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Abstract

In this master’s thesis, I have investigated dense-water production and flow through a channel

across the Mid-Atlantic Ridge north of Iceland. The channel connects the East Greenland Cur-

rent to the west and the central Iceland Sea to the east, and is named Eggvin Offset. Data for this

study were obtained from the Eggvin Offset Mooring, three hydrographic/velocity surveys, and

an Argo float which was deployed near the mooring. The Eggvin Offset Mooring was deployed

on the southern slope of the channel from August 2016 to June 2018, and formed the basis of

this study with high temporal hydrographic and velocity measurements.

Air-sea-ice interactions, mixed-layer evolution, and dense-water transports were further in-

vestigated in the Eggvin Offset over the two years the mooring was deployed. Hydrographic vari-

ability was linked to the sea ice extent, large-scale winds, and atmospheric heat fluxes, which

revealed differences between winter 2016-17 and winter 2017-18. The water in the mixed layer

the first winter was in general denser and deeper compared to the second winter. Moreover,

higher turbulent heat fluxes and stronger northerly winds were found in the area the first win-

ter. The sea ice edge was nearer the mooring the first winter than it was the following year. The

observations also revealed that sufficiently dense water (σθ ≥ 27.8 kg/m3) to contribute to the

overflows across the Greenland-Scotland Ridge was formed in the channel. Water dense enough

to supply the North Icelandic Jet (σθ > 28.03 kg/m3), and thereby also the densest component

of the Atlantic Meridional Overturning Circulation, was, however, not formed in this region.

Transports of two dense-water layers were estimated. One estimation was done for the

mixed layer, when the density was higher than the overflow water limit. The second trans-

port was estimated for the depths corresponding to the properties of the North Icelandic Jet

transport mode water. The velocities in the channel were generally directed eastward, into the

Iceland Sea, in particular at intermediate and greater depths. However, the velocities were low,

and so were the transports. Hence, from the available observations, the Eggvin Offset is neither

an important pathway, nor source, of dense water to the Denmark Strait Overflow Water.
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Chapter 1

Introduction

The target area of this thesis is the Eggvin Offset, a gap in the Mid-Atlantic Ridge in the north-

western Iceland Sea (Fig. 2.1). This is a small area in the Nordic Seas where deep-water forma-

tion takes place. The dense water formed in the Nordic Seas spills over the Greenland-Scotland

Ridge (GSR) into the North Atlantic and maintains the lower limb of the Atlantic Meridional

Overturning Circulation (AMOC). Changes in strength and pattern of the AMOC impact global

climate, as it is a major distributor of heat from lower to higher latitudes (Scheffer et al., 2001;

Lenton et al., 2008; Furevik et al., 2007). It is therefore of interest to investigate the largest and

densest component to the North Atlantic Deep Water (NADW), which is the Denmark Strait

Overflow Water (DSOW; Dickson and Brown, 1994).

Several hypotheses on the origin and pathways of the DSOW have been proposed. Today we

know that there are two major currents that transport dense water to the sill at Denmark Strait:

the East Greenland Current (EGC) and the North Icelandic Jet (NIJ; Fig. 2.1). The EGC is the

western branch of the cyclonic boundary current system around the Nordic Seas (Mauritzen,

1996), and carries modified Atlantic-origin Water and Polar Surface Water (PSW) southward.

Dense water transported by the EGC is responsible for about two thirds of the total dense-water

transport (Harden et al., 2016). The NIJ, on the other hand, is a current along the northern slope

of Iceland (Semper et al., 2019), which transports the densest water to Denmark Strait (Våge

et al., 2011). The locations where these waters are formed and their pathways to the NIJ are,

however, still being investigated.
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CHAPTER 1. INTRODUCTION 3

The deepest and densest mixed layers in the Iceland Sea occur in the northwestern part

(Våge et al., 2015). However, details about the deep-water formation and circulation in this re-

gion are unclear as the region is sparsely sampled, especially during winter. This is due to sea

ice cover and rough weather conditions. The lack of observations in this area was the motiva-

tion to deploy a mooring in the Eggvin Offset, which consisted of 25 hydrographic and velocity

instruments, resulting in a data set with high temporal and vertical resolution. The mooring was

deployed over two years from August 2016 to June 2018, and the data set provids the basis for

this study.

