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Abstract 

Background and aims  

Ultrasound (US) elastography is a noninvasive method that is used to investigate 

tissue elasticity in several organs. In chronic liver disease, the predominant approach 

is quantitative. By measuring liver stiffness, one could possibly follow the 

development of fibrosis in in chronic liver diseases. The spectrum of US elastography 

methods has been expanding, however, there is limited validation of several of the 

new methods. Validation is needed for the methods to be established as tools in 

clinical practice. The overall aim of this theses was to validate several US shear wave 

elastography (SWE) methods, including point shear wave elastography (pSWE) and 

2D-SWE, in vitro and in vivo aiming at liver as the primary organ. In the first study 

the main aim was to assess and validate the repeatability, reproducibility and 

interobserver agreement of several US SWE methods. This was approached in vitro 

using liver fibrosis phantoms with known Youngs modulus. In the second and third 

study we assessed in vivo; in livers of an adult healthy cohort and a cohort of patients 

with primary sclerosing cholangitis (PSC). Furthermore, we aimed to define normal 

liver elasticity, assess number of repeated measurements needed to achieve a 

representative median value and explore the assessment of fibrosis.  

Methods  

Methods to estimate tissue elasticity are usually integrated in US scanners. In the first 

study we used transient elastography (TE) and methods integrated in GE Logiq E9 

(2D-SWE), Hitachi Ascendus (pSWE), Philips iU22 (pSWE) and Samsung RS80A 



 ���

with prestige (pSWE). Two investigators performed non-continued measurements in 

parallel on four individual tissue-mimicking liver fibrosis phantoms. In the second 

study we obtained liver stiffness measurements (LSM) in a healthy cohort of 50 men 

and 50 women using TE and methods integrated in GE Logiq E9 (2D-SWE) and 

Samsung TS80A (pSWE). Prior to the LSM all 100 subjects underwent lab tests and 

US examination in B-mode. Inter- and intraobservation between two examiners were 

assessed in a subgroup of 24 subjects. In the third study we used the pSWE method 

integrated in Philips iU22 and included 55 non-transplant PSC patients and 24 

matched controls. All subjects underwent US examination and lab tests were 

performed on patients with PSC. We evaluated inter- and intraobserver variability of 

the spleen and liver elasticity measurements between two examiners in 19 healthy 

subjects.  

Main results 

In the first study we found that all four US SWE methods could differentiate the four 

individual liver fibrosis phantoms. The methods had high repeatability and 

reproducibility. The inter-and intraobserver agreement was excellent and there was 

no significant difference in mean elasticity for all the US SWE methods. 

Furthermore, the study demonstrated that the difference in elastography 

measurements acquired with US SWE was larger for the harder phantoms with higher 

Youngs modulus compared to the softer ones. In the second study we found that the 

reproducibility and repeatability of LSM in healthy livers was high, furthermore, our 

results showed that the mean liver elasticity in a healthy adult cohort was higher 

when acquired with the 2D-SWE method, than with non-imaging SWE methods such 
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as Samsung pSWE or TE. We also found that males had higher liver elasticity than 

females. In addition, we demonstrated that five consecutive acquisitions may be 

sufficient for reliable LSM results. In the third study, we found good intra- and 

interobservation agreement assessing Philips iU22 pSWE measurements of the right 

liver lobe in the healthy subjects. We also found that the PSC patients had higher 

LSM than the healthy controls when measuring the right liver lobe, whereas the LSM 

of the left liver and spleen elasticity measurements were indifferent between PSC 

patients and healthy controls.  

Conclusions 

US SWE methods used in our studies demonstrated excellent in vitro and good in 

vivo repeatability and interobserver agreement. Mean LSM in our healthy cohort was 

significantly higher when obtained with 2D-SWE, and in male participants. We found 

no difference across age groups 20-70 years or among non-obese BMI-groups 18-30 

kg/m2. Our results indicated that five LSM may be sufficient to obtain a reliable 

result in healthy livers. Furthermore, we showed that PSC patients displayed higher 

levels of LSM compared to the healthy controls. However, the range of LSM of PSC 

patients was wide, which could suggest increasing stages of fibrosis through the 

disease development, making SWE a possible method for prospective studies 

evaluating SWE as a prognostic tool. 
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1 Introduction 

1.1 Preface 

For several decades, liver biopsies have been considered the gold standard in 

diagnostics of liver fibrosis, and used to assess staging and grading by clinicians 

throughout the world. It is well appreciated that this way of assessing liver fibrosis is 

far from optimal. The overall performance of grading of liver fibrosis is mainly 

reliant on the quality of the sample itself. To acquire the liver biopsy, the patients go 

through an invasive procedure with a risk of serious complications. The incident of 

these is low, however, but not zero. Furthermore, sampling variability and intra- and 

interobserver variability reduce the accuracy of liver biopsies (1-3). Evaluation of 

novel methods requires a comparison to the reference method where the specificity 

and sensitivity is assumed to be 100% (4). If the reference method is not perfect, such 

as liver biopsy with its limitations, it causes challenges when investigating new 

methods as the estimates of novel diagnostic tests are false (4).  

In the past two decades novel non-invasive methods to assess liver fibrosis have 

emerged. Since 2000 there has been published several studies emphasizing the 

usefulness of novel non-invasive methods to assess liver fibrosis and with potential to 

be used as a clinical tool. These include serological tests and imaging methods; an 

example of the latter is US elastography. FibroTest, a patented biochemical test (5-7), 

and FibroScan, an ultrasound-based elastography method without visualization, are to 

this date the most validated (8). However, non-invasive techniques such as the serum 

models based on algorithms may be affected by factors unrelated to the liver as some 
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of the algorithms contain markers that may be elevated for other reasons, and when 

measured in serum they may reflect disease progression in other organs (9, 10). As 

the field of ultrasound-based elastography methods and techniques has expanded, and 

new sub methods have been introduced, validation of these methods is warranted. 

This thesis has adds to the knowledge of LSM in idealized settings, in healthy livers 

and in chronic liver disease. 

1.2 Historical aspect and background of ultrasound 

elastography field 

According to the Oxford English dictionary palpation is the feeling of touch (11). In 

1822 and 1872 two ancient medical documents were purchased, the Papyrus Edwin 

Smith and Papyrus Ebers (12). The content dates back to about 1500 BC and contains 

the first documentation of palpation being performed in ancient Egyptian medicine. 

In Western medicine it is said that the practice of palpation was not applied reputably 

before the 1930s (13).When clinicians palpate patients, they use their hands and 

generate manual pressure to investigate the examined organ’s structure, mobility and 

elasticity. The information that the clinicians receives through palpation may provide 

some information about abnormalities, i.e. malignant tumours are usually harder than 

normal tissue. However, the interpretation of the palpation and perception of 

elasticity is highly subjective.  

In the 17th century Sir William Petty described elasticity as the power of recovering 

the figure, upon removal of force (14). At the beginning of the 1950s, the first 
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evidence of what would set the landmark for the evolution of elastography was 

published by Oestreicher and von Gierke and colleagues. Through studying the 

physics of vibration in soft tissue they demonstrated that there was correlation 

between the impedance of tissue and audio frequency (15). Nearly 30 years later, in 

the 1980s, experiments to differentiate soft and hard tissue by US were performed. 

Towards the end of the last century, in 1991, Ophir et al. introduced the term 

elastography as a quantitative US method of imaging biological tissue through strain 

and Young’s modulus (16). In the years to follow, tracking shear waves with US 

emerged as new elastography method. The proliferation of elastography techniques 

kept emerging and in 2001 the first prototype of one dimensional transient 

elastography (TE) using a thumper to induce a shear wave into liver tissue and a 

single crystal US probe to track the speed of this wave- the Fibroscan, was born (17). 

In 2004 Supersonic Shear Imaging (SSI) was presented, a system that provided shear 

wave elastography over a larger area through an ultra-high frame rate (18), and 

throughout the years several similar new methods were introduced in commercial US 

scanners. Several studies, including from our lab (19-28), were published where 

elastography methods were tested in clinical studies by clinicians and the potential of 

US elastography as an investigative clinical tool to assess tissue elasticity for 

improved diagnostics was anticipated to become powerful. 
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1.3 Ultrasound elastography methods used for evaluating 

liver fibrosis 

The challenge in assessing US elastography to provide information related to the 

examined tissue’s stiffness is that the different methods are not standardized to a 

common use and they differ in technique; display of strain, of displacement and of 

shear wave speed (29).  

 

Figure 1. An illustration of a liver in US B-mode, demonstrating the challenge in 

evaluating liver stiffness solely by US B-mode. Image: O.H. Gilja 

The most common US elastography method for assessment of liver stiffness are the 

techniques that display shear wave speed, whereas displacement imaging is most 

common in assessment of lesions in the liver (30). However, when the assumptions 

used to derive the elastography images and calculation of measurements are not 

coherent with the examined tissue behaviour, the elastography methods and 

techniques will most likely differ (10, 31). The practical procedure of liver 
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elastography measurements is common for several methods: fasting of minimum 4 

hours prior to the investigation is advised as food intake may cause increased liver 

stiffness values (32-36), and patients are positioned laying with the right arm 

abducted and elevated above the head.  

 

1.3.1 Strain elastography 

Strain-based elastography (SE), measures deformation of tissue, and is useful for 

imaging of focal lesions with a tissue stiffness different from the surrounding tissue. 

It is also called quasi-static elastography, as the echo signals are recorded in 

overlapping reading-frames several times during a rather slow compression- or 

decompression phase, and can be applied manually and freehand by the examiner 

(29). Initially SE displayed solely a qualitative image, where the relative tissue 

elasticity was shown as a colour overlay on the conventional B-mode. Later, the 

method has been featured with an integrated quantitative approach to compare strain 

in two, or more, user selected areas, such as the area one wants to measure and the 

reference area. This is called Strain Ration (SR) and if the measurement of the 

selected area is harder than the reference area, the SR will be greater than 1, meaning 

that a higher SR value represents an increased tissue stiffness relative to the reference 

area (37, 38). In order to deliver a reliable result, both lesion and reference tissue 

should be subject to similar amounts of stress.  

�����������	�
��� � ���������������������������������
��������������������������������  
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As a general rule strain-based methods provide images that are composed by higher 

spatial resolution compared to shear wave-based methods, that provide higher 

elastography image contrast (31). SE is mainly used clinically in assessment of focal 

lesions in the breast, thyroid and prostate (39). ���������������	�����������
�����

����������
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1.3.2 Shear wave speed based elastography (SWSE) 

Elastography methods based on shear waves quantitatively measure the speed of 

shear waves that travel in the tissue. In shear wave speed based elastography 

(SWSE), the shear waves can either be generated externally, as in TE, by US 

radiation through elasticity measurement within an non-adjustable region of interest, 

or by an US generated 2D image where elasticity is shown within a larger region that 

may be adjusted (31).  �
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Transient elastography (TE)                                                                                   

Transient elastography (TE) is performed with specially designed US probes with a 

thumper, designed to create shear waves that propagate through the skin into the liver 

tissue, while being tracked by US. Three different piston probes are available; S-, M- 

and XL-probe. The first is aimed at assessment of liver stiffness in children, the 

second in adults and third in overweight patients.  

The measurement of the liver stiffness is shown qualitatively in an M-mode, without 

direct anatomical visualization in B-mode, and quantified in kPa. If a measurement is 

not considered valid by the software the instrument does not return a value. The 

manufacturer recommends that the interquartile range and median measurement ratio 

(IQR/M) should be less than 30% for the evaluation to be considered valid.  

 

Figure 2. An illustration of the result chart, provided by the manufacturer EchoSens, 

after liver stiffness measurements of a healthy subject have been acquired with M-

probe using Transient elastography (TE), Fibroscan® 204 (EchoSens, Paris, France). 

Images: A. Mulabecirovic 
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A limitation of the method is that TE cannot be performed in patients with ascites, 

moreover, the applicability in patients with obesity or with narrow intercostal spacing 

is limited (48). Due to the lacking B-mode visualization, evaluation of factors such as 

recent food intake, gallbladder size, presence of cirrhosis or cholestasis cannot be 

performed. TE is a user-friendly method, easy to learn, does not demand knowledge 

in ultrasonography and is currently the most used and validated liver elasticity 

assessment method among the noninvasive methods to assess liver fibrosis (49-52). 

Although TE is capable to detect cirrhosis with high accuracy (F2 vs. F4), TE does 

not accurately distinguish between intermediate stages of fibrosis (F1- F4) (10, 40).  

It was introduced in Europe in 2003 and was approved by the American Food and 

Drug Administration (FDA) in 2013, TE, Fibroscan (EchoSens, Paris, France) is used 

in more than 70 countries to measure liver stiffness. However, the interpretation of 

the results should be performed by a clinician and with knowledge about the patient’s 

disease and biochemical status (53-55).  

Shear wave speed elastography (SWSE) with direct visualization in US B-

mode:  Shear wave speed measurement (SWSM) and  Shear wave speed 

imaging (SWSI)   

Shear wave speed elastography (SWSE) methods integrated in conventional US 

scanners are performed with direct and real-time visualization in B-mode using an US 

probe. Shear wave speed measurement (SWSM) measures the liver stiffness without 

imaging the elasticity, whereas shear wave speed imaging (SWSI) additionally 

generates a 2D image where the elasticity is visualized by a colour map within a 

larger and adjustable region.  
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SWSM may be known as point shear wave elastography (pSWE) or imaging with 

Acoustic radiation force impulse (ARFI) and is available in commercial scanners 

(56). The first method commercially available by Siemens is known under the name 

“Virtual touch quantification” (VTq). Not long after, Phillips introduced “ElastPQ” 

followed by several other manufacturers that released their pSWE methods (10, 40). 

These methods are probably different by the number of shear waves deposited and 

tracking algorithms, but the details of this is proprietary information to the 

manufacturers. When pSWE is applied the assessment of shear wave speed is made at 

one point, whereas when ARFI is applied shear wave speed is assessed using several 

ARFI lines, and a local average of shear wave speed is determined within a set region 

of interest (ROI), which is approximately 1cm2 in size (57, 58). In this thesis we will 

refer to them as point shear wave elastography (pSWE). With SWSM, the ROI 

cannot be adjusted in size by the examiner, and the elasticity itself is not directly 

visualized. It is recommended that the liver stiffness measurement is obtained by 

placing the ROI 1.5-3.0 cm beneath the liver capsule to avoid artefacts and 

subcapsular stiffness, avoiding vessels while the patient holds the breath without deep 

inspiration (10, 40). With direct anatomical visualization in B-mode, the 

measurement of liver stiffness is the calculated median value of ten valid 

measurements, and the results are reported in kPa or m/s (56). If a measurement is not 

considered valid, the method does not return a value. A reliable measurement is when 

IQR/Median is less than 30% (59). 



 ���

         

             

Figure 3. An illustration of commercially available SWSM methods, here 

demonstrated in vivo on a healthy subject with pSWE with SWE Samsung RS80A 

with Prestige (Samsung Medison Co. Ltd., Seoul, Korea) in the upper left corner. In  

vitro on a liver fibrosis phantom with known Youngs modulus of 11.5 kPa � 0.57, 

Model 039, manufactured by Computerized Imaging Reference Systems (CIRS Inc. 

Virginia, USA) with pSWE Philips iU22 (Eindhoven, Netherlands) in the right upper 

corner, with SWE Hitachi HI VISION Ascendus (Hitachi Medical corporation, 

Tokyo, Japan) in the lower right corner and with Siemens Acuson S3000, Virtual 

Touch™ tissue quantification (VTq), (Siemens Medical Solutions, Mountain View, 

CA, USA).  Images: A. Mulabecirovic 

SWSI is often referred to as 2D- Shear wave elastography (2D-SWE) as it gives a 

real time visualisation of soft tissue elasticity properties. Supersonic Shear Imaging 
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(SSI) was the first SWSI method introduced. By depositing several series of acoustic 

signals with focus at different depths of the tissue, creating an “acoustic cone”, 

combined with an ultra-high frame rate, SSI is able to capture in real time, the 

transient propagation of shear waves. After SSI, other manufacturers have released 

2D-SWE methods that are similar, however, these do differ by e.g. the deposition of 

acoustic signal and sampling  frequency (40, 60). 2D-SWE has the ability to produce 

a 2D image where the tissue stiffness is displayed in real time within a colour map 

superimposed on a B-mode image. The colour map may be referred to as elastogram 

where the ROI of measurements can be freely placed and adjusted in size. The colour 

indicates the stiffness of the tissue. Some commercial scanners allow the users to 

choose colour definition of soft and hard tissue, for example blue colour indicating 

soft tissue and red indicating hard tissue. With direct anatomical visualization in B-

mode, the analysis box should be set to preferably 15 mm or more and the ROI 

should be placed in an isoechoic area without vessels. It is recommended that a 

minimum of three measurements should be obtained and the results of LSM are 

expressed in either m/s,  kPa or both (40). If a measurement is not considered valid, 

the method doesn’t return a valued image. A reliable measurement is when IQR/M is 

less than 30%, and it is suggested to follow manufacturers advice for acquisition (61).  

 



 ���

 

Figure 4. An illustration of commercially available SWSI methods, demonstrated in 

vitro on a tissue-mimicking inclusion phantom (Model 049 Elasticity QA Phantom, 

Computerized Imaging Reference Systems Company [CIRS], Norfolk, VA, USA), 

with 2D-SWE, SSI (Aixplorer, Aix-en-Provence, France) to the left, and in vivo on a 

healthy subject with 2D-SWE, LOGIQ E9 (GE Healthcare, Milwaukee, Wisconsin, 

USA to the right. Images: A. Mulabecirovic    
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2 Hypothesis and aims of the thesis 

2.1 Hypothesis 

Our prime hypothesis was that US elastography of liver tissue is feasible and 

reproducible in liver mimicking -phantoms as well as in healthy volunteers and in 

patients with chronic liver disease. Secondly, we hypothesized that when 

elastography is obtained in softer tissue in vitro and in vivo, produce lower values 

with better reproducibility than harder tissue. LSM in healthy livers are higher in men 

than women and that age, body weight and body mass index (BMI) may influence 

LSM. There is no difference in variability or reproducibility when performing LSM 

based on five consecutive LSM instead of 10 in healthy livers. Lastly, we 

hypothesized that US elastography can be assessed in evaluating fibrosis in patients 

with PSC. That the LSM obtained in livers of PSC patients would be higher than 

LSM of healthy livers, and that the feasibility was good and LSM the same of the 

right and left liver lobe.  

2.2 Aims 

2.2.1 Main aim 
The main aim of this thesis was to investigate and validate different elastography 

methods in vitro, in vivo on healthy subjects and non-healthy. Furthermore, to 

explore if LSM obtained by US methods can be used as a clinical tool and predictor 

in follow-up of patients with liver disease and establish normal values and variability 

in a healthy cohort in different age groups. The aims related to each of the studies are 

mentioned under each study.  
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2.2.2 Specific aims 

Study I: To assess and validate the repeatability of US elastography measurements in 

four separate liver tissue mimicking phantoms with known elasticity using five 

different elastography methods.  

Study II: Establish and define a normal material for liver elasticity using selected 

methods for elasticity imaging for different age and gender segments and variation 

width measurements in healthy livers. Assess the intra- and interobserver variability 

and reproducibility and investigate the difference between five and ten consecutive 

liver elasticity measurements. 

