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Abstract

This thesis considers a pickup and delivery problem with multiple time windows,
a complex cost structure and factory constraints. We formulated the problem as
a mathematical model and created an instance generator based on real data. We
also implemented a heuristic solution method for the problem and ran extensive
statistical tests. The mathematical model shows the complexity of the problem and
is implemented in AMPL to give a benchmark for the proposed solution method.
The instance generator was created based on real anonymized data from a 4th party
logistics (4PL) company. The proposed solution method, called the 4th Party Logis-
tics Optimizer, is a meta-heuristic approach with industry speci�c implementations.
The solution method is re�ned through extensive statistical experiments. The ex-
periments determine which parts of the solution method have a signi�cant positive
impact on the objective value. This leads to a �nal composition of our solution
method. The �nal solution method is robustly giving near optimal solutions to re-
alistic sized instances in seconds, and is a powerful tool for companies facing the
proposed adaptation of the pickup and delivery problem.
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Notations

The following notations will be used throughout the thesis. For further mathematical
expressions we refer to Chapter 2.

Mathematical expressions

Notation Description
s solution.
Sv The vehicle schedule of vehiclev.
Svjk A sub part of a vehicle schedule of vehiclev starting at

index j ending at indexk.
f objective function returning the total cost in problem.
f (s) objective value, or total cost, of solutions.
f (Sv) objective value of vehicle scheduleSv.
N P orders or pickup locations in problem.
CS

i Di�erence in objective valuef (Sv) for a vehicle scheduleSv when
excluding orderi 2 N P from the schedule.

ci minimum increase in objective functionf for adding order i 2 N P .
c�

i regret value of orderi 2 N P .
r ij relatedness factor between two ordersi; j 2 N P .
p random degree factor.
yp used to select which index to pick in an ordered set.
h A (neighbourhood) heuristic.
H A set of heuristics.
Z A set of integers.
[1; 2; ::; n] Indicate an integer set starting with 1 and ending atn.
[0; 1] Indicate a set of all real numbers from 0 to 1.

Abbreviations

Notation Description
4PL 4th Party Logistics
4PLP 4th Party Logistics Problem
4PLO 4th Party Logistics Optimizer
TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
DARP Dial-a-ride Problem
PDP Pickup and Delivery Problem
PDPTW Pickup and Delivery Problem with Time Windows
PDPMTW Pickup and Delivery Problem with Multiple Time Windows



Chapter 1

Introduction

The auto-mobile and machinery manufacturing industry is under constant change
in today's conditions of increased cost pressure and international competition, 4
ow
AG (2019). This has made supply chain and logistics of paramount importance, and
the need for external expertise for these manufacturers have given rise to 4th party
logistics (4PL) companies. The demand for high 
exibility in the planning and mod-
elling of transportation has made it more important than ever for these companies
to have e�cient and robust solutions to the routing problemthey want to solve. The
routing problem a 4PL company is facing is a type ofPickup and Delivery Problem
with Time Windows (PDPTW) with additional requirements. In this thesis we will
present a mathematical model, an instance generator and a solution method to a
Pickup and Delivery Problem with Multiple Time Windows(PDPMTW), factory
constraints and a complex cost structuretypically faced by a 4PL company. We
name the problem presented in this thesis the4th Party Logisitics Problem(4PLP).

Thesis Outline

Section 1.1 in this chapter will introduce 4
ow AG, a 4PL planning company, which
has contributed to the research done in this thesis. We will explain the problems
a 4PL planning company are facing when planning transport for their customers,
based on their typical manufacture customers in Germany and Europe and give a
brief overview over why the problem they are facing is di�erent than other pickup
and delivery problems. Although we focus on the 4PL industry the problem will be
on a general form and can be applied to many other industries as well. Then we
will move into a literature review in Section 1.2 of research made surrounding other
famous routing problems.

The rest of the thesis will be divided in the following chapters. Chapter 2
will present description of the 4PLP problem and the mathematical formulation
of the 4PLP. Chapter 3 will present known solution methods, both exact and meta-
heuristics, to problems similar to our 4PLP. Chapter 4 is a detailed outline of our
4PLO model. Chapter 5 then presents the experimental results that lead us to the
�nal composition of our 4PLO model. Here we also analyse the performance of the
�nal composition of the 4PLO in comparison to the benchmark results of imple-
menting our mathematical model in AMPL. Chapter 6 �nally concludes the work
and will present the academic contributions of this thesis and possible future areas
of research.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The �gure tries to illustrate the role of a 4PL planning company related to a man-
ufacturer (the customer), suppliers, the third-party logistics provider (3PL) and the transport
companies. The arrows represent the 
ow of data and information.

1.1 4
ow, A 4PL Planning Company

This thesis will present a model to solve a special routing problem we call the
4th Party Logistics Problem (4PLP), however the problem will be formulated in a
general manner and can be applied to many other industries apart from the 4th
Party Logistics planning industry.

The work in this thesis is done in cooperation with a German company called
4
ow AG. 4
ow is a 4PL consulting, management and software company located on
every continent with main o�ce in Berlin, Germany. A Fourth Party Logistic Model
(4PL) is de�ned in logistics as follows. The manufacturer does not only outsource the
organisation of its logistic tasks to third parties, but also the management thereof.
Fourth party logistic service providers often check the entire supply chain. The
organisational and executive activities are again often outsourced to other parties,
HM Group (2019).

Figure 1.1 tries to illustrate a 4PL company and its role compared to a manu-
facturer (its customer), 3PL company, supplier and the transportation company. It
shows how 4PL becomes a manager of data from all sources related to transportation
and plans on behalf of the manufacturer how to manage all these resources.

For a company like 4
ow, having software with reliable algorithms that can
�nd near optimal solutions for a transportation or routing problem is the key to
success. A 4PL planning company is not the manufacturer itself. Neither is it the
transportation company or the third-party logistics provider (3PL). It is managing
all these resources to ensure the most e�cient way of handling the transportation

2



CHAPTER 1. INTRODUCTION

Figure 1.2: The �gure illustrates an example of the spot prices when using a transport company
to cover di�erent stops in a vehicles schedule. The 4PL company does not pay for getting the
vehicle from an origin O and back, COA and CDO . The costs of the whole vehicle scheduleCABCD

is not the same as the sum ofCAB , CBC and CCD , but depend on the distance travelled, the
weight of the transport and the �xed costs of hiring the transport.

for a manufacturer.
The role of a 4PL planning company shifts the problem away from classical

pickup and delivery problems in several ways. Most importantly since a 4PL com-
pany is not handling its own 
eet of vehicles, it relies on transport companies and
their spot prices.

The implications this has for a 4PL company's cost structure have been illus-
trated in Fig. 1.2. The �rst implication to notice from the �gure, is that picking up
an order at A and delivering it at B is no longer the cost from originO to A then
to B and back to O. The price is only paid from the pickup atA until delivery at
B . Another implication is that the spot price of moving from A to B to C to D
is not simply the sum of the costs of each singular transportCAB + CBC + CCD .
Rather is it calculated based on the totalvehicle scheduleABCD and can depend on
several factors. These factors are most commonly distance, transported weight plus
some �xed hiring cost. In addition to this the transport company might charge the
manufacturer astop costfee per location visited. To make it even more complex all
these prices can vary between vehicle types and di�erent types of transport carriers.
The price will also be di�erent if the selected vehicle is LTL (less than truckload) of
FTL (full truckload). We refer to this as the complex price structureahead.

Another implication from Fig. 1.2 is that the problem is not bound to a �xed
amount of vehicles, since there is no 
eet owned by the 4PL company or the man-
ufacturer its self. Theoretically a 4PL company could send all orders separately,
like you would send a package from your local postal o�ce, however this would be
very cost ine�cient. Planning good routes based on the given spot prices can save
a signi�cant amount of costs and have an impact on the climate in the long run and
that is why optimization is so important in this industry.

Since the 4PL planning company is dealing with real manufacturers and suppliers
with normal working hours and is planning to optimize the pickup and delivery
schedule for several days, sometimes weeks, it cannot simply plan that transport
arrives at the pickup and delivery location at any given time. It needs to stick to a
time window and because the planning might take place over several days it needs
to abide to multiple time windows.

3



CHAPTER 1. INTRODUCTION

(a) Instance (b) Solution

Figure 1.3: The �gure illustrates an instance of a Travelling Salesman Problem with a solution.
Ci represent a customers location wherei = [1 ::6]. B indicates the base or starting location for
the salesman.

Another aspect which makes the 4PLP di�erent from other vehicle routing prob-
lems is that since the manufacturer is the customer of the 4PL planning company,
they sometimes have speci�c wishes for how the delivery should proceed. Some
manufacturers have factories with several docks. Each dock might require speci�c
vehicles with a speci�c size or special equipment. This indicates that the 4PLP must
have heterogeneous vehicles.

The manufacturer might also require that each vehicle only visits a certain
amount of docks before leaving a factory again. The reason behind this would
be to reduce tra�c and avoid delivery trucks getting lost inside a factory area. We
refer to this as thefactory dock constraint.

All the aspects mentioned above needs to be considered when solving a 4PLP.
We will go into more details and formulate mathematically the di�erences mentioned
above in Chapter 2. In the next section we will take a look at what literature have
been published with similar routing problems and how that can bene�t us when we
solve the 4PLP.

1.2 Literature Review

To understand how to solve the 4PLP we will now look at what research has been
made surrounding similar routing problems.

The Travelling Salesman Problem, or TSP, was formulated as the Truck Dis-
patching Problem by Dantzig and Ramser (1959) and is classi�ed as NP-hard, mean-
ing that by increasing the size of the problem the complexity quickly becomes so
high that a computer has di�culty �nding an exact solution to the problem. The
TSP is the problem a sales person might face when having to visit several di�er-
ent customers on di�erent locations in the most e�cient way possible, but as in
Dantzig and Ramser (1959) and later Clarke and Wright (1964) it can be modi�ed
to apply to multiple demands and trucks with capacities. As in Lin (1965), they
implemented an exact approach for smaller instances and applied heuristics to solve
larger instances.

Figure 1.3 illustrates the TSP with a solution where each nodeCi represents a

4



CHAPTER 1. INTRODUCTION

(a) Instance (b) Solution

Figure 1.4: The �gure illustrates an instance of the Pickup and Delivery Problem with a solution.
The numbers represent orders andP and D represent the orders pickup and delivery location.B
represent base or the starting point of the two vehiclesV1 and V2.

customer that a salesperson wants to visit in the most e�cient way possible. The
salesperson starts from his baseB and will also return to the same base.

There are many extensions of the TSP problem. One of them is theVehicle
Routing Problem(VRP) where each vehicle starts at a base, as in the TSP, but the
vehicles have a limited travel length, or time, and must return before they violate
this limitation. Lenstra and Kan (1981) determined the VRP, as an extension of
TSP, is a NP-hard problem. Later Laporte and Osman (1995) made a survey of
research around the TSP and VRP, and Fisher (1995) explored di�erent solution
approaches to the VRP with time windows, including several meta-heuristics and
arti�cial intelligence algorithms.

Pickup-and-Delivery Problems(PDPs) constitute an important family of routing
problems in which goods or passengers have to be transported from di�erent origins
to di�erent destinations, Toth and Vigo (2014). The classical PDP is where a
product has one pickup and one delivery location.

Figure 1.4 illustrates a PDP with three orders each with a pickupP and a
delivery D location solved by two vehiclesV1 and V2 leaving from a baseB. Several
versions of the PDP have been explored since Savelsbergh and Sol (1995) formalized
the general pickup and delivery problem and we will look at some versions of the
problem here.

Desrosiers et al. (1986) implemented a dynamic programming solution to a ver-
sion of the PDP called the single-vehicle dial-a-ride problem (DARP) where indi-
viduals are being picked up and dropped o�. DARP's tend to be of smaller sizes
than the PDP problems and can even be solved exactly as in Beck et al. (2003).

Pickup and Delivery Problem with Time Windows(PDPTW) is concerned with
the construction of optimal routes to satisfy transportation requests, each requiring
both pickup and delivery under capacity, time window and precedence constraints
Dumas et al. (1991).

PDPTW has been widely studied in the literature. The �rst survey on this
research topic was done by Mitrovic-Minic (1998) and a decade later more compre-
hensive reviews were published by Berbeglia et al. (2007), Parragh et al. (2008).
They study di�erent classes of the problem and review the solution methods that
were developed for each class. Berbeglia et al. (2010) provides a general framework

5
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for dynamic PDPTW's where the demand is revealed over time instead of being
known from the beginning.

The early mathematical formulation of the PDPTW was proposed in the late
1970s Solomon (1987). The formulation has since changed and improved. Very
recently, Furtado et al. (2017) have introduced a new compact two-index formulation
for PDPTW. Their proposed formulation shows good overall performance in their
experiments.

One of the very �rst exact methods for solving pickup and delivery problems with
time windows were �rst published in Psaraftis (1983) where a dynamic programming
algorithms were developed. Later on, another exact method was developed by Du-
mas et al. (1991). They aimed to solve a speci�c class of multi-vehicles pickup and
delivery problems using a Dantzig-Wolfe decomposition/column generation scheme
with a constrained shortest path as sub-problem. They were able to handle problems
with up to 55 requests.

As an extension of the traveling sales man problem, the PDPTW is NP-hard,
which has led to a wide range of research done on how to solve this problem. Find-
ing the global optimal solution for a realistic instance size with exact methods is
unrealistic in reasonable time, therefore alternative solution methods have been pro-
posed. Among the more successful solution methods are the meta-heuristic's, which
are high-level problem-independent algorithmic frameworks. A good meta-heuristic
has a good balance between the terms diversi�cation and intensi�cation which Blum
and Roli (2003) used to describe the contribution of meta-heuristic components. We
will go more into detail on these terms in Section 3.2.

One of the very �rst meta-heuristic approaches for PDPTW was presented by
Nanry and Barnes (2000) and it was based on a reactive tabu search algorithm.
They generated instances from the vehicle routing problem with time windows in-
stances proposed by Solomon (1987). Li and Lim (2001) propose a tabu-embedded
simulated annealing meta-heuristic to solve the PDPTW. Beside the test instances
from Nanry and Barnes (2000), they solved new-generated instances. The new test
instances are based on Solomon (1987) and they are now the most well-known bench-
mark instances for the PDPTW. Lau and Liang (2002) developed a tabu search to
PDPTW, and they applied several construction heuristics to generate an initial
solution. They also proposed a strategy to generate good problem instances and
benchmarking solutions for PDPTW. More recently Hemmati et al. (2014) created
benchmark instances for the PDP in tramp shipping and routing problems. Since
our problem is di�erent from the standard PDP we will generate our own instances
based on real anonymized data from 4
ow in Section 5.2.

Bent and Van Hentenryck (2006) present a two-stage hybrid algorithm for PDPTW.
The �rst stage uses a simple simulated annealing algorithm to decrease the number
of routes, while the second stage usesLarge Neighborhood Search(LNS) to decrease
total travel cost. They provide many new best solutions for the benchmark instances
of Li and Lim (2001).

Ropke and Pisinger (2006) propose an adaptive large neighborhood search (ALNS)
heuristic for the problem. The ALNS heuristic is composed of a number of com-
peting sub-heuristics that are used with a frequency corresponding to their historic
performance. They have tested the proposed heuristic on more than 350 benchmark
instances with up to 500 requests any have been able to improve the best known
solutions from the literature for more than 50% of the problems.

