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Computational prediction of xenobiotic metabolism can provide valuable information to

guide the development of drugs, cosmetics, agrochemicals, and other chemical entities.

We have previously developed FAME 2, an effective tool for predicting sites of metabolism

(SoMs). In this work, we focus on the prediction of the chemical structures of metabolites,

in particular metabolites of xenobiotics. To this end, we have developed a new tool,

GLORY, which combines SoM prediction with FAME 2 and a new collection of rules for

metabolic reactions mediated by the cytochrome P450 enzyme family. GLORY has two

modes: MaxEfficiency and MaxCoverage. For MaxEfficiency mode, the use of predicted

SoMs to restrict the locations in the molecule at which the reaction rules could be

applied was explored. For MaxCoverage mode, the predicted SoM probabilities were

instead used to develop a new scoring approach for the predicted metabolites. With

this scoring approach, GLORY achieves a recall of 0.83 and can predict at least one

known metabolite within the top three ranked positions for 76% of the molecules of a

new, manually curated test set. GLORY is freely available as a web server at https://

acm.zbh.uni-hamburg.de/glory/, and the datasets and reaction rules are provided in

the Supplementary Material.

Keywords: metabolism prediction, metabolite structure prediction, rule-based approach, sites of metabolism,

xenobiotic metabolism, cytochrome P450, metabolites

INTRODUCTION

Metabolism is responsible for creating metabolites with different physicochemical and
pharmacological properties compared to those of the original parent molecule. Xenobiotic
metabolism in particular is directly relevant for humans, especially as it relates to, for example,
the development of drugs, cosmetics, and agrochemicals. In fact, it is supposed that metabolism
is the main clearance pathway for the vast majority of all xenobiotics (Kirchmair et al., 2015).
However, metabolism can also result in pharmacologically active metabolites as well as toxic
metabolites (Testa et al., 2012).
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The cytochrome P450 (CYP) family of enzymes plays an
important role in the metabolism of xenobiotics, especially in the
formation of first-generation metabolites, of which roughly 60%
are formed by CYPs (Testa et al., 2012). The importance of CYPs
to drug discovery is clear from the observation that many drugs
are metabolized by CYPs; common estimates range from 50%
(Di, 2014) to 80% (Testa et al., 2012). A detailed meta-analysis
of the metabolites of over 1,000 different xenobiotic substrates
carried out by Testa et al., showed that 40% of all metabolites are
formed by CYPs, including a substantial proportion of all toxic
or highly reactive metabolites (Testa et al., 2012).

There are 57 known human CYP enzymes, the majority
of which are primarily involved in endogenous metabolism.
The CYP2 and CYP3 subfamilies are mainly responsible for
metabolizing xenobiotics (Testa et al., 2012), and the key CYP
isozymes for drug metabolism are CYP3A4, 3A5, 2D6, 2C8, 2C9,
2C19, 1A1, 2B6, and 2E1 (Di, 2014). Among the xenobiotic-
metabolizing CYP isozymes, the binding pockets vary greatly;
in some cases the binding pocket of a single isozyme is highly
flexible and can accommodate a broad range of substrates with
widely varying sizes (Kirchmair et al., 2015).

Computational methods can make a significant contribution
to predicting xenobiotic metabolism, because they can be used to
quickly make predictions that can focus the experimental aspects
of the drug development process. Such a focusing effect is both
cost-effective and time-effective (Kirchmair et al., 2015).

One relatively well-developed aspect of the computational
prediction of xenobiotic metabolism is the identification of
the metabolically labile atom positions, also known as sites of
metabolism (SoMs) (Kirchmair et al., 2012). Being able to predict
SoMs is important because knowing an atom position in a
molecule at which a metabolizing reaction is likely to occur
usually provides a chemist with a good idea of the ensuing
metabolite structure. Besides a range of commercial offerings,
several freely available tools, such as SMARTCyp (Olsen et al.,
2019), SOMP (Rudik et al., 2015), Xenosite (Zaretzki et al., 2013),
and FAME 2 (Šícho et al., 2017), are able to predict SoMs with
high accuracy (Tyzack and Kirchmair, 2018). FAME 2, which
is used in the present work for SoM prediction, is a machine
learning-based tool developed recently in our group. The extra
trees classifier models of FAME 2, which are based on a set of
2D circular descriptors, were developed specifically to predict
SoMs of metabolic reactions catalyzed by the CYP family of
enzymes in humans. FAME 2 is highly accurate, achieving, on
an independent test set, a Matthews correlation coefficient of
0.57 and an area under the receiver operating characteristic curve
(AUC) of 0.91.

In contrast to in silico SoM prediction, computational
prediction of the structures of metabolites lags behind with
respect to prediction accuracy. In general, existing methods for
predicting metabolite structures for xenobiotics are dominated
by rule-based approaches. There are a number of well-established
commercial tools for metabolite structure prediction, including
Meteor Nexus (Lhasa Ltd.), a rule-based metabolite prediction

Abbreviations: AUC, area under the receiver operating characteristic curve; CYP,
cytochrome P450; ROC, receiver operating characteristic; SoM, site of metabolism.

software (Marchant et al., 2008). Meteor Nexus offers three
different reasoning methods to prioritize the plethora of
generated metabolites. The current default reasoning method
is SoM scoring, which compares the SoM identified by the
reaction rule to experimental data in order to assign scores to
the predicted metabolites1. Other rule-based computational tools
include TIMES (LMC; Mekenyan et al., 2004), which uses a
heuristic algorithm to generate possible metabolic maps, and
MetabolExpert (CompuDrug; Darvas, 1987).

In addition to commercial metabolite structure prediction
tools, there is an increasing number of freely available options.
Again, many of the available options rely primarily on a set
of reaction rules to generate structures of possible metabolites.
One well-known approach that has been around for some time
is SyGMa (Ridder and Wagener, 2008), which in this work
is used as a reference method. SyGMa predicts metabolites
using knowledge-based reaction rules, some of which were
derived from common knowledge of metabolism reactions and
some of which were developed using the Metabolite Database
(MDL Metabolite Database, Elsevier, 2001), for a total of 144
reaction rules covering both phase I and phase II metabolism.
The predicted metabolites are ranked by empirical probability
scores calculated based on the fraction of predicted metabolites
produced by the particular reaction rule that match reported
metabolites in the database. Using all 144 phase I and phase II
reaction rules in up to three successive reaction steps, SyGMa
was able to predict 68% of all known metabolites in the test
set. In terms of ranking, SyGMa ranked 45% of the known
metabolites in the test set in the top 10. The authors additionally
examined SyGMa’s potential usefulness for predicting CYP-
mediated metabolism by evaluating its performance on a set
of 127 single-step CYP-mediated reactions. Using only the 118
phase I reaction rules, which include but are not specific to
CYP-mediated reactions, SyMGa was able to predict 84% of all
known CYP-formed metabolites and predict 66% of the known
metabolites within the top three ranked predicted metabolites.
However, the proprietary nature of the dataset that was used
to derive SyGMa’s reaction rules and validate the method, not
to mention the current unavailability of the dataset, hinders the
reproducibility of the results as well as further use of the models
derived from the data.