Study III: To explore US elastography in patients with PSC using one elasticity 

imaging US shear wave method; specifically: To investigate whether the elasticity 

measurements in patients with PSC differed between the left and right liver lobe, 

whether elasticity measurements in liver and spleen were different in PSC  compared 

to healthy controls, and whether liver elasticity measurements were associated with 

clinical, B-mode or laboratory signs of fibrosis. Assess the intra- and interobserver 

agreement.  
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3 Materials and methods 

3.1 Study object and study populations 

3.1.1 Study I 

To ideally perform elastography measurements in vitro the material measured should 

mimic properties of healthy and non-healthy soft tissue and be congruous with US 

SWE modalities. We chose a set of four individual liver fibrosis phantoms (Model 

039), manufactured by Computerized Imaging Reference Systems (CIRS Inc. 

Virginia, USA), as the objects of examination. In contrast to biological tissue which 

has both elastic and viscoelastic properties, the phantoms consisted of elastic 

material, Zerdine®, a patented synthetic polymer, contained in a 11.6 cm wide and 14 

cm tall cylinder surfaced with a Saran-base. The mechanical and acoustic properties 

of the phantoms had been individually quality-assessed by the manufacturer.  

3.1.2 Study II 

The main aim of this study was to define normal liver elasticity in a healthy cohort. 

110 healthy subjects were included in the study, these were recruited through the 

workplace and social network. 10 subjects were excluded from the final analysis due 

to excessive weekly alcohol consumption (n=2), abnormal laboratory tests (n=3), 

evidence of malignancy on B-mode US (n=1) and BMI > 30 kg/m2 (n=4). 50 males 

and 50 females were included in the final analysis, 10 of each gender in age groups 

20-30, 31-40, 41-50, 51-60 and 61-70 years. The subjects were divided into two BMI 

groups; 18.0 - 25 kg/m2 (n = 73) and 25.1 - 30 kg/m2 (n = 27).  
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3.1.3 Study III 

64 patients from a known cohort of non-transplanted PSC patients in Western 

Norway were to invited at Haukeland University Hospital to participate in the study. 

55 patients were included in the study, 49 with PSC, 1 with Small duct PSC and 5 

with PSC-AIH overlap syndrome. Patients had a mean age of 46.4 � 16.2 years (38 

males and 17 females). Healthy controls (n=24) included had a mean age of 40.6 � 

13.8 years (8 males and 8 females).  

3.2 Ethical considerations 

Oral and written information was given to all invited subjects, and informed written 

consent for subjects included in the study II and III. The studies were performed in 

compliance with the Declaration of Helsinki (2002) and Good Clinical Practice 

guidelines. The regional ethics committee of Western Norway has approved all of our 

studies (REC west no. 2012/2214).  

3.3 Ultrasound elastography  

In this thesis we have through study I-III used six different elastography platforms, 

where five of them were integrated in commercial US scanners. The elastography 

methods applied in the first study were 2D-SWE Version 2.0 from the system of 

LOGIQ E9 (GE Healthcare, Milwaukee, Wisconsin, USA), SWE Samsung RS80A 

with Prestige (Samsung Medison Co. Ltd., Seoul, Korea), SWE Hitachi HI VISION 

Ascendus (Hitachi Medical corporation, Tokyo, Japan), pSWE Philips iU22 



 34 

(Eindhoven, Netherlands) and Fibroscan® 204 (EchoSens, Paris, France) with M-

probe. In the second study we applied 2D-SWE from GE Logiq S8 (GE Healthcare, 

Milwaukee, Wisconsin, USA) Version R 4.1.2, SWE from Samsung RS80A with 

Prestige SWE Version 3.00.03.0824 and Transient elastography (TE, Fibroscan, 

EchoSens, Paris, France) integrated in the GE Logiq S8 US scanner was applied 

using the M-probe. In the third study elastography measurements of the liver and 

spleen were performed using pSWE from Philips (ElastPQ, Version 6.3.2.2, iU22, 

Philips Healthcare, Andover, MA, USA). 

3.4 Ultrasound examination and elastography measuments 

All US examinations and elastography measurements were performed by me in study 

I and II, and by Mette Vesterhus in study III. Anders Batman Mjelle performed 

elastography measurements for interobserver validation in study I, II and III.  

3.4.1 Ultrasound examination in B-mode 

Using a standardized scanning protocol all subjects in study II and III were examined 

by US in B-mode, and examinations were conducted after a minimum of four hour 

fasting. In study II, I used Samsung RS80A with Prestige US equipment (Samsung 

Medison Co. Ltd., Seoul, Korea) and all subjects underwent an US examination of 

the liver, gallbladder, spleen and kidneys. In study III the liver and spleen were 

examined using Philips iU22 (Philips Healthcare, Andover, MA, USA).  
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3.4.2 Elastography measurements in vitro 

In study I the elastography measurements were performed in vitro on liver fibrosis 

phantoms with four different US elastography methods using convex arrayed probes. 

The placement of the elastography measurement was standardized and placed 2-3 cm 

below the surface of the liver fibrosis phantoms.  

 

Figure 5. An illustration of acquiring LSM live with US SWE, using 2D-SWE from 

GE Logiq S8 (GE Healthcare, Milwaukee, Wisconsin, USA) Version R 4.1.2, pSWE 

from Samsung RS80A with Prestige SWE Version 3.00.03.0824 and Transient 

elastography (TE, Fibroscan, EchoSens, Paris, France) integrated in the GE Logiq S8 

US scanner applied using the M-probe.  Images: A. Mulabecirovic. The person on the 

image above has consented to appear on the photos in this thesis.  

3.4.3 Elastography measurements in vivo 

Study II and III was in vivo on healthy and non-healthy subjects. All subjects were 

examined with their right arm abducted and the elastography measurements were 

performed immediately after a full US examination of the liver and biliary system. In 
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study II all US elastography measurements were obtained intercostal in the right liver 

lobe in a relaxed mid-breath, minimum 2 cm below the Glisson capsule, avoiding 

vessels and bile ducts. Elastography measurements of the liver were performed using 

convex arrayed probes, and LSM were given in kPa in study II and m/s in study III.  

3.5 Statistical analysis 

The Statistical Package for Social Sciences Software versions 22-24 (IBM, Armonk, 

New York, USA) and MedCalc version 12.7.0.0 was used for data management and 

statistical analysis. In study I and II all data was plotted manually by me and then 

proof-read by me on two occasions to ensure accuracy, and I performed all statistical 

analyses in study I and II. In study III, I contributed to the statistical analyses.  

In study I the elastography measurements are presented as median (range), in study II 

and III data are presented as mean (SD) when normally distributed, and median 

(range) when not. Reliable measurements were defined as the median value of 10 

valid elastography measurements with a ratio of the number of successful 

acquisitions divided by the total number of acquisitions above 60% and an 

interquartile range interval less than 30%. In study I and II Pearson’s coefficient of 

correlation was used to assess the interobserver agreement. In study I, II and III 

Limits of agreement (Bland Altman) was used to assess differences between 

individual measurements and detect biases for each elastography method, interclass 

correlation coefficient was calculated to assess the interobserver reliability and the 

coefficient of variation was calculated to assess the intraobserver variability of 

elastography measurements.  
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In study I we used one-way ANOVA and Turkey’s test to test the overall 

significance, the threshold for statistical significance was set to p<0.01 as multiple 

testing of methods was performed on phantoms. In study II and III normal 

distribution was tested using Shapiro-Wilk test and the threshold for statistical 

significance was set to <0.05. Student’s t-test and Mann-Whitney U test was assessed 

according to data distribution. In study II multivariable regression analysis was 

performed to identify covariables of liver elastography measurements. Only variables 

with a p-value <0.01 in a univariable analysis were included in a multivariable 

regression analysis. In study III correlations between variables were tested by 

Spearman’s rank order correlation coefficient (rho).  
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4 Summary of main results 

4.1 Results study I 

Each of the four liver fibrosis phantoms had different Youngs modulus (kPa) and had 

been batch tested by the producer. The expected elasticities were given in measured 

shear wave velocity (m/s) and calculated Youngs modulus (kPa), the producer 

provided values with 5% SD. The expected elasticities were 2.7 � 0.14 kPa (1.62 � 

0.08 m/s) for phantom 1, 11.5 � 0.57 kPa (3.34 � 0.17 m/s) for phantom 2, 24.8 � 

1.24 kPa (4.91 � 0.25 m/s) for phantom 3 and 46.3 � 2.32 kPa (6.70  � 0.34 m/s) for 

phantom 4. Each of the elastography methods differentiated the four phantoms 

(p<0.001), and showed more variability in elastography measurements for the harder 

phantoms (3 and 4) compared to the softer (1 and 2). Phantom 3 was softer than 

phantom 4, and we found that the oldest of the US elastography method applied 

(pSWE from Philips iU22 (Eindhoven, Netherlands)) had higher elasticity 

measurements for phantom 3 (p<0.0001) and highest CV (0.21). No significant 

difference in measurements, nor in variability, could be demonstrated for any of the 

other elastography methods and no significant difference in correlation between the 

observers (p=0.157 - 0.660). For phantom 4, TE measured higher elasticity compared 

to the methods integrated in an US scanner and showed significant difference when 

two observers obtained elastography measurements (p<0.0001). Whereas we found 

no significant difference when comparing two observers’ elastography measurements 

for any of the elastography methods integrated in US scanners (p=0.043-1.000). The 

interobserver correlation (0.991-1.000) and intraobserver correlation (0.987-1.000) 

was excellent.  
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4.2 Results study II 

The main aim of this study was to establish and define a normal liver elasticity in 

different age and gender segments using three elastography methods (pSWE, 2D-

SWE and TE). We found that the mean LSM for all 100 healthy subjects ranged from 

2.0-6.8 kPa. There was no significant difference in obtained LSM measurements 

between pSWE (4.1 � 0.8 kPa) and TE (4.2  �  1.1 kPa) (p = 0.110), however LSM 

with the 2D-SWE method (4.5 � 0.8 kPa) were significantly higher compared with 

pSWE and TE (p < 0.001). We did not find a difference in mean LSM when 

obtaining 5 compared to10 measurements for either 2D-SWE or pSWE. CV was 

lower for 2D-SWE (p<0.001) and pSWE (p=0.005) than for TE. Interobserver 

analysis demonstrated no difference in LSM for pSWE (p=0.42), whereas we found a 

difference for 2D-SWE (p= 0.009).  The interobserver reliability was good for the US 

elastography methods with a good correlation between observers for pSWE (r=0.74, 

p<0.001) and 2D-SWE (r=0.65, p<0.001). The variation of elastography 

measurements was small with an intraclass correlation for pSWE of 0.85 and 0.78 for 

2D-SWE, and we found no observer bias using limits of agreement analysis. The 

mean LSM for female subjects (n=50) was lower than for males for TE (3.9 ± 1.1 kPa 

vs. 4.5 ± 1.0 kPa, p = 0.006) and 2D-SWE (4.3 ± 0.7 kPa vs. 4.7 ± 0.7 kPa, p = 

0.006), whereas a similar trend was not statistically significant for pSWE (3.9 ± 0.9 

kPa vs. 4.2 ± 0.7 kPa, p = 0.063). However, in subjects consuming less than 5 alcohol 

units or less per week, the difference was significant for all systems. There was no 

difference in LSM across the age groups (20-30, 31-40, 41-50, 51-60 and 61-70), nor 
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did we find any difference between subjects with BMI 18.0-25.0 kg/m2 (n= 73) and 

BMI 25.1–30.0 kg/ m2 (n= 29) when comparing the three elastography methods or 

looking at them combined. 

4.3 Results study III 

55 non-transplant PSC patients (38 males and 17 females) and 24 healthy controls (8 

males and 8 females) with a mean age of 46.4 � 16.2 and years and 40.6 � 13.8 years, 

respectively, participated in the study. Three patients had signs of biochemical 

significant cholestasis or hepatitis (bilirubin >30 (n=2) or ALT or AST > 5 x ULN 

(n=1). Signs of advanced liver fibrosis (liver capsule irregularity, periductal fibrosis 

and coarse liver parenchyma) was identified in 21 patients, 19 patients had 

splenomegaly, 25 had bile duct dilatation and 2 patients had ascites. Using pSWE 

(ElastPQ by Philips iU22), we found that when measuring the right liver lobe, PSC 

patients had higher median LSM compared to the healthy controls (SWV 1.26 [0.73–

2.57] m/s vs. 1.09 [0.88– 1.25] m/s, p<0.001.) The discrimination between patients 

and healthy controls was fairly good with AUROC of 0.775 (95 % CI [0.67-0,86) and 

the optimal cut-off for LSM of 1.24 m/s with a sensitivity of 56.4 and specificity of 

95.8. The LSM was higher in patients with signs of advanced liver fibrosis (liver 

capsule irregularity, p=0.001; periductal fibrosis p=0.049; coarse liver parenchyma 

p=0.002) than in patients with normal findings om B-mode US. Furthermore, we 

found that the LSM correlated with patients’ fibrosis scores APRI (rho 0.494, 

P=0.001) and FIB-4 scores (rho 0.368, P=0.017). The LSM of the right liver did not 

differ between patients with and without splenomegaly (p=0.11), nor in patients with 
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or without bile duct dilatation (p=0.61) and it did not correlate with Mayo risk, BMI, 

age or PSC duration. Valid LSM of the left liver could only be obtained in 36 

patients, and we found no difference (P=0.11) in LSM between patients (1.46 [0.59–

3.68] m/s) and healthy controls (1.13 [0.91–1.24] m/s), nor between left LSM and 

BMI, age or PSC duration. When we compared left and right LSM, the LSM did not 

correlate (rho=0.233, P=0.17). We obtained valid elasticity measurements of the 

spleen in 37 patients (1.47 [0.79–3.13] m/s) and found no difference (p=0.83) 

compared to the healthy controls (1.48 [1.17–1.80] m/s.) Patients with splenomegaly 

had a tendency of higher spleen elastography measurements (SEM) (1.71 m/s [0.89-

2.71]) compared to patients without (1.39 m/s [0.79- 3.13]), however this difference 

was not statistically significant (p=0.05). There was no correlation between SEM and 

LSM of the right or left liver, nor between SEM and BMI, age or PSC duration. We 

found good inter-and intraobserver agreement for LSM of the right liver in healthy 

controls.  
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5 Discussion 

5.1 Methodological considerations 

Guidelines and recommendation of clinical assessment of US elastography has been 

provided by the European Federation of Societies for Ultrasound in medicine and 

Biology (EFSUMB) and later by The World Federation for Ultrasound in medicine 

and Biology (WFUMB) for the liver, as well as other organs (10, 29, 31, 40). In 

chronic liver diseases, increasing fibrosis occurs and the liver becomes stiffer, which 

can be monitored noninvasively by shear wave elastography (62, 63). In recent years, 

an expanding spectrum of US elastography methods from commercially 

manufacturers has emerged. Because the elastography methods and algorithms used 

to determine tissue stiffness may vary in different commercially available US 

systems, the estimates of the liver stiffness within the same liver may be different 

when liver stiffness measurements are obtained by different methods (40). Hence, 

analysis of performance and comparative head-to-head studies that investigate, 

validate and address the agreement as well as the repeatability in vitro- and in vivo 

are needed, as some of these systems are already being employed in the clinical 

follow up of patients with chronic liver diseases.  

To adequately test the novel elastography methods in vivo and in vitro, a gold 

standard is needed for comparison. Ideally, a gold standard should have a specificity 

and sensitivity of 100%, if not the estimates of new methods are false (4). However, 

in the assessment of liver fibrosis, liver biopsy has traditionally been considered the 

gold standard, even though it has 35% false-positive and false-negative rate for 

fibrosis stage in comparison to large surgical biopsies (64). Several studies have 
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emphasized the usefulness of non-invasive methods to assess liver fibrosis, the most 

validated non-invasive method being the one-dimensional shear wave elastography 

method of Fibroscan, with accuracies around 80% when liver biopsy is taken as a 

reference and standardized according to staging (8). Shear wave elastography is the 

most common for assessment of liver fibrosis, whereas strain elastography methods 

have not yet been developed to assess strain quantitatively, it is currently not 

recommended for assessment of liver stiffness in clinical practice (40). This has been 

demonstrated in a number of studies (65). However, also SWE have some limitations 

in assessment of LSM as several factors influence LSM: the respiration phase, 

occurrence of non-fasting state, reverberations from the liver capsule, presence of 

steatosis and obesity, cholestasis, right heart failure, parenchymal inflammation of the 

liver with elevated transaminases >5-10 x ULN (10, 40).   

Prognosis, as well as management of chronic liver disease depend on the amount and 

progression of liver fibrosis. Presence of significant fibrosis may indicate antiviral 

treatment (66, 67), especially in chronic viral hepatitis, and presence of cirrhosis is an 

indication for specific monitoring of possible complications such as increased risk of 

hepatocellular carcinoma and portal hypertension (68). However, even though the 
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5.2 Discussion of the main results 

5.2.1 Discussion study I 
This phantom study has shown that all five US shear wave elastography methods 

used, were highly repeatable and had a good agreement, for both one and two 

observers, when assessed on liver fibrosis phantoms with stiffness levels ranging 

from healthy liver tissue to cirrhosis. The in vitro design of the study was aimed to 

evaluate US elastography methods dependencies of stiffness measurements assessed 

in the non-invasive staging of liver fibrosis using commercially available liver 

fibrosis phantoms. The phantoms were purely elastic and did not accurately imitate 

the viscoelastic properties of human liver tissue, however the acoustic properties were 

comparable to live soft tissue. Because of the many factors that affect liver stiffness 

measurements in vivo, the study design represents an idealized and simplified 

situation, where only variability in the US systems and the free-hand scanning is 

assessed, while the objects examined are limited. Liver fibrosis phantoms do not have 

the limitation of subcutaneous fat that may affect the measurement depth, narrow 

intercostal spacing that may affect the applicability of the SWSE methods, we did not 

have to rely on patient cooperation that in vivo could affect the results, nor did we 

have factors such as possible ascites, hepatic inflammation or levels of cholestasis to 

evaluate. However, these factors allowed us to evaluate the SWSE methods under 

“ideal” circumstances on objects with known stiffness. Under standardized default 

settings we were able to assess all SWSE methods, without adjusting factors that may 

affect performance, resulting in a “fair” head-to-head comparison between the SWSE 

methods. Our results demonstrated a nearly perfect agreement between observers for 
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all the SWSE methods, and we found no significant difference in mean elasticity 

measurements between the observers for the SWSI methods. These results are in line 

with results in literature (70-74), and one recent study investigated six SWSE 

methods in vivo and found a good to excellent agreement between LSMs performed 

with the different systems (75). The Ultrasound Shear Wave Speed Committee 

(SWS), of the Radiological Society of North America (RSNA), Quantitative Imaging 

Biomarker Alliance (QIBA) conducted a multicentre study comparing several SWSE 

methods using elastic phantoms, with similar properties as the phantoms used in our 

study, and found a statistically significant difference in shear wave speed between 

methods and not related to stiffness, whilst no significant difference was found 

between observers using the same or equivalent SWSE methods (76). However, due 

to the study design it is not known which commercially available SWSE methods 

were applied, nor if the systematic error was due to using equivalent, however, non-

identical phantoms. The same group later conducted a study on viscoelastic 

phantoms, mimicking real liver tissue, and found similar results demonstrating a 

consistent inter-system variability in viscoelastic phantoms, however, despite the 

variability the imaging, SWSE methods used in the study were able to differentiate 

the viscoelastic properties of the phantoms that span healthy to fibrotic liver (77), in 

line with our results. Furthermore, they found that an increased depth (3 cm, 4.5 cm 

and 7 cm) of elasticity measurements yielded increased intersystem variability. It has 

previously been demonstrated that the depth related differences (1- 4 cm) may affect 

repeatability of elastography measurements in vitro (78), thus to further strengthen 
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the evidence all elasticity measurements were acquired approximately 3.5 cm below 

the transducer surface.  