6
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Masson et al. (2014) considers the Pickup and Delivery Problem with Shuttle
routes (PDPS) which is a special case of the PDPTW where the trips between the
pickup points and the delivery points can be decomposed into two legs. The �rst
leg visits only pickup points and ends at some delivery point. The second leg is
a direct trip { called a shuttle { between two delivery points. This optimization
problem has practical applications in the transportation of people between a large
set of pickup points and a restricted set of delivery points. Their paper proposes
three mathematical models for the PDPS and a branch-and-cut-and-price algorithm
to solve it. The pricing sub-problem, an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC), is solved with a labeling algorithm enhanced with
e�cient dominance rules. Three families of valid inequalities are used to strengthen
the quality of linear relaxations. The method is evaluated on generated and real-
world instances containing up to 193 transportation requests. Instances with up to
87 customers are solved to optimality within a computation time of one hour.

Beside the classic road-based applications, pickup and delivery problem with time
windows has application in maritime transportation Hemmati et al. (2014) and in
air cargo Azadian et al. (2017). There are also many extensions to the PDPTW
in the literature. Ghilas et al. (2016) consider the pickup and delivery problem
with time windows and scheduled lines. The problem concerns scheduling a set of
vehicles to serve freight requests such that apart of the journey can be carried out
on a scheduled public transportation online. They propose an ALNS heuristic to
solve the problem.

As we described in Section 1.1 the 4PLP includes some aspects that di�erentiate
it from standard problems in the literature. We mentioned multiple time windows
as one of them. Favaretto et al. (2007) proposed an ant colonization model to solve
the VRP with multiple time windows and multiple visits. Later Christiansen and
Fagerholt (2002) described a ship scheduling PDP problem of bulk cargoes with
multiple time windows. Also Manier et al. (2016) presented an exact model to solve
the Pickup and Delivery Problem with Multiple Time Windows (PDPMTW) in the
shipping industry. And more recently Ferreira et al. (2018) implemented a variable
neighbourhood search for vehicle routing problem with multiple time windows.

We also mentioned in Section 1.1 that our problem has a heterogeneous 
eet
which means we have di�erent type of vehicles to handle di�erent type of goods.
Desrosiers et al. (1995) looked at heterogeneous vehicles when they provide an exten-
sive overview over algorithms for solving vehicle routing and scheduling problems.
Savelsbergh and Sol (1998) also had a heterogeneous vehicle 
eet for the VRP prob-
lem and Xu et al. (2003) did the same for PDP. More recently Masmoudi et al.
(2017) implemented a hybridGenetic Algorithm (GA) to solve the heterogeneous
Dial-a-ride problem (H-DARP). The results from their computational experiments
show that their GA is outperforming the state of the art solution methods. Sun
et al. (2019) formulated an exact approach for solving theGreen Pickup and De-
livery Problem (GPDP) which aims to minimize carbon emissions of pickups and
deliveries by a 
eet of heterogeneous vehicles.

The complex cost matrix and dock constraint has not been widely studied in
the literature. Although there has been some research on single parts of the 4PLP,
multiple time windows and heterogeneous 
eet, the complete 4PLP problem have
not been investigated extensively, increasing the need for research in this area.
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Chapter 2

Problem Description

In Chapter 1 we introduced the 4th Party Logistic Problem (4PLP). The 4PLP
is an extension of the Pickup and Delivery Problem with Multiple Time Windows
(PDPMTW). The additional requirements of the problem are thecomplex cost struc-
ture and the factory dock constraint. In this chapter we will describe the problem
in detail and Section 2.1 we will formulate the mathematical model of the 4PLP.
Later in Chapter 3 we will describe several solution methods which can be used to
solve the 4PLP.

The 4PLP consists of a supply and demand of products, or in our caseorders.
Each order should be picked up from a certain pickup location, which constitutes
the suppliers, and be delivered to a certain delivery location, which constitutes
the manufacturers factory docks. To serve the demand of orders exists a set of
heterogeneousvehiclesprovided by di�erent logistic carries either directly or through
third party logistic carries (3PL), see Section 1.1.

The vehicles have di�erent capacities, incompatibilities, cost structures and start
at the �rst pickup location at the �rst pickup time, i.e. costs to get from depot to
�rst pickup location are not relevant in the 4PLP, see Section 1.1. The capacities of
each vehicle is given in volume and weight which represents the size of the vehicle.
When an order is assigned to a vehicle, the vehicle must load the order from the
supplier pickup location, and deliver the order at the factory dock location. Some
orders are not compatible with the vehicles, if for example the vehicle does not have
cooling capabilities. Some vehicles are not compatible with the delivery/pickup
locations, if for example the vehicle does not have the equipment required to load
the order. At delivery, it could be that a vehicle has to visit several docks within
the same factory. The manufacturer might have set a limit to how many docks can
be visited each time a vehicle enters the factory area.

Each pickup/delivery location can have multiple time windows, lapsing some-
times over several days. If a vehicle arrives before a time window starts it has to
wait. All orders must be served within the given time windows.

The cost paid for a transport depend on the total distance a vehicle is driving
and the maximum weight transported by that vehicle. The cost is calculated based
on a price per kilometer, a price per kg and a �xed cost, all di�erent within each
distance/weight interval. There is also a cost for each time a vehicle has to stop at
a location.
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CHAPTER 2. PROBLEM DESCRIPTION

In the next section we will present the complete mathematical formulation of the
4PLP problem described here.

Table 2.1: The table show indices used in the 4PLP mathematical model

Notation Description
v vehicle
i node
f factory
p time window
s stop location
� distance interval in cost structure
� weight interval in cost structure

2.1 Mathematical Model

In this section we will present the mathematical model, with notations, of the 4th
Party Logistics Problem (4PLP). These notations will be used throughout this thesis,
unless otherwise speci�ed.

Table 2.2: The table contains sets used in the 4PLP mathematical model.

Notation Description
N nodesf 1; 2; ::; 2ng wheren is number of orders
V vehicles
A arcs
Av arcs visitable by vehiclev
Nv nodes visitable by vehiclev
N P pickup nodes [1; 2; ::; n] or orders
N D delivery Nodes [n + 1; n + 2; ::; 2n]
F factories
N f delivery nodes for factoryf
Ev index of elements in the cost structure of vehiclev
Pi set of time windows at nodei , f 1; 2; ::; � i g
Ti set of time parameters [Tip ; Tip ] at node i wherep 2 Pi

S set of stops indicating a pickup/delivery location
L s Sets of nodes sharing a stop locations 2 S

We can view the 4PLP as a graphG(A; N ) where N = f 1; 2; ::; 2ng are the
vertices,n is the number of orders in the problem, andA = f (i; j ) : i; j 2 N; i 6= j g
are the arcs in the graph. Sincen is the number of orders in the problem, then ifi
is the orders pickup-node theni + n is its corresponding delivery node.

The set of pickup nodes (suppliers) we denote usingN P := f 1; 2; ::; ng and each
delivery node (factory dock) is denoted byN D := f n + 1; n + 2; ::; 2ng. All nodes
are therefore equivalent toN = N P [ N D .

Each Factory, f 2 F , also has a set of nodes belonging to the same factory which
we denoteN f . Since all factories are delivery nodes these sets only include delivery
nodes. The factory docking limit is denoted byH f .
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Table 2.3: The table contains parameters used in the 4PLP mathematical model.

Notation Description
n amount of orders
K kg

v weight capacity of vehiclev 2 V
K vol

v volume capacity of vehiclev 2 V
o(v) starting node of vehiclev
d(v) ending node of vehiclev
Qkg

i weight of order at nodei 2 N
Qvol

i volume of order at nodei 2 N
H f docking limit at factory f 2 F
Tijv travel time for vehicle v 2 V over edge (i; j ) 2 Ev

� i amount of time windows at nodei 2 N
Tip upper bound time of time windowp 2 Pi at node i 2 N
Tip lower bound time of time windowp 2 Pi at node i 2 N

 v amount of distance intervals for vehiclev
� v amount of weight intervals for vehiclev
Ckm

v�� cost per distance unit (km) in cost matrix element (�; � ) 2 EV

for vehiclev
Ckg

v�� cost per weight unit (kg) in cost matrix element (�; � ) 2 EV

for vehiclev
Cf ix

v�� �xed cost in index (�; � ) 2 EV for vehiclev
Cstop

i costs of making a stop at nodei
Ci cost of not transporting orderi 2 N P

D ij distance between nodei 2 N and j 2 N
B � distance for interval � in cost matrix EV column index
Z � weight for interval � in cost matrix EV row index

The set of vehicles used is denoted byV and weight capacity of each vehiclev 2 V
is denoted byK kg

v and volume capacity is denotedK vol
v . We also introduceAv as

the set of arcs that each vehiclev 2 V can traverse. Each vehicle has a set of Nodes
it can travel to represented byNv. This set also includes an origin node,o(v) and a
destination noded(v) which is a �ctive start and ending point unique to each vehicle
v. As we mentioned in Section 1.1 since a 4PL planning company is not having its
own 
eet, but rather paying for another company to transport from A to B it will
not be charged for the cost of getting to A. For our mathematical model this means
that the distance and costs fromo(v) to the �rst pickup and from the last delivery
to d(v) is equal to zero, meaning it will not in
uence any decision variables for a
vehicle to travel from start to the �rst pickup node. To keep the model as general
as possible we still includeo(v) and d(v) in the problem formulation.

To evaluate the weight and volume constraints we say that each pickup node has
a weight Qkg

i and a volumeQvol
i for i 2 N P as parameters indicating the weight and

volume of the order getting picked up at that node.
Each node has a setTi of time windows represented by [Tip ; Tip ] 2 [0; T] wherep 2

Pi = f 0; 1; :::; � i g and all nodes should be picked up and delivered within given time
windows. The distance from nodei to node j is denoted byD ij and the time for
each vehiclev to travel between them is represented byTijv .

The cost structure mentioned in Section 1.1 is complex and depend on several
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of the problems decision variables. Each time a vehiclev makes a stop at nodei
there will be a stop cost represented byCstop

i . The costs of vehiclev depends on the
total distance of that vehicle and the maximum weight transported. Each possible
interval of weight and distance is represented by an index pair (�; � ), where � is
the distance interval index ranging (1; 2; ::; 
 v) and � is the weight interval ranging
from (1; 2; ::; � v). Together these pairs make a matrix we refer to as a cost matrix.
Each type of cost has a matrix, including distance, weight, and �x costs. The cost
in a certain interval (� ,� ) is therefore represented byCcost� type

v�� .

Table 2.4: The table contains variables used in the 4PLP mathematical model.

Notation Description
x ijv binary indicating travel from node i 2 N to j 2 N of vehiclev 2 V
yi binary indicating that an order i 2 N P is not picked up
lkg
iv weight of vehiclev after visiting node i

lvol
iv volume of vehiclev after visiting node i

hi number of times docked inside a factory after visiting nodei 2 N D

t i time after visiting node i 2 N
uip binary indicating usage of time windowp 2 Pi at node i
dv�� total distance travelled of vehiclev 2 V if it �ts in

interval ( �; � ) 2 Ev

bv�� binary indicating interval ( �; � ) 2 Ev for vehiclev 2 V
lv�� the highest weight transported by vehiclev 2 V

for interval ( �; � ) 2 Ev

The variable t i denotes the time after nodei 2 N has been served and each
delivery node has a variablehi indicating how many docks, within the factory, have
been visited including the nodei . The variable lkg

iv is the weight and lvol
iv is the

volume on the vehiclev leaving nodei . The x ijv is a binary variable indicating if
vehiclev is travelling betweeni and j node. The cost of not transporting an order
will be represented byCi for each nodei , with a corresponding binary variableyi ,
indicating that an order is not picked up.

The total distance travelled by vehiclev will be denoted by the variablesdv��

for each (�; � ) 2 EV , where only one variable per vehicle will have the value equal
to the total distance of that vehicle. The maximum weight transported by a vehicle
is represented bylv�� and also only one of these variables per vehicle will have a the
corresponding value, which is determined by the binary variablebv�� . Eachbv�� has
a corresponding distance parameterB � and a weight parameterZ � which represents
the intervals in the cost matrix.

The mathematical formulation of the problem is represented as follows:

min
X

v2 V

X

(�;� )2 EV

(Ckm
v�� dv�� + Ckg

v�� lv�� + Cf ix
v�� bv�� )+

X

v2 V

X

s2 S

X

i 2 L s
j 2 N v =2 L s

Cstop
i x ijv +

X

i 2 N P

Ci yi

(2.1)
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subject to:
X

v2 V

X

j 2 N v

x ijv + yi = 1; i 2 N P (2.2)

X

j 2 N v

x ijv �
X

j 2 N v

x jiv = 0; v 2 V; i 2 Nv =2 f o(v); d(v)g (2.3)

X

j 2 N v

xo(v)jv = 1; v 2 V (2.4)

X

j 2 N v

x jd (v)v = 1; v 2 V (2.5)

X

j 2 N v

x ijv �
X

j 2 N v

x(i + n)jv = 0; v 2 V; i 2 N P
v (2.6)

lkg
iv + Qkg

j � lkg
jv � K kg

v (1 � x ijv ); v 2 V; j 2 N P
v ; (i; j ) 2 Ev (2.7)

lkg
iv � Qkg

j � lkg
(j + n)v � K kg

v (1 � x i ( j + n)v); v 2 V; j 2 N P
v ; (i; n + j ) 2 Ev (2.8)

0 � lkg
iv � K kg

v ; v 2 V; i 2 N P
v (2.9)

lvol
iv + Qvol

j � lvol
jv � K vol

v (1 � x ijv ); v 2 V; j 2 N P
v ; (i; j ) 2 Ev (2.10)

lvol
iv � Qvol

j � lvol
(j + n)v � K vol

v (1 � x i ( j + n)v); v 2 V; j 2 N P
v ; (i; n + j ) 2 Ev

(2.11)

0 � lvol
iv � K vol

v ; v 2 V; i 2 N P
v (2.12)

hi + 1 � hj � (H f + 1)(1 � x ijv ); v 2 V; f 2 F; i 2 N f ; j 2 N f ; j 6= i
(2.13)

hj � H f ; v 2 V; f 2 F; j 2 N f ; (2.14)

hj �
X

i 2 N v
i=2 N f

(x ijv ) v 2 V; j 2 N f (2.15)

X

p2 Pi

uip = 1; i 2 N (2.16)

X

p2 Pi

uip Tip � t i ; i 2 N (2.17)

X

p2 Pi

uip Tip � t i ; i 2 N (2.18)

t i + Tijv � t j � (Ti� i +

Tijv )(1 � x ijv ); v 2 V;(i; j ) 2 Ev (2.19)

t i + Ti ( i + n)v � t (i + n) � 0; v 2 V; i 2 N P
v (2.20)

X

(�;� )2 EV

dv�� =
X

(i;j )2 Ev

x ijv D ij ; v 2 V (2.21)
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X

(�;� )2 EV

lv�� � lkg
iv v 2 V; i 2 Nv (2.22)

B (� � 1)bv�� � dv�� � B � bv�� ; v 2 V;(�; � ) 2 EV (2.23)

Z(� � 1)bv�� � lv�� � Z � bv�� ; v 2 V;(�; � ) 2 EV (2.24)

X

(�;� )2 EV

bv�� �
X

j 2 N v

xo(v)jv ; v 2 V (2.25)

hi ; t i � 0; i 2 N (2.26)

uip 2 f 0; 1g; i 2 N; p 2 Pi (2.27)

bv�� 2 f 0; 1g; v 2 V;(�; � ) 2 EV (2.28)

dv�� ; lv�� � 0 v 2 V;(�; � ) 2 EV (2.29)

yi 2 f 0; 1g; i 2 N P (2.30)

x ijv 2 f 0; 1g; v 2 V;(i; j ) 2 Ev (2.31)

The objective function, Eq. (2.1), sums up to the cost of all vehicles given corre-
sponding costs from their cost matrix. Costs could be variable per distance, weight,
�xed and/or related to stops made. Loads not transported will be penalized with
costs and the aim is to minimize the sum of all these costs. Eq. (2.2) is a constraint
to ensure that a load is picked up once and only by one vehicle or not picked up at
all. Eqs. (2.3) to (2.6) govern the 
ow of the orders served by a vehicle, and takes
care that when a node is visited it is also left, controls departure and arrival and
ensures delivery of picked up orders respectively.

