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Preface

This dissertation is submitted in partial fulfillment of the degree Philosophiae Doctor in

mathematics and statistics at the Department of Mathematics, University of Bergen. This

work was carried out at the Nansen Environmental and Remote Sensing Center (NERSC),

Bergen within the Nordic Center of Excellence EmblA under the supervision of Laurent

Bertino and Mohamad El Gharamti.

This thesis includes three research articles describing methodological developments of an

ensemble-based data assimilation method that is able to take benefit from observations

with a detection limit. The proposed data assimilation method can be specifically used

for assimilating sea ice thickness observations that are insensitive to sea ice thicker than a

given threshold. The method is developed and tested with various benchmarks: linear and

nonlinear models, low-dimensional toy models and a high-dimensional complex dynamical

model, using twin and fraternal twin experimental setups. The thesis is structured in two

parts. Part I contains a general background, the motivation, contribution, the summary

of papers and further perspectives. Part II includes the research articles which are listed

below:

Paper I: Assimilation of semi-qualitative observations with a stochastic ensemble Kalman

filter. Shah, A., El Gharamti, M., and Bertino, L., published in Quarterly Journal of the

Royal Meteorological Society.

Paper II: Assimilation of semi-qualitative sea ice thickness data with the EnKF-SQ. Shah,

A., Bertino, L., Counillon, F., El Gharamti, M., and Xie, J., submitted to Tellus A: Dynamic

Meteorology and Oceanography.

Paper III: An adaptive correction algorithm for the out-of-range observation error vari-

ance of the EnKF-SQ. Shah, A., El Gharamti, M., Bertino, L., and Counillon, F., to be

submitted.
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Part I

Background





Chapter 1

Introduction

1.1 Predictions

A prediction can generally be defined as a guess of what might happen in the future based

on recent observations. Numerical weather prediction (NWP) is a popular example that

employs a set of equations, which describe the dynamics of the atmosphere and may in-

clude those of the ocean and sea ice. In essence, NWP is an initial value problem of mathe-

matical physics, where the future weather state is determined by integrating the governing

nonlinear dynamical equations, starting from their observed current state. Because of the

nonlinear and chaotic nature of these governing equations, a small discrepancy in the ini-

tial conditions can lead to a totally different forecast. Accurate predictions have numerous

socio-economic benefits including effective management of energy resources, improved

natural disaster planning, mitigation of the impacts from extreme weather events, finan-

cial revenues and cost savings in aviation, agriculture and transport, among many others

(Shapiro et al., 2009; Williamson et al., 2002). Therefore, it is important to have the best

possible estimate of the initial condition in order to obtain an accurate prediction.

The advent of computer simulations in the 1950s opened a new era for predictions. There-

after came continuous improvements, the introduction of various data assimilation tech-

niques, more efficient numerical models, an increasing availability in-situ observations,

satellite data and powerful computational resources. Those have progressively contributed

to improving weather predictions. In recent times, climate change and the need for ac-

curate predictions to deal with future extreme events have attracted even more interest

and investment in climate research, super-computing capabilities, earth observing satellite

missions and other observational programs. The Arctic sea ice has been recognized as a

necessary focal point.

The scientific and technological developments during the last 4−5 decades have improved
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the forecast skills significantly. Bauer et al. (2015) has mentioned that “forecast skill in the

range from 3 to 10 days ahead has been increasing by about one day per decade: today’s

6-day forecast is as accurate as the 5-day forecast ten years ago”.

This dissertation addresses the use of observations within the framework of data assimi-

lation for improving the accuracy of predictions, in particular on how to make better use

of observations with a detection limit while preserving the dynamical consistency and the

reliability of predictions.

1.2 Observations

Observations are essential in both environmental and climate science and especially vital

for the purpose of statistical inference and estimation. Observational data help infer the un-

derlying distribution of the hidden variables of interest, which cannot be observed directly.

For example, a satellite radiometer measures the radiative flux emitted from Earth to outer

space at different wavelengths, which are then used to derive the atmospheric temperature

and humidity fields through radiative transfer equation (Reale et al., 2008, and references

therein). In this typical example of remote sensing observations, atmospheric temperature

and humidity fields are hidden states, which are not observed directly but are retrieved

indirectly via a functional relation to the observed radiative fluxes. Direct measurements

of the variable of interest are more commonly practiced with in-situ measurements rather

than satellite measurements: measuring temperature from a thermometer or water level

with a tide gauge are among the simplest examples.

1.2.1 Types of observations

An observation of a spatially-distributed variable can generally be categorized into three

different types depending on the nature of the data recorded, which are as follows:

1. Fully quantitative observation: Observational data, which are available in numeri-

cal or quantifiable form. For example, temperatures measured by thermometers,

atmospheric radiance profiles measured by satellites, heights of the students in a

class among others are fully quantitative data. Figure 1.1 shows a global map of a

fully quantitative observational data representing the daily mean atmospheric tem-

perature profile at 850 hPa retrieved by NASA’s earth observing system (EOS) Terra

satellite.

2. Fully qualitative observation: Observational data that are not quantifiable but cate-

gorical. For instance the daily sea ice type classification provided by the Exploitation
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Figure 1.1: Global map of the mean atmospheric temperature profile on 06 June 2019 retrieved by the EOS
TERRA. The map is obtained from https://modis-images.gsfc.nasa.gov.

of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Fa-

cilities (OSI-SAF) (Aaboe et al., 2018), is a fully qualitative data type. The sea ice

type classification (open water, first-year ice, multi-year ice) is based on the analysis

passive microwave and scatterometry data over the entire Arctic Ocean. Figure 1.2

shows daily sea ice type classification as a qualitative observational data from the

OSI-SAF. The previous example is originally a quantitative observation (emissivity

or roughness of the ocean or ice surface) that cannot be exploited as a geophysical

measurement but can be converted to a qualitative observation by a classification al-

gorithm. Further examples are quite common in geosciences such as soil occupation

types, vegetation classification and cloud masking. In studies related to the reme-

diation of polluted soils, the presence of bad smell can also be used as qualitative

data.

3. Semi-qualitative observation: Observational data, which are partly quantitative and

qualitative in nature are defined as semi-qualitative. This type of observations arise

primarily because of a detection limit in the measuring instrument. Even though

quantitative data cannot be recorded outside the observing range of the instrument, a

qualitative indication that the observed quantity is above or below the detection limit

is available. Some examples of semi-qualitative observations are the contaminant

concentrations with lower detection limit in environmental and health fields (Hor-

nung and Reed, 1990), water levels in urban water networks (Borup et al., 2015),

river water level measurements with lower detection limit of 1 km obtained from

satellite radar altimetry (Birkett, 1998), Soil Moisture Ocean Salinity (SMOS) satel-

lite retrieved sea ice thickness (SIT) with upper detection limit of 50 cm (Kaleschke

et al., 2012) and thick sea ice thickness obtained from the CryoSAT2 satellite with a

lower detection limit (Laxon et al., 2013). Retrievals of sea ice concentrations from

passive microwave remote sensing are also limited in range by the "weather filter"

(Ivanova et al., 2015).
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Figure 1.2: The daily sea ice type classification from the OSI-SAF on 05 February 2019. The image is taken
from http://osisaf.met.no

Other types of observations that are not covered above include those with discrete densities

such as observations of icebergs, whales, asteroids, etc. This PhD thesis only considers

variables that are continuously distributed in space and commonly used in climate and

environmental forecasting.

In the following dissertation, we focus on semi-qualitative observations. The goal is to learn

how to use such information to estimate and infer the underlying distribution of hidden

state variables. Article II (Shah et al., 2019) for instance presents a case study, where semi-

qualitative sea ice thickness observations are used to estimate the model estimate of the

same variable. Therefore, in the next section we will briefly go through the SMOS retrieved

sea ice thickness.

1.2.2 The case of SMOS sea ice thickness

The SMOS satellite carries onboard a novel interferometric radiometer that operates in

1.4 Ghz L-band microwave range, which can capture brightness temperature images. This

is an example of passive microwave remote sensing, that is, it only records the natural

microwave reflected and emitted by the earth and its atmosphere rather than sending active

signals as in active microwave remote sensing. The L-band, in contrast to more commonly

used C-band and X-band, contains longer wavelengths that can penetrate deeper in the

medium of interest, such as ocean, glaciers or sea ice. Figure 1.3, shows a simple schematic

representation of the passive remote sensing of sea ice thickness for the SMOS mission.
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Figure 1.3: Very simple schematic representation of passive remote sensing of the sea ice thickness in the
case of the SMOS satellite.

Only the top ∼ 50 cm of the sea ice is permeable to L-band microwaves (Kaleschke et al.,

2012), and hence the maximum retrievable ice thickness with acceptable uncertainty using

SMOS is approximately equal to 50 cm, with some nuances depending on the deformation

state of sea ice. Thin sea ice signals, however, are only available in the cold months. In

the melting season, the emission properties in the microwave are polluted by the wetness

of the surface and occurrence of melt ponds in the Arctic. Therefore, thickness data in the

Arctic are calculated only during the freezing season, that is from October to April. During

the melting season, the procedure does not yield meaningful results.

The typical behavior of the semi-qualitative SMOS SIT can be seen in Figure 1.4, which

shows SMOS derived SIT against a proxy of ice thickness (number of freezing days times the

degrees below freezing point). The plot demonstrates that for SMOS SIT estimates thicker

than 30 cm, the uncertainties progressively increase and become very high (approx. double

than the SIT estimates itself) for thickness > 50 cm. Therefore, SMOS SIT estimates > 50

cm are simply considered qualitative, making the entire SMOS SIT product semi-qualitative

with upper detection limit of 50 cm.

A similar satellite mission called SMAP (Soil Moisture Active Passive) has been launched by

NASA in 2015, which has also been used for the retrieval of range-limited sea ice thickness

(Patilea et al., 2019). Passive microwave measurements in shorter wavelengths follow

the same principle but the return signal comes from a much thinner layer of ice and can

be considered as "surface measurements" only. An approach to measure sea ice thickness

by passive microwave of even longer wavelengths than the L-band has been proposed by

Macelloni et al. (2018) but not yet selected, in particular due to the expected noise from
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Figure 1.4: SMOS derived sea ice thickness (y-axis) versus a proxy of ice thickness (x-axis). Vertical and
horizontal solid lines show the uncertainties in SMOS SIT estimates and proxy of ice thickness, respectively.
Credit: Kaleschke, personal communication.

Radio-Frequency Interferences.

The next chapter presents the standard methods and tools used in data assimilation to esti-

mate the underlying state distribution of model variables given these types of observations.



Chapter 2

Methods and Tools

This chapter gives a general introduction of the different approaches to the hidden state-

estimation process. It starts with the brief overview of the geostatistical techniques used to

infer static hidden state variables in the case of semi-qualitative observations. A more com-

prehensive overview follows of different data assimilation methods used to infer dynamical

state variables.

2.1 Inference of static variables with Geostatistics

Geostatistics is the branch of statistics used to analyze and predict the variables distributed

in space and time. Many geostatistical methods were originally developed to estimate the

spatial patterns of underlying static hidden state variables and interpolate values for loca-

tions where observations were not taken. One such example is the mining industry appli-

cation, where geostatistical modelling is applied to estimate the mineral grades within the

ore deposits (Chiles and Delfiner, 2012; Journel and Huijbregts, 1978). The precise esti-

mation of the mineral grades is of great economical importance to the miners and therefore

efficient statistical methods are required. To this end, geostatisticians apply techniques like

Kriging to predict the mineral grade at any unobserved location of the ore deposit by ac-

counting for any available neighboring data and their spatial correlations. Kriging predicts

the value of a state at a certain location by interpolating values from neighbouring loca-

tions and using a weighted average of these known values. To attain useful estimators,

strong assumptions are made on the statistical properties of the random fields (random

variables distributed in space and/or time), typically that of second order stationarity: the

expectation of the field and its spatial covariance structure are both invariant in space (and

time). Therefore geostatistics are most commonly applied to static variables, which can be

sampled repeatedly over long periods of time.
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Since the Kriging technique relies on a weighted average of the data values, it yields a too

smooth image of the true grade distribution in the deposit and therefore misses the small

spatial scales that are not observed properly. Conditional simulations are another family

of techniques from geostatistics that are used to generate randomly small scale features

between observations while simultaneously honouring the observations by the application

of Kriging.

Journel (1986) first addressed the possibility to include semi-qualitative data in Kriging

estimators and introduced the vocabulary of "soft" and "hard" data, which we will adopt

here. Emery and Robles (2008) proposed techniques for the geostatistical simulation of

mineral grades, which can efficiently include soft data. Related approaches are reviewed in

Chiles and Delfiner (2012) and followed up by Emery et al. (2014): These simulation tech-

niques are all based on Markov Chain Monte Carlo (MCMC) sampling with the realizations

conditioned on available observations, both hard and soft data. Hard data, for example,

are assays on ore samples and soft data the rock-type information. The sampling method

employed by Emery and Robles (2008) is an MCMC with a Gibbs sampler to simulate the

mineral grades in ore deposits conditioned on hard and soft data in an approach called in-

terval constraints (for detailed description, the reader is referred to (Section 2; Emery and

Robles, 2008)). Such a technique can effectively make use of the semi-qualitative data

to reconstruct the true spatial trends. The computational cost of these iterative MCMC

sampling algorithms is a recognized issue when processing large datasets, although these

algorithms have already been designed to have a high frequency of acceptance (Marcotte

and Allard, 2018).

Next, we study the estimation of a hidden state variable that evolves in time according

to nontrivial physical equations. In other words, consider a dynamical hidden state vari-

able that necessitates the resolution of a computationally intensive numerical model. For

such cases, the aforementioned second order stationarity assumption breaks down. MCMC

methods requiring thousands of cycles to simulate large datasets also become too costly

to be used in conjunction with a forward dynamical model. Therefore, realistic and feasi-

ble inference techniques for the dynamical hidden state variables are required to converge

within the order of a hundred of random realizations. In the following section, we discuss

practical approaches for the inference of dynamical hidden state variables in the context

of data assimilation.

2.2 Data assimilation

Data assimilation (DA) is an approach for fusing observations with model forecasts to

obtain a best possible estimate of the true state of the process together with the associ-
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ated uncertainties (Wikle and Berliner, 2007). It is mainly applied for state estimation

of dynamical systems but has also been used for estimating uncertain model parameters

(e.g., Gharamti et al., 2015). The application of DA includes numerical weather prediction

(NWP) for forecast initialization (Ghil and Malanotte-Rizzoli, 1991; Lorenc, 1986), history

matching in reservoir engineering for oil production and planning (Aanonsen et al., 2009;

Oliver and Chen, 2011), atmosphere and ocean reanalysis (Dee et al., 2011; Kalnay et al.,

1996; Xie et al., 2017), coupled reanalysis of the earth system (Counillon et al., 2016;

Laloyaux et al., 2018), epidemiology analysis and prediction (Pasetto et al., 2017; Rhodes

and Hollingsworth, 2009), see a recent review of data assimilation for the geosciences in

Carrassi et al. (2018). Depending on the application, the number of state variables to be

estimated can vary between few hundreds to O (109). The modern day DA approaches can

be classified as follows:

• Variational DA methods: In this approach an optimal state trajectory that best fits

observational data over a time window is found by minimizing a cost function. The

estimated state variable at the end of the time window is then used to initialize the

dynamical model for computing the forecast. 3D-Var (Lorenc, 1986) and 4D-Var

(Le Dimet and Talagrand, 1986; Lewis and Derber, 1985) are the two most common

methods. 4D-Var requires the development and maintenance of an adjoint model.

Traditionally, variational DA schemes use a fixed background error covariance matrix

unlike it’s sequential competitors.

• Sequential DA methods: Here the observations are assimilated in the model every

time they become available. The important feature of this kind of methods is the

flow-dependant background error covariance, otherwise known as errors of the day.

The Kalman filter (Kalman et al., 1960) and ensemble Kalman filter (Evensen, 1994;

Houtekamer and Mitchell, 1998) among other ensemble-based filters are examples

of sequential DA methods.

• Hybrid DA methods: This kind of methods are constructed by combining the varia-

tional and sequential DA flavours. The motivation is to make use of a flow-dependent

background error covariance matrix in a variational framework. Examples of hybrid

DA methods include EnKF-3Dvar (Gharamti et al., 2014; Hamill and Snyder, 2000),

4DEnVar (Buehner et al., 2010a,b; Liu et al., 2008) and iterative ensemble Kalman

smoothers (Bocquet and Sakov, 2014), see Carrassi et al. (2018) for a review of

hybrid methods. All these methods can be used for recursive problems with an as-

similation window that moves forward in time.

