Lipschitz constant Lξ, the lower bound ξm and the fracture permeability Kγ . Particularly, the
rate is independent of the fracture-matrix coupling parameter αγ , the mesh size h and the time step τ .

Remark 4.14 (Global convergence). The convergence of MoLDD-scheme is global, i.e. independent of
the initialization and particularly of the used inner DD solver (like GMRes). Nevertheless, it is obviously
beneficial if one starts MoLDD-scheme iterations with the solution of the last time step.

5 Analysis of ItLDD-scheme

We turn now to the analysis of the iterative LDD-scheme (Algorithm 3.5). In contrast to MoLDD-scheme,
in which two levels of calculations (Linearization+DD) are necessary to achieve the required solution, the

iterative LDD-scheme treats simultaneously the non-linearity and DD. We introduce δku,h := un,kh,γ − unh,γ
and δkλ,h := λn,kh,γ − λnh,γ , stating the differences between the solution of the problem (3.1) at iteration k and
the solution of the problem (2.11). Thus, the next result is to be understood as the convergence for the
combined Linearization-DD processes.
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Theorem 5.1 (Convergence of ItLDD-scheme). Assuming that Assumptions (A1)–(A5) hold true
and that Lγ,u(ζ) = Lξ/2(1− ζ), where ζ is a parameter to be optimized in [0, 1), and Lγ,p ≥ αγ , the
ItLDD-scheme given by Algorithm 3.5 is linearly convergent. There holds

(
1 + τ

Lγ,p
2

)
||δkλ,h||2γ +

τ

2
||δkλ,h||2s,γ +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2γ

≤
(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2γ + τ
Lγ,p

2
||δk−1
λ,h ||2γ . (5.1)

Proof. By subtracting (3.1) at the iteration k from (2.11), we obtain

(ξ(un,k−1
h,γ )− ξ(unh,γ),v)γ + Lγ,u(δku,h − δk−1

u,h ,v)γ + aγ(δku,h,v)− bγ(v, δkλ,h) = 0 ∀v ∈ Vh,γ , (5.2a)

cγ(δkλ,h, µ) + τLγ,p(δ
k
λ,h − δk−1

λ,h , µ)γ + τsγ(δk−1
λ,h , µ) + τbγ(δku,h, µ) = 0 ∀µ ∈Mh,γ . (5.2b)

Taking v = τδku,h in (5.2a) and µ = δkλ,h in (5.2b), and summing up the equations gives

||δkλ,h||2γ + τLγ,p(δ
k
λ,h − δk−1

λ,h , δ
k
λ,h)γ + τsγ(δk−1

λ,h , δ
k
λ,h)

+ τ(ξ(un,k−1
h,γ )− ξ(unh,γ), δku,h)γ + Lγ,uτ(δku,h − δk−1

u,h , δ
k
u,h)γ + τaγ(δku,h, δ

k
u,h) = 0. (5.3)

For any ζ ∈ [0, 1), this is equivalent to,

||δkλ,h||2γ + τLγ,p(δ
k
λ,h − δk−1

λ,h , δ
k
λ,h)γ + τsγ(δkλ,h, δ

k
λ,h) + τζ(ξ(un,k−1

h,γ )− ξ(unh,γ), δk−1
u,h )γ

+ τ(1− ζ)(ξ(un,k−1
h,γ )− ξ(unh,γ), δk−1

u,h )γ + Lγ,uτ(δku,h − δk−1
u,h , δ

k
u,h)γ + τaγ(δku,h, δ

k
u,h)

= −τsγ(δk−1
λ,h − δkλ,h, δkλ,h)− τ(ξ(un,k−1

h,γ )− ξ(unh,γ), δku,h − δk−1
u,h )γ . (5.4)

We apply the lower bound in the last term of the left-hand side and then use the monotonicity and Lipschitz
continuity of the operator ξ, followed by Cauchy-Schwarz and Young’s inequalities in the second term of
the right-hand side, to get

(
1 + τ

Lγ,p
2

)
||δkλ,h||2γ + τ ||δkλ,h||2s,γ + τ

Lγ,p
2
||δkλ,h − δk−1

λ,h ||2γ + cK,γτ ||δku,h||2γ + ζξm||δk−1
u,h ||2γ

+
(1− ζ)

Lξ
τ ||ξ(un,k−1

h,γ )− ξ(unh,γ)||2γ +
Lγ,u

2
τ ||δku,h||2γ +

Lγ,u
2

τ ||δku,h − δk−1
u,h ||2γ

≤ Lγ,u
2

τ ||δk−1
u,h ||2γ +

Lγ,p
2
τ ||δk−1

λ,h ||2γ +
Lγ,u

2
τ ||δku,h − δk−1

u,h ||2γ − τsγ(δk−1
λ,h − δkλ,h, δkλ,h)

+
1

2Lγ,u
τ ||ξ(uk−1

h,γ )− ξ(unh,γ)||2γ . (5.5)