The weight on a vehicle during pickup and delivery is managed by Eqs. (2.7)
to (2.8). The constraint represented by Eq. (2.9) ensures the weight does not exceed
the vehicles capacity.

The next constraints Eqs. (2.10) to (2.12), ensures the same as the weight con-
straints for volume, that each load is increased by the volume of the order at pickup,
that the volume is decreased at delivery and that the volume at any node does not
exceed the capacity of the vehicle.

It follows from constraint Eq. (2.13) that within a certain factory, if you travel
between two nodes, the number of docks you have visited should always be increased
by one. The next constraint on factories Eq. (2.14), ensures that any node visited
in a factory cannot exceed the docking limit. Then Eq. (2.15) makes sure that the
docking number is correct when a vehicle is entering a factory for the �rst time.

Constraint Eq. (2.16) ensures only one time window is used per node, and
Eqs. (2.17) to (2.18) says that the time a node is visited has to be within the
lower and upper bound of the time window. Then constraint in Eq. (2.19) ensures
that the travel from one node to the next is appropriately increased by the travel
time between them. Finally Eq. (2.20) ensures that the delivery is after the pickup
of an order.

From Eq. (2.21) we have that for each vehicle, the sum of the total distance
variables has to be equal to the total travel distance of that vehicle. The constraint
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from Eq. (2.22) ensures that the maximum weight variable for a vehicle is corre-
sponding to the highest amount of weight transported by that vehicle. Constraint
Eq. (2.23) ensures that for each vehicle the total distance variable can only exist in
the appropriate distance interval. The same is the case in Eq. (2.24) for maximum
weight in the appropriate weight interval. Finally Eq. (2.28) says that if a vehicle is
not leaving its origin node, there cannot be a cost interval binary for that vehicle,
which in turn ensures that we do not calculate the �xed costs of said vehicle.

Constraints from Eqs. (2.26) to (2.31) de�ne the type and range of each variable.
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Chapter 3

Solution Methods

This chapter will present known solution methods to pickup and delivery problems.
In Section 3.1 we present exact approaches commonly used to solve smaller instances
of PDP problems. The results from Chapter 5 made it clear that an exact approach
would not be a realistic solution approach to our problem. We therefore look at meta-
heuristic approaches in Section 3.2 which gives near optimal solutions in shorter
times than exact approaches. The model presented in Chapter 4 is a meta-heuristic
approach to solve the 4th Party Logistics Problem.

3.1 Exact Approach

An exact approachis an algorithm that always return the global optimal solution.
To ensure this, the algorithm might have to visit most, or all of the solutions in
a solution space. For problems that are NP-hard, this will lead an algorithm to
become very slow when increasing the size of the instance.

There exist many di�erent exact approaches, but in this section we will give an
overview over the best known approaches,branch-and-bound, branch-and-cut and
branch-and-price, Costa et al. (2019). We introduce these approaches to give a
broader understanding of how an exact approach work and explain why we have
chosen a di�erent solution method, meta-heuristics, in this thesis.

Branch-and-Bound has been utilized as an exact approach when solving NP-
hard problems. Among the most general approaches to the solution of constrained
optimization problems is that of \branching-and-bounding". Like dynamic program-
ming, branching-and-bounding is an intelligently structured search of the space of
all feasible solution Lawler and Wood (1966). The main idea is to traverse branches
in a tree and bounding the tree while traversing to avoid visiting the whole solution
space.

Figure 3.1 shows the logic of the branch-and-bound algorithm when solving a
travelling salesman problem (TSP). The numbers in each node are calculated by
traversing the path indicated by the node title and then calculating the minimum
spanning tree (MST) of the root node, the leaf node and any unvisited node. This
ensures that no shorter complete route can be found when traversing this path.
As an example, traversingabd gives the cost 11. The MST of the nodesa (root),
c(unvisited) and d(leaf) is 7 which gives the node value of 18. The lower bound
from traversing the �rst leg in this position is 21, meaning the algorithm moves
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Figure 3.1: The �gure shows the branch and bound algorithm on a TSP problem. The TSP
instance is the left part of the �gure and the tree represent the branch and bound logic while
traversing a tree. The algorithm gets the bounds 21 after traversing the �rst leg and then 14,
after visiting the third branch. The bound is calculated using MST on leaf and root node with
the remaining nodes. The remaining branches, ac and ad, reaches the bound and are therefore not
explored further.

on to calculate the full route abdca. The whole solution space in this case is 16
nodes, however, as we see from Fig. 3.1, branch-and-bound only visits 12. Branch-
and-bound therefore guarantees an optimal solution without traversing the whole
solution space. For more details on the branch-and-bound solution approach we
refer to Morrison et al. (2016) who did a survey of recent research advances in the
design of branch-and-bound algorithms.

Branch-and-cut refers to a combination of the branch-and-bound andcutting
planesmethod. As we have just seen, branch-and-bound is checking every solution
in a tree unless a bound is reached. The cutting planes method helps by tightening
the linear programming relaxations. This means that it tries to cut o� any infeasible
solutions from the solution space.

Figure 3.2 represent the graph from solving the following linear program:

min x + y (3.1)

s.t.

2x + y � 2 (3.2)

� x + 2y � � 2 (3.3)

x; y 2 Z (3.4)

The orange and purple lines represent the constraints. The blue area represent
the solution space satisfying Eq. (3.2) and Eq. (3.3). The black dots in Fig. 3.2
represent feasible integer solutions, and the red line represent the optimal objective
value. The green line shows a plane cut given by adding Eq. (3.2) to two times
Eq. (3.3):

2x + y + 2( � x + 2y) � 2 + 2(� 2)

5y � � 2

y � �
2
5

since y is integer! y � 0 (3.5)
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Figure 3.2: The �gure shows how the cutting plane algorithm works for Eq. (3.1). The red
line represent the optimal value. The orange and purple lines represent the constraints. The blue
shaded area represent the solution space under the constraints. The green line represent a cut.

This means that we can cut away a part of the solution space because values of
y < 0 are not feasible in our problem. To translate this to our tree from Fig. 3.1,
this would mean that even though a branch would be within the bound, we would
still not visit it because it would be infeasible. For further details on the branch-
and-cut approach we refer to Qiu et al. (2018) who present a mixed integer linear
programming model of the multi-product multi-vehicle production routing problem.

Branch-and-price is another technique that combines branch-and-bound with
column generation. Ford Jr and Fulkerson (1958) used this technique to solve a multi
commodity maximum 
ow problem. Branch-and-price is trying to split the problem
into a master and a sub problem. The idea is to identify which variables have a
negative reducing cost, assuming that most of the variables will be set to 0.

Figure 3.3 illustrates the branch-and-price algorithm. It shows how we go from
an original problem to a reformulated master problem, typically by using what is
called the Dantzig{Wolfe decomposition. Then a restricted version of the master
problem (RPM) is solved with linear programming relaxation. The duals from the
RMP is passed to the sub-problem, often referred to as the price-problem, and if any
columns (column generation) with negative reduced cost are found it will be added
to the RPM again and repeated until no negative reduces costs can be found. If the
solution is integral, the minimum is found. If not, branching will occur. Further
details on the branch-and-price algorithm can be found in Casazza et al. (2018) who
implemented a branch-and-price algorithm exploiting column generation procedures
to solve a pickup and delivery vehicle routing problem with split pickup and delivery.

In Chapter 2 we formulated a mathematical model of our 4PLP. Mathematical
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Figure 3.3: The �gure shows the branch-and-price algorithm.

models can be given to modeling tools like AMPL (A Mathematical Programming
Language), which utilizes commercial solvers to �nd the global optimal solution to
our problem. AMPL is a program that solves general mathematical problems, and
therefore it is not as e�cient as an implementation of an exact approach. But it
gives us an idea of how quickly the running time will increase with the instance
size in an exact approach. We used AMPL to solve the mathematical formulation
of our problem in Section 5.4.1. For instances larger than 12 orders we were not
able to �nd optimal solutions in ten thousand seconds. This indicated to us that
implementing an exact approach to our problem will not be able to solve realistic
sized instances. This has lead us to search for a (meta) heuristic approach to solve
our 4PLP. The next section will present di�erent meta-heuristic approaches used to
solve VRP.

3.2 (Meta)-Heuristic Approach

De�nition 3.1. A meta-heuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic opti-
mization algorithms S•orensen and Glover (2013).

A meta-heuristic is therefore by de�nition a very open way of approaching a
problem and many di�erent methods have been developed in the last few decades.
The most notable meta-heuristics include (adaptive) large neighbourhood search,
Tabu Search, Simulated Annealing, Genetic Algorithm, Variable Neighbourhood
Search and ant colonization, among many more. The term meta-heuristic was �rst
used by Glover (1986) when he coined it, as well as Tabu Search which he combined
with arti�cial intelligence strategies to build a framework for integer programming.
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Figure 3.4: The �gure illustrates how intensi�cation, in blue, and diversi�cation, in green, works
while exploring a solutions space.

For a meta-heuristic algorithm to be e�cient it has to be able to generate new
solutions that are likely to improve on previous/existing solutions. At the same time
it has to be able to cover the most important parts of the solution space where the
global optimum may be found as well as being able to escape a local optimum. In
other words a good meta-heuristic approach requires a good balance between two
important principles intensi�cation and diversi�cation , Blum and Roli (2003). A
good balance between these principles will help ensure a near global optimal solution.

Figure 3.4 illustrates how diversi�cation and intensi�cation are working on a
solution space. By intensi�cation we refer to a meta-heuristics ability to focus the
search on a local region with a good solution in it. Too much intensi�cation will lead
the algorithm to be trapped in a local optima and will make it nearly impossible to
�nd a global optimal solution.

Diversi�cation refers to a meta-heuristics ability to explore the solution space on
a global scale by generating diverse solutions.

Too much diversi�cation will lead to a random search that will make it hard
for the algorithm to converge to a local optima, and it will slow down the overall
search performance. Too little diversi�cation could cause a problem ofpremature
convergence. Premature convergence means that the heuristics are converging to
quickly on a certain part of the solution space and therefore getting stuck in a local
optimum. Pandey et al. (2014), Rocha and Neves (1999) looked at di�erent ways
of preventing premature convergence in Genetic Algorithms. We will use what we
refer to as a Wild Escape Algorithm in Section 4.8 to avoid getting stuck in a part
of the solution space, and we will start our model by generating an empty initial
solution in Section 4.3 also to avoid this problem.

Local search heuristics or hill climbing are heuristics which involve applying
a simple neighbourhood heuristic to a given solution a repeated amount of times
until no improvement can be found. By neighbourhood we refer to the solutions
reachable by applying the given heuristic to a solution.

Algorithm 1 shows an implementation of the local search or hill climbing algo-
rithm. The algorithm is given a starting solution s0 and a neighbourhood heuristic
h as input. Applying the neighbourhood heuristich to a solution s i.e. h(s) gives
all the neighbouring solutionssN to s. The heuristic starts by going into a loop
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Algorithm 1 Local Search

1: function LS(solution s0, Neighbourhood heuristich)
2: solution s  s0

3: done false
4: while done= false do
5: solution sN

best  s
6: for sN 2 h(s) do
7: if f (sN ) < f (sN

best) then
8: sN

best  sN

9: if s = sN
best then

10: done true
11: else
12: s  sN

best

13: return s

and for each neighbor ofs it checks if it has found a new best neighborsN
best. As

long as it can �nd a newsN
best it can move \up-hill". It will continue to do so until

no improvement can be found, i.e.s = sN
best. This means we have found a local

optimum.
Nanry and Barnes (2000) and Li and Lim (2003) implemented local search al-

gorithms that performed simple neighbourhood operations such as moving an order
from one vehicle to another, or swapping two orders with each other. We imple-
mented two heuristics in Section 4.4.1 and Section 4.4.2 which are performing small
e�cient intensi�cation moves inspired by these heuristics.

Lin (1965) implemented a 2-opt local search heuristic for the travelling salesman
problem. The 2-opt heuristic can generate any solution in a TSP including the opti-
mal solution. This inspired us to implement our own 2-opt heuristic in Section 4.4.3.
The 2-opt heuristic focuses on one vehicles routes neighbourhood through several
iterations and ends up returning the local optimum for that vehicle route.

The local search heuristic only focuses on intensi�cation. This leads it to get
stuck in a local optimum without the possibility of getting away. The solution to
this problem will be to introduce diversi�cation.

Kirkpatrick et al. (1983) implemented aSimulated Annealing (SA) algorithm
applied to the travelling salesmen problem. Simulated annealing helps to diversify
a local search by sometimes accepting worse solutions based on a temperatureT.

Algorithm 2 shows how SA extends the local search by not only accepting the
neighbouring solutions that have a better objective functionf (sN ) < f (sbest), but
also accepting any solution as a current solutions0 with a probability e

� � E
T . The

temperature T is on acooling down scheduleand the longer the search goes on the
lower the chances of acceptance becomes. The algorithm �nishes when the temper-
ature has cooled down fromT0 to Tf . Before a cool down proceeds, the algorithm
searches form iterations. To diversify our search algorithm the SA algorithm has
inspired us to use an acceptance criteria based on a cooling schedule in Section 4.7.

The Tabu Search (TS) implemented by Glover (1986) uses a memory, or a tabu
list, which remembers parts of the search which are then being cut o�, or tabu'ed.
This type of behavior helps the algorithm to diversify and avoid searching in a cycle
by performing the same type of moves again and again.
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Algorithm 2 Simulated Annealing

1: function SA(solution s, h, T0, Tf ,cooling c, iterations mi )
2: solution sbest  s
3: solution s0  s
4: temperature T  T0

5: repeat
6: repeat
7: pick a neighbour solutionsN from h(s0)
8: calculate � E = f (sN ) � f (sbest)
9: if � E < 0 then

10: sbest  sN

11: s0  sN

12: else
13: Accept s0  sN with probability p = e

� � E
T

14: until mi iterations reached
15: DecreaseT according to cooling schedule
16: until T = Tf

17: return sbest

The Tabu Search algorithm, described in Algorithm 3, has a listTL which ele-
ments are tabu. The algorithm searches the neighbourhood of the best solutionsbest

and keeps the best element not contained in the tabu list. It then updates thesbest

and the TL with sN
best. This procedure continues until a stop condition is met. We

have chosen to remember which solutions we have visited and not rewarding this
type of behavior in our adaptive weights in Section 4.6.

Large neighbourhood search (LNS) was introduced by Shaw (1997) and this
meta-heuristic diversi�es by removing and reinserting a certain amount of ordersq
in each iteration. Our implementation is inspired by the framework used by LNS.