This thesis makes use of only the sequential DA approach because it allows a simple stochas-

tic treatment of the problem using Monte Carlo (i.e. ensemble) techniques. The use of



12 Methods and Tools

semi-qualitative data in variational DA has been discussed in Bocquet et al. (2010) but is

quite discrete in the literature. Applications in hybrid DA methods should in principle be

possible, although they may be algorithmically more complex. In the next section, we will

introduce the concept of the dynamical hidden state and thereby present a hidden Markov

model. The hidden Markov model constitutes the underlying statistical model for DA.

2.2.1 The dynamical hidden state model

In this section, we look at the DA problem from a Bayesian perspective for a process that

evolves over time and constrained with physical equations.

A stochastic process is a set of {xk : k ∈ T} where k is an index variable belonging to the

index set T, and xk is a random variable or a vector of several random variables. Here,

the index variable k represents time and therefore the index set T is some subset of R.

For spatiotemporal processes, the index variable will be a combination of time and spatial

coordinates. In cases when the random variables xk of the stochastic process take values

in the state space then the underlying statistical model will be called a state space model.

If the random variables xk are discrete in time, then the stochastic process has a discrete

state space or if it is continuous then the process is said to have a continuous state space

(Jazwinski, 1970).

Following Jazwinski (1970), the unknown hidden state xk ∈ Rn and observation yk ∈ Rm

are generated for sequentially increasing time index k, by a dynamical model,M : Rn →
Rn, and an observation model, h : Rn→ Rm, as follows:

xk+1 =M (xk) + qk, k = 0, 1,2, ..., (2.1)

yk = h (xk) + rk, k = 1, 2, 3, ..., (2.2)

where the Gaussian white noise processes qk and rk, and the initial condition, x0, are

specified by:

x0 ∼N (µ0,P0), (2.3)

qk ∼N (0,Q), (2.4)

rk ∼N (0,R), (2.5)

whereN (µ0,P0),N (0,Q) andN (0,R) are multivariate Gaussian probability distributions

with the first and second term inside the brackets representing the mean and covariance

respectively. The Gaussian assumption can be relaxed as indicated by Carrassi et al. (2018).

Figure 2.1 is a graphical representation of the stochastic process {(xk,yk) : k = 1, 2, . . .},
which constitutes a hidden Markov model (HMM). The HMM is a sequence of the hidden
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states x0,x1,x2, ... linked together by a dynamical model equation, such as Eq. 2.1, which

are only observed through an observation model, such as Eq.2.2. The horizontal arrows in

Figure 2.1 represent the causality (cause and effect) introduced by the dynamical forward

model M and the vertical arrows represent the relationship between the state and the

observation of the state for the corresponding time index k.

x0 x1 x2 ... xk−1 xk

y1 y2 yk−1 yk

Observed
Hidden

Figure 2.1: Graphical representation of the hidden Markov model.

The underlying stochastic process of the HMM is a Markov process. The Markov process

has a Markov property, that is, the conditional probability distribution of future states of the

process (conditional on both past and present states) depends only upon the present state,

not on the sequence of the events that preceded it. The Markov property is a fundamental

property of the HMM representing the conditional independence relation, which is given

as follows:

p (xk+1|xk,xk−1, . . . ,x0) = p (xk+1|xk) , (2.6)

p (yk|xk,xk−1, . . . ,x0) = p (yk|xk) , (2.7)

where the probability terms appearing in Eq. 2.6 and 2.7 are the conditional probabilities

and xk−1, . . . ,x0 is the sequence of the states x. Eq. 2.6 shows the conditional independence

of the state at time k + 1 from all the earlier states except the immediately previous one.

Similarly, Eq. 2.7 represents the conditional independence of observation from all the other

states except the current one.

2.2.2 Bayesian inference

DA is used to refer to a range of inference procedures whereby observations are assimilated

into a statistical model of a dynamical system. In this section, we will formulate the DA

problem as statistical sequential inference on a HMM. The main objective of the Bayesian

inference is to compute the posterior distribution (also known as analysis) p (x|y), of the

hidden state x conditioned on the observation y using Bayes’ rule

p (x|y) = p (y|x) p (x)
p (y)

∝ p (y|x) p (x) , (2.8)
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where y is any available data, and x is the unknown state to be estimated. The probability

density function (pdf) p(x) is called a prior distribution of x, which quantifies the prior

information about it and p(y|x) is the observation likelihood providing information about

the data. p (y) is the marginal density of the observation y, as considered as a normalizing

constant.

Let x0,x1,x2, . . . ,xK and y1,y2, ...,yK be the sequences of the model states and observa-

tions constituting the HMM, within the time interval [t0, tK], respectively. In light of the

conditional independence property of HMM and the assumption that the observations are

independent in time, one can write the following equations for the observation likelihood

and the prior pdf:

p (y1:K |x0:K) =
K∏

k=1

p (yk|xk) , (2.9)

p (x0:K) = p (x0)
K∏

k=1

p (xk|xk−1) . (2.10)

Applying Bayes’ rule on the above two equations, we get a product form for the posterior

distribution:

p (x0:K |y1:K)∝ p (x0)
K∏

k=1

p (yk|xk) p (xk|xk−1) . (2.11)

Eq. 2.11 suggests that as new data becomes available, one can update the previous optimal

estimate of the state process without having to start computation from the beginning. This

will create a chain of sequential or recursive updates starting from p (x0) and alternating

between a prediction (or forecasting) step to obtain the forecast:

p (xk+1|y1:k) =

∫
p (xk+1|xk) p (xk|y1:k) dxk, (2.12)

and an updating (or filtering) step to obtain the analysis:

p (xk+1|y1:k+1) =
p (xk+1|y1:k) p (yk+1|xk+1)

p (yk+1)
. (2.13)

The right hand side of Eq. 2.12 is also known as the Chapman-Kolmogorov equation. The

alternate application of prediction and update steps as new data becomes available yields

the distribution pairs p (x1|y1); p (x2|y1), p (x2|y1:2); . . .; p (xK |y1:K−1), p (xK |y1:K).

In practice, one may not be able to obtain analytical representations for the forecast and

analysis pdfs. However, in the case of Gaussian prior distribution, Gaussian observation

error distribution, linear dynamical model and linear observation operator, one can obtain

the posterior or analysis explicitly, which will also be Gaussian. The Gaussian and linear

case yields the famous Kalman filter.
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2.2.3 The Kalman filter

In this section we will briefly introduce the Kalman filter (KF) (Kalman et al., 1960) equa-

tions for state estimation without derivation. For the HMM that are Gauss-linear, that is,

a linear forward dynamical model and observation operator, Gaussian observations and

model error distribution along with Gaussian prior pdf, the Kalman filter (KF) is the opti-

mal solution for sequential updating. The posterior distribution is Gaussian and therefore

the pdfs involved are fully characterized by their first two moments: (i) mean and (ii) co-

variance. Rather than computing a new estimate of the posterior pdfs at every time step,

it is sufficient to update the prior mean and covariance with the observations in order to

obtain the full posterior pdf.

Let Mk−1:k : Rn → Rn is a linear dynamical model integrating the state from time tk−1 to

tk and Hk : Rn → Rm is a observation operator at time index k. Suppose p (xk−1|y1:k−1) =
N �xk−1|xa

k−1,Pa
k−1

�
, where xa

k−1 and Pa
k−1 are the analysis mean and covariance matrix for

the corresponding time index, k − 1. Then the prediction Eq. 2.12 gives p (xk|y1:k−1) =
N �xk|x f

k ,P f
k

�
and the corresponding KF forecast equation for the mean and covariance

are as follows:

x f
k =Mk−1:kx

a
k−1, (2.14)

P f
k =Mk−1:kP

a
k−1MT

k−1:k +Qk, (2.15)

where the superscripts a, f, and T stand for analysis, forecast and matrix transpose, respec-

tively. Once the forecast step is done, the analysis Eq. 2.13 yields p (xk|y1:k) =N (xk|xa,Pa),
where the analysis mean xa and covariance matrix Pa are now associated with time index

k and the corresponding KF analysis or update equations are given by

xa
k = x f

k +Kk

�
yk −Hkx

f
k

�
, (2.16)

Pa
k = (Ik −KkHk)P

f
k , (2.17)

where Ik ∈ Rn×n is the identity matrix, the term yk −Hkx
f
k is called the innovations (as it is

the sole entry point of new observations) and the Kalman gain matrix, K ∈ Rn×m, is

Kk = P f
k HT

k

�
HkP

f
k HT

k +Rk

�−1
. (2.18)

Therefore, the KF consists of repeating the matrix computations of Eq. 2.14 to 2.17 for

sequentially increasing k. The resulting analysis state estimate xa
k, has minimum error

variance and is unbiased. The KF only works optimally for linear models, which are rare

in practice but its most common nonlinear variant, the extended Kalman filter, was proven

to be unstable for chaotic nonlinear dynamics (Evensen, 1992).
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2.2.4 The Ensemble Kalman filter

The ensemble Kalman filter (EnKF) (Burgers et al., 1998; Evensen, 1994, 2003) is an

ensemble-based variant of the KF. The central idea behind the EnKF is to use a Monte

Carlo method to generate an ensemble of model states [x1,x2, ...,xN], that are indepen-

dent identically-distributed realizations of the process, to sample the state space. The

positive integer N denotes the ensemble size. In this section we will present the forecast

and update step equations of the EnKF without going into detailed derivations.

Conceptually, the EnKF only differs from the KF by the way it treats the propagation step,

that is, each ensemble member is integrated with the fully nonlinear modelM from one

observation time to the next. The evolution for each xa
i , where i ∈ [1, N], is thus computed

usingM as follows (hereafter, for clarity, the time index is omitted from the notations):

x f
i =M
�
xa

i

�
+ qi, (2.19)

where subscript i represents the ith ensemble member. The forecast ensemble can be used

to estimate the ensemble forecast error covariance matrix as

P̂ f =
1

N − 1

N∑
i=1

�
x f

i − x̄ f
� �

x f
i − x̄ f
�T

, (2.20)

where x̄ f is the mean of the forecast ensemble

x̄ f =
1
N

N∑
i=1

x f
i . (2.21)

Once the forecast ensemble is computed, available observations y ∈ Rm are used to com-

pute the updated analysis ensemble. Each forecast member is updated individually using

the KF update equation given by Eq. 2.16. The update step of the EnKF is given as follows:

xa
i = x f

i + K̂
�
yi −Hx f

i

�
, (2.22)

K̂= P̂ f HT
�
HP̂ f HT +R
�−1

, (2.23)

where yi is is the ith perturbed observation vector sampled from a Gaussian distribution

N (y,R); K̂ is the Kalman gain matrix computed using the ensemble statistics. Eq. 2.22 is

analogous to the aforementioned process of geostatistical conditional simulations, but this

time it makes use of a dynamical model to generate the forecast (Chiles and Delfiner, 2012).

For simplicity we assumed a linear observation operator H in the EnKF update Eq. 2.22 and

2.23 but the EnKF can be applied for nonlinear observation operators as well (Evensen,

2003). Similar to Eq. 2.20 the analysis-error covariance matrix can be computed from the
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ensemble of analysis states. Under Gauss-linear assumptions, K̂ converges to the optimal

Kalman gain given in Eq. 2.18 as N →∞, and the distribution of the analysis ensemble�
xa

1,xa
2, ...,xa

N

�
converges to the true posterior distribution (Le Gland et al., 2009). For non-

Gaussian and nonlinear scenario there are so far no general convergence results but still

the EnKF has shown to perform well in many such DA problems (Asch et al., 2016).

2.2.5 The Deterministic Ensemble Kalman filter

The stochastic EnKF employs an observation perturbation strategy for updating individual

forecast ensemble members. The perturbation of observations is necessary to match the

analysis covariance of the KF, otherwise the variance will be systematically underestimated.

This is, however, an additional source of sampling error and can become problematic for

small ensemble sizes. To counteract the issue of sampling error several deterministic square

root ensemble-based DA schemes have been proposed, which compute the analysis without

perturbing the observations and also preserve the KF posterior covariance during the up-

date. Examples of the square root ensemble schemes are the ensemble transform Kalman

filter (ETKF; Bishop et al., 2001; Whitaker and Hamill, 2002), the ensemble adjustment

Kalman filter (EAKF; Anderson, 2001), square root analysis scheme for EnKF by Evensen

(2004) and the deterministic ensemble Kalman filter (DEnKF; Sakov and Oke, 2008).

The DEnKF was proposed as a simple modification of the ETKF, which results in an asymp-

totic matching of the analysed error covariance given by the KF in cases where the analysis

increments are relatively small. The simple modification uses a first order Taylor expansion

of the ETKF update scheme and tends to over-estimate the ensemble variance: it implic-

itly inflates the analysis ensemble, which is a desirable feature for small ensembles (Raanes

et al., 2019). The DEnKF requires only marginal changes to available stochastic EnKF code.

The analysis ensemble in the DEnKF is computed as in Sakov and Oke (2008):

• First, the analysis ensemble mean x̄a is computed using the classical KF update

Eq. 2.16.

• The analysis anomalies Aa are then calculated

Aa = A f − 1
2

KHA f , (2.24)

where A f is the forecast anomalies matrix, whose columns are the deviations from

the ensemble mean; that is, for i = 1,2, ..., N ,

�
A f
�

i
= x f

i − x̄ f .
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• The analysis ensemble members are then deduced from the mean and the anomalies:

xa
i = x̄a + [Aa]i , (2.25)

where [Aa]i is the ith column of the analysis anomalies matrix.

In essence, the analysis scheme of the DEnKF is equivalent to applying the EnKF update

equation to each anomaly using half the Kalman gain and without perturbing the observa-

tions.

2.2.6 The Partial Deterministic Ensemble Kalman filter

Until now, the presented ensemble-based DA methods only assimilate hard data, that is,

quantitative observations. To the best of our knowledge only one study (Borup et al.,

2015), has dealt with the issue of observations with detection limit in an ensemble-based

DA framework.

Borup et al. (2015) has proposed the partial deterministic ensemble Kalman filter (PDEnKF)

designed to assimilate out-of-range (OR) observations (soft data) explicitly: the out-of-

range values are qualitative by nature (inequalities), but one can postulate a probability

distribution for them and then update the ensemble members accordingly using Bayes’ rule.

The main idea of the PDEnKF method is that in the absence of the hard data, a virtual ob-

servation is assumed at the detection limit with a uniform OR observation likelihood in the

unobservable range. The part inside from the detection limit is assumed to be Gaussian

with observation error variance set equal to error variance of the hard data at the detec-

tion limit, translating the possibility that observation errors may push hard data into the

unobservable range. Figure 2.2, represents the constant OR observation likelihood for an

observation with an upper detection limit along with the in-range observation likelihood

(Gaussian) for hard data, as assumed in Borup et al. (2015).

Given that the unknown observation is in the unobservable range, the assumed virtual ob-

servation at the detection limit is then only used to correct the forecast ensemble members

that are inside the observable range such that the ensemble members are updated towards

the detection limit. Borup et al. (2015) referred to this process as partial updating because

only a part of the ensemble is updated.

The partial update of the ensemble is performed by updating the anomalies within the

DEnKF. Anomalies are updated differently conditioned on the values of forecast ensem-

ble members, that is, whether the member is inside or outside the observable range. The

mean, on the other hand, is updated only when there are hard data, but is left unchanged

by soft data, only algorithmically though, because the updated members will change the

ensemble analysis mean when anomalies are added to the mean (final step of the DEnKF
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In-range Gaussian
observation likelihood

Uniform OR-observation
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Figure 2.2: Schematic illustration of the in-range Gaussian and uniform out-of-range observation likelihood
for observations with upper detection limit in the PDEnKF. Adapted from Borup et al. (2015)

.

algorithm). For a detailed derivation and implementation of the algorithm reader is re-

ferred to (Borup et al., 2015, Section 3). The scheme has been tested using both linear

and nonlinear reservoir cascade models, as used in urban water management. The au-

thors present an important improvement in forecast accuracy, implying that soft data can

contribute meaningful information to predictions.

Some issues arise from the examination of the PDEnKF algorithm: when the forecast mean

is in-range but not the observations, the soft data only influence the mean through the up-

date of anomalies instead of the update of the mean, although in principle the mean could

have been updated directly. In the context of the DEnKF however, this choice is not equiva-

lent because the implicit inflation applies to the anomalies only, not the mean. The choice

of updating the anomalies by soft data rather than the mean can be seen as a "safe" choice,

conform to the principles of small updates of the DEnKF and algorithmically simple to im-

plement (M. Borup, personal communication) but possibly at the expense of reducing the

impact of OR-observations. Another worry is the choice of a uniform OR-likelihood, which

does not have a finite integral and is not intuitively adequate for a majority of geophysical

variables: their values are getting progressively less likely as they approach the extremes.