In our study, we found that the elasticity measurement made with TE were higher for 

the hardest phantom and for both observers. Even though the liver fibrosis phantoms 

were compatible with shear wave modalities, including TE, most of the phantom 

elasticity measurements obtained by the SWSE methods were lower than the stiffness 

values provided by the phantom manufacturer. This is well in line with the literature, 

where it has been discussed that this might be caused partly by lower frequency and 

smaller source of vibration in TE compared to shear wave speed measurement and 

imaging methods, which leads to increased diffraction and thereby induced 

overestimation of stiffness (79). We evaluated only one SWSI method in our study, 

and found that it had the lowest variation in elasticity measurements with no 

difference between observers for either soft or hard phantoms. We assumed that the 

tendency towards higher repeatability than other SWSE methods in the study, may 

have been influenced by a different measurement procedure that applies for 2D-SWE, 

as multiple frames could be acquired allowing several measurements within the same 

US probe position of the phantom. Even though SWMI is considered to be more 

precise and less operator dependent, one study has shown that tissue compression by 

the force extended on the US probe can significantly affect the elasticity 

measurement results (80). However, the phantom used in the study was made purely 

of gelatine and placed on a digital scale during measurements where US probe 

pressure applied was equivalent to grams. Furthermore, 2D-SWE from SSI was 

performed to obtain elasticity measurements and a linear transducer was applied, 
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whereas we applied the convex probe. The reasoning for applying the convex probe 

was that we were measuring liver fibrosis phantoms, and in a clinical setting we 

would use the same convex probes for real liver scanning. We also questioned if the 

size of ROI for the measurement could affect the repeatability. For a high quality 2D-

SWE elastogram in the setting of chronic liver diseases it has been recommended to 

use a large ROI, more or equal to 1.8 cm in diameter, in addition to and low standard 

deviation and optimal depth to ensure low variability and high reliability (61). 

However, as our study was performed in vitro, we standardized the ROI in our study 

to 1 cm for 2D-SWE.  

 

5.2.2 Discussion study II 

In the second study of this thesis, we used three SWSE methods, TE, one SWSM 

method and on SWSI method with 2D-SWE, to investigate normal liver stiffness 

values in a healthy Norwegian cohort of 100 participant with and equal number of 

men and women in five different age groups. Because SWSE within the normal range 

can rule out significant liver fibrosis when in agreement with clinical and laboratory 

background (40), it is pivotal to establish normal values of liver stiffness of novel 

SWSE methods for the method to be implemented as a reliable method in assessment 

and follow-up of chronic liver diseases (81).  

One problem with TE is that the operator experience significantly influences the 

reliability of LSM acquired with TE (82, 83). However, it can be fairly easily learned 

and requires minimal operator training (84, 85). An operator that has performed more 
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than 500 examinations with TE is considered an experienced TE operator (40). In our 

study, only one investigator performed TE, and was considered experienced, and we 

used TE as the reference standard in direct comparison with the novel two SWSE 

method.  

The novel SWSE methods had good intraobserver and interobserver agreement, this 

is in concordance with previous studies investigating SWSM methods (71, 72, 74, 75, 

86, 87). However, we found that there was a difference between operators when using 

the SWSI to obtain LSM. In our interobserver analysis, one operator had more than 3 

years’ experience and the other observer had only 1 years’ experience. There is no 

consensus per today of what constitutes and experienced operator for SWSM and 

SWSI methods, however, it has been suggested that an experienced operator should 

have performed at least 300 abdominal US examinations and more than 50 supervised 

2D-SWE examinations (40). Previous studies have emphasized the learning curve for 

2D-SWE (73, 88). In our study, only one of the operators in our study was 

experienced. Furthermore, the SWSI method allowed the operators to set the 

measurement ROI freely within the elastogram avoiding incongruent signals when 

obtaining LSM, whereas the SWSM method measured the LS without visualizing the 

stiffness.  

Previous reports have found that LSM obtained by TE vary between 4.4 and 5.5 kPa 

(89-91), the European Association of Liver Diseases (EASL) state in their guidelines 

that cut-off values vary considerably, however LSM values greater than 6.8 and 7.6 

kPa indicate a higher probability of significant fibrosis on liver biopsy (92). A recent 
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meta-analysis found that the mean LS obtained by TE for truly healthy non-obese 

individuals was 4.7 kPa (93), in our cohort the mean LSM obtained with TE was 4.2 

kPa, 4.0-4.5 kPa 95% CI. When comparing the mean LSM obtained with the two 

novel SWSE methods, we found that the SWSI method obtained higher values than 

TE and the SWSM method, whereas the SWSM method did not differ from TE. 

Previous studies have shown similar results for 2D-SWE and healthy LSM in the 

range between 4.5 and 5.5 kPa (73, 94-96), whereas our cohort had a LSM with 95% 

CI between 4.3 and 4.7 kPa for the SWSI method. We chose to report the LSM in kPa 

for the SWSM method, as the method opted for this and we wanted to perform a head 

to head comparison between the methods, and found the mean LSM to be 4.1 kPa, 

whereas previous normal values found using SWSM methods report the LSM in the 

range between 1.07 and 1.16 m/s (72, 74, 97, 98).   

One of the strengths in our study was the comprehensive exclusion of liver disease in 

a cohort with equal number of male and female participants in the different age 

groups. Factors affecting LSM have been extensively discussed in the literature. In 

our study we found that LSM was higher in male participants using SWSI, however, 

not when using SWSM. Similar results have been demonstrated previously for SWSI 

(94, 96), whereas for SWSM previous reports have showed inconsistent results of 

gender affecting LS (99-101). One study has demonstrated that males have higher LS 

than females when using SWSM (102), however the number of participants were 

unequal, whereas we had an equal number of male and female participants. Using TE 

it has been shown that males had higher LSM than females (89, 90), in line with our 

results. However, a large meta-analysis including 26 healthy cohorts with a minimum 
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of at least 50 participants did not find that gender was associated with a statistically 

significant influence on LSM (103). Regarding the influence of gender and 

conflicting study reports for the different SWSE methods, it may indicate that there is 

a need to define separate cut-off values for normal LSM for males and females in 

healthy subjects, and possibly also in patients with liver fibrosis. One study has 

proposed that different hormone levels between the genders in rats may suggest a 

possible explanation for the differences in LSM between the genders (104). Another  

study has demonstrated results that might indicate that differences between genders 

occur in the age group 12-17 years (105). Accordingly, possible gender differences 

need to be investigated further in humans. 

Factors such as age and BMI have been discussed to be a variable that may influence 

LSM in normal subjects. Many studies have been published on this matter; however, 

the results have been inconsistent. In our study, all participants were carefully 

interviewed, information regarding alcohol consumption was collected, the subjects 

had normal liver biochemical analyses, normal findings on B-mode US examination 

and no history of chronic or present hepatic disease in addition to BMI less than 30 

kg/m3. Inclusion and exclusion criterions in healthy studies may contribute to, and 

perhaps partly explain, differences between our findings and other reports. We 

categorized the subjects in two BMI groups, first group with BMI 18.0–25.0 kg/m2 

(n=73) and second with BMI 25–30 kg/m2 (n=27), and could not find that BMI 

affected LSM. However, some studies have demonstrated that BMI and age affect 

LSM with conflicting results (95, 96, 106). Compared to subjects with normal weight, 

higher LSM has been demonstrated in subjects with BMI below 18.5 kg/m2 and 
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above 30 kg/m2 (107). However, in our study patients with BMI below 18.0 kg/m2 

and above 30 kg/m2 were not considered healthy and therefore excluded from the 

study. Furthermore, we did not use the XL-probe, which was developed for obese 

patients and differs from the M-probe as it uses a lower frequency, has a deeper focal 

length and a lower depth, making it suitable for patients with large skin to liver 

capsule distance (108). It has been addressed in the literature that an increased waist 

circumference is associated with an increased failure rate of obtaining LSM with TE 

(82, 100, 107, 109, 110), but whether the waist circumference influences the normal 

range of LSM is unclear as most studies have focused on BMI rather than waist 

circumference and with varying results (111). We recorded skin to liver capsule 

distance and waist circumference for all subjects, however, we did not include these 

data in our analysis. In retrospect, we acknowledge that these analyses could have 

strengthened the study and contributed to utterly to specify our results. 

It has also been investigated if age is a confounding factor of LSM, and similar to 

BMI the results have been inconsistent, demonstrating no difference across different 

age groups, higher LSM in higher age and higher LSM in lower age (89, 90, 102, 

112).  In our cohort we found no difference in LSM for any of the methods between 

the five age groups, ranging from 20 to 70 years and including 10 male and 10 female 

subjects in each group. One study did demonstrate an association of higher LSM in 

subjects aged over 40 years using SWSI (94), however, the study design was not 

identical to ours and the biochemical analyses were not present for all subjects. 

Whether factors such as comorbidity i.e. steatosis and heart failure, might be 

confounders in the analyses of age effect on LSM remains to be answered. 
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One of the interesting findings in our study is that we demonstrated no difference 

between acquiring 5 instead of 10 LSM for either the SWSI nor the SWSM method. 

There is an ongoing discussion of how many measurements must be acquired as a 

minimum for the LSM to be representative, and currently EFSUMB recommends 10 

measurements for SWSM and TE, whilst only 3 measurements with SWSI (40, 113). 

Using SWSI methods, a previous report has demonstrated excellent intraobserver 

reproducibility and suggesting 6 LSM to be optimal number of measurements (114), 

whereas another report concluded that 10 measurements should be acquired when 

assessing SWSM methods (115). We found no significant difference in mean LSM of 

5 and 10 measurements for either methods, and our results suggest that a reliable 

LSM may be obtained with fewer SWSE measurements. As a consequence of fewer 

repetitions of measurements, the examination could be performed in less time. 

However, our results reflect healthy non-obese subjects without chronic liver disease. 

Therefore our results are not representative to apply in patients with liver fibrosis, 

where the variability in measurements maybe higher, as it has been demonstrated that 

higher variability increases with higher liver stiffness (116). 

 

5.2.3 Discussion study III 

According to EASL, primary sclerosing cholangitis (PSC) is a rare chronic 

inflammatory autoimmune liver disease primarily affecting the bile ducts, leading to 

biliary fibrosis and progressing to liver cirrhosis over time (117). Nearly half of 

patients with PSC are asymptomatic at time of diagnosis (118), and the disease is 
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considered premalignant and being associated with cancers in the hepatobiliary tract 

and colorectum (119). There is no effective medical therapy to this date, and it has 

been estimated that PSC accounts for 10-15% of all liver transplants in Europe, which 

is the only proven life-extending intervention for this patient group (119). In the 

diagnostic approach of PSC, imaging plays an important role, as the diagnosis of PSC 

is primarily identified with characteristic bile duct changes on magnetic resonance 

cholangiopancreatography (MRCP) (120), where typical choliangiographic changes 

define the diagnosis of PSC (117). Although US is not diagnostic in PSC, it is useful 

as signs of a thickened bile duct wall, focal dilatations of the bile duct and gallbladder 

abnormalities can easily be observed in patients with PSC and other reasons for 

cholestatic disorder and biliary obstruction can be excluded (121, 122), as the goals 

of management and treatment of PSC are primary prevention of end-stage liver 

disease and associated symptoms (122). Furthermore, the EASL guidelines 

recommend that patients with PSC should be considered with annual US examination 

of gallbladder abnormalities (120). 

The last years there has been a vast interest, and focus, on investigating non-invasive 

clinical tools in the assessment of the disease. Several reports have suggested that a 

non-invasive approach to evaluate the degree of fibrosis and possible changes will be 

of significant importance in the follow-up of the patient group. As PSC is 

characterized by a patchy distribution of fibrosis that disturbs the homogeneity of 

liver tissue, the use of US elastography is even stronger indicated (27, 123). The aim 

of our study was to explore US SWSE as a non-invasive method, as it covers larger 
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areas of the liver and allows direct visualization of liver, to evaluate liver fibrosis in a 

Norwegian PSC cohort.  

We detected signs of liver fibrosis on abdominal US in 21 patients and LSM obtained 

in this group were higher. Furthermore, in applying SWSM we identified another 12 

patients with higher LSM but without visual signs of fibrosis on B-mode. The SWSM 

method used in our study had been designed to measure LSM in patients with viral 

hepatitis (124-127) and proven as a non-invasive and repeatable method for LSM. 

We found that the feasibility of the SWSM method applied, as well as intraobserver 

and interobserver agreement was excellent for the right liver lobe, in line with 

previous reports using the same SWSM method (102). Furthermore, we observed that 

liver fibrosis can easily be evaluated by both SWSE and traditional US B-mode 

during the same procedure. 

In our study we found that patients with PSC have higher LSM, compared to the 

healthy controls, when performed with SWSM. These  results were in line with 

literature (128). In addition, it has been demonstrated that the SWSM method used in 

our study, has good to excellent correlation with histological evaluation of fibrosis 

(124, 128). Previous studies have found similar results using TE  (123, 129-131), and 

TE is considered an accurate marker of liver fibrosis in PSC (132). One study 

included 28 patients with PSC and 78 with PBC and showed that TE was very 

specific and sensitive for predicting advanced fibrosis (129). Notably, TE is most 

suitable at the extremes of histological stages and it is established in the literature that 

cholestasis affects the accuracy of LSM in non-invasive assessment of liver fibrosis 

(133). Considering that PSC is a cholestatic disease, it might complicate the 
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evaluation of LSM obtained by SWSE methods. In this respect, applying TE solely 

for LSM presents a limitation because the method does not enable visualization of the 

gallbladder or the presence of intrahepatic cholestasis, that can be done with B-mode 

US. We only used one SWSE method in our study, and did not have access to use TE 

as a reference method. In a recent publication reviewing liver elastography guidelines 

(134), the author concluded that TE and ARFI-based methods, as the one used in our 

study, have the same accuracy in liver stiffness assessment, and emphasized that 

some studies have suggested that ARFI-based methods are more accurate than TE. 

One study used ARFI to obtain LSM, and demonstrated that LSM is higher in 

patients with obstructive cholestasis, suggesting that the presence of biliary 

obstruction should be an exclusion criterion in the baseline LSM (135). In our study, 

only two patients had bilirubin > 30 μmol/L, and 47% of the patients had some 

degree of bile duct dilatation on B-mode US. However, we could not demonstrate any 

difference in LSM in these patients compared to patients lacking signs of bile duct 

dilatation on B-mode.  

We found a low success rate and high variability of LSM of the left liver lobe, and 

there was a larger range in LSM of the left liver lobe compared to LSM of the right 

liver lobe. Anatomical localization might be a possible explanation, as the cardiac and 

respiratory movements cause more motion and thereby affect reliability of LSM 

obtained (102, 115, 136). Several studies have investigated differences of LSM in left 

and right liver lobe with varying conclusions, some have concluded that that LSM 

was higher when obtained in the left lobe (115, 137), whereas others found no 
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difference (138). Interestingly, in our study population, we found that the LSM of the 

left liver lobe correlated with APRI in those 66% valid LSM obtained.  

In our analyses we found that a cut-off value for LSM of 1.24 m/s had good ability 

(AUC of 0.775) to discriminate between PSC patients and healthy controls. Previous 

findings have suggested a similar cut-off of 1.23 m/s (98), however, the patient 

population in this study included different aetiologies and none PSC patients. From a 

clinical point of view, we hesitate to as if 1.24 m/s is representative as an ideal cut-off 

for all PSC patients. If the aim is to identify early diagnosis of liver fibrosis, 

sensitivity is favoured, and by assessing LSM our results suggest an increased 

sensitivity in identifying liver fibrosis PSC patients. However, if the aim is to identify 

patients in a high-risk group who need follow-up, specificity is favoured over 

sensitivity. Therefore, longitudinal studies are necessary to evaluate if SWSM 

methods can be used to estimate progression during follow-up of PSC patients. A 

recent study concluded that the same SWSM method can evaluate fibrosis in AIH and 

PSC with good accuracy for detecting hepatic fibrosis, however, the authors suggest 

to be cautious when interpreting LSM in early fibrosis stages (139). Moreover, it is 

well known from previous reports that the cut-off values for significant fibrosis and 

cirrhosis vary with the aetiology of liver disease e.g. compared to alcoholic liver 

disease, suggested cut-off values are lower for cystic fibrosis liver disease, which has 

a similar fibrotic distribution as PSC (124, 140-142).  

The lack of histological correlation is an obvious limitation of our study. 

Furthermore, we did not include TE as a reference method, nor did we perform a 

head to head comparison with TE or other elastography methods. Liver biopsy is in 
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general not indicated in patients with PSC as it may result in sampling error and 

variability, due to the patchy distribution of fibrosis (143). Similar to PSC, primary 

biliary sclerosis (PBC) has a patchy distribution of fibrosis (27), and one study 

demonstrated that only 10 of 50 explant PBC livers had a consistent stage throughout 

the liver (144). Although we did not have histological correlation in our study, we 

found that LSM correlated with aspartate aminotransferase (AST)-to-platelet ratio 

index (APRI) and Fibrosis index based on four factors (FIB-4), two suitable serum-

based scores with moderate sensitivity and accuracy for detecting liver fibrosis stage 

(145). Our findings indicate that by adding LSM to an US evaluation, increased 

sensitivity for identifying fibrosis in PSC patients could be implied.  

Using magnetic resonance elastography (MRE) an entire elastography map of the 

liver is generated, enabling a visualisation of the whole liver. Some recent 

publications have shown that the method may be used to predict liver 

decompensation and that it correlates with different stages of liver fibrosis (146-148). 

However, compared to US elastography methods, MRE does have the limitation of 

being much more expensive, time-consuming and not widely available.  
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6 Conclusions 

We have demonstrated the feasibility and validated the reliability of several SWSE 

methods, from in vitro on liver fibrosis phantoms, to healthy subjects to patients with 

PSC. We have also provided evidence for the reproducibility of SWSE methods and 

suggested normal LSM values for two novel SWSE methods and our results indicate 

that obtaining 5 LSM may be sufficient to obtain reliable results. Lastly, we have 

suggested a cut-off LSM value to discriminate between PSC patients with fibrosis 

and healthy liver subjects.  Our studies have contributed to further open the door to 

possibilities in the clinical and diagnostic implementation of SWSE assessment in 

liver diseases. Although lager studies are necessary in order to bring together 

different SWSE methods to establish a reference base, we believe that our work 

provides clinicians and researchers with specific advice on how to apply these 

methods with guidance on cut-off values when assessing LSM with SWSE methods.  
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7 Future perspectives 

We would like to use the same novel methods applied in our second study, where we 

have established normal values for a Norwegian cohort, in a longitudinal and 

prospective study where we follow up patients with established chronic liver disease 

before, under and after they start treatment for Hepatitis C Virus (HCV). Using the 

same software, implemented in the same methods as in our healthy study and TE as a 

reference we would like to investigate whether SWSE can be used, not only to define 

the indication for treatment through LSM, but also to investigate whether fibrosis 

may be reversible in treated patients and investigate what role frequency in the follow 

up of patients with HCV plays. In this respect, we have an ongoing project where we 

have included 70 patients. In addition, we are analysing results from a study where 

we conducted elastography measurements and assessed the controlled attenuation 

parameter (CAP), integrated in Fibroscan, an appearently healthy cohort. We hope 

that these results may contribute in the further research of non-alcoholic fatty liver 

disease (NAFLD), where elastography has shown promising results. Furthermore, we 

are performing a longitudinal and prospective follow-up of patients with PSC with 

the same SWSE method assessed in study three. We are observing that US 

elastography is frequently applied in daily routine when scanning patients with liver 

diseases. In the future, elastography holds great promise as a clinical tool, also by 

adding prognostic information in diseases such as PSC.  
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Abstract

This study aimed to assess and validate the repeatability and agreement of quantitative

elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis

phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips

iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Tran-

sient Elastography (TE). Two individual investigators performed all measurements non-con-

tinued and in parallel. The methods were evaluated for inter- and intraobserver variability by

intraclass correlation, coefficient of variation and limits of agreement using the median elas-

tography value. All systems used in this study provided high repeatability in quantitative

measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All

four elastography platforms showed excellent intra-and interobserver agreement (interclass

correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant differ-

ence in mean elasticity measurements for all systems, except for TE on phantom 4. All four

liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms

(p 0.001). In the Bland-Altman analysis the differences in measurements were larger for

the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the

range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability.