Algorithm 4 shows a pseudo-code of the LNS algorithm which is given a starting
solution s. First the algorithm updates the best solutionsbest as the givens. It then
goes into a loop which runs until a stop condition is met. Here it selects a number
of orders q to remove from the current solutions0. The algorithm then inserts
the removed orders back into the current solutions0. The removal and insertion
procedures are selected separately. The amount of ordersq is in
uencing if the
algorithm will perform a very diversi�ed action or a very intensi�ed operation. In
our model we have chosen to let the heuristics choose how many orders to operate
on between a certain interval [1; ::m] wherem is 10% of the total amount of orders.
We believe this will let our heuristics have a good balance between intensi�cation
and diversi�cation.

After removing and inserting orders, thesbest is updated if the new solution
results in a better objective value. Then the solutions is updated if the solution is
accepted. Shaw (1997) chose to accept solutions that are better than the current
one. We will use the SA acceptance criteria mentioned above.

Ropke and Pisinger (2006) implemented a version of the LNS calledAdaptive
large neighbourhood search . He changed the LNS to adapt its-self by keeping
track of the performance of each heuristic.

The ALNS algorithm psuedo-code is summarized in Algorithm 5. The di�erence
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Algorithm 3 Tabu Search

1: function TS(solution s, h, max sizems)
2: solution sbest  s
3: empty tabu list TL

4: add s to TL

5: repeat
6: SN  h(sbest)
7: sN

best  �rst element in SN

8: for s0 2 SN do
9: if not TL .contains(s0) and f (s0) < f (sN

best) then
10: sN

best  s0

11: if f (sN
best) < f (sbest) then

12: sbest  sN
best

TL .push(sN
best)

13: if jTL j > m s then
14: remove �rst element ofTL

15: until stop condition met
16: return sbest

Algorithm 4 Large Neighbourhood Search

1: function LNS (solution s)
2: solution sbest  s
3: repeat
4: s0  s
5: select number of orders to removeq
6: removeq orders froms0

7: insert removed orders ins0

8: if f (s0) < f (sbest) then
9: sbest  s0

10: if accept(s0; s) then
11: s  s0

12: until stop condition met
13: return sbest

between ALNS and LNS is that the ALNS usesselection parameterswith adaptive
weights to let the algorithm decide its self which of the heuristics to use for removal
and insertion of the orders. ALNS have inspired us in Section 4.6 to use adaptive
weights to allow our model to automatically keep a good balance between which
heuristic it uses.

This chapter illustrates the importance of a good balance between intensi�cation
and diversi�cation in the chosen solution method. The proposed solution method,
which we call the 4th Party Logistics Optimizer, is using a combination of these
concepts to solve the 4PLP. The complete model is explained in detail in the next
chapter.
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Algorithm 5 ALNS

1: function ALNS (solution s, removal heuristics, insertion heuristics)
2: solution sbest  s
3: repeat
4: s0  s
5: select removal and insertion heuristics based on selection parameters
6: select a number of orders to remove,q
7: removeq orders froms0

8: insert the removed orders ins0

9: if f (s0) < f (sbest) then
10: sbest  s0

11: if accept(s0; s) then
12: s  s0

13: update selection parameters
14: until stop condition met
15: return sbest
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Chapter 4

A 4th Party Logistics Optimizer

This chapter explains the setup of our model, the fourth party logistics optimizer
(4PLO). The �rst Section 4.1, describes the meta-heuristic approach and explains
the overall algorithm of our optimization model. The following Sections 4.2 to 4.8
go more into detail on the di�erent parts of our 4PLO model.

Section 4.2 explains how we have represented a solution in our model and what
a vehicle schedule is. Section 4.3 explains how we have chosen the initial solution.
Section 4.4 presents each of the heuristics included in the basic version of our model.
Section 4.5 shows how our model is choosing a heuristic in a given iteration. Sec-
tion 4.6 explains how we made our model adapt the choice of heuristic throughout
the iterations using historical data. Section 4.7 shows how we accept solutions, even
when they are not improving the current objective function. Section 4.8 presents
the wild escape algorithmdeveloped for our model to diversify the search for a global
optimum.

4.1 Model Overview

A brief pseudo-code of our implementation of the 4th party logistic optimizer is
described in Algorithm 6.

The algorithm starts by picking an initial solution s, and then moves into a
loop where it picks a heuristich and applies it to to the current solution, in each
iteration. It then updates the best solution by checking if the objective function value
f (s0) is better than then current best f (sbest). After which it updates the current
solution based on the result of an accept function,accept(s0; s), which evaluates the
acceptance criteria described in Section 4.7. The algorithm stops when the stop
condition is reached. We have used a stop condition of ten thousand iterations in
this thesis. At the start of the loop it checks if an escape condition is met where
it will run the algorithm from Section 4.8 on our current solution s. The escape
condition is true if we have not found a new best solutionsbest in �ve hundred
iterations.

In the following sections we will go more into detail on each part of the model.
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Algorithm 6 4th Party Logistic Optimizer

1: function 4PLO (A set of heuristicsH)
2: generate initial solution,s
3: solution sbest  s
4: iterations since best solution foundi  0
5: repeat
6: if i > escape condition then
7: apply wild escape algorithm from Section 4.8 tos
8: s0  s
9: select a heuristic,h 2 H based on selection parameters

10: apply heuristic h to s0

11: if f (s0) < f (sbest) then
12: sbest  s0

13: if accept(s0; s) then , see Section 4.7
14: s  s0

15: update selection parameters and escape condition
16: until stop condition met
17: return sbest

4.2 Solution Representation

In order for our model to be able to apply (sub-)heuristics on a solution, we need to
decide on how we present a solution so that the model can interpret what a solution
is and how to di�erentiate it from another solution. Choosing a goodsolution
representationis therefore an important part of the algorithm. There are many ways
to represent a solution, matrix, binary matrix and permutation. A way to represent
our solution could be in a matrix, where each row represents avehicles schedule(a
vehicle schedule is de�ned in Chapter 2). However this would require more memory
and could lead to more iterations than necessary when checking a solution. To save
memory and e�ciency in our model we will be using a permutation as a solution
representation in this thesis, where eachvehicles scheduleSv will be separated by a
0. We separate with a 0 as each orders pickup and delivery will be represented by
a real number.

Figure 4.1 shows an example of a solutions, with 5 orders and 3 vehicles. Each
vehicle schedule indicates in which order a pickup and delivery should follow. The
�rst time an order number appears refers to the pickup (highlighted as dark green
and marked with * in the �gure). The second time the same order number appears
is referring the delivery, red tiles marked with ' in the �gure. As an example,
vehicle 3's vehicle scheduleS3 indicates it should �rst pick up the order 4 and then
delivering the order right after. The same goes for vehicle 1 whereS1 indicates �rst
the pickup of order 5, then the pickup of order 3 and then the delivery of order 3
and 5 respectively.S2 is an example of an empty vehicle schedule.

The �nal part of the solution representation, Sdummy , shows a vehicle schedule
that represents the orders that have not yet been assigned to a vehicle. In this
chapter we will continue to refer tos as a solution and Sv as a vehicle schedule
represented as above.
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Figure 4.1: Example of a solution representation of an instance with 5 orders and 3 vehicles. A
vehicle schedule, represented bySv , contain information for each vehicle v, on which and in what
order a vehicle should pick up and deliver orders. The dark green tiles, also indicated with a *,
represent a pickup, the red tiles, also indicated with a ', represent a delivery. The 0 tiles separate
each vehicle schedule. The complete permutation represent our solution representations. The last
scheduleSdummy , represent the orders that have not yet been assigned to a vehicle.

4.3 Initial Solution

We mentioned premature convergence in Chapter 3, that can lead to a problem of
getting stuck in a certain part of the solution space. To avoid this problem we have
chosen to start with an initial solution s where no orders are assigned to any of the
vehicles, i.e. all orders are assigned to the dummy vehicleSdummy . Not only does
this contribute in avoiding the problem of premature convergence, it is also e�cient
in terms of running time. On top of that we design our model to be able to adapt
to the problem on its own, regardless of the initial solution.

4.4 Heuristics

In each subsection of this section, we present the (sub-)heuristics used by our model.
The �rst two heuristics Sections 4.4.1 to 4.4.2, are focusing on diversi�cation. They
try to shu�e a random part of the solution, to search for new solutions regardless of
their objective value. The third heuristic is focusing on intensi�cation and searches
for improvements in the solution.

Removal and reinsertionheuristics are well researched tools when solving PDP's,
Korsvik et al. (2011), Ropke and Pisinger (2006), Shaw (1997), Sze et al. (2016). The
last four heuristics, Sections 4.4.4 to 4.4.7, are heuristics partly inspired by known
removal and reinsertion heuristics and partly developed in this thesis. Each of them
contain one heuristic for removing elements from a solutions and one heuristic
for reinserting them back into the solution. They are not chosen separately as
in Ropke and Pisinger (2006), Shaw (1997). These heuristics are used partly for
diversi�cation, and partly for intensi�cation depending on the number of solution
elements,q, being reinserted.

4.4.1 Swap

This Swap heuristic tries to exchange the pickup and delivery of two randomly
selected orders until it �nds a feasible solution. Figure 4.2 illustrates a successful
swap between two orders in a vehicle schedule.
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Figure 4.2: A swap heuristic performed on a vehicle schedule with three orders. The numbered
nodes indicate the location of an order and the letters P and D indicate pickup and delivery
respectively, 1P is therefore the pickup location of order 1. Emphasized numbers in the vehicle
schedule are selected by the heuristic.

Figure 4.3: A 3-exchange heuristic performed on a vehicle schedule with three orders. The
numbered nodes indicate the location of an order and the letters P and D indicate pickup and
delivery respectively, 1P is therefore the pickup location of order 1. Emphasized numbers in the
vehicle schedule are selected by the heuristic for the exchange.

This heuristic is e�cient in terms of running time and jumps randomly around
the solution space. It is only working on two orders at a time but it is helping to
diversify the search since it is not trying to �nd any improvement in the solution.

4.4.2 3-Exchange

The 3-exchange heuristic selects a random vehicle with at least two assigned orders,
and performs an exchange of 3 randomly selected indices in the vehicle schedule until
a feasible new combination is found or a certain number of iterations has passed. A
3-exchange of index position 2, 4 and 6 in a vehicle schedule is illustrated by Fig. 4.3.

This heuristic is e�cient in terms of running time, as the exchanges are fast
operations and checking if a vehicles schedule is feasible, compared to a whole so-
lution, is an e�ective operation. Like the swap heuristic from the previous section
this heuristic jumps randomly around the solution space and is therefore helping to
diversify the search.
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Figure 4.4: One 2-opt heuristic operation performed on a vehicle schedule with three orders.
The numbered nodes indicate the location of an order and the letters P and D indicate pickup and
delivery respectively, 1P is therefore the pickup location of order 1. Emphasized numbers indicate
the sub part of the vehicle scheduleSv; ( j +1) ;k , from index (j + 1) tokofvehiclev; beingreversed:

4.4.3 2-Opt

The 2-opt heuristic is used in meta-heuristics to solve vehicle routing problems.
Englert et al. (2007, 2014) and Lin (1965) implemented the 2-opt heuristic for trav-
elling salesmen problem and Bullnheimer et al. (1999) combined 2-opt with the ant
system meta-heuristic. Also Barth�elemy et al. (2010) implemented a meta-heuristic
approach for the clustered VRP using the 2-opt heuristic to improve a local search.
The 2-opt heuristic used in this thesis is inspired by the heuristic from Carrabs
et al. (2007). Figure 4.4 illustrates one iteration of our 2-opt heuristic performed on
a vehicle schedule.

Algorithm 7 2-opt Heuristic

1: function 2-opt
2: select random vehiclev with jSv j > 2
3: vehicle scheduleSv

4: repeat
5: Sbest  Sv

6: n  j Sv j
7: for j = [1; 2; ::; n] do
8: k  j + 1
9: for k = [ j + 1; j + 2; ::; n] do

10: current vehicle scheduleS0
v  S0

v;0;j + reverse(S0
v;(j +1) ;k )+ S0

v;(k+1) ;n

11: if f (S0
v) < f (Sbest) then

12: Sbest  S0
v

13: Sv  Sbest

14: until no further improvement found
15: return Sv

The heuristic is described in Algorithm 7 and it starts by selecting a random
vehicle with more than 2 orders. For the selected vehicle it divides up the vehicle
scheduleSv in 3 parts, S0i , Sij and Sjn , wheren = jSv j. It does this for all possible
combinations of 0< i < n and i < j � n. All orders up until the index i , as well as
orders from the indexj + 1 until the end of the vehicle schedule, are left unchanged.
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Then the orders from the indexi + 1 until index j are inserted in reverse order. If
the new vehicle scheduleS0

v has a smaller cost than the best vehicle scheduleSbest,
it is remembered as the new best vehicle schedule. After all iterations the best
vehicle scheduleSbest is selected as the newSv. This operation is continued until
no improvement can be made forSv i.e. the best possible schedule for the selected
vehicle has been found. This heuristic is not as e�cient, in terms of running time, as
Swap and 3-exchange, but it improves a given vehicle schedule as much as possible
with 2-opt operations.

4.4.4 Random Fit

A certain degree of \randomness" is important in heuristics, as shown by Drias
(1999) who experimented with degrees of random noise in di�erent meta-heuristics.
Only focusing on improving a given solution could lead our algorithm to always
explore similar parts of a solution space. This would result in a less robust algorithm.
Therefore we decided to make one remove and reinsert heuristic that does not have
any speci�c priorities but rather moves around the solution space randomly.

Algorithm 8 Random Fit Heuristic

1: function RandomFit (solution s)
2: select the number of orders to reinsert,q
3: solution s0  s
4: removeq orders froms0

5: set I  removed orders
6: for z 2 I do
7: repeat
8: choose random vehiclev
9: choose random position in vehicle scheduleSv

10: insert z in Sv

11: until feasible vehicle schedule found
12: update s'
13: return s'

Algorithm 8 shows the pseudo-code for our Random Fit heuristic. It starts by
selecting a random number of ordersq, which it will remove and reinsert. Then it
selectsq random orders and removes them from the solution. We have chosenq
between 2 orders and 10% of the number of orders in the instance. The heuristic
selects a random vehiclev and inserts the removed orders in its vehicle scheduleSv

randomly until a feasible vehicle schedule is found. It then updates the solutions
with the Sv. This heuristic is used for diversifying the solution and is trying to
search for possible solutions regardless of the cost they produce. The remove and
reinsertion heuristics are not expected to be as e�cient as the heuristics presented in
Sections 4.4.1 to 4.4.3 in terms of running time. But in comparison to other remove
and reinsertion heuristics, this one should be more e�cient as it is not searching for
a speci�c improvement of the solution, but rather returns the �rst feasible.
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(a) Cohesion (b) Separation

Figure 4.5: The �gures show the cohesion and separation e�ect illustrated respectively by the
red and yellow lines. The green node represent locationi and a is its cluster. The cluster b is the
cluster with the minimum average distance to i .

4.4.5 Clustering

Section 1.1 illustrates how a typical 4PL customer typically has its factories and
suppliers structured in clusters around a city or in a country. We refer to a cluster
here as a certain set of locations in close proximity to one another in relation to
other locations. Since we suspected that locations are likely to form clusters, this
led us to try to build a heuristic which considers clusters as a factor when removing
and reinserting an order in a vehicle schedule. Orders with delivery and pickup
locations from di�erent clusters, served by the same vehicle, should be removed. In
the same way orders that are being delivered from and to similar clusters should be
bundled together on the same vehicles.

To build a heuristic which takes advantage of this we have to determine the size
of the clusters in an instance and divide up the locations in their corresponding
clusters. The next two paragraphs will explain the methods we have used to solve
this problem, before we go into detail on how our Clustering heuristic is working.