A recent, free software designed to predict metabolites
from multiple sources and enzyme families is BioTransformer
(Djoumbou-Feunang et al., 2019), which in this work is
used as the second reference method. BioTransformer is
a comprehensive metabolite prediction tool that contains
a CYP metabolite prediction module (in addition to four
other metabolite prediction modules). BioTransformer predicts
CYP-formed metabolites using a knowledge-based approach
combined with built-in CYP selectivity prediction by CypReact
(Tian et al., 2018), a machine learning-based tool, as a precursor
to metabolite prediction. Aside from the initial CYP isoform-
specificity prediction, the basis of BioTransformer’s CYP450
metabolite prediction module is a rule-based method whose

1Meteor Reasoning Methodologies, Lhasa Limited, https://www.lhasalimited.org/
products/meteor-reasoning-methodologies.htm
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reaction rules are derived partly from the metabolic reactions in
MetXBioDB (Djoumbou-Feunang et al., 2019), a freely available
database of metabolism reactions that was established in the
context of developing BioTransformer. In the current version
of BioTransformer, the predicted metabolites are not ranked.
BioTransformer also offers an option for identifying metabolites
based on masses from mass spectrometry data. On a test
dataset of 60 parent molecules with a total of 180 known
metabolites, BioTransformer’s CYP450 metabolite prediction
module achieved a recall of 0.90 and a precision of 0.46.

Another freely available metabolite prediction tool is MetaTox
(Rudik et al., 2017), which encompasses both phase I and phase II
metabolism and combines the prediction of the reaction class and
the reacting atom in order to predict metabolites. Additionally,
the open-source software Toxtree (Patlewicz et al., 2008)
contains a metabolism prediction module called “SMARTCyp—
Cytochrome P450-Mediated Drug Metabolism” that predicts
SoMs using SMARTCyp (Rydberg et al., 2010) and then applies
a small set of reaction rules to the predicted SoMs in order to
predict metabolites.

Common to all modern approaches for metabolite prediction
is that they remain challenged by the combinatorial explosion
of predictions, in particular when looking at several generations
of metabolites (Judson, 2014). It is not unusual for metabolite
structure predictors to produce several pages full of predicted
metabolites, a fact which is often and not without reason
criticized, particularly by experts in metabolism. The key to
tackling this problem lies in the development of approaches for
the accurate ranking of metabolites according to their relevance
in terms of metabolic rates and biological properties. A number
of methods attempt to get a handle on the immense number of
predicted metabolites by ranking their predictions according to
various approaches.

Another option, which has primarily been implemented
in commercial tools to date, is to use SoM prediction as a
preliminary step to reduce the number of generated metabolites.
Commercial tools formetabolite prediction that incorporate SoM
prediction include ADMET Predictor (SimulationsPlus)2, which
predicts SoMs and the corresponding metabolite structures for
nine CYP isoforms, and StarDrop (Optibrium; Tyzack et al.,
2016), whose “P450 metabolism” module predicts SoMs using
quantum mechanical simulations and displays the structures
of the metabolites corresponding to the predicted SoMs. In
addition, META Ultra (MultiCASE Inc.; Klopman et al., 1994)
predicts SoMs and metabolites, and MetaSite (Cruciani et al.,
2005) was a SoM and CYP isoform selectivity prediction software
that now also predicts metabolite structures3.

Few freely available metabolite prediction methods combine
information on predicted SoMs with a rule set. MetaTox
predicts reaction classes and reacting atoms (i.e., SoMs, in
principle) separately for each parent molecule, then combines
the predictions to generate metabolites. The probability that
the metabolite is formed is calculated based on the predicted

2ADMET Predictor Metabolism Module, SimulationsPlus, https://www.
simulations-plus.com/software/admetpredictor/metabolism/
3MetaSite, https://www.moldiscovery.com/software/metasite/

probabilities of the reaction class and of the SoM predicted with
the SOMP method (Rudik et al., 2015). However, the validation
of MetaTox considers the performance of the reaction class
prediction and the reacting atom prediction separately, without
evaluating the prediction of the metabolite structures themselves,
and it is unclear how exactly the reaction class and reacting
atom predictions are combined to generate a metabolite structure
(Rudik et al., 2017). On the other hand, it is clear that SoM
prediction is used directly as a prefilter before applying reaction
rules in the SMARTCyp Toxtree module. However, a validation
of this method has not been published.

In terms of the availability of rule sets for metabolite structure
prediction, there are a few existing freely available collections
of reaction rules described in an easily accessible, computer-
readable format such as SMIRKS4, a reaction transform language
within the Daylight system. One source of CYP reaction rules is
the SMARTCyp Toxtree module, which uses 16 reaction rules
and makes the SMIRKS freely available as part of the source
code. A larger selection of reaction rules is provided in the
freely available SyGMA Python package. The reaction rules are
clearly separated into phase I and phase II rules; however, there
is no indication of which of the 118 phase I reaction rules
specifically describe CYP-mediated reactions. In addition, these
rules were derived from a proprietary and no longer distributed
dataset. BioTransformer offers a large number of CYP-specific
biotransformation rules in SMIRKS format as well as additional
constraint(s) for each rule as part of its Reaction Knowledgebase.

In this work, we present a multipronged approach to the
prediction of metabolites formed by the CYP enzyme family in
humans. In reference to FAME, we name this approach GLORY.
One fundamental aspect of GLORY is a new, easily interpretable
rule base for CYP metabolism that was developed solely from
the scientific literature and basic chemistry knowledge, without
relying on any dataset of metabolic reactions. In addition,
we have examined the effect of using SoM prediction as a
preliminary filter for the positions at which reaction rules are
allowed to be applied and also as part of a new approach
to ranking the predicted metabolites. GLORY therefore has
two modes: MaxCoverage, which focuses solely on recall, and
MaxEfficiency, which focuses more on precision. Further, we
have validated GLORY on a new, high quality, manually curated
dataset that is provided in the Supplementary Material.