The present PhD study therefore focuses on a purely stochastic EnKF framework that does

not present these difficulties.

2.3 Motivation and contribution

In DA, each observation is valuable and it is used to reduce the model uncertainty and im-

prove forecast accuracy. The accessibility, availability and exponentially growing quantity
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of observations has opened new challenges and possibility to potentially use them for in-

ference procedures, especially in the DA field. As discussed in Section 1.2.1, observations

can be divided into three categories. This thesis will focus on the study of semi-qualitative

observations. Although these types of observations do not give any quantifiable data out-

side of its observable range, they still provide meaningful qualitative information about the

observed quantity, in the shape of an inequality. In other words it provides soft data indi-

cating that quantity is out-of-range. Geostatistical methods have proven the usefulness of

soft data for the inference of static variables, but can data assimilation methods obtain the

same success with dynamical systems requiring more stringent computational constrains?

As mentioned in Section 2.2.6, the PDEnKF is the only ensemble-based DA method found

in the literature, which explicitly assimilates soft data. The implementation procedure of

the PDEnKF is not straightforward because the mean and ensemble anomalies are updated

separately. This, together with the growing availability of semi-qualitative data in various

fields of climate science, motivates the work presented in this thesis. The goal of this thesis

is to propose a new methodology within the family of ensemble-based DA methods, that is

able to benefit from observations with a detection limit.

Similar to the work by Borup et al. (2015), a new ensemble-based DA methodology is pro-

posed in this thesis to tackle the issue of observations with detection limit, but in a fully

probabilistic framework. The newly proposed stochastic method is called the ensemble

Kalman filter semi-qualitative (EnKF-SQ) and is developed in Paper I. The EnKF-SQ updat-

ing scheme closely follows that of the stochastic EnKF (Evensen, 2004). Apart from being a

stochastic ensemble DA scheme, contrarily to the deterministic PDEnKF, the key differences

between the PDEnKF and the EnKF-SQ are as follows:

• The EnKF-SQ assumes a two-piece Gaussian (Fechner, 1897; Gibbons and Mylroie,

1973) OR observation likelihood instead of the uniform OR likelihood. Because im-

posing a uniform density outside the observable range gives equal weight to all val-

ues until infinity, whereas extremely high values are usually less realistic in most

applications, like wind speed and ice thickness among others. A two-piece Gaussian

distribution is obtained by merging two opposite halves of two Gaussian probability

densities (pdfs) at their common mode as follows:

f (x) =





Wexp
�
− (x−µ)2

2σ2
1

�
, x≤µ

Wexp
�
− (x−µ)2

2σ2
2

�
, x>µ

(2.26)

where W=
q

2
π (σ1 +σ2)

−1 is a normalizing constant, µ is the common mean, σ1

and σ2 are the standard deviations (std) of the two Gaussian pdfs. The common

mean µ is located at the detection limit, as it is the last possible value the gauge
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could detect with known observation uncertainty.

Figure 2.3, shows an illustration of a two-piece Gaussian OR likelihood superimposed

with the uniform OR likelihood as assumed in Borup et al. (2015). (for further details

refer to Section 2.2.2 of Shah et al., 2018).

y

p
(y

|x
)

In-range obs. likelihood

2-piece Gaussian OR-obs. likelihood

Uniform OR-obs. likelihood

Detection limit

Figure 2.3: Illustration of the two-piece Gaussian OR observation likelihood, for an observation with upper
detection limit. The hard data is shown by a small black rectangle and the corresponding in-range Gaussian
likelihood by a solid gray line. The two-piece Gaussian likelihood is plotted in gray and a uniform OR-obs
likelihood in dashed gray. σir is the observation error standard deviation for a hard data at the detection
limit and σor is the OR-observation error standard deviation.

• In the EnKF-SQ, all forecast ensemble members are updated when the observation is

out-of-range, whereas for the same situation the PDEnKF only partially updates the

members inside the observable range. The two EnKF-SQ update equations for the

forecast ensemble members in the absence of hard data are proposed on the basis

of the Bayesian update of the Gaussian prior with a two-piece Gaussian OR likeli-

hood, although they do not coincide strictly with the Bayesian posterior (Section

2.2.3; Shah et al., 2018). The update of the forecast ensemble members for soft data

is divided into two cases, depending whether the observed ensemble member, Hx f
i ,

is inside or outside the observable range. Members inside (outside) the observable

range should be updated linearly using the EnKF update equations with the observa-

tion uncertainty σir (σor). In essence, the EnKF-SQ uses two different Kalman gains

depending on the value of the observed ensemble member. For a scalar case, the

in-range Kalman gain becomes Kir = σ2
b

�
σ2

b +σ
2
ir

�−1
. If the member is outside the

observable range then the Kalman gain is calculated with out-of-range observation

error variance σor i.e., Kor = σ2
b

�
σ2

b +σ
2
or

�−1
. Here, the forecast error variance is

denoted by σ2
b. This way, the algorithm updates the entire forecast ensemble instead

of partial updates and does not split the update of the mean and anomalies, thus
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avoiding any ambiguity.

Paper I presents the detailed derivation of the EnKF-SQ along with results of numerical

experiments performed with linear and nonlinear toy models under twin-experiments. The

performance of the EnKF-SQ is compared with the PDEnKF. The numerical results show

that assimilating qualitative observations using the proposed scheme improves the overall

forecast mean. The results also indicate that with the same configuration of the ensemble

size and other parameters, the EnKF-SQ remains robust and outperforms the PDEnKF. The

proposed scheme specifically improves the forecast accuracy in the vicinity of the detection

limit in the absence of the hard data by adding value from the soft data. This feature of

the scheme makes it attractive compare to just ignoring the soft data.

In order to assess the viability and performance of the newly proposed EnKF-SQ in a high-

dimensional complex system, it is implemented using the state-of-the-art coupled Arctic

ocean sea ice model TOPAZ4 configuration (Sakov et al., 2012) assimilating sea ice thick-

ness with a detection limit (similar to the SMOS product). The details of the experimental

configuration and numerical results are presented in Paper II. Various experiments are per-

formed and the results suggest that the EnKF-SQ clearly makes a valuable approach for

assimilating semi-qualitative observations into high-dimensional nonlinear systems.

The EnKF-SQ algorithm explicitly depends on a climatology of the OR values of the ob-

served quantity to estimate the most important parameter, and the only new free parame-

ter of the method, the OR observation error variance of the two-piece Gaussian likelihood.

The dependency of the OR observation error variance estimate on the climatology, makes

the EnKF-SQ sensitive to imprecise climatology values. To compensate for an imprecise

OR-observation error variance specification, an adaptive spatially and temporally varying

OR-observation error variance correction scheme is proposed within the framework of the

EnKF-SQ. Paper III presents the formulation of this correction strategy along with results of

numerical experiments using a nonlinear Lorenz’96 toy model. The adaptive scheme shows

improvements of the overall forecast accuracy when compared to the fixed OR-observation

error variance both in biased and unbiased twin experiments, even for extreme climato-

logical biases.

The PhD candidate is the main author of all publications, written under the supervision

and in collaboration with the PhD supervisors and other colleagues at NERSC.



Chapter 3

Summary of papers and outlook

With this chapter, we end the introduction of the thesis by briefly summarizing each of the

articles included in it and discussing further work and potential improvements.

3.1 Paper I summary

Assimilation of semi-qualitative observations with a stochastic
ensemble Kalman filter

Shah, A., El Gharamti, M., and Bertino, L.
Published in Quarterly Journal of the Royal Meteorological Society

The first article introduces an ensemble-based data assimilation method that addresses the

problem of observations with a detection limit. Most data assimilation methods discards

the out-of-range (OR) values, treating them as not a number, with loss of possibly useful

qualitative information (soft data). Inspired by the study of Borup et al. (2015), we propose

a fully probabilistic ensemble-based data assimilation method namely ensemble Kalman

filter - semi qualitative (EnKF-SQ), which explicitly assimilates soft data.

Whenever the available observation is OR, a virtual observation at the detection limit is

created assuming a two-piece Gaussian observation likelihood around it. The mode of the

two-piece Gaussian likelihood is imposed at the detection limit; the variance inside the ob-

servable range is equal to the observation error variance (σ2
ir) of hard data at the detection

limit, whereas the variance in the unobservable range (out-of-range error variance σ2
or) is

defined with the help of a climatology.

A Bayesian approach is applied to examine the posterior distribution of the model state

variables. A Gaussian prior distribution is updated with an assumed asymmetric two-piece

Gaussian OR observational likelihood to obtain the posterior distribution. The EnKF-SQ al-
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gorithm is developed on the basis of the Bayesian update and closely follows the stochastic

EnKF (Burgers et al., 1998). The central idea of the EnKF-SQ algorithm is the computation

of a separate Kalman gain matrix K for updating each ensemble member rather than using

a global one. This is also the main algorithmic difference compared to the stochastic EnKF

update scheme. In order to evaluate the EnKF-SQ posterior distribution against the true

Bayesian posterior, a one-dimensional example with a Gaussian prior and a two-piece OR

Gaussian likelihood is used.

Finally, the EnKF-SQ is tested in a twin-experiment framework using a linear subsurface

flow-transport model (obeying Darcy’s law) and the nonlinear Lorenz’96 model assimilat-

ing observations with an upper detection limit. The root mean square errors and average

ensemble spread of the forecast estimates are used to evaluate the performance of the

scheme. Sensitivity experiments with varying ensemble size and detection limit (changing

the number of observations falling out-of-range) are conducted to check the robustness of

the scheme. In addition, sensitivity experiments with varying σ2
or are also conducted to

study its effect on the performance of the EnKF-SQ and specifically on the higher-order

moments of the posterior distribution.

Our numerical results show that assimilating qualitative observations using the EnKF-SQ

improves the overall forecast skill.

3.2 Paper II summary

Assimilation of semi-qualitative sea ice thickness data

with the EnKF-SQ
Shah, A., Bertino, L., Counillon, F., El Gharamti, M., and Xie, J.
Submitted in Tellus A: Dynamic Meteorology and Oceanography

Paper II is a follow up study of Paper I where the EnKF-SQ is applied to a realistic state-

of-the-art coupled ice-ocean model of the Arctic, the TOPAZ4 configuration, in a twin-

experiment framework. Synthetic thin sea ice thickness (SIT) data with an upper detection

limit of 1.0 m are assimilated, mimicking SMOS retrieved SIT observations. The goal of

the study is to check the feasibility of the implementation of the EnKF-SQ in such a high-

dimensional complex system. The method is shown to add value to range-limited thin ice

thickness measurements, as obtained from passive microwave remote sensing, with respect

to more trivial solutions like neglecting the out-of-range values or assimilating climatology

values instead.

In order to generate the synthetic SIT data mimicking SMOS SIT, a reference truth run is

produced by integrating the coupled ocean sea ice model for two years using unperturbed
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atmospheric reanalysis forcing. Synthetic SIT observations are then created by perturbing

the truth with white Gaussian noise. Further, a synthetic OR SIT climatology is computed,

to be assimilated instead of soft data using the standard EnKF, by taking the two-year time

average of all true SIT above the detection limit in each grid cell.

The EnKF-SQ is tested for the first time with a high-dimensional system and the implemen-

tation was intentionally simplified: the local state vector therefore consists of only two

sea-ice variables: SIT and sea-ice concentration, constituting a case of a weakly coupled

but multivariate assimilation. The model error increasing the model spread is introduced

via perturbing the atmospheric forcing fields. The synthetic SIT observations are assimi-

lated with a detection limit of 1.0 m every week and a local analysis is performed in which

the two variables at each grid cell are updated using only the nearest observation. Differ-

ent single-cycle sensitivity experiments are performed with varying ensemble size and OR

observation error variance of the two-piece Gaussian OR observation likelihood (the only

free parameter of the EnKF-SQ), to settle their values for the long assimilation experiment.

The results from the sensitivity experiments confirm the findings from Paper I.

A 5-months DA experiment was performed during the winter 2014-2015 using 99 ensemble

members in the EnKF-SQ and other EnKF benchmarks. Different assimilation experiments

are conducted to assess the performance of the EnKF-SQ against other EnKF configurations

assimilating (1) only thin ice; (2) both thin and thick ice; and (3) climatology. The study

shows that assimilating soft data improves the SIT forecast accuracy compared to ignoring

them by approximately 8%, particularly where sea ice approaches the detection limit. Such

a difference can be important in light of the performance of the TOPAZ4 operational system.

The performance exhibited by assimilating a reasonably accurate climatology was similar

to the EnKF-SQ. Assessing the bias of the analysis did not reveal the introduction of any

significant biases by the EnKF-SQ.

3.3 Paper III summary

An adaptive correction algorithm for the out-of-range observation error

variance of the EnKF-SQ
Shah, A., El Gharamti, M., Bertino, L., and Counillon, F.

To be submitted

Paper III focuses on an algorithmic modification to the proposed EnKF-SQ scheme. The for-

mulation of the EnKF-SQ depends on a likelihood probability distribution for out-of-range

observations, parameterised by an out-of-range observation error variance σ2
or , usually

computed from a climatology. The climatology however can be biased, which may affect
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the performance of the EnKF-SQ. This article presents a temporally and spatially adaptive

σ2
or correction strategy for the EnKF-SQ to alleviate the effect of a biased climatology.

Inspired by the adaptive inflation schemes of Anderson (2007) and El Gharamti (2018),

a Bayesian approach is used, where σ2
or is considered a random variable and sequentially

estimated at every assimilation cycle using the data. Since, σ2
or is a positive quantity, an

inverse gamma prior distribution is assumed, which is updated given the data likelihood

(coming from the pdf of innovations) to obtain a posterior pdf. The posterior is then

maximized to find the mode of the distribution, which is then selected as the new estimate

of σ2
or and then reused in the prior for next assimilation cycle. Independent values of σ2

or

are computed independently for all state variables and therefore the correction strategy is

adaptive in time and space.

The newly proposed algorithm is called EnKF-SQ-Adap to distinguish it from the EnKF-SQ,

which uses a fixed σ2
or . The algorithmic implementation of the EnKF-SQ-Adap adds the

new σ2
or correction strategy between the forecast and update step of the EnKF-SQ. Apart

from this new modification, there is no change in the EnKF-SQ code.

The EnKF-SQ-Adap is evaluated in both biased and unbiased twin-experiment setups using

the Lorenz’96 model in cases of biased climatology. All possible combinations of model

biases and climatology biases are thus covered. The performance is compared to the pre-

existing EnKF-SQ and the same three EnKF benchmarks in Paper II: (1) only assimilating

hard data (EnKF-IG, Ignore), (2) no detection limit (EnKF-ALL) and (3) assimilating clima-

tology instead of soft data (EnKF-CLIM).

The numerical results compared to the EnKF-SQ, EnKF-CLIM and EnKF-IG suggest that

the EnKF-SQ-Adap improves the overall forecast accuracy in biased as well as unbiased

conditions for all choices of climatology. Further, the EnKF-SQ-Adap was found robust to

DA forward model bias and suffered less filter divergence than the EnKF-SQ and EnKF-

CLIM, making the EnKF-SQ-Adap a preferable choice over its predecessor, the EnKF-SQ

and also the simple EnKF-CLIM. Despite the good performance of the EnKF-SQ-Adap, the

scheme still performs poorly when the DA forecast model is extremely biased because the

adaptive scheme carries the model bias over to σ2
or estimate. Such cases should be better

treated by methods explicitly targeted at model bias estimation.

3.4 Further work and perspectives

This thesis has shown that the newly proposed EnKF-SQ and its variant the adaptive EnKF-

SQ-Adap makes better use of semi-qualitative data rather than ignoring the data above the

detection limit, at a reasonable computing cost. It is also shown that the EnKF-SQ is able to

outperform the assimilation of climatology for values above the detection limit under cer-
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tain conditions and perform equally good otherwise. The limitations of the methods were

emphasized along with the potential benefits. The methods have been tested under biased

and unbiased twin-experiments using a range of linear, nonlinear, low to high dimensional

complex dynamical systems. Numerical results from all these experiments clearly suggest

the benefits of assimilating soft data with the EnKF-SQ DA scheme. Further steps include,

ordered from short-term to long-term perspectives:

• In paper II, the EnKF-SQ was implemented with a coupled ocean sea ice model, where

for the sake of implementation simplicity the state vector only included two variables.