The continuity of sγ gives

|sγ(δk−1
λ,h − δkλ,h, δkλ,h)|≤ ||δkλ,h||s,γ ||δkλ,h − δk−1

λ,h ||s,γ ≤ α1/2
γ ||δkλ,h||s,γ ||δkλ,h − δk−1

λ,h ||γ , (5.6)

where we have used (4.7). Applying Young’s inequality to (5.6) and plugging the result in (5.5), then choose
Lγ,u = Lξ/2(1− ζ), it is inferred,

(
1 + τ

Lγ,p
2

)
||δkλ,h||2γ + τ ||δkλ,h||2s,γ + τ

Lγ,p
2
||δkλ,h − δk−1

λ,h ||2γ +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2γ

≤
(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2γ + τ
Lγ,p

2
||δk−1
λ,h ||2γ + τ

αγ
2
||δk−1
λ,h − δkλ,h||2γ +

τ

2
||δkλ,h||2s,γ . (5.7)

We let Lγ,p ≥ αγ , to obtain the estimate (5.1) which is clearly a contraction. We finally repeat the same

techniques as in (4.49), to get that ||∇τ · δku,h||γ tends to 0 in L2(γ). This altogether shows that δn,kλ,h tends

to 0 in L2(γ) and δku,h tends to 0 in H(divτ , γ).
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Remark 5.2 (Contraction factor). Our contraction estimate shows that the strength of the non-linearity
and the matrix fracture (DD) coupling controls the convergence rate. In practice, the contraction factor is
better if we take into account the energy norm τ ||δkλ,h||2s,γ/2 using the bound (4.7). As the stabilization term
is such that Lγ,p ≥ αγ , thus, we have to study the robustness of the algorithm when αγ →∞, corresponding
physically to the case of continuous pressure across the fracture.

Lemma 5.3 (Contraction-robustness). Assuming continuous pressure across γ (αγ → ∞), then let
Lγ,u(ζ) = Lξ/2(1− ζ) with ζ to be chosen in [0, 1), and Lγ,p ≥ C2

dTr/(cKh), the contraction (5.1) holds true
for the ItLDD-scheme in Algorithm 3.5.

Proof. Recall the estimate (5.5) which holds true in that case. We then estimate the coupling term |sγ(δkλ,h−
δk−1
λ,h , δ

k
λ,h)| with the help of (4.14),

|sγ(δkλ,h − δk−1
λ,h , δ

k
λ,h)| ≤ ||δkλ,h||s,γ ||δkλ,h − δk−1

λ,h ||s,γ ,≤ CdTrc
−1/2
K h−1/2||δkλ,h||s,γ ||δkλ,h − δk−1

λ,h ||γ . (5.8)

We apply Young’s inequality to (5.6) and replace the result in (5.5), while choosing Lγ = Lξ/2(1− ζ),
(

1 + τ
Lγ,p

2

)
||δkλ,h||2γ + τ ||δkλ,h||2s,γ + τ

Lγ,p
2
||δkλ,h − δk−1

λ,h ||2γ +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2γ

≤
(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2γ +
Lγ,p

2
τ ||δk−1

λ,h ||2γ +
C2

dTr

cK
h−1 τ

2
||δk−1
λ,h − δkλ,h||2γ +

τ

2
||δkλ,h||2s,γ .

We choose Lγ,p ≥ C2
dTr/(cKh), we end up with the contraction (5.1). The rest of the proof is as in

Theorem 5.1.

We complete our analysis of Algorithm 3.5 by giving alternative convergence results when (h, 1/αγ)→ 0,
leading to extremely large stabilization parameter Lγ,p, which deteriorates the convergence rate of ItLDD
scheme. These results are then important to show the robustness of the iterative LDD-scheme for extreme
physical and/or discretization situations.

Proposition 5.4 (Alternative convergence results). If Lγ,p = 0, and Lγ,u = Lξ/2(1− ζ) with ζ ∈
[0, 1), Algorithm 3.5 is convergent under the constraint on the time step τ ≤ 1/αγ . The following estimate
for Algorithm 3.5 holds true and defines a contraction

(
1− αγ

2
τ
)
||δkλ,h||2γ +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2γ ≤

(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2γ +
αγ
2
τ ||δk−1

λ,h ||2γ . (5.9)

Moreover, if αγ →∞, Algorithm 3.5 is convergent as the ratio τ/h ≤ cK/C2
dTr(=: C−1

γ,s) holds true, and the
resulting estimate is a contraction given by
(

1− Cγ,s
2

τ

h

)
||δkλ,h||2 +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2 ≤

(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2 +
Cγ,s

2

τ

h
||δk−1
λ,h ||2. (5.10)

Proof. We let Lγ,p = 0 in the estimate (5.3) to get

||δkλ,h||2γ + τ(bγ(un,k−1
h,γ )− bγ(unh,γ), δku,h)γ + Lγ,uτ(δku,h − δk−1

u,h , δ
k
u,h)γ + τaγ(δku,h, δ

k
u,h) = −τsγ(δk−1

λ,h , δ
k
λ,h).

