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Abstract

During recent years Additive Manufacturing Technology, or 3D Printing,

has become extremely popular. 3D printing is being actively used in fields

ranging from rapid prototyping and rapid manufacturing to bioprinting for

tissue engineering. However, it is a very time consuming process as a single

object, depending on its size and complexity, may take from only a couple

of hours to several days to print. In many cases, errors occur in the middle

of a printing process due to misalignment of the 3D printed object, slicing

errors or blocked filament extrusion, causing a complete failure of the process.

During longer printing processes such errors may occur several hours before

we are able to detect them, and a lot of time and material are wasted. If we

are able to detect these errors automatically as they occur we may be able

to interrupt the process and save both time and material. Severe damage

may be caused to a 3D printer if layers of material are continuously added

to an object that is misaligned or has detached from the build plate. In this

thesis we investigate the possibilities of using traditional Computer Vision

algorithms and image processing techniques to automatically detect these

errors as they occur. We built a prototype using two different camera angles

to analyze both the first layer from a top-down view and the subsequent

layers by placing the second camera in front of the build plate. In one of the

modules developed in our prototype we managed to compare the 3D printed

bottom layer with a simulation of the same layer to detect deviations from

the CAD model.
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Glossary

Additive Manufacturing A manufacturing process b successively adding

material layer by layer.

Clog The molten material is blocked and there is no extrusion.

G-Code Programming language used for Computer Numerical Control ma-

chines..

Infill Structure printed inside an object. Infill pattern are generated by a

slicing algorithm.

Nozzle The component of the printer that deposits the molten material.

Slicer Software used for converting a 3D model into specific instructions for

the 3D printer by slicing the object into layers.

Superpixel A Superpixel is a group of pixels that shares common character-

istics. Useful for image segmentation in Computer Vision Applications.

Thresholding The process of creating a binary image by setting all pixels

above a certain threshold to white.
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Chapter 1

Introduction

1.1 Motivation

3D Printing has been around since the 1980’s when Charles Hull started the

history of 3D printing by inventing stereolithography in 1984. This invention

allowed designers to create 3D models from digital data, which could be used

to create concrete objects from 3D models[14]. Although 3D printers have

been around for more than 30 years, the topic didn’t gain much popularity

until recently. The Additive Manufacturing technology was more focused on

factory manufacturing, but during the past 10 years affordable desktop 3D

printers have become available to millions of people and thus the tremendous

growth in popularity lately [2]. As we can see in figure 1.1 there has been a

great development from 2012 in the field of additive manufacturing.

There exists multiple different technologies in additive manufacturing and

3D printing for printing in different materials. Fused deposition modelling

(FDM) is the most common 3D printing technology. FDM is a 3D printing

process that uses a filament of thermoplastic material of which polylactic

acid (PLA) is the most common material used.
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Figure 1.1: Market size of AM from 2012 to 2021[2]. (*) means expected
result.

The FDM 3D printing process mainly consists of 3 steps:

• The first step is to design a 3D model of what you want to print. This

is usually done using computer aided design (CAD) software like the

free and open-source sculpting tool called SculptGL [51]. The model is

normally saved in a stereolithography (STL) file format or an Object

File (OBJ) format.

• The second step is to slice the 3D model that was created in the first

step into horisontal layers and compile it into a sequence of instructions.

3D printing is an additive manufacturing method and thus the machine

needs a way to know how the material should be added in a layer-

by-layer process in order to achieve the desired result. This is done

by using a slicing algorithm[34]. In addition to slicing the 3D model

into layers, the slicing algorithm also calculates the tool-paths for each

layer. The tool-path defines the path that the printer should follow in

order to achieve it’s goal. Finally, the tool paths are compiled into G-

Code, which is a sequence of commands in which the 3D printer must

execute in order to create the given 3D model. The entire sequence of
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commands is stored in a file where each line in the file corresponds to

a command. There are multiple different slicing softwares [52, 58] that

can do this operation.

• The final step is to send all the commands to be executed to the printer.

The printer has a firmware installed that can read the G-code and gen-

erate control signals to motors and heating elements as well as reading

input from sensors. This part of the process may be different based

on the type of 3D printing technology or the materials that are used.

In most cases the 3D printing material is dispensed through a heated

hot-end at a given feed-rate set by the slicer in the previous step. The

melted material gets pushed through a Nozzle and builds up the phys-

ical version of the digital model layer by layer.

3D printing technology offers a set of advantages in manufacturing and rapid

prototyping compared to traditional manufacturing methods [46]. Some sig-

nificant advantages of 3D printing are waste reduction, the ability to create

complex and detailed geometries in a short time frame and to produce useful

design in multiple fields. This technology has proven to be especially useful

in the medical field to design and manufacture prosthesis of different shapes

and sizes [63]. However, like any other technologies, there are a series of chal-

lenges and disadvantages involved in the 3D printing process that prevents a

large-scale evolution of this technology [19]. The aim of this thesis is to dive

into the most common challenges related to FDM 3D printing and discuss to

what extent these challenges can be taken account for by using programming

rather than upgrading the machines with expensive hardware.
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1.2 Problem Description

During the recent years affordable desktop sized 3D printers has been devel-

oped and are available for millions of people all around the world spanning

from professional designers to manufacturing hobbyists [4]. Even though

Computer-Aided Manufacturing (CAM) has been around for a long time

most of the work in this field has been targeting large industries, where ex-

pensive hardware is required for higher precision and faster production [55].

Therefore, the development of desktop sized 3D printers also gives rise to

new challenges to be solved.

Depending on the size, the complexity of the model and the chosen resolution

during slicing, the 3D printing process may take from just a couple of hours

to several days. This means that the machine will sometimes be working 24

hours a day without anyone consistently monitoring the print to make sure

everything is like expected. During this time a lot of different things can go

wrong. For instance, the nozzle in which the material gets extruded through,

can be clogged so that there is no material flow, or the print may not stick

properly to the print bed so that it starts to move. The former example

may in worst case damage the machine. These are two examples of common

problems in 3D printing that may result in a lot of wasted time and material

depending on how late during the process it was detected. If detected early

there is a small chance that the project can be paused and fixed mid-print,

otherwise the print has to start from the beginning. If an error occur 24

hours into the process, but it doesn’t get detected until 6 hours after the

problem occurred, then there’s a total of 30 hours of time-waste.

Currently the only way of detecting these errors is to manually check by the

machine every now and then to make sure the print layers are correct. Even

though we detect such an error only minutes after it occurred the print is

most likely broken and has to start from scratch again. The aim of this

project is to classify the most common challenges in FDM 3D printing and

analyse each of them to see if it is possible to automatically detect them
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using real time monitoring. If it is possible to detect errors automatically

the print can be paused by the monitoring system to make sure minimal time

and material are wasted.

1.3 Research Questions

This thesis focuses on error detection in 3D printing by using a camera and

computer vision algorithms to classify defects during 3D printing. 3D printers

do often run around the clock. Additive manufacturing is a time consuming

process and it is not uncommon that errors and defects in the object being

manufactured occurs after multiple hours of printing. It is also not common

that these errors aren’t detected before the object is damaged beyond re-

pair and the whole manufacturing process must be started again from the

beginning. Currently, the only way to detect these defects is by actively

monitoring the process by eye, which is not a feasible solution in the long

run. The research questions are therefore defined as follows:

Can we monitor and automatically detect the most prevalent 3D print-

ing errors using Traditional Computer Vision Algorithms?

The first research question focuses on using Traditional Computer Vision

[59], which are computer vision algorithms implemented using statistical and

mathematical models and image processing techniques. Traditional Com-

puter Vision does not utilize deep learning for image classification and fea-

ture detection in images. Training a Convolutional Neural Network (CNN)

to classify defects on high precision manufacturing machines like 3D printers

requires a large data set for training, but are able to detect more advanced

features than traditional computer vision algorithms are able to do [59]. Col-

lecting thousands of images for training an image classification model of

defects in 3D printing will be very time consuming and, to best of our knowl-

edge, no such data sets seems to exits. Hence our second research question:

Can we create a method for systematic collection of labeled data sets of

faults in 3D printing for training Deep Learning models?
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1.4 Method

A literature review has been used to obtain knowledge about the topic and

to identify what is known and what is still unknown in the area. The litera-

ture review has also been used to gather knowledge about whether the same

techniques, or similar techniques, have been used in other manufacturing in-

dustries. Normally, a literature review that lists findings in a set of selected

articles would end up on the low end of the spectrum if there existed a “reli-

ability” spectrum for the selected papers [10]. This is due to the possibility

that the articles may be biased by the author, but it does not mean that

the articles are inaccurate [10]. The literature review revealed that there is

a lack of research in the area of automatic fault detection in 3D printing

processes. Some techniques were attempted and gave some results, but the

methods haven’t been tested thoroughly and were prone to generating false

error alerts.

Next, a feasibility study was done to answer the research questions chosen

for this thesis. Since not much research exists on this particular subject, it

is difficult to say if it is possible to find a feasible solution to this problem.

By doing a feasibility study these questions may be answered by building a

proof of concept prototype and apply it on some test case. Based on the

literature review we decided to build a prototype and used different image

processing techniques to create new and more consistent methods for fault

detection. We used an experimental setup using two cameras monitoring the

3D printing process from different angles.
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1.5 Related Work

Trends and Challenges of 3D Printing

It is important to address challenges facing the future as the 3D printing

technology is developing as well as analysing how the world adapts to the

technology. As stated in [19], one of the main issues regarding 3D printing are

the technical problems that can arise during a print as a result of unexpected

behaviour from the mechanical parts. The paper also concludes that 3D

printing technology will continue to evolve in the future as many stakeholders

are already seeing the potential of 3D printing. By comparing the rate of

evolution of 3D printers with the adaption rate, we get a better view of the

potential benefits from automatic error detection in 3D printing.

PCB Defect Detection

A similar project was conducted in [48] where computer vision were used to

detect defects in the Printed Circuit Board (PCB) manufacturing industry.

Image processing algorithms are applied to frames that are continuously cap-

tured by a camera in real time during production to remove background noise.

A digital model of the same PCB is then compared to the actual footage of

the manufactured PCB by applying the Exclusive or (XOR) operation on

the images. The XOR operation will output the differences between the two

images, where the differences will reflect the deviation from the desired PCB

model.
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Figure 1.2: Print loosened from the print bed due to bad adhesion

Autonomous in-situ correction using Computer Vision

A lot of different errors ranging from clogged nozzle to loose mechanical parts

of the printer [15] might occur in the middle of a print affecting the quality

of the physical object being printed, or even cause the print to fail miserably.

Section 3.2 introduces the most common and important causes to defects of

a 3D printed object. However, almost all of the succeeded prints have one

characteristic in common, namely a successful first layer. This also applies

to failed prints; If the first layer doesn’t succeed, it will most likely cause the

rest of the print to fail. Figure 1.2 shows an example of a defect 3D print

caused by a bad first layer to illustrate the importance of a succeeded first

layer print in order to achieve an optimal result.

The first layer of a print may not succeed due to a series of different rea-

sons, but a common cause is due to over-extrusion or under-extrusion [15].

Over-extrusion means that too much material is flowing through the nozzle,

whereas under-extrusion occurs when the printer is not able to supply enough

material. An autonomous system containing advanced machine learning al-

gorithms to detect over- and under-extrusion and self-correct in real-time to

be able to print reliably at fast rates and high resolutions has been developed

in [26].
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Figure 1.3: Under-extrusion, Over-extrusion and Good quality surfaces

The 3D printing system in this project, based on machine learning, con-

sists of real-time monitoring using a mounted camera and a post-training

procedure with a ResNet architecture [18] to train a Convolutional Neural

Network (CNN) [28] classification model to detect over- and under-extrusion

during the 3D printing process. Images are fed into the model continuously

in real-time while 3D printing. If an under-extrusion is detected by the clas-

sifier, commands to increase the material flow will be sent to the 3D printer

automatically by the system. Figure 1.3 shows what the trained classifica-

tion model is looking for when trying to detect over- and under-extrusion.

Around 120,000 images of each category are prepared to build the classifica-

tion model, where 30% are used for testing and validation, and the remaining

images are picked randomly to be used as training data.
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Chapter 2

Background

2.1 Additive Manufacturing

3D printing is the process of creating a physical three-dimensional object

from a computer aided design (CAD) model by adding material layer by

layer, starting from the first layer at the bottom to the last layer at the top.

This process is also called Additive Manufacturing (AM) [11], whereas the

more conventional manufacturing method, also called subtractive manufac-

turing, is the process of removing material from a solid block of material

to create the 3D object [7]. Several different materials like paper, powder

filament, metals, liquid and thermoplastics can be used in additive manu-

facturing, where thermoplastics is the most common material used in 3D

printing [32]. Which type of materials to chose depends heavily on the addi-

tive manufacturing method being used. Fused Deposition Modeling (FDM),

which is the technology used in this project, is the most common 3D print-

ing technology and the material being used in FDM printers are normally

thermoplastics like Polylactic Acid (PLA) [37].
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2.2 Computer Numerical Control

Numerical Control is a way to automate the control of machining tools by

using computers. The Computer Numerical Control (CNC) machines are

programmed using letters, numbers and symbols to define movement se-

quences. The letters and numbers are often referred to as G-Code, which

is the programming language used for most CNC machines, including 3D

printers.

G-code consists of a long sequence of movement commands along the X, Y

and Z axis for the 3D printer. There is also a fourth axis called “E-axis”,

which is the stepper motor controlling the extruder of the 3D printer and

the flow of material through the hot-end of the printer. The hot-end is the

part of the printer in which the filament gets fed into by the E-axis motor

and the melted material comes out at the bottom of the hot-end.

Figure 2.1: The manufacturing pipeline using CNC machines

Figure 2.1 above shows the typical pipeline for a CNC controlled machine

[17]. This pipeline was briefly mentioned in chapter 1 with regard to 3D

printing. A model of the object one intend to manufacture is created using a

CAD software. The second step in the pipeline is generating the tool paths.

In 3D printing this step is called slicing, where the resulting output is a G-

Code file containing all the instructions for the 3D printer to manufacture

the object. A detailed explanation of what G-Code is and how it is generated

will be given in the next two sections. Finally, the tool paths generated in
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the last step are executed as a sequence of commands to manufacture the

CAD model.

2.3 G-Code

The 3D printing technology enables us to manufacture physical objects cre-

ated using different types of material by using a digital model created by a

computer aided design software and a 3D printer. In order for this to be

possible it is necessary to develop a method to tell the printer how to cre-

ate the specific object. This is where G-code comes in. G-code is the most

used programming language for computer numerical control systems, thus it

is also the most widely language used for 3d printers [5]. The same G-code

commands may have different meanings for different types of CNC machines,

and therefore this section will be focused towards G-code used in 3D printing.