Hydrographic variability in the upper ocean has been linked to sea ice extent and to regional

and local atmospheric forcing. Analyses of the hydrographic properties, the mixed-layer evo-

lution, and seasonal variability have been conducted to address the importance of the Eggvin

Offset. Is atmospheric driven open-ocean convection in the Eggvin Offset an important source

to the NIJ, and hence, to the lower limb of the AMOC? Is the channel an important pathway of

dense-water transport between the Greenland and Iceland Seas?



Chapter 2

Background

2.1 The Nordic Seas

The Nordic Seas occupy the region between Greenland in the west, Norway in the east, Sval-

bard in the north and the GSR in the south (black line in Fig. 2.1). The area encompasses the

Norwegian, Greenland, and Iceland Seas, and represents approximately 1% of the area of the

world’s ocean (Furevik et al., 2007). The Nordic Seas connect with the Arctic Ocean through the

Barents Sea and Fram Strait to the north, and with the North Atlantic to the south. As such, the

Nordic Seas enable cold and fresh Polar Water to mix with warm and saline Atlantic Water (AW).

Moreover, the blending of different origin water masses and the presence of extremely cold air

temperatures during winter and sea ice make the Nordic Seas of key importance for the AMOC

(Chafik and Rossby, 2019).

The northern branch of the Mid-Atlantic Ridge stretches from the Icelandic shelf to Fram

Strait, and separates the Iceland and Greenland Seas to the west from the Norwegian Sea to the

east. The Iceland and Greenland Seas are characterized by a pronounced cyclonic circulation

due to the large-scale wind pattern (the westerlies and the polar easterlies). The cyclonic circu-

lations in the Iceland and Greenland Seas are known as gyres, which are separated from each

other by the West Jan Mayen Ridge. The gyre circulation is stronger in the Greenland Sea than in

the Iceland Sea, due to stronger atmospheric forcing and steeper bathymetry (Voet et al., 2010;

4
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Figure 2.1: Map of the bathymetry and general circulation in the Nordic Seas. Red colors repre-
sent inflow of warm Atlantic Water and purple colors represent cold and dense waters flowing
southward. The red star is the location of the Eggvin Offset Mooring. The acronyms are the
Eggvin Offset (EO), the North Icelandic Irminger Current (NIIC), the North Icelandic Jet (NIJ),
the East Icelandic Current (EIC), the Jan Mayen Current (JMC), the West Spitsbergen Current
(WSC), the East Greenland Current (EGC), the western and eastern (’shelf’) branch of the Nor-
wegian Atlantic Current (NwAC), and the North Atlantic Current (NAC). The color shading is the
bathymetry from ETOPO1.

Moore et al., 2015). This favors the Greenland Sea as the prime location of deep-water formation

compared to the Iceland Sea, which is in general shallower, less stratified, and more dependent

on the sea ice edge to allow for deep-water formation.

From Iceland to Jan Mayen the Mid-Atlantic Ridge is known as the Kolbeinsey Ridge, and it

separates the westernmost part of the Iceland Sea from the central and eastern parts. Two major

gaps exist across the Kolbeinsey Ridge: the Eggvin Offset and the Spar Offset, often referred to

as the Spar Fracture Zone, (Fig. 2.2a). The Eggvin Offset, which is the focus of this study, is

located between the mid- and northern part of the Kolbeinsey Ridge. The northern part of the

Kolbeinsey Ridge is known in literature as the Eggvin Bank (Fig. 2.2b) and is located west of the

Jan Mayen Micro Continent (Tan et al., 2017).
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a) b)

Figure 2.2: An overview of the northern branch of the Mid-Atlantic Ridge on the Iceland Plateau
and its major, zonal gaps. a) From south, the South Kolbeinsey Ridge (SKR), Mid Kolbeinsey
Ridge (MKR) and the North Kolbeinsey Ridge (NKR) are shown. b) Bathymetry of the Eggvin
Offset region. Figures by courtesy of Thibaut Barreyre, University of Bergen, KG Jebsen Centre
for Deep Sea Research, 2018.