RESULTS AND DISCUSSION

Two key aspects are at the core of GLORY, which aims to
predict metabolites within the context of human, CYP-mediated
metabolism: reaction rules and predicted SoMs. In terms of
the rule-based aspect, GLORY uses reaction rules to convert
parent molecules into their possible metabolites. To this end, we
developed a collection of rules based entirely on the scientific
literature to ensure that the rule set was not biased by any
particular metabolism dataset. The information on the CYP-
mediated reactions from the literature was combined with

4SMIRKS—A Reaction Transform Language, Daylight, http://www.daylight.com/
dayhtml/doc/theory/theory.smirks.html
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basic chemistry knowledge to develop SMIRKS to describe
each reaction type. In some cases, such as for O-dearylation,
multiple SMIRKS were required for a single reaction type,
resulting in a total of 73 SMIRKS for the 61 reaction
types present in our collection (Supplementary Table 1). We
additionally use a simple binary distinction between common
and uncommon reaction types, which were thoroughly discussed
and distinguished from each other in Guengerich (2001),
and which distinction we were able to extrapolate to the
CYP-mediated reactions found elsewhere in the literature (see
Methods for details). We do not use occurrence ratios calculated
based on a given dataset in order to rank the predicted
metabolites, due to the limited size, quality, and accessibility of
existing datasets. Out of our collection of 61 CYP reaction types,
22 have been designated as common.

The second key aspect of GLORY is its use of the SoM
probabilities predicted by FAME 2 for each heavy atom in a
molecule to (i) reduce the false-positive prediction rate while
maintaining an acceptable recovery rate and (ii) augment the
ranking of predicted metabolites. In order to reduce the false-
positive prediction rate, the possibility of utilizing a hard cutoff
based on SoM probabilities was explored. This cutoff was used
to determine at which atom positions the rules were allowed
to be applied. In the context of GLORY, we have called this
approach, in which SoM prediction is used as a preliminary filter,
MaxEfficiency mode. In contrast, we designate the approach in
which SoM probabilities are used for ranking metabolites derived
for all positions in a molecule regardless of SoM probability the
MaxCoverage mode. The difference in workflow between the two
modes is illustrated in Figure 1.

Datasets
To choose a SoM probability cutoff for the MaxEfficiency mode
and develop a priority score to rank predicted metabolites, a
large reference dataset was generated by combining the CYP
metabolism data extracted from DrugBank (Wishart et al.,

2018) and MetXBioDB. MetXBioDB is a recently published
database of metabolic reactions, whose substrates are mainly
comprised of xenobiotics and also include a few sterol lipids and
mammalian primary metabolites, and whose reaction data came
from the scientific literature as well as publicly available databases
(Djoumbou-Feunang et al., 2019). In addition, a manually
curated, high-quality dataset was compiled from the scientific
literature for the validation of GLORY. This test dataset contains
29 parent molecules and a total of 81 metabolites, resulting in
2.79 metabolites per parent molecule on average. Importantly,
any parent compounds that are in the test dataset were removed
from the reference dataset before any analysis occurred. In total,
the reference dataset contains 848 parent molecules and a total of
1,588 metabolites, for an average of 1.87 metabolites per parent
molecule. Predictions could be made for 847 of 848 molecules
in the reference dataset (one molecule could not be processed
successfully with FAME 2; see Methods for details).

MaxEfficiency Mode: Selection of a Cutoff
for Metabolite Structure Generation Based
on SoM Probability
In order to determine the effect of a SoM prediction-based
prefilter on predicting preferably only the most relevant
metabolites and reducing the number of false positive
predictions, we tried several different cutoffs for the SoM
probability that must be achieved by at least one atom involved
in the reaction (as defined by the reaction’s SMIRKS). For
each heavy atom in a molecule, FAME 2 reports a probability
between 0 and 1, corresponding to the fraction of trees of
the extra trees classifier that predict that a particular atom
is a SoM. The decision threshold in FAME 2 for whether or
not an atom is considered likely enough to be a SoM to be
designated as such was determined by the trained model to be
0.4 (Šícho et al., 2017).

We examined the effect of different SoM probability cutoffs
using the reference dataset and selected the cutoff to be used

FIGURE 1 | Workflow for GLORY indicating the difference between MaxCoverage mode and MaxEfficiency mode.
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in MaxEfficiency mode based on these results. In particular, we
inspected the effect of the SoM probability cutoffs on precision
and recall, which are defined as follows:

Recall = TP / ( TP + FN)

Precision = TP / (TP + FP)

where TP is the number of true positive predictions, FP is
the number of (putative) false positive predictions, and FN
is the number of false negative predictions. In other words,
recall measures the portion of known metabolites that were
reproduced by the method and precision measures the fraction
of all predicted metabolites that are represented in the dataset.

Here it is worth noting that the number of false positives,
and the designation of a prediction as false positive, is especially
dependent on the dataset that is being used for comparison.
Many metabolites that are formed in humans have not yet
been discovered, or their structures have not yet been exactly
elucidated. Since even the highest-quality dataset is limited by
the available experimental data, the reality is that the distinction
between a real false positive prediction and the true positive
prediction of an as yet unknown or unconformed metabolite
may not be possible. Nevertheless, with this caveat, we evaluate
our method based on the available data, including the putative
false positives.

The purpose of the MaxEfficiency mode is to use the SoM
probability cutoff to predict metabolites with increased precision
compared to no cutoff (i.e., MaxCoverage mode). At the same
time, however, we did not want to sacrifice too much in terms
of recall, as it is still important to predict a molecule’s actual
metabolites even while reducing the number of putative false
positive predictions.

For the purpose of metabolite prediction, we found that
using FAME 2’s decision threshold of 0.4 as the cutoff for SoM
probability resulted in a relatively low recall of 0.65 (especially
when compared to the recall of 0.83 achieved in MaxCoverage
mode, as will be discussed later in this work). Hence, despite
the increased precision afforded by a cutoff of 0.4, it was
determined that this cutoff too greatly reduced the achieved
recall. We therefore additionally tested lower SoM probability
cutoffs (Table 1). Observing the trade-off between precision and
recall with cutoffs ranging from 0.4 to 0.1 and comparing them
to MaxCoverage mode, we determined that a SoM probability
cutoff of 0.2, which resulted in a precision of 0.19 and a still-high
recall of 0.75, offered the best compromise. A SoM probability
cutoff of 0.2 for MaxEfficiency mode was therefore fixed based
on the results shown in this section. Note that although all of
the precision values shown in Table 1 are quite low, the precision
of GLORY using a SoM probability cutoff is comparable to the
precision of existing methods for metabolite structure prediction
(see below for the results on the test dataset).