G-code is usually stored in a .gcode file consisting of a long sequence of

movement commands along the X, Y and Z axis for the 3D printer, but the

file extension may vary for different printers whilst the code syntax remains

the same. There is also a fourth axis, called “E-axis”, which is the stepper

motor controlling the extruder and the flow of material through the printer’s

hot-end. The hot-end is the part of the printer in which the filament gets fed

into by the E-axis and the melted material comes out at the bottom of the

hot-end. Each line in a G-code file corresponds to a single command, where

each command may take several parameters. The most common command

stored in a G-code file is usually the G1 command, which tells the printer

where to move in a straight line while extruding material. The first 30-40 lines

of a C-code file normally consists of a combination of different G-code and M-

code commands. The M-codes are commands to set different configurations

before the print starts like setting a temperature for the nozzle and the

print bed, maximum acceleration along the axis, maximum feed rates and

retraction acceleration. Table 2.1 shows a list of the most important G-codes

and M-codes used in 3D printing.
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G-Code Description
G1 Linear Movement: The command tells the printer to

move in a straight line to a specified X, Y and Z loca-
tion [30]. G1 X5 Y10 Z9 E2.0 F500 tells the printer
to move to position (5,10,9) while extruding 2.0 mil-
limeters of filament with a feed rate of 500 mm/s

G28 Home: G28 performs the homing routine for the axis.
If no arguments are given to the G28 command it
will move the toolhead to position (0,0,0). G28 X Y
will only move the X and Y axis to their respective
home positions. It is important to run G28 at the
very beginning of a print. When the axis are homed
using the G28 command the printer can safely assume
that it is in position (0,0) in the X-Y plane and use
relative coordinates for the rest of the print.

G10 Retract: Retracts the filament by a length specified
by the M207 command[31]. A lot of stringing during
a print is usually due to poor retraction settings.

M190 Set bed temp: This command sets a temperature for
the print bed and wait for it to be reached before
before it do anything else[12]. It is important to wait
for the correct temperature in order to get the best
print results possible.

M106 Fan on: Turn the cooling fan on

M109 Set extruder temperature: Sets a temperature for the
extruder and wait for it to be reached. For print-
ing with PLA an extruder temperature around 215◦C
is normal and can be set using the M109 command:
M109 S215

M226 Temporarily pause the printing process

M24 Start / Resume print

Table 2.1: Most common G/M-Codes used in 3D printing
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We now know the very basics of what C-code are and how it works, but how

do we go from a CAD model to a sequence of commands the printer has to

execute in order to create the physical object? As mentioned earlier in the

introduction section a model has to be sliced into layers [34]. During the

slicing process of the model a slicing algorithm will generate a large file, the

G-code file, that may contain hundreds of thousands of commands based on

the triangle mesh of the CAD model, slicing settings and the slicing algorithm

used. Listing 2.1 shows a very simplified G-code program for printing a

5x5mm square. In the next section, section 2.4, a more detailed explanation

of the slicing process is given, including how decisions made during the slicing

process will significantly affect the print result.

1

2 M104 S215 ; s e t extruder temp

3 M140 S60 ; s e t bed temp

4 M190 S60 ; wait f o r bed temp

5 M109 S215 ; wait f o r extruder temp

6

7 G28 ; Home a l l ax i s

8

9 G1 X0 Y5 E1 . 0 ; Move to po s i t i o n (0 , 5 )

10 G1 X5 Y5 E2 . 0 ; Move to po s i t i o n (5 , 5 )

11 G1 X5 Y0 E3 . 0 ; Move to po s i t i o n (5 , 0 )

12 G1 X0 Y0 E4 . 0 ; Move to po s i t i o n (0 , 0 )

13 G1 X0 Y5 E5 . 0 ; Move to po s i t i o n (0 , 5 )

14

15 M104 S0 ; turn o f f temperature

16 M140 S0 ; turn o f f heatbed

17

18 G1 Z30 . 8 ; Move p r i n t head up

19

20 M84 ; d i s a b l e motors

Listing 2.1: Example G-code program to print a simple square frame.

The first lines of listing 2.1 shows how the M-codes are used for configuration

of a 3D printer before the actual printing is happening. After the bed and

extruder has reached their respective target temperature G28 are executed

to move all the axis to position (0,0) in the X-Y plane. This can be done

using a limit switch, or an endstop[49], which are mounted at the end of each

axis. When the axis touches a limit switch, the switch breaks the circuit

to the motor and the print head can’t move any further. Thus the printer
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knows its exact location and it can begin printing. The printer will first

execute the G1 command and move to location (0,5) while extruding 1mm of

filament, followed by another G1 command to (5,5) while extruding another

1mm of filament until all commands are executed. At the end another set of

configurations using M-codes are executed to turn off the temperature, heat

bed and the stepper motors. The result is a physical object, a simple 5x5mm

square frame.
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2.4 Triangle Mesh Slicing

2.4.1 Slicing Pipeline

As mentioned earlier, FDM 3D printing is all about building up a physi-

cal 3-dimensional object by accurately applying material layer by layer. In

this section we will explain how we go from a digital 3D model to G-Code

commands by using a slicing algorithm to slice the 3D model into layers.

Figure 2.2 below shows the pipeline from a digital model, normally stored

in a stereolithography (STL) format [5], and convert it to a sequence of G-

Codes stored in the resulting G-Code file containing all the instructions for

the 3D printer to execute. [21]. STL files are one of the most commonly used

formats to store information about 3D models created using CAD software

and are therefore widely used in most of the computer aided manufacturing

methods for rapid prototyping [33], including 3D printing.

Figure 2.2: The Slicing Pipeline
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As there exist multiple methods for slicing, the most common technique for

slicing a 3D model stored as an STL is by finding all vertices that defines the

contour of each layer and then, if Infill settings are set in the slicing software

used, generate infill inside the contour / perimeter of the object.

(a) Model to be sliced (b) Contour / Perimeter of
first 40 layers

(c) Perimeter with generated
gyroid infill (red)

Figure 2.3: Phases of the slicing pipeline

Figure 2.3 above shows an example using Slic3r Prusa Edition [45] to slice

a model (See: Figure 2.3a) into layers and prepare it to be printed, where

each layer consist of many two-dimensional coordinates defining the contour

of the object. Figure 2.3b shows what the contour for the first 40 layers of

the model looks like, where the first layer is the very first contour at the

bottom of the model. One can therefore think of 3D printing as doing 2D

printing over and over again by applying small adjustments to the contour

for each layer until we get the desired shape.

When the contours are defined we move to the last processing step in the

pipeline - generating infill for the contours. Infill is a term in 3D printing

that refers to the structure printed inside the perimeter, or inside the object,

to make the object stronger and more solid. The amount of infill ranges from

0% to 100% infill, where 0% infill means that only the contours of the object

should be printed whilst 100% means that the contours should be completely

filled with material to make a solid object. It is most common to use infill of

around 10-20% depending on how strong one want the structure to be. Less

infill means weaker objects, but the print time and material usage decreases

significantly. How much infill that is being generated are set by the ”infill”
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parameter in the slicing software being used.

The infill inside the contour is an automatically generated pattern for each

layer, or each contour, of the sliced model. If the infill parameter is set to

10%, the Slicer will then generate an infill pattern that fills 10% of each layer.

There exist a variety of different infill patterns that can be chosen, where

different infill patterns can drastically affect the flexibility and strength of

the final print. Figure 2.3c shows the contour (in yellow) with an infill of 25%

using an infill pattern called ”Gyroid”. Among many other infill patterns,

gyriod has shown to be one of the best patterns for 3D printed models used

in technological applications due to its capability to absorb energy [1].

Figure 2.4: Same model printed using 4 different infill settings. The top-left
and top-right objects are printed using grid infill pattern with 20% and 50%
infill, respectively. The bottom-left and bottom-right have the same infill
density as the top ones, but with a different infill pattern called gyroid.

As mentioned in section 1.5, the first layer is the most important layer for the

print to be successful as it forms the foundation for the remaining layers to

be printed on top of the first layer. Therefore, it is common to print the first

layer with 100% infill to ensure a good base for the print with good adhesion
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go the print bed. If the first layer detaches from the print plate the object

might start moving as the printer continues to deposit material onto the

remaining layers, and the material will not be applied at the correct positions

relative to the object. In a worst-case scenario, if the first layer detaches from

the print bed, it can cause severe damage to the hot-end. Figure 2.4 shows

the difference between 20% infill and 50% infill using the grid infill pattern

(the top two objects) and the gyroid infill pattern (the bottom two objects).

Unlike the objects printed in figure 2.4, it is also common to print the last

3 layers with 100% infill to hide the infill patterns behind solid layers which

results in a smoother surface.
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2.4.2 STL File Format

3D models created using CAD programs can be very complex objects con-

taining a lot of small details at high resolutions. But how are all the details

and information about the objects stored?

Usually, a model created using CAD software is stored as an STL file (a

file with the .stl extension). This file contains information about all the

vertices, all the triangles made up of the vertices and the normal vector, or

the normal, of the triangles[22]. As with almost all cases of 3D graphics

rendering, the surfaces of the 3D models are comprised by a set of triangles

connected together in different angles to create the surface. This is also called

a triangle mesh[57]. By storing the normal vectors of the triangles and the

vertex positions for the triangles the model can be re-rendered from the STL

file.

Information about the polygons stored in STL file format can be represented

in both ASCII and binary format. An object may consist of millions of

triangles and thus a binary representation is usually a more efficient way to

store the triangle mesh.

1 f a c e t normal nx ny nz

2 outer loop

3 ver tex v1x v1y v1z

4 ver tex v2x v2y v2z

5 ver tex v3x v3y v3z

6 endloop

7 end face t

Listing 2.2: ASCII Representation of STL file format

Listing 2.2 shows how the information about the triangles are organized in

an STL file, where n is the triangle normal and v1, v2 and v3 are the vertices

creating the triangle.
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2.4.3 Slicing Software

The slicing pipeline consists of a sequence of triangle mesh analyzing algo-

rithms in order to generate the tool path for the 3D printer[34]. This includes

defining the contour for each layer, generating the infill based on chosen infill

settings and generating the toolpath for the 3D printer. The following two

steps are the most important steps in a simple slicing algorithm:

1. Find and store triangles: As we know, the mesh of the model is

stored in an STL file containing a list of all the triangles and its connect-

ing vertices. The first step in the slicing algorithm is to loop through

the STL file, finding all the triangles that builds up the mesh model

and store them in a list.

2. Construct contours: For each layer of the model one needs to find the

contours for the respective layers. A polygonal description of the layer

is required in order to accurately construct each layer of the object. The

polygons are then filled with material to make it stronger, also called

infill. This step is important for the generation of the coordinates

for the machine, since the 3D printing process consists of printing the

contours for each layer in a 2 dimensional plane till the last layer, the

top layer, is finished.

(a) 3D model of gear before slicing (b) Contours for one layer of a gear
model after slicing

Figure 2.5: A 3D model of a gear before and after slicing.
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Figure 2.5 above shows a 3D model of a simple gear with 16 teeth before

slicing (a) and the contours from one layer (b) after slicing. One can see

that the contours in (b) matches the 3D model in (a) with the same contours

and the same number of teeth. In this particular example, by repeating step

2 above, the contours will look exactly the same in almost every layer. At

the top the slicing algorithm will only find the contours for the letter ”T” to

the right, number ”16” to the left and the circle in the middle of the model.

After these steps are done the slicing algorithm will generate the tool path

for the 3D printer, which tells the 3D printer where to move and how much

material to extrude while moving, for each layer. Another setting that is

decided during slicing is the layer height, which is how far the printer should

move in the vertical axis (Z-axis) when moving to the next layer. The lower

the layer height is set to, the more layers the printer has to print to finish

the object.

PrusaSlicer

The slicer used in this project to generate G-code for the testing objects

is the PrusaSlicer [52]. PrusaSlicer contains all the necessary profiles and

settings needed to carry out this project and is therefore the preferred slicing

tool. Other slicing tools can be used as well, but some minor changes in

the code for our prototype may be necessary for it to be compatible with

it’s functionality. The most important feature in PrusaSlicer for the G-

Code to be compatible with our prototype and our simulation framework,

which will be covered later in chapter 4, is the Verbose G-Code option, which

are found under the Print Settings tab under Output Options. By enabling

this feature the slicing algorithm will generate a commented G-Code file,

with a descriptive text at each line explaining the exact purpose of each

command. This can be used to extract key movements used in our simulator

and we can choose to exclude a number of different irrelevant coordinates

while simulating. When trying to simulate a 3D print by directly rendering

the coordinates from a G-Code file, a lot of noise is generated as a large
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number of the generated coordinates are just simple movement without any

material extrusion. By generating a commented file one can identify all the

noisy movement patterns and decide whether it is appropriate to render the

movements for the respective commands or not.

1 G1 X124 .436 Y156 .057 E0 .05859 ; i n f i l l

2 G1 X124 .320 Y156 .198 E0 .00603 ; i n f i l l

3 G1 X124 .223 Y156 .274 E0 .00408 ; i n f i l l

4 G1 X124 .235 Y156 .418 E0 .00478 ; i n f i l l

5 G1 X125 .646 Y157 .829 E0 .06595 ; i n f i l l

6

7 G1 X124 .443 Y158 .875 E−0.25010 ; wipe and r e t r a c t

8 G1 X124 .391 Y158 .261 E−0.14231 ; wipe and r e t r a c t

9 G1 X124 .790 Y158 .660 E−0.13035 ; wipe and r e t r a c t

10

11 G1 X122 .826 Y149 .761 E0 .07809 ; per imeter

12 G1 X123 .031 Y149 .761 E0 .00644 ; per imeter

13 G1 X123 .318 Y149 .731 E0 .00905 ; per imeter

14 G1 X123 .627 Y149 .631 E0 .01018 ; per imeter

Listing 2.3: Commented G-Code file using the Verbose GCode setting in

PrusaSlicer.

Listing 2.3 shows some example G-Code generated using the Verbose G-Code

setting in PrusaSlicer. The lines that are tagged with infill and perimeter

corresponds to the commands executed in the process of creating infill pat-

terns and perimeters for the model. For the wipe and retract commands the

printer receives some X and Y coordinates while extruding in the negative

direction (E-0.25010). This means that the extruder retracts, or pulls in, the

filament rather than pushing it out while moving to the next location. This

is to make sure that no molten material accidentally flows out of the system

when moving to another position. When simulating G-Code, the wipe and

retract commands are also rendered, causing a lot of noise and an obscure

scene. With verbose G-Code one can easily detect such noise, remove it and

focus on the relevant movement commands.
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2.5 Technologies Used

A variety of different libraries and frameworks are used in the development

of the proof of concept prototype in this project. As the main purpose of this

thesis is to explore the possibilities of using computer vision to detect defects

in 3D printing, a library containing image processing and image analyzing

functionality is essential for this task. As parts of the planned prototype

requires simulation of G-Code executions a graphics framework is also neces-

sary to render the simulation outcome. This section will give a brief overview

of the technologies used and the reasoning behind the particular technology

choices.