2.1.1 Circulation in the Nordic Seas

Warm and saline AW enters the Nordic Seas east and west of Iceland. The largest inflow enters in

the surface layer in the Faroe Bank Channel east of Iceland and is carried poleward by the north-

ern extension of the Gulf Stream, named the North Atlantic Current (Østerhus et al., 2019). This

current separates into two branches before reaching the Nordic Seas (Fig. 2.1). While the west-

ern Norwegian Atlantic Current (NwAC) follows the western rim of the Norwegian Basin towards

the Mid-Atlantic Ridge north of Jan Mayen (Mohn and Knipovich Ridges), the east NwAC con-

tinues along the Norwegian coast. The AW is modified on its way northward by strong heat loss

to the atmosphere and from mixing with colder water masses (Mauritzen, 1996). One branch

of the east NwAC veers off into the Barents Sea north of Norway, before it circulates the Arc-

tic Ocean. The rest continues northward along western Svalbard as West Spitsbergen Current

(WSC). One portion of the WSC continues into the Arctic Ocean when reaching Fram Strait.

The other portion subducts under less dense PSW and joins the EGC southward at intermediate

depths.

The EGC flows along the Greenland continental slope from Fram Strait to Denmark Strait.

The current consists of three branches: the shelfbreak EGC situated close to the Greenland shelf
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break, the Polar Surface Water Jet flowing on the continental shelf, and the outer EGC located

near the mid-to-deep continental slope (Håvik et al., 2017). By use of two shipboard surveys

in summer 2012, Håvik et al. (2017) observed that velocities north and south of Jan Mayen in

the outer branch of EGC were directed eastward, toward the Iceland and Greenland Seas (Fig.

2.3). This indicates that water from the EGC could flow through the Eggvin Offset and into the

Iceland Sea, which is the topic of investigation in this study.

Figure 2.3: Depth-integrated velocity vectors for the upper 500 m (red arrows) and water depth
(color shading). Data were collected from a shipboard survey in summer 2012. Section number
6 shows flow towards the Eggvin Offset (Fig. 5 from Håvik et al., 2017).

Upstream of Denmark Strait, at the northern tip of the Blosseville Basin, the EGC bifurcates

into a shelfbreak branch and a separated branch. The former continues along the Greenland

shelf break, while the latter flows along the eastern rim of the Blosseville Basin and continues
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southward along the base of the Iceland slope, through Denmark Strait. East in Denmark Strait,

a less significant portion of AW enters the Nordic Seas in the North Icelandic Irminger Current

(NIIC). This current follows the western Icelandic continental slope, and is hypothesized to be

the upper limb of a local overturning cell (Våge et al., 2011). The lower limb of this cell is the NIJ,

which flows along the northern Iceland continental slope towards Denmark Strait.

2.1.2 Sources and pathways of overflow water

Water sufficiently dense to contribute to the overflow water east and west of Iceland are formed

in the Nordic Seas. Overflow water is identified by a lower potential density limit ofσθ = 27.8 kg/m3

(Dickson and Brown, 1994). DSOW accounts for approximately half of the overflow water that

spills over the GSR and encompasses the largest portion of the densest overflow water. The

other half spills over the ridge east of Iceland, where the largest plume is the Faroe Bank Chan-

nel Overflow Water (FBCOW). The FBCOW accounts for one third of the total overflow transport

(Hansen et al., 2016; Østerhus et al., 2019). The formation and circulation of these overflow wa-

ters are important for the global climate, as they feed the lower limb of the AMOC (Harden et al.,

2016; Østerhus et al., 2019; Chafik and Rossby, 2019).

Most of the NADW is formed in the Nordic Seas (Gebbie and Huybers, 2010). Today we know

that this happens in two ways. One is the modification of AW that circulates cyclonically around

the periphery of the Nordic Seas (Mauritzen, 1996; Rudels et al., 2002; Tanhua et al., 2005; Köhl

et al., 2007; Eldevik et al., 2009). The resulting product is referred to as Atlantic-origin Water

(Våge et al., 2011) and comprises the largest contribution to the DSOW, and hence the NADW

(Harden et al., 2016). The other major contribution to the DSOW is the Arctic-origin Water. This

is water formed by open-ocean convection in the Greenland and Iceland Seas (Swift et al., 1980;

Mastropole et al., 2017), and is carried toward Denmark Strait primarly by the NIJ (Jonsson and

Valdimarsson, 2004; Våge et al., 2011; Semper et al., 2019).