This implementation can be scaled up to include all state variables from the ocean

and sea ice but this will also necessitate optimizing the computations for larger state

vector.

• Following the previous point on increasing the level of complexity, the EnKF-SQ

should be included into an existing data assimilation package like (among others)

the NERSC EnKF, DART from NCAR, the parallel data assimilation framework (PDAF)

from the Alfred Wegener Institute or the EnKF-C from the Bureau of Meteorology,

Australia.

• The thesis presents a case for assimilating synthetic SIT data with the EnKF-SQ. The

next step is to assimilate real SMOS data which comes at a different resolution than

the one used in the synthetic case. Besides, by using a lower threshold rather than

a higher threshold, the complementary CryoSAT2 thick SIT can be included as well.

Assimilating both thin and thick SIT separately would help respecting the sampling

and observation error characteristics of both satellites in contrast to the assimilation

of a merged spatio-temporally interpolated product (Ricker et al., 2017).

• Implementing the EnKF-SQ with other realistic applications in Earth system sciences,

like observations of chlorophyll with a lower detection limit in ocean biogeochem-

istry, soil moisture from SMOS with a higher detection limit among others. This

should help understand how well the scheme can tackle various kinds of observa-

tion detection limits but also allow for further developments of the scheme that are

unexplored here.

• In addition to semi-qualitative data, the EnKF-SQ can also be expanded to the assim-

ilation of fully qualitative data. For example the ice types mentioned earlier, as well

as other binary indices that are common in Earth system sciences (is a contaminant

present or not, is permafrost present or not). Such data can often be related to spe-

cific thresholds of a hidden quantitative state variable: for example the sea-ice types

can be considered a classification of sea-ice age: young ice between zero and 30 days,

first-year ice up to 365 days and multi-year ice above. Such multiple detection limits
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can then be used to formulate an OR observation likelihood. Now if the data sug-

gests that the quantity is on either side of the detection limit, the forecast ensemble

members falling on the other side of the observation shall be corrected towards the

detection limit in the direction of the qualitative observation. The stochastic frame-

work used in this thesis can in principle be extended to tackle this problem, but the

algorithmic complexity - the number of particular cases to be taken into account -

will increase considerably.

• The EnKF-SQ uses a two-piece Gaussian OR observation likelihood for observation

out-of-range. This is not necessarily a best choice for every application. Therefore,

replacing the two-piece Gaussian by other distributions depending on the application

will be interesting to study.
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The ensemble Kalman filter assumes observations to be Gaussian random variables

with a pre-specified mean and variance. In practice, observations may also have

detection limits, for instance when a gauge has a minimum or maximum value.

In such cases, most data assimilation schemes discard out-of-range values, treating

them as “not a number,” with the loss of possibly useful qualitative information.

The current work focuses on the development of a data assimilation scheme that

tackles observations with a detection limit. We present the Ensemble Kalman Filter

Semi-Qualitative (EnKF-SQ) and test its performance against the Partial Deter-

ministic Ensemble Kalman Filter (PDEnKF) of Borup et al. Both are designed to

assimilate out-of-range observations explicitly: the out-of-range values are qualita-

tive by nature (inequalities), but one can postulate a probability distribution for them

and then update the ensemble members accordingly. The EnKF-SQ is tested within

the framework of twin experiments, using both linear and nonlinear toy models. Dif-

ferent sensitivity experiments are conducted to assess the influence of the ensemble

size, observation detection limit and number of observations on the performance of

the filter. Our numerical results show that assimilating qualitative observations using

the proposed scheme improves the overall forecast mean, making it viable for testing

on more realistic applications such as sea-ice models.

KEYWORDS

data assimilation, detection limit, ensemble Kalman filter, semi-qualitative informa-

tion, out-of-range observations

1 INTRODUCTION

Data Assimilation (DA) is an approach through which avail-

able observations, along with prior knowledge (model state),

are used to obtain an estimate of the true state of a process

(Ghil and Malanotte-Rizzoli, 1991; Daley, 1993; Talagrand,

1997; Kalnay, 2003). Each observation is used to reduce

model uncertainty and improve forecast accuracy. In practice,

many observations are only available in a limited interval of

the actual variation of the observed quantity, that is, observa-

tions with a detection limit. For instance, some observations

with a higher detection limit are Soil Moisture and Ocean

Salinity (SMOS) satellite estimates of the sea-ice thickness

(Kaleschke et al., 2010; 2012) and ocean wind observations

from scatterometers at hurricane wind speeds (Reul et al.,
2012). SMOS can give quantitative thickness data only up

to 50 cm over first-year level ice for the Arctic, because the

signal penetration is limited by the wavelength. In reality, the

sea ice can grow up to a few metres. Conversely, observations

with lower detection limit also exist. Examples are con-

taminant concentrations in environmental and health fields

(Hornung and Reed, 1990) and river water level measure-

ments obtained from satellite radar altimetry. On top of the

detection limits, some measurements are Boolean in nature:

for example, whether permafrost exists or not (Li and Cheng,

1999), or whether or not there is overflow at a weir in urban

hydrology (Thorndahl et al., 2008). Although these types of

observation do not provide quantifiable data above or below

the detection limit, they do give qualitative information about

the observed variable. Therefore, this type of observation

should be exploited as a means to improve the model forecast.

All deterministic and stochastic ensemble-based filtering

schemes (Burgers et al., 1998; Anderson, 2001; Tippett et al.,
2003; Sakov and Oke, 2008) assimilate actual observations

Q J R Meteorol Soc. 2018;1–13. wileyonlinelibrary.com/journal/qj © 2018 Royal Meteorological Society 1
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(hard data), but do not consider qualitative information (soft

data) available from out-of-range observations (OR observa-

tions). Whereas the geostatistical techniques are well estab-

lished for variables without dynamical evolution (Chiles and

Delfiner, 1999; Emery and Robles, 2008), only one study

(Borup et al., 2015), to the best of our knowledge, has dealt

with the issue of OR observations in an ensemble-based data

assimilation framework. The issue has been addressed in vari-

ational methods (see Bocquet et al., 2010, section 2c and

references therein).

Borup et al. (2015) proposed the Partial Deterministic

Ensemble Kalman Filter (PDEnKF) to assimilate observa-

tions with a detection limit. The main idea of the PDEnKF is

to assume a virtual observation at the detection limit in the

absence of hard data and defining a constant OR observation

likelihood in the unobservable region from the detection limit.

The virtual observation is then used to update the anoma-

lies within the framework of the Deterministic Ensemble

Kalman Filter (DEnKF: Sakov and Oke, 2008). Anomalies

are updated differently conditioned on the values of forecast

ensemble members, that is, whether the member is inside or

outside the observable range. The mean, on the other hand,

is updated only when there are hard data, or else there is no

update. In practice, virtual OR observations are used only

to update the ensemble members that are within the observ-

able range. The scheme has been tested using both linear

and nonlinear reservoir cascade models. The authors present

an important improvement in forecast accuracy, implying

that soft data can contribute meaningful information to

predictions.

In light of this background, a new DA algorithm, referred to

as the Ensemble Kalman Filter Semi-Qualitative (EnKF-SQ),

is developed here and is designed to assimilate OR observa-

tions explicitly. The EnKF-SQ assumes a virtual observation

at the detection limit in the absence of hard data, with an

asymmetric two-piece Gaussian observational likelihood on

either side of the detection limit. In the EnKF-SQ, the fore-

cast ensemble members are updated by the observations,

which are perturbed using a two-piece Gaussian OR obser-

vation likelihood following the stochastic ensemble Kalman

filter (EnKF) update (Evensen, 2003). A detailed derivation

of the EnKF-SQ is discussed in section 2.2, followed by an

algorithmic implementation. To test the performance of the

EnKF-SQ, we apply it to two different linear and nonlinear

toy models. The experimental setup and results are presented

in section 3. A summary of the numerical results is fol-

lowed by a general discussion that concludes the article in

section 4.

2 METHODOLOGY AND ALGORITHM

In this section, a brief background on the stochastic EnKF is

given. The new EnKF-SQ is also derived and presented in

detail.

2.1 Background

The Kalman filter (KF: Kalman, 1960) is a sequential fil-

tering technique, in which the model is integrated forward

in time and, when they become available, observations are

used to update the model state and its associated uncertainty.

The KF is a recursive Bayesian estimation method, which

is optimal for Gaussian and linear models (Kalman, 1960;

Gharamti et al., 2012, and references therein). The KF oper-

ates sequentially in time, following time update (forecast) and

measurement update (analysis) steps. The EnKF, a variant of

the KF, utilizes an ensemble of model states [x1, x2.....xN]
(where N is the ensemble size) to estimate the mean and

covariance. The analysis step of the EnKF at any particular

time is given as

xa
i= xf

i+K(yi−Hxf
i ), i = 1, 2, ....,N, (1)

K = PfHT(HPfHT + R)−1, (2)

where K is referred to as the Kalman gain; xa
i and xf

i denote

the ith analysis and forecast state member, respectively; yi
is the ith vector of perturbed observations; H is the obser-

vation operator, that is, mapping the state variable to the

observation space (assumed linear here for simplification1);

Pf is the ensemble forecast-error covariance matrix and R
is the observation-error covariance matrix. The superscripts

“a”, “f” and “T” stand for analysis, forecast and matrix trans-

pose, respectively. For clarity, the time index is omitted from

the notation. The term (yi−Hxf
i ) in Equation 1 is the discrep-

ancy between the observations and the ensemble members,

often referred to as the sample innovation. The ensemble

forecast-error covariance matrix Pf is never computed explic-

itly; however, it is decomposed as follows:

Pf = 1

N − 1

N∑
i=1

(xf
i − x̄f)(xf

i − x̄f)T = 1

N − 1
Af(Af)T, (3)

where x̄f is the mean of the forecast ensemble:

x̄f = 1

N

N∑
i=1

xf
i ,

and Af is the ensemble anomalies matrix, the columns of

which are the perturbations; that is, for i = 1, ...,N,

[Af]i = xf
i − x̄f .

Similarly, the analysis-error covariance matrix can be com-

puted from the ensemble of analysis states, but is not required

in the implementation.

For hard data with known observational likelihood, each

ensemble member is updated independently using observa-

tions that are perturbed with  (0,R) as shown in Burgers

et al. (1998) and Evensen (2003). For observations with

detection limits, the likelihood is truncated and is therefore

non-Gaussian. How can this information be incorporated in

an EnKF system?

1The proposed algorithm can be applied for nonlinear operators.
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2.1.1 Observations with a detection limit
When the observations have a detection limit, one may not

have a full access to the observation likelihood. For simplic-

ity, we will consider only the case with an upper detection

limit on the observations, rather than a lower limit, without

loss of generality. Observations with detection limit can be

characterized into two parts:

1. hard data or in-range observations (yir);
2. soft data or OR observations (yor), that is, no specific value

of the observed quantity.

Within the Bayesian framework, the goal of DA is to esti-

mate the posterior distribution of the model state. According

to Bayes’ rule, the posterior distribution p(x|y) is proportional

to the product of a prior p(x) and the observation likelihood

p(y|x) as follows:

p(x|y) ∝ p(y|x)p(x). (4)

For an observation with detection limit, Equation 4 can be

split into two, depending on the nature of the observation,

that is,

p(x|y)∝
{

p(yir|x)p(x), when y = yir, in-range observations,

p(yor|x)p(x), when y = yor, OR observations.

(5)

Although we do not have an a priori OR observation like-

lihood p(yor|x) to solve for the posterior p(x|y) given in

Equation 5, one can always postulate an OR observation like-

lihood based on climatology or expert opinions. A detailed

discussion about the choice of OR observation likelihood is

given in section 2.2. In the following section, we will intro-

duce the EnKF-SQ and present its implementation, along with

its main differences from the PDEnKF.

2.2 The ensemble Kalman filter semi-qualitative

The KF minimizes the forecast error variance and this is

achieved by updating state variables, eventually moving them,

on average, towards the observations. The update of the prior

given in Equation 5 for in-range observations is straightfor-

ward. However, for OR observations it is not so clear, since

we do not have the distribution of the observation. As such,

an assumption about the OR observation likelihood, which

should be physically consistent with the observed quantity

and the qualitative information we have about it, is required

to solve Equation 5.

2.2.1 The partial deterministic EnKF
As a way to do that, Borup et al. (2015) proposed a DA

scheme, namely PDEnKF, to solve the Bayesian system

in Equation 5. The authors assumed the OR observation

likelihood to be constant outside the observable range.

Furthermore, the likelihood function inside the observable

range is set to be determined by the in-range observation

uncertainty, because measurement errors make it possible

for in-range values to be wrongly observed as out of range.

Inspired by the PDEnKF, we present an EnKF-SQ that uses

a stochastic EnKF.

In contrast to the stochastic update, the PDEnKF follows

Sakov and Oke (2008) and uses two different equations for

updating the ensemble mean and anomalies, the anomalies

being updated by half the gain in the form of implicit infla-

tion. In some cases of partial update, the half-gain does not

maintain the anomalies centered on the analysis mean: if the

mean is within the range and the observation outside, the

“half-gain” will leave the anomalies further inside the range

than if the partial update were applied to the mean. Borup

et al. (2015) have opted for this non-centered partial analysis

scheme in order to maintain more ensemble spread.

In the EnKF-SQ, instead of a constant uniform OR obser-

vation likelihood, we propose to use a two-piece Gaussian

distribution (Fechner, 1897; Gibbons and Mylroie, 1973) as

the OR observation likelihood. In other words, the uniform

likelihood of Borup et al. (2015) is replaced by a Gaussian

distribution with varying observation-error variance outside

the observable range.

A two-piece Gaussian distribution is obtained by merging

two opposite halves of the two Gaussian probability densities

(pdfs) at their common mode, given as follows:

f (x) =
⎧
⎪⎨⎪⎩

Wexp
[
−(x−𝜇)2

2𝜎2
1

]
, x≤𝜇,

Wexp
[
−(x−𝜇)2

2𝜎2
2

]
, x>𝜇,

(6)

where W =
√

2

𝜋
(𝜎1 + 𝜎2)−1 is a normalizing constant, 𝜇 is

the common mean, and 𝜎1 and 𝜎2 are the standard devia-

tions (std) of the two Gaussian pdfs. The common mean 𝜇 is

located at the detection limit, as it is the last possible value

the gauge could detect with known observation uncertainty.

In essence, the common mean 𝜇 is nothing but the mode of

a two-piece Gaussian distribution. Note that, for the func-

tion f (x), the mean does not coincide with the mode, given

the skewness of the distribution. The reasons for choosing a

Gaussian likelihood, over a uniform one, in the unobservable

range are as follows.

• OR observations do not give a specific value of the

observed quantity, but an educated guess can always be

made about a realistic range of values: for instance, using

a climatology of the values in the unobservable range.

Imposing a uniform density outside the observable range

gives equal weight to all values until infinity, whereas

extremely high values are usually less realistic in most

applications, like wind speed and ice thickness among

others.

• In order to implement the stochastic EnKF, one needs

to perturb the observations (Equation 1) with a Gaussian

distribution of covariance matrix R. For the OR uniform

likelihood this is technically impossible, since the uniform

tail is not integrable. Even if the OR uniform likelihood
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y

p
(y

|x
)

In-range obs. likelihood
2-piece Gaussian OR-obs. likelihood
Uniform OR-obs. likelihood
Detection limit

FIGURE 1 Illustration of the two-piece Gaussian OR observation likelihood, when a gauge has an upper observation limit. The in-range observation is shown

by a small black rectangle and the corresponding Gaussian likelihood by a solid gray line. The two-piece Gaussian likelihood is plotted in gray and Uniform

OR-obs likelihood from Borup et al. (2015) in dashed gray. 𝜎ir is the observation-error std for hard data and 𝜎or is the educated guess of the OR-obs error std

were limited to a finite upper bound, the choice of that

upper bound would have to be justified by the nature of the

variable. In principle, there is no restriction on the choice

of OR likelihood probability distribution, but the Gaussian

distribution has practically convenient properties for our

purpose (the simulation does not generate excessive out-

liers and the Bayesian interpretation is relatively simple,

see below).

In addition, we assume that the observation-error variance

of the Gaussian half that is inside the observable range from

the detection limit is equal to the in-range observation-error

standard deviation (𝜎ir), as in Borup et al. (2015). An example

of the two-piece Gaussian OR observation likelihood having

an upper detection limit is shown in Figure 1. As shown, the

two-piece Gaussian likelihood is right-skewed, because of the

higher OR observation-error standard deviation 𝜎or. Choosing

a proper 𝜎or is very important, as it will be used to generate

perturbations and thereby to update ensemble members. The

choice should be consistent with the possible values in the

unobservable range of the underlying observed variable.