2.5.1 Computer Vision

The field of Computer Vision (CV), or Computational Image Analysis, is an

interdisciplinary field that aims at making computers able to gain a more

high-level understanding of images and video frames. CV is usually a very

challenging task as it focuses on different problems like image segmentation,

object tracking in a video stream, feature extraction and motion tracking

[56]. It is usually a demanding task in itself to create applications that

performs some of these tasks in both an efficient and a fully automated way.

In many cases one need to combine multiple tasks in order for a computer

to make sense of an image or a video frame. For instance, a computer vision

application made to detect a moving animal needs a combination of object

detection to detect the animal itself and motion tracking to track whether

the animal is moving or not.

In CV, a set of different Image Processing and Image Analysis algorithms

are applied to images, or frames in a video stream, to solve some of these

computer vision tasks. Image Processing is, like the name suggests, process-

ing of an image. An image processing function usually takes an image as

input and outputs a new image after applying a set of different image ma-

nipulation algorithms like transformation, smoothing and color changes on
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the input image. Image processing is an important step in many computer

vision applications as it helps eliminate unwanted elements from an image

like background noise, which enables us to focus on the more important parts

in the image. In our algorithms for error detection it is crucial to be able to

remove all noise in the images so that only the 3D printed model is left in

the frame.

OpenCV

There exists a large amount of libraries offering functionality for different im-

age processing algorithms and techniques. In this context, Compute Unified

Device Architecture (CUDA), OpenCV, MatLab and TensorFlow are some

important libraries. OpenCV is the chosen library for this project as it is

the most popular library for computer vision applications and it has pre-

built packages for the Python programming language. Since there exist a

Python implementation for this library it makes it easy to run it in different

environments and platforms like Windows and Linux. Using pip, the stan-

dard package management system for python packages, the OpenCV build

for python will be downloaded and installed automatically.

Listing 2.4 below shows an example using the Python build of OpenCV to

read two images into memory and do a simple weighted image addition of the

two images. After the weighted addition has been done the resulting image

are then stored in the addedImage variable on line 6. On line 7 the resulting

image are stored in a file called addedImage.png.

1 import cv2

2

3 img1= cv2 . imread ( ”img1 . png” )

4 img2 = cv2 . imread ( ”img2 . png” )

5

6 addedImage = cv2 . addWeighted ( img1 , 0 . 2 , img2 , 0 . 8 , 0 )

7 cv2 . imwrite ( ”addedImage . png” , addedImage )

8

9 cv2 . imshow( ’Added image ’ , addedImage )

Listing 2.4: Simple addition of two images in OpenCV
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The two input images, represented as two arrays of pixel values, in the ad-

dWeighted function are inserted into the following equation[41]:

addedImage = α ∗ img1 + β ∗ img2 + γ

where α = 0.2, β = 0.8 and γ = 0 in our example.

Figure 2.6: The first input for the ad-
dWeighted function.

Figure 2.7: Second input for
addWeighted function.

Figure 2.8: Result after doing a weighted addition operation on two images
using OpenCV.

The last figure, figure 2.8, shows the final result after doing the weighted ad-

dition between the two images. This example shows that one can easily read

images and store them in variables and perform different image processing

algorithms on them. The imread function that reads an image into memory
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returns a three dimensional numpy[8] array. The first two dimensions corre-

sponds to the width and height whilst the last dimension corresponds to the

number of channels for the respective pixels. For RGB pixels the last dimen-

sion will be three, one for each RGB color value. For instance, an image of

256 pixels by 128 pixels containing RGB colors will be stored in an array of

the following format: (256, 128, 3).

The advantage of Grayscale Images

Many computer vision applications utilizing common image processing algo-

rithms are using grayscale images rather then color images[16]. Therefore,

arrays containing the color images needs to be converted to grayscale im-

ages, thus we are eliminating one dimension of the array. For the example

above, the array will consist of an array of 256 by 128 pixel values after the

grayscale convertion. Each value in the array describes the ”light” for each

pixel ranging from 0 (black) to 255 (white), and not the three values for RGB

pixels. Therefore, only one value for each pixel is needed.

A good example of applications that uses grayscale images for image analysis

are Self Driving Cars. Self driving cars got computer vision algorithms im-

plemented into their core systems that takes grayscale images as input. For

instance, it is crucial that self driving cars are able to detect and find their

road lanes. Lane Line Detection algorithms has therefore been implemented

for that purpose. These algorithms uses edge detection techniques [9] and

Hough Transformation [39] to find and detect straight road lines in an image.

When detecting edges in an image the color information for each pixel are

redundant information and makes the task hard. However, we still want to

keep the contrasts of all the elements in the image after removing the colors.

By converting the image to a grayscale image all the contrasts are preserved

and the three RGB values are redused to only a single value per pixel ranging

from 0 to 255.
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2.5.2 Three.js - A JavaScript 3D Library

Three.js is a cross-platform JavaScript library for creating 3D scenes directly

in a web browser by rendering the 3D scene in a HTML canvas element [13].

Three.js is built on top of the Web Graphics Library (WebGL) [42] which

is based on the Open Graphics Library (OpenGL) standards [42] allowing

GPU accellerated 3D rendering. The benefit of using Three.js over WebGL

is that Three.js has abstract implementations of many low level operation

required in WebGL, making it easier to create 3D graphics directly in the

web browser.

Three.js by default comes with a number of different tools for applying matrix

operations like translating or rotating objects in a 3D space. It is easy to cre-

ate objects with different shapes and material properties by using Three.js’s

pre-defined models. This includes objects like spheres, lines, custom geome-

tries to be defined by a set of points and planes. One of the most important

tools in Three.js in regards of our project is the camera system provided

in Thre.js. The camera in our simulation environment must be possible to

customize in terms of its angle and position relative to the sliced 3D model

that is being simulated.
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Chapter 3

Problem Analysis

In the two previous chapters, a brief introduction to the 3D printing world

and a problem description were presented as well as some necessary back-

ground knowledge on how to translate a 3D model into tool paths and com-

mands for the 3D printer. As mentioned in section 1.2, 3D printers may

be working 24 hours a day, in which it is hard for humans to consistently

monitor the 3D printer. During this time, a lot of different unexpected er-

rors can occur, errors that might even destroy the 3D printer. As the aim

of this project is to get an idea of how computer vision can be utilized to

automatically detect these errors, it is therefore important to analyze the

various errors that can occur and discuss to what extend these defects can

be detected using only a camera and computer vision algorithms. In this

chapter we will explain the most common errors that occurs in the world

of 3D printing, discuss why these errors takes place and how these can be

detected. At the end of this chapter, we will also discuss whether an ap-

proach using deep learning or a traditional computer vision approach would

be better to solve the different classification tasks.
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3.1 Why Computer Vision?

Today, many printers are equipped with a monitoring camera that can stream

to a website or to a phone app. This makes it a lot easier to more consistently

monitor the printer and to verify that nothing has gone wrong. However, this

still requires human interaction and the process of additive manufacturing

is not as automated as it potentially can be. As also mentioned in section

1.2, one can always gear the printer up with dozens of sensors in which each

sensor has it’s own responsibility to detect different types of errors that may

occur during the print. This is an expensive approach and it requires a total

redesign of the current 3D printers to fit the necessary sensors in correct

positions. Another concern about this approach is that the firmware, the

programming stored on the control board on the printer, must be rewritten

to take account for the sensor data and assign different actions to the printer

based on the sensor readings.

A numerous of common errors and defects in additive manufacturing, es-

pecially in 3D printing, often occurs in the middle of the manufacturing

process [15], and most of the defects are detected by the human eye. When

the defects are detected it is most likely too late to fix the damage since it

is difficult to consistently monitor the process by eye, and thus it is hard to

detect the errors in time. Since most of the errors are detected by the human

eye, and most 3D printers are equipped with a camera, is it then possible to

use this camera as a replacement for the human eye? Is it possible to design

computer vision algorithms to automatically detect the same defects as the

human eye can? For the human eye it is easy to identify if a manufactured

object has defects or not by just comparing it with the modeled object. On

the other side, it is a very hard for a computer to understand the context

of an image. A computer can only see the RBG (Red, Blue, Green) value

of a single pixel at a time[53], which makes computer vision a challenging

topic in itself. Another phenomenon that might occur during 3D printing is

something called microholes (see figure 3.1), which are tiny holes that mostly

appears in wall structures on the printed model.
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Figure 3.1: Tiny microholes might occur as a result of chosen print settings,
bad filament or a partially clogged nozzle

This is an example of a deviation in the print that is not considered an error

or defect, but it might be hard for a computer to distinguish between these

types of deviations and other defects.

3.2 Problems in FDM 3D Printing

Rapid prototyping technologies, such as 3D printing, became very popular

very quickly the additive manufacturing, design and architecture world has

evolved considerably since the first printer was built. However, the wave of

this popular technology brought with it many challenges that makes it less

consistent and more time-consuming for anything other than just prototyp-

ing. The main problems of the 3D printing technology are divided into two

categories - Technical Problems and Controversies. The technical issues are

defined as deviations, or differs, between the printed object and the origi-

nal digital model that was designed. Controversies, on the other side, are

issues that includes using 3D printing for illegal purposes like fabrication of

weapons and drugs [19]. However, we will not be focusing on the controver-

sies issues in this thesis. In this project, we focus on minimising the risk of

wasting time by trying to detect the technical problems as early as possible.

This way, we increase the chance of not having to start the entire printing
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process from scratch and start at the first layer. According to the work done

in The Trends and Challenges of 3D Printing [19], 3D printing technology

will continue to evolve in the future and due to its promising benefits many

stakeholders are adopting to this technology. This will result in a gap of

knowledge, and as technical issues occurs, the stakeholders might not have

the on-site knowledge required to fix it. Therefore, it is important to develop

a framework that can adapt to most of the 3D printers to detect these kind

of issues before it is too late.
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3.3 Technical Problems in FDM 3D Printing

All the errors that takes place in rapid prototyping can be classified into

three grades of severity: Catastrophic failure, complete failure and partial

failure [24]. Failures that causes damage to the 3D printer are placed in the

catastrophic category. Complete failures are errors that causes so much dam-

age to the object that it is not longer possible to fix the print object.Partial

printing failures are usually only cosmetic defects on the print object and it

can be repaired after the print has finished. Figure 3.1 from section 3.1 is

an example of a partial failure, where the failure isn’t actually affecting the

functionality of the printed object. We will cover the most common com-

plete and catastrophic errors as these has the most significant effect on the

efficiency. Table 3.1 gives an overview of the errors[23] that we will explore

in more details later in this chapter.

Error Description
Clogged
Nozzle

The material flow gets blocked and there is no material com-
ing out from the nozzle.

Object not
sticking

The object detaches from the print bed and starts moving.
The melted material may in worst case stick to the heated
nozzle and cause a fire.

Extruder
Blobs

The filament wraps around the extruder and grows larger as
the printer continues to extrude filament. Can potentially
cause severe damage to the printer if it’s not detected early.

Warping The 3D printed object starts to deform when printing larger
objects.

Over/Under
extrusion

Too much or too little material is flowing through the ex-
truder.

Table 3.1: Overview of common 3D printing failures
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3.3.1 Clogged Nozzle

During a 3D printer’s lifetime it will melt many kilograms of material. Some

larger 3D printers might even melt thousands of kilograms of filament. The

filament is inserted into the extruder and gets melted as it travels through

the heated part of the extruder called hotend [20]. Finally, at the end of the

extruder the melted filament comes out from a tiny hole in the last component

of the extruder, the nozzle. The nozzle has a diameter ranging from only

0.2mm to 0.5mm, which makes it particularly vulnerable to a Clog. A clog

occurs when the filament moving through the extruder gets blocked and the

material gets stuck somewhere in the system. The severity of a blocked

system depends on how early it was detected during the printing process and

in which part of the system that is clogged. The extruder is usually the most

advanced part of a FDM 3D printing system, and one wants to prevent any

damage that can potentially damage the extruder.

Figure 3.2: An extruder is a complex component consisting of multiple parts.
Source [20].

As shown in figure 3.2 an extruder is a complicated part made up of multiple
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components. The extruder in figure 3.2 is a typical extruder designed for 3D

printing where filament are pushed into the nozzle through a teflon tube and

out of the nozzle at at the other end. The following parts are typically used

to build an extruder for 3D printing:

Teflon liner: The material, or filament, that is used for printing are usually

coiled around a spool that stands next to the printer while printing. The

material has a radius of only 1.75mm which makes it necessary to lead it

through a teflon tube in order to safely transfer the material to the 3D

printer. If the material is attached directly to the extruder, and not through

a teflon tube, it may break during a print.

Heat sink: The heat sink is responsible for transferring heat away from

hot components in order to cool down the cold side of the extruder. This

prevents the filament from melting uncontrolled until it hits the heater block.

Heat break: Where cold meets hot. The heat break is the last component

on the cold side of the extruder the material flows through before it starts

melting. It connects the heat break to the heater block.

Heater block: The heater block is where the part that melts the filament.

It contains a thermistor and a heater cartridge. A heater cartridge is the

heating element that heats the hot-end to around 210◦C

Nozzle: The nozzle is the part where the molten filament comes out. The

nozzle size is usually around 0.4mm, which is the diameter of the opening

where the filament comes out. The filament that comes in is usually 1.75mm

in diameter, whereas the melted filament tapers down to the nozzle size of

only 0.4mm.

As we mentioned earlier the nozzle is significantly narrower than the rest

of the extruder components which makes it vulnerable for dusts and other

particles that might find its way through the system. A clogged nozzle is

a common problem in FDM 3D printing and it can potentially cause severe

damage to the components in the extruder. If the material flow gets inter-

rupted in the heated part of the extruder where there are molten material,
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the motors will still continue to press material through the system. As the

hot end gets overfilled by molten material, the molten material will eventu-

ally find its way up through the heat break and into the heat sink before it

cools down. Now, as a result of the clogged nozzle, we also have a completely

blocked heat sink and heat break caused by the molten material that has

been cooled down and stiffened in those areas. Usually, if a nozzle is clogged,

it can be unclogged by heating it up and insert a tiny needle through the

extruder to try and force the material through. However, if the heat sink

and the heat break is blocked as well as the nozzle, it is much harder to fix

the clogged nozzle. If one tries to heat up the system, the heat sink and the

upper part of the heat break won’t reach a high enough temperature to melt

the material again. Thus, unless the extruder motor is turned off as soon

as the clog appears, the extruder may have to be replaced. It is therefore

important to detect a clogged nozzle as soon as it appears.