Several hypotheses of the origin and pathway of DSOW have been proposed through time,

and the importance of the Iceland Sea has been debated. Water sufficiently dense to contribute

to the DSOW is ventilated throughout the Iceland Sea gyre. The densest component was, on the
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other hand, not observed ventilated, but rather found at intermediate and great depths (Våge

et al., 2015). This indicates that the product of wintertime convection in the Iceland Sea may

not be a significant source of the densest portion to the DSOW. It further implies that this water

must be formed somewhere else and transported to the Iceland Sea gyre to supply the NIJ.

Dense-water transport by the NIJ can account for approximately one third of the total DSOW

and does also constitute the densest portion of the DSOW (σθ ≥ 28.03 kg/m3; Våge et al., 2011;

Harden et al., 2016). However, Semper et al. (2019) argues that the contribution of water from

the NIJ to the Denmark Strait overflow is higher than previously estimated. Such dense water

has been observed in the Greenland Sea gyre at intermediate depths in winter (Brakstad et al.,

2019), which strengthens the hypothesis that the densest portion of the DSOW is formed in

the Greenland Sea and transported to the Iceland Sea (Våge et al., 2015; Pickart et al., 2017).

This is further supported by Messias et al. (2008), who found evidence of a rapid connection

between the basins through tracer experiments. More details of how and where this dense water

is transported to the Iceland Sea, and hence to the NIJ, is yet to be revealed.

2.2 The meandering Polar Front

The Nordic Seas encompasses three domains, from west: the Polar, the Arctic, and the Atlantic

domains (Swift and Aagaard, 1981). The inflows of warm, saline water to the east, and fresh, cold

water to the west result in large zonal temperature and salinity gradients across the Nordic Seas.

These characteristics have been used to define the different domains. The Arctic domain con-

sists of the Iceland and Greenland Seas, and is separated from the Atlantic domain by the Arctic

Front. The Polar and Arctic domains, on the other hand, are separated by the Polar Front, which

is defined by the 34.5 isohaline (converted to 34.66 g/kg as Absolute Salinity is used further on

in this study; Swift and Aagaard, 1981).

Langehaug et al. (prep) investigate a relationship between the fluctuations in the total fresh-

water transport, large-scale wind stress, and surface salinity in the Arctic domain. They have

found that the seasonal variations of freshwater transport to the deep basins are dominated by

variations in the sea ice transport, which are related to large-scale wind stress in the area. The
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northerly winds are stronger than normal during fall and winter, and the freshwater transport

reaches its largest value in winter (as the main freshwater transport is sea ice through Fram

Strait). During spring and summer, the northerly winds weaken and the freshwater transport

is in general low, as less sea ice enters the Nordic Seas from the Arctic Ocean (Langehaug et al.,

prep).

The lateral extent of freshwater in the western Nordic Seas is related to the seasonal migra-

tion of the Polar Front, and is found to be controlled by large-scale winds (Langehaug et al.,

prep). During summer, when the northerly winds are relatively weak, the Polar Front is located

at its most easterly position. The northerly winds strengthen during fall and winter, which forces

the Polar Front to migrate westward, toward Greenland (Våge et al., 2018). The migration of the

Polar Front is of interest in this study, as the lateral cycle of its position periodically brings a

large amount of freshwater to the Iceland and Greenland Seas. More freshwater spreading into

the deep basins leads to enhanced stratification and is thereby expected to influence the for-

mation of dense water in this area, and hence DSOW (Brakstad et al., 2019; Langehaug et al.,

prep).