Development of a Priority Score to Rank
Predicted Metabolites for MaxCoverage
Mode
In order to rank the predicted metabolites for a particular
molecule, we developed a priority score for each predicted

TABLE 1 | Effect of different SoM probability cutoffs on precision and recall over

the entire reference dataset.

SoM Probability Cutoffa 0.4 0.3 0.2 0.1 None

Precision 0.24 0.22 0.19 0.13 0.07

Recall 0.65 0.71 0.75 0.80 0.83

aNote that 0.4 is the default decision threshold in FAME 2, a cutoff of none corresponds
to MaxCoverage mode, and a cutoff of 0.2 was chosen for MaxEfficiency mode.

metabolite based on the SoM probability of the atoms involved
in the transformation and whether the reaction type is common
or not. Specifically, the SoM probability calculated by FAME 2 for
all atoms in the parent molecule that are involved in a reaction as
defined by the SMIRKS is considered, and the maximum SoM
probability among these atoms is then incorporated into the
score, as illustrated in Figure 2. The priority score was calculated
using a simple formula:

scorepredictedmetabolite = P×F

where P is the maximum SoM probability out of the atoms in the
parentmolecule that werematched by the applied transformation
and F is the factor according to whether the reaction type
was designated as common or uncommon. In case the same
predicted metabolite resulted from multiple transformations,
the maximum priority score over all transformations leading to
that prediction was used. A higher priority score is intended
to indicate a higher likelihood of the prediction being true.
For all uncommon reaction types, F = 1. The factor F for
common reaction types affects the early enrichment of the
predictions. Specifically, the early enrichment improves when
common reaction types are given more weight in the score than
uncommon reaction types, i.e. Fcommon > 1 (Figure 3). Based on
an analysis of the receiver operating characteristic (ROC) curves
and area under the ROC curves (AUC) for varying Fcommon,
shown in Figure 3, a factor of 5, resulting in an AUC of 0.90, was
chosen. All subsequent results based on ranking the predicted
metabolites therefore used Fcommon = 5 in the calculation of
the priority score, and the priority score can therefore range
from 0 to 5.

Comparison of Performance on a New,
Manually Curated Test Set
The performance of the MaxEfficiency and MaxCoverage modes
of GLORY was evaluated on the curated test set of 29 parent
molecules with a total of 81 metabolites. This evaluation includes
a comparison with BioTransformer and SyGMa as well as an
analysis of how well the scoring and ranking aspects of the
different approaches work. Specifically, we employed the CYP450
module of BioTransformer and the phase I metabolism reactions
of SyGMa (SyGMa does not feature a dedicated module for CYP
metabolism, but phase I metabolism is carried out to a significant
extent by CYP enzymes) for the comparison.

Analysis of MaxEfficiency Mode
GLORY’s MaxEfficiency mode was designed to address the
problem of low precision caused by a high number of putative
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FIGURE 2 | Illustration of the determination of the maximum SoM probability of all heavy atoms in the parent molecule that are matched by the reaction rule, using the

N-dealkylation reaction rule (common reaction type; factor F = 5) as an example. This maximum probability is used to calculate the priority score of the product.

FIGURE 3 | Receiver operating characteristic (ROC) curves over the entire

reference dataset of 848 compounds with 1,588 known metabolites, with

varying values of the factor used for common reaction types when calculating

the priority score for each metabolite. Note that a factor of 1 means that only

the SoM probability (i.e., the maximum SoM probability for all atoms that are

matched by the SMIRKS) affects the priority score of the predicted metabolite,

regardless of the reaction type. Note also that a ROC curve can be calculated

despite there being no “true negative” predictions overall (all predicted

metabolites are “positive” predictions). To generate the ROC curve, the false

positive rate (FPR) is calculated at each score threshold. At each point,

predictions with scores below the threshold are considered “negative”

predictions and predictions with scores above the threshold are considered

“positive” predictions. Hence the number of “true negative” predictions and

therefore the FPR can be calculated for each point of the ROC curve.

false positive metabolite predictions. This general problem of
an excess of predictions is well-documented for metabolite
prediction tools (Judson, 2014). However, as mentioned above,
it is important to note that the designation of predictions as false
positive is particularly dataset-dependent.

As described previously, the MaxEfficiency mode uses a cutoff
based on the SoM probabilities that FAME 2 predicts for each
heavy atom in order to restrict the locations in the molecule at
which the reaction rules are allowed to be applied. This SoM

FIGURE 4 | Precision (portion of predictions that are true positives) and recall

(portion of known metabolites that are predicted) vary according to the cutoff

for FAME 2’s predicted SoM probability. A SoM probability cutoff of 0.4

corresponds to the decision threshold used in FAME 2. The SoM probability

cutoff chosen for the MaxEfficiency mode of GLORY was 0.2.

probability cutoff was set to 0.2 based on the analysis on the
reference dataset; however, we also examine the effect of different
SoM probability cutoffs using the high-quality test dataset in
order to get a more complete picture of how much can be gained
by a cutoff-based approach.

As expected, using SoM predictions to confine the application
of reaction rules to certain positions does involve a trade-off
between precision and recall (Figure 4). Recall measures the
portion of known metabolites that the method was able to
reproduce, and precision measures the fraction of all predicted
metabolites that are actually known metabolites (see previous
section for definitions). The larger the SoM probability required
to be present among the atoms involved in the transformation,
the lower the recall but the higher the precision as measured
across the entire test dataset. In addition, the larger the SoM
probability cutoff, the more parent molecules there are for which
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FIGURE 5 | Histograms of the recovery rate of known metabolites broken down by parent compound: (A) GLORY in MaxCoverage mode, (B) GLORY in

MaxEfficiency mode, (C) SyGMa, (D) BioTransformer. For example, a recovery rate of 0.5 indicates that for x% of all parent molecules, at least half of all recorded

metabolites from the test dataset were predicted.

no metabolite predictions can be made. Without any such cutoff
and even up to a SoM probability cutoff of 0.2, metabolites
can be predicted for all parent molecules in the test dataset.
However, with a SoM probability cutoff of 0.3, no metabolites are
predicted for two parent molecules, and this number increases to
three for a cutoff of 0.4 (Supplementary Table 2). The number
of molecules affected is small in this case, yet is approximately
10% of the size of the test dataset. Overall, as the cutoff increases,
the total number of predicted metabolites decreases drastically
(Supplementary Table 2).