With the same techniques used to get (5.5), we get for Lγ,u = Lξ/2(1− ζ) with ζ ∈ [0, 1),
(

1 + τ
Lγ,p

2

)
||δkλ,h||2γ + τ ||δkλ,h||2s,γ +

(
Lγ,u

2
+ cK,γ

)
τ ||δku,h||2γ

≤
(
Lγ,u

2
− ζξm

)
τ ||δk−1

u,h ||2γ − τsγ(δk−1
λ,h , δ

k
λ,h). (5.11)

The coupling term in the right-hand side is now estimated as follows

|sγ(δk−1
λ,h , δ

k
λ,h)| ≤ αγ ||δk−1

λ,h ||γ ||δkλ,h||γ ,
where we used (4.7). Applying Young inequality and inserting the result in (5.11), we infer (5.9). That of
the second estimate (5.10), when αγ → ∞, is obtained similarly to (5.9), but with using (4.14) to bound
the coupling term.
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Remark 5.5 (Time step vs stabilization). The constraint on the ratio τ/h is less restrictive than the
constrain on the stabilization parameter Lγ,p in Lemma 5.3. We also note that the constraint on the time
step τ ≤ 1/αγ may have the same implication on the convergence rate as taking Lγ,p ≥ αγ in Theorem 5.1.
In practice, the choice between the two constraints may depend on the physical situation. All the results
show a strong correlation between the Robin parameter αγ , and the time step τ (or τ/h) or the stabilization
parameter Lγ,p.

6 The LDD Iterations with Multiscale Flux Basis Implementation

In this section, we propose an alternative to the matrix-free method (see Subsection 3.1) by forming the
inter-dimensional map SRtN

γ based on the construction of a multiscale mortar flux basis (MFB) from [1,31].
We recall that the goal of this paper is to solve the reduced scheme of Definition 2.2 for: 1) different
physical parameters and various realizations of the L-scheme parameters, 2) various PDEs by changing
the non-linearity ξ, and 3) when computing and comparing the two LDD solvers (MoLDD vs ItLDD). We
also recall that the dominant computational cost in the LDD algorithms comes from the subdomain solves
to evaluate the action of SRtN

γ using Algorithm 3.3 (step 2(b)). These solves are required at each inner
and outer iterations of Algorithm 3.1 and each iteration of Algorithm 3.5 (see Remark 3.4 and 3.6 for the
overall cost). Therefore, the computation cost of the algorithms may become large since, first, the LDD
solver may require a large number of iterations for complex problems, and second, we have seen that the
condition number (4.41)-(4.42) of the linearized interface problem grows with refining the grids or increasing
αγ (normal permeability) and permeability contrast.

The construction of the inter-dimensional mapping is achieved by pre-computing and storing the flux
subdomain responses, called multiscale flux basis, associated with each fracture pressure degree of freedom

on each subdomain. We define (Φ`h,γ)
Nh,γ
`=1 to be the set of basis functions on the interface pressure space

Mh,γ , where Nh,γ is the number of pressure degrees of freedom on γ [32]. As a result, on the fracture

interface, we let µh,γ :=
∑Nh,γ
`=1 µ`h,γΦ`h,γ , and compute the MFB functions corresponding to (Φ`h,γ)

Nh,γ
`=1

using the following algorithm:

Algorithm 6.1 (Assembly of the multiscale flux basis).

1. Enter the basis (Φ`h,γ)
Nh,γ
`=1 . Set ` := 0.

2. Do

(a) Increase ` := `+ 1.
(b) Project Φ`h,γ on the subdomain boundary, λ`h,i = Qh,i(Φ`h,γ).
(c) Solve problem (2.8) in each subdomain Ωi.
(d) Project the resulting flux onto the pressure space on the fracture, Ψ`

h,γ,i := −QT
h,iu

∗
h,i(λ

`
h,i) · ni.

While ` ≤ Nh,γ .

3. Form the multiscale flux basis for subdomain Ωi, i.e.,
{

Ψ1
h,γ,i,Ψ

2
h,γ,i, · · · ,Ψ

Nh,γ
h,γ,i

}
⊂Mh,γ .

Once the multiscale flux basis functions are constructed for each subdomain, the action of SRtN
γ is

replaced by a linear combination of the multiscale flux basis functions Ψ`
h,γ,i. Specifically, at any time step

n ≥ 1, and at any iteration m ≥ 1 of any of the algorithms, for an interface datum λn,mh,γ ∈ Mh,γ , we have

λn,mh,γ =
∑Nh,γ
`=1 λn,m,`h,γ Φ`h,γ , and for i ∈ {1, 2},

SRtN
γ,i (λn,mh,γ ) =

Nh,γ∑

`=1

λn,m,`h,γ SRtN
γ,i (Φ`h,γ) =

Nh,γ∑

`=1

λn,m,`h,γ Ψ`
h,γ,i. (6.1a)

We then compute the jump across the fracture

SRtN
γ (λn,mh,γ ) =

∑

i∈{1,2}
SRtN
γ,i (λn,mh,γ ). (6.1b)

We continue with some important remarks on the applicability of the MFB.
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Remark 6.2 (Fracture network). We observe that each fracture pressure basis function Φ`h,γ on the
fracture interface corresponds to exactly two different multiscale flux basis functions, one for Ω1 and one for
Ω2. For the case of a fracture network, say γ = ∪i 6=jγij, where γij is the fracture between the subdomain Ωi
and Ωj, the previous basis reconstruction is then applied independently on each fracture.