The Silhouette Coe�cient

To decide which pickup and delivery locations belong to which cluster we �rst needed
to �nd how many clusters we should have. Kaufman and Rousseeuw (1990) intro-
duced an e�cient way to compare clusters of di�erent sizes by calculating what they
call a Silhouette Coe�cient . Reddy and Vinzamuri (2018) did a survey of partitional
and hierarchical clustering algorithms and considered the Silhouette Coe�cient as a
viable method to estimate the number of clusters. The coe�cient is calculated based
on two aspects, cohesion� i and separation� i of a node (or in our case a location)i .
Together these aspects make out the Silhouette� i .

Figure 4.5 illustrates the cohesion and separation of a green nodei part of clus-
ter ai 2 [1; 2; ::; k] where k is the number of clusters,ai represent the index of the
cluster for nodei . The cohesion� i is the mean of the distances,dij , from i to all
other nodesj 2 � ai where� ai is a set containing all nodes in clusterai . The separa-
tion � i is the minimum of the mean of the distances,dij from nodei to all the nodes
j 2 � aj in cluster aj , of all other clustersaj 6= ai . The two e�ects can be written as
follows:

� i =
1

j� ai j � 1

X

j 2 � a i ;i 6= j

dij (4.1)
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Figure 4.6: Each table represents a distance matrix between pairs of nodes, a, b, c and d. In
the �rst table, dbd marked in yellow is the shortest distance and therefore chosen to be part of the
same cluster. The new node, or cluster, (b; d) contain the shortest distances to the other nodes. In
the second table,dac is shortest and therefore put together in a cluster.

� i = min
b2 [1;2;::;k ]

b6= ai

1
j� bj

X

j 2 � b

dij (4.2)

The Silhouette Coe�cient � i for node i is then calculated as follows:

� i =
� i � � i

max� i ; � i
; if j� ai j > 1 (4.3)

� i = 0; if j� ai j = 1

Comparing the Silhouette Coe�cient of one clustering of sizek to another re-
quires that the nodes are divided into clusters. When comparing the Silhouette
Coe�cient we are calculating the average� i for all i 2 N . The cluster sizek with
the smallest value of average� i is the chosen cluster size by our algorithm. The next
section will explain how we decided the clustering for a given sizek.

Hierarchical single linkage clustering

To �nd the clustering of a given sizek, we used hierarchical single linkage clustering
algorithm Reddy and Vinzamuri (2018).

Figure 4.6 illustrates how the algorithm works for a set of nodesa; b; cand d. In
each iteration we choose the pair of nodes, or locations, with the smallest distance,
dij to be a part of a new cluster. The new distance matrix contain the shortest
distance from the merged nodes to any other node. The merging of nodes goes on
until we reach k number of nodes which then represent the clusters.

Removing and Inserting Elements based on Clusters

In the previous sections we described how we can compare clusters of di�erent sizes
and how to �nd the clustering for a given size. We used this in our model by running
a preprocessing algorithm that assigns each locationi 2 N to their corresponding
clusters where the sizek is decided by calculating the average Silhouette Coe�cient,
� i , for all i 2 N P and keeping the clusters with the lowest value of average� i . This
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means that before our model starts, each locationi 2 N is assigned a cluster index
ai and is contained in the cluster set� ai .

Algorithm 9 Cluster Heuristic

1: function Cluster (solution s, random selection degreep)
2: select the number of orders to reinsert,q
3: add orders to arrayA ascending based on cluster value� i

4: empty order setI
5: repeat
6: choose a random numbery between [0; 1]
7: remove the order in positionyp in A from s
8: add removed order toI
9: until jI j = q

10: while jI j > 0 do
11: sort I descending based on best possible� iv

12: remove �rst i from I
13: insert i in its best possible position ins
14: return s
15:

Algorithm 9 starts by selecting the number of orders to removeq. Then it sorts
all orders from the given solutions according to the cluster value� i where i is the
pickup location of the order. The cluster value of an order is calculated based on
the locations visited by the vehicle, that is which orders are bundled together on a
vehicle schedule. The idea of the cluster value is to evaluate how much an orderi is
\clustered" with other orders on a vehicle schedule. We can de�ne� i as:

� i =
j` iv j + j` (i + n);v j

2(jSv j � 2)
8 i 2 N P (4.4)

Here the set` iv contains all the locations visited by the vehiclev from the same
cluster � i as the pickup locationi , excluding i and/or i + n. The ` (i + n);v is a set
of all locations visited by the vehiclev from the same cluster� i + n as the delivery
location i + n, excluding i + n and/or i . The set Sv is the vehicle schedule for
vehiclev, i.e. jSv j is the number of locations visited and 2(jSv j � 2) is the maximum
possible \common" cluster locations thatj` iv j + j` (i + n);v j can contain. The resulting
� i will therefore be a value between [0; 1] where a high value indicates that orders are
highly \clustered", that is the locations of other orders on the same vehicle schedule
are within the same cluster. A value close to 0 indicate order locations are from
di�erent clusters.

To help explain how the� i works we refer to Example 4.4.1.

Example 4.4.1. A cluster value � i example.

� A vehicle scheduleS1 = (1 2 1 2 3 3) for vehicle 1

� Order 1 (i = 1) has a1 = 1 and a4 = 2.

� Order 2 (i = 2) has a2 = 2 and a5 = 3.

� Order 3 (i = 3) has a3 = 3 and a6 = 2.
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For order 1 (i = 1) each location, related to other orders (i = 2; 3), visited in
cluster a1 = 1, order 1 will be rewarded a point since its pickup is in cluster 1. Order
1 will also be rewarded 1 point for each location the vehicle visits in clustera4 = 2,
related to other orders, since its delivery is in cluster 2. The pickup of order 1 is in
cluster 1 which contains no pickup or delivery location of other orders, leading to
j`1;1j = 0. The delivery of order 1 is in cluster 2, which is the same cluster as pickup
location of order 2 (a2 = 2) and delivery location of order 3 (a6 = 2) and therefore
j`4;1j = 2. This leads to a cluster value� 1 = 0+2

2(4) = 2
8 . With the same logic, for order

2 the j`2;1j = 2 and j`5;1j = 1 and a cluster value of� 2 = 3
8 . Order 3 getsj`3;1j = 1

and j`6;1j = 2 and a cluster value of� 3 = 3
8 .

We divide by 2(jSv j � 2) to be able to compare the cluster value with orders on
other vehicle schedules.

In continuation of the explanation of Algorithm 9 it uses the cluster value� i

�rst to decide which orders to remove. It will remove the orders with the lowest
ranking, using some randomization, based on the parameterp. We choose to remove
the order on the positionyp in the ascending� i sorted list of orders, wherey is a
random number between [0; 1]. We have chosenp = 4 for all our heuristics.

To reinsert the orders, the algorithm sorts the removed orders based on� i . It
then inserts the orderi with the highest cluster value� iv in the best possible position
in s.

This algorithm is expected to perform quite similarly, in terms of running time,
to the remove and reinsert heuristics from Sections 4.4.6 and 4.4.7, meaning it will
be one of the more demanding heuristics used by our model.

4.4.6 Greedy

Removing orders in the most costly positions and reinserting it in its cheapest
(greedy) position seems to be a reasonable way of moving towards a better solu-
tion. We therefore propose a heuristic that removes the orders with the highest cost
CS

i 8 i 2 N P
i . The CS

i is calculated as the increase in a vehicles schedule cost with
the chosen order.

We remove orders based on the same randomness factor explained abovep. We
do this by �rst sorting the orders descending based on the costCS

i . The cost can be
calculated asCS

i = f (Sv) � f � i (Sv), for a given order i served by vehiclev, where
f (Sv) is the objective value, or cost, of vehicle scheduleSv. Here the � i indicate
that we calculate the cost of vehicle scheduleSv without the order i . We then choose
the order in the yp position.

To reinsert an order we sort the removed orders based on their minimum increase
in the objective value ci . The ci = min v2 V (� f iv ), were the � f iv represents the
di�erence (Delta) in objective function value f iv by inserting order i in the position
in v with the lowest increase in objective function value. Theci is therefore the
minimum of these increases. We insert the order in its best possible position in the
solution s.

This algorithm is expected to perform similarly with the heuristics from Sec-
tions 4.4.5 and 4.4.7, in terms of running time. This means it will be one of the
more demanding heuristics when it comes to running time. The greedy heuristic is

33



CHAPTER 4. A 4TH PARTY LOGISTICS OPTIMIZER

Algorithm 10 Greedy Heuristic

1: function greedy (solution s, random selection degreep)
2: select the number of orders to reinsert,q
3: add ordersi 2 N P in array A descending based on costCS

i
4: empty order setI
5: repeat
6: choose a random numbery between [0; 1]
7: remove the order in positionyp in A from s
8: add removed order toI
9: until jI j = q

10: repeat
11: sort I based on each orders minimum increase in objective valueci

12: insert the �rst order i from I in its best possible position ins
13: remove orderi from I
14: until jI j = 0
15: return s

=0

an intensi�cation search heuristic that tries to search for a local or global optimal
solution.

4.4.7 Similar Regret

The removal part of this heuristic is inspired by Shaw (1998)'s removal heuristic,
which is often used in removal and reinsertion heuristics Curtois et al. (2018), Ko-
rsvik et al. (2011), Ropke and Pisinger (2006). The heuristic removes orders that
share speci�c similar qualities. The basic idea is that replacing these orders by
each-other will �nd new, hopefully better, solutions. We de�ne arelatedness factor
r ij which represents how much the orderi is related to the orderj . The lower the
value of r ij the more the two ordersi and j are related. The relatedness of two
orders were based on the following properties in this thesis: a distance property, a
weight property, a property indicating if the same vehicles can be used to serve each
request, a property indicating if the orders belong to the same factory and �nally
an overlapping time window property.

The relatedness factor is given by the following equation:

r ij =  (D ij + D (i + n)( j + n))+ ! jQi � Qj j+ � (1�
jVi \ Vj j

max(jVi j; jVj j)
)+ �G ij + � (Uij + U(i + n)( j + n))

(4.5)
We have chosen the following values in this thesis = 0:7, ! = 1:0, � = 0:8,

� = 0:3, � = 0:3, which represent how much we value each property.
In Eq. (4.5) D ij and Qi are the same as in Chapter 2 and all values have been

normalised to result in a value between [0::1]. The setVi contain the vehicles that
can serve orderi . The parameterGij is 1 if i belong to another factory thanj and
0 if they belong to the same factory. TheUij is the time windows at the pickup and
delivery location corresponds to the portion of overlapping time windows divided
by the total span of the two time window sets. This resulting value will be in the
interval [0; 1]. Here a value of 0 would indicate no overlapping time window and 1
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would mean identical time windows and some overlapping time windows is scaled
in between these two. It can be formulated as follows:

Uij = 1 �
TO

ij

TA
ij � TNO

ij
(4.6)

Here Tip and Tip are the upper and lower time windows de�ned in Section 2.1.
The factor TO

ij consists of all the time windows where orderi overlaps with the time
windows from orderj . It can be written mathematically as follows:

TO
ij =

X

p2 � i
o2 � j

Tip � Tjo

Tjo � Tip

(min(Tip ; Tjo ) � max(Tip ; Tjo )) (4.7)

Here TA
ij represents the total span of the time window sets of locationi and j .

It starts from the �rst lower time window and ends on the last upper time window
of these locations. It can be formulated as:

TA
ij = max (max

p2 � i
Tip ; max

o2 � j
Tjo ) � min (min

p2 � i
Tip ; min

o2 � j
Tjo ) (4.8)

The factor TNO
ij is the opposite of the above factorTO

ij and represents the time when
neither i nor j have a time window. This can be exempli�ed by night time when no
factory is open. It can be formulated as follows:

TNO
ij =

X

p2 � i
o2 � :qj

Tip � Tj ( o� 1)

Tjo � Ti ( p� 1)

(min(Tip ; Tjo ) � max(Ti (p� 1); Tj (o� 1))) (4.9)

Therefore the dividend in Eq. (4.6) corresponds the intersection between the two
time window setsi and j . This ensures thatUij always stays between [0; 1].

Figure 4.7 illustrates howTO
ij TNO

ij , TA
ij and TA

ij � TNO
ij would be calculated for

two locations.
Thus the relatedness measurer ij is given a value 0� r ij � 2 + ! + � + � + � .

Algorithm 11 shows a pseudo-code of the complete Similar Regret heuristic. It
starts by removing a random orderi from the solution and adding it to a setI .
It then creates an array and adds all ordersj 62I to this array, before it sorts it
ascending based onr ij . It then selects the order with theyp highest relatedness
to remove froms and add to I . This continues until q orders have been removed.
The insertion part of this heuristic tries to improve on insertion algorithm from
Section 4.4.6 by calculating a regret value,c�

i . The regret value tries to predict the
\what if I insert later" value of an order i . If we let Si 1, Si 2 and Si 3 represent the
vehicle schedules with respectively �rst, second and third lowest insertion cost for an
order i 2 N P . That means � f Si 1 � � f Si 2 � � f Si 3 , where � represent the di�erence
in objective value f Sik by inserting order i in its k 2 [1; 2; 3] best vehicle schedule.
We can then de�ne the regret value as follows:

c�
i = � f Si 2 � � f Si 1 + � f Si 3 � � f Si 2 (4.10)
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Figure 4.7: The �gure shows two locations, 1 and 2, time window sets [T1p; T1p] and [T2p; T2p].
The purple TO

12 is the overlapping time windows. The red TNO
12 represents the time when no

location has a time window. The greenTA
12 represents the whole span of both time windows and

the yellow TA
12 � TNO

12 represents the intersection of the two time window sets.

Algorithm 11 Similar Regret Heuristic

1: function similarRegret (solution s, p)
2: select the number of orders to reinsert,q
3: select a random orderi from s
4: add i to order set I
5: repeat
6: add all ordersj 62I in array A ascending based on relatednessr ij

7: choose a random numbery between [0; 1]
8: remove the order in positionyp in A from s
9: add removed order toI

10: until jI j = q
11: repeat
12: sort I ascending based on regret valuec�

i
13: insert the �rst order z from I in its best possible position inSv

14: update s based onSv

15: remove orderz from I
16: until jI j = 0
17: return s
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The c�
i therefore represents the di�erence in inserting orderi in its best position

and its second best position plus the di�erence in inserting it in its second best
position and its third best position. In each iteration the heuristic chooses to insert
the order with the highestc�

i . The order will be inserted in its best possible position.
Ties were broken by choosing the order with the lowest insertion costci de�ned in
Section 4.4.6.

This algorithm is expected to perform similarly with the heuristics from Sec-
tions 4.4.5 and 4.4.6, in terms of running time. This means it will be one of the
more demanding heuristics when it comes to running time.

4.5 Choosing a Heuristic

We proposed several heuristics of di�erent classes in the previous sections, and one
could choose one of them and use them throughout the search. However we propose
to use all the presented heuristics, for now. In Chapter 5 we will reduce the number
of heuristics based on their performances in statistical experiments. The reason for
including several heuristics is that the swap heuristic from Section 4.4.1 could be
good for one type of instance, while the Similar Regret heuristic from Section 4.4.2
might be good for another type of instance. We think that alternating between
several types of heuristics gives us a more robust algorithm.