Unfortunately, as Figure 4 shows, there is a large decrease
in recall for a small increase in precision when using SoM
probability cutoffs of 0.1 or greater. Looking more closely at
the recovery rates per parent molecule, we see that GLORY’s
MaxEfficiency mode (using the selected cutoff of 0.2 as described
above) can predict at least half of the known metabolites for 72%
of the parent molecules in the test dataset, as opposed to 83%
for SyGMa and 79% for BioTransformer (Figure 5). GLORY’s
MaxEfficiency mode can predict all known metabolites for 41%
of the parent molecules in the test dataset, as opposed to 45%
for SyGMa and 38% for BioTransformer. On the other hand, the

number of putative false positives per parent molecule is brought
to within the same range as was measured for SyGMa and
BioTransformer (Figure 6). Using MaxEfficiency mode, most
parent molecules have fewer than 10 putative false positives,
which is also the case for BioTransformer but not quite the case
for SyGMa (however, as mentioned above, SyGMa’s rule base also
includes rules for non-CYP-mediated phase I reactions).

Based on these results, it appears that using FAME 2’s
predicted SoM probabilities as a hard cutoff for metabolite
prediction may not be sufficient for many use cases. However,
the SoM predictions are useful for more than just as a hard cutoff,
namely to rank the predicted metabolites, as will be shown in the
next section.

Comparison of MaxCoverage Mode to SyGMa and

BioTransformer
Neither SyGMa nor BioTransformer uses regioselectivity
prediction as a prefilter before applying reaction rules. The
same is true of MaxCoverage mode, which only uses SoM
prediction in order to score and rank the predicted metabolites.
Hence, we compared SyGMa and BioTransformer to GLORY’s
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FIGURE 6 | Histograms of the number of putative false positive predictions: (A) GLORY in MaxCoverage mode, (B) GLORY in MaxEfficiency mode, (C) SyGMa, (D)

BioTransformer. These histograms use right-closed intervals.

MaxCoverage mode in terms of recall, precision, and ability to
rank the predicted metabolites.

A high recall is important for any use case of a metabolite
structure predictor, but even more so for applications in which
it is of utmost importance to not miss any physically existing
metabolites, such as, for example, when attempting to identify
metabolites based on MS data. GLORY’s MaxCoverage mode
performs well in terms of recall, with a recall of 0.83 compared
to 0.74 and 0.72 for SyGMa and BioTransformer, respectively,
across the entire test dataset (Table 2). A closer look at recall
broken down to the level of the recovery rate of known
metabolites for each parent molecule shows that GLORY is able
to predict all known metabolites for 62% of the parent molecules,
whereas SyGMa and BioTransformer achieve only 45% and 38%,
respectively, in this regard (Figure 5). The number of parent
molecules for which GLORY is able to predict at least half of the
knownmetabolites is 90%, compared to 83% for SyGMa and 79%
for BioTransformer (Figure 5).

Precision can be a useful metric for measuring how well a
method is able to keep the number of putative false positive
predictions under control. Precision was low across the board for
metabolite prediction on the test dataset, with BioTransformer
reaching the highest precision of the three tools at 0.17. SyGMa
was close behind at 0.15, and GLORY’s MaxCoverage mode

lagged further behind at a precision of only 0.08 (Table 2). Again
breaking this down to a slightly more detailed overview, we
see that BioTransformer and SyGMa both always produce fewer
than 25 putative false positives per parent molecule and, for
the majority of parent molecules, fewer than 15 putative false
positives or even, in the case of BioTransformer, fewer than 10
(Figure 6). GLORY in MaxCoverage mode, on the other hand,
often produces so many predictions per parent molecule that
there are up to 53 putative false positives per parent molecule
in the test dataset and on average a relatively high number of
putative false positive predictions compared to the other two
tools (Figure 6).

In the case of the low precision observed for SyGMa, it is
important to note that SyGMa’s rule set is not specific to CYP-
mediated metabolism but rather covers phase I metabolism in
general. This could indicate that SyGMa might achieve higher
precision if only the CYP-specific rules were used.

BioTransformer’s CYP450 prediction module, which has the
highest precision of all three methods, uses isoform prediction as
a preliminary filter. Only the relevant reactions for the predicted
metabolizing CYP isoform(s) are applied to the parent molecule,
which could contribute to the observed precision.

Although the precision of MaxCoverage mode (as well as
SyGMa and BioTransformer) was found to be low and high rates
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TABLE 2 | Evaluation results for SyGMa, BioTransformer, and GLORY’s MaxCoverage and MaxEfficiency modes on the manually curated test dataset.

SyGMa BioTransformer GLORY,

MaxCoverage

mode

GLORY,

MaxEfficiency

modeb

Precision 0.15 0.17 0.08 0.16

Recall 0.74 0.72 0.83 0.64

Total number of predicted

metabolites

406 344 793 327

Number of successfully

predicted reported metabolitesa
60 58 67 52

Top-1 0% N/A 68.97% 68.97%

Top-2 48.28% N/A 72.41% 72.41%

Top-3 68.97% N/A 75.86% 75.86%

aThe total number of reported metabolites in the dataset was 81.
bThe SoM probability cutoff used for MaxEfficiency mode is 0.2, chosen based on the results of the analysis on the reference dataset. Data on the performance of MaxEfficiency mode
with different SoM probability cutoffs are reported in Supplementary Table 2.

of false positive predictions are problematic in general, in the
case of metabolite structure predictors a low precision is only
problematic if there is no way to distinguish between the true
positive and putative false positive predicted metabolites. This
distinction can be achieved with a well-working ranking of the
predicted metabolites, which circumvents the need to reduce the
total number of predicted metabolites. Hence it is important that
a metabolite prediction tool can rank the predicted metabolites
in terms of likelihood of occurrence.

GLORY scores its predicted metabolites based partly on the
maximum SoM probability of all the atoms involved in the
reaction and also takes the type of reaction into account (see
above for a more detailed description of the priority score).
SyGMa uses empirical probability scores calculated based on
the percentage of all predictions for each reaction rule that
are found in the training dataset. SyGMa’s scoring system
thereby relies entirely on the discontinued Metabolite dataset.
The scores generated by GLORY or by SyGMa can be used to
rank the predicted metabolites for a given parent compound
in terms of their likelihood of occurring. The current version
of BioTransformer, on the other hand, does not score or rank
its predictions.

We compared the ranking capability of GLORY’s
MaxCoverage mode with that of SyGMa. SyGMa was able
to predict a known metabolite within the top three ranked
positions for 69% of the parent molecules in the test dataset,
whereas GLORY’s MaxCoverage mode predicted a known
metabolite within the top three predictions for 76% of the parent
molecules (Table 2).