Remark 6.3 (On the MFB - gain). Note that (6.1) permits now retrieving the action of SRtN
γ on Mh,γ ,

for any outer or inner iteration of the LDD solvers, and for all time steps n ∈ {1, 2, · · · , N}.
Thus, the use of MFB eliminates the dependence between the total number of subdomain solves and the
number of iterations of each LDD solver.

Remark 6.4 (On the MFB - cost). For large scale simulations, the multiscale (Robin-to-Neumann)
functions are stored on the subdomain level then on different processors, so that the inter-dimensional
mapping SRtN

γ need not be assembled. As detailed in Subsection 3.1, a Krylov method is used to solve for
the GMRes update in (3.3) (for (3.4) for the ItLDD solver) which requires only the action of the Robin-
to-Neumann operator on each Krylov vector. We have explained through the paper that, with constructing
the operator SRtN

γ , the cost in solving the problem is much smaller than the cost of solving subdomain
problems [1], where the only issue being the storage capacity. Precisely, the cost of the MFB is associated
with constructing the SRtN

γ directly depends on the number of degrees of freedom on the fractures. Thus,
the MFB framework is favourable for 1) highly heterogeneous parts of the media where subdomain solves are
affected by heterogeneities, 2) those fractures affected by strong non-linearities, and 3) lower permeable or
blocking fractures where a coarse mortar space can be used without sacrificing accuracy. Otherwise, a robust
preconditioner [7,18] can be used in the Krylov method, as well as a coarse mortar space that is compensated
by taking higher order mortars [9, 55].

7 Numerical examples

In this section, we present several test cases to show how the schemes behave (1) for different values for
numerical and physical parameters (2) with coarsening/refining mortar grids (3) on extensions to other
governing equations. We subsequently study the value of Lγ,opt in the MoLDD scheme and the relationship
between Lγ,u and Lγ,p in the ItLDD scheme. The performance of schemes is measured in the overall number
of iterations needed for each scheme to reach the stopping criteria. In the implementation of both schemes,
we consider that the solution has converged if the relative error of the fracture solution is less than 10−5, if
the value at the previous iteration step is not zero. Otherwise we use the absolute error.

To keep the presentation simple, we consider domain and several parameters in common in all the
examples in relation to the first test case in [43]. The domain Ω := (0, 2) × (0, 1) is intersected with a
fracture defined as γ := {x = 1}. On the boundaries of the rock matrix {x = 0} and {x = 2} we impose
pressure boundary condition with values 0 and 1, respectively. We set zero flux boundary condition on the
rest of ∂Ω. The boundary of the fracture at the tips {y = 1} ∩ ∂γ and {y = 0} ∩ ∂γ inherits the pressure
boundary conditions from the rock matrix. The examples are set on the time interval I = (0, 1) with
homogeneous pressure initial condition. As for the physical parameters, we take the permeability matrix
for the bulk Ki = I, while the source terms fi and fγ are equal to zero.

Remark 7.1 (On the inner DD solver). Previously we have mentioned the computational cost of both
methods in the context of an iterative Krylov solver. However, the following examples are reduced to a
one-dimensional fracture problem with negligible number of degrees of freedom (DOF) for such a solver to
perform efficiently, Therefore, we only use the direct methods to solve the interface problem and rather
demonstrate the robustness of our methods with regards to discretization, temporal, physical and L-scheme
parameters. We still emphasize the need for a Krylov solver, such as GMRes, for large-scale problems.

First, we consider the Forchheimer flow model where the non linear term is ξ(uγ) = β|uγ |uγ . The
parameter β is a fluid dependent non-negative scalar known as the Forchheimer coefficient, and | · | denotes
the Euclidean vector norm |uγ |2 = uγ ·uγ . It is straightforward to see that ξ is a simply increasing function
and satisfies condition (A1). For more details see [33,38] and references therein.
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h\n 1 2 3 4 5
2−1 17 12 11 10 9
2−3 17 11 10 9 8
2−5 17 11 10 9 8

τ
2−2 17 11 10 9
2−3 17 10 9 9 8 8 7 6
2−4 16 10 9 9 9 8 8 8 7 7 7 6 6 6 5 5

h\n 1 2 3 4 5
2−1 17 8 7 7 6
2−3 17 9 8 7 7
2−5 17 9 8 7 7

τ
2−2 17 9 8 7
2−3 17 10 9 8 8 7 6 6
2−4 16 10 9 9 9 8 8 8 7 7 7 6 6 6 5 5

Table 1: Results for the example of Subsection 7.1. Top two tables correspond to solving with the MoLDD
scheme, while bottom two correspond to solving with the ItLDD scheme. On the left we report the number
of iterations by varying the mesh size h for a fixed time step τ = 2−4, while on the right depending on the
time step size τ for a fixed mesh size h = 2−5.