To select a heuristic in each iteration of Algorithm 6, we use aroulette wheel
principle. This means that we represent each heuristic by an indexh 2 [1; 2; ::; m]
where m is the number of heuristics. We select a heuristic with a probabilityph

calculated based on each heuristicsweight wh as follows:

ph =
whP m

g=1 wg
(4.11)

These weights could be set �xed per problem but we choose to use an adaptive
weight system explained further in the next section.

4.6 Adaptive Weight Adjustment

The weights from Section 4.5 can be adapted automatically by the algorithm. Ropke
and Pisinger (2006) implemented an adaptive weight system in a Large Neighbour-
hood Search algorithm. The basic idea is to keep track of the performance of each
heuristic through a scoring system. A heuristic is given a higher score for a better
performance and a low score for low performance. The loop in Line 5 in Algorithm 6
is divided into segments, or a number of iterations. Each segment in our algorithm
has 100 iterations. At the beginning of the algorithm, each heuristic is given the
same weights, resulting in equal probability in selecting each heuristic for the �rst
segment. Throughout a segment, each heuristic is rewarded points based on the
following system:

� Finding a new global best solution is given a high score to the heuristic for
that iteration.

� Finding a new solution that is better than the current solution gives a medium
score to the heuristic for that iteration.
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Figure 4.8: The �gure illustrates an example of the development of the heuristics weight proba-
bility ph when running our model. The x-axis represents a segment and the y-axis the probability
of selecting a heuristic.

� Finding a new solution that has not been found before is rewarded a small
score to the heuristic for that iteration.

After a segment, the sum of the scores for each heuristic are used to update the
weights. If we letwhg be the weight of heuristich in segmentg, as well as� h and � h

be the score and number of times the heuristich was run in the current segment,
then the update would be as follows:

whg = wh(g� 1) � + (1 � �)
� h

� h
(4.12)

The � represents here a historical weight factor which we have set to 80% mean-
ing we let the previous weight compose 80% of the new weight. The new weight is
then also composed of 1� � = 20% of the weight from the current segment

� h

� h
.

Figure 4.8 shows how the weight probabilitypi develops for �ve di�erent heuris-
tics in an example from our model. We observe that the probability starts out equal
but that some heuristics are getting higher weights after only a few segments. The
�gure also shows that we have put a lower limit to the probability to make certain
that every heuristic will be selected at least a few times during a segment.

4.7 Acceptance Criteria and Stopping Condition

When searching for a new solution we could choose to only accept solutions that
are better than the current one in Line 13 in Algorithm 6. By accepting we mean
that our model chooses the new solution as its current solution and continues the
search from there. However this could lead our model to get stuck and not be able
to explore the entire solution space Blum and Roli (2003). We have therefore chosen
the acceptance criteria used in simulated annealing, mentioned in Section 3.2. This
acceptance criteria is accepting a solution that is better than the current solution.
Furthermore it accepts a worse solution with the probabilitye�j f � f new j=T , where
T < 0 is the temperature,f is the objective value of the current solution andf new

is the objective value with the new solution. Thecooling schedule, which means the
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way at which T is decreasing, we use here was implemented by Crama and Schyns
(2003). That sets a certain starting temperatureTstart that decreases per iteration
with a certain cooling rate 0< c < 1. We wanted to letTstart depend on the problem
instance our model is trying to solve. Therefore we run 100 iterations with a �xed
acceptance rate ofa = 0:8. We calculate the average objective of all worse solutions
that are accepted over these iterationsf T

average. Then we use this to calculate the
�tting starting temperature as follows:

Tstart =
f T

average

ln(a)
(4.13)

The Algorithm 6 stops when a speci�ed number of iterations are reached which
we specify here as 10 thousand iterations.

4.8 Wild Escape Algorithm

Algorithms containing large neighbourhood search heuristics, such as our model, are
known to be good at searching locally as well as globally. However considering that
our model is more focused on intensi�cation, it could be that we end up getting
stuck in a part of the solution space. It is important that our algorithm is able to
react in these situations. In Algorithm 6 we see in Line 6 that if an escape condition
is ful�lled, we will run a Wild Escape function. We set the criteria that if we, for
500 iterations, do not �nd an improvement insbest, we will perform this action.

Algorithm 12 Wild Escape Algorithm

1: function wildEscape (solution s, sbest, set of heuristicsH)
2: repeat
3: choose a random heuristich from H
4: apply h to s
5: if f (s) < f (sbest) then
6: sbest  s
7: until stop condition met
8: return s

The algorithms pseudo-code is described in Section 4.8. The stopping condition,
in Line 7, is 20 iterations. The algorithm accepts any new solution found regardless
of the objective value to move as far away from the current solution as possible.
Lines 5 to 6 in Section 4.8 are saying that if we happen to �nd a better solution
sbest on our way out of the current solution space, we should remember it. We
still continue moving away from the current solutions in spite of �nding a new
sbest. The heuristics used by the escape algorithm are the heuristics random �t
from Section 4.4.4, 3-exchange from Section 4.4.2 and swap Section 4.4.1. The
heuristics have an increased size ofq to increase diversi�cation. We chose these
heuristics because they are not trying to improve the solution in any speci�c way
and select targeted solutions, but rather moves randomly around the solution space
for increased diversi�cation.
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Chapter 5

Experimental Results

This chapter presents the results from several experiments leading us to the �nal
composition of our 4th party logistics optimizer (4PLO). The �nal experiments
will compare the performance of our 4PLO model to a benchmark created by the
mathematical model from Chapter 2 implemented in AMPL .

We start by explaining the experimental setup of our testing in Section 5.1. Then
we will explain the instances we used in our experiments in Section 5.2.

Section 5.3 contains the initial experiments of our model which lead us to the
�nal composition of our model. The �rst part, Section 5.3.1, starts by testing the
Wild Escape Algorithm from Section 4.8 and it �nds that the Wild Escape Algo-
rithm outperforms a random restart and not using any escape algorithm. Then in
Section 5.3.2 we rank the heuristics performance and do ANOVA(III) and multi-
ple linear regressions of the heuristics described in Chapter 4. We �nd here that
three heuristics have a signi�cant positive in
uence on the result, the Random Rit
algorithm from Section 4.4.4, the Greedy heuristic from Section 4.4.6, and Similar
Regret heuristic from Section 4.4.7.

We continue our initial experiments in Section 5.3.3 with extended ANOVA(III),
multiple linear regression models and pairwise t-tests to evaluate if combining the
not signi�cant heuristics with the signi�cant ones from Section 5.3.2, can have a
signi�cant positive impact on the result. Here we �nd that the cluster heuristic
from Section 4.4.5 has a signi�cant positive in
uence on the best solution found.
We also �nd that the Swap heuristic from Section 4.4.1 has no signi�cant in
uence
on the result.

In Section 5.3.5 we present the �nal composition of our model which contain the
heuristics mentioned above as well as the Wild Escape algorithm.

The �nal part of this chapter Section 5.4 contains the evaluation of our �nal
model composition and compares the results from the mathematical model from
Chapter 2 with the results of our model. It also presents an evaluation of the per-
formance of the included heuristics. The results show that the proposed algorithm
is robust and e�cient.

5.1 Experimental Setup

In this section we describe the technical setup of the experiments as well as the
analytical setup of our experiments.
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Technical Setup

The computational experiments in this thesis are run on a 64-bit Ubuntu 18.04 com-
puter with a 1.8 Ghz quad core i7-8550u processor and 16GB RAM. In Section 5.2
we will describe an instance generator and this was implemented using Java SE JDK
version 11.0.4. The mathematical model from Chapter 2 is setup in AMPL IDE ver-
sion 3.5.0.201802211231, using the Gurobi solver version 8.1. Our proposed solution
method from Chapter 4 was implemented using Java SE JDK version 11.0.4. In
Sections 5.3.2 to 5.3.4 we will perform ANOVA(III), multiple linear regressions and
t-tests, which are performed in Matlab R2019a version 9.6.0.1174912.

Analytics Setup

To test our model from Chapter 4 we generated �ve instance sets, each containing
�ve instances of di�erent sizes, totally 25 instance. Each instance set is described
in Section 5.2. While testing the algorithm from Section 4.8, we used one of these
instance sets, ie. 5 instances. All tests were run 10 times and results are given as
an average and best objective value over the 10 runs as well as an average running
time. To analyse the performance of each of the heuristics in Section 5.3.2 and
Section 5.3.3, 5 reasonably sized instances (80 orders) were solved 10 times using
each of the 27 = 128 combinations of heuristics. Here we also try to determine which
of the heuristics in
uence the result by performing several statistical experiments,
including ANOVA (III) and multiple linear regression analysis, and pairwise t-tests.
For all statistical experiments in this thesis we have used a 95% con�dence interval.
After the analysis of the heuristics, a �nal composition was chosen for further testing
in Section 5.4. We then compared the performance of the �nal composition with
solutions found by the mathematical model in AMPL. We also present �gures which
show the performance of our selected heuristics in arbitrarily selected runs.

5.2 Instances

Many instance generators have been created for pickup and delivery problems. An
instance generator for the classical Pickup and Delivery Problem was implemented
by Li and Lim (2001). Later Hemmati et al. (2014) made an instance generator for
tramp shipping routing and scheduling problems. Our instance generator is created
based on real world data from an anonymous customer of 4
ow. In the following,
we will describe how we designed the generator and how we generated the instances
used in the analytical part of this thesis.

5.2.1 Generate Instances Based on Real World Data

The 4
ow data gives information about the number of ordersjN j, locations jL j,
factories jF j. The amount of vehiclesjV j are selected based on 4
ow data and are
in the bound betweenjN j=2 � j V j � 2=3jN j. We give jN j; jV j; jL j; jF j as input to
the generator.

In addition the data from 4
ow gave us information about the size of a vehicle
and its compatibilities. Some vehicles might have cooling possibilities, some orders
might require special equipment for transport, (for example breakable or explosive
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goods) or there might be equipment required at the pickup or delivery location
(for example a crane to unload goods). We refer to these capabilities as avehicle
requirement. Other information acquired by the data was travel distances and cost
structure.

In the following we refer to the mathematical symbols from Chapter 2. To keep
the instances feasible but still as realistic as possible it makes sense to limit the data
to ranges or pre-designed patterns. Our data was generated based on the following
possibilities:

� Orders are assigned to pickup and delivery locations randomly. Orders as-
signed to the same location are given the same stopL s.

� Each delivery location is independently assigned to a factory at randomN f .

� 5% of each order and location were on average given a vehicle requirement.
This will decide which vehicle can pickup which order,N P

v and N D
v .

� We let the vehicles types be split up in 3 di�erent vehicle types, small, medium,
large, each with expected capacities and capabilities.

{ Large vehicle: slow speed vehicle compatible with all locations and orders,
with Qkg

v = 24k and Qvol
v = 102.

{ Medium vehicle: medium speed vehicle and compatible with all locations
but not orders with vehicle requirements, withQkg

v = 18k and Qvol
v = 71.

{ Small vehicle: fast speed vehicle, not compatible with any vehicle require-
ments, with Qkg

v = 12k and Qvol
v = 55.

� The distancesdij are euclidean distances between the randomly generated
points described in the next paragraph.

� The travel time Tijv were scaled with 60% of the travel distance, added with
a random variation of += � 10% of the travel distance. The travel time also
depends on the speed of the vehicle mentioned above. Slow speed vehicles had
a 5% increase in travel time while medium speed had a 2:5% increase and fast
speed vehicles had no increase in travel time.

� The cost matricesCkm
v�� , Ckg

v�� , Cf ix
v�� were based on a real 4
ow cost matrix,

scaled to the size of the instance and to the size of the vehicle.

� The cost of not transporting an orderCi was set to a minimum lower bound
(the most expensive transport) and scaled based on the weight, volume and
distance of the order.

� The stop costsCstop
vi were calculated relative to the size of the vehicle and the

cost data from 4
ow.

� Time windows [Tip ; Tip ] were generated randomly based on typical factory
opening hours. Meaning, one to two time windows per day, and three to
seven days per week scaled based on the instance size.
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(a) Europe (b) Germany (c) Uniform

Figure 5.1: The �gure shows the area of random point generation for our instance generator.
For Europe and Germany, shaded areas indicate a possible location generation. Larger areas are
more likely to generate a point. Uniform means location points were generated using a uniform
distribution within the greyed area.

Random Locations Based on Real Geographical Data

Most of 4
ow's customers are based either in Germany or in Europe. To make the
instance generator as realistic as possible we have decided to split the instances into
3 geographical types; European, German and uniform geographically distributed
locations. We made 2 maps based on real scale approximations of geographical data
from National Geographics, in km. We have used to geographical points with an
elliptic uniformly distributed area surrounding the point to represent a country or a
city. Fig. 5.1 illustrates the areas of possible locations used in the generator. Larger
ellipses are more likely to be selected by the generator than smaller ellipses.

For the selected ellipse a point was selected within the ellipse at random with
a uniform distribution. For Fig. 5.1c points were generated at random within the
limits shown. From our 5 instance sets, two were generated using Fig. 5.1a, two with
Fig. 5.1b and one with the uniform distribution from Fig. 5.1c. If a point belong in
the same factory as a previously generated point, that point was generated within
a reasonable radius of three kilometer.

5.2.2 Generated Instances

For testing our algorithm, 5 instance sets of each 5 instances of varying sizes were
generated. We have numbered the sets as follows:

� Set 1 and Set 2 are generated based on the European map from Fig. 5.1a.

� Set 3 and Set 4 are generated on the German map from Fig. 5.1b.

� Set 5 is generated on the uniform distribution from Fig. 5.1c.

Each instance set contains representative instance sizes of our problem based
on data from 4
ow, 4; 12; 35; 80 and 150 orders using respectively 3; 7; 20; 45 and
80 vehicles and containing 7; 9; 22; 45 and 85 locations. The sizes of the instances
and the instance set number are shown for each result presented in the following
sections.
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Table 5.1: The table shows the results of running the 4PLO model, with all heuristics, using 3
di�erent reset algorithms. The columns contains in order: the �rst three columns show the instance
size in number of orders, vehicles and locations. Three columns that contain the average solution
from runs with the di�erent escape modi�cations follow: no escape, random reset and our Wild
Escape Algorithm. The next three columns contain the best solution found for the same three
escape modi�cations, and the �nal three columns contain the average running time in seconds for
the three escape modi�cations.

Average Objective Best Objective Running time (sec)
Initial No Random Wild No Random Wild No Random Wild

#Ord #Veh #Loc objective escape reset escape escape reset escape escape reset escape
4 3 7 609 680:3 3 444:7 3 444:7 3 444:7 3 444:7 3 444:7 3 444:7 0:18 0:20 0:20
12 7 9 1 023 745:5 149 692:6 154 832:9 149 692:4 149 692:4 149 692:4 149 692:4 0:39 0:51 0:46
35 20 22 2 682 067:9 10 639:1 10 849:5 10 350:9 10 404:9 10 358:6 10 025:1 2:31 1:61 2:49
80 45 45 6 422 128:6 22 262:2 25 802:9 21 377:4 20 761:2 21 777:4 20 831:3 15:89 8:05 14:97
150 80 85 12 059 380:3 40 667:2 38 313:0 35 705:7 34 316:0 34 345:0 34 282:3 88:21 48:92 77:78

5.3 Initial Results

In this section we present the results and observations from our initial experiments.
This data lead us to the �nal composition of our model. We have done this in 3 parts.
Section 5.3.1 contains the evaluation of our Wild Escape Algorithm. Then follows
Section 5.3.2 which is the initial evaluation of the heuristics. Finally Section 5.3.3
contains the further evaluation of the heuristics. Afterwards, in Section 5.3.5, we
will present the �nal composition of the model.