To look at the overall quality of the scoring as well as the
ranking ability of SyGMa compared to GLORY, we generated
ROC curves for each method using the score of each predicted
metabolite as well as the rank of each predicted metabolite for
a given molecule. The rank-based analysis corresponds better to
the actual use case, in which it is desired to prioritize the predicted
metabolites for a particular parent molecule, as opposed to over
an entire dataset [note that SyGMa was originally only evaluated
in terms of ranking per parent molecule (Ridder and Wagener,

2008)]. However, we additionally used the score-based ROC
curve to visualize the performance of GLORY’s priority score
across the whole test dataset. To better allow for comparison of
the ROC curves, false negatives were included in the ROC curves
and thereby in the calculated AUCs by adding those molecules to
the set of data points and artificially assigning them a score of 0
or rank of 1,000, as applicable, for the purpose of this evaluation.

Though the AUC values are low, due in part to the inclusion
of false negative data points in the ROC curves, the ROC curves
show a much better earlier enrichment for GLORY than for
SyGMa (Figure 7). SyGMa does not rank a known metabolite
in the best-ranked position for any parent molecule in the test
dataset (Table 2), which is reflected in the ROC curve. This
decent early enrichment with GLORY, which is corroborated by
the top-3 value, is a highly encouraging result indicating that the
most likely predictions are closer to the top of the ranked list than
the putative false positive predictions are.

One possible explanation for why SyGMa performs poorly
in terms of scoring could be that its scoring scheme was
derived from occurrence ratios in the Metabolite database
and therefore optimized to predict the metabolites in that
particular dataset. Although the Metabolite database was large,
the authors of SyGMa report that the database was nevertheless
biased toward compounds with one known metabolite and
postulate that many of the metabolite profiles were incomplete
(Ridder and Wagener, 2008). Our manually curated test dataset
consists of parent molecules with metabolites that have been
published since 2014, while SyGMa was developed using the
2001 version of Metabolite, so we assume that the overlap, if
any, between SyGMa’s training dataset and our test dataset is
low. Without access to the dataset that was used to develop
SyGMa’s scoring methodology, it remains unclear how well the
types of the reactions that lead to the metabolites in the test
dataset were represented in their training dataset. Related to
that, an additional downside of SyGMa’s approach of basing
their scoring approach on a database of metabolic reactions is
that, since reaction rules can only be included if the database
contains enough examples of a specific reaction type to calculate
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FIGURE 7 | ROC curves over the entire test dataset comparing the (A) scoring and (B) ranking approaches of SyGMa to GLORY’s MaxCoverage mode. For a better

comparison of the two methods, false negatives were included in the ROC curve by assigning those data points a score of 0 or rank of 1,000, as applicable.

a probability score, more unusual reaction types or reaction types
that are for some reason not well enough represented in the
database may be missing from SyGMa’s rule base (Ridder and
Wagener, 2008).

There are several other differences in methodology between
GLORY and SyGMa that could contribute to the difference in
performance. Firstly, SyGMa does not specifically predict CYP-
mediated metabolism but rather phase I metabolism in general,
meaning that it could predict other phase I metabolites that are
simply not present in the test dataset because they are not formed
by CYPs. Second, in the current Python package implementation
that was used for this validation, SyGMa does not appear to
require its predicted metabolites to have a certain minimum size.
Unlike GLORY, which does not output a potential metabolite if it
has fewer than three heavy atoms, SyGMa predicts a handful of
metabolites (across the whole test dataset) with only one or two
heavy atoms.

Computation Time
The run time for GLORY was measured on a workstation
equipped with eight Intel(R) Core(TM) i7-4790 CPUs, 32 GB of
main memory, and a Linux operating system. For the test dataset,
the total run time (using eight cores) was 4.6min inMaxCoverage
mode and 4.3min in MaxEfficiency mode (averaged over three
runs). On average, the computation time per molecule required
to predict metabolites was 10.9 s for MaxCoverage mode and 10.3
for MaxEfficiency mode (averaged over three runs).

METHODS

Development of a Collection of
Transformations
A collection of transformations, defined by SMIRKS and
representing reaction types, was assembled based on
known CYP-mediated reactions found in the literature (see
Supplementary Material for details). The SMIRKS were defined
to be as general as possible while being restricted to reasonable
reaction chemistry, as indicated by the literature and common
chemical knowledge. Therefore, if a reaction was found in the

literature but it was not clear how the reaction would apply
to other molecules besides the provided example, the reaction
was excluded from the collection. This was the case for most
reactions involving large ring systems as well as ring fusions and
ring contractions. Specifically, the following types of reactions
were excluded from our collection: reactions that appeared to
be singleton reactions, reactions involving more than two fused
rings that are not part of a steroid backbone, ring fusions, ring
contractions, reactions in which the substrate or product is a
radical, and reactions specifically indicated to have been found
only in the case of plant CYP isozymes.

A few of the SMIRKS used to describe the transformations
were taken from the Toxtree SMARTCyp module5. Most of the
SMIRKS, however, were newly developed specifically for GLORY.
When developing the SMIRKS expressions, care was taken to
include as few atoms as possible in the explicit mapping, since
SoM probabilities were considered for all atoms in the mapping.

Each reaction type was designated as either “common”
or “uncommon.” Whenever possible, this label was assigned
according to the reaction’s classification by Guengerich in his
2001 review of CYP-mediated reactions (Guengerich, 2001),
which explicitly divided the reactions into these two categories.
If the reaction type was not described in that publication,
a “common” or “uncommon” label was chosen based on
extrapolation (on the basis of empirical similarity to reaction
types present in the publication).

Our collection of CYP reaction rules consists of 61 reaction
types. In some cases, multiple transformations were required
to describe the same reaction type, leading to a total of 73
transformations in the collection of defined reactions. A full
list of the reaction types and their SMIRKS can be found in
Supplementary Table 1.

Metabolite Prediction Program
Predicting the structures of the metabolites involves applying the
reaction rules at all relevant positions. The relevant positions

5Toxtree Module: SMARTCyp—Cytochrome P450-Mediated Drug Metabolism,
http://toxtree.sourceforge.net/smartcyp.html
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are determined by the reaction rule itself and, in the case of the
MaxEfficiency mode, by the SoM probability predicted for each
heavy atom. In MaxCoverage mode, the SoM probabilities are
also used to score the predicted metabolites.

SoM Prediction With FAME 2
The SoM predictions were carried out using the FAME 2
software (Šícho et al., 2017), which included preprocessing of
the molecules. The circCDK_ATF_6 trained model, which had
the best average performance during the independent test set
validation in Šícho et al. (2017), was used for the SoM prediction
within GLORY.