Many 3D printers have optical sensors installed to monitor both the move-

ment of the filament through the system and the presence of filament. If

the sensors detect that the material is missing or not moving when it should

move, the print will pause. Even if these sensors are installed, they are usu-

ally installed in the upper part of the extruder, namely the cold side. In

the case where the molten material starts moving upwards through the heat

sink, as mentioned in the last paragraph, the material movement won’t stop

until the system is completely blocked. The sensors might not detect the

clog before it has damaged the extruder, but it is an effective way of saving

the print if a clog appears. If the clog is repairable, it is most likely possible

to continue the print afterwards with only minor defects. Therefore, if we

are able to identify a clog using a camera it can extend the lifetime of a

3D printer significantly when used in combination with already pre-installed

optical sensors.
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3.3.2 Warping and Deformation

Warping is one of the most common errors that causes deformation and

failures in 3D printing and it is directly related to the properties of the

material being used as filament [3]. Warping occurs when the parts that are

being printed begins to curl in the middle of the process and the object gets

deformed. It is typically a corner of the printed object that detaches from

the bed and it begins to bend the bottom of the print away from the print

bed. This results in a gap between the print bed and the warped corner. As

the part of the objects that starts warping are usually printed at the lower

layers earlier during the print, it is very likely that the parts are irreparable

even if the process is interrupted.

Figure 3.3: Shrinking in the material causes warping

Figure 3.3 above shows a warping that occurred on a larger print. Depending

on the size of the model the severity of the deformation might vary. In this

case, the print is large enough that the warping does not affect the rest of
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the object. The printer is therefore able to finish the process without any

further deformations.

The deformation, if severe enough, can cause parts of the object to detach

from the print bed and the entire print will fail. This type of failure is

relatively unpredictable compared to other potential failures, as it typically

occurs later during the print even though the first couple of layers successfully

adhered to the print bed [23].

Figure 3.4: Warping on a smaller model causes the entire model to bend

Figure 3.4 above shows a smaller object exposed to deformation as a conse-

quence of warping. If the model is too small, like in this example, the warping

causes the entire model to bend upwards. The surface at the warped location

is now closer to the nozzle than the rest of the model, and the heated noz-

zle will touch the surface and cause it to melt in an attempt to print at the

warped surface. As we mentioned, it is unlikely that the warping is repairable

by interrupting the print when detected, and in most cases the printer can

finish the task without further deformations. However, if warping occurs, the

current state of the warping should be assessed manually in case the nozzle

will touch the surface if the printing process continues. This can prevent any

potential damage to the printer caused by warping. If the nozzle touches the

surface while printing as a result of warping a clog in the extruder may occur

as the material flow gets blocked by the surface. Even though it is unlikely

that a warped model can be repaired, or if the 3D printer manages to finish
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the process, one might still find it worth to develop an algorithm to detect

these deviations due to the potential danger for the printer.

What Causes Warping?

One of the disadvantages of using FDM 3D printing technology is that ma-

terial starts to behave different as it heats up and cools down again. In a

layer-by-layer process like 3D printing, the objects are built by placing layers

of molten material on top of each other. When the molten material cools

down and solidifies, the properties of the material intervene and it begins to

shrink [62]. For instance, if one decide to print using Acrylonitrile Butadiene

Styrene (ABS), which is a common thermoplastic material used in 3D print-

ing, it may shrink by almost 1.5% as it cools. If the material shrinks with

almost 1.5%, then larger prints may shrink by several millimeters. As the

material shrinks the adhesion to the build plate are tested, but unfortunately

the adhesion isn’t strong enough in many cases. The adhesion strength for a

particular build plate will decrease over time as dusts and particles get stuck

on the plate.

Figure 3.5: Forces applied on the print object as it cools down. Source [3]

Figure 3.5 shows the forces acting on the object as the material is cooling

39



down causing the warping deformations. As the material contracts towards

the center of the object it pulls the corners of the objects with it creating a

net force towards the top center of the object at both sides of the object [3].

This is a problem in FDM 3D printing that is hard to deal with and it is

unpredictable as it most often occurs on larger objects with sharper corners.

Prevention of Warping

Today, many printers have been equipped with a heated build plate. Before

the print starts the print bed gets heated to around 60◦C. The heated build

plate drastically reduces the shrinkage rate of the material by slowing down

the cooling process by a large amount. However, warping still occurs when

the adhesion to the build plate isn’t strong enough to keep the material

from detaching. It is therefore hard to completely prevent the warping from

happening during a 3D print.

As far as our knowledge goes, there aren’t many publications assessing warp-

ing of objects with different materials in 3D printing using systematic meth-

ods. Therefore, most of the succeeded prints comes from experience by test-

ing different techniques with different settings. An experiment in [3] shows

that there is a relation between the combination of print speed and print

temperature and warping. The printing speed is the speed at which the

printer moves while extruding material. The printing speed is measured in

Millimeters Per Second (mm/s). However, the best combination of tempera-

ture and print speed weren’t enough to reduce the amount of warping in an

efficient way. At this time, it seems that the most effective way of dealing

with this problem is to reduce the chances of the machine getting damaged

by detecting warping and interrupting the print process as warping takes

place. Detecting the problem will not solve the warping problem itself, but

it will prevent the printer from continuing on an already deformed object.
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3.3.3 Print detachment

Print detachment are identified by horizontal movement in the object as

the 3D printer is adding layers and is often a result of bad adhesion to

the build plate. The adhesion is the 3D printed material’s ability to stick

to the print bed during printing. Some typical consequences of horizontal

object displacements during printing is layer shifting and a phenomenon

called Spaghetti Print. Layer shifting is, as the name implies, a displacement

of one or more layers. If one move a model to the left when it is being printed

the next layer will then be printed with an offset to the right relative to the

model. If the model is displaced too much there might not be any surface

for the machine to build on, and the printer starts extruding material on

nothing but air.

Figure 3.6: Object displacement during printing. Source [6].

Figure 3.6 illustrates an object detachment in two sketches. The object at the

top represents the objects to be printed and is attached to the print bed. The

sketch at the bottom shows a displacement of the object to the right, where

the original position is marked with dashed lines. An attempt to detect such

displacement were conducted in [6] by implementing different image analysis

algorithms for Blob Detection. Blob Detection algorithms aims at detecting

regions of interests in images that differs from other segments of an image,

like different color brightness compared to surrounding pixels. However, as

stated in [60], blob detection algorithms liable to fail and catches a lot of
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noise making it hard to find the contours of the blob. In our project we will

utilize a similar algorithm by applying more robust algorithms and methods

rather than applying blob detection methods.

Figure 3.7 shows an example of how spaghetti print can occur when printing

in the air with no surface for the material to attach to. In this case the

printer managed to attach the last layers to the surface, but very often the

production of ”spaghetti production” won’t stop until the printer is stopped

resulting in a large amount of unorganized material on the print bed. The

strings may also attach to the moving nozzle that can cause additional is-

sues for the 3D printer like clogging the nozzle or damaging wires. Using

traditional computer vision algorithms and methods it is hard to directly de-

tect these strings and classify them as spaghetti print. A project called The

Spaghetti Detective [25], which is a plugin made for 3D printers that supports

Octoprint, uses deep learning algorithms to detect these features. However,

many printable models contains features that are mistaken as spaghetti by

the spaghetti detective. An example of this is the gyroid infill (See figure

2.3c), where the gyroid infill pattern can be detected as strings.

Figure 3.7: Printing on overhang without support results in spaghetti print
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Chapter 4

Design and Implementation

4.1 The Prototype

The target of this project is to investigate the possibilities of using computer

vision to automatically detect errors and making the 3D printing process

more robust. Some of the methods mentioned in 1.5 can detect some specific

errors using machine learning algorithms. However, a lot more training data

for the machine learning algorithm is needed in order to make the detec-

tion more consistent. Some of the machine learning algorithms might also

detect different infill patterns as a defects. In this chapter we present our

proposed method for process monitoring and automatic fault detection in 3D

printing using traditional computer vision algorithms and image processing

algorithms. The prototype is divided into three different parts each with its

own responsible to accomplish their own tasks. The first two tasks are re-

sponsible for monitoring and detecting errors in the first layer of a print and

the nozzle during the rest of the print. The last task is to use the already

mounted cameras to collect labeled datasets for future development using

more advanced approaches by combining machine learning, deep learning

and computer vision algorithms in future applications.
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The fault detection task is further divided into multiple sub tasks:

• Snapshot: Activate the top camera to take a snapshot of the first

layer when it is printed

• Simulation: Simulate the first layer to create a digital model for the

verification process

• Detect contours: Find the contours of both the simulated first layer

and the snapshot of the printed layer

• Verify the first layer: Apply the same image processing algorithms

on both images to detect deviations

• Activate the nozzle analyzer: When the first layer is verified, the

camera in front of the 3D printer is capturing frames and tracking the

nozzle as the printing process progresses

In the following sections of this chapter we give a more detailed overview

of the prototype. First, we present a simplified overview of the system and

its main components showing how the components are related to each other.

Next, we present all the algorithms and methods used for the first layer

verification and the nozzle analyzer.
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4.2 System Overview

Our prototype is implemented using a Client-Server Architecture [54]. The

Client-Server model is an architecture made up of one or multiple clients and

a server. The clients send requests to the server and the server responds

accordingly based on which communication protocol is used. This architec-

ture also provides a mechanism called Inter Process Communication (IPC).

IPC allows different processes to communicate with each other using either

Shared Memory or Message Passing.

In our prototype we have one server and one client, where the server handles

all the image processing, the verification algorithms and the simulation. The

client is responsible for controlling the camera and is communicating directly

with the printer. When the client has recorded a frame, the frame is sent

to the server which responds with a simple boolean value telling the client

whether it has detected a fault or not. If a fault is detected in multiple frames,

the client parses the G-Code through the serial communication between the

client and the 3D printer to pause the printing process.

The communication between the server and the client is fairly simple. We

are using the Python Socket API to create network sockets. Both the client

and the server are implemented as two sockets. The client socket is directly

connecting to the server sockets IP address and the same port the socket

runs on. Listing 4.1 shows a basic example of a client-server communication

from a clients perspective. The client is trying to connect to the address

”127.0.0.1” and the port ”65432”, which is the same port number and IP

address as the server runs on. If the server running on the same address

and port, we are able to connect to the server and send and receive data.

The address used in this example is the IP address used for localhost and

not a real IP address, so the processes can only communicate when they are

running on the same network.
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1 HOST = ’ 1 2 7 . 0 . 0 . 1 ’

2 PORT = 65432

3 with socket . socke t ( socke t .AF INET , socke t .SOCK STREAM) as s :

4 s . connect ( (HOST, PORT))

5 s . s e nda l l (b ’ Testmessage ’ )

6 data = s . recv (1024)

7 print ( ’Data Received : ’ , repr ( data ) )

Listing 4.1: A socket in python acting as a client

Listing 4.2 shows a simple implementation of a server socket. The server

runs on the same address as the client so that the client are able to connect

to the server using the localhost address. When the client is connected the

server can receive and respond to the messages sent from the client. Both

the process and the server must run in different terminals, or processes or

threads.

1 HOST = ’ 1 2 7 . 0 . 0 . 1 ’

2 PORT = 65432

3 with socket . socke t ( socke t .AF INET , socke t .SOCK STREAM) as s :

4 s . bind ( (HOST, PORT) )

5 s . l i s t e n ( )

6 print ( ”Waiting f o r connect ion . . ” )

7 connect ion , address = s . accept ( )

8 with connect ion :

9 print ( ’ Connection r e c e i v ed from : ’ , address )

10 while True :

11 data = connect ion . recv (1024)

12 i f data :

13 connect ion . s e nda l l ( data )

Listing 4.2: A socket in python acting as a server
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The client in our system is designed to run on a microcomputer called Rasp-

berry Pi, which is a small single-board computer that are able to run operat-

ing systems like Linux. Since the Raspberry Pi can read data from multiple

different low level sensors like temperature sensors, humidity sensors and

cameras, it works excellent as a client in our prototype as we want to cap-

ture video frames through a camera. The Raspberry Pi is also able to handle

standard USB connections, making it possible to establish a connection di-

rectly to the 3D printer through serial communication. Figure 4.1 presents a

simple graphical overview of all the main components involved in this project.

Figure 4.1: A graphical overview of the main components in our Client-Server
Architecture

In figure 4.1 we can see all the components in our project and which com-

ponents that are communicating with each other. The Client receives video

frames from the RPi Camera module, which is a camera module designed

to be used together with a Raspberry Pi. The client is also communicating

with the 3D printer, which is able to receive G-Code commands through se-

rial communication. In serial communication messages are sent one byte at

a time. When a frame is recorded it is sent to the server socket, which runs

on a normal desktop computer. A normal computer has better hardware

and thus better computing power making the image processing much faster.

Therefore, it is necessary to implement the Client-Server architecture, as the
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Raspberry Pi won’t be able to efficiently apply the image processing algo-

rithms by itself. When a frame is received by the server, depending on the

state of the printing process, it is consumed by either the nozzle analyzer or

the first layer verification (FLV) application. If we are on the first layer doing

first layer verification of the frame, it is consumed by the FLV application.

When the first layer is verified the rest of the frames will be received from

the front camera that tracks the nozzle.

As we have mentioned earlier it can be hard to find a large dataset containing

training data for different types of defects occured while 3D printing. A large

dataset is necessary in order to be able to train a deep neural network or a

convolutional neural network to accurately classify a 3D print as a failure or

as a success. Therefore, all the frames that are received by the server are

stored locally and will be labeled and stored in a database in the cloud when

the printing process has finished. The system we implemented to label the

data are isolated from the Client-Server architecture and will be discussed

later in section 4.6.
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4.3 First Layer Verification Process

4.3.1 What are we looking for?

It is vital to get the first layer as perfect as possible for the print to succeed

[43] as this builds the foundation for the rest of the 3D print. There are

mainly two issues related to the first layer: Under- and Over-extrusion and

the first layer not sticking to the print bed, where the latter one is one of

the most common problems that occurs in 3D printing [29]. Detection and

autonomous correction of under- and over-extrusion is done in [26]. However,

if the printer starts to under- or over-extrude it is a sign that there is a

mechanical failure, or maybe a minor clog in the nozzle, that is causing it.