7.1 Stability with respect to the user-given parameters

We first study the performances of MoLDD and ItLDD solvers by varying the time step τ , the mesh size
h, and the L-scheme parameters (Lγ,u, Lγ,p). We let Kγ = 1, αγ = 104 and β = 1 and according to the
theoretical results, the L-scheme parameters are given by Lγ,u ≈ 1 and Lγ,p = 103. Results in Table 1
report the number of iterations required by the two LDD solvers while varying the mesh size h and time
step size τ . Each column of the tables represent results for a time step n.

Regardless of the choice of scheme, we can observe that the number of iterations is independent from
the mesh size and slightly dependent on the time step size. The reason for the latter might be related to
the fact that we consider the solution at previous iteration as the initial guess for the next iteration. Thus,
by decreasing the time step size, the variation of the solution between steps varies less and so the number of
iterations. Overall, the sequential ItLDD and the monolithic MoLDD solvers behave similarly; one can also
see a slightly better results for the iterative solver in Table 1 (left). Note that any comparison of the two
solvers does not make sense for the simple reason that the amounts of stabilization fixed by Lγ,p and Lγ,u
are not yet optimal. Another explanation, may also be, the amount of stabilization in the monolithic solver
MoLDD is set solely by Lγ,u, in contrast to the iterative solver ItLDD where two stabilization parameters
Lγ,p and Lγ,u are used.

Finally, we recall that with the use of the multiscale flux basis, the computational costs of the two solvers
is practically the same. In other words, any computational overhead of any of the solvers is free from any
additional costs. The main cost is done offline using the multiscale flux basis which is mostly related to
the number of mortar degrees on the fracture. As an example, the computational cost needed to draw
the results in the last line (for h = 2−5) of the two right tables (in Table 1) is approximately equal to 96
subdomain solves (Num. of DOF ∗ Num. of subdo. + 2 ∗ N), where two solves per time step are required
to form the right-hand side in (3.1) (for MoLDD) and (3.4) (for ItLDD). Without MBF, the cost should

be
∑N
n=1

∑NnLin

k=1 ∗Nk
dd + 2 ∗ N , where Nn

Lin is the number of iterations of the L-scheme, and Nk
dd denotes

the number of DD iterations (GMRes or any Krylov solver). Thus, if we assume a fixed Nk
dd along all the

simulation, say Nk
dd = 2, this number will be at least 1012 subdomain solves, so that with MFB, we make

a save of approximately 91% of the total subdomain solves.
In Figure 1, we plot the number of iterations with various realizations of the user-given Lγ,u in MoLDD

solver. We consider 100 values of Lγ,u, from 0 to 2.5 with uniform step 0.025. The other parameters are fixed
as follows, β = 1, h = 0.125 and τ = 0.2. The graph in this figure behaves very similarly to what is usually
observed for the L-type schemes (a typical V-shape graph), highlighting a numerically optimal value Lγ,opt
between 0.5 and 1. By increasing Lγ,u, the number of iterations slowly increases, while they increase more
drastically for small value of Lγ,u. This behavior is common for all time steps. We expect such a behavior
when choosing Lγ,u close to zero because it directly influences the contraction factor in (4.46). As a side
result, we can see that the identified parameter Lγ,opt ≈ 1 is close to the optimal one. On the other hand,
we can observe the performance of the ItLDD solver with regards to changing parameters Lγ,u and Lγ,p.
We consider Lγ,u taking 50 values uniformly distributed on the interval (0, 2.5), while Lγ,p = 10x, where x
are 21 equidistant values on the interval (2.2, 4.2) with step 0.1. As in the previous figure, we can observe
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Figure 1: Results for the example of Subsection 7.1 using MoLDD scheme. We report the number of
iterations ] for different values of Lγ,u. On the left for the first time step, in the centre for the third, and
on the right for the last time step.
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Figure 2: Results for the example of Subsection 7.1 using ItLDD scheme. We report the number of iterations
] for different values of Lγ,u and Lγ,p. On the left for the first time step, in the centre for the third, and on
the right for the last time step.
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β\n 1 2 3 4 5
0.1 17 9 8 7 7
1 17 9 8 7 7
100 9 8 7 6 5

β\n 1 2 3 4 5
0.1 17 11 10 9 8
1 17 11 10 9 8
100 14 10 9 9 8

αγ\n 1 2 3 4 5
102 17 9 8 7 7
104 17 9 8 7 7
106 17 9 8 7 7
108 17 9 8 7 7

αγ\n 1 2 3 4 5
102 17 11 10 9 9
104 17 11 10 9 8
106 17 11 10 9 8
108 17 11 10 9 8