Application of Transformations
The transformations of parent molecules into predicted
metabolites based on the defined SMIRKS strings were
performed using Ambit-SMIRKS [Kochev et al., 2018; Ambit-
SMARTS Java Library, version 3.1.0. http://ambit.sourceforge.
net/smirks.html (accessed Oct 4, 2017)]. Some transformations
may result in multiple products. Products that contain fewer
than three heavy atoms are not included in the set of predicted
metabolites generated by GLORY.

When SoM prediction is used as a preliminary filter, a
transformation rule is only applied at a particular location in the
parent molecule if one of the heavy atoms involved is predicted to
be a SoM with a probability over a certain threshold (see Results
for more information on this threshold).

Scoring of Predicted Metabolites
The scoring of the predicted metabolites was based on SoM
probability predictions and whether the reaction type was
designated as common or uncommon. Each atom in the parent
molecule was assigned a likelihood of being a SoM by FAME 2.
When applying the transformations defined by SMIRKS, Ambit-
SMIRKSmaps the reactant portion of the defined transformation
to any matching set of atoms in the parent molecule. Within
this mapping, the maximum SoM probability was calculated and
used to score the predicted metabolite that resulted from this
particular transformation and mapping.

For each predicted metabolite, the priority score is calculated
by multiplying the maximum SoM probability within the
mapping with a factor F depending on whether the reaction
type was classified as “common” or “uncommon.” Priority scores
for the predicted metabolites therefore range from 0 to Fcommon.
The higher the score, the more likely the predicted metabolite is
considered to be. See Results for further details on the selection
of values for F.

If multiple transformations of a given parent molecule lead
to the same metabolite structure, the priority score is calculated
separately in each case and the highest score is retained. To
calculate top-k values and rank-based ROC curves, it was
necessary to rank the predicted metabolites for each parent
molecule based on their priority scores. If different metabolites
of the same parent compound have the same priority score, then
they receive the same rank. In the case of a tie, one or more rank
numbers, according to the number of tied predictions, following
the tied rank are skipped. For example, if the highest score is

2.5 and two predicted metabolites both have this score, then
both of these metabolites are assigned a rank of 1, no predicted
metabolite is assigned a rank of 2, and the predicted metabolite(s)
with the next highest score are assigned the rank of 3.

Program Output
The predicted metabolites are provided as an SD file with the
following information for each predicted metabolite: rank (out
of all predicted metabolites for a particular parent molecule),
priority score, reaction name, and the InChI, SMILES, and ID
of the parent molecule. If multiple transformations led to the
same product, the highest priority score and the corresponding
reaction name are reported. If the input consists of multiple
molecules, the ID of a parent molecule is set to the molecule’s
position in the ordered list of input molecules (i.e., its position in
the input file).

Creation of the Reference Dataset
The reference dataset was made by combining the CYP
metabolism data from DrugBank and MetXBioDB. The total size
of the combined reference dataset, not including any metabolism
information for any of the parent molecules contained in the
manually curated test dataset, is 848 parent molecules and 1588
metabolites (an average of 1.87 metabolites per parent molecule).

DrugBank Dataset
The DrugBank database (DrugBank, version 5.1.2. https://www.
drugbank.ca/ [accessed Jan 14, 2019]) was downloaded from
the website. In addition to the database in XML format, the
structures of all of the molecules, both parents and metabolites,
were downloaded in SD format from the website (drug group
“All” for the parent molecules).

Any parent or metabolite molecule without an available
structure was ignored. One parent compound (DrugBank ID:
DB09327) was ignored because its SMILES had two components
of which the main component could not be unambiguously
identified. All available generations of metabolism reactions were
considered, as long as the reaction was annotated as mediated by
one or more CYP isozymes. The enzymes for the reactions listed
in DrugBank do not have any apparent species information, so all
were assumed to be human and thereby relevant for this dataset.

For all CYP-mediated reactions, the reactant was considered
to be the parent molecule and the product was considered to be
a first-generation metabolite of that particular parent molecule.
Any metabolite with the same InChI, ignoring stereochemistry
information, as its parent molecule was removed from the set
of metabolites for that parent molecule. Only those parent
molecules with at least one valid metabolite were included in the
final dataset.

Finally, the six parent molecules that are also present in the
manually curated test dataset were removed from the DrugBank
dataset prior to any evaluation, along with their corresponding
metabolism information. These parent compounds were
bupropion, ticlopidine, imipramine, ifosfamide, bosentan,
and olanzapine.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the DrugBank dataset contained
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364 parent molecules and 702 metabolites in total, with an
average of 1.93 metabolites per parent molecule in the dataset.

MetXBioDB Dataset
The human, CYP-mediated reactions were extracted from
the MetXBioDB dataset (MetXBioDB, version 1.0. https://
bitbucket.org/djoumbou/biotransformerjar/src/master/
database/ [accessed Jan 11, 2019]). As the only structural
information provided in the MetXBioDB is in the form of InChIs
and InChIKeys, any substrate or product without a reported
InChI could not be considered. A lacking InChI was only
the case for one out of 1468 CYP-mediated, human reactions
in MetXBioDB.

Stereochemistry information was removed by generating
InChIs without a stereochemistry layer, resulting in 751 CYP,
human parent compounds in total. Of these, 259 are also
present in the DrugBank dataset. For these overlapping parent
compounds, 512 of 569 DrugBank metabolites are also in
MetXBioDB, and MetXBioDB has an additional 93 metabolites
for these overlapping parent compounds.

Eight parent compounds (olanzapine, bupropion,
metoclopramide, bosentan, imipramine, ticlopidine, ifosfamide,
and atomoxetine) from the manually curated test dataset were
also present in the MetXBioDB dataset, only two of which
(metoclopramide and atomoxetine) were not also present
in the DrugBank dataset. These parent compounds and the
corresponding metabolism data were removed from the
MetXBioDB dataset.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the MetXBioDB dataset contained
743 parent molecules and 1385 metabolites in total, with an
average of 1.86 metabolites per parent molecule in the dataset.

Merger of the DrugBank and MetXBioDB Datasets
The DrugBank dataset and the MetXBioDB dataset were
combined to form the reference dataset via a straightforward
consolidation of the parent and metabolite information. All
molecule comparisons occurred using InChIs generated without
stereochemistry information. For any parent molecule that was
present in both the DrugBank and the MetXBioDB datasets,
which was the case for 259 parent molecules, the sets of
metabolites from both datasets were combined, disregarding
stereochemistry, to yield the final set of metabolites for that
parent molecule in the reference dataset.