Changing the the extrusion multiplier, which are done in [26], can cause even

more issues if the settings are tuned too much. For instance, if the extrusion

multiplier are too high it will eventually cause a clog in the nozzle and there

will be no material flow. Deep learning are used to detect such issues due to

the difficulties in designing statistical models for traditional computer vision

algorithms that are able to reliably detect these patterns.

In our FLV application we focus on detecting the perimeters of the first layer

to verify that all parts of the first layer are printed. The goal is to implement

computer vision algorithms that can detect errors that occurs during the first

layers of the printing process. This is particularly useful when printing parts

that has multiple layers that are not connected to each other, like models

that are twisted around each other and locket together as joints to make the

objects flexible. Figure 4.2 shows a 3D printed model built from multiple

parts that are printed together as joints.
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Figure 4.2: A 3D printed octopus with flexible legs

When 3D printing parts that are connected through such joints, the first

layer usually contains multiple parts, where each part are connected by a

joint. One can then say that we have multiple first layers that might fail. If

one of these layers fail the entire print will also most likely fail due to one

part moving around and disturbing the rest of the print. In figure 4.3 (c) and

(d) we intentionally reduced the adhesion to the bed raising the nozzle by

0.2 millimeters. We can see that 4 of the contours have detached and been

dragged around as the nozzle travelled between its coordinates. One of the

contours has also melted into the nozzle which can potentially cause severe

damage to the printer if not detected early.

Figure 4.3 (a) shows how a typical 3d printed first layer for a multi-joint

model looks like. The first layer consists of multiple contours that are not

connected to each other and the chances of a detachment increases with each

contour. Figure 4.3 (b) shows the final result. In our prototype we want

to trigger a first layer verification at this point before the 3D printer gets a

signal to continue the process if the first layer gets approved by the computer

vision algorithms. If the algorithms detects that something is off by a certain

threshold, we want to send a signal to pause the print.

It is a hard problem to detect whether the first layer is loose or not since
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the object doesn’t necessarily move. In that case it isn’t a critical problem

and the process will most likely finish without any problems. Therefore, the

algorithm in our prototype is designed to look for deviations in the contours

of the first layer. For instance, if the algorithm can only find 6 contours when

the model is supposed to have 7 or more contours, then we have detected

a deviation from the original model. To achieve this we need an image

of what a successful first layer should look like in order to assess whether

it has deviations or not. A basic simulator that takes the generated G-

Code file, the same file that is sent to the 3D printer, as input was built

to simulate a 3D print of the first layer. The simulator loops through the

commands sequentially and builds up the same object layer by layer based on

the coordinates generated from the slicing pipeline. The object is rendered

in a 3D scene using a web browser 3D graphics framework called ThreeJS.

ThreeJS is a framework built on top of the Open Graphics Library[42, 13],

a cross platform API used for interacting with a Graphics Processing Unit

(GPU). Thus, by using the simulator, we have a template to compare the

actual print to and it is possible to assess the first layer using different image

analysis techniques and algorithms.
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(a) Multiple contours that are not
connected

(b) The finished model with flex-
ible joints

(c) Some of the contours detached
during the middle of a print

(d) One of the first layer contours
melted and got stuck into the noz-
zle

Figure 4.3: The first layer showing all the joints and the finished result
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4.3.2 A modified 3D printing pipeline

The normal 3D printing pipeline involves creating a design using CAD soft-

ware, store the model as a STL file, slice the STL file and send the resulting

G-Code file from the slicing pipeline directly to the printer. With our pro-

totype a rework of the entire 3D printing pipeline is necessary to make our

system communicate properly with the 3D printer.

Figure 4.4: A flow chart for the first layer verification prototype

Figure 4.4 shows a simple overview of the re-designed 3D printing pipeline

using our prototype to analyze the first layer before the printing process
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continues. Compared to the original pipeline shown in figure 2.1 that is

normally used in additive manufacturing[17] discussed in section 2.2 we have

added an extra layer of complexity to make this process as autonomous as

possible. The first two steps in the pipeline are the same as for the original

pipeline, where the STL file designed using a CAD application are sliced

into layers which in turn are converted into movement commands for the

3D printer. However, this time the G-Codes are not sent directly from the

slicing pipeline to the 3D printer. The file containing the sequence of G-

Code commands is the only source of information about the state of the

current state of the 3D printer. Instead of parsing all the commands into the

machine’s memory and let it execute the program in its own environment,

we have added a step to customize the G-Code so that it is possible to keep

track of which layer the printer is currently working on at any given time.

The customized G-Code is used by our simulator to extract necessary data

from the model to render the chosen parts of the model. However, at this

time we are only interested in knowing when the first layer is completed so

that it can be verified. The adaptation of the G code will therefore only be

with respect to the first layer of the print. This includes information about

which commands belong to the first layer, how many contours exist in the

first layer and infill. Sometimes the first layer consists of multiple layers to

make a more solid foundation, and this is also necessary information in order

to make an appropriate simulation of the first layer.

Once the customization is completed, the customized file containing G-Code

commands will be sent to both the printer and the simulator. By sharing

the modified file with the printer it is possible to obtain knowledge about the

state of the current process; thus a pause command can be triggered when

the first layer has been printed to analyze it using a camera. When a pause

command has been executed we know that the first layer is printed and we

are ready to move to the next step, the first layer verification process.

A frame from the 3D scene that is rendering the first layer simulation are

stored as a temporary image in the file system and later used as input to the

first layer analyzing algorithm. From the camera attached to the top of the
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printer a snapshot of the current layer is also taken, which in theory should

be equal to the simulated first layer as it is simulated using the exact same

G-Code as the 3D printer. In order to get this as accurate as possible, a

camera that is well configured and calibrated for use in computer vision[47]

is necessary for it to work. The snapshot from the simulated 3D scene and

the physically printed layer are then given as the two inputs to our deviation

detection algorithm.

Algorithm 1 Detect deviations in first layer

1: cv2← import(opencv)

2: np← import(numpy)

3:

4: function layer has deviation (snapShot, firstLayer, thresh, pVal)

5:

6: s, f ← scale(snapShot, firstLayer, 700)

7: sGray, fGray ← grayScale(s, f)

8:

9: t1, t2← threshold(sGray, fGray, thresh, pV al, cv2.BINARY INV )

10: sBlur, fBlur ← filter2D(t1, t2,−1, np.ones(5, 5))/25

11:

12: sContour, fContour ← findContours(sBlur, fBlur)

13:

14: for all s in sContour do

15: if hasSameContour(s, fContour) then

16: return True

17: end if

18: end for

19: return False

20: end function

Algorithm 1 above describes the key steps in the first layer analyzing part

of the pipeline for finding and comparing the contours between the simu-

lated virtual first layer and the actual footage of the printed first layer. Our
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function takes in the two images as well as the threshold and pixel value[40].

First, the two input images are scaled to make some of the image processing

algorithms to work more efficiently on the images. The scale function returns

the scaled version of snapShot and firstLayer respectively and store them in

the abbreviated variables s and f. A grayscale conversion is applied on line 7

to make the pixel values range from only 0 (black color) to 255 (white color)

instead of using the standard Red, Green and Blue (RGB) pixel values. As

objects in a grayscale image usually differs substantially in gray levels from

the background of the image, it is now easier to apply image processing

algorithms for image segmentation like thresholding algorithms[50].

4.3.3 Thresholding the First Layer

In section 2.5.1 we briefly introduced Computer Vision as the ability for com-

puters to gain a high-level knowledge of the content contained in images. A

3D printer is just following a sequence of commands while extruding material,

blindly trusting the movement pattern it has received through the G-code.

We still want the 3D printer to rely on the G-Code commands received from

the slicing pipeline, but we want to make it less blind.

Before the first layer can be verified we need to implement algorithms such

that a 3D printer is able to see the first layer of the print. The ideal result

would be a binary image, an image containing pixels that can only have one

of exactly two colors, where one of the colors represents the printed first

layer. Algorithms to obtain segmentation in a snapshot of the first layer are

implemented using a combination of different techniques. The main methods

used for the segmentation are Thresholding and Masking.

Thresholding

Thresholding is an effective technique in image processing to perform image

segmentation based on the pixel values. Segmentation allows us to remove

everything that we aren’t interested in and isolating objects that we want to
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focus on. This is typically a good way to remove background noise and shad-

ows from the image that may interfere with our image analysis applications.

The result after applying thresholding is typically a binary image, where the

pixel values above the threshold are converted to black whilst the pixel values

beneath the threshold are converted to white. As only tiny deviations from

the original model can be crucial enough to make the entire print to result

in a defect model, we are dependent on an accurate object isolation in our

image analysis algorithms.

To find a good threshold value that is good enough to isolate the first layer

from the rest of the image can be a challenging task, especially when there

are a lot of reflection from the model making it appear more white on some

parts of the object. Depending on the light, the lower part might for instance

be a lot brighter than the upper part of the same model. In figure 4.3 (a) we

can see that shadows on the lower part make the first layer appear darker

whilst the upper part reflects some bright light making it look more white.

This effect can cause the model to obtain the same gray levels as the white

dotted squares on the print bed making it harder to isolate the printed layers

from the rest of the image. Even if we manage to find a good threshold for a

particular case, the lightning will with high probability be slightly different

during the next print. With different lightning a different threshold is needed,

otherwise the same image processing and analysis algorithms will produce

different results each time, making our fault detection very inconsistent.

In figure 4.5 we are applying thresholding algorithms to a snapshot of the

first layer of the same octopus model used earlier in this thesis. This model

is a great model to experiment with as it contains multiple geometries that

are not connected to each other. By being able to detect and isolate all the

parts of such a complex model we create a solid baseline for succeeding on

less complex models in the future as well.

Our goal is to eliminate every pixel from the image that is not a part of

the printed first layer. We can see in figure 4.5 that applying thresholding

algorithms to the image of the first layer results in binary images containing

only two pixel values. As mentioned, some parts of the 3d printed first
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Figure 4.5: Thresholding algorithms applied using two different thresholding
values. The image to the right has a lower threshold value allowing darker
pixel values.

layer appears brighter than other parts due to the lightning, which may

create an interference in the thresholding algorithm. In the image to the left

the darker part that were exposed to shadow did not reach the threshold

and got excluded from the binary image. By reducing the threshold value,

meaning that darker pixel values gets included, the shadow exposed parts of

the first layer appears in the image to the right. However, with more forgiving

threshold values comes more noise as more pixels gets included. We can see

that the dotted lines from the print bed are much sharper as well as some

other reflections from the build plate. The image situated to the right got a

threshold reduction of only 15, from a value of 120 to 105. Compared to the

maximum value of 255, which is the largest pixel value in a grayscale image,

this is a small reduction that only makes 6% out of the total pixel range from

0 to 255.

By using traditional computer vision algorithms to detect deviations from the

printed first layer and our digitally created first layer it is hard to accurately

perform image analysis on images containing a high level of noise. In figure

4.5 every single pixel above the threshold, the white spots in the image, will
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be treated as a part of the first layer. This means that the reflection from

the print bed, the dotted lines and cosmetic damage to the print bed that

passes the threshold check will be interpreted as a deviation from the model.

However, what if we accept a certain threshold of errors that are allowed

to occur before we trigger an error? By allowing a certain percentage of

deviations to occur we take account for the redundant pixels. The problem

with this method is to find a threshold that is generating the same results

even with different lightning. With more lightning, more reflections will occur

creating more deviations.

Figure 4.6: Histogram of the binary images in figure 4.5. The red graph
reflects the image with lowest threshold value.

We created a histogram analysis of the two images with different threshold

values from figure 4.5. By creating a histogram of both images we get an

accurate description of the pixel distribution that we can compare. Figure

4.6 shows the histogram created for the two binary images in the previous

example. Despite the small change in threshold value the results are signifi-

cant. The green graph represents the image with the largest threshold value

of 120 whilst the red one represents the image with the lowest threshold value

of 105. We know by default that our example model got a symmetric shape

which should be reflected by the pixel distribution in our histogram. An

interesting case to note is that for the image with largest threshold value has

most of it’s bright pixels shifted towards the right, while the second image
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experiences the opposite effect. We can also see that the green graph main-

tains a better symmetry than the red graph does, as the red one generally is

shifting more towards the left side. This shows that even a small change in

the projected lighting can change the perceived symmetry of the geometry

completely. The human eye have the ability to easily detect whether a part

of such a binary image is noise or not by comparing with the digitally created

model. However, for a computer that only is able to see one pixel at a time

through a camera, it is hard to determine determine whether the current

pixel is a part of the object or not.

Threshold: 120 Threshold: 105

White pixels 36851 48363

Total pixels 415829 415829

Percentage of white pixels 8.86% 11.63%

Table 4.1: Pixel distribution of the binary images in figure 4.5.

Table 4.1 above shows a detailed overview of the counted pixels taking place

in both binary images. The number of white pixels increases drastically by

more than 10.000 pixels when reducing the threshold value by 15. This means

that 2.8% of the total numbers of pixels got converted from dark pixels below

the threshold to brighter pixels above the threshold value. This is equal to a

31.2% increase of white pixels. If we, for instance, decide to set the threshold

for our deviation detection algorithm to accept and ignore all detected devi-

ations below 5-10%, the noise generated by the change in lighting conditions

can quickly reach this threshold generating a false deviation detection. By

increasing the deviation detection limit we reduce the chances of the reflec-

tion generated noise to reach the new threshold. However, this also increases

the chances of classifying real defects as a false detection. For this method

to be successful, optimal lighting conditions and maximum contrast between

the material being printed and the build plate are indispensable.

Even with constant lighting, some objects might be printed on some of the

spots of the print bed that reflects most light which in turn will contribute
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to a small change in lighting conditions. Another problem by utilizing a

light sensitive method is that our method will only work on specific types of

material, removing the ability to print with light absorbing materials. Ar-

tificial Neural Networks (ANN) and Convolutional Neural Networks (CNN)

are commonly used for detecting objects in images for classification purposes

[38] and object segmentation by displaying the object and its position by

masking it. These ANNs and CNNs are pre-trained models to detect known

shapes and patterns in images. In 3D printing, the shapes and patterns are

not known, and therefore it is hard to train a network to mask the objects.

We use a similar masking technique used in most CNNs for image segmenta-

tion by looking for simple features that takes place in most of the first layer

prints, namely the colors of the print material.

Masking the First Layer

Creating object segmentation algorithms that are based purely on the con-

trasts of the image, which are done on many computer vision applications,

comes with some challenges in detecting the first layer in 3D printing. The

main challenge is that the level of contrasts are very inconsistent and the

contrast of the surroundings can very quickly reach an approximated con-

trast at the same level as the object we want to isolate. As a solution to this

we implemented another layer of image pre-processing utilizing a masking

technique that is based on the RGB colors of the image, before we threshold

the image. This allows us to limit the area of the image to a Region of In-

terest (ROI). The pixels included in the resulting image after performing the

masking operation will have a color similar to the material of the first layer

being printed. This means that in most scenarios, unless the material has a

similar color to its surroundings, the resulting image will contain only pixels

that are related directly the first layer, called Superpixel.