Introduction
Elastography is a non-invasive imaging technique that aims to assess tissue elasticity in several

organs through quantitative or semi-quantitative measurements. In the last years, several man-

ufacturers have introduced new elastography methods, offering shear-wave based elasticity

mapping or measurement integrated in high-end scanners. The methods are aimed to be used

as a clinical tool in several fields of medicine, however the use of shear wave elastography
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(SWE) methods has predominantly focused on application in chronic liver diseases. The elas-

tography methods that are implemented vary by technique, reported parameter, application

and are not standardized to a common use. The different manufacturers apply propriety pat-

ented calculation modes, which might result in different values. [1, 2] This has been addressed

in previous studies where liver elasticity has been assessed, and several papers have confirmed

that the different technologies have different cut-off values. [1, 3, 4] However, it is important

that comparative studies address the repeatability and agreement of the emerging technologies

in vitro as well as in vivo in healthy and non-healthy patients. So far there is not enough scien-

tific evidence in the literature to validate the most recent technologies.

All elastography methods are based on that the tissue elasticity is measured by Young’s

modulus as pressure in kilopascals (kPa). The relationship between the applied stress and

resulting strain is defined by Young’s modulus and quantifies tissue elasticity. This means that

the harder the tissue elasticity is, the higher Young’s modulus (elasticity) will be.

The SWEmethods use an acoustic pulse to create shear waves that travel perpendicularly

to, and much slower than the longitudinal ultrasound (US) waves, making it possible to track

and measure them within a limited distance. [5, 6] The velocity of the propagating shear waves

is faster in harder than in softer tissue, making it a useful method in the evaluation of soft tis-

sue. The main elastography technologies can be divided into strain imaging, shear wave speed

measurement and shear wave speed imaging (2D-SWE). The technologies differ by the type of

force applied, the visual representation of tissue elasticity and possibility to perform quantita-

tive assessment of recorded tissue elasticity. [7] The elasticity measurements, using SWE or 2D

SWE, may be expressed as either shear wave velocity (m/s) or Young’s modulus (kPa).

Most SWE methods integrated into US scanners provide real-time visualization (Brightness

mode/B-mode) allowing the examiner to position the specific area of interest for elasticity

measurements. This is of great clinical value as it gives the ability to evaluate the liver tissue,

and perform elastography measurements whilst avoiding vessels and choosing the region of

interest at the right depth from the liver capsule. Elasticity itself is often not visualized (Point

shear wave elastography; VTQ and ElastPQ); however, some 2D-shear wave elastography

(2D-SWE) methods, including GE 2D-SWE and Supersonic SWE, offer real time visualization

of elasticity by a color map within the measurement area and a numerical calculation of shear

wave speeds or elasticity. One exception is TE, which was one of the first elastography technol-

ogies available. [8–10] While well validated in the literature, TE lacks ultrasound visualization

and cannot be applied in patients with perihepatic ascites. [7]

The aim of this study was to compare and assess the agreement and repeatability of three

novel elastography technologies and compare their results to one established shear wave

method on liver fibrosis phantoms.

Material andmethods

Study design
We used five different elastography systems, which were all commercially available and

approved for medical use in diagnostic ultrasound. The systems reported the tissue elasticity in

meters per second (m/s) or kilopascals (kPa), as Young’s modulus. Two individual observers

(A.M. and A.B.M.) obtained data from all elastography methods individually, blinded to each

other’s results. Each observer (A and B) performed free-hand scanning of the four, separate,

tissue-mimicking phantoms and made ten separate measurements of each phantom using the

same elastography imaging settings. Both observers had more than 2 years’ experience in ultra-

sound and elastography. Only one observer was certified for Fibroscan. The curvilinear probes

were applied for imaging and elastography on the ultrasound scanners, whilst the M-probe

Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
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was applied for TE. The region of interest (ROI) was standardized; for 2D-SWE 1 cm circle,

for S-Shearwave Elastography and Acoustic Radiation Force Impulse (ARFI) a standardized

box 1x0.5 cm and for Shear Weave Measurement (SWM) 1x1.5 cm and fixed in size. The ROI

was placed 2–3 cm under the liver fibrosis phantom surface. The elastography systems were

evaluated for inter- and intraobserver variability by, coefficient of variation, interclass correla-

tion and limits of agreement using the median value. Each image was recorded to the hard

drive of the scanners and stored to an external storage device. Software versions and default

settings are provided in the Appendix.

The objects of examination
The object of examination were liver fibrosis phantoms manufactured by Computerized Imag-

ing Reference Systems (CIRS Inc. Virginia, USA). The model 039 consisted of four separate

phantoms of varying stiffness (Table 1). Each phantom was 10 cm deep and made with Zer-

dine1, a patented synthetic polymer, housed in a 14 cm tall and 11.6 cm wide cylinder with a

Saran-based scan surface and a scanning well. The phantom was compatible with the ultra-

sound shear wave modalities including Fibroscan Transient Elastography and ARFI. It had

standard configuration with the following nominal acoustic properties: Attenuation: 0.5dB/

cm/MHz, Contrast: 0 dB with respect to CIRS liver reference. The actual acoustic and mechan-

ical properties of each phantom had been batch tested by the manufacturer by an external

method, and the measured and calculated values are provided in Table 1. Similar cylindrical

Zerdine phantoms from CIRS have been determined to be adequately homogeneous based on

testing performed by the Nightingale Laboratory at Duke University and QIBA (Dept. of Bio-

medical Engineering). [11, 12]

Elasticity imaging and SWE platforms applied
GE 2D-Shear wave elastography (SWE)

The elastography method of 2D-SWE was applied from the system of LOGIQ E9 (GE

Healthcare, Milwaukee, Wisconsin, USA) Version 2.0, using the C1-6 probe. The method gen-

erates shear wave velocity through an acoustic push pulse, creating a color mapped elastogram.

The color indicated the stiffness of the tissue, where red was soft and blue hard. Within the

color map, the operator could place a region of interest (ROI) and adjust the size of the ROI.

After placing the ROI, under default scanner settings, the elasticity measurements were auto-

matically acquired by the system. (Fig 1) In our study we standardized the size of our ROI to 1

cm and the measurement was obtained at least 2 cm inferior of the liver fibrosis phantom sur-

face. [13] The measurements were expressed in kPa.

Samsung S-Shearwave Elastography (S-SWE)

Using the RS80A with Prestige ultrasound equipment (Samsung Medison Co. Ltd., Seoul,

Korea) we assessed the S-Shear wave Elastography (Version 2.0). Within the brightness mode

(B-mode) window, using default scanner settings, the ROI could be placed freely and had a

Table 1. Expectedmeasurements and acoustic properties for the liver fibrosis phantoms represented with 5%SD.

Phantom Young’s modulus
(kPa)

Density
(g/cm3)

Speed of sound (m/s) Expected shear wave velocity
(m/s)

1 2.7 0.14 1.03 1533 1.62 0.08

2 11.5 0.57 1.03 1536 3.34 0.17

3 24.8 1,24 1.03 1531 4.91 0.25

4 46.3 2.32 1.03 1530 6.70 0.34

https://doi.org/10.1371/journal.pone.0189671.t001

Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
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fixed height of 1 cm. (Fig 2) The width was automatically adjusted depending of the measure-

ment depth. If the ROI was placed in an area where measurements could not be obtained, for

example at 7 cm depth, the color of the box changed to orange, symbolizing an invalid posi-

tion. We placed the ROI at least 2 cm inferior of the phantom surface. The measurements were

expressed in m/s and kPa simultaneously. The method had a unique performance index, “Reli-

ability Measurement Index” (RMI), which is calculated by the weighted sum of the residual of

the wave equation and the magnitude of the shear wave. [14] RMI ranging from 0.0–1.0,

where 0.4 or higher is considered as acceptable whilst 1.0 is considered a very high value of

RMI, and strongly correlates with reproducible measurements, according to the manufacturer.

The proposed index is utilized to filter out unreliable measurements and result in performance

improvement of shear wave elastography.

Fig 1. GE 2D-SWE. The figure illustrates the method of 2D-SWE by GE performed on liver fibrosis phantom 3
with Young’s modulus 24.8 kPa 5%. The color box (centre) represents the elastogram, and the circle
represents the ROI where the elasticity measurement is acquired. The blue color indicates harder tissue, as
semi-quantitatively presented by the color scale to the left.

https://doi.org/10.1371/journal.pone.0189671.g001

Fig 2. Samsung (S-SWE). Samsung S-Shearwave Elastography assessed on liver fibrosis phantom 3. The
yellow box (centre) represents the shear-wave measurement area. ROI and the RMI (Reliability
Measurement Index) is expressed below the obtained elasticity measurement of 20.7 kPa.

https://doi.org/10.1371/journal.pone.0189671.g002

Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
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Hitachi Shear Wave Measurement (SWM)

Using a Hitachi HI VISION Ascendus (Hitachi Medical corporation, Tokyo, Japan) scan-

ner SWMwas applied using the EUP-C715 probe (1-5MHz). Within one SWMmeasurement

several push track sequences are delivered and the SWM samples the shear wave velocity in

multiple positions, at different depths, inside the ROI. This is automatically repeated within a

short time (<1second). Per acquired SWM, the system displays a histogram and measurement

overview. The distribution of the multiple velocity measurements (Vs) were displayed in a his-

togram, the IQR, depth of sample, the median of Vs in m/s and transformed to kPa. (Fig 3)

The method has a built-in feature, the VsN, which is a reliability index of the Vs values

acquired per measurement and functions as a quality indicator, and ranges from 0–100%. [15]

Ten repeated acquisitions were made, using default scanner settings, and the results were

given in m/s. The elasticity was also provided in kPa, by calculation of Young’s modulus, con-

figured by Hitachi’s application specialist.

Philips point shear-wave elastography (pSWE)

Using a Philips iU22 (Eindhoven, Netherlands) a point shear wave elastography platform,

also known as ARFI quantification, was applied using a C5-1 probe. The method is based on a

quantitative measurement of tissue elasticity, as the ultrasound probe produces a dynamic

force that is applied through focused radiation force impulse. This generates shear waves that

propagate perpendicularly to the push pulse through the tissue, across the ROI where the prop-

agation of shear wave velocity is measured [2, 16]. The measurements were obtained, using

default scanner settings, applying minimum pressure to the phantom surface whilst holding

the probe still. The ROI, which was standardized and had a fixed area of 0,5x1 cm, was placed

within the field of view obtaining an elasticity measurement. (Fig 4) 10 individual measure-

ments were repeated, and the results were displayed as a median and mean with standard devi-

ation (SD) of 10 measurements. The elasticity was expressed in kPa.

Fibroscan (Transient elastography, TE)

Applying Fibroscan1 204 (EchoSens, Paris, France), we used the standard M-probe with a

transducer frequency of 3.5 MHz on all four phantoms. The probe generates a vibration with

Fig 3. Hitachi (SWM).Hitachi SWMwas applied on liver fibrosis phantom 3. The ROI is represented by the
blue box (centre). The shear wave velocity measurements are presented in the histogram, and the median is
given as Vs in m/s. Stiffness is based on this value expressed in kPa as well as the IQR (m/s), VsN (Reliability
Index for shear wave velocity measurement) and the depth of the sample.

https://doi.org/10.1371/journal.pone.0189671.g003

Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
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50 Hz frequency and 2 mm amplitude, which induces a shear wave propagation. The velocity

of the shear wave is directly calculated by the device and the results are expressed in kilopascals

(kPa) without B-mode. [2, 17] Valid measurements were performed. Both observers aimed to

fulfill all quality parameters when performing the measurements. (Fig 5) The device displayed

median value of ten measurements, number of failed measurements, the IQR and IQR/

median. Reliable measurements were defined by the producer: a measurement success rate

(SR) of�60% and IQR of<30%. [17, 18]

Statistical analysis
The statistical analysis was performed using SPSS, Version 24.0, IBM Statistics (Armon, New

York, NY, USA). Descriptive statistics and one-way analysis of variance was used to analyze

Fig 4. Philips ARFI (pSWE). Philips pSWE elastography is applied on liver fibrosis phantom 3. The shear
wave measurement area is represented by the white box (center). The stiffness is shown in kPa on the left
together with the unnumbered scale indicating the stiffness of the tissue, here shown towards hard.

https://doi.org/10.1371/journal.pone.0189671.g004

Fig 5. Fibroscan (Transient Elastography, TE). This figure illustrates the assessment of transient
elastography on liver phantom 3. 10 valid elastography measurements are listed on the right side, where also
success rate and invalid measurements are reported. The IQR/median is used as a quality parameter, and
aimed to be below 30%while obtaining a success rate of at least 60%.

https://doi.org/10.1371/journal.pone.0189671.g005

Repeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems

PLOSONE | https://doi.org/10.1371/journal.pone.0189671 January 2, 2018 6 / 16



the data. The measurements are represented as median values with min-max for 10 measure-

ments of each phantom, and for each system. The interquartile range (IQR) and the dispersion

of the measurements is represented in the boxplots. A higher box (IQR) represents a larger

spread in measurements, and represents the data between the 25th and 75th percentile, essen-

tially the range of the middle 50% of the data. Reliable measurements were defined as: median

value of 10 valid LS measurements with a success rate (ratio of the number of successful acqui-

sitions divided by the total number of acquisitions)�60% and an interquartile range

interval< 30%. IQR/Median (%) is illustrated in the bar charts, and was calculated for both

observers individually as well as together and for all systems. [17, 18] We calculated the coeffi-

cient of variation (CV) of the intraobserver variability, which is the standard deviation (SD)

divided by the mean value. Inter-class correlation coefficients (ICC) were calculated to present

the interobserver reliability; ICC near 1.00 indicated high reliability. One-way ANOVA and

Tukey’s test was used to test the overall significance, and p<0.01 was chosen as level of signifi-

cance because we performed multiple testing by platforms and phantoms. Inter-observer

agreement was assessed by correlation plots using Pearson’s coefficient of correlation (r). Lim-

its of agreement were assessed to discover differences between individual measurements for

each method. [19, 20]

Results
All liver fibrosis phantoms (1–4) could be significantly differentiated by all elastography meth-

ods (p<0.001) as illustrated by the boxplots in Figs 6 and 7. Figs 6 and 7 shows the measure-

ment variability, interquartile range (IQR) and median values, represented by the vertical

distribution of the box, which is illustrated in different colors for the respective systems. All

systems showed a low variability for the softer phantoms (1 and 2), compared with the harder

Fig 6. Variation in elasticity measurements for all systems for observer A. The boxplot displays the
median and the interquartile range, whiskers represent the 90th percentile of the measured elasticity by
observer A for the four phantoms. The height of the box represents the measurement variability of the single
observer for each of the phantoms. The horizontal axis represents the four phantoms with increasing
stiffness; phantom 1 (2,7 0,14 kPa), phantom 2 (11,5 0,57 kPa), phantom 3 (24,8 1,24 kPa) and phantom
4 (46,3 2,32 kPa). The range each phantom stiffness is presented by the dotted lines within the figure. The
vertical axis represents elasticity measurements (kPa) obtained by observer A. The colors represent the
systems applied in the study: yellow, Philips iU22 (pSWE); blue, Samsung TS80A (pSWE); red, GE E9
(2D-SWE); green, Fibroscan (Transient Elastography) and purple, Hitachi Ascendus (SWM).

https://doi.org/10.1371/journal.pone.0189671.g006
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phantoms (3 and 4). This is confirmed in the correlation analysis and limits of agreement.

When acquiring elasticity measurements (mean for both observers) of phantom 3, Philips

ARFI showed higher mean and measurement variability compared to all the other systems.

(p<0.001). Both observers obtained higher elasticity measurements with all the shear wave

methods than TE for phantom 1–3, and lower for phantom 4. (Fig 8) Furthermore, we could

Fig 7. Variation in elasticity measurements for all systems for observer B. The boxplot displays the
median and the interquartile range, whiskers represent the 90th percentile of the measured elasticity by
observer B for the four phantoms. The height of the box represents the measurement variability of the single
observer for each of the phantoms. The horizontal axis represents the four phantoms with increasing
stiffness; phantom 1 (2,7 0,14 kPa), phantom 2 (11,5 0,57 kPa), phantom 3 (24,8 1,24 kPa) and phantom
4 (46,3 2,32 kPa). The range each phantom stiffness is presented by the dotted lines within the figure. The
vertical axis represents elasticity measurements (kPa) obtained by observer B. For color representation, we
refer to Fig 6.

https://doi.org/10.1371/journal.pone.0189671.g007

Fig 8. Mean elasticity measurements for both observers. The figure shows the commonmean for both
observers within each phantom and for all systems. On the horizontal axis, the systems are listed with name,
and on the vertical axis the mean elasticity measurements are expressed in kPa. The dotted line within the
graph represents the elasticity of the respective phantom, provided by the producer. For color representation,
we refer to Fig 6.

https://doi.org/10.1371/journal.pone.0189671.g008
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not demonstrate significant difference in elasticity measurements and variability between

Samsung, GE, Fibroscan, Hitachi. For phantom 4, differences in mean elasticity measurements

between the systems were statistically significant difference (p<0.001), however, Philips and

Samsung (p = .869), and GE and Hitachi (p = .355), did not demonstrate significant differ-

ences, respectively. CV was in the range 0.00–0.21. Philips ARFI showed the highest CV for

phantom 3 (observer A: CV = 0,21). The mean values for each observer and CVs are given in

Table 2 and illustrated in Figs 6, 7 and 8.

All systems had reliable measurements and an IQR/median<30% when applied in vitro

(Figs 9 and 10). GE 2D-SWE and Samsung RS80A (pSWE) showed the lowest variation for all

phantoms and both observers individually. Transient elastography did not show any variation

for the softest phantom for either of the observers, whilst Hitachi (SWM) and Philips (sSWE)

demonstrated slightly higher variation for all phantoms and both observers.

Overall, there was no significant difference between observer A and B’s mean elasticity

measurements, for most of the systems and all phantoms (1–4) (p = 0.043–1.000). However,

there was a significant difference between TE in phantom 4 (p<0.00), as shown in Table 3.

The correlation of all systems combined, was excellent (r = 0.985). (Fig 11) All systems used

in this study provided a high repeatability in quantitative measurements for all liver fibrosis

phantoms and excellent correlation between the two observers (Fig 11). Interobservation

Table 2. Mean andmedian of measurements for observer A (Mean/Median A) and B (Mean/Median B) in all liver fibrosis phantoms (1–4) and for all
systems.