2.2.2 Choice of 𝜎or

The observation-error standard deviation for the Gaussian

half outside the observable range (𝜎or) is an arbitrary choice

with different possibilities. If the pdf of the climatological

data for the observed quantity is available, then 𝜎or can be

approximated by using mean of out-of-range climatological

values:

𝜎or = −𝜇 +
⎛⎜⎜⎝

+∞

∫
𝜇

yfclim(y) dy
⎞⎟⎟⎠
, (7)

where fclim(y) is the pdf of the climatological data of the

observed quantity, and 𝜇 is the detection limit point. The

second term on the right-hand side of Equation 7 is the expec-

tation of the climatological distribution for the values above

the detection limit. Equation 7 is used to generate 𝜎or values

in all of the experiments presented in section 3. Sensitivity

experiments using different values for 𝜎or are also conducted

(section 3.3.2). In the absence of climatology for the observed

data, an educated guess can be used based on expert knowl-

edge about 𝜎or, considering that extremely high values are less

likely and vice versa for a lower detection limit.

2.2.3 Bayesian representation
According to Bayes’ rule, the posterior distribution is propor-

tional to the product of the prior and observation likelihood

functions (Equation 4). For hard data, the posterior is simply

the product of two Gaussian distributions and it is Gaussian.

For OR observations, it is the product of a Gaussian prior

distribution and a two-piece Gaussian likelihood. This is noth-

ing but the product of two Gaussian distributions (the prior
and each half of a two-piece Gaussian) on either side of the

detection limit and hence the posterior is a piecewise Gaus-

sian distribution meeting at 𝜇. The two Gaussians used in the

likelihood have their mode at the detection limit; their mul-

tiplication by the Gaussian prior (which can have its mode

either to the left (Figure 2a) or to the right (Figure 2b) side of

the detection limit) will result in a shift of the modes of the two

Gaussian pieces to the same side of the detection limit. The

posterior will join the two Gaussian pieces at the detection

limit, keeping one piece with a mode to one side and only a tail

to the other side of the second piece. Hence it is a unimodal

piecewise Gaussian, although not a two-piece Gaussian.

Figure 2 illustrates the update when the mode of the

prior distribution is (a) inside and (b) outside the observable

range. The curves for the two-piece Gaussian likelihood and
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(a) Mode of a prior is inside the range

State value

P
ro

ba
bi

lit
y

Prior in observable range

2-piece Gaussian OR-observation likelihood

Posterior (Bayes')

EnKF-SQ Analysis

Detection limit

(b) Mode of a prior is outside the range

State value

P
ro

ba
bi

lit
y

Prior in unobservable range
2-piece Gaussian OR-observation likelihood
Posterior (Bayes')
EnKF-SQ Analysis
Detection limit

FIGURE 2 Bayesian posterior and EnKF-SQ analysis for a scalar update of a Gaussian prior with a two-piece Gaussian OR observation likelihood. (a) The

mode of the prior is inside the observable range. (b) The mode of the prior is in the unobservable range

posterior Bayes distribution in Figure 2 are obtained by sam-

pling the respective pdf with the inverse transform method.

For each two-piece Gaussian-distributed random variate, we

first generate a random number u from a uniform distribu-

tion U[0, 1]. Then the two-piece Gaussian-distributed random

number is given as x = F−1
X (u), where F−1

X is the inverse

or quantile function of a two-piece Gaussian cumulative

distribution function. The quantile function for a two-piece

Gaussian cumulative distribution function is given as follows:

F−1
X (u) =

⎧
⎪⎨⎪⎩

𝜇 + 𝜎irΦ−1

(
u

W
√

2𝜋𝜎ir

)
, for u≤p = P[x ≤ 𝜇],

𝜇 + 𝜎orΦ−1

(
u

W
√

2𝜋𝜎or

)
, for u>p = P[x ≤ 𝜇],

and

P[x ≤ 𝜇] = W
√

2𝜋𝜎irΦ
(

x − 𝜇
𝜎ir

)
,

where Φ and Φ−1 are a standard normal cumulative distri-

bution function and its inverse, respectively. Φ−1 is obtained

by a rational Chebyshev approximation. We have generated

100,000 samples to plot the figure.

As shown, when the mode of a prior distribution is inside

the observable range (Figure 2a), the location of the poste-

rior mode will be between the mode of the prior and the

observation detection limit. This demonstrates the desired

effect on the prior distribution by moving it towards the

unobservable range. If the mode of the prior distribution is

outside the observable range, then the update has a very small

effect on it (Figure 2b), as expected, because of the high

observation-error variance outside the observable range.

2.2.4 Implementation and algorithm
The ensemble members can be seen as discrete samples of

a continuous distribution. Updating the ensemble members

given the hard data is performed by the stochastic EnKF, as

in Equation 1. As for the soft data, Bayes’ equation shows

that ensemble members inside the observable range need to

be updated towards the unobservable range. Intuitively, the

ensemble members that lie in the unobservable range should

be left untouched, as we do not have a specific value of the

observation.

The proposed approach to update the ensemble for soft data

is divided into two cases, depending whether the observed

ensemble members, that is, Hxf
i , are inside or outside the

observable range. Members inside (respectively outside) the

observable range should be updated linearly with observa-

tion uncertainty 𝜎ir (respectively 𝜎or). During the update,

the observation perturbations yi can be generated by the

inverse-transform method as described in section 2.2.3.

The Kalman gain K for a forecast ensemble member

inside the observable range is calculated with the in-range

observation-error standard deviation 𝜎ir. For a scalar case, this

becomes Kir = 𝜎2
b

(
𝜎2

b
+ 𝜎ir

2
)−1

. If the member is outside

the observable range, then the Kalman gain K is calculated

with the out-of-range observation error standard deviation

𝜎or, that is, Kor = 𝜎2
b

(
𝜎2

b
+ 𝜎2

or

)−1
. Here, the forecast error

variance is denoted by 𝜎2
b
. The rationale for using differ-

ent observation-error variances, rather than a single one for

the two-piece Gaussian distribution, is to be consistent with

the Bayesian update represented in Figure 2: when a prior

is inside the observable range, the posterior is the product

of the prior and the portion of the two-piece Gaussian like-

lihood located below the detection limit. The same goes for

the posterior part in the unobservable range. In other words,

a prior inside (outside) the observable range is updated using

the observation-error standard deviation 𝜎ir (𝜎or). If, however,

the variance of the two-piece Gaussian distribution had been

used instead, a value between 𝜎2
ir

and 𝜎2
or, the algorithm would

then update the in-range members too weakly and the OR

members too strongly.

In the multivariate case, this can be achieved by simply

changing the values of the observation-error variance to 𝜎ir
2
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or 𝜎2
or for an OR observation in the error covariance matrix R,

depending on the location of the forecast ensemble member.

Note that the proposed algorithm for EnKF-SQ only supports

uncorrelated observations i.e. matrix R is diagonal. If the

observation errors are correlated, one can decorrelate them

(Evensen, 2004) and proceed with the algorithm. An algo-

rithmic implementation of the EnKF-SQ analysis is presented

below:

Algorithmic steps

For an efficient processing of the update Equation 5, obser-

vations are preprocessed serially to sort out hard data (yir)

and soft data (yor) before proceeding to the analysis. The sub-

scripts “ir” and “or” stand for the index number of any hard

and soft data in observation vector y, respectively.

For each ensemble member i:

1. For each OR observation yor, apply the “or”th observa-

tion operator row Hor to ensemble member xf
i , to check

whether the member is outside or inside the observable

range.

2. Perform the operation below for all OR observations, in

order to set the values of the observation-error variance

in matrix R depending on the location of Horxf
i .

Pseudo-code:

for each OR observation yor

if Horxf
i > 𝜇

R(or,or) = 𝜎2
or

else
R(or,or) = 𝜎ir

2

end if
end for each yor

3. Calculate the Kalman gain matrix K with the updated

R.

4. Update the forecast ensemble member xf
i using EnKF

update Equation 1, where the perturbation vector yi,or

and yi,ir are generated from the two-piece Gaussian

likelihood and  (yir, 𝜎ir
2) for OR and in-range obser-

vations respectively.

5. Repeat the process for all N ensemble member xf
i to

obtain the analysis ensemble.

End the loop on i.
A flowchart for the EnKF-SQ update scheme is given in

Figure 3.

To study the posterior obtained by the proposed EnKF-SQ

algorithm, we superimpose the EnKF-SQ analysis on the

Bayesian solution in both panels of Figure 2. The EnKF-SQ

analysis is obtained from the exact same prior and likeli-

hood as in section 2.2.3. Since the likelihood is not Gaussian,

we do not expect the EnKF-SQ ensemble to coincide with

the Bayesian solution. We used 10,000 ensemble members

to sample the prior and two-piece Gaussian OR observation

likelihood.

When the mode of a prior is outside the observable

range, the EnKF-SQ scheme yields approximately the same

posterior as that of Bayes’ rule (Figure 2b), but marginally

closer to the prior distribution. The EnKF-SQ slightly under-
assimilates in this case, which conforms with the intention of

little impact of OR observations on OR forecast members.

In contrast, when the mode of the prior is inside the observ-

able range, the posterior obtained by Bayes’ rule has a sharper

peak, whereas the analysis obtained from the EnKF-SQ has

a thick tail in the OR domain (Figure 2a). The large devia-

tion from the Bayesian solution is a sign of the sensitivity of

the linear EnKF-SQ update to a skew input likelihood. This

skewness was already present in the previous case; however,

it was not visible with larger OR observation errors. In the

present case, the posterior EnKF-SQ ensemble is closer to the

likelihood than the Bayesian solution, so it can be stated that

the EnKF-SQ overassimilates in this case, although it does

return a larger ensemble spread than the Bayesian solution,

which may be counterintuitive for EnKF practitioners. It is

worth noticing that the posterior modes obtained from Bayes’

rule and EnKF-SQ analysis still remain close to each other, as

intended in Borup et al. (2015).

Note that the posterior represented in Figure 2 may not be

very well sampled in practice if the ensemble is very small.

The inconvenience of sampling errors and skewness will be

evaluated with toy models in the following sections.

3 NUMERICAL TESTS

In this section we present and analyze the assimilation results

obtained using the proposed EnKF-SQ algorithm. We use two

different toy models to test and evaluate the behavior of the

EnKF-SQ. The first is a linear subsurface flow model (LSST)

and the second is the nonlinear Lorenz-40 (L40) model of

Lorenz and Emanuel (1998). We conduct various sensitiv-

ity experiments with variable ensemble size, detection limit,

and 𝜎or. We also compare the performance of the EnKF-SQ

against the PDEnKF and with two different versions of the

stochastic EnKF, denoted as follows.

1. EnKF-ALL: No observation detection limit is applied

during DA experiments, thus all observations are hard

data.

2. EnKF-IG: Assimilating only hard data and ignoring

soft data during the analysis. The goal for testing with

EnKF-IG is to assess the added information introduced by

EnKF-SQ.

First we give a brief description of the models and the con-

figuration used in the tests, and then we discuss the results

from different numerical experiments.

3.1 The linear subsurface transport (LSST) model

We consider a 1D subsurface transport model in an uncon-

fined aquifer. The transport model is driven by a steady

subsurface flow using a combined Darcy’s law and continuity
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Update Scheme
of EnKF-SQ

Pre-process all obs. to
separate hard and soft data.

for each x f
i

Horx
f
i is

within obs.
range

Set the value of
R(or,or ) to σ2or

Set the value of
R(or,or ) to σ2ir

Perturb yor with two-piece
Gaussian likelihood.

Follow step 2 of algorithm
for each OR-obs. yor

Follow the step numbers
3, 4 and 5 of algorithm.

End

Perturb yir
with (yir , σ 2

ir )

Soft data

Hard data

No

Yes

FIGURE 3 Flowchart for implementation of the EnKF-SQ. Note that the algorithm does not lend itself to matrix multiplications, as in Evensen (2003)

equation. Groundwater flows from west to east at a refer-

ence Darcy velocity of 1.18 × 10−4 m/s. Periodic water-head

boundary conditions are assumed. The domain is uniformly

discretized into 100 cells, with each cell measuring 10 m in

length.

The generalized 1D linear solute transport model is

obtained from mass conservation of species, defined as

rc

𝜕 (𝜙C)
𝜕t

+ 𝜕 (UC)
𝜕x

= q, (8)

where rc is the retardation coefficient, 𝜙 is the porosity, t
is time (s), C is the concentration of contaminant species

(ppm), U is the Darcy velocity (m/s), and q is the contaminant

source. An initial condition for the concentration is specified:

C (x, 0) = 3+sin(5xi), where xi is the length of the ith grid cell.

The time step is set to 10 hr. The porosity is uniform and equal

to 33.4%, with a retardation coefficient of 5.19. The contam-

inant source, q, at every time step is equal to 3 × 10−6 ppm.

Water flowing from the western boundary is contaminated

with 5 ppm concentration value. Using these parameters, a

reference run solution is simulated for a period of 4 years.

In order to mimic realistic scenarios, we impose model error

in the forecast model. Essentially, we perturb the transport

parameters such that 𝜙 = 30% and rc = 6.87. We also add

Gaussian noise  (0, 0.01) to the contaminant source and the

Darcy velocity field.
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3.2 The L40 model

The L40 model (Lorenz and Emanuel, 1998) is a chaotic

and nonlinear model with 40 state variables. It imitates the

evolution of an unspecified scalar meteorological quantity,

for instance temperature or vorticity along a latitude cir-

cle. This model has been used for testing ensemble-based

assimilation methods in a number of earlier studies (Ander-

son, 2001; Whitaker and Hamill, 2002; Sakov and Oke,

2008). The model assumes cyclic boundary conditions as

follows:

dzi

dt
= (zi+1 − zi−2) zi−1 − zi + F, i = 1, ......, 40; (9)

z0 = z40, z−1 = z39, z41 = z1,
where zi is the ith state variable and F is a forcing term.

The time step is set to Δt = 0.05 units (that is, 6 hr in real

atmospheric time). The model is integrated forward in time

using fourth-order Runge–Kutta. The reference (truth) trajec-

tory is initialized by setting F = 8, zi = F, ∀i ≠ 20, and

z20 = F + 0.001. A reference run solution is simulated for a

period of 5 years (7300 steps). Initial ensemble members are

obtained by perturbing the mean state of the reference trajec-

tory with Gaussian noise, (0, 3). Observations are collected

from the reference trajectory and then contaminated using

a Gaussian distribution  (0, 1). We impose a model error

for data assimilation experiments by changing the forcing

parameter to F = 8.1.

3.3 Results

Experiments are performed over periods of 5 and 4 years

for the L40 and LSST models, respectively. The size of the

ensemble is chosen based on a series of sensitivity experi-

ments, and is set to 75 and 30 for the L40 and LSST models,

respectively. The choice is made so that tuning parameters

such as inflation and localization are not needed. The goal

is to assess the performance of the EnKF-SQ, PDEnKF,

and EnKF-IG schemes for a large enough ensemble, with-

out the necessity to mitigate sampling errors and other

filter-related deficiencies. For the L40 model, all 40 variables

are observed and assimilated every day (that is, every fourth

time step). In the LSST model, 80 variables are observed,

with a regularly spaced observing network, every tenth

time step.

The forecast root-mean-square error (RMSE) is used to

evaluate the filter performance. Given the n-dimensional

mean forecast state vector x̂f
t = (x̂f

t,1, x̂
f
t,2, ..., x̂

f
t,n) at time t,

and if tmax is the final time, then the time-averaged RMSE is

defined as

R̂MSE = 1

tmax

tmax∑
t=1

√√√√1

n

n∑
i=1

(x̂f
t,i − xr

t,i)2, (10)

where xr
t = (x̂r

t,1, x̂
r
t,2, ..., x̂

r
t,n) is the reference state vector

at time t. Each filter run is then repeated L = 10 times,

with different random seeds to initialize the random number

generator. The average RMSE over these L runs is then

reported as

RMSE = 1

L

L∑
l=1

R̂MSEl. (11)

3.3.1 General behavior of the EnKF-SQ
Figure 4 shows the time evolution of the RMSE and aver-

age ensemble spread (AES) of forecast ensemble members

obtained using the EnKF-SQ, PDEnKF, and EnKF-IG. Gen-

erally, for a “healthy” assimilation framework, the RMSE is

expected to match the AES plus the observation errors. We

set different detection limits on observation in both models,

such that on average 80% of observations fall out of range,

that is, they become soft data. We also show the RMSE of a

free run (no DA) in both models. For clarity, we superimpose

the moving average of RMSE and AES of all three schemes

in both panels of Figure 4. As shown in Figure 4, assimilat-

ing soft data using the EnKF-SQ improves the forecast RMSE

in both models. As shown, among the three tested filters the

EnKF-IG is the least accurate. Clearly, assimilating fewer data

degrades the quality of the forecast. We note that the RMSE

and total spread (AES + observation-error standard deviation)

are of the same order, indicating no signs of inbreeding or

divergence. As shown, both the EnKF-SQ and the PDEnKF

benefit from assimilating soft data. On average, the proposed

EnKF-SQ estimates are 20 and 12% more accurate than those

of the PDEnKF for the LSST and L40 models, respectively

(Figure 4).