Creation of the Manually Curated Test
Dataset
A new dataset for testing GLORY was manually assembled
from the scientific literature. The data were extracted from
publications on metabolism that were found in two journals:
Xenobiotica and Drug Metabolism and Disposition. The time
frame considered was from January 2014 to June 2018 for
Xenobiotica and from January 2014 to June 2017 for Drug
Metabolism and Disposition.

Publications were chosen and the metabolism information
they contain included in the dataset if the following criteria
were fulfilled:

1. The publication must contain a figure that depicts the
metabolism scheme and includes the chemical structures of
the parent compound and the first-generation metabolites.

2. The metabolism data must have been experimentally
determined from a human source (i.e., either humans, human
cells, or recombinant human CYP enzymes). If some but not
all of the data were from humans, any non-humanmetabolites
in the metabolism scheme were excluded from the dataset.

3. For at least 75% of all of the first-generation human
metabolites depicted in the metabolism scheme (note that any
metabolite that is depicted as merely being an intermediate is
not considered), the following two criteria must be satisfied.
First, the identity of the enzyme(s) responsible for the
formation of the metabolite must be known. For this purpose,
it is sufficient to knowwhether or not this metabolite is formed
by CYPs. Second, the exact chemical structure, including the
connectivity of all atoms, of the metabolite must be known.
There is one exception to this rule: If the metabolite is known
to not be CYP-formed, then the exact structure is not relevant
and the metabolite is counted anyway.

Based on these criteria, 29 metabolism schemes containing at
least one human, CYP-formed first-generation metabolite with
a fully defined structure were found and included in the dataset.
For these 29 parent molecules, there are 81 metabolites in total
that fulfill the criteria (first-generation, human, CYP, fully defined
structure) for inclusion in the dataset. Note that only first-
generation metabolites are included in the dataset. Note also
that intermediates, as depicted in the metabolism scheme, are
not included in the dataset. Instead, the first non-intermediate
metabolite in the pathway is used.

The SMILES for the metabolites were generated using
ChemSpider (ChemSpider. http://www.chemspider.com/
[accessed Feb 13, 2019]). Consistency of stereochemistry
information between parents and their metabolites
was maintained.

Validation of Metabolite Structure
Predictors
Predictedmetabolites were compared to knownmetabolites from
the reference and test datasets using their InChIs. The InChIs
used for this comparison were generated without stereochemistry
information using CDK (Willighagen et al., 2017; Chemistry
Development Kit, version 2.0. https://cdk.github.io/ [accessed
Nov 3, 2017]).

During the validation, a predicted aldehyde metabolite was
considered equivalent to the corresponding carboxylic acid,
because there is evidence that some percentage of an aldehyde
metabolite acts as an intermediate that is further oxidized to
a carboxylic acid without leaving the CYP enzyme active site
(Bell-Parikh and Guengerich, 1999).

In the case of one parent molecule in the reference dataset, no
predictions could be made because the parent molecule contains
boron. FAME 2 is unable to make predictions for molecules
containing boron because no boron-containing molecules were
present in the dataset used to train the model.
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The SyGMa predictions were carried out in Python using
the SyGMa Python package (SyGMa, version 1.1.0), and RDKit
(RDKit: Open-Source Cheminformatics, version 2017_03_01,
2017). Only the phase I reaction rule set was used and one
reaction cycle was applied.

The BioTransformer predictions were performed using the
CYP450 mode of the BioTransformer (BioTransformer, version
1.0.8. https://bitbucket.org/djoumbou/biotransformerjar/
src/master/ [accessed Feb 5, 2019]) command line tool.
BioTransformer was run individually for each parent compound
using single SMILES input.

The ROC curves were generated using the ROCR R package
(Sing et al., 2005; ROCR, version 1.0-7, 2015). When false
negative data points were added to the curve, these data points
were assigned a score of 0 or a rank of 1,000, respectively,
depending on whether the ROC curve represented scores
or ranks.

CONCLUSIONS

We have developed GLORY, a new tool for predicting the
structures of human metabolites formed by CYPs. GLORY
incorporates two key ideas: a literature-based collection of CYP-
mediated reaction rules and SoM prediction, which was used
particularly auspiciously to develop a new scoring approach for
the predicted metabolites.

For GLORY, we developed a new collection of 73 reaction
rules, describing 61 reaction types, for CYP-mediated
metabolism. In developing this collection, we prioritized
the reproducibility of our rule set and therefore based the rules
on the scientific literature rather than on any dataset. In addition
to the rules themselves, each reaction type was designated as
either common or uncommon, again based on the scientific
literature rather than on any dataset.

In addition, we have devised a priority score for predicted
metabolites based on predicted SoM probabilities and the
simple, literature-based distinction between common and
uncommon reaction types. Hence neither our rule set nor
our scoring approach is directly based on any dataset of
metabolic reactions, setting our approach apart from other
tools, for example SyGMa, which uses reaction rules and
occurrence ratios derived from a proprietary dataset, and
BioTransformer, whose rules were to some extent based on a
freely available dataset.

GLORY has two modes: MaxEfficiency, which uses SoM
prediction as a prefilter for the positions in a molecule at
which reactions are allowed to occur, and MaxCoverage, which
does not use a prefilter and instead focuses on high recall and
an accurate ranking of the predicted metabolites. Using SoM
prediction as a preliminary filter, i.e., in MaxEfficiency mode,
does not work as well as might be expected in terms of reducing
the number of putative false positive predictions while still
keeping a high rate of recovery of reported metabolites. However,
by developing a priority score for the predicted metabolites
using SoM prediction combined with a simple binary distinction
between common and uncommon reaction types, we are able

to rank the metabolites predicted by MaxCoverage mode to the
extent that GLORY can predict at least one known metabolite
within the top three ranked positions for 76% of the molecules
in the independent test set while achieving a recall of 0.83.
GLORY’s MaxCoverage mode outperforms both SyGMa and
BioTransformer in terms of recall and outperforms SyGMa
in terms of ranking (BioTransformer does not currently rank
its metabolite predictions). One use case for the MaxCoverage
mode could be, for example, identifying metabolites from mass
spectrometry data.

Along with the collection of reaction rules, we provide a new,
manually curated test dataset for free use as a benchmark dataset.
In addition, GLORY is freely available as a web server at https://
acm.zbh.uni-hamburg.de/glory/.

Importantly, the concept of GLORY is such that it can
be extended to predict metabolites formed by enzymes not
belonging to the CYP family. The enzymes that this approach
can be expanded to is limited, in principle, only by the extent
of the available data and the coverage of the relevant metabolic
reactions by SoM prediction tools.
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