Table 2: Results for the example of Subsection 7.2 reporting the number of iterations by varying the
parameter β (top) and by varying αγ (bottom). Left tables correspond to solving with the MoLDD solver,
while the right ones correspond to solving with the ItLDD solver.

on the surface plots that there is a global minimum that determines the optimal choice for Lγ,u and Lγ,p.
For example, the minimum number of iterations for this flow model is 5 for Lγ,u between 0.59 and 1.1 and
log(Lγ,p) between 2.8 and 3, in all time steps. Similar to the monolithic approach, the number of iterations
required by the ItLDD solver increases when the L-scheme parameters assume low values. Particularly, the
scheme diverges when Lγ,p is less or equal to 102. In the analysis of the scheme we require that Lγ,p ≥ αγ ,
but the lower values also allow a good convergence behaviour concluding that the theoretical lower bound
is possibly too strict, but it certainly exists. Therefore, in practice, we can slightly relax the bounds on the
L-scheme parameters to still obtain good performance of the solver. It is also relevant to mention that the
normal permeability constant αγ = 104 is sufficiently large to apply the limit case results in Lemma 5.3.

Crucially, we want to mention that the computational cost of the realizations needed to draw Figure 1
and 2, is exactly equal to only one realization with fixed (Lγ,u, Lγ,p), permitting easier calculation of these
parameters, and confirming the utility of the MFB on fixing the total cost and avoiding any computational
overhead if these parameters are not optimal.

7.2 Robustness with respect to the physical parameters

In this set of test examples, we want to show the robustness of the algorithms with respect to αγ and β.
Note that αγ controls the strength of the fracture-matrix coupling, while β controls the strength of the
non-linearity. We fix the mesh size h = 0.125 and the time step τ = 2−3.

In Table 2 (top), we study the dependency of the number of iterations on the Forchheimer coefficient β.
The LDD solvers show a weak dependency of the number of iterations on the values of β, giving slightly
better results for larger values. Overall, the monolithic solver MoLDD performs slightly better then the
iterative one ItLDD. Bear in mind that changing β, directly influences Lγ,u. This shows that this parameter
should be optimized in accordance to the given value of β. Again, we suggest that the decrease in number
of iterations over time steps may be due to using the previous iteration solution as the initial guess in the
subsequent iteration. Clearly, we can conclude that the two solvers remain robust when strengthening the
non-linearity effects. Moreover, all the simulations in Table 2 (top) are run with a fixed computational
cost. The number of subdomain solves needed to carry out the simulations in Table 2 (top) is equal to
32 subdomain solves (Num. of DOF ∗ Num. of subdo. + 2 ∗N). Thus, strengthening or changing the non-
linearity effects, for which maybe the number of iterations increases if the amount of stabilization via Lγ,u
and/or Lγ,p is not carefully set, has no practical effects on the total computational costs. This gain in the
computational resources which is in conformity with the spirit of reduced basis confirms that the MFB is
an essential tool in the implementation of our LDD solvers.

Turning now to the effect of the fracture-matrix coupling on the two LDD solvers, we plot in Table 2
(bottom) the dependency of the number of iterations on the Robin parameter αγ . Clearly, the number
of iterations remains stable when strengthening or weakening matrix-fracture coupling, confirming and
concluding the robustness of both schemes with respect to αγ . Example of solution is reported in Figure 3.
For the computational cost of the results in Table 2 (bottom), any change of αγ requires re-computing the
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Figure 3: p ∈ [0, 1] and u for the example in Subsection 7.2 with β = 102 and αγ = 104.

Figure 4: p ∈ [0, 1] and u for the example in Subsection 7.3 with Kγ = 10−4I, β = 1 and αγ = 1. With fine
(left) and coarse (right) mortar grids.

multiscale flux basis. However, this cost remains fixed when running and comparing the two LDD solvers
for a fixed αγ .

7.3 Flexibility of coarsening/refining the mortar grids

In this set of simulations, we consider the case of weak inter-dimensional coupling by fixing αγ = 1, with
a low permeable fracture with Kγ = 10−4I. We fix the following parameters: h = 2−5 (on the matrix),
Lγ,u = 1, Lγ,p = 2 · 102 and β = 1. We allow for a coarse scale of the mortar grids on the fracture;
hγ = 2−3, hγ = 2−4, hγ = 2−5, where the last choice corresponds to matching grids on the fracture. In
Table 3, we plot the resulting number of iterations required by each LDD solver. Particularly, we can see
that the sequential ItLDD solver in the matching grids has more difficulty to converge, so the effectiveness
of the MFB is more pronounced. The monolithic solver MoLDD seems to be more robust with refining the
mortar grids. Here, the computational cost of the construction of the inter-dimensional operator benefits
from fewer mortar degrees on the fracture. Example of a solution is depicted in Figure 4, where we can
see that conforming and non-conforming gridddig (with hγ = 2−3) on the fracture give indistinguishable
results.