Philips iU22 XM (ARFI) Samsung RS80A (SWE) GE Logiq E9
(2D-SWE)

Hitachi Ascendus
(SWM)

Fibroscan
(TE)

Phantom 1 2.7 kPa 0.14

Mean/Median A 1.94/1.93 2.12/2.10 1.86/1.86 1.67/1.61 1.50/1.50

Mean/Median B 1.87/1.89 2.11/2.10 1.91/1.92 1.59/1.56 1.50/1.50

CV A 0.08 0.04 0.02 0.10 0.00

CV B 0.06 0.03 0.01 0.06 0.00

CV AB 0.07 0.04 0.02 0.08 0.00

Phantom 2 11.5 kPa 0.57

Mean/Median A 8.24/8.29 7.71/7.60 7.24/7.24 7.27/7.11 6.28/6.30

Mean/Median B 7.64/7.73 7.63/7.65 7.20/7.21 7.12/7.21 6.25/6.20

CV A 0.08 0.06 0.01 0.09 0.02

CV B 0.03 0.04 0.00 0.08 0.04

CV AB 0.06 0.05 0.01 0.08 0.03

Phantom 3 24.8 kPa 1.24

Mean/Median A 22.18/20.46 18.27/18.40 18.94/18.92 17.97/18.34 16.80/16.90

Mean/Median B 20.17/19.68 18.31/18.15 18.51/18.47 19.01/18.20 18.91/18.40

CV A 0.21 0.05 0.02 0.07 0.02

CV B 0.07 0.05 0.02 0.12 0.09

CV AB 0.14 0.05 0.02 0.09 0.05

Phantom 4 46.3 kPa 2.32

Mean/Median A 46.64/47.09 43.76/43.85 39.40/39.44 37.31/37.38 47.23/46.40

Mean/Median B 43.03/44.74 44.09/43.65 38.62/38.67 37.22/37.83 55.23/56.10

CV A 0.09 0.04 0.02 0.04 0.07

CV B 0.09 0.04 0.01 0.08 0.06

CV AB 0.09 0.04 0.01 0.06 0.07

Coefficient of variation for observer A (CV A) and B (CV B) and for both observers (CV AB).

https://doi.org/10.1371/journal.pone.0189671.t002
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correlation was 0.981–1 and intraobservation correlation 0.987–1. (Table 3) For all systems,

except Philips (p = 0.009), no significant difference in correlation was seen between the observ-

ers (p = 0,157–0.660). Pearson’s coefficient of correlation was excellent and in the range of

r = 0.981–1.000.

The reliability of measurements was demonstrated by the limits of agreement method,

based on the difference from a common mean in measurements by observer A and B. Larger

deviations of the mean from 0 reflect larger differences between observers, indicating observer

bias. For intraobserver variation, we found a higher measurement variability for harder phan-

toms (phantom 3 and 4) than for the softer (1 and 2). In our study the deviation from the

mean was limited for all methods, although all methods illustrated a larger spread in measure-

ments for the harder phantoms (Fig 12).

Discussion
The expanding spectrum of novel ultrasound elastography techniques demands comparative

studies that address the agreement and repeatability of the emerging technologies in vitro as

Fig 9. IQR/Median (%) for all systems and both observers. IQR/Median (%) is presented on the vertical
axis for observer A (green) and B (yellow). The phantoms 1–4 are numbered on the horizontal axis.

https://doi.org/10.1371/journal.pone.0189671.g009

Fig 10. IQR/Median (%) for all systems and both observers. IQR/Median (%) is presented on the vertical
axis for both observers (blue). The phantoms 1–4 are numbered on the horizontal axis.

https://doi.org/10.1371/journal.pone.0189671.g010
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well as in vivo in healthy and non-healthy patients. The shear wave elastography technologies

may vary between the systems from different manufacturers; furthermore, similar techniques

applied in different systems may result in different values of shear wave speed measurements

based on variations related to frequencies and to the algorithms used to determine tissue prop-

erties. [1] Analyses of performance as well as head-to-head comparisons between several novel

elastography systems which have been introduced in the market for clinical use over recent

years, are still scarce and we believe that the present paper addresses a need in this regard as

these systems are already beginning to be employed in the clinical follow-up of patients.

In the present study, we evaluated the use of four different shear wave elastography

methods and transient elastography in a head-to-head design, assessing the reliability of

measurement acquisition and repeatability in vitro using four individual, quality controlled,
commercially available liver fibrosis phantoms which represented elasticities ranging from

values found in healthy liver tissue to cirrhosis. We found a high degree of repeatability,

both for individual observers and between two observers for all the methods, as reported by

CV in Table 2 and level of significance in Table 4.

GE 2D-SWE showed the lowest CV (0.00–0.02), with no significant differences in mean

elasticity between observers for either soft or hard phantoms (p = .965–1.000). This was the

only 2D- SWEmethod evaluated in this study. The tendency towards higher repeatability

compared to the other shear wave methods, may be influenced by a different scanning and

measurement procedure compared to the other methods. For GE 2D-SWE, several frames can

be acquired within one loop, allowing several measurements in the identical probe position of

Table 3. Level of significance for elasticity measurements between observer A and B, for all systems.

Philips iU22 XM (ARFI) Samsung RS80A (SWE) GE Logiq E9 (2D-SWE) Hitachi Ascendus
(SWM)

Fibroscan
(TE)

Phantom 1 2.7 kPa 0.14

Observer A
Mean SD

1.9 0.2 2.1 0.1 1.9 0.03 1.7 .2 1.5 0

Observer B
Mean SD

1.9 0.1 2.1 0.1 1.9 0.03 1.6 0.1 1.5 0

P-value .686 1.000 .965 .670 1.000

Phantom 2 11.5 kPa 0.57

Observer A
Mean SD

8.2 0.7 7.7 0.5 7.2 0.04 7.3 0.6 6.3 0.1

Observer B
Mean SD

7.6 0.2 7.6 0.3 7.2 0.03 7.1 0.6 6.3 0.3

P-value 0.043 1.000 1.000 .998 1.000

Phantom 3 24.8 kPa 1.24

Observer A
Mean SD

22.2 4.7 18.3 0.9 18.9 0.3 18.0 0.9 16.8 0.4

Observer B
Mean SD

20.2 1.5 18.3 0.9 18.5 0.3 19.0 2.3 18.9 1.6

P-value .352 1.000 1.000 .965 .288

Phantom 4 46.3 kPa 2.32

Observer A
Mean SD

46.6 3.7 43.8 1.6 39.4 0.6 37.3 1.4 47.2 3.5

Observer B
Mean SD

43.0 3.9 44.1 1.8 38.6 0.5 37.2 2.9 55.2 3.3

P-value* 0.078 1.000 1.000 1.000 0.00

*P-value 0.05 indicates that there was no significant difference in mean of elasticity measurements between the observers

https://doi.org/10.1371/journal.pone.0189671.t003
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the liver fibrosis phantom. However, in a clinical setting, the ability to keep an organ motion-

less for the time taken to acquire several measurements in one loop is more limited, necessitat-

ing acquisition of several loops which might affect repeatability in vivo. Adjustment of the size

of the measurement ROI by the observer might also potentially affect repeatability; however,

this was standardized in our study.

We have demonstrated a nearly perfect interobserver agreement (Table 4) for all the four

novel systems as well as for TE, and no significant difference in mean elasticity measurements

between the observers (Table 3) for the novel systems. This is in line with previous reports

from studies assessing the intra- and interobserver reliability in other shear wave systems that

have been longer on the market, which have also concluded with a high repeatability for shear

Fig 11. Correlation between observers in measurement of each phantom for all systems. The horizontal and vertical axes represent measurements by
observer B and A, respectively. The unit measured is kilopascals (kPa). The line in the graph represents the line of unity. For color representation, we refer to
Fig 6.

https://doi.org/10.1371/journal.pone.0189671.g011
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wave elastography in vitro, as well as in vivo in breast masses, healthy liver tissue in adults and

children. [21–24]. In our study, the elasticity measurements of TE were to comparatively higher

on phantom 4, and significantly present for both observers. A difference in experience with TE,

between observer A and B, might be a possible factor. However, previous publications have

stated that the slope of the curve for elastography measurements across increasingly hard phan-

toms or liver tissues may differ between elastography systems and platforms. Oudry et al. dem-

onstrated that vibration-controlled transient elastography (TE) had a steeper slope, and

elastography values increased more, between phantoms of increasing hardness compared to a

shear wave technique, and discussed that this was in part due to the lower frequency and smaller

Fig 12. Limits of agreement. The elastography system used are identified on the right side of the graph. The
phantoms are identified by color, and represented in the upper right corner. The colors represent the four
phantoms with increasing stiffness; yellow as phantom 1 (2,7 0,14 kPa), green as phantom 2 (11,5 0,57
kPa), red as phantom 3 (24,8 1,24 kPa) and purple as phantom 4 (46,3 2,32 kPa). The horizontal axis
represents the commonmean value of all measurements in both observers while the vertical axis represents
the difference between individual measurements and this commonmean (kPa), displaying the variability of
measurements for the four phantoms. The black line within each system represents the commonmean value,
the dotted lines represent 95%Confidence Interval. A mean value close to 0 on the vertical axis means that
the two observers apply the measurement scale without bias. If it deviates from 0, one of the observers tend to
measure higher or lower values systematically compared to the other observer.

https://doi.org/10.1371/journal.pone.0189671.g012

Table 4. Inter- and intraclass correlation for both observers, for all systems.

System Probe Intraobserver correlation
(ICC)

Interobserver correlation A+B (ICC)

Philips iU22 XM (ARFI) C5-1 0.989 0.981

Samsung RS80A (SWE) C5-1 0.999 0.998

GE Logiq E9
(2D-SWE)

C1-5 1 1

Hitachi Ascendus (SWM) C175 0.992 0.985

Fibroscan (TE) M-probe 0.991 0.995

https://doi.org/10.1371/journal.pone.0189671.t004
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size of the vibration source in TE leading to increased diffraction, an effect which is increased as

materials get harder and which is known to induce overestimation of stiffness. [25]

Significant differences in shear wave velocity was demonstrated at different imaging depths

(3–7 cm) in one study; and a significant difference in shear wave speed estimated among the

systems was shown. However, due to the study design using different phantoms for different

depths, the question of whether this systematic error was due to the imaging system or differ-

ence in the material properties of the phantom remained unanswered. [12] Another phantom

study evaluated the repeatability of two elastography methods at depths 1–4 cm, and found

that the depth related differences were small, but significant [26]. In our study, we used the

same liver fibrosis phantoms and we subsequently performed all measurements at similar dis-

tance, approximately 3.5 cm inferior of the transducer surface.

The liver fibrosis phantoms were compatible with shear wave modalities, including TE and

ARFI, however most of the phantom elasticity measurements obtained by the shear wave

methods underestimated the elasticity values provided by the manufacturer of the phantom,

especially for the softer phantoms. (Fig 4) This was equally observed by both observers, and

may be caused by the in vitro material, although the phantom material density was 1.03g/cm3,

which is comparable to live soft tissue. The liver fibrosis phantoms did not provide the same

elastic properties as live soft tissue, the acoustic properties are similar and comparable to live

soft tissue. It is previously shown that change in attenuation coefficient may affect the penetra-

tion results for ultrasound scanners and cause variations not related to the performance of the

scanner. However, these changes would not have a significant effect. [27] It was beyond the

scope of this paper to evaluate whether similar underestimation will occur when scanning live

tissue, and this must be further investigated in vivo.

The present results in a homogeneous tissue-mimicking phantom material are promising

for the successful clinical application of the novel shear wave methods from Hitachi, GE and

Samsung; however, the study has some limitations inherent to its in vitro design. In a clinical

setting, factors such as fasting status, narrow intercostal spaces, variable amounts of subcutane-

ous fat (affecting measurement depths) and variable patient cooperation (ability to maintain

breath-hold) may affect results, which may also be influenced by variable levels of cholestasis,

hepatic inflammation, ascites and other factors. The purely elastic phantoms do not accurately

mimic the viscoelastic properties of human liver; however, no viscoelastic phantoms are cur-

rently commercially available to our knowledge. The phantoms we employed spanned relevant

elasticities and had been subject to rigorous testing and quality control from the producer, and

have been employed in similar studies of other systems. The in vitro design allowed us to stan-

dardize the default settings for phantom scanning, for all methods and both observers, and

assess them without adjusting factors that may affect performance, such as depth of measure-

ments. The homogenous and isotropic material of the phantoms is key for repeatability of

measurements, but differ from the situation of scanning liver tissue in vivo.

Conclusion
We have demonstrated similar and excellent repeatability and interobserver agreement for

four novel SWE systems using liver tissue-mimicking phantoms. Further studies are needed to

evaluate the performance of these methods in human liver scanning.

Supporting information
S1 Study data. This excel file includes the recorded raw data obtained by both observers,

for each of the systems.

(XLSX)
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Abstract

Objective
Establishing normal liver stiffness (LS) values in healthy livers is a prerequisite to differenti-

ate normal from pathological LS values. Our aim was to define normal LS using two novel

elastography methods head-to-head and to assess the number of measurements, variability

and reproducibility.

Materials andmethods
We evaluated shear wave elastography (SWE) methods integrated in Samsung RS80A and

GE S8 by obtaining LSmeasurements (LSM) in 100 healthy subjects (20–70 years). Transient

Elastography (TE) was used as reference method. Data were analyzed according to age, sex,

BMI and 5 vs. 10 measurements. All subjects underwent B-mode ultrasound examination and

lab tests to exclude liver pathology. Interobserver variation was evaluated in a subset (n = 24).

Results
Bothmethods showed excellent feasibility, measuring LS in all subjects. LSM-mean for GES8

2D-SWEwas higher compared to TE (4.5 0.8 kPa vs. 4.2 1.1, p 0.001) and Samsung RS80A

(4.1 0.8 kPa, p 0.001). Bothmethods showed low intra- and interobserver variation. LSM-mean

was significantly higher in males than females using 2D-SWE, while a similar trend for Samsung

SWE did not reach significance. Nomethod demonstrated statistical significant difference in

LSM across age and BMI groups nor between LSM-mean based on 5 vs. 10measurements.

Conclusion
LSM was performed with high reproducibility in healthy adult livers. LSM-mean was signifi-

cantly higher for GE S8 2D-SWE compared to Samsung RS80A and TE in healthy livers.
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Males had higher LSM than females. No method demonstrated statistical significant differ-

ence in LSM-mean across age- and non-obese BMI groups. Our results indicate that five

LSMmay be sufficient for reliable results.

Introduction
Chronic liver disease is one of the leading causes of morbidity and mortality worldwide [1, 2].

Assessment of liver fibrosis is important for chronic liver disease of various aetiologies for out-

come prediction, risk stratification and selection for screening programs (e.g. endoscopy for

oesophageal varices) as well as therapeutic decisions [2]. Non-invasive methods including

ultrasound elastography have emerged within the past decade and are increasingly replacing

liver biopsy for liver fibrosis assessment, avoiding the risks and discomforts of this invasive

method. Nonetheless, ultrasound elastography encompasses several methods with important

technological differences, ranging from vibration-controlled transient elastography (TE,

Fibroscan) to methods based on deposition of an acoustic pulse such as point shear wave elas-

tography (pSWE) and more recently 2D-SWE. TE has been extensively validated and is recom-

mended for clinical use by several international guidelines, and an increasing number of

studies evaluating the accuracy of various elastography methods have provided evidence for

the utility of elastography imaging. However, with the expanding spectrum of ultrasound

based elastography systems, it has become increasingly clear that the various technologies and

platforms may yield different estimates of liver stiffness (LS) within the same liver. Hence, cur-

rent guidelines acknowledge a need to establish reference values for normal liver stiffness in

healthy livers for each specific equipment model in order to allow accurate diagnosis of patho-

logical liver stiffness[3, 4].

To our knowledge, this is the first study to evaluate liver stiffness measurements (LSM) in

healthy liver subjects using 2D-SWE from GE Logiq S8 (GE Healthcare, Milwaukee, Wi, USA)

as well as SWE from Samsung RS80A (Samsung Medical, Seoul, Korea). Our study primarily

aimed to define normal values of liver stiffness (LS) for males and females across adult age

groups using these two novel platforms. We applied TE using Fibroscan integrated in the GE

Logiq S8 ultrasound scanner (Echosens, Paris, France) as a reference method. Furthermore,

we aimed to analyse influencing factors, such as BMI, and to assess the inter- and intraobserver

variability and reproducibility, as well as to investigate the difference between obtaining five

and ten consecutive liver stiffness measurements in order to calculate a representative median

liver stiffness measurement (LSM).

Material andmethods

Study design and subject population

The study was designed as a single-centre cross-sectional prospective study in selected healthy

individuals. The protocol was in accordance with the Declaration of Helsinki for research in

medicine and biology, and was approved by the Regional Committee for Medical and Health

Research Ethics in Western Norway. All subjects were given oral and written information

about the study and were invited to participate. Informed written consent was obtained from

each subject enrolled. The study was performed in August and September 2017, at the Depart-

ment of Gastroenterology, Haukeland University Hospital in Bergen, Norway.
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The characteristics of healthy subjects are shown in Table 1. The subjects consisted of vol-

unteers with various occupational backgrounds recruited amongst staff, their families and

social network. Volunteers were recruited into five groups by age, with 10 males and 10

females per group: 20–30, 31–40, 41–50, 51–60 and 61–70 years (Table 1). Liver disease was

ruled out as far as possible by patients’ history, laboratory tests and negative viral markers. In

total ten subjects were excluded, weekly alcohol use extending 10 units for males and 6 units

for females (n = 2), abnormal laboratory tests (n = 3) or evidence of malignancy on ultrasound

examination (n = 1). Individuals with BMI>30 kg/m2 were excluded (n = 4). Four subjects

withdrew their participation consent (Fig 1). We included 100 healthy subjects in the final

analysis. A random subset of subjects (n = 24) were included for assessment of interobserver

variability. For analyses regarding the effect of BMI, the subjects were divided into two groups

with BMI between 18.0 and 25 kg/m2 (n = 73) and BMI between 25 and 30 kg/m2 (n = 27),

respectively.

Laboratory analyses

On the day of ultrasound and elastography, blood was sampled and biochemical analyses were

performed using standard routine laboratory protocols. The tests included C-reactive protein

(CRP), haemoglobin, leukocytes, platelets, creatinine, total bilirubin, albumin, international

Table 1. The characteristics of healthy subjects, by age group.