As mentioned earlier, the masking is used to display objects detected by the

segmentation algorithms. Usually CNNs or ANNs are used for this purpose

as the majority of images contains different colors and shapes that are hard to
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create consistent statistical models and algorithms for. In our case, we only

need our segmentation to isolate two segments of the image - the first layer

and the background. The algorithm only need to find the segment containing

the first layer, as everything else in the image will be grouped together as

the background, or the second segment in the image. Our advantage is that

the first layer will consist of a single color and not multiple different colors.

Our prototype is therefore built on the assumption that the first layer is built

using only one type of material with a single color.

Algorithm 2 Algorithm for creating the mask used for segmentation

cv2← import(opencv)

np← import(numpy)

function createMask (image, lowerCRange, upperCRange)

hsv ← rgbToHsv(image)

mask ← inRange(hsv, lowCRange, upCRange)

isMask ← newList()

for all m in mask do

if m ≥ 1 then

isMask.add(True)

else

isMask.add(False)

end if

end for

fLayerP ix[isMask]← image[isMask]

res← bitwise and(image, fLayerP ix,mask)

return res

end function

Algorithm 2 shows our algorithm for generating the mask for the first layer.

First we import the python modules to be used in our application, opencv

and numpy[8], as these modules contains all the functionality for handling

the lists and the pixel operations. The function takes in an image, which
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is a numpy array and two three dimensional vectors describing the HSV

(Hue, Saturation, Value) [27] values for the lower HSV and the upper HSV

boundaries. The input image is originally in RGB format. The first line of the

function converts the RGB image to a HSV image, converting all the pixels to

HSV values instead of RGB values. The HSV format is the preferred format

in most object detection application as it is a decomposition of an image

providing necessary analysis tools for classification and image segmentation

[27]. Figure 4.7 shows how the colors changes as the HSV values changes.

Figure 4.7: HSV Color Space [From: Wikipedia]

Figure 4.7 shows how the colors act as we change the HSV values. The

Hue value ranges over the entire spectrum of colors, and we call this the

wavelength of the perceived color as it is the most dominant factor. The

Saturation value can be changed to manipulate the strength of the color.

The last parameter, Value, determines the brightness. A low value will give

a darker appearance of the pixel.

After converting the image to an array of HSV pixels, we create a new array

with the same size, changing all the pixels that has a value in the range

between the lower color and the upper color boundaries to white. The pixels

outside the boundaries are set to black. As the image only contains black

and white pixels, we have a new binary image of the model, but this time we
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have removed all the background noise. By utilizing the HSV color model

we are able to implement a segmentation algorithm. Figure 4.8 shows the

result of the mask after applying algorithm 2 on the image.

Figure 4.8: The resulting mask after applying algorithm 2 on the image

Now, we have an almost perfect binary image of the first layer. However, we

want the image containing the full RGB color space with the noise excluded.

Thus, the final step in our algorithm is to render all the pixels from the orig-

inal image with the corresponding pixel indexes from the isMask array that

contains the boolean value True. The boolean AND operation is performed

on the image with the binary image applied as a mask, telling the algorithm

which pixels to do the boolean operation on. This operation is also called

Bitwise AND operation as it is performing the boolean operation on each

pixel in both images that has a matching indexes. If pixel (xi), yj in both

images has the same pixel value we keep it, otherwise we set it to 0.

The final result can be seen in figure 4.9. We now have a clear segmentation

of the first layer in the full RGB color model. By converting it back using all

three color channels we are able to apply better image analysis algorithms

directly on the segmented image.

64



(a) Snapshot of the first layer (b) Image segmentation algorithms are
applied to remove background noise
from the snapshot

Figure 4.9: Image segmentation algorithms are applied on a snapshot of the
first layer print.

We have successfully implemented a segmentation algorithm to create a

threshold for the first layer snapshot and we have been able to isolate a

snapshot of a 3D printed first layer. As we can see in the first algorithm we

introduced in section 4.3.2, algorithm 1, we have implemented the threshold

function on line 9, but we have only applied it to the snapshot and not to

the simulated first layer. However, the same algorithms will be applied to

both the digitally rendered image and the snapshot. The next step in al-

gorithm 1 is to find the contours of the first layer, which requires accurate

pre-processing algorithms like thresholding to isolate the objects we want to

analyse. The resulting pre-processed image from algorithm 2 will be the first

input for the function that will search for the contours whereas the simulated

layer will be the second input.
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4.3.4 Contour Approximation

We have done an image segmentation of the first layer snapshot, changing

all the background pixels to black leaving us with an image of only extruded

material. For the first layer verification process the pixels need to be or-

ganized. Now, the image is only a two-dimensional array containing pixel

values ordered from the top-left corner to the bottom-right corner. It is hard

to do any sort of shape analysis on an array containing only color information

about each pixel. A good way to do shape analysis on figures from a two

dimensional view is by finding the contours of the shape on wants to analyse.

If we go back to figure 4.9 we see that this model has multiple potential con-

tours, where each green region that is not connected to another green region

may have its own contour.

A contour is simply an approximated curve that joins all the continuous

points, typically around a boundary. OpenCV provides an implementation

of Douglas-Peucker Algorithm [61] which can be used to find points around

a boundary to create contours. The algorithm does an approximation of the

points and does not include every single point around the border. This algo-

rithm is highly sensitive to interference from other pixel values, requiring a

successful pre-processing of the image before one can approximate the con-

tours. From the image processing done in last subsection we are able to find

all the contours for the first layer. Figure 4.10 below shows the result after

applying OpenCV’s implementation of the contour finding algorithm.
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Figure 4.10: Approximation of contours are shown in red

In the image to the left all the contours are drawn on a black background.

In the image to the right the contours are drawn in the same image as the

algorithm was applied to. We can see that the approximated contours fits

well to the 3D printed first layer shapes, but there are some slight deviations

in some of the shapes. Each contour is an array of points that lies on the

contour curve, and all the contours are stored in a list. By being able to

find the contours of the first layer enables us to apply more advanced image

analysis techniques on the first layer. We are for instance able to count the

total number of contours stored in the and thereby counting the number of

objects that has been printed.

To be able to count the number of printed objects is in itself is a big step

towards moving from a list of pixel values to a higher level of knowledge

about an image. In the next subsections we have implemented a simulation

framework that takes the sliced 3D model as input and simulate the 3D

printing process layer by layer. The simulation and the result from figure

4.10 above will be compared to verify the first layer.
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4.4 Fault Detection Simulation Framework

In the last section we managed to find all the contours and organize them in a

list. Each index of the list contains information about one contour. However,

this information is useless for our purpose without any knowledge about the

intended shape. We want to verify whether the first layer has deviations to

the intended model. The existing tools for analysing a sliced 3D model before

printing is not suitable for our purpose as they generate a lot of noise and

are hard to customize. Therefore, we created a simulation framework that

is highly customizable which analyses the generated G-Code directly to find

information about the model.

Our Simulation Framework is implemented using NodeJS, which is a JavaScript

runtime environment, and the high level graphics library ThreeJS for ren-

dering the sliced model in a 3D scene. A simple server hosting our web

interface, the ThreeJS application, is built using a web application frame-

work for NodeJS called ExpressJS. ExpressJS is used to process and respond

to HTTP requests. Therefore, our simulation framework can be accessed di-

rectly in a web browser by navigating to the server address which will render

the ThreeJS scene in a web browser.

The framework is split into two main parts: The 3D Scene for rendering

the model and a back-end which accesses and analyses the G-Code before it

is sent to the front-end application for rendering. As we mentioned earlier,

the 3D printing pipeline using first layer verification is slightly modified, and

requires the 3D printer to pause after first layer is printed. The back-end

service for our simulation framework automatically adds two G-Code com-

mands to the G-Code file before it is sent to the 3D printer. The commands

are added right after the G-Code that defines the end of first layer. The

added G-Code commands are G28 and M226. Since the camera is mounted

on top of the printer angled directly down to the build, the camera view will

get blocked by the moving print head. Sending G28 command to the printer

before taking a snapshot of the first layer will solve this as it tells the printer
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to move the axis to their home position. When the axis are placed in their

respective home positions the M226 command is triggered telling the printer

to temporarily stop the process. The process continues when the printer

receives the M24 command which are sent after the first layer is verified.

It is also important to note that these commands are not supported all 3D

printing firmwares. If the commands are not supported one must change the

code to use the commands that apply for that particular 3D printer.

The ThreeJS Scene

Figure 4.11 below shows all components and their child components in the

ThreeJS scene.

Figure 4.11: Object in the ThreeJS scenegraph

The scene has three child objects: AmbientLight, Plane and Camera. A light

source is used to simulate lighting effects in ThreeJS to illuminate objects

and make them visible. By using the AmbientLight object all objects in

the scene are illuminated equally in the scene, so no noise due to lighting
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are generated. A plane geometry is a rectangular shape used to illustrate

the build plate of the 3D printer. The Camera is the virtual camera in the

3D scene. The Rendered Model is a child of the Plane component, meaning

that whenever a translation or a rotation is applied to the plane, the same

operation will be applied to the model making it move relative to the plane.

A simple user interface are placed at the top of the ThreeJS application where

the user can chose between different options for simulation. For instance, one

can set a texture on the plane illustrating a real build plate and apply realistic

lighting to evaluate error detection algorithms without printing. Another

important option is what information about the model one wants to render

in the scene. For instance, in our case we want to analyze the contours of the

sliced model and therefore the option for perimeters are selected. One can

also define which layers to be analyzed. When all options are set the front-

end application triggers a HTTP request containing the option parameters

to the back-end server. Listing 4.3 below shows the request object sent from

front-end. In this example the front-end asks for contours of layer 1-4 in the

multi joint.gcode file.

1 {
2 ” f i l ename ” : ” mu l t i j o i n t . gcode ” ,

3 ” s ta r tLaye r ” : 1 ,

4 ”numLayers ” : 4 ,

5 ” f e a t u r e s ” : [ ” contours ” ]

6 }

Listing 4.3: Request object sent from the front-end application

Back-End Server

The Back-End receives a request from the front-end triggering a function to

analyse and extract the requested information from the G-Code. First, the

G-Code file is searched for the layer height. For instance, if the layer height is

0.2mm we know that we are on the first layer if the nozzle height is set to 0.2.

The next layer will have a nozzle height 0.4 mm increasing by 0.2mm for each

layer. Using this information we can identify each layer from the G-Code file.
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However, a G-Code file contains different procedures built up by movement

commands for different purposes which creates a lot of noise in a G-Code file.

For instance, when a contour is printed the printer do not move directly to

the next location. It performs a wipe and retract movement, which consists

of multiple commands executed to retract the filament from the nozzle and

wipe the nozzle against the printed contour to clean the nozzle for any melted

material that may have attached to the nozzle. A procedure like this can be

identified in the G-Code by a change in feed-rate, which changes velocity of

the axis. Perimeters and infill are printed using a constant feed-rate.

The algorithm strips all coordinates from G-Code commands containing a

constant feed-rate until a change in feed-rate is detected. When a change

is detected the algorithm continues to the next G-Code commands with the

normal feed-rate and repeats the process until maximum layer height has

been reached. The extracted coordinates for infill and perimeters are packed

into a multi dimensional array where each index contains infill and perimeter

information for the respective layer. The array is then sent back to the

front-end as a response.

Rendering the Extracted Coordinates

Rendering of the coordinates are done in the front-end application when it

receives the response from server. The response will contain information of

either contours, infill or both. The rendering process is the same regardless.

The rendering process goes as follows for the perimeters:

1. Loop through the list of perimeters

2. Create a basic ThreeJS geometry model containing an empty list

3. For each point in the perimeter push it to the list from previous step.

4. Create a ThreeJS Line Geometry and define its shape using the points

from last step

5. Add the Line Geometry to the scene
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6. Repeat from step one until all perimeters are processed

7. Render the scene.

(a) Simulated G-Code seen from a top-down
view

(b) Simulated G-Code seen from
an inclined camera angle

Figure 4.12: The simulated G-Code from two different camera angles

Figure 4.12 shows the result of our simulation framework. In figure 4.12a we

can see that the rendered contours from our G-Code simulation matches the

contours found in the last section. Our fault detection simulation framework

can be used to compare these two images in order to verify the first layer.

We can, for instance, count the number of contours and check whether they

have the same contours or not. In figure 4.12b we have changed the camera

angle slightly so that we can see the layers of the model. In the next section

we present a method to detect errors after the first layer has been verified

by using another camera view. Changing the camera angle in our simulation

framework so that it matches the angle of our monitoring camera can give the

monitoring algorithm useful information like how many objects are expeted

to be seen from a particular angle.

The next figure, figure 4.13 shows the results after comparing two images of

the same model, but one is missing some of the contours.

The image to the left is missing some contours and we detect it as a polygon

error, as there are some missing polygons in the picture. For models that do
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Figure 4.13: Deviation detected between two images

not contain multiple contours in their first layer we have implemented image

analysis techniques to calculate the aspect ratio of the bounding box around

the entire model. The fact that we detect a discrepancy between height and

width in the image may be a sign that an error has occurred in the first

layer. This can be caused by the 3D printed layer loosening from the build

plate and has been rotated, warping in one of the corners or missing material

extrusion.
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4.5 Nozzle Analyzer

In section 3.3 we discussed different situations in which technical problems

arises during the 3D printing process. A clogged nozzle, warping, deformation

of the printed object and object detachment were the most common failures

that occurs in the middle of a print. In an earlier subsection, section 4.3.3,

we mounted a camera on top of the printer to detect deviations in the first

layer. Printing the first layer is usually the hardest part as that’s where

problems usually occurs. By verifying the first layer, most of the automatic

fault detection is therefore already completed. However, we still want to be

able to detect if the object that is being printed has detached from the print

bed or if there is no filament flow in the extruder. In [6] a similar project

using similar techniques was conducted. However, their algorithms focuses

on detecting the largest blob found in a frame, and the algorithm wont be

able to detect any deviations while printing multiple objects.

4.5.1 Camera Position Relative to Y-Axis

In order to set up real-time monitoring of the object that is being printed,

the camera angle from the first layer verification process must be changed.