7.4 Extension to other flow models: the Cross model

The aim of this test case is to show that our LDD solvers can be applied to more general flow models. On
the fracture, we assume the Cross flow model to relate pγ and uγ . We have the non-linear term given by

ξ(uγ) =
(ω0 − ω∞)uγ

1 +Kγ |uγ |2−r
.
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]cells\n 1 2 3 4 5
8 3 3 3 3 2
16 3 3 3 3 2
64 3 3 3 3 2

]cells\n 1 2 3 4 5
8 11 10 10 9 9
16 11 10 10 9 9
64 18 15 15 15 14

Table 3: Results for the example of Subsection 7.3 reporting the number of iterations for conforming and
non-conforming (coarse scale) grids on the fracture. Left table corresponds to solving with the MoLDD
scheme, while the right one corresponds to solving with the ItLDD scheme.
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Figure 5: Results for the example of Subsection 7.4 using ItLDD scheme. We report the number of iterations
] for different values of Lγ,u and Lγ,p. On the left for the first time step, in the centre for the third, and on
the right for the last time step.

The parameters 0 ≤ ω∞ < ω0, ζ and r are positive scalars related to the rheology of the considered liquid.
In (1.2a), Kγ is now replaced by ω∞. We let ω := ω∞ − ω0 and set ω0 = 2, ω∞ = 1, ζ = 1, and r = 1.5.
It is easy to verify that ξ satisfies the assumption (A1) . For more details see [24, 25] and the references
therein.

We choose the iterative solver ItLDD and re-compute the simulations of Subsection 7.1 and 7.2 for the
Cross flow model. We set then Lγ,u = Lξ/2 = 0.5 and Lγ,p = αγ = 103 as derived from the theory. The
results (not shown) demonstrate first the stability of the ItLDD solver with respect to the parameters h
and τ . Crucially, all the simulations in this example do not require additional computational cost (except
fracture solves), as we use the same MFB inherited from the Forchheimer model. We set h = 2−5 with
slightly coarse grids on the fracture hγ = 2−4 and τ = 2−4.

In Figure 5, we show the results for the ItLDD solver on a set of realizations of (Lγ,u, Lγ,p). The results
do not differ greatly comparing to the case of Forchheimer’s flow model. The convexity of the surface plots
in all time steps is clear giving away an optimal combination of values for Lγ,u and Lγ,p. For example, we
can find minimum of 5 iterations for Lγ,u between approximately 0.73 and 1.57, and Lγ,p between 102.8

and 103. Note that the parameters prescribed by the theoretical results, Lγ,u = 0.5 and Lγ,p = 103, form
a good candidate in this simulation. Finally, we mention that we can use an optimization process, as
detailed in [50], in order to get the optimal values. Precisely, the fact that the choice of the stabilization
parameters is independent of the mesh size, one can then run the LDD solver on a coarse spatial mesh and
one time step, and study the stabilization parameters in specific intervals centred around the theoretical
values. The parameters that give the lowest number of iterations are then used for the real computations.
This “brute-force” optimization is simple to do in practice when using the MFB.

In Table 4, we consider to test the dependency of the number of iterations on the rheology parameters of

ω\n 1 2 3 4 5
0.1 15 11 10 9 8
1 10 9 8 8 8
2.5 30 19 16 14 12

ζ\n 1 2 3 4 5
1 10 9 8 8 7
10 11 9 9 8 7
100 16 11 10 9 8

r\n 1 2 3 4 5
1 10 9 9 8 7
1.5 10 9 8 8 7
4.5 17 11 10 9 8

Table 4: Results for the example of Subsection 7.4. On the left the number of iterations by varying the
values of ω. In the center when ζ changes, while on the right for different values of r.
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Figure 6: p ∈ [0, 1] and u for the example in Subsection 7.4 with ω = 1, ζ = 1, and r = 1.5.

the flow model. We provide results of several tests on ω, ζ, and r. While testing for one of the parameters,
the other two are fixed to either ω = 1, ζ = 1 or r = 1.5. We can observe that ω strongly influences
the performance of both methods making it difficult to converge when ω gets larger, that is, when the
non-linearity is stronger. For larger values of ω the number of iterations increases drastically, suggesting the
necessity to adjust the L-scheme parameters as well as to use the MFB. The number of iterations was less
dependent of the parameter ζ. This parameter itself contributes less to the strength of the non-linearity in
comparison to ω, and, thus, influencing less the performance of the solver. Finally, we can again notice a
moderate dependency of number of iterations on parameter r. This is especially shown when r > 2 and the
exponent on the vector norm of uγ becomes negative. Thus, the non-linear flow function ξ is exponential
in the values of uγ and accounts for the very fast flow in the fractures. We finally recall that the robustness
study drawn in Table 4 has the cost of one realization with fixed-parameters, confirming the role of the
MFB in our solvers. For the robustness of LDD solvers with respect to the matrix-fracture coupling effects
induced by the parameter αγ , we have seen that both solvers are robust when strengthening or weakening
the coupling effects (results not shown). Example of solution is reported in Figure 6.