To visualize the time evolution of the ensemble for the

EnKF-SQ, PDEnKF, and EnKF-IG with the LSST model, we

plot the concentration of a randomly chosen observed and

unobserved state variable versus time in Figure 5. Analyz-

ing the results from Figure 5 along with Figure 4 demon-

strates clearly that assimilating soft data not only improves

the RMSE but also reduces the uncertainty in the forecast, by

shrinking the ensemble spread around the truth. As expected,

the EnKF-IG is the least accurate, generating low concentra-

tion values when the observations are above the threshold,

which the EnKF-SQ avoids successfully. Compared with the

PDEnKF, the proposed scheme matches the truth trajectory

better. This can be clearly observed for the time intervals

(3000, 3700). Similar behavior was also observed for the L40

estimates (not shown).

3.3.2 Sensitivity experiments
Sensitivity experiments are conducted by varying both the

ensemble size and detection limits using the L40 model and

the results are presented in Figure 6. The RMSE values

obtained for these experiments are averaged overa 5 year-long

DA run. The goal is to assess the convergence rate of the

EnKF-SQ, while increasing N from 25 to 150. The result-

ing RMSE is plotted against 1∕
√

N, given that the precision

of Monte Carlo methods varies as a function of 1∕
√

N.
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As the ensemble size increases, the RMSE value for each

scheme naturally decreases, as shown in Figure 6a, although

none of them is linear in 1∕
√

N. For all tested ensemble

sizes, the proposed scheme is consistently more accurate

than the EnKF-IG. The PDEnKF appears to benefit from

small ensemble sizes (e.g. 25 and 35) and outperforms the

48



10 SHAH ET AL.

(a) Sensitivity with variable ensemble size

0.080.090.10.110.120.130.140.150.160.170.180.190.2
0

0.5

1

1.5

2

2.5

3

3.5

4

F
o
re

c
a
s
t 
R

M
S

E

EnKF-All
EnKF-SQ
EnKF-IG
PDEnKF

(b) Sensitivity with variable obs. detection limit

10 12 14 16 18 20 22 24 26 28 30

Our-of-range observations count

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

F
o
re

c
a
s
t 
R

M
S

E

EnKF-ALL
EnKF-SQ
EnKF-IG
PDEnKF
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EnKF-SQ. It is worth noticing that for small ensemble sizes

the EnKF-SQ performance is as good as the EnKF-ALL, and

for N = 25 the estimates of both schemes overlap. We also

note that PDEnKF performs better than EnKF-ALL for an

ensemble size of 25, which could be related to the fact that it

is a deterministic filter. Various studies (e.g. Sakov and Oke,

2008) have reported that square-root deterministic methods

handle sampling errors better than the stochastic EnKF for

small ensemble size.

Changing the detection limit on observations is done such

that the number of observations falling out of range increases

gradually and the system has fewer hard data to assimi-

late. The forecast RMSE resulting from the EnKF-SQ is

shown in Figure 6b to vary between two extreme cases,

that is, EnKF-IG and EnKF-ALL. The forecast RMSE

increases more slowly with more numerous OR observa-

tions with the EnKF-SQ than the PDEnKF, indicating more

robust performance in difficult cases with few hard data.

Even with very few hard data to assimilate, the EnKF-SQ

estimates are almost 19% more accurate than those of

the EnKF-IG. The PDEnKF’s performance becomes sim-

ilar to the EnKF-IG, having no benefit of assimilating

qualitative information. All four schemes converge towards

approximately the same RMSE as more hard data are

assimilated.

By comparison with the EnKF, 𝜎or is the only new param-

eter introduced in the EnKF-SQ. This imposes only minor

changes to existing EnKF codes. We perform sensitivity

experiments by introducing a scalar multiplier to Equation 7,

namely 𝛼, to examine the behavior of the EnKF-SQ and the

impact of using more skewed ensembles. We vary 𝛼 between

0.05 and 1.85 with a step size of 0.15. The new form of

Equation 7 is shown below:

𝜎or∗ = 𝛼
⎡
⎢⎢⎣
−𝜇 +

⎛
⎜⎜⎝

+∞

∫
𝜇

yfclim(y)dy
⎞
⎟⎟⎠

⎤
⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎or

. (12)

The reason for choosing 1.85 as the upper bound for 𝛼
values is the natural range of variability of the Lorenz sys-

tem. Concerning the L40 experiments, when 𝛼 increases

beyond 1.85, the value of OR observation-error standard devi-

ation (𝜎or) becomes large enough that it generates perturbed

observations exceeding the natural variability of the model.

Hence, assimilating such observations with the in-range

observation-error standard deviation (𝜎ir) gives unrealistic

values for the model state, which may be a limitation of the

Gaussian likelihood. The LSST model has no such restriction,

but the same 𝛼 interval has been used for a clear comparison

of the two models.

We plot the RMSE values of the analysis states, from both

models, in addition to the absolute skewness of the analy-

sis and observation likelihood versus 𝛼 for the EnKF-SQ in

Figure 7. The values obtained by the PDEnKF are indepen-

dent of 𝛼 and shown for reference. The skewness of analysis

and observation likelihood are evaluated as the average abso-

lute value of each variable skewness and only at the last

assimilation step:

skewa =
1

n

n∑
j=1

|||||

1

N

∑N
i=1

(
xa

tmax,j,i
− x̂a

tmax,j

)3

(
1

N

∑N
i=1

(
xa

tmax,j,i
− x̂a

tmax,j

)2
)3∕2

|||||
, (13)

skewo = 1

m

m∑
j=1

|||||

1

N

∑N
i=1

(
ytmax,j,i − ŷtmax,j

)3

(
1

N

∑N
i=1

(
ytmax,j,i − ŷtmax,j

)2
)3∕2

|||||
, (14)
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where m is the number of observations, xa
tmax,j,i

and ytmax,j,i
are the ith analysis ensemble member and ith observation

perturbation vector at time tmax, respectively, and x̂a
tmax,j,i

and

ŷtmax,j,i are the analysis mean and mean of the observation

perturbation vector at time tmax, respectively.

RMSE changes in Figure 7 indicate that when the value

of 𝛼 approaches 1, that is, close to nominal value of 𝜎or in

Equation 7, the EnKF-SQ outperforms the PDEnKF. As the

value of 𝛼 moves away from 1, the performance of EnKF-SQ

starts to deteriorate, especially for the L40 model. This,

however, is less obvious for the LSST model. This can be

explained by a poor sampling of the two-piece Gaussian like-

lihood using a finite ensemble size when 𝜎or is assigned very

high and/or low values. For instance, in the case of a high 𝜎or,

sampling might produce very large perturbations of observa-

tions (outliers), which can make the analysis increments more

erratic. On the other hand, small values of 𝜎or are also detri-

mental, as they are prone to generate samples concentrated

around the detection limit, thus pulling the analysis close to

an artificial threshold limit. This confirms a posteriori the

choice of the nominal value of 𝜎or and the importance of a

good knowledge of climatological values: if the climatologi-

cal average of L40 OR values is biased by more than 50% (𝛼
lower than 0.5 or larger than 1.5), then the flat likelihood of

the PDEnKF makes a better option. The linear LSST model

is more permissive in this respect, since the EnKF-SQ will

beat the PDEnKF even with values of 𝛼 more than 100% off

the nominal value. This could be because non-Gaussianity
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is reduced in a linear model like the LSST (central limit

theorem), in contrast to the nonlinear and chaotic L40 model.

Figure 7 also shows the absolute skewness of the observa-

tion likelihood and analysis ensemble. The skewness of the

EnKF-SQ analysis ensemble follows the same trend as that of

the likelihood, though the linear EnKF-SQ update makes it

less skewed. To illustrate, as 𝛼 increases, the observation like-

lihood transitions from being right to left skewed (not shown).

Likewise, the analysis follows a similar behavior. The analy-

sis ensembles are quite severely skewed (typical skewness is

from 0.3–0.5 for the EnKF-SQ and higher with the PDEnKF

update scheme), which does not seem to affect the EnKF-SQ

performance directly. The minimum RMSE does not even

coincide with the minimum skewness. This indicates that the

method can handle some degree of non-Gaussianity, which

makes it useful for assimilating soft data with the EnKF-SQ

and PDEnKF.

4 SUMMARY AND DISCUSSION

In practice, many observations are only available within a

confined range. Qualitative information measured above or

below the detection limit can still be exploited by data assim-

ilation, although current methods only consider hard data. In

this article, we proposed a new DA algorithm, referred to

as EnKF-SQ, in order to assimilate semi-qualitative observa-

tions through an explicit treatment of soft data. The update

algorithm requires a preprocess step, in which observations

are split into two groups, hard and soft data. This is then

followed by an update of the forecast ensemble using the

Kalman update. An assumption is imposed that the observa-

tion likelihood should be a two-piece Gaussian and the mode

of the likelihood is positioned at the detection limit. Members

falling inside or outside the observable range are then sepa-

rated, to achieve consistent update by soft data. This makes it

necessary to update each forecast ensemble member individ-

ually, but not in parallel. Computationally, this is not a major

issue, as in many applications the update only represents a

few per cent of the costs of the ensemble propagation step

(Sakov et al., 2012) and a local EnKF-SQ would still run local

updates in a parallel loop.

The new EnKF-SQ has been evaluated in linear subsur-

face transport and nonlinear Lorenz-40 models. Its perfor-

mance has been compared for two different versions of the

stochastic EnKF, namely EnKF-ALL (no detection limit on

observations) and EnKF-IG (no assimilation of soft data),

in addition to the previously introduced partial determinis-

tic ensemble Kalman filter (PDEnKF), which is built over

a deterministic EnKF and uses a uniform OR prior likeli-

hood. Our numerical results suggest that assimilating soft data

with the EnKF-SQ improves the overall forecast accuracy.

The scheme outperforms the EnKF-IG, with reasonable com-

puting time and ensemble sizes lower than 100 for systems

of dimension greater than 20. Thus it does not suffer from

the curse of dimensionality. This suggests that EnKF-SQ is

a viable method and can be implemented with more realistic

applications of the EnKF.

Sensitivity experiments on the chosen value of OR obser-

vation likelihood error variance 𝜎or imply that, if chosen

properly, the EnKF-SQ performs better than the PDEnKF.

This may not be true for all types of application, however,

because the differences in performance are small and some

observations may be represented by an OR likelihood with

a fatter tail than the Gaussian distribution. Such cases are

not addressed in the present work. As far as the two-piece

Gaussian likelihood goes, we found that, even though it

might increase the skewness of the posterior distribution,

the benefits of assimilating soft data outweigh the incon-

venience of non-Gaussianity in both linear and nonlinear

cases.

The question arises as to whether the assimilation of

an arbitrary value in the out-of-range domain will perform

as well as the EnKF-SQ, with less algorithmic complex-

ity. This has not been tested, but we note that assimilating

a hard pseudo-observation in the OR domain would not

introduce asymmetric information as the EnKF-SQ does, so

the approach would unnecessarily update forecast ensemble

members that fall rightly in the OR domain.

Is this semi-qualitative approach applicable to other

data assimilation methods? It requires a stochastic data

assimilation method to treat the ensemble members as

possible realizations of the underlying random variables.

Extensions to deterministic methods are therefore not

straightforward. The link to optimal interpolation (OI) can

be made by geostatistical methods through randomization

(Emery and Robles, 2008), but this would make the OI

method much more costly. The extension from ensem-

ble filters to ensemble smoothers should, however, be

straightforward.
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Abstract

A newly introduced stochastic data assimilation method, the Ensemble Kalman

Filter Semi-Qualitative (EnKF-SQ) is applied to a realistic coupled ice-ocean model

of the Arctic, the TOPAZ4 configuration, in a twin experiment framework. The

method is shown to add value to range-limited thin ice thickness measurements,

as obtained from passive microwave remote sensing, with respect to more triv-

ial solutions like neglecting the out-of-range values or assimilating climatology

instead.

Some known properties inherent to the EnKF-SQ are evaluated: the tendency

to draw the solution closer to the thickness threshold, the skewness of the resulting

analysis ensemble and the potential appearance of outliers. The experiments show

that none of these properties prove deleterious in light of the other sub-optimal

characters of the sea ice data assimilation system used here (non-linearities, non-

Gaussian variables, lack of strong coupling). The EnKF-SQ has a single tuning

parameter that is adjusted for best performance of the system at hand. The sen-

sitivity tests reveal that the results do not depend critically on the choice of this

tuning parameter. The EnKF-SQ makes overall a valid approach for assimilating

semi-qualitative observations into high-dimensional nonlinear systems.

Keywords— Semi-qualitative observations, range limitation, SMOS, ice thickness, TOPAZ4,

EnKF-SQ.
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1 Introduction

Sea ice plays a crucial role in the Arctic climate as it modulates the exchange of heat and mois-

ture between the ocean and the atmosphere (Aagaard and Carmack, 1989; Screen and Sim-

monds, 2010). Different studies have shown that accurate knowledge of the Sea Ice Thickness

(SIT) is beneficial for the Arctic sea ice predictability (Day et al., 2014; Collow et al., 2015; Gue-

mas et al., 2014). The SIT observations from the European Space Agency (ESA) Soil Moisture

and Ocean Salinity (SMOS) mission are available in near-real time, at daily frequency during

the cold season (October-April). The retrieval method for SMOS SIT observations is based on

measurements of the brightness temperature at a low frequency microwave (1.4 GHz, L-band:

wavelength of 21 cm) (Kaleschke et al., 2010). The representative depth for the L-Band mi-

crowave frequency into the sea ice is about 0.5 m for first-year level ice (Kaleschke et al., 2010;

Huntemann et al., 2014). Few studies have shown that assimilating thin SIT from SMOS into

coupled ice-ocean model, using ensemble based Data Assimilation (DA) techniques, is able to

improve the SIT forecast without being detrimental to other properties (e.g., Yang et al., 2014;

Xie et al., 2016; Fritzner et al., 2019). All of these studies, however, ignore the saturated ob-

servations of thick ice.

Measurements of thick sea ice on basin-wide scales are also available from laser altimeters on-

board ICESat (Forsberg and Skourup, 2005) or from radar altimeters on the European Remote

Sensing (ERS), Envisat, CryoSat-2 and Sentinel-3 (Connor et al., 2009; Laxon et al., 2013;

Ricker et al., 2014). CryoSat-2 SIT is provided in near-real time (Tilling et al., 2016) but still

contains considerable large uncertainties caused by the lack of auxiliary data on snow depth.

These uncertainties are proportionally larger for thin ice (i.e.,<1 m) and hence CryoSat-2 prac-

tically measures thick sea ice only. A merged product of weekly SIT observations in the Arctic

from the CryoSat-2 altimeter and SMOS radiometer, referred as CS2SMOS, has also been devel-

oped by combining the two complementary datasets (Kaleschke et al., 2015; Ricker et al., 2017)

and made available during the winter months since October 2010. However, the combination

of the two satellites is not perfect as biases have been revealed on overlapping areas (Wang

et al., 2016; Ricker et al., 2017). Recently, Xie et al. (2018) successfully assimilated the merged

SIT product CS2SMOS into the TOPAZ4 coupled ocean-sea ice reanalysis system (Sakov et al.,

2012) for the Arctic.

While assimilating a merged SIT map, rather than two satellites data streams is practically con-

venient, the uncertainty of the merged data is more difficult to quantify and bad quantification

of the uncertainty may affect the assimilation performance negatively (Mu et al., 2018)i. The

ability to use well-justified observation errors in data assimilation is sufficiently important to

motivate the assimilation of the two separate SIT data streams rather than one merged product.

This implies that their detection limits should be taken into account by the data assimilation

iIt should be noted that the comparison of assimilating merged versus separate data is not informative
because their observation errors are not equivalent
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method.