For the first layer verification a snapshot were taken from above, which re-

quires the printer to home the X-axis before the snapshot is taken. As the

object is being printed, the view of the printing process gets blocked by the

print head making it hard, or even impossible, to monitor the process from

above. Depending on the how the Y-axis for the 3D printer is mounted, a

different setup for this implementation may be required. The printer used

in this project has the print bed mounted on its Y-axis, making the object

move in the direction of the Y-axis as it gets printed. Therefore, accurately

monitoring the process in real-time is a challenging task as the camera may

lose focus of the print object as the printer is progressing. The camera is

mounted in the front of the 3D printer to make the movement of the Y-axis

parallel to the camera projection, making the Y-axis either move towards
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and away from the camera, not left and right. Figure 4.14 shows the setup

with a Raspberry Pi controlled camera mounted to a tripod in front of the

3D printer.

Figure 4.14: 3D Printer setup with a Rasperry Pi controlled camera for
monitoring

In figure 4.14 we can see that the mounted camera is alligned in parallel to

the direction of the Y-axis. This eliminates the problem in which the object

moves left and right on the axis making it hard to automatically analyze the

image properly due to the camera projection angle.

Figure 4.15 simulates an example of a setup that we want to avoid in our

prototype. A 3D scene with a camera and its perspective projection are

simulated using the cross-platform game engine called Unity3D. The camera

is rendered as a white object in the lower-left corner. In front of the camera

are three equally sized objects placed with an equal distance between each

other. One can see the projection lines for the camera in which everything

inside the lines will be rendered in front of the camera. The frame in the

lower-right corner displays the view from the cameras perspective. If we look
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Figure 4.15: Simulating a camera projection in Unity3D

carefully at the camera view in the lower-right corner, one can see a small part

of the left side for the blue object and the right side of the red object due to

their position relative to the camera. We want to avoid this in our prototype

for now, as this will be interpreted as a significant change in geometry by the

image analysis algorithms. We have therefore placed our camera directly in

front of the object that is being printed so that the projection is in parallel

with the Y-axis to avoid this effect.

As we have eliminated the factor in which the object moves sideways enables

us to easily detect if the object has lost the adhesion to the print bed. For each

frame sent to the server we have to check if the object has changed its center of

mass since the last frame that was analysed. If there is a significant change

in the center of mass we can confidently conclude that a detachment has

occurred, and the server will respond with a false-flag to the client which will

pause the process. However, as one challenge gets solved another challenge

arise. The distance between the nozzle and the object that is being printed

changes slightly from the perspective projection seen in an image. This means

that the pixel-distance between the nozzle and the printed material will be

lower when the Y-axis moves away from the camera and vice versa. This is

a scenario that has to be taken account for in the nozzle tracking algorithm
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as a consequence of the chosen camera position.

4.5.2 Region of Interest

In the previous subsection we explained the experimental setup for our pro-

totype discussing the importance of obtaining a good position and angle for

the camera. The view from the camera position is shown in figure 4.16. We

have marked three reference points in the image, marked as purple circles,

which will define the Region of Interest (ROI) of the image. ROI can be de-

fined as smaller samples within a larger dataset that is under consideration.

For instance, in a computer vision application we may want to consider a

smaller set of pixels in a large array of color pixels. We strategically chose

four points in our image to define a rectangular box that defines the bound-

aries for our ROI. To find our region of interest we apply the same masking

algorithms as we did in the last section to find the positions for the reference

points. The two bottom reference points will decide the minimum and the

maximum value for the X-axis, as well as the maximum value for the Y-axis.

The lowest reference point will define the largest Y-value since the top-left

corner is, as opposite to most 2D coordinate systems, defined as the origin

in most computer graphics libraries, including the OpenCV library used in

our project. Following the same procedure, the reference point on the nozzle

will be used to set the minimum Y-value. The reference point attached to

the nozzle will also be used to track the movement of the nozzle to calculate

the distance between the nozzle and model.
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Figure 4.16: Build plate with reference points seen from the front camera
setup
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Algorithm 3 is applied on the image to calculate the values for x1, x2, y1 and

y2, which are the values for our ROI coordinates.

Algorithm 3 Calculate ROI points for print area

1: function calculate roi points (image, lowerBound, higherBound)

2:

3: x1← image.width

4: y1← image.height

5: x2← 0

6: y2← 0

7: hsv ← convertToHsv(image)

8: mask ← inRange(hsv, lowerBound, higherBound)

9: contours← findContours(mask)

10:

11: for all c in contour do

12: xc, yc← calculateCentroid(c)

13: x1← min(x1, xc)

14: y1← min(y2, yc)

15: x2← max(x2, xc)

16: y2← max(y2, yx)

17: end for

18:

19: return x1, x2, y1, y2

20: end function

The algorithm takes an image and an upper and lower limit for the HSV color

range used in the segmentation of the reference points. After the segmenta-

tion is done and the reference points are isolated in the mask, we are looping

through all the detected reference points, calculate the Centroid of each ref-

erence point and then the minimum and maximum values for the X and Y

coordinates are calculated. These coordinates are also called Extreme Points

[44]. In Linear Programming an extreme point is usually called a vertex or

a corner point in a convex set. A Centroid is, in mathematics and physics,
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defined as the geometric center of a shape in a plane. The extreme points

will define the extreme north, east, south and west centroid coordinates for

all the contours that are detected in algorithm 3.

Finally, the following points will define our ROI: (x1, y1), (x2, y1), (x1, y2)

and (x2, y2). The ROI coordinates will be used to crop the image, removing

all the pixels that are not found to be inside the ROI boundary, eliminating a

lot of noise from the image. As the image cropping provides a much smaller

area to work on, a large amount of pixels that may interfere with further

image processing are now excluded, increasing our chances to detect errors.

Figure 4.17 shows the resulting image after cropping the original image based

on the coordinates from algorithm 3. The printed object is marked in a

red box whilst the nozzle is marked in a green box. By applying the same

segmentation algorithms as we did earlier to isolate the first layer we are now

able to isolate both the nozzle and the object on the build plate.

Figure 4.17: Frame from the front camera are cropped to the reference points
creating a ROI

With both the nozzle and the 3D printed object isolated from the back-

ground, applying image processing and image analysis techniques directly to

the nozzle and the model without any interference from the environment is

possible.
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4.5.3 Detection of Extruded Material

This part of the process may arguably be the most difficult and error-prone

step of this module. As seen in the captured frame in figure 4.17 from last

subsection, the light that hits the build plate in our experimental setup is

bouncing off and creating reflections. The reflections creates a number of

pixels with values that are relatively close to the color range we use for image

segmentation. We solve this problem by increasing the similarity distance

between similar pixels. This will result in an increased contrast between the

pixels making the segmentation more consistent and less error-prone to pixel

errors.

The cropped RGB image is converted to the CIELAB Color Space [35]

(LAB), which is often used as a base for color vision. Lab expresses colors as

three values: L for the lightness, A for the color from green to red and B from

blue to yellow. To increase the contrast for the frame an image processing

technique called Adaptive Histogram Equalization (AHE) [64] was applied

to the L-channel of the LAB-image. However, this algorithm was shown to

also amplify the noise, creating almost the same relative distances between

many of the pixels that interfere with the image segmentation as the original

image. Another variant of AHE called Contrast Limited Adaptive Histogram

Equalization (CLAHE) [65] prevents this problem as it is designed to limit

the amplification.

A 3D printer often prints a different model each time a new printing process is

started, making it difficult to find a common feature that consistently occurs

in almost every model. If a box of rectangular shape was printed each time

it would have been possible to implement a statistical model to detect all the

features of a rectangular shape. Since that is not the case, the only feature

that we can be sure exists is the color of the filament used to print the model.

By increasing the contrast using the CLAHE image processing technique we

can try to find a color range in the HSV color space that only applies to the

material being printed. However, this limits our image analysis algorithms

to only work with materials that has a certain level of contrast compared to
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the environment.

Finding the HSV Color Range

Finding the correct color range in the HSV color space that only applies to

the objects that we want to detect in our image can be time consuming.

Using the OpenCV library it we can create a User Interface (UI) and pass

different values directly into our algorithms using UI sliders to change the

values. By using the UI we set a minimum and a maximum value for all

three HSV values to find the range that fits best to isolate the 3D printed

object from the rest of the image. Figure 4.18 below shows the UI used to

find the HSV range. The values are applied to the cropped image from figure

4.17. As we can see the only visible part on the image is first couple of layers

that has been printed by the printer whilst everything else has been erased.

The sliders below shows the minimum and the maximum values for the HSV

color space to obtain this segmentation. For this specific material, lighting

condition and background the HSV range should be in between (78, 23, 174)

and (96, 74, 255). As the values changes the image will be re-rendered after

the algorithms has been applied with the new input values.

Figure 4.18: UI to find a suitable HSV range for image segmentation
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2D Convolution Matrix and Image Smoothing

By looking carefully one can identify groups of pixels that are not connected

in the binary image shown in figure 4.18 above. When we try to find the

contour of the printed object, the pixels that are not connected to the rest of

the object will be perceived as isolated objects by the algorithm. Therefore,

multiple contours will be detected. Smoothing the image will solve the prob-

lem with multiple contours. This is done by passing a 2D averaging filter to

the image where a Kernel is convolved with the image. A Kernel is usually a

relatively small matrix that is much smaller than the image to be processed.

The matrix below shows an example of a 5x5 kernel filled with ones:

k =
1

25


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


The kernel is placed on top of a pixel in the image to be smoothed. All the

pixels in the kernel now has a respective pixel in the image. The pixels in

the image are multiplied by their respective cell in the kernel matrix, added

together and then divided by 25 to get the average. Finally, the pixel in

the middle of the matrix will be replaced with the new average value. The

operation is repeated on every pixel in the image, and the result will be a

smoothed image. With a smoothed image one can calculate the contour lines

of the detected material. Nonetheless, the matrix presented above will extend

the pixels in both directions in the two dimensional plane, which makes it

challenging to detect a potential clog of the nozzle. To detect a clog the

distance between the 3D printed object and the nozzle is measured. If a clog

occurs it will be detected as the distance between the nozzle and the object

is increasing each time the nozzle is moving up one layer.

If the image is smoothed in the vertical direction it can be hard to mea-
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sure the distance consistently as the segmentation algorithm might segment

different pixels each time due to external influences like change in lighting

or adjustments of the focus by the camera lens. In our prototype we have

therefore applied the 2D convolution on the image using a 1x10 kernel ma-

trix for the averaging process instead of a 5x5 matrix. A 1x10 matrix will

only perform the averaging operations in the x-axis, and not the y-axis. As

we eliminate the problem with the interference of the distance measurement,

there is also a downside with using only a single row for averaging the pixels.

If there exist a pixel that does not have any close white pixels as neighbour

in the horizontal axis, it will affect the averaging significantly, thereby the

smoothing may not be effective enough when calculating the contour. By

increasing the size of the row from 5 to 10, the smoothing is more aggressive

and may compensate for the loss in vertical averaging reducing the chance

of having any lonely pixels. The result of the horizontal smoothing is shown

in figure 4.19. The top image shows the raw segmentation whilst the bottom

image shows the result after smoothing.

Figure 4.19: Smoothing the binary image for better contour calculation. The
bottom image shows the result after smoothing the upper image.
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4.5.4 Contour Approximation and Distance Measur-

ing

Using OpenCV’s implementation of the Douglas-Peucker Algorithm [61] we

can find a contour approximation for the smoothed image. With the contours

of the binary image one have access to a series of different features that can

be used for error detection. Examples of features that can be calculated are

area, centroid and moments of the shape.

(a) Contour approximation for the smoothed bi-
nary image

(b) Bounding rectangle around the detected
filament

Figure 4.20: Calculating a bounding rectangle around the contour

In figure 4.20 we can see the results after applying the contour approxima-

tion algorithm and drawing a bounding rectangle around the contours. The

bounding box is used to verify that we have calculated the correct extreme

points for the 3D printed object. For each frame of the image we calculate

new extreme points for the filament. The points that were calculated in the

previous frame are also stored in variables allowing us to compare the current

calculated points with the previous calculated points. There are three points

in particular that are interesting to compare: The point that are furthest to

the left, the center point and the rightmost point. If there is a significant

change in the value of the X-axis for these points from frame to frame we can

conclude that movement of the model has been detected. This is a sign that

during the printing process the object has detached from the build plate and
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the Rasberry Pi sends the M226 G-Code command to the printer, telling it

to go in pause mode.

To find the relative distance between the nozzle and the 3D printed filament

we need to know the position of the nozzle. The nozzle matches too many

colors colors with the surrounding environment making it difficult to find a

color range to isolate it through image segmentation. When the ROI was

selected, a reference point were placed on top of the nozzle enabling us to

crop the image where the nozzle is included in the ROI. We will use the

already calculated center of the nozzle-reference point to measure the relative

distance. We calculate the Euclidian Distance between the top point of the

bounding rectangle around the filament and the center of the nozzle-reference

point. The X-coordinate is the same in both points and is set to the X-

coordinate of the reference point.

dist = euclideanDistance(Xnozzle, Ymaterial, Xnozzle, Ynozzle)

By only changing the Y-coordinate the calculated distance will reflect the

relative height difference between the nozzle and the filament. As the nozzle’s

reference point is used to measure the distance and not the nozzle itself,

the calculated distance between filament and nozzle won’t reflect the true

distance. As we are only interested in detecting a change in the relative

distance, and not interested in the distance itself, the algorithm will work by

detecting the change in distance between the reference point and the object.

However, some calibration is needed since we need to find a threshold for

which distances to be accepted.

The threshold is found by applying the algorithm to an image of which we

know is a successful print. Figure 4.21 shows the result after applying the

algorithm to a frame of a successful print. By calculating the distance be-

tween the bounding box and center of the reference point we find that the

Euclidian distance is 22 pixels, which is the threshold value in this example.

The threshold distance may vary slightly due to changes in pixel values inside

the HSV range as a result of reflection and other external interference. With
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Figure 4.21: Distance between the nozzle and the 3D printed object

the threshold value decided, algorithm 4 is used to verify that the distance

between the nozzle and the filament is correct.

Algorithm 4 Verify nozzle distance

1: function valid nozzle distance (p1, p2, prevDistance, threshold)

2:

3: distance← euclidianDistance(p1, p2)− threshold
4:

5: if prevDistance 6= null then

6: if (distance− prevDistance) ≥ threshold ∗ 0.5 then

7: return False

8: end if

9: end if

10: if distance ≥ threshold ∗ 0.5 then

11: return False

12: end if

13: return True

14: end function

The nozzle distance verification function is applied to the distance measured

in every video frame received from the client. A new distance from the points

in current frame is calculated whilst the distance from the previous frame

is preserved. If the calculated distance between the two frames are larger

than the threshold divided by two, we classify it as an error. We chose the

accepted value to be less than half the distance measure from the nozzle
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reference point and the boundary box to account for potential pixel errors.