20–30 (n = 20) 31–40 (n = 20) 41–50 (n = 20) 51–60 (n = 20) 61–70 (n = 20)

Characteristics
Age, years? (range) 27.8 ± 2 (25–30) 34.1 ± 2.7 (31–40) 44.3 ± 3 (41–50) 55.7 ± 3 (51–60) 64.15 ± 2.5 (61–69)

Gender; Female/Male, n 10/10 10/10 10/10 10/10 10/10

BMI, kg/m2? (range) 22.5 ± 2.4 (19.4–27.2) 23.8 ± 2.3 (20.7–28.4) 24.4 ± 3 (18.1–28.7) 24.5 ± 2.3 (20–29.9) 24.7 ± 2.9 (20–29.6)

Weight group?, n (%)

18.0–25 kg/m2 17 (17%) 15 (15%) 15 (15%) 13 (13%) 13 (13%)

25.0–30 kg/m2 3 (3%) 5 (5%) 5 (5%) 7 (7%) 7 (7%)

Alcohol units per week?(range) 4.4 ± 2.5 (0–8) 3.8 ± 2 (0–6) 3.7 ± 2.6 (1–10) 4.4 ± 2.6 (0–10) 4.2 ± 3 (0–10)

Biochemical profile
Total bilirubin μmol/L�

[<19 μmol/L] (IQR; range)
10.5

(8.7–12.5; 4–18)
17

(5.5–15.3; 3–39)
9.5

(7.5–11.4; 4–21)
8.5

(7.1–12.1; 4–28)
8.6

(7.4–9.7; 4–15)

AST, U/L �

[15–45 U/L] (IQR; range)
23.5

(21.9–28.6; 17–41)
25.0

(21.6–27.7; 15–45)
22.0

(20.5–26.1; 15–40)
23.0

(21.7–25.7; 16–32)
23.5

(21.5–27.8; 13–37)

ALT, U/L �

[10–70 U/L] (IQR; range)
17.0

(16.9–28.4; 11–55)
22.5

(18.7–27.1; 8–45)
23.0

(21.5–30.7; 15–47)
22.5

(20.1–30.7; 14–40)
24.5

(22–28.7; 14–46)

GGT, U/L�

[10–115 U/L] (IQR; range)
18.5

(15.5–22.1; 7–42)
15.0

(13.5–19.5; 9–29)
19.0

(17.0–34.4; 5–68)
17.0

(16.7–26.0; 11–48)
22.5

(17.0–35.3; 9–96)

Serum Albumin, g/L�

[39–50 g/L] (IQR; range)
48.0

(46.4–49.3; 41–53)
47.0

(45.6–48.2; 43–52)
46.5

(45.2–47.4; 41–51)
46.5

(45.2–49.7; 43–66)
46.0

(45.1–46.8; 43–50)

Platelet counts, 109 /L�

[145–387 109 /L] (IQR; range)
237.5

(210.7–255.5; 152–352)
222.5

(210.6–254.8; 155–334)
256.5

(229.9–284.4; 141–400)
244.5

(221.8–273.8; 144–355)
245.5

(221.3–271.8; 165–365)

APRI score�

(IQR; range)
0.29

(0.26–0.37; 0.17–0.56)
0.29

(0.26–0.37; 0.15–0.68)
0.26

(0.22–0.31; 0.13–0.45)
0.26

(0.24–0.34; 0.18–0.58)
0.31

(0.25–0.35; 0.10–0.55)

FIB-4 score�

(IQR; range)
0.66

(0.59–0.77; 0.4–1.09)
0.79

(0.72–0.93; 0.42–1.41)
0.82

(0.73–1.09; 0.42–1.93)
1.12

(0.99–1.36; 0.61–2.01)
1.38

(1.05–1.56; 0.52–2.38)

�Data are presented as median?Data are presented as mean ± SD. SD, Standard deviation; IQR, Interquartile range (representing upper and lower bound); Range

(from minimum value to maximum value). BMI, Body Mass Index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; APRI, AST to Platelet Ratio Index;

FIB4, Fibrosis-4. Reference values for our laboratory tests are given in the brackets, normal values cover both genders.

https://doi.org/10.1371/journal.pone.0203486.t001
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normalization rate (INR), aspartate aminotransferase (AST), alanine aminotransferase (ALT),

alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT). The laboratory analyses

were performed in our hospital’s laboratory, and reference values were gender specific. Three

subjects had a bilirubin value outside the gender specific reference range, but none of these

were excluded as the values normalized and diagnostic work-up showed no evidence of liver

disease. Viral markers for hepatitis C virus (HCV) and hepatitis B virus (HBV) were also

included. APRI and FIB-4 scores of fibrosis were calculated using published algorithms [5, 6].

B-mode ultrasound examination

All subjects underwent B-mode ultrasound examination of the liver, gallbladder, spleen and

kidneys using a Samsung RS80A before SWE examination. All examinations were conducted

after a minimum of four hours of fasting, using a standardized scanning protocol and by a

Fig 1. Method of selection of healthy subjects. Flow chart of data collection.

https://doi.org/10.1371/journal.pone.0203486.g001
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single operator (AM) with>3 years’ experience in abdominal ultrasound. Small hepatic capil-

lary haemangiomas were found in 9 subjects; none of these subjects were excluded as the

lesions were confirmed by contrast enhanced ultrasound and were considered small and

unlikely to influence the liver stiffness.

Elastography methods and SWE examination

Three shear wave elastography (SWE) methods were assessed in the study and are listed below

in chronological order of assessment. The scanner settings were standardized for all systems.

All measurements were performed by a single operator (A.M.). In order to evaluate interob-

server variation, a subset of subjects (n = 24) were examined by two independent observers (A.

M. and A.B.M.). Observer A (A.M.) and B (A.B.M.) had>3 and 1 years’ experience in ultra-

sound liver scanning and elastography, respectively. The subjects were fasting (minimum 4

hours) and examined in the supine position with their right arm abducted. All SWE measure-

ments were obtained in the right liver lobe through an intercostal space in relaxed mid-breath

hold with minimal transducer pressure being applied; for Samsung RS80A and GE S8 the mea-

surements were acquired in the right lobe about 2 cm beneath the Glisson capsule, perpendic-

ular to the capsule, avoiding large liver vessels, bile ducts and rib shadow in B-mode. Each

observer performed first 10, and then 5 separate measurements in the same area with each of

the ultrasound based elastography methods. A valid LS assessment was considered as the

median value and range of 10 and 5 measurements, acquired in a homogenous area (Samsung

RS80A) or in a homogenous elastogram (GE S8 2D-SWE) with an interquartile range (IQR)/

median<30% and a success rate (SR)�60%.

Samsung RS80A SWE. The Prestige ultrasound system (Samsung Medison Co. Ltd.,

Seoul, Korea) was applied using a CA1-7A convex array probe with a frequency of 1–7 MHz.

The software version was 3.00.03.0824. The method measured the average liver elasticity

within a region of interest (ROI). Within the brightness mode (B-mode) window, using default

scanner settings, the ROI could be placed freely, with a fixed height of 10 mm. The width was

automatically adjusted depending on the measurement depth (Fig 2). LSM was expressed in

kilopascals (kPa) and meters per second (m/s).

GE Logiq S8 2D-SWE. 2D-SWE from the S8 Ultrasound scanner (GE Healthcare, Mil-

waukee, Wisconsin, USA), Version R4.1.2, was applied using the C1-6 convex array probe

with a frequency of 1–6 MHz. Within the elastogram a circular ROI was placed, standardized

to 10 mm in our study and under default scanner settings. The elastic modulus of the liver was

automatically acquired by the system. The colour 2D-SWE images were captured and 2–3 elas-

ticity frames per breath-hold (3–5 seconds) were recorded. One ROI was placed within each

homogenously coloured elastogram (Fig 3). LSM was expressed in m/s and kPa.

Transient elastography (TE). Integrated in the GE Logiq S8 ultrasound scanner, TE

(Fibroscan1, EchoSens, Paris, France), was applied using the M-probe with a frequency of 3.5

MHz and used according to the manufacturer’s instructions. A reliable and valid measurement

acquisition was defined as SR�60% and IQR/median<30% [7].

Statistical analysis

The statistical analysis was performed using SPSS, Version 24.0, IBM Statistics (Armon, New

York, NY, USA). We used descriptive statistics for demographic, clinical and laboratory char-

acteristics. Sample size power estimation was performed using a 2-sided comparison of two-

means model. Estimating a difference in means of 4.0–4.5 kPa with a standard deviation of 0.5

kPa between the methods, 80% power and type I error of 5% yielded a sample size of 16; we

compared groups consisting of 20 individuals or more. Variables were tested for normal

Liver elasticity in healthy individuals by two novel shear-wave elastography systems
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distribution by calculation and graphics using the Shapiro Wilk test and Q-Q Plot. Differences

between numerical variables with a normal distribution were assessed with parametric tests (t-

test), and those with a non-normal distribution, with nonparametric tests (Mann-Whitney).

P-values of< 0.05 were considered significant. Data are presented as mean (SD) when the

data were normally distributed. We calculated the coefficient of variation (CV) of the intraob-

server variability. Inter-class correlation coefficients (ICC) were calculated to present the

Fig 3. 2D-SWE by GE S8 performed on a healthy liver. The figure illustrates the method of 2D-SWE by GE
performed on a healthy subject. The coloured box (centre) represents the elastogram, and the circle represents the ROI
where the elastic modulus (LSM, liver stiffness measurement) of the liver is acquired. The blue colour indicates soft
liver tissue, as semi-quantitatively presented by the colour scale to the left.

https://doi.org/10.1371/journal.pone.0203486.g003

Fig 2. Samsung RS80A SWE performed on a healthy liver. The figure illustrates Samsung RS80A SWEmethod
performed on a healthy subject. The yellow box (centre) represents the shear-wave measurement area and is expressed
below the obtained elasticity measurement of 3.4 kPa.

https://doi.org/10.1371/journal.pone.0203486.g002
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interobserver reliability. Inter-observer agreement was classified as poor (0.00–0.20), fair

(0.21–0.40), moderate (0.41–0.60), good (0.61–0.80) and excellent (0.81–1.00) [8]. Correlations

were tested by Pearson correlation coefficient. Limits of agreement were assessed according to

Bland and Altman to discover differences between individual measurements and to detect pos-

sible biases for each method [9, 10]. IQR/Median (%) was calculated for both observers indi-

vidually as well as together, and for all systems [3, 11].

Results
A total of 100 healthy subjects were included. LSM was obtained by three different elastogra-

phy methods (Samsung RS80A, GE S8 2D-SWE and TE). The feasibility of the methods was

excellent and successful measurements were obtained in all 100 subjects by all three methods.

The characteristics of the healthy subjects are shown in Table 1.

Measurement variability for the different elastography methods

The overall mean value of the median liver stiffness (LSM-mean) in 100 healthy subjects ran-

ged from 2–6.8 kPa (Table 2).

LSM-mean by GE S8 2D-SWE was significantly higher compared to LSM-mean by TE

(4.5 ± 0.8 kPa vs. 4.2 ± 1.1, respectively, p<0.001) and Samsung RS80A (4.1 ±0.8 kPa,
p>0.001), whereas no significant difference was seen between Samsung RS80A and TE

(p = 0.11) (Fig 4).

The coefficient of variation (CV) ranged from 0.03–0.28 for all systems (0.03–0.28 for Sam-

sung RS80A SWE, 0.05–0.28 for GE S8 2D-SWE and 0.04–0.20 for TE). TE had a significantly

higher CV than GE S8 2D-SWE (p<0.001) and Samsung RS80A (p = 0.005). Furthermore,

between GE S8 2D-SWE and Samsung RS80A we found a small, but significant difference in

CV (p = 0.03). Interobserver analysis was performed on 24 randomly selected subjects. No sig-

nificant differences in LSM-mean between two independent observers (A.M. and A.B.M) was

demonstrated for Samsung RS80A SWE (4.4 ± 0.8kPa vs. 4.4 ± 0.8 kPa, respectively, p = 0.42),

however, we did find a significant difference between observers for GE S8 2D-SWE (4.5 ± 0.6

kPa vs. 5.1 ± 0.7 kPa, respectively, p = 0.009) (Fig 5).

Interoperator reliability was good for both Samsung RS80A SWE and GE S8 2D-SWE.

Pearson’s correlation coefficient between observers was significant for both methods (r = 0.74,

p<0.001 vs. r = 0.65, p<0.001, respectively) (Fig 6).

The intraclass correlation coefficient (ICC) was good for both Samsung RS80A and GE S8

2D-SWE (ICC = 0.85 vs. ICC = 0.78, respectively). There was no indication of observer bias

for either GE S8 2D-SWE or Samsung RS80A SWE as illustrated by limits of agreement

Table 2. Liver stiffness values (kPa) for the different methods.

Method 2D-SWE GE S8 Samsung RS80A SWE Fibroscan (TE)

Mean LS, kPa 4.5 4.1 4.2

Range 2.9–6.3 2.5–6.8 2.0–6.4

SD 0.8 0.8 1.1

95% CI 4.37–4.67 3.91–4.23 4.0–4.5

CV 0.17 0.21 0.27

CV [range] 0.05–0.28 0.03–0.28 0.04–0.20

Liver stiffness (LS) values (kPa) for 2D-SWE GE, Samsung RS80A and TE. Data are presented as mean with 95%

Confidence Interval (CI) and standard deviation (SD), coefficient of variation (CV) and the range of CV for the

respective methods.

https://doi.org/10.1371/journal.pone.0203486.t002
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analysis; however, GE S8 2D-SWE showed a trend of a slightly larger deviation of the mean

than Samsung RS80A SWE (Figs 7 and 8).

Difference in liver elasticity by gender, age and BMI

LSM-mean was significantly higher in males compared to females for TE (4.5 ± 1.0 kPa vs.

3.9 ± 1.1 kPa, respectively, p = 0.006) and GE S8 2D-SWE (4.7 ± 0.7 kPa vs. 4.3 ± 0.7 kPa,

respectively, p = 0.006). A similar trend for Samsung RS80A SWE did not reach significance

(4.2 ± 0.7 kPa vs. 3.9 ± 0.9 kPa, respectively, p = 0.063) (Fig 9, Table 3). In a post hoc analysis

of subjects consuming 5 alcohol units or less per week (n = 69) we found significant differences

in LSM-mean between males (n = 33) and females (n = 36) for all systems; for GE S8 (4.8 ± 0.7

kPa vs. 4.2 ± 0.8 kPa, p = 0.003), TE (4.7 ± 1.0 kPa vs. 3.8 ± 1.1 kPa, p = 0.001) and Samsung

(4.2 ± 0.7 kPa vs. 3.8 ± 0.7 kPa, p = 0.006).

None of the systems demonstrated statistical significant difference in LSM across age

groups (Table 4).

LSM-mean showed no significant difference between subjects with BMI 25–30 kg/m2 and

BMI 18.0–25.0 kg/m2 for any individual system (GE S8 2D-SWE (4.5 ± 0.8 kPa vs. 4.4 ± 0.8

kPa, respectively, p = 0.49), TE (4.3 ± 1.1 kPa vs. 4.1 ± 1.1 kPa, respectively, p = 0.36), Samsung

RS80A SWE (4.1 ± 0.9 kPa vs. 3.9 ± 0.6 kPa, respectively, p = 0.28) or all systems combined

(4.1 ± 0.9 kPa vs. 4.3 ± 0.9 kPa, p = 0.128) (Fig 10).

Fig 4. Liver stiffness (kPa) in a healthy cohort for the different methods. This boxplot figure displays the median
and the interquartile range for LSM for each system. Whiskers represent the 90% percentile of the measured liver
stiffness. The height of the box represents the variability in LSM between the healthy study subjects for each of the
following three systems: blue, GE S8 2D-SWE; green, Transient Elastography (TE, Fibroscan) and orange, Samsung
RS80A SWE. P-values indicate if there is a significant difference between the novel systems (Samsung RS80A or GE S8)
and TE.

https://doi.org/10.1371/journal.pone.0203486.g004
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Difference in variability and reproducibility of LSM when using 5
measurements instead of 10

There was no significant difference in LSM-mean using 5 or 10 measurements for the ultra-

sound based SWEmethods (GE S8 2D-SWE 4.4 ± 0.66 kPa vs. 4.5 ± 0.76 kPa, respectively,

p = 0.05; and Samsung RS80A SWE: 4.1 ± 0.86 kPa vs. 4.1 ± 0.81 kPa, respectively, p = 0.08)

(Fig 11).

Discussion
To the best of our knowledge, this is the first study to investigate normal LSM values by two

new elastography techniques (Samsung RS80A SWE and GE S8 2D-SWE) compared head-to-

head and with TE as reference, in a healthy cohort. The comprehensive exclusion of liver dis-

ease as well as the direct comparison to TE as a reference standard represent strengths of our

study. Data regarding normal values in liver stiffness for each of the new elastography tech-

niques are needed to establish standardized reference bases [12], which are pivotal for clinical

implementation of novel elastography systems as reliable methods for diagnostics, staging and

assessment of disease progression in chronic liver diseases.

We found a mean LSM of 4.3 kPa ± 0.8 across the two methods, confirming that on average

LSM for 2D-SWE GE S8 (4.5 ± 0.8 kPa) and Samsung RS80A (4.1 ±0.8 kPa) were in the same

range as other elastography systems [13–15]. In this head-to-head comparison between elasto-

graphy systems, 2D-SWE GE S8 demonstrated slightly higher values than both Samsung

RS80A and TE, while measurements made with Samsung RS80A were not significantly differ-

ent from the reference method. There was also a small, but significant difference in the

Fig 5. Liver stiffness (kPa) of healthy adult livers, interobservation. The boxplot shows interobservation between
observer A (dark blue) and B (light blue). The horizontal axis represents the systems Samsung RS80A SWE and GE S8
2D-SWE and the p-value is given. For boxplot interpretation, we refer to Fig 4.

https://doi.org/10.1371/journal.pone.0203486.g005

Liver elasticity in healthy individuals by two novel shear-wave elastography systems

PLOSONE | https://doi.org/10.1371/journal.pone.0203486 September 14, 2018 9 / 18



coefficient of variation between the two novel methods. Previous studies have shown similar

results for 2D-SWE from Aixplorer [16, 17]. Our results confirm that LSM levels are signifi-

cantly different depending on the method applied. We found differences both between SWE

methods and TE as the reference method, and between the two different SWE systems. In clin-

ical practice LSM greater than 6.8–7.6 kPa indicates a higher probability of significant fibrosis

(F�2) on liver biopsy; however, the EASL clinical practice guidelines state that cut-off values

vary considerably and ranging 5.2–9.6 kPa for different systems. For predicting cirrhosis (F4),

the optimal cut-off ranges from 11 to 15 kPa [18]. In that context, a net difference of 0.3 kPa is

probably too small to represent a clinically significant difference, however, it underscores the

need to compare methods also in fibrotic livers, where the differences may be more expressed,

as we know that variability increases with higher liver stiffness [19].

Both methods showed good interobserver reliability and intraclass correlation. Similarly,

previous studies have shown excellent interobserver agreement ranging from r = 0.80–0.97 for

pSWE methods [20, 21]. However, we observed a significant difference in LS measurements

between the two observers for 2D-SWE GE S8 but not for Samsung RS80A. One possible

explanation for this discrepancy may be that 2D-SWE allows the examiner to place the mea-

surement ROI within the elastogram and avoid incongruent signals, while Samsung SWE per-

forms several automated SWE speed measurements within the elasticity measurement area

without visualisation of the stiffness. The 2D-SWE method is slightly more user dependent

and may acquire a longer learning curve. Previous studies on 2D-SWE measurements of liver

Fig 6. Correlation between observer A and B. The horizontal and vertical axes represent measurements by observer
B and A, respectively. The unit measured is kilopascals (kPa). The line in the graph represents the line of unity. The
Pearson correlation coefficient (r) and significance (p) for each system is given in the lower right corner. For colour
representation, we refer to Fig 4.

https://doi.org/10.1371/journal.pone.0203486.g006
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elasticity have demonstrated a learning curve for this method, but with similar reproducibility

[16, 22]. Evaluating the intra- and interobserver agreement for 2D-SWE from GE and SWE

from Samsung, we demonstrated a good interobserver and better intraobserver agreement for

both systems compared to the results reported for Aixplorer 2D-SWE (Figs 7 and 8).