5.3.1 Evaluation of the Wild Escape Algorithm

To help our algorithm escape from a local optimum, we designed a Wild Escape
Algorithm described in section Section 4.8. To evaluate the implementation of this
algorithm we have decided to compare the result of running the complete model
from Chapter 4 including all heuristics, with three di�erent modi�cations. We ran
all modi�cations on instance Set 1. First modi�cation was that we ran the algorithm
without any escape algorithm, referred to asno escape. Secondly we ran the algo-
rithm with a modi�cation that resets the algorithm each time we get stuck in a local
optimum and then start from a new random solution, referred to asrandom reset.
Lastly, we ran our algorithm with our Wild Escape Algorithm. Comparing these
three options towards each other will help us evaluate if our Wild Escape Algorithm
is helping us in general and see if it is di�erent than doing a reset and just starting
from a new solution somewhere.

Results of Escape Modi�cations

We ran our algorithm 10x3 times, ten for each escape adjustment, on instance set 1
from Section 5.2. We modi�ed our escape algorithm on this run to ignore if a best
solution is found while moving from one neighbourhood to the next. This way the
extra iterations explained in Section 4.8, does not give any unfair advantage to our
Wild Escape Algorithm. We will simply be moving from one neighbourhood to the
next without checking if we �nd a better solution on the way.

The result from running our algorithm with these three adjustments are sum-
marized in Table 5.1. It shows the objective values found on average during each of
the 10 runs, the best solution found overall and the average running time, for each
escape adjustment.
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Observations of Results from the Escape Modi�cations

The Table 5.1 shows that on average our Wild Escape Algorithm clearly outperforms
both the restart algorithm and not including an escape algorithm. We see that the
average result for all instance sizes are lowest using our Wild Escape Algorithm.
In addition our algorithm outperforms the alternatives for all instances in �nding
the best solution, except for the instance with 80 orders, where not using an escape
algorithm ended up �nding a better best solution. This is however probably due
to the algorithm starting on one run in a good neighbourhood. Since the escape
algorithm is signi�cantly outperforming it on average we do not analyse this any
further.

With regards to the running time we observe the following pattern for the largest
two instances: the random restart is the fastest, followed by our Wild Escape Al-
gorithm, and lastly not using any escape algorithm. It is expected that the random
reset here outperforms the other modi�cation as we have generated the random so-
lutions before starting our algorithm. This gives random reset an unfair advantage
due to running time. Taking this into regards makes it clear that our Wild Escape
Algorithm outperforms the alternative modi�cations and should be included in a
�nal composition.

5.3.2 Initial Evaluation of Heuristics

Di�erent heuristics have di�erent strengths and weaknesses. Some heuristics are not
performing well on their own, but work very well in combination with other heuris-
tics. Other heuristics are strong on their own, and their performance is prohibited
by other heuristics, or not getting used often enough when too many heuristics are
included.

To �nd the right combination of heuristics we have done an evaluation of their
performance to search for the best possible combination of heuristics. To do this,
we selected all the �ve instances with a representative size of 80 orders and ran
our algorithm, without the Wild Escape Algorithm adaptation, with each possible
combination of heuristics. This results in 27 = 128 algorithm runs, each running 10
times with a di�erent random seed. To be able to compare the results from di�erent
instances we calculated the improvements in percent from the initial solution. We
present the improvement of the best solution found, during the 10 runs, and an
average improvement from the initial solution from the 10 runs. Each percentage
was also multiplied by 1000 to make the results more readable.

We evaluated the data resulting from the di�erent combination in three steps:

� In the �rst part we ranked the combinations based on the best improvement
and the average improvement.

� In the second part we ran ANOVA and regression analysis to see which heuris-
tics have a signi�cant impact on the result.

� In the third part we run t-tests to see if certain heuristics in combination with
others have a positive or a negative impact on the �nal result.
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(a) By average improvement

(b) By best improvement

(c) By best+average improvement

Figure 5.2: Figure shows the ranking of improvements from initial solution. Highlighted tiles
indicate use of a heuristic. The combinations with better results are to the left. The blue high-
lighted tiles show the �nal composition from Section 5.3.5. Yellow highlighted tiles show the use
of all heuristics.

Ranking the Combinations

We shorten the names of each heuristic and will refer to them here on as:

� H1-swap: the Swap heuristic described in Section 4.4.1.

� H2-exchange: the Exchange heuristic from Section 4.4.2.

� H3-2opt: the 2-opt heuristic in Section 4.4.3.

� H4-random: the Random Fit heuristic from Section 4.4.4.

� H5-cluster: the Clustering heuristic described in Section 4.4.5.

� H6-greedy: the Greedy heuristic in Section 4.4.6.

� H7-similar: Similar Regret heuristic described in Section 4.4.7.

Fig. 5.2 shows the ranking of each combination of heuristics from left to right. A
colored tile indicates that the current heuristic is in use. The further a combination
is to the left, the higher improvement was from the initial solution compared to the
other combinations.

The Fig. 5.2a shows the combination of heuristics ranked based on the average
improvement over the 10 runs for that combination. Then Fig. 5.2b shows the
combination of heuristics ranked based on the best improvement overall during the
10 runs. Finally Fig. 5.2c shows the ranking of the average improvement + the best
improvement to see which combinations performs best overall. The blue highlights
tiles indicates the �nal composition from Section 5.3.5 and the yellow highlighted
tiles show the use of all heuristics.

ANOVA and Regression Analysis

The ranking gives us an overview over which heuristics are working and is always
part of a good combination. It also gives us information on which heuristics are not
performing well overall and which combination of heuristics are not working well.
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Table 5.2: The table shows an Analysis of variance (ANOVA III) on the result performance while
including the listed heuristic. The columns contains in order: the source of the variability and for
each source the sum of the squares, the degrees of freedom, the mean squares, the F-statistic and
the p-value.

Source Sum sq. df Mean sq. F P> F
H1-swap 0.052 1 0.052 0.09 0.7682

H2-exchange 0.748 1 0.748 1.26 0.2628
H3-2opt 0.038 1 0.038 0.06 0.8017

H4-random 22.432 1 22.432 37.66 0
H5-cluster 12.734 1 12.734 21.38 0
H6-greedy 117.945 1 117.945 198 0
H7-similar 112.406 1 112.406 188.7 0
Instance 371.704 4 92.926 156 0

Error 350.257 588 0.596
Total 975.207 599

(a) Average improvement statistics

Source Sum sq. df Mean sq. F P> F
H1-swap 0.075 1 0.0745 0.23 0.6306

H2-exchange 0.195 1 0.1949 0.61 0.4369
H3-2opt 0 1 0.0001 0 0.988

H4-random 8.372 1 8.3718 26 0
H5-cluster 3.679 1 3.6789 11.43 0.0008
H6-greedy 66.236 1 66.2357 205.71 0
H7-similar 67.081 1 67.0813 208.33 0
Instance 344.971 4 86.2428 267.84 0

Error 189.331 588 0.322
Total 671.378 599

(b) Best improvement statistics

Table 5.3: The table shows results of multiple linear regression model on the performance result
of including the listed heuristic. The columns contain the following in this order: the term and for
each term the coe�cient estimate, the standard error of the coe�cients, t-statistics to test if the
term is signi�cant, and the p-value.

Term Estimate SE tStat pValue
Intercept 994.58 0.11713 8491.5 0
H1-swap -0.018582 0.063017 -0.29487 0.7682

H2-exchange -0.07063 0.063017 1.1208 0.26283
H3-2opt -0.01583 0.063017 -0.2512 0.80175

H4-random 0.39108 0.063729 6.1366 1.5502e-09
H5-cluster -0.29466 0.063729 -4.6236 4.6407e-06
H6-greedy 0.89676 0.063729 14.071 5.7098e-39
H7-similar 0.87544 0.063729 13.737 1.923e-37

Inst1 0.50928 0.099639 5.1113 4.3337e-07
Inst2 -0.051052 0.099639 -0.51237 0.60859
Inst3 1.6601 0.099639 16.662 2.4375e-51
Inst4 1.755 0.099639 17.614 4.4128e-56

(a) Average improvement statistics, R2 = 0 :641

Term Estimate SE tStat pValue
Intercept 994.97 0.086114 11554 0
H1-swap 0.022291 0.046332 0.48112 0.63061

H2-exchange -0.036047 0.046332 -0.77801 0.43687
H3-2opt -0.00069693 0.046332 -0.015042 0.988

H4-random 0.23891 0.046855 5.099 4.6112e-07
H5-cluster -0.15838 0.046855 -3.3801 0.00077249
H6-greedy 0.67202 0.046855 14.342 3.2e-40
H7-similar 0.67629 0.046855 14.434 1.2062e-40

Inst1 0.64176 0.073257 8.7605 2.0732e-17
Inst2 0.16783 0.073257 2.291 0.022316
Inst3 1.837 0.073257 25.077 6.2887e-95
Inst4 1.6686 0.073257 22.778 8.2582e-83

(b) Best improvement statistics, R2 = 0 :718

However, ANOVA (III) and multiple linear regression analysis can help us evaluate
which heuristics have a signi�cant positive impact on the result. Table 5.2 shows
the results of ANOVA (III) analysis performed using each heuristic as a source of
variance. We extended the model with the instances as random e�ects to give us a
better explanation of the result and less noise in the model. We did one ANOVA
analysis for the average improvement over 10 runs shown in Table 5.2a, and one for
the best improvement found in Table 5.2b, to see if some heuristics are making the
model more robust (average) and if some heuristics are good at �nding best known
solutions (best).

In addition to this we performed a multiple linear regression in Table 5.3 on the
same data as the ANOVA. The multiple linear regression analysis gives us insight
into if a heuristic is positively or negatively in
uencing the result, as well as how
well the heuristics are explaining the result through theR2. Also here we used the
instances as a random e�ect.

Observations from Initial Evaluation of Heuristics

Ranking the combinations in Fig. 5.2 does indicate that using all heuristics are
giving a performance in the middle of all rankings which indicates we should use
a combination that excludes some heuristics. It also shows that H6-greedy and
H7-similar are usually included in the better performing combinations.
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The results from Table 5.2 and Table 5.3 split our heuristics into two groups.
The �rst obvious group are the signi�cant heuristics. The ANOVA (III) results
from table Table 5.2a and Table 5.2b tell us that four heuristics, H4-H7, have a
signi�cant impact on the result using a 95% con�dence interval. However from
Table 5.3a and Table 5.3b we see that only 3 heuristics, H4-random, H6-greedy and
H7-similar, have a positive estimated coe�cient, ie. a positive signi�cant in
uence,
for both average and best improvement (H1-swap is positive for best but negative
for average improvement). From this we can safely conclude that H4-random, H6-
greedy and H7-similar are signi�cantly, positively improving the result of our model
on average and they are good at �nding good solutions. H5-cluster is signi�cantly
in
uencing the result but with a negative coe�cient. This leads us to conclude that
this heuristic either performs poorly alone, or has a negative in
uence on the model.
To �gure out more we need to do further testing.

Regarding the remaining heuristics, H1-swap, H2-exchange, and H3-2opt, we can
safely conclude that they are not contributing signi�cantly on the result on their
own, ie. an algorithm containing only these heuristics are not having a signi�cantly
positive impact on the results using a 95% con�dence interval. However it could be
that they have a positive e�ect in on the result if they are used in combination with
the signi�cant heuristics. We therefore observe that we need further testing to know
if these heuristics have a positive or negative in
uence on the result in combination
with other heuristics. We refer to the heuristics H1-swap, H2-exchange, H3-2opt and
H5-cluster as the undecided group, or G in our further evaluation of the heuristics.

5.3.3 Further Evaluation of Heuristics

To further analyse the performance of the heuristics we want to analyse how the
heuristics are performing as an undecided group (G), see Section 5.3.2, to see if
they have an e�ect on the results. The result from Section 5.3.2 tells us that it is
out of the question to use any combination of heuristics where only heuristics from
the undecided group are used. These heuristics will alone have a negative impact
on the result but it is still possible that using them combined with the signi�cant
heuristics could have a positive impact on the result We have therefore removed the
observations where the undecided group appear alone in the following testing. We
want to test if using one or several of the G heuristics in combination with other
heuristics have a positive impact on the result. We have done this in two parts. We
�rst wanted to see if the heuristics as a group, G, has a positive or negative in
uence
on the result. To test this we have done 2-sample t-tests to compare the mean of
the population where we combine the G heuristics with some signi�cant heuristic,
to the mean of the population when we are not using G. Then we wanted to see
if using G with speci�c combinations of the signi�cant heuristics have signi�cant
impact on the model. We did this using further ANOVA (III) statistical analysis
and multi linear regression model.

Evaluation of Undecided Heuristics as a Group

The �rst thing we did was to run a t-test that compares the mean of the population
which include some combination of the G heuristics and the signi�cant heuristics,
towards the population that does not contain any heuristic from G. To represent
the population without any heuristics from G we have the used the parameterPN
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Table 5.4: The results show t-tests on the undecided group mean results versus no undecided
heuristics mean result. The columns contain in order: the populations tested against each other,
type of data tested(average or best improvement), tail which determines the alternative hypothesis,
h-value (1 rejects the null hypothesis, 0 failure to reject), p-value of the test, t-Statistic of the test,
con�dence interval for the true population mean.

Improvement Con�dence
Populations type Tail H-stat p-value tStat interval

PH � PN Average both 0 0.5187 -0.6458 -0.3785 { 0.1912
PH � PN Average right 0 0.7407 -0.6458 -0.3326 { inf
PH � PN Average left 0 0.2593 -0.6458 -inf { 0.1453
PH � PN Best both 0 0.6903 0.3986 -0.2174 { 0.3281
PH � PN Best right 0 0.3452 0.3986 -0.1734 { inf
PH � PN Best left 0 0.6548 0.3986 -inf { 0.2841

Table 5.5: The table shows the analysis of variance with the undecided group in combination
with the signi�cant heuristics. The columns contain in order: the source of the variability and for
each source the sum of the squares, the degrees of freedom, the mean squares, the F-statistic and
the p-value.

Source Sum sq. df Mean sq. F P> F
G+H4 19.024 1 19.0236 538.34 0
G+H6 0 1 0 0 0.9859
G+H7 0.005 1 0.0045 0.13 0.7204

G+H4+H6 0.059 1 0.0589 1.67 0.1973
G+H4+H7 0.001 1 0.0009 0.03 0.8722
G+H6+H7 0.22 1 0.2202 6.23 0.0128

G+H4+H6+H7 0.166 1 0.1657 4.69 0.0308
Inst 309.022 4 77.2555 2186.21 0

Error 19.365 548 0.0353
Total 385.274 559

(a) Average improvement statistics

Source Sum sq. df Mean sq. F P> F
G+H4 12.879 1 12.8793 609.42 0
G+H6 0.131 1 0.1307 6.19 0.0132
G+H7 0.239 1 0.2389 11.31 0.0008

G+H4+H6 0.223 1 0.2227 10.54 0.0012
G+H4+H7 0.153 1 0.1525 7.22 0.0074
G+H6+H7 0.42 1 0.4195 19.85 0

G+H4+H6+H7 0.395 1 0.395 18.69 0
Inst 295.738 4 73.9346 3498.45 0

Error 11.581 548 0.0211
Total 352.547 559

(b) Best improvement statistics

and to represent the population with some combination of the G-heuristics and the
signi�cant heuristics we have used the parameterPH . The results from the t-test
are summarized in Table 5.4.