In DA, observations are used to reduce the error of the state variables so that the forecast skill

can be enhanced. Many observations can only be retrieved within a limited interval of the val-

ues that the observed quantity would take in nature. In other words, observations may have

a detection limit. One such example is the aforementioned observation of SIT from SMOS. Al-

though, the SIT observations with detection limit do not provide quantifiable data (hard data)

above its detection limit, they do give qualitative information (soft data). For instance, the ice

could be thicker than a known threshold. Studies from Shah et al. (2018) and Borup et al.

(2015) have shown that assimilating soft data with linear and non-linear toy models using

ensemble-based DA methods have the potential to improve the accuracy of the forecast. There-

fore, not considering soft data in the assimilation procedure is a potential loss of meaningful

information.

Assimilating only thin ice observations, as in Xie et al. (2016, Figure 5 and 6), induces a low

bias, which is caused by the partial nature of the observation of thin ice. With a new method

intended for semi-qualitative data as the EnKF-SQ, the question arise whether this bias can be

mitigated or not? The comparison of the EnKF-SQ to the perfect Bayesian solution (Shah et al.,

2018) shows that the EnKF-SQ analysis does not coincide with the Bayesian posterior and bears

inherent biases: in the case of hard data, the Bayesian and EnKF-SQ posteriors are nearly the

same. However, for out-of-range observations and mode of a prior within the observable range,

only the maximum likelihood of the EnKF-SQ analysis is preserved but its distribution is flatter

than the Bayesian solution with a thicker tail in the unobservable range, so the expectation

is too high. Based on this, the EnKF-SQ is expected to be unbiased for thin SIT observations.

Nevertheless, it should show a positive bias for out-of-range observations. Further, the thicker

tail of the EnKF-SQ analysis distribution in the unobservable range makes it relatively skewed,

which is undesirable in a Kalman filtering context.

In this study, we implement and test the overall performance of the stochastic ensemble Kalman

filter semi-qualitative (EnKF-SQ) (Shah et al., 2018) in a twin experiment where synthetic

SMOS-like SIT observations, with an upper detection limit, are assimilated into a coupled ocean-

sea ice forecasting system. The objective is to test the potential of the EnKF-SQ for assimilating

soft data with a state of the art ocean and sea ice prediction system, namely TOPAZ4. In ad-

dition, a number of single-cycle assimilation experiments using the EnKF-SQ are performed to

investigate the sensitivity to the ensemble size and out-of-range observation uncertainty.

This paper is organized as follows: Section 2 introduces the main components of the TOPAZ4

system including the model and the EnKF-SQ DA scheme used in the assimilation experiments.

In Section 3, the synthetic ice thickness data are outlined together with the assimilation setup.

Section 4 discusses the results of the various assimilation experiments. A general discussion of

the study concludes the paper in Section 5.
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2 The TOPAZ system

2.1 Model setup

The ocean general circulation model used in the TOPAZ4 system is the version 2.2 of the Hy-

brid Coordinate Ocean Model (HYCOM) developed at the University of Miami (Bleck, 2002;

Chassignet et al., 2003). The TOPAZ4 implementation of HYCOM uses hybrid coordinates in

the vertical, which smoothly shift from isopycnal layers in the stratified open ocean to z level

coordinates in the unstratified surface mixed layer.

The HYCOM ocean model is coupled to a one-thickness category sea ice model. The single ice

thickness category thermodynamics are described in Drange and Simonsen (1996) and the ice

dynamics use the Elastic-Viscous-Plastic (EVP) rheology of Hunke and Dukowicz (1997) with

a modification from Bouillon et al. (2013). The momentum exchange between the ice and the

ocean is given by quadratic drag formulas. The model has a minimum thickness of 10 cm for

both new and melting ice.

Figure 1: The TOPAZ4 model domain. Background color shading shows the horizontal grid resolution
(km) while solid black color represents land.

The model domain covers the North Atlantic and Arctic basins as shown in Figure 1. The model

grid is created with conformal mapping (Bentsen et al., 1999) and has a quasi-homogeneous

horizontal resolution between 12−16 km in the whole domain. The grid has 880×800 hori-

zontal grid points.
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2.2 The Ensemble Kalman Filter Semi-Qualitative, EnKF-SQ

The EnKF-SQ (Shah et al., 2018) uses an ensemble of model states to estimate the error statistics

closely following the stochastic EnKF algorithm (Burgers et al., 1998; Evensen, 2004). The

stochastic EnKF is a two-step filtering method alternating forecast and analysis steps. In the

forecast step, the ensemble of model states is integrated forward in time and when observations

become available, an analysis of every forecast member, x f
i for i ∈ 1,2,...,N , is computed as

follows:

xai = x f
i +K(yi−Hx f

i ), (1)

K= P f HT (HP f HT +R)−1, (2)

where K is the Kalman gain matrix; xi is the i th ensemble state member; H is the observa-

tion operator, mapping the state variable to the observation space (could be non-linear); R is

the observation error covariance matrix; yi is the i th perturbed observation vector generated

from N (y,R) and P f is the ensemble forecast error covariance matrix. The superscripts a, f ,

and T stand for analysis, forecast, and matrix transpose, respectively. In practice, P f is never

computed explicitly and is instead decomposed as follows:

P f =
1

N −1

N∑
i=1

(x f
i − x̄ f )(x f

i − x̄ f )T , (3)

where x̄ f is the mean of the forecast ensemble.

The EnKF-SQ is intended to explicitly assimilate observations with a detection limit. These are

divided into two categories depending on whether they are within or outside the observable

range. If the observed quantity is within it, the quantitative (hard) data is assimilated as in the

stochastic EnKF, otherwise it is considered a qualitative (soft) data and treated differently.

The specific value and error statistics of the out-of-range (OR) observations are unknown. In

order to assimilate OR observations, an assumption needs to be made about its likelihood.

Following Shah et al. (2018), a virtual observation is created at the detection limit and then

a two-piece Gaussian observation likelihood is constructed around it. A two-piece Gaussian

distribution is obtained by merging two opposite halves of two different Gaussian probability

density functions (pdfs) at their common mode, given as follows:

f (x) =




we−(x−µ)

2/2σ2
ir , x≤µ,

we−(x−µ)
2/2σ2

or , x>µ,
(4)

where w=
q

2
π(σir+σor)−1 is a normalizing constant, µ is the detection limit and also the com-

mon mode of two different normal distribution; σir and σor are in-range and OR observation

error standard deviations (std), respectively.
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Figure 2: Illustration of the two-piece Gaussian OR-observation likelihood for SMOS-like thin SIT. σir
is an in-range and σor is the out-of-range observation error standard deviations, respectively.

Figure 2 is an illustration of a two-piece Gaussian observation likelihood for OR SIT observa-

tions. On the left hand side of the detection limit, it is assumed that σir , inside the observable

range, is defined by the observation uncertainty of hard data at the detection limit. An obser-

vation could possibly fall outside the detection limit, due to observation errors, even though its

true value is within the observable range. On the right hand side, it is assumed that the σor

(eq. 5) in the unobservable range is defined with the help of a climatological mean for SIT

above the detection limit so that extremely high values, which are usually less realistic, receive

a lower likelihood (Shah et al., 2018).

σor =

+∞∫

µ

y fc(y)d y

︸ ︷︷ ︸
Climatological mean

−µ. (5)

fc(y) is the pdf of the climatological data of the observed quantity. The two-piece Gaussian

observation likelihood for soft data is denoted, hereafter, by N2p(µ,σ2
ir ,σ

2
or). The EnKF-SQ

pre-processes the observations by sorting them as either hard yh or soft y s. The observation

errors are assumed uncorrelated in space, i.e. R is diagonal.

Update step of the EnKF-SQ

For each forecast member x f
i (i ∈ 1,2,. . . ,N):

1. For each soft data y sj , check whether the observed forecast ensemble member is within

59



the observable range or not.

2. If H jx
f
i ≤µ, set observation error variance R j, j =σ2

ir otherwise R j, j =σ2
or implying that

members inside (outside) the observable range are updated with data parameterized

using in-range σ2
ir (out-of-range σ2

or).

3. After looping over all soft data, compute the Kalman gain Ki as in Eq. 2 with the up-

dated observation error covariance matrix R. For each x f
i , a different Kalman gain Ki is

calculated.

4. Evaluate the ith analysis member xai as in Eq. 1 using Ki . The perturbed observations are

generated by sampling fromN (yhj ,σ2
h) andN2p(µ,σ2

ir ,σ
2
or)

ii for yhj and y sj , respectively.

σ2
h is the observation error variance for yhj .

Loop to next member i.

Repeating this process for all forecast members yields the analysis ensemble. For a detailed

description of the EnKF-SQ the reader is referred to Section 2 of Shah et al. (2018).

3 Experimental Setup

3.1 The synthetic Sea Ice Thickness Data

The synthetic SIT data used in this study is intended to mimic the SIT data from the SMOS

mission with an upper detection limit. In order to evaluate the EnKF-SQ method against a

perfectly known truth, synthetic observations are generated using the coupled ocean and one-

thickness category sea ice model described earlier in Section 2.1. A reference truth run (also

called nature run) is produced by integrating the coupled ocean sea ice model from 1 January,

2014 to 31 December, 2015 using unperturbed atmospheric forcing from ERA-Interim (Dee

et al., 2011). The run is initialized using member number 100 from the 100-member ensemble

reanalysis of Xie et al. (2017) on 31 December, 2013.

Synthetic SIT data are then generated for the duration of the assimilation experiment from 11

November 2014 to 31 March 2015 by perturbing the truth with Gaussian noise of zero mean

and standard deviation σobs; parameterized as:

σobs = 0.06t+0.05, (6)

where t is the truth for ice thickness in meters. The parameterization is chosen such that obser-

vation errors increase for thicker ice, which is a general behaviour of positive-valued variables

iiσir is a special case of σh, for hard data at the detection limit.
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like SIT. The relationship is obtained through regression of the absolute difference of the daily

averaged SIT between the reanalysis product (Xie et al., 2017) and the aforementioned refer-

ence trajectory from the month of December 2014 to January 2015. The resulting relationship

(not shown here) is linear with a positive slope. SIT observation error represented in Eq. 6 is

also qualitatively in line with those used by Xie et al. (2016) for SMOS data.

A single upper detection limit of 1 m is imposed on the generated SIT observations, as an

analogous for saturation of SMOS data in thick sea ice. The SIT observations are assumed

available on every grid cell (except along the coastline) and assimilated on a weekly basis. This

is a reasonable assumption as SMOS data comes with a resolution of (∼ 12.5 km), which is

also the resolution of the TOPAZ4 system. Model and observation grids are collocated, thus

our experiments neglect potential errors due to interpolation, which is out of the scope of this

study.

3.2 Out-of-range SIT Climatology

A trivial alternative to the EnKF-SQ in the presence of soft data would be to assimilate clima-

tological data as hard data. It is, therefore, worth investigating how beneficial the assimilation

of soft data with the EnKF-SQ is compared to assimilating climatology.

An out-of-range, location-dependent, SIT climatology is computed by taking a time average

of the truth (described earlier) for SIT above the detection limit in each grid cell. Averaging

is done from January 2014 to December 2015, a period that includes two summers and two

winters and encompasses the assimilation period. Even though the latter takes place in winter,

the climatology has a high bias because by construction it only contains SIT above 1 m. The

observation error variance for the climatological value is also location-dependent, equal to the

variance of all reference truth values above the detection limit in the same grid cell.

3.3 Assimilation setup

In contrast to earlier TOPAZ4 studies that updated the whole water column variables (Xie et al.,

2018), here the state vector x consists of only two sea ice variables: SIT and sea ice concentra-

tion (SIC). This therefore constitutes a case of a weakly coupled assimilation where the ocean

is only updated by dynamical re-adjustments from the sea ice updates. Kimmritz et al. (2018),

have shown that while strongly coupled ocean and sea ice is clearly beneficial, weakly coupled

DA can still achieve reasonable results.

In the analysis, sampling errors in the forecast error covariance can give rise to spurious correla-

tions between remote grid points, a problem which may become more pronounced for smaller

ensemble sizes (Houtekamer and Mitchell, 1998). A common practice to counteract sampling

errors is to perform local analysis in which variables at each grid cell are updated using only
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the observations within a radius of influence ro around the grid cell (Houtekamer and Mitchell,

1998; Evensen, 2003). For simplicity, a single closest local observation within ro = 300 km is

used here during the analysis.

In TOPAZ4, model error is introduced by increasing the model spread via perturbing few forcing

fields. The perturbations are pseudo-random fields computed in a Fourier space with a decor-

relation time-scale of 2 days and horizontal decorrelation length scale of 250 km, as described

in Evensen (2003). Perturbed variables include air temperature, wind speeds, cloud cover, sea

level pressure (Sakov et al., 2012, Section 3.3) and yield curve eccentricity in the EVP rheol-

ogy (Hunke and Dukowicz, 1997, Table 1). In addition, precipitation is also perturbed with

log-normal noise and standard deviation of 100%. This affects the snowfall when tempera-

tures are below zero. Snow is an important thermal insulator and therefore hampers sea ice

growth/melt.

3.4 Target Benchmarks

The performance of the EnKF-SQ is compared against three different versions of the stochastic

EnKF and a Free run, denoted as follows:

1. EnKF-ALL: No detection limit is applied on SIT observations thus even thick ice data

from the reference run is assimilated. This run acts as an upper bound for performance

because it is the only one that assimilates out-of-range observations as hard data with

known statistics, which can be seen as cheating.

2. EnKF-CLIM: The SIT climatology with climatological variance is assimilated instead of

hard data.

3. EnKF-IG: Only hard data is assimilated and soft data is ignored, similar to Xie et al.

(2016). This run is meant to assess the added value of the EnKF-SQ.

4. Free-run: The Free-run is the average of the 99 members without DA. It is run with

perturbations, contrarily to the aforementioned single-member truth run.

To evaluate the performance of the different DA methods, we compute the root mean square

error (RMSE) of the ensemble mean at time t as:

RMSEt =

√√√1
n

n∑
i=1

�
x̄ f
i,t −xri,t
�2

, (7)

where xr and x̄ f is the n-dimensional reference (unperturbed truth) and mean of the prior

state vector at time t, respectively. We also monitor the average ensemble spread (AES) for
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each filter, which we calculate at every assimilation cycle as:

AESt =

√√√1
n

n∑
i=1

σ2
i,t , (8)

where σ2
i,t can either be the prior or posterior ensemble variance at time t, respectively.

3.5 Ensemble size

Figure 3: Time-averaged posterior RMSE and AES resulting from single cycle assimilation runs for
different ensemble sizes using EnKF-SQ.

In order to select the ensemble size, single-cycle assimilation sensitivity experiments are con-

ducted using EnKF-SQ by varying the ensemble size between 2 and 99. The resulting time-

averaged RMSE and AES of the posterior SIT estimates are displayed in Figure 3. The plot

indicates that for N ≥ 10, there is no significant difference in the performance of the EnKF-SQ.

This is mostly due to the small size of the local state vector; consisting only of two variables. An

ensemble as small as 10 members is however less likely to succeed on the long term especially

if the number of state variable and observations increase. Results from the other three EnKF

runs (not shown) showed the exact same behavior. Thus, the initial ensemble is set as the first

99 members of the reanalysis ensemble of Xie et al. (2016) on 31 December 2013. The initial

ensemble is then spun up from January, 2014 until the start of the assimilation experiment (i.e.,

November 11) with perturbed forcing to increase the variability. As described earlier, member

number 100 of the reanalysis run was used to generate the truth in this study.

The assimilation framework is sub-optimal for few reasons, in particular because of the weakly

coupled updates. Further, SIT errors are erroneously assumed Gaussian while they are not.
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These sub-optimalities are not uncommon in realistic applications. They do cause some limited

loss of performance but generally do not prevent us from applying the EnKF.

In terms of computational resources, we used a single processor on supercomputer for each of

the four DA methods. The total wall-clock time required by each analysis scheme, to update

the SIT and SIC state variables along with the IO operations, is approximately 6 minutes on a

1.4GHz Cray XE6. This is much less than the TOPAZ4 one-week forward model run, for which

each member runs on 134 parallel processors in approximately 5 minutes.

4 Assimilation Results

4.1 Tuning the EnKF-SQ out-of-range likelihood

The out-of-range standard deviation σor is the only new parameter introduced into the EnKF-

SQ compared to the stochastic EnKF. Therefore, it is important to study how the uncertainty

in the estimate of σor affects the performance of the EnKF-SQ scheme. For this, we carried

out a number of single-cycle assimilation experiments by introducing a scalar multiplier α to

equation 5 such that σ∗or =α ·σor .