We found a significantly higher LSM in adult male subjects for TE and GE S8 2D-SWE,

whereas a similar trend for Samsung RS80A SWE did not reach significance. This is an impor-

tant finding, indicating that it may be necessary to define separate cut-off values for normal

liver and possibly also for levels of liver fibrosis for male and female patients. Previous studies

have shown inconsistent results regarding the effect of gender on LSM [23, 24]. Using pSWE,

Ling et al. demonstrated that males had 8% higher LSM than females; however, the study had

more than twice as many female participants compared to male participants [14]. In contrast,

using ARFI, one study found no significant difference between genders in 137 subjects [25] in

line with our results for Samsung RS80A. Two studies conducting reliable LSM with TE in

1190 subjects over 45 years, and in 746 healthy subjects, found that male gender was associated

with higher liver stiffness [26, 27] and our results for TE confirmed this. Using Aixplorer

2D-SWE from Supersonic Imagine, it has been suggested that males may have higher LSM

than females [13]. A study of LSM in healthy children, using the same system, did not demon-

strate significant difference between genders [28]. The lack of significant gender difference for

LSM in healthy liver tissue for Samsung SWE in the present study may be due to different

Fig 7. Limits of agreement for Samsung RS80A SWE. The figure presents the limits of agreement for Samsung
RS80A. The horizontal axis represents the commonmean value of all measurements in both observers for, while the
vertical axis represents the difference between individual measurements and this commonmean (kPa), displaying the
variability of measurements. The black line within each system represents the common mean value, the dotted lines
represent the 95% confidence intervals. A mean value close to 0 on the vertical axis means that the two observers apply
the measurement scale without bias.

https://doi.org/10.1371/journal.pone.0203486.g007
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technology and signal processing compared to the two other scanners. Despite that we found a

significant difference between genders for all systems in our post hoc analysis (n = 69), the

study may be underpowered considering the observed SD of 0.8 kPa for the Samsung SWE

compared to our power estimation anticipating 0.5 kPa as SD. Furthermore, different hor-

mone levels have been proposed as an explanation of LSM differences between genders, and

should be investigated further in in vivo studies [29].
In our study, LSMs were not significantly affected by age or BMI. Multiple studies have

addressed age as a variable of influencing liver stiffness in normal subjects, and the results have

been inconsistent, reporting no difference across age groups [14], higher LSM in older [26] or

younger [27] age. We did not demonstrate significant differences in LSM between the five age

groups for any of the methods. Possibly, analyses of the effect of age on LSM is confounded by

other factors such as steatosis and heart failure that are more prevalent in older populations.

One study investigating GE E9 Logic 2D-SWE in healthy subjects reported an LSM-mean of

5.1 kPa ± 1.3, with higher LSM values compared to TE, similar to our findings [17]. In contrast

to our results, they reported that age over 40 years was associated with higher LSM, but did not

find significant difference in LSM between genders (21 males and 58 females). In the present

study, we included only healthy volunteers, carefully interviewed all subjects regarding alcohol

consumption, and performed full biochemical analyses and B-mode ultrasound examination of

all in contrast to some other studies [12], and in our view, less strict inclusion criteria and miss-

ing data regarding liver enzymes in the other study may contribute to these differences. Higher

LSM values have been reported in healthy subjects with low BMI (<18.5 kg/m2) as well as in

obese subjects compared with normal-weight subjects [30]. We did not demonstrate a differ-

ence in LSM between subjects with BMI 18.0–25.0 kg/m2 compared to BMI 25–30 kg/m2;

Fig 8. Limits of agreement for 2D-SWEGE S8. Limits of agreement for 2D-SWEGE S8, for legend we refer to Fig 7.

https://doi.org/10.1371/journal.pone.0203486.g008
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however, obese patients with BMI>30 were not included in this study. Normal values for LS in

underweight and obese subjects, as well as technical feasibility of Samsung RS80A SWE and GE

S8 2D-SWE, should be further investigated and established.

There is an ongoing discussion of the minimum number of measurements needed when

acquiring LSM with SWE. The EFSUMB guidelines recommend at least 10 measurements for

pSWE and TE, and a minimum of 3 measurements when using 2D-SWE, to obtain consistent

results [31, 32]. One study reported excellent intraobserver reproducibility based on 6

Fig 9. Liver stiffness (kPa) of healthy adult livers, by gender. The boxplot shows the liver stiffness by gender. The
horizontal axis represents the gender; males and females. The colour interpretation for each system and the level of
significance is given in the upper right corner. For legend interpretation, we refer to Fig 4.

https://doi.org/10.1371/journal.pone.0203486.g009

Table 3. Liver stiffness values (kPa) of healthy adult livers, by gender.

Gender Female (n = 50) Male (n = 50) p-value

GE S8 2D-SWE

Mean ± SD (kPa) 4.3 ± 0.7 4.7 ± 0.7 p = 0.006

95% CI 4.1–4.5 4.5–4.9

Samsung RS80A SWE

Mean ± SD (kPa) 3.9 ± 0.9 4.2 ± 0.7 p = 0.063

95% CI 3.7–4.2 4.0–4.4

Fibroscan (TE)

Mean ± SD (kPa) 3.9 ± 1.1 4.5 ± 1.0 p = 0.006

95% CI 3.6–4.2 4.2–4.8

Liver stiffness values (kPa) for 2D-SWE GE, Samsung RS80A and TE, by gender. Data are presented as mean ± standard deviation with 95% Confidence interval (CI).

https://doi.org/10.1371/journal.pone.0203486.t003
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Table 4. Liver stiffness values (kPa) of healthy adult livers, by age group.

Age group 20–30 (n = 20) 31–40 (n = 20) 41–50 (n = 20) 51–60 (n = 20) 61–70 (n = 20) p-value

GE S8 2D-SWE

Mean ± SD (kPa) 4.5 ± 0.9 4.7 ± 0.8 4.5 ± 0.7 4.4 ± 0.7 4.5 ± 0.7 p = 0.843

95% CI 4.1–4.9 4.3–5.1 4.1–4.8 4.1–4.8 4.2–4.9

Samsung RS80A SWE

Mean ± SD (kPa) 4.3 ± 0.9 4.2 ± 0.8 4.0 ± 0.8 4.1 ± 0.6 3.9 ± 1.0 p = 0.630

95% CI 3.9–4.7 3.8–4.5 3.6–4.4 3.8–4.3 3.4–4.4

Fibroscan (TE)

Mean ± SD (kPa) 4.4 ± 1.1 4.3 ± 1.3 4.2 ± 1.0 4.2 ± 1.1 4.1 ± 1.1 p = 0.630

95% CI 3.9–4.9 3.7–5 3.7–4.7 3.7–4.7 3.6–4.7

Liver stiffness values (kPa) for 2D-SWE GE, Samsung RS80A and TE, by age group. Data are presented as mean ± standard deviation with 95% Confidence interval (CI).

https://doi.org/10.1371/journal.pone.0203486.t004

Fig 10. Liver stiffness (kPa) of healthy adult livers, by weight group. The boxplot shows the liver stiffness by weight group. The horizontal axis represents the BMI
group. The colour interpretation for each system and the level of significance is given in the upper right corner. For boxplot interpretation, we refer to Fig 4.

https://doi.org/10.1371/journal.pone.0203486.g010

Liver elasticity in healthy individuals by two novel shear-wave elastography systems

PLOSONE | https://doi.org/10.1371/journal.pone.0203486 September 14, 2018 14 / 18



measurements, concluding that the optimal minimum number of measurements with

2D-SWE was 6 [15]. For pSWE (ARFI), one study concluded that 10 measurements instead of

5 should be performed to obtain a reliable estimation [33]. To the best of our knowledge there

are no studies that have directly investigated the difference in mean LS between 5 and 10 sepa-

rate measurements for several ultrasound SWEmethods. Our results did not show significant

difference in median LS for 5 versus 10 measurements. This suggests that a reliable median

LSM can be obtained with fewer measurements than ten for both 2D-SWE GE S8 and Sam-

sung RS80A in healthy livers. This is important as it indicates that adequate measurements can

be made by fewer repetitions and in less time, however our results in healthy livers may not

apply in patients with higher degree of liver fibrosis where measurement variability may be

higher.

The main limitation of the study is the lack of liver biopsies as a reference method, which is

not ethically feasible in a healthy group. Our study design included 100 healthy participants,

excluding unknown liver disease by imaging, blood tests and anamnesis.

Conclusion
All methods were successfully applied in our cohort of 100 healthy subjects. The mean of

median LSM for the two new elastography methods (GE S8 and Samsung RS80A) showed a

slight difference. Our study shows a significantly higher liver stiffness in males compared to

Fig 11. Difference in liver stiffness (kPa) for 5 and 10 measurements. The boxplots show difference in liver stiffness
for 5 and 10 measurements. The horizontal axis represents the systems, and the vertical axis the liver stiffness
measured. The colour interpretation for 5 and 10 measurements (green and blue, respectively) is given in the upper
right corner. For boxplot interpretation, we refer to Fig 4.

https://doi.org/10.1371/journal.pone.0203486.g011
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females, however we found no significant difference in LS between BMI groups 18–30 kg/m2

or between the age groups 20–70 years. Furthermore, our findings indicate that five acquisi-

tions are sufficient to obtain a reliable LSM using Samsung RS80A or GE S8 2D-SWE in

healthy subjects.
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Abstract—Point shear wave elastography (pSWE) is an ultrasound-based method for non-invasive quantification
of liver fibrosis. The objective of this study was to explore liver pSWE in patients with primary sclerosing cholan-
gitis (PSC) for assessment of fibrosis. Fifty-five non-transplant patients with PSC (38 males, 17 females; mean age:
46.4 y) were included and compared with 24 matched controls. Median (range) PSC duration was 8.1 (0–33) y. Ul-
trasonographic scanning followed by liver stiffness measurement by pSWE was performed using a conventional
ultrasound system (Philips iU22). Signs of liver fibrosis on B-mode were identified in 21 patients (38%). Spleno-
megaly was found in 19 patients (35%) and ascites in two patients (4%). Successful pSWE measurements were
achieved in the right liver lobe of all individuals and in the left liver lobe of 36 patients (65.5%). PSC patients
had significantly higher median shear wave velocity (SWV) than controls in the right liver (median [range]
SWV 1.26 [0.73–2.57] m/s vs. 1.09 [0.88–1.25] m/s, p , 0.001). SWV measured in the left liver lobe and spleen
did not differ between PSC patients and controls. Our findings indicate that PSC patients have increased median
SWV, indicatingmore fibrosis comparedwith controls; however, a wide range of SWVvalues were obtained among
PSC patients, possibly reflecting the various stages in disease development. (E-mail: mette.vesterhus@
helse-bergen.no) � 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key Words: Primary sclerosing cholangitis, Point shear wave elastography, Non-invasive, Liver fibrosis, Elastog-
raphy, Ultrasound.

INTRODUCTION

Primary sclerosing cholangitis (PSC), a chronic inflam-
matory disease affecting the biliary tree, leads to liver
fibrosis and cirrhosis over time, with a reported median
transplant-free survival time of 12–21 y (Boonstra et al.
2013; Broom�e et al. 1996). Medical therapy with
proven benefit is lacking, and PSC is a frequent
indication for transplantation.

A major challenge in PSC is the lack of valid prog-
nostic markers and biomarkers of disease activity
(Hirschfield et al. 2013; Karlsen et al. 2014).
Fibrogenesis is an important pathogenetic pathway in
PSC and a target of treatment in several clinical trials.

A serum marker panel of fibrosis, the enhanced liver
fibrosis (ELF) test, was reported to distinguish mild
from advanced disease in PSC by an area under the
curve of 0.81 and to predict prognosis independently of
other biomarkers, underscoring the importance of
accurate liver fibrosis estimation in PSC (Vesterhus
et al. 2015). However, for other etiologies of liver fibrosis,
some studies indicate an improved performance of ultra-
sound elastography compared with ELF or an incremen-
tal value of the combination of the ELF test and liver
stiffness evaluation by ultrasound elastography
(Cobbold et al. 2010; Wahl et al. 2012). Hence, better
methods for the diagnosis, grading and monitoring of
liver fibrosis are warranted.

Ultrasound elastography is a technique measuring
liver stiffness as an expression of fibrosis and has
emerged as an important tool in the diagnosis and
follow-up of liver fibrosis and cirrhosis, largely replacing
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liver biopsy in hepatitis B and C (Cosgrove et al. 2013;
Ferraioli et al. 2015). The status of liver biopsy as the
gold standard for liver fibrosis assessment has long
been challenged because of its invasiveness and risk of
serious complications, as well as the substantial
sampling error and inter-observer variation between pa-
thologists (Castera and Pinzani 2010; Cholongitas et al.
2006; Thampanitchawong and Piratvisuth 1999). Liver
biopsy is generally not indicated in PSC for either
diagnosis or follow-up because of the patchy disease dis-
tribution and consequent sampling bias, except in cases of
suspected small-duct disease or autoimmune hepatitis
overlap (Chapman et al. 2010; European Association
for the Study of the Liver 2009). Ultrasound
elastography has the advantages of being non-invasive
and repeatable and offers the possibility of investigating
several regions of the liver, thus reducing sampling
bias. Guidelines for the use of elastography in clinical
practice have been published (Bamber et al. 2013;
Cosgrove et al. 2013); however, reports on elastography
in PSC are scarce (Corpechot et al. 2006; Hagstrom
et al. 2012; Righi et al. 2012).

Interestingly, a recent publication reported that base-
line values of transient elastography (TE), as well as the
change in liver stiffness measured by TE, are associated
with clinical outcome in PSC (Corpechot et al. 2014).
Point shear wave elastography (pSWE) is a more recent
technology than TE, with the advantage of being incorpo-
rated into high-end ultrasound equipment, allowing B-
mode ultrasound guidance of elastography measurements
and an integration of liver stiffness measurement with a
full evaluation of the liver. Some studies of pSWE in pa-
tient populations with chronic liver disease of heteroge-
neous etiologies have included PSC patients in small
numbers insufficient for sub-analysis (Righi et al.
2012). To our knowledge, there are no studies exploring
pSWE in PSC alone. In this study, we aimed to evaluate
liver stiffness in PSC patients and compare them with
healthy controls using ultrasound pSWE.

METHODS

Patient population and data collection
The protocol was in accordancewith the Declaration

of Helsinki and approved by the Regional Committee for
Health and Research Ethics in Western Norway. Patients
invited to participate in the study belonged to a known
cohort of non-transplanted PSC patients in western Nor-
way. Informed written consent was obtained from each
patient enrolled. PSC patients with a histologically
confirmed diagnosis of autoimmune hepatitis (AIH)
were classified as PSC–AIH overlap. Patients were exam-
ined, and patient records were searched for information
on clinical data, including ascites, encephalopathy,

esophageal varices, variceal bleeding and inflammatory
bowel disease status at the time of serum extraction. On
the day of ultrasound and elastography, blood was
sampled and biochemical analyses were performed using
the standard routine laboratory protocols, including C-
reactive protein, hemoglobin, leukocytes, platelets,
creatinine, total bilirubin, albumin, International Normal-
ization Ratio, aspartate aminotransferase, alanine amino-
transferase, alkaline phosphatase and g-glutamyl
transferase. The Aspartate Aminotransferase-to-Platelet
Ratio Index (APRI) and Fibrosis-4 (FIB-4) scores of
fibrosis were calculated using published algorithms
(Sterling et al. 2006; Wai et al. 2003). Mayo risk scores
were calculated using the algorithm for the revised
Mayo risk score (Kim et al. 2000). Blood samples were
not taken from healthy controls.

B-Mode ultrasound examination
Immediately before pSWE examination, all patients

underwent B-mode ultrasound scanning of the liver and
spleen. All examinations were performed by a single
operator (M.V.) using a standardized scanning protocol
on a Philips iU22 (Philips Healthcare, Andover, MA,
USA) scanner. Scores were registered for liver capsule
regularity, parenchyma heterogeneity, liver angle appear-
ance, presence of ascites, gallbladder stones or polyps
and the presence of bile duct variability or sludge. Mea-
sures were taken for liver size in a sagittal section in
the medioclavicular line; gallbladder length, width and
area; spleen length and width; and portal vein diameter.
Splenomegaly was defined as spleen length .12 cm.

Point shear wave elastography
Liver and spleen stiffness was measured in the fast-

ing condition by pSWE using a conventional ultrasound
system (ElastPQ, iU22, Philips Healthcare) equipped
with a convex probe (C5-1). For liver measurements, pa-
tients and controls were examined in the supine position
with their right arm maximally abducted. A 0.5 3 1.5-
mm region of interest was placed 2–6 cm deeper than
the liver capsule in hepatic tissue, avoiding large vessels
or bile ducts (Fig. 1). Right lobe measurements were
made in an intercostal position, whereas left liver lobe
measurements were performed in a subcostal epigastric
position, with sampling from the central portion of the
left liver lobe. Spleen stiffness was measured by pSWE
from a left-side intercostal position. All pSWE measure-
ments were acquired in relaxed mid-breath hold with
minimal scanhead pressure being applied. A valid mea-
surement was defined as the median value of 10 acquisi-
tions, provided the requirement for a success rate $60%
was also fulfilled. The acquisitions were performed dur-
ing separate breath holds in the same general area within
one segment, avoiding visible bile ducts and blood
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vessels. Results were given as median shear wave veloc-
ity (SWV) in meters per second. All measurements were
performed by a single investigator (M.V.). To evaluate the
intra- and inter-observer variation, pSWE of the right
liver lobe was performed twice in 16 healthy controls
by the same investigator (M.V.) or two independent inves-
tigators (M.V. and A.M.), respectively, according to the
protocol described previously.

Statistical analyses
Version 12.7.0.0 of SPSS 22 (IBM, Armonk, NY,

USA) and MedCalc were used to perform all statistical
analyses, and p values, 0.05 were considered to indicate
significance. Variables were tested for normal distribu-
tion, and Student’s t-test or the Mann–Whitney U-test
were applied as appropriate. Data are presented as
mean (SD), or as median (range) when the data were
not normally distributed. Correlations between SWV
and clinical parameters, biochemical scores of fibrosis
or Mayo risk scores were tested by Spearman’s rank order
correlation coefficient (r). Intra-observer agreement was
tested using the limits of agreement method (Bland and
Altman 1999).

RESULTS

Sixty-four non-transplant PSC patients in a region of
western Norway were identified and invited to partici-
pate; 55 (86%, 38 males, 17 females; mean age: 46.4 y;

95% confidence interval [CI]: 42.0–50.8) were included
and compared with 24 healthy controls matched for age
and gender. Median (range) PSC duration was 8.1 (0–
33) y. Baseline demographic characteristics and clinical
and laboratory data are summarized in Table 1. One pa-
tient with small-duct PSC and 5 patients with PSC–AIH
overlap syndrome were included. In total, 3 patients
had biochemical signs of clinically significant cholestasis
or hepatitis as determined by a bilirubin level.30 (2 pa-
tients) or an alanine aminotransferase or aspartate amino-
transferase level .53 the upper limit of normal (1
patient). There were no significant differences in distribu-
tion of age, gender or body mass index (BMI) between
patients and controls. On the basis of B-mode ultrasound
evaluation, signs compatible with advanced liver fibrosis,
including liver capsule irregularity, periductal fibrosis
and coarse liver parenchyma, were identified in 16
(29%), 5 (9%) and 12 (22%) patients, respectively,
whereas 34 (62%) patients displayed no signs of fibrosis
on B-mode ultrasound. Splenomegaly was found in 19
patients (35%) and ascites in 2 (4%) patients. Bile duct

Fig. 1. Screen image of Philips iU22 in Elasto mode. B-Mode
ultrasound image of a section of the right liver lobe in a patient
with percutaneous sclerosing cholangitis. The rectangular box
represents the region of interest where the elastography mea-
surements are being performed. The region of interest has a
fixed size but can be moved freely within the image down to a
maximum depth of 8 cm. Measurements within 1 cm of the liver
capsule or close to large vessels or bile ducts should be avoided.
The measured SWV is given in the lower left corner; in this case
it is 1.55 m/s, which indicates some degree of fibrosis.