We continued the testing of G by performing ANOVA (III) analysis on di�erent
combinations of the G and the signi�cant heuristics. We did this to see if a combina-
tion of the undecided group G and the signi�cant heuristics could help explain the
variations in the result and to see if a combination of some or all of the signi�cant
heuristics work better than others.

The results are summarized in Table 5.5 and Table 5.6. As an example a source
of G+H4, contains all observations where at least one of the undecided heuristics
from G are combined exclusively with H4-random.

Observations from Results of the Heuristics Further Evaluation

The results from Table 5.4 tells us that we cannot reject the null hypothesis, for
all populations, that the mean of the two populations are di�erent using a 95%
con�dence interval. This is the case for both, average and best improvement. This
tells us that the heuristics from the undecided group (G) either have no signi�cant
impact on the result, or that the e�ect from some are nulling out the others. Further
testing is needed to make any further conclusions.

Table 5.5 and Table 5.6 gives us further insight into our model. First of all the
result from Table 5.5a tells us that only two combinations of the undecided group
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Table 5.6: The table shows the results of multiple linear regression model with the undecided
group heuristics in combination with the signi�cant heuristics. The columns contain in order: the
term and for each term the coe�cient estimate, the standard error of the coe�cients, t-statistics
to test if the term is signi�cant, and the p-value.

Term Estimate SE tStat pValue
Intercept 995.85 0.035525 28032 0
G+H4 -0.89285 0.038481 -23.202 1.8003e-83
G+H6 0.00068095 0.038481 0.017696 0.98589
G+H7 0.013782 0.038481 0.35815 0.72037

G+H4+H6 0.049672 0.038481 1.2908 0.19731
G+H4+H7 -0.0061945 0.038481 -0.16097 0.87217
G+H6+H7 0.096062 0.038481 2.4963 0.012841

G+H4+H6+H7 0.083317 0.038481 2.1651 0.030808
Inst1 0.53458 0.02512 21.281 1.0604e-73
Inst2 0.031671 0.02512 1.2608 0.20793
Inst3 1.71 0.02512 68.073 1.6221e-269
Inst4 1.5959 0.02512 63.531 6.3233e-255

(a) Average improvement statistics, R2 = 0 :95

Term Estimate SE tStat pValue
Intercept 995.88 0.027473 36249 0
G+H4 -0.73464 0.029759 -24.686 5.012e-91
G+H6 0.07402 0.029759 2.4873 0.013167
G+H7 0.10006 0.029759 3.3625 0.00082635

G+H4+H6 0.096599 0.029759 3.246 0.0012417
G+H4+H7 0.079948 0.029759 2.6865 0.0074396
G+H6+H7 0.13259 0.029759 4.4554 1.0157e-05

G+H4+H6+H7 0.12865 0.029759 4.3232 1.8269e-05
Inst1 0.70773 0.019426 36.432 1.6371e-148
Inst2 0.27728 0.019426 14.273 1.5823e-39
Inst3 1.873 0.019426 96.415 0
Inst4 1.5781 0.019426 81.237 8.6749e-308

(b) Best improvement statistics, R2 = 0 :967

and the signi�cant variables have a signi�cant impact on the result using a 95%
con�dence interval. Using some heuristics from the undecided group combined with
heuristic H6-greedy and H7-similar, as well as H4-random has a signi�cant impact on
the average improvement result. From Table 5.6a we also see that the combinations
are also getting a positive coe�cient. We also observe that theR2 = 0:95 is very
high so this model explains the results very well and this supports the use of these
heuristic combination in regards to the average improvement.

The same combinations are signi�cant and positive in regards to the best im-
provement tables Table 5.5b and Table 5.6b. And even though more combina-
tions are signi�cant for best improvement, the combinations with highest positive
estimated coe�cients are still including H6-greedy and H7-similar, or H6-greedy
H7-similar and H4-random. We also observe here the increasedR2 = 0:967 which
indicates that this model is explaining the result from best and average improvement
very well. This could indicate that the combinations with H6-greedy, H7-similar and
H4-random are consistently contributing to the same positive results.

The results from the further testing tells us that there are combinations of the
undecided group and the signi�cant heuristics that have a positive signi�cant impact
on the result of both average and best improvement. It supports our results from
Section 5.3.2 of signi�cant heuristics H6-greedy, H7-similar and H4-random and
leads us to conclude that there might be a positive in
uence from the undecided
group heuristics, however further testing is necessary to determine which heuristics
should be included.

5.3.4 Evaluation of Individual Heuristics

Until now, the heuristic H4-random, H6-greedy and H7-similar have been proven
signi�cant. The heuristics H1-swap, H2-exchange, H3-2opt and H5-cluster have
been proven signi�cant in combination with the signi�cant heuristics but not alone.
We continue referring to them as the undecided group heuristics or G.

We want to �gure out which of the heuristics in the undecided group, if any, have
a positive, or negative, in
uence on the result. To do this we performed pairwise
t-tests to check if an undecided heuristic is signi�cantly improving or decreasing the
best and average improvement. Like in Section 5.3.3 it is out of the question to
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Table 5.7: The table shows results of t-tests on individual heuristics. The columns contain in
order: the populations tested against each other, type of data tested(average or best improvement),
tail which determines the alternative hypothesis, h-value (1 rejects the null hypothesis, 0 failure to
reject), p-value of the test, t-Statistic of the test, con�dence interval for the true population mean

Populations Tail H-stat p-value tStat conf-int
PH 1

HA � PH 1
NA both 0 0.5427 -0.6090 -0.1580 { 0.0727

PH 1
HA � PH 1

NA right 0 0.7286 -0.6090 -0.1325 { inf
PH 1

HA � PH 1
NA left 0 0.2714 -0.6090 -inf { 0.0472

PH 1
HB � PH 1

NB both 0 0.9240 -0.0955 -0.1428 { 0.1296
PH 1

HB � PH 1
NB right 0 0.5380 -0.0955 -0.1208 { inf

PH 1
HB � PH 1

NB left 0 0.1076 -0.0955 -inf { 0.1076
PH 2

HA � PH 2
NA both 1 3.4853e-10 -6.5098 -0.0692 { 0.0412

PH 2
HA � PH 2

NA right 0 1.0000 -6.5098 -0.0661 { inf
PH 2

HA � PH 2
NA left 1 1.7426e-10 -6.5098 -inf { 0.0443

PH 2
HB � PH 2

NB both 1 4.5425e-10 -3.5486 -0.0370 { 0.0106
PH 2

HB � PH 2
NB right 0 0.9998 -3.5486 -0.0349 { inf

PH 2
HB � PH 2

NB left 1 2.2712e-04 -3.5486 -inf { 0.0127
PH 3

HA � PH 3
NA both 1 0.0244 -2.2635 -0.0276 { -0.0043

PH 3
HA � PH 3

NA right 0 0.9878 -2.2635 -0.0250 { inf
PH 3

HA � PH 3
NA left 1 0.0122 -2.2635 -inf { -0.0069

PH 3
HB � PH 3

NB both 0 0.6271 -0.4864 -0.0134 { 0.0081
PH 3

HB � PH 3
NB right 0 0.6865 -0.4864 -0.0116 { inf

PH 3
HB � PH 3

NB left 0 0.3135 -0.4864 -inf { 0.0063
PH 5

HA � PH 5
NA both 0 0.4702 -0.7231 -0.0301 { 0.0118

PH 5
HA � PH 5

NA right 0 0.7649 -0.7231 -0.0255 { inf
PH 5

HA � PH 5
NA left 0 0.2351 -0.7231 -inf { 0.0071

PH 5
HB � PH 5

NB both 1 1.7956e-04 -3.7972 -0.0167 { 0.0528
PH 5

HB � PH 5
NB right 1 8.9779e-05 -3.7972 -0.0197 { inf

PH 5
HB � PH 5

NB left 0 0.9999 -3.7972 -inf { 0.0499

use any combination of heuristics where only undecided heuristics are used, so we
remove these observations from the data also in these tests. We test if the mean of
the populations, where we combine the undecided heuristics with some signi�cant
heuristic, is signi�cantly di�erent than the population when we are not using an
undecided heuristic.

T-tests of Individual Heuristics

Similar to the previous section we use the parameterPH i
NA to refer to the popula-

tion without a speci�c heuristic H i for the average improvement, indicated byA,
and the parameterPH i

HB as the population including the heuristicH i for the best
improvement, indicated by B. Here H i represents one of the heuristics described
in the previous section. We did the test for all 4 of the undecided heuristics from
the previous sectionH1, H2, H3 and H5. The results from the pairwise t-tests are
summarized in Table 5.7.
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Observations from the Results of the Individual Heuristic Evaluations

The �rst thing we see from the t-tests is that the e�ect of the heuristics are cancelling
each other out, as some are left signi�cant, and some are right signi�cant. We go
through each of the heuristics results from Table 5.7 here.

For the heuristic H1-swap the population mean of both best and average im-
provement is not signi�cantly di�erent using a 95% con�dence interval. It follows
then that the tails are also not signi�cantly di�erent.

Regarding the results for heuristic H2-exchange we reject the null hypothesis
that the means are equal using a 95% signi�cance interval for the average and best
improvement regarding this heuristic. The left tail alternative hypothesis' that the
means ofPH 2

HA and PH 2
HB is lower than PH 2

NA and PH 2
NB are accepted, while the right

tail alternative hypothesis is rejected for both best and average improvement.
The results of H3-2opt show that the null hypothesis that the population mean

of PH 3
HA is equal to the population mean ofPH 3

NA is rejected and accepted forPH 3
HB

and PH 3
NB . The left tail alternative hypothesis that the means ofPH 3

HA is with 95%
con�dence lower thanPH 3

NA , is accepted.
For H5-cluster the null hypothesis is rejected forPH 5

HB and PH 5
NB and accepted for

PH 5
HA and PH 5

NA . The alternative hypothesis of the right tail of the best improvement,
that the mean is signi�cantly higher in PH 5

HB than PH 5
NB is accepted.

The results summarized above tell us that using H1-swap will have no e�ect on
the outcome of the result. Also H2-exchange and H3-2opt are signi�cantly decreasing
the average for both heuristics and also for best for H2-exchange. This indicates
that it is not bene�cial to include these heuristics in a model. Finally H5-cluster
is not a�ecting the average improvement however it is positively e�ecting the best
improvement, indicating that it could be bene�cial to include this heuristic.

5.3.5 Deciding on the Final Model Composition

The results from Section 4.8 tell us that our �nal model should include our Wild
Escape Algorithm. This will in
uence our running time a little but give us much
more reliable results.

As for selecting heuristics to include, the results from section Section 5.3.2 and
Section 5.3.3, indicates that we need to include H4-random, H6-greedy and H7-
similar in our �nal model. We observed from our testing of the Wild Escape Al-
gorithm that the running time of H1-swap is signi�cantly lower than our other
heuristics Table A.1. Even though Section 5.3.4 showed us that H1-swap had no
signi�cant e�ect on the model, the low running time is leading us to rather include
this heuristic than not, to lower the running time of our algorithm overall. As Sec-
tion 5.3.4 showed it will have no signi�cant negative e�ect on the results of our
model. H5-cluster is also not e�ecting the average improvement of our model. It
is though signi�cantly e�ecting the result of the best improvement found positively.
This tells us that we should include this heuristic in our �nal composition.

The results from Section 5.3.3 indicated that a combination of H4-random, H6-
greedy and H7-similar + some of combination of the undecided group heuristics is
signi�cantly e�ecting both the average and best improvement. Therefore our �nal
4PLO model composition will be the 4PLO algorithm with the Wild Escape Algo-
rithm and heuristics H1-swap, H4-random, H5-cluster, H6-greedy and H7-similar.
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Table 5.8: The table shows the 4PLO model performance on instance sets 1-5. The columns
contain in order: Instance set, number of orders, number of vehicles and number of locations in the
instances. The next three columns contain the result from running our mathematical model (MM)
run in AMPL; solution objective, optimality gap and the running time. Then follow 3 columns
with the results of our model, average objective found, best objective found and average running
time. The �nal column contains a delta which is calculated as follows: (solution objective MM -
4PLO best objective)/solution objective MM.

Mathematical model 4PLO
Inst Solution Optimality Run Average Best Average
Set #Ord #Veh #Loc objective gap time(sec) objective objective run time delta

S
et

1

4 3 7 3 444:7 0:00% 0.1 3 444:7 3 444:7 0:1 0:00%
12 7 9 149 692:3 0:00% 9963.7 149 692:4 149 692:3 0:5 0:00%
35 20 22 2 091 776:5 99:91% 10000.2 10 323:2 9 997:9 2:8 99:52%
80 45 45 6 422 128:6 99:99% 10000.0 21 170:5 20 911:5 21:1 99:67%
150 80 85 NA NA NA 34 479:1 32 798:0 100:8 NA

S
et

2

4 3 7 2 501:0 0:00% 0.1 2 501:0 2 501:0 0:1 0:00%
12 7 9 5 987:8 0:00% 1041.8 5 987:8 5 987:8 0:6 0:00%
35 20 22 1 985 165:5 99:90% 10000.3 14 382:4 14 272:1 2:6 99:28%
80 45 45 6 809 899:5 99:99% 10000.0 25 736:6 24 760:8 16:8 99:64%
150 80 85 NA NA NA 36 927:2 35 932:1 112:1 NA

S
et

3

4 3 7 1 404:0 0:00% 0.3 1 404:0 1 404:0 0:1 0:00%
12 7 9 5 862:5 33:16% 10000.0 5 862:5 5 862:5 0:9 0:00%
35 20 22 679 594:8 99:71% 10000.4 6 334:7 6 267:7 3:7 99:08%
80 45 45 5 748 613:6 99:99% 10000.5 12 609:0 12 347:6 32:2 99:79%
150 80 85 NA NA NA 19 771:9 19 149:8 126:1 NA

S
et

4

4 3 7 1 696:1 0:00% 0.7 1 696:1 1 696:1 0:1 0:00%
12 7 9 3 285:2 21:45% 10000.0 3 109:6 3 109:6 1:5 5:35%
35 20 22 547 881:6 99:72% 10000.2 4 652:8 4 494:5 5:1 99:18%
80 45 45 6 201 301:5 99:99% 10000.1 15 540:0 15 290:6 21:4 99:75%
150 80 85 NA NA NA 22 508:6 22 252:6 103:4 NA

S
et

5

4 3 7 5 154:9 0:00% 0.4 5 154:9 5 154:9 0:1 0:00%
12 7 9 3 716:2 22:93% 10000.2 3 716:2 3 716:2 0:6 0:00%
35 20 22 1 757 079:6 99:90% 10000.2 13 138:9 12 944:2 2:1 99:26%
80 45 45 5 909 616:9 99:99% 10000.0 24 034:0 23 855:5 9:1 99:60%
150 80 85 NA NA NA 41 343:4 39 847:0 82:6 NA

5.4 Final Results

After deciding on a model best suited to our problem we did a �nal run of our
algorithm using composition described in the previous section. The algorithm was
run using 5 instance sets of each 5 representative sizes.

5.4.1 Evaluation of the Final Model

For each instance we used the powerful machine to let AMPL try for 10 000 seconds
to �nd an optimal solution for each instance. The larger runs resulted in a \out of
memory" failure message so these results we simply marked as NA. The results from
the runs of our �nal model composition together with the mathematical model runs
in AMPL are summarized in Table 5.8.

Section 5.4.1 shows the weight of each heuristic through each segment of our
4PLO model segments for arbitrarily selected runs. The vertical blue lines indicate
which segment the best solution for the current run was found. The most relevant
sections are the ones before this blue lines.
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