In order to detect detachment and movement in the object itself the same

technique with a slight modification is applied. For each frame received from

the server the centroid position of the bounding box is calculated. If the cen-

troid has change significantly from the previous frames that has been anal-

ysed we classify it as a detachment from the print bed. In our experimental

setup we chose the threshold for allowed movement to be a distance of 25% of

the total width of the 3D printed object. If the detected movement is above

this threshold a pause in the 3D printing process is triggered. For larger

models the pixel errors may increase as the object covers a larger area which

may change the brightness in the image. Therefore, the selected threshold is

a percentage of the model to compensate for potential pixel errors.
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4.6 Training Data Collection for CNNs

We are only able to detect a limited types of potential 3D printing defects that

may occur in the middle of the printing process using traditional computer

vision. By using deep learning in computer vision we allow networks to

automatically detect, learn and extract features from raw image data. In

this project we investigated the possibilities of using traditional computer

vision algorithms to find deviations and detect errors since it will be very

time consuming to collect the necessary training data needed for training a

neural network. Deep learning models like CNN are usually trained using

big data for its extreme precision in image classification [59]. The challenge

of applying DL for image classification and fault detection in 3D printing

is the lack of dataset. Therefore, as a part of this project, we implemented

an API for systematic training data collection and data labeling for use in

future work.

From our fault detection prototype all the frames captured during the 3D

printing monitoring process are stored in the file-system. These frames con-

tains useful information that can be utilized to train deep learning models

for fault detection in FDM 3D printing. By extracting labeled data from

the video stream after a print has finished, every single object that is be-

ing printed will contribute to create a large training dataset for increased

accuracy in fault detection using DL. If our camera system is capturing a

video stream with a frame rate of 30 Frames per Second (FPS) we get 30

frames each second. As we have mentioned earlier, it is not uncommon that

a printing process lasts for more than 10 hours. A 10 hour printing process

will produce 1.08 million frames using a camera that captures images at 30

FPS. However, all of these frames should not be used to train a network.

As 30 frames are recorded each second the frames will not differ very much.

If we store and label a frame for every 1000-3000 frames that are captured,

depending on how large the printed object is, a 10 hour print will produce be-

tween 300-1000 images that can be used to train a neural network for image

classification.
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Training Data Client

For the labeling process there are different categories the data can be labeled

as. Each type of the most common errors that can occur during a 3D printing

process has its respective category. Successful Prints is also a category since

a deep learning model must be trained on these as well. A Command Line

Interface (CLI) client is developed to process captured frames after a model

has been printed. First, the client prompts user to enter whether the print

was successful or not. If an error occurs, the user is asked to give a time

period in which the error is visible in the video stream. The CLI will process

the video by slicing it into frames within the given time periode and move

them into a new folder named after the error that took place. Finally, the

client asks the user to review the folder containing all the frames to ensure

that the defects are visible in all frames. When all images are reviewed and

approved the images are sent to the server through a RESTful API endpoint

which handles the cloud storage.

RESTful API and Cloud Storage

Storing images and information regarding the image requires a database and

a server for talking to the database. We implemented a RESTful API Service

using NodeJS, a cross-platform JavaScript Runtime Envronment, to receive

the images through an API endpoint and store them in a cloud database. By

creating the backend as an API service the resources stored in a database can

be accessed and modified by multiple clients through simple HTTP requests.

A NoSQL Cloud database called MongoDB [36] is used in this project for

simplicity as no particular database setup is necessary and it is commonly

used combined with the NodeJS environment.

Figure 4.22 above shows the two API endpoints for fetching and creating

new API resources. The API resources are the captured video frames stored

in a cloud database. Three different client are communicating with the API

service sending different requests. Two clients has video frames of defect 3D
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Figure 4.22: Clients posting and requesting training data through HTTP
endpoints

prints and sends a POST request to the API endpoints to store the frames in a

cloud database. New training images labeled as warping and under extrusion

are stored in the cloud database. The client in the middle is sending a GET

request to fetch all images labeled with spaghetti, returning the entire data

set of images containing spaghetti print.
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Chapter 5

Results

In this project we focused on the possibilities of using computer vision as

a replacement for active monitoring by eye of 3D printing processes. A

prototype were built using camera monitoring from two different angles. The

prototype consists of the following two main modules:

• First Layer Verification

• Nozzle Analyzer

In section 3.3 we presented a table, table 3.1, which gives a brief overview

of common failures that occurs in 3D printing. Our prototype was able to

detect several defects covered in the table using traditional computer vision

algorithms. However, both of the modules has some weaknesses causing

inconsistent image segmentation and inaccurate fault detection in some cases.

5.1 First Layer Verification

A camera was placed on top of the printer facing down towards the build

plate. When first layer was completed a snapshot was taken through the

camera and sent to the server for verification. In the verification process

we managed to successfully compare the 3D printed first layer with the first
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layer of the 3D printed model and to detect significant deviations between

the images. It is a challenging task to find deviations in highly accurate man-

ufacturing machines by comparing the result with a model of the intended

object using computer vision. A consistent method for image segmentation

and precise simulation of the sliced model is necessary in order to perform

a shape analysis on the first layer. The segmentation requires a certain con-

trast between the print material and the environment. For our experiment

we used a dark colored build plate which makes the segmentation algorithms

more reliable.

The developed prototype for verification of first layer were applied to five 3D

prints for testing. One of the objects signaled a false fault detection in the

first layer. The image taken by the camera were blurry making it difficult to

do a proper segmentation of the image. The reason for this false detection

are believed to be because the camera were focused on the print head in the

moment of capturing the frame to be analysed.

In the second test object we moved the printed first layer manually to the

left in order to simulate a detachment of the first layer. Our simulation

framework is calibrated with the build plate of the 3D printer creating the

same relative distances in the simulation environment as on the real build

plate. Our algorithm was able to detect that the centroid had an offset by

more than 15% and triggered a fault detection signal.

In the third test object the same model as we used in the previous examples

through the thesis. This model contains multiple small contours reducing

the bed adhesion significantly. In figure 4.13 we showed that the algorithm is

able to find missing contours. However, detached objects does not necessarily

move out of the camera’s vision range. In this test we instead detached one of

the outer contours closer to the center. A defect were detected by calculating

the aspect ratio of the models, finding that the 3D printed object had a higher

ratio than the simulated object. However, the algorithm were not able to find

any deviations buy moving any of the inner contours as it will find that the

aspect ratio and the number of contours are matching.
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In the last two tests no errors were introduced and passed the first layer

verification as expected.

5.2 The Nozzle Analyzer

A camera was placed in front of the 3D printer as shown in figure 4.14 to

track the nozzle movement, measure the distance between the printed object

and the nozzle and detect any movement in the object itself. As we are only

interested in tracking the position of the 3D printed object the shape of the

object is irrelevant, thus we have only used a single test object for the nozzle

analyzer.

Four different tests were applied on the object that is being printed. In the

first test we moved the nozzle manually away from the 3D printed object as

soon as the first layer was printed. A signal of no filament flow was triggered

after skipping around 2mm, which corresponds to around 10 layers. However,

in the second test we printed around 140 layers before we apply the same

test again. 140 layers correspond to a 7cm tall object with a layer height

of 0.2mm per layer. In this test the algorithm detected that there was no

filament flow significantly slower than in the first test. The 3D printed object

was taller than the camera lens that was mounted on a tripod making it hard

to detect the relative distance between the nozzle and the object.

In the third test we moved the object slightly to the left and to the right to

test the object tracking and the movement detection. The movement detec-

tion algorithm were able to detect a movement and signaling a detachment

when moving the object only 5mm in both directions. The downside with

this method is that it is only able to detect movement in the west and east

direction and not south and north direction relative to the camera. However,

if a detachment occurs and the object gets stuck to the nozzle, a detachment

is very likely to be detected as the object will with great certainty move in

every possible directions on the build plate. In the last test we tried using

the nozzle analyzer to detect molten material that was stuck on the nozzle.
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This requires the algorithm to detect material that both belongs to the object

that is being printed and material that got stuck on the nozzle. We manually

attached some material to the nozzle by heating it up so the material melted

and stuck to the nozzle immediately. The goal of this test is to find out if the

algorithm is able to detect extruder blobs which also was introduced in table

3.1. It turns out that this was harder than first expected. The reason being is

that molten material that is stuck on a heated nozzle changes colour and the

image segmentation did not manage to isolate all the material but instead

found multiple smaller contours. However, as more material got stuck on the

nozzle the more consistent the fault detection was.
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Chapter 6

Conclusion

In this thesis we investigated the possibilities of automatic fault detection

in additive manufacturing, more specifically 3D printing, by means of tradi-

tional computer vision algorithms. A brief overview of the initial literature

review done in the beginning of this project shows that affordable desktop

sized 3D printers are becoming more popular creating a knowledge gap be-

tween the end users. Methods for process monitoring in the manufacturing

industry exists, but there is a lack of research in this area for 3D printing.

There has been some attempts trying to create methods for automatic fault

detection in 3D printing, but these methods have shown to be very specific

and will in many cases generate a false fault detection alert which in the long

run may be more time consuming than saving time by detecting errors.

6.1 Automatic Fault Detection Prototype

In this project we designed a prototype consisting of two main modules

for automatic fault detection and process monitoring of FDM 3D printing

processes. The two modules for fault detection is the First Layer Verifi-

cation(FLV) module and the Nozzle Analyzer. The FLV module creates a

checkpoint in the G-Code before it is sent to the 3D printer, telling it to
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pause when the first layer has been printed. A snapshot of the first layer is

then taken using a camera mounted on top of the printer. In earlier projects

image analysis techniques were applied directly on to the picture taken of

the first layer, calculating average RBG values for each checkpoint and then

compare the results using supervised learning. However, these methods have

not been properly tested and are not able to detect specific defects making

them prone to false fault detection alerts.

In our FLV module we investigated the possibilities of comparing the 3D

printed first layer with the sliced version of the model that is being printed.

A simulation framework for executing the G-Code commands in a 3D envi-

ronment was created for this purpose. By being able to simulate the exact

same layers as the snapshot of our 3D printed model we can accurately detect

several faults by applying shape analysis algorithms on both the simulated

model and the printed model to detect deviations. With our FLV module we

are able to detect missing contours (i.e missing objects in the image) in multi-

part prints, detached first layers and potentially deformations depending on

how severe the deformation is.

The second module focuses on monitoring the process after the first layer has

been verified. This module uses a camera placed in front of the printer and

are able to detect missing material flow by measuring the distance between

the nozzle and the upper layer of the printed object. We are also able to

detect extruder blobs and detached objects by tracking the movements in the

video stream. Being able to detect extruder blobs can increase the lifetime of

the 3D printer components significantly as this can potentially cause severe

damage to the print head.

A third module was also built using our existing monitoring system to slice

the video streams into multiple frames at strategical time-periods of the cap-

tured video for systematic labeling of training data. As mentioned earlier,

we have focused on applying traditional computer vision algorithms for auto-

matic error detection and thus excluding the use of deep learning algorithms

for that purpose. This limits our ability to detect other features that can be

classified as a fault like the spaghetti print from figure 3.7. It is hard to cre-
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ate statistical and mathematical image analysing algorithms for detection of

these features. Many 3D printed objects also contains features that may be

mistaken as a defect by approximating a model for detecting such features.

The Spaghetti Detective project [25] has shown that deep learning algorithms

are able to detect these features by training a deep learning model, but it

often generates a false detection due to lack of training data. Therefore,

we created a method to systematically collect labeled training data to use

in training of deep learning models for different defect categories in future

applications.

As these methods were able to detect several common errors that occurs

in 3D printing they are very sensitive to changes in lighting conditions and

other environmental changes. A good camera calibration is needed for this

system to work properly as well as constant lighting. The algorithms for

detachment detection are implemented with a tolerance value, meaning that

a movement over a certain level must be detected before an alarm is triggered.

A consequence of this is that some obvious errors that should have been

detected do not reach the movement tolerance for a detection signal.

6.2 G-Code Simulation Framework

A tool for simulating G-Code execution in a 3D environment was developed

for our system to gain knowledge about how a manufactured object was

intended to look like. We were able to accurately re-create the sliced model

in a 3D scene and simulating different camera angles to analyse the model

from roughly the same angle as a real camera.

As this framework serves it’s purpose, it turns out that our simulation frame-

work also can be used for introducing realistic and random fault detection in

the models. The simulated object is re-created by extracting it’s 3D coordi-

nates from the G-Code file containing all information about the sliced model

and organizing it into a list of infill commands and perimeter commands. In

a multi-part model, like the example in figure 4.3, where one model consists
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of multiple parts we are now able to isolate each part and threat is as an

isolated model. In a normal 3D printing environment every component of a

model are together considered as only one mode. This enables our simula-

tion framework to apply transformation and translation operations directly

to a single part of the model. With this data structure we can make the

simulation framework to introduce faults like detachment by translating one

of the components to another position, or bad extrusion by removing some of

the infill. Using our Simulation Framework it is possible to evaluate and test

future fault detection algorithms by introducing, either specific or random,

errors in the simulated model and apply fault detection algorithms directly

into the simulation environment.
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Chapter 7

Future Work

Our developed prototype for automatic fault detection in 3D printing works

surprisingly well, but it is only built as a proof-of-concept prototype to answer

our questions for the feasibility study. The implemented algorithms are able

to detect several of the most common errors in 3D printing, but should be

extended further to support more consistent error detection with a minimized

tolerance level for signaling a fault. This require a more consistent algorithm

for segmentation.

For the FLV module it will not detect a detachment from a multi-part model

where the detachment occurs for a part that does not affect the aspect ratio.

We propose implementing a shape analysis algorithm that takes account for

a deviation in the relative distance between all the detected contours. An-

other extension that should be implemented for the FLV module is symmetry

detection in both the simulated model and the 3D printed first layer. If a

deformation that does not change the aspect ratio of the model occurs the

degree of symmetry in the image will change and can potentially be detected.

With correct training, labeling of data sets and selection of parameters Con-

volutional Neural Networks has shown to be very accurate in solving hard im-

age classification problems and for image segmentation problems [59]. With

our implementation using traditional computer vision algorithms for image
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segmentation the prototype is very sensitive to external interference. A slight

change in the camera angle may cause the camera to perceive another pixel

color as the perceived lighting will also change causing the segmentation to

be inaccurate. Therefore, we propose incorporating a method using deep

learning for improved accuracy of the image segmentation in the future.

As CNN has shown to be accurate in image classification, an attempt to train

a CNN using images of printed models with defects as training data is highly

encouraged. We believe that by collecting enough training data a CNN will

be able to detect these errors with greater precision than using traditional

computer vision algorithms.
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