SWV 5 shear wave velocity.
Table 1. Baseline characteristics of 55 patients with PSC

and 20 healthy controls undergoing ultrasound
elastography

Baseline characteristics PSC patients Controls p

N 55 24
Males 37 (67%)* 11 (46%) 0.07
Age, mean (95% CI) 46 (42, 51) 43 (37, 49) 0.35
Age at diagnosis 34 (12–73) NA
Body mass index,

mean (95% CI)
25.8 (24.8–26.8) 24.3 (22.9–25.8)y 0.09

PSC duration, y 8.1 (20.6 to 32.8) NA
Inflammatory bowel

disease, ever
47 (85.5%) 0

Ulcerative colitis 32 (58.2%) 0
Crohn’s disease 8 (14.5%) 0
Indeterminate
colitis

7 (12.7%) 0

Cholecystectomy 4 (7.3%) 0
Mayo risk score 20.4 (22.1 to 1.9) NA
Laboratory data

ALP, U/L 138 (25–838) NI
AST, U/L 45 (20–129) NI
ALT, U/L 49 (19–390) NI
Total bilirubin,
mmol/L

11 (5–75) NI

g-Glutamyl
transpeptidase,
U/L

177 (17–1576) NI

Albumin, g/L 46 (36–53) NI
INR 1.0 (0.9–1.2) NI
Platelets, 109/L 227 (60–765) NI

ALP 5 alkaline phosphatase; ALT 5 alanine aminotransferase;
AST 5 aspartate aminotransferase; CI, confidence interval; INR 5 In-
ternational Normalization Ratio; NA5 not applicable; NI 5 not inves-
tigated; PSC 5 primary sclerosing cholangitis.

* Values are expressed as n (%) or median (range) unless otherwise
noted.

y N 5 17.
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dilation was identified in 25 (46 %) patients. B-Mode ul-
trasound findings are summarized in Table 2.

pSWE of the right liver lobe
The intra- and inter-observer agreement for pSWE

of the right liver lobe in the healthy controls was good,
as evaluated by the limits of agreement method (Fig. 2).
In PSC patients, valid pSWE measurements were
achieved in all patients for the right liver lobe. The me-
dian success rate for the individual patients was 100%
(range: 71.4%–100%). PSC patients had higher median
SWV compared with the healthy controls (1.26 [0.73–
2.57] and 1.09 [0.88–1.25] m/s, respectively,
p , 0.001) (Fig. 3a). Area under the receiver operating
characteristic curve (AUROC) analysis revealed fairly
good discrimination for median SWV of the right liver
lobe between PSC patients and controls, with an AUROC
of 0.775 (95%CI: 0.67–0.86) (Fig. 4). For the discrimina-
tion of PSC patients from controls, the statistically
optimal cutoff for SWV as decided by Youden’s index
was 1.24 m/s, with a sensitivity and specificity of 56.4
and 95.8, respectively.

Figure 5 illustrates right liver SWVs correlated with
APRI and FIB-4 scores (r 5 0.494, p 5 0.001, and
r 5 0.368, p 5 0.017, respectively) (Fig. 5a and b),
whereas there was no significant correlation with the
Mayo risk score (r5 0.296, p5 0.06) (Fig. 5c). No corre-
lation was found between right liver SWVs and BMI, age
or PSC duration (Table 3).

SWV in the right liver lobe was significantly higher
in PSC patients with coarse liver parenchyma (median
[range]: 1.88 [0.99–2.57] m/s vs. 1.22 [0.73–2.34] m/s,
p 5 0.002), irregular liver capsule (1.81 [1.11–2.57] m/

s vs. 1.17 [0.73–2.43] m/s, p 5 0.001) and periductal
fibrosis (1.76 [1.27–2.09] m/s vs. 1.24 [0.73–2.57] m/s,
p5 0.049), compared with patients with normal findings
(Fig. 6a–c). Patients with none of these three visual signs
of liver fibrosis had a median right liver SWV of 1.17
(0.73–2.34) m/s, compared with 1.76 (0.99–2.57) m/s
among patients with minimum one B-mode sign of
fibrosis (p 5 0.001) (Fig. 6c). Right liver stiffness

Table 2. B-Mode ultrasound findings in PSC patients

Liver
Liver size in MCL, cm 14.2 (8.0–28.5)*
Hepatomegaly (.16 cm) 10 (18.2%)
Liver capsule irregularity 16 (29.1%)
Coarse liver parenchyma 12 (21.8%)
Blunted liver angle 16 (29.1%)
Ascites 2 (3.6%)

Gallbladder and bile ducts
Gallbladder length, cm 6.6 (2.1–10.0)
Gallbladder width, cm 3.0 (1.5–5.4)
Gallbladder wall thickness, mm 2.3 (0.3–10.4)
Gallbladder stone(s) 6 (10.9%)
Gallbladder polyp 1 (1.8%)
Cholecystectomy 4 (7.3%)
Bile duct variability 25 (45.5%)
Periductal fibrosis 5 (9.1%)

Spleen
Spleen length, cm 12.6 (8.2–22.7)
Spleen area, cm2 58.3 (25.4–165.7)
Splenomegaly (.13 cm) 19 (34.5%)

MCL 5 medioclavicular line; PSC 5 percutaneous sclerosing
cholangitis.
* Values are expressed as n (%) or median (range).

Fig. 2. Intra- and inter-observer agreement of point shear wave
elastography of the right liver lobe in healthy controls. The
Bland–Altman plots illustrate the (a) intra-observer and (b)
inter-observer differences in liver stiffness evaluation measured
by point shear wave elastography using ElastPQ (iU22, Philips)
and expressed as shear wave velocity in meters per second. The
horizontal solid lines represent the intra- or inter-observer
mean 6 2 SD (limits of agreement, dashed horizontal lines),
respectively. A valid measurement was defined as the median
of 10 valid acquisitions with a success rate.60%. Themeasure-
ments were performed twice by one (a) or two (b) observer(s) on
the same day in the right liver lobe of healthy controls for the

intra-observer agreement assessment.
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assessed by median SWV did not differ significantly be-
tween patients with splenomegaly and patients without
splenomegaly (1.42 [0.73–2.57] m/s vs. 1.24 [0.93–
2.34] m/s, p 5 0.11). Bile duct dilation was identified

in 26 (47.3%) patients, but median right liver SWV did
not differ between these patients and patients without
bile duct dilation (1.32 [0.93-2.57] m/s vs. 1.24 [0.73-
2.43] m/s, p 5 0.61).

pSWE of the left liver lobe
In the left liver lobe, valid SWVmeasurements were

acquired in 36 patients (66%), whereas in 19 patients
(35%) themeasurements were considered invalid because
of too many failed acquisitions (success rate: ,60%).
The median success rate was 83% (46%–100%). Left
liver lobe SWV did not significantly differ between
PSC patients and controls (median [range] SWV: 1.46
[0.59–3.68] m/s vs. 1.13 [0.91–1.24] m/s, p 5 0.11)
(Fig. 3 b). There was no significant difference between
median SWVof the right and left liver lobes in PSC pa-
tients (p 5 0.41). Paired SWV values of the right and
left liver lobes in the individual patient did not signifi-
cantly correlate (r 5 0.233, p5 0.17). Similarly, no sig-
nificant correlation was found between left liver SWVs
and BMI, age or PSC duration (Table 3).

pSWE of the spleen
Valid measurements were obtained in 37 PSC pa-

tients (67.3%), whereas in the remainder of the patients,
measurements either were not performed (n 5 16) or

Fig. 3. Liver stiffness in PSC patients compared with controls.
Liver stiffness evaluation by point shear wave elastography us-
ing iU22 (Philips) in 55 PSC patients and 24 healthy controls
matched for age and gender in (a) the right liver lobe, and (b)
the left liver lobe revealed increased liver stiffness in the right
liver lobe of PSC patients compared with controls
(p , 0.001). No significant difference could be found in the
left liver lobe (p 5 0.11). Liver stiffness is expressed as shear
wave velocity in meters per second. PSC 5 primary sclerosing

cholangitis.

Fig. 4. Point shear wave elastography discriminates between
primary sclerosing cholangitis patients and controls. Area under
the receiver operating characteristic curve analysis revealed
fairly good discrimination for median SWV measured by point
shear wave elastography between 55 primary sclerosing cholan-
gitis patients and 24 age- and gender-matched controls with an
area under the curve of 0.775 (95% confidence interval: 0.67–
0.86). The optimal cutoff for SWVas decided by Youden’s index
was 1.24 m/s, with a sensitivity and specificity of 56.4 and 95.8,

respectively. SWV 5 shear wave velocity.
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failed to fulfill the quality criteria (n5 2). Themedian suc-
cess rate for the patients with valid measurements was
100% (76.9%–100%). There was no significant difference
between PSC patients and controls (median SWV: 1.47
[0.79–3.13] m/s and 1.48 [1.17–1.80] m/s, respectively,
p 5 0.83). A tendency toward higher spleen SWV in pa-
tients with splenomegaly compared with patients without
splenomegaly did not reach statistical significance
(1.71 m/s [0.89–2.71] vs 1.39 m/s [0.79–3.13], respec-
tively, p5 0.05).There was no correlation between spleen
SWV and right or left liver SWV (1.47 m/s vs. 1.24 m/s,
N 5 37, r 5 0.104, p 5 0.54, and 1.39 m/s vs. 1.50 m/
s, N5 22, r5 0.331, p5 0.13, respectively). One patient
had variceal bleeding but did not have a high spleen SWV
(median SWV: 1.55 m/s). No correlation was found be-
tween spleen SWVand BMI, age or PSC duration.

DISCUSSION

Our study indicates how liver fibrosis can be evalu-
ated by both SWE and traditional B-mode findings during
the same procedure. We found excellent intra- and inter-
observer variation for pSWE using the iU22 system for
the right liver lobe, in line with previous reports (Ling
et al. 2013). The non-invasive evaluation of the degree
of and change in liver fibrosis in PSC may be of major
importance in evaluating the stage and prognosis of the
disease, as indicated by recent reports (Corpechot et al.
2014, Vesterhus et al. 2015).

Liver biopsy is generally not indicated in PSC, based
on the inherent sampling error resulting from the patchy
distribution of fibrosis (European Association for the
Study of the Liver 2009). The flaws of biopsies were illus-
trated in a study of whole-section scanning of 50 liver ex-
plants from patients with primary biliary cirrhosis,
another disease of the biliary tree, in which only 20%
of the primary biliary cirrhosis livers had a consistent his-
tologic stage of fibrosis throughout the liver at clinically
defined end-stage disease (Garrido and Hubscher 1996).
Likewise, the distribution of liver fibrosis in PSC is un-
even and follows the bile ducts to a large extent. In our
opinion, it may therefore be preferable to use non-
invasive methods assessing liver fibrosis covering larger
areas of the liver in PSC. Ultrasound shear wave elastog-
raphy is non-invasive and repeatable, can be integrated
into a full liver examination and has been documen-
ted in viral hepatitis as a means of measuring liver
fibrosis, but has not been previously explored in PSC

Fig. 5. Associations of liver stiffness with fibrosis scores and
prognosis in percutaneous sclerosing cholangitis patients. The
scatterplots with regression lines illustrate that SWV (m/s) of
the right liver lobe as measured by point shear wave elastogra-
phy using the iU22 (Philips) was correlated with the (a) APRI

and (b) Fibrosis-4 (Fib4) scores of fibrosis, but not with (c)
the Mayo risk score, a commonly used prognostic score in
primary sclerosing cholangitis. SWV 5 shear wave velocity;
APRI 5 Aspartate Aminotransferase-to-Platelet Ratio Index.
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(Bota et al. 2013a, 2013b; Friedrich-Rust et al. 2012;
Sporea et al. 2012a, 2012b).

Our findings suggest that PSC patients have
increased median liver stiffness as expressed by SWV
compared with healthy controls. The literature reveals
scarce information about pSWE in PSC, but our data
are in line with pSWE findings in a pilot study of patients
with autoimmune liver diseases causing fibrosis,
including PSC (Righi et al. 2012), and support previous
findings describing TE in PSC (Corpechot et al. 2006,
2014; Hagstrom et al. 2012). In the present PSC cohort,
21 (38%) of the patients expressed B-mode signs of
liver fibrosis. SWV was significantly higher in patients
with B-mode signs of liver fibrosis; however, 12
patients without visual signs of liver fibrosis also had
increased SWV (.1.24 m/s). Previous studies have
reported good to excellent AUROCs between pSWE
and histologic evaluation of fibrosis, even in
autoimmune liver diseases (Friedrich-Rust et al. 2012;
Righi et al. 2012). Thus, our findings could suggest an
increased sensitivity in identifying fibrosis in PSC
patients by adding elastography to an ultrasound liver
evaluation. Furthermore, pSWE was associated with
currently acknowledged signs of fibrosis, including TE
in cystic fibrosis liver disease, which displays a patchy
disease distribution similar to that of PSC (Behrens
et al. 2013; Karlas et al. 2012; Manco et al. 2012;
Monti et al. 2012). Because liver biopsy is generally
not indicated in PSC, histologic correlates are lacking

in the present study, but SWV correlated with serum-
based scores of fibrosis, including APRI and FIB-4
scores.

Previous studies have reported that the performance
of SWE and the cutoff values for significant fibrosis and
cirrhosis may vary with the etiology of liver disease
(Friedrich-Rust et al. 2012; Guzman-Aroca et al. 2012;
Karlas et al. 2012; Sporea et al. 2012b). In the present
study, the cutoff SWV value with the best statistical
power to discriminate between PSC patients and
healthy controls was 1.24 m/s with an area under the
curve of 0.775, in line with previous findings
suggesting 1.23 m/s as the statistically best cutoff
between patients with chronic liver disease and controls
(Sporea et al. 2014). It is an interesting characteristic of
patients with PSC that this cutoff is similar to that of other
liver disease populations, although it should be kept in
mind that the clinically ideal cutoff value may differ de-
pending on the aim of stratification (e.g., early diagnosis
of liver fibrosis or identification of a high-risk group).
Longitudinal studies are needed to resolve whether
pSWE can be used to follow disease progression in the in-
dividual patient for prognostic purposes.

The wider variability and lower success rate of ultra-
sound elastography of the left liver lobe has been debated
(Karlas et al. 2011; Ling et al. 2013; Toshima et al. 2011).
We were able to obtain valid liver stiffness measurements
of the left liver lobe in 66% of the patients. SWVs of the
left liver lobe correlated with the APRI score of fibrosis.
There was a wider range of SWV measurements in the
left compared with the right liver, probably caused by
respiratory and cardiac movements affecting
elastography measurements and suggesting reduced
reliability of measurements in the left liver lobe. The
lack of correlation between the two liver lobes may be
due to the higher variability in SWV of the left liver
lobe, and the definition of stricter quality criteria for
pSWE measurements of the left liver lobe might yield
better correlation for the valid measurements.

Previously published studies have indicated that
cholestasis influences the accuracy of pSWE for the
non-invasive evaluation of liver fibrosis (Pfeifer et al.
2014). PSC is a cholestatic disease, and this might be ex-
pected to complicate the evaluation of liver stiffness by
pSWE in this patient group. However, only two patients
had significantly elevated bilirubin .30 mmol/L; and
although some degree of cholestasis was indicated in 26
(47%) patients by bile duct dilation on B-mode ultra-
sound, there was no difference in liver stiffness by
pSWE in these patients compared with patients without
bile duct dilation.

Several articles have reported that increased spleen
stiffness alone or the spleen/liver stiffness ratio may pre-
dict high-risk esophageal varices and, thus, aid the

Table 3. Correlations of median SWV with other
continuous variables in PSC patients

Clinical and
laboratory variables

Median SWV right liver median SWV left liver

N
Spearman’s

r p N
Spearman’s

r p

Age 55 20.004 0.974 36 20.064 0.709
Age at
diagnosis

54 20.06 0.669 36 0.115 0.504

PSC duration 54 0.01 0.945 36 20.179 0.295
Bilirubin 49 0.175 0.23 32 0.207 0.255
Albumin 50 20.358 0.011* 33 20.222 0.215
ALP 50 0.246 0.085 33 0.335 0.057
AST 42 0.208 0.187 26 0.191 0.35
ALT 51 20.072 0.616 34 0.222 0.207
Platelet count 51 20.319 0.022 34 20.301 0.084
Body mass
index

55 20.101 0.463 36 0.281 0.097

INR 47 0.325 0.026 31 20.115 0.539
Mayo score 41 0.296 0.06 25 0.495 0.012
APRI score
(AST/TRC)y

42 0.494 0.001 26 0.468 0.016

ALP 5 alkaline phosphatase; ALT 5 alanine aminotransferase;
AST 5 aspartate aminotransferase; APRI 5 AST-to-Platelet Ratio In-
dex; INR 5 International Normalization Ratio; NA 5 not applicable;
PSC 5 primary sclerosing cholangitis; SWV 5 shear wave velocity.
* p-Values in italic denote significance.
y See Figure 5a.
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identification of patients who should be selected to un-
dergo gastroscopy (Berzigotti et al. 2013, 2014; Takuma
et al. 2013; Sirli et al. 2015). In view of this, the spleen
stiffness of PSC patients is of interest. In the present
study, spleen stiffness did not significantly differ
between PSC patients and controls. However, the
number of patients was small, and only one variceal
bleeding was observed in this cohort, precluding
definitive conclusions. The association of liver and
spleen stiffness with portal hypertension and esophageal
varices in PSC should be further investigated in a larger
cohort and, preferably, in a prospective setting.

Limitations of the study
The lack of liver biopsies in our cohort represents a

limitation to the study. However, liver biopsies are not
indicated in PSC, and biopsy was considered unethical
for study purposes. Previous studies of chronic liver dis-
ease with a range of etiologies have repeatedly indicated
excellent correlation between pSWE and histology find-
ings. The question of prognostic value cannot be
answered by the cross-sectional design of the present
study, and further studies, including prospective follow-
up, are warranted.

Although no standards of quality control have been
agreed on for pSWE, we applied a standardized protocol
and strict quality criteria as previously proposed,
demanding 10 valid acquisitions with a success rate
.60% to have reliable results (Bota et al. 2013a,
2013b). Measurements were made in two selected sites
in the right and left liver lobes, respectively.
Considering the patchy disease distribution in PSC, it is
conceivable that SWV measurements throughout the
entire liver would have revealed variable results within
each lobe of the individual patient, and further studies
should attempt to explore this.

CONCLUSIONS

We found that PSC patients have increased SWV in
their liver parenchymacomparedwithhealthycontrols, indi-
cating increased liver fibrosis. However, a wide range of
SWV values were obtained for PSC patients, possibly re-
flecting various stages in PSC disease development. This
novel method exhibited low intra- and inter-observer varia-
tion,making it suitable for further studies analyzingprospec-
tive follow-up data evaluating pSWE as a prognostic tool.

Fig. 6. Point shear wave elastography and B-mode signs of liver
fibrosis. Boxplots illustrate SWV (m/s) reflecting liver stiffness
as evaluated by point shear wave elastography using the iU22

(Philips) in patients with and without B-mode ultrasound signs
of fibrosis, including (a) coarse liver parenchyma, (b) irregular
liver capsule and (c) any of three signs of liver fibrosis (liver
capsule irregularity, parenchyma coarseness, periductal

fibrosis), compared with none of these.
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