8 Conclusions

In this study, we have presented two new strategies to solve a compressible single-phase flow problem in a
porous medium with a fracture. In the porous medium, we have considered the classical Darcy relation be-
tween the velocity and the pressure while, in the fracture, a general non-linear law. We employ the L-scheme
to handle the non-linearity term, but also to treat the inter-dimensional coupling in the second proposed
algorithm. To further achieve computational speed-up, the linear Robin-to-Neumann co-dimensional map
is constructed in an offline phase resulting in a problem reduced only to the fracture interface. This ap-
proach allows to change the fracture parameters, or the fracture flow model in general, without the need to
recompute the problem associated with the rock matrix. We have shown the existence of optimal values for
the L-scheme parameters, which are validated through several numerical tests. Future developments can be
explored towards domain decomposition in time, where fast and slow fractures are solved asynchronously.
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matching grids, Computational Geosciences, 16 (2012), pp. 1043–1060, https://doi.org/10.1007/
s10596-012-9302-6.

[28] N. Frih, J. E. Roberts, and A. Saada, Modeling fractures as interfaces: a model for Forchheimer
fractures, Comput. Geosci., 12 (2008), pp. 91–104, https://doi.org/10.1007/s10596-007-9062-x.

[29] A. Fumagalli and A. Scotti, A reduced model for flow and transport in fractured porous media with
non-matching grids, in Numerical Mathematics and Advanced Applications 2011, A. Cangiani, R. L.
Davidchack, E. Georgoulis, A. N. Gorban, J. Levesley, and M. V. Tretyakov, eds., Berlin, Heidelberg,
2013, Springer Berlin Heidelberg, pp. 499–507, https://doi.org/10.1007/978-3-642-33134-3_53.

[30] B. Ganis, G. Pencheva, M. F. Wheeler, T. Wildey, and I. Yotov, A frozen Jacobian multiscale
mortar preconditioner for nonlinear interface operators, Multiscale Model. Simul., 10 (2012), pp. 853–
873, https://doi.org/10.1137/110826643.

[31] B. Ganis, D. Vassilev, C. Wang, and I. Yotov, A multiscale flux basis for mortar mixed dis-
cretizations of Stokes-Darcy flows, Comput. Methods Appl. Mech. Engrg., 313 (2017), pp. 259–278,
https://doi.org/10.1016/j.cma.2016.09.037.

[32] B. Ganis and I. Yotov, Implementation of a mortar mixed finite element method using a multiscale
flux basis, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3989–3998, https://doi.org/10.
1016/j.cma.2009.09.009.



29

[33] V. Girault and M. F. Wheeler, Numerical discretization of a Darcy-Forchheimer model, Numer.
Math., 110 (2008), pp. 161–198, https://doi.org/10.1007/s00211-008-0157-7.

[34] H. Hægland, A. Assteerawatt, H. Dahle, G. Eigestad, and R. Helmig, Comparison of
cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture–matrix
system, Advances in Water Resources, 32 (2009), pp. 1740–1755, https://doi.org/10.1016/j.

advwatres.2009.09.006.

[35] T.-T.-P. Hoang, C. Japhet, M. Kern, and J. E. Roberts, Space-time domain decomposition
for reduced fracture models in mixed formulation, SIAM J. Numer. Anal., 54 (2016), pp. 288–316,
https://doi.org/10.1137/15M1009651.

[36] E. Keilegavlen, A. Fumagalli, R. Berge, I. Stefansson, and I. Berre, Porepy: An
open source simulation tool for flow and transport in deformable fractured rocks, tech. report,
arXiv:1712.00460 [cs.CE], 2017, https://arxiv.org/abs/1712.00460.

[37] M.-Y. Kim and E.-J. Park, Fully discrete mixed finite element approximations for non-Darcy
flows in porous media, Comput. Math. Appl., 38 (1999), pp. 113–129, https://doi.org/10.1016/

S0898-1221(99)00291-6.

[38] P. Knabner and J. E. Roberts, Mathematical analysis of a discrete fracture model coupling Darcy
flow in the matrix with Darcy-Forchheimer flow in the fracture, ESAIM Math. Model. Numer. Anal.,
48 (2014), pp. 1451–1472, https://doi.org/10.1051/m2an/2014003.

[39] M. Lesinigo, C. D’Angelo, and A. Quarteroni, A multiscale Darcy-Brinkman model for fluid
flow in fractured porous media, Numer. Math., 117 (2011), pp. 717–752, https://doi.org/10.1007/
s00211-010-0343-2.

[40] F. List, K. Kumar, I. S. Pop, and F. A. Radu, Upscaling of unsaturated flow in fractured porous
media, arXiv preprint arXiv:1807.05993, (2018).

[41] F. List and F. A. Radu, A study on iterative methods for solving Richards’ equation, Comput.
Geosci., 20 (2016), pp. 341–353, https://doi.org/10.1007/s10596-016-9566-3.

[42] W. Liu and Z. Sun, A block-centered finite difference method for reduced fracture model in Karst
aquifer system, Comput. Math. Appl., 74 (2017), pp. 1455–1470, https://doi.org/10.1016/j.camwa.
2017.06.028.
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