RMSE and AES of the posterior SIT estimates are plotted in Figure 4 for a wide range of α,

varying between 0.1 and 3.0. Such a range is very broad for most realistic applications. α<0.4

strongly degrades the accuracy of the EnKF-SQ along with significant decrease in the AES. The

large difference between RMSE and AES values, indicate a possible filter divergence. This

is because for small α values, the sampling of a two-piece Gaussian likelihood for observa-

tion perturbations is prone to generate samples concentrated around the detection limit, thus

pulling the analysis close to the detection limit, subsequently reducing the ensemble spread

and increasing the RMSE. As α approaches 1, the RMSE attains the minimum value and further

becomes consistent with the AES. When α increases beyond 2, the sampling of OR likelihood

starts producing large perturbations, which makes the analysis increment capricious and even-

tually deteriorates the performance of the EnKF-SQ. Accordingly, in what follows we set α= 1.

To illustrate how the EnKF-SQ updates the SIT by assimilating range-limited SIT observations,

we plot the prior mean (Figure 5a) and analysis increment (Figure 5b) on 11 November 2014.

The solid black line on both maps is the isoline for 1 m of SIT. The forecast places the thick

ice (up to 3 m) north of Greenland and north-eastern part of Canada. The increments are not

only visible outside of the 1 m isoline but also inside the central Arctic region where only soft

data are assimilated. It is important to notice that there is nearly zero increment in the central

Arctic region and the Beaufort sea where the sea ice is thicker than 1.5 m. This is because the

EnKF-SQ analysis do not impose strong updates on the prior if it is above the detection limit
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Figure 4: Time-averaged posterior RMSE and AES resulting from single cycle assimilation runs for a
wide range of the multiplicative factor α.

and observations are out-of-range.

(a) (b)

Figure 5: (a) Prior ensemble mean of the ice thickness on 11 November 2014. The solid black line is
the 1 m SIT isoline. (b) The increment (analysis-forecast) for SIT after incorporating the observations.

4.2 Performance Assessment

Figure 6 shows the time evolution of the RMSE and AES of the prior SIT estimates obtained

using the EnKF-ALL, EnKF-SQ, EnKF-CLIM, EnKF-IG and the Free-run. The percentage of OR

observations (to the total number of observations) available at every cycle is added to the plot.

As expected, EnKF-ALL outperforms all other schemes while EnKF-IG is the least accurate. It

should be noted that there is an increasing trend in the RMSE, which is seasonally driven; a
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similar behavior reported in Xie et al. (2016). Assimilating soft data with the EnKF-SQ clearly

improves the prior RMSE compared to the EnKF-IG. This is consistent over the entire assimila-

tion period. The number of OR observations gradually increases as the cold season intensifies

leaving only a few hard data during the months of February and March 2015. Even with a very

limited number of hard data, the EnKF-SQ outperforms EnKF-IG. The RMSE resulting from the

EnKF-CLIM is marginally higher than that of the EnKF-SQ, except during the last three months

of the assimilation experiment. The reason for this could be twofold: (i) In the early stages

of the experiment, the climatology tends to overestimate SIT due to the large seasonal cycle

compared to later months. This causes the climatology to pull the update towards large values

and hence degrades the performance of the EnKF-CLIM. (ii) Fewer hard data leads to larger

RMSE values in the EnKF-SQ as can be seen towards the end of winter and start of the spring.

Overall, the RMSE and AES show consistent ensemble statistics such that sufficient variability

is preserved in the system after cycling over time.

Figure 6: Left y-axis: Time evolution of the prior RMSE (solid lines) and AES (dashed lines) for SIT
estimates. Right y-axis: The orange asterisks represent the percentage of the out-of-range observations
during assimilation resulting from the EnKF-SQ, EnKF-CLIM and EnKF-IG.

In order to visualize area-wise improvements, we plot the map of time-averaged RMSE of the

SIT prior estimates in Figure 7. The EnKF-ALL yields the best RMSE throughout the entire

region. Compared to the EnKF-IG, the EnKF-SQ performs better in the central Arctic region,

Greenland’s north-eastern shelf, the Canadian Arctic Archipelago and in the Beaufort Sea. On

average, the EnKF-SQ and EnKF-CLIM estimates are approximately 8% more accurate than those

of the EnKF-IG.

The EnKF-CLIM, seems to produce larger improvements than the EnKF-SQ specifically along the
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Ellesmere island. However, it also increases the prediction error in the Beaufort sea more than

that of the EnKF-IG. A number of reasons may explain this behavior. The climatology being too

high compared to the seasonal mean yields an artificial increase of the model thickness, which

happens to agree with the truth along the Ellesmere island. The recurrent update due to the

assimilation of climatology is propagated dynamically by the Beaufort gyre into the Beaufort

sea creating an anomaly compared to the truth, which is not thicker.

Figure 7: Maps of time-averaged prior RMSE for SIT obtained using: EnKF-ALL (top left), EnKF-SQ (top
right), Free-run (center left), EnKF-CLIM (bottom left) and EnKF-IG (bottom right). Averaging is done
over the period of experiment, i.e., from November 2014 to March 2015.

The analysis algorithm of the EnKF-SQ is designed such that improvements are expected mostly

where SIT is close to the threshold. As a way to examine this, we computed the time-averaged

RMSE of the prior SIT estimates for different ice thickness intervals of 25 cm using all DA

schemes (Figure 8). The values on the x-axis of Figure 8 represent the upper bounds of each 25

cm SIT bin interval except for the first bin of size 10 cm because of the model 10 cm minimum

thickness. The RMSE for all DA schemes within each SIT bin is computed by finding the location

of grid cells for which the observations fall within the bin interval.

Figure 8 suggests that RMSE values for all schemes below 1 m of SIT are approximately the

same, as they all assimilate hard data. Once SIT increases beyond the detection limit, EnKF-ALL

becomes the most accurate followed by the EnKF-SQ up to SIT of 2 m. The EnKF-SQ performs

as expected for observation values in the vicinity of the detection limit where the assimilation

of soft data is clearly enhancing the accuracy compared to the EnKF-IG and EnKF-CLIM. The

performance of the EnKF-SQ is not as good as the EnKF-CLIM for thicker ice, which can also be

seen in Figure 7 around the northern coast of Greenland. It is worth noticing that even though

there is no data to assimilate for SIT > 1 m in the EnKF-IG scheme, it is performing better than
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Figure 8: Bar chart of time-averaged conditional prior RMSEs for SIT obtained using all tested DA
schemes. Solid black line represents time averaged Free-run RMSE. Black dashed line depicts the 1 m
detection limit. The x-axis denotes the SIT bins with bin size of 25 cm. The values on x-axis are the
upper bounds of the SIT for that particular bin.

the Free-run up to 2.25 m of SIT. This advantage has been previously reported by Xie et al.

(2016, see Figure 8) and can be either due to the reduction of the positive bias in the free run

(shown in Figure 9) by assimilating thin ice only or due to dynamical model adjustments after

assimilation. In other words, improvements to thin ice are propagated in time to the period

where ice gets thicker.

4.3 Bias and Skewness Analysis

The EnKF-IG updates the prior members by only assimilating observations of thin ice with a

maximum thickness of 1 m. This causes the algorithm to introduce negative conditional bias

for thick ice (knowing that the observation is thin ice, the assimilation reduces the ice thickness

more that it can thicken it). Similarly, the EnKF-SQ update may introduce a bias towards the

detection limit due to assimilation of soft data and the EnKF-CLIM towards the climatology. To

investigate these likely biases in different DA schemes, we present a bar chart of time-averaged

conditional bias for the posterior estimates of SIT in Figure 9. The conditional bias is calcu-

lated by finding the location of the grid cells for which the observations fall within the SIT bin

interval. The positive values represent an overestimation of SIT after the assimilation and vice

versa.

The four DA runs exhibit a small negligible positive bias of approximately 0.5 to 1 cm for thin

ice. The Free-run bias, on the other hand, is larger than ∼ 6 cm. Above the threshold limit,

there is a clear positive bias of 5 to 7 cm in the EnKF-CLIM posterior estimates, up until 2 m. As
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Figure 9: Bar chart of time-averaged posterior bias for SIT obtained from all tested DA schemes. Solid
black line represents the time-averaged bias for SIT obtained using the Free-run. Red dotted line repre-
sents the time-averaged difference of climatology and truth. SIT bins are displayed on the x-axis with a
bin size of 25 cm. Reported in the legend are the time-averaged-weighted total mean bias including the
bins for ice thicker than 3 m, which is not shown here. The weights are computed as a fraction of the
number of grid cells falling in specific bin interval over total number of grid cells.

seen earlier, the climatology tends to overestimate the truth during the first few months of the

experiment when the ice is thin (red dotted line in the Figure 9). EnKF-IG estimates, over the

same interval, exhibit a small negative bias, possibly left over from the conditional assimilation

of thin ice. It is important to note that there is almost zero bias in the EnKF-SQ estimates,

matching that of the EnKF-ALL for 1≤ SIT≤ 2 m.

There is a systematic increasing negative bias for SIT>2 m, which reaches almost 20 cm for SIT

=3 m in the Free-run, EnKF-IG and EnKF-SQ. A similar trend of negative bias is also observed in

the EnKF-ALL and EnKF-CLIM runs but to a slightly lesser extent. The negative bias in the Free-

Run is likely due to the perturbation of the forcing fields, specifically the wind perturbations,

which can cause erratic movements of ice that export thicker sea ice into areas of thinner ice.

Since all assimilation runs use perturbed winds, this effect is likely to impact the EnKF-IG and

EnKF-SQ more than the EnKF-ALL and EnKF-CLIM. In addition, it is important to mention that

there are fewer grid points (not shown here) in the bins for thicker ice compared to thin ice,

which may also affect the estimation of the bias for these bins, making them statistically less

significant.

As discussed in Shah et al. (2018), the two-piece Gaussian observation likelihood may influence

the shape of the posterior distribution, making it skewed and thus less Gaussian. In order to

examine this, we evaluate and plot the conditional skewness of the posterior estimates of SIT

only at the last assimilation step in Figure 10. The conditional skewness of the posterior is

calculated as the average value of the skewness for all grid cells where the truth falls within
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Figure 10: Bar chart of the conditional posterior skewness for SIT estimates obtained using all tested
DA schemes and computed at the final assimilation time. Dashed black line represents the detection
limit of 1 m SIT.

the interval of a bin in consideration. Note that contrary to the computation of the conditional

BIAS at the location of the observations, the conditional skewness is computed at the truth

locations.

As shown in the figure, thin ice (SIT ≤ 25 cm) yields noticeable skewness in the posterior

estimates for all schemes. In the first bin, the truth is close to zero meters (open water) and

hence all instances where thin ice has melted in the assimilation run count as zero value. On

the other hand, freezing instances lead to various thickness values above 25 cm. Both effect

together can make the distribution skewed. The bin between zero and 10 cm shows even larger

skewness and has been removed for a better visual presentation. Other than the first bin, a small

negative skewness is observed for all the schemes. One possible explanation is the fast melting

of ice, drifting over warm waters; a situation enhanced by the lack of coupling with the ocean

in the assimilation. This result confirms that the EnKF-SQ, although it uses a skew 2-piece

Gaussian likelihood, does not introduce any noticeable positive skewness in its posterior.

4.4 Physical Consistency

Ice-ocean models are essential tools for computing integrated quantities that are often difficult

to estimate from observations only. Sea ice volume and water transport between ocean basins

are such high interest quantities for climate studies. Therefore, it is important to evaluate

these quantities to verify that the use of data assimilation does not cause physical inconsisten-

cies.

The total sea ice volume is the integral of sea ice concentration times the sea ice thickness over
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the entire model area. Its evolution for the different assimilation runs is shown in Figure 11a.

The difference between the assimilation runs compared to the true sea ice volume (Figure 11b)

is relatively small. This is because none of the DA schemes has extensively added or removed

ice during the assimilation run. In Figure 11b a classical seesaw Kalman update behavior is

observed. The comparison also reveals that most methods tend to underestimate the ice volume

except for EnKF-CLIM.

As described earlier, the EnKF-IG has a negative SIT bias, which translates to a nominal loss of

between 300 km3 to 500 km3 of sea ice volume from the beginning to the end of the winter (less

than 3% of the total simulated ice volume). Seesaw of the time series curves confirm that the

EnKF-IG update does remove some ice, which grows back during the subsequent TOPAZ4 model

run. The EnKF-SQ does only partially mitigate this loss by 100 to 200 km3 of ice. Surprisingly,

the EnKF-ALL is not bias-free either with a loss of up to 100 km3 of ice, which can be caused by

various sub-optimal aspects of the data assimilation system, in particular the aforementioned

effect of wind perturbations on the areas of thickest ice and the weakly coupled DA. These

effects also contribute to the low bias in the other two methods.

(a) (b)

Figure 11: (a) Daily ensemble average of sea ice volume over the TOPAZ4 model area for the entire
experiment time. (b) Difference of sea ice volume from the truth and all tested DA schemes.

The EnKF-CLIM ice volume is closest to the truth run with a little overestimation in the beginning

of the winter, then an underestimation in the spring. The construction of the climatological data

can explain this trend: since SIT data above one meter only have been retained, the climatology

overestimates the SIT in the beginning of the winter but then underestimates the SIT in the

midst of the winter because it also accounts for summer SIT. A different construction of the SIT

climatology data would have led to a different tendency in EnKF-CLIM.
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5 Discussion and Conclusions

The purpose of this paper is to demonstrate the usefulness of assimilating range-limited obser-

vations with the new EnKF-SQ DA scheme under a realistic experimental setup. Compared to

the stochastic EnKF, the main algorithmic difference is the need to compute a different Kalman

gain for each ensemble member, depending on the location of the member to the threshold

when the observation is out-of-range. This does not make the EnKF-SQ less efficient, but rather

prevents the algorithm from being included as a simple extension of existing EnKF codes: it

cannot be expressed with an ensemble transform matrix.

The assimilation of synthetic sea ice thickness data with a upper detection limit of 1 m in a

coupled ice-ocean model of TOPAZ4 is demonstrated using the EnKF-SQ and shown to have

a useful impact on SIT estimates. The results obtained with SMOS-like observations can be

generalized to CryoSat2-like observations by reversing the upper limit into a lower limit. Thus,

merging the two products may not be necessary because each satellite data can be assimilated

in a separate EnKF-SQ step.

Different assimilation experiments are conducted to assess the performance of the EnKF-SQ

against other EnKF configurations assimilating only thin ice; both thin and thick ice; and clima-

tology during a winter period in the Arctic. The study shows that assimilating soft data improves

the forecast accuracy compared to ignoring them by approximately 8%, particularly where sea

ice approaches the detection limit. Such a difference can be important in the performance of

an operational system.

The performance exhibited by assimilating a reasonably accurate climatology was similar to the

EnKF-SQ. Also, our choice of climatology being annual rather than seasonal may explain some

of the flaws in the EnKF-CLIM. Nonetheless, the context of twin experiments is very favorable

to EnKF-CLIM because the climatological truth is perfectly known; a case which is not true in

realistic situations. For instance, in summer there are very few ice thickness measurements and

thus it is difficult to construct a meaningful climatology. To this end, it is essential to investigate

and compare the performance of the EnKF-SQ and EnKF-CLIM in a context of a biased model

twin experiment and with a range of toy models (from linear to non linear regimes).

Assessing the bias of the analysis showed that there is no introduction of any significant bias

by the EnKF-SQ, other than the negative bias for thicker ice which is observed in all tested DA

schemes. Likewise, the posterior distributions resulting from the application of the EnKF-SQ

did not consist of any noticeable higher order moments that could result in undesirable non-

Gaussian features because of the two-piece Gaussian likelihood. This is most likely the case for

all realistic applications where one would expect relatively small assimilation updates coming

regularly in time. Furthermore, the choice of out-of-range (OR) observation error variance was

not found to be very critical. A wide range of values for this parameter were tested and lead to

acceptable performance of the EnKF-SQ. Ways of estimating σ2
or adaptively in space and time is
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currently being investigated and will be reported in a follow-up study. Concerning the physical

constraints of the model, the EnKF-SQ estimates were found to be physically consistent and

comparable to other tested assimilation schemes.

The EnKF-SQ therefore makes a viable data assimilation strategy for range-limited observations

in high-dimensional nonlinear systems. Future research will focus on assimilating real data,

in which the EnKF-SQ is confronted with large observation biases unlike the presented twin

experiments setup.
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