2.3 Air-sea-ice interaction in the Iceland Sea

Air-sea-ice interactions are important to understand and investigate in order to locate the for-

mation regions of the DSOW. When cold, dry air moves over relatively warm water, extremely

strong air-sea heat fluxes occur. These occurrences are called cold-air outbreaks, and are ob-

served where polar air masses discharge over more temperate areas, such as in the Nordic Seas

(Papritz and Spengler, 2017). This leads to intense cooling of the ocean and deep-water forma-

tion. The Nordic Seas is ideally situated for such strong heat fluxes, due to the combination of

warm AW, sea ice and polar air. Furthermore, the air-sea heat fluxes are largest near the ice edge,

as this is where the coldest air meets the much warmer ocean (Renfrew and Moore, 1999; Våge

et al., 2015; Papritz and Spengler, 2017).

The sea ice edge in the western Nordic Seas has, however, retreated towards Greenland dur-

ing the past century, with an enhanced retreat over the past decades (Moore et al., 2015; Våge



CHAPTER 2. BACKGROUND 11

et al., 2018). The winter mean open-ocean heat flux1 from the Iceland Sea gyre has been sub-

stantially reduced from 1995 (140 W/m2) to 2014 (50 W/m2; Moore et al., 2015). This is a result

of the retreat of the sea ice edge, which causes a smaller temperature gradient between the at-

mosphere and ocean, and hence, weaker heat flux. The ongoing global warming will therefore

most likely weaken the formation of Arctic-origin Water, and thereby also the AMOC (Condron

and Renfrew, 2013).

The deepest and densest mixed layers in the Iceland Sea are formed in the northwestern

region, on the outskirts of the gyre, where the largest air-sea heat fluxes are found (Våge et al.,

2015; Pickart et al., 2017). Fresh, low-density water occupies the surface in this region in summer

(Swift et al., 1980; Våge et al., 2013), which is known to inhibit wintertime convection (Dickson

et al., 1988; Malmberg and Jónsson, 1997). These arguments were based on sparse wintertime

data in the western Nordic Seas, especially for the western Iceland Sea. However, Våge et al.

(2018) showed that this fresh surface layer that dominated the western Iceland Sea in summer

was gone by late fall, which preconditioned the water column for winter convection. They hy-

pothesized that this was caused by intense northerly winds in fall and winter, that led to Ekman

transport of the fresh surface layer toward Greenland.

The climate of the Iceland Sea region is largely dominated by the Icelandic low, which is the

northern part of the North Atlantic Oscillation. When the Icelandic low is deep (strong low-

pressure), extratropical cyclones brings relatively warm air from south/southeast over the Ice-

land Sea and northward (Renfrew et al., 2019). Such an event occured in December 2015, which

caused a record warming of the North Pole (Moore, 2016). The temperature adjacent to the

North Pole raised by 26°C in 24 hours, and a strong reduction of sea ice in the northern Nordic

Seas and Arctic Ocean was observed. However, when the Icelandic low is shallow (weak low-

pressure), other synoptical weather systems dominate the reagion. For example, a deep Lofoten

low can bring polar air from the north over the Iceland and Greenland Seas, and a southwest-

ern Icelandic low can force barrier winds off the cost of Greenland over the Iceland Sea (Harden

et al., 2011; Renfrew et al., 2019).

1Ocean heat flux, ∆H = ρ∗Cp∗∆T∗V
∆t , is the change in heat over a unit square meter between time t +1 and time

t .
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Deep-water formation in the Iceland Sea is therefore a result of a complex air-sea-ice system.

Papritz and Spengler (2017) stated that deep-water formation in the Iceland Sea occurs during

a few intense cold-air outbreaks, rather than by continuous heat loss during weak cold-air out-

breaks. These authors further proposed that the pathways of polar air masses were crucial for

the resulting atmospheric heat fluxes2 over the ocean, hence the large-scale wind pattern is a

contributing factor. The mean winter wind field in the Nordic Seas is dominated by northerly

winds in the northern part, along east Greenland, and over the western and central Iceland Sea,

and with southerly winds on the eastern side (Moore, 2012). Changes in this wind pattern is

important to understand and predict, in order to understand the deep-water formation in the

Iceland Sea (Papritz and Spengler, 2017; Renfrew et al., 2019). This study aims to address some

of the uncertainties regarding the formation of dense water in the Iceland Sea and transport of

dense water toward Denmark Strait.

2Atmospheric heat flux is in this thesis referred to the turbulent heat flux (thf; latent + sensible heat fluxes).
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Data and methods

3.1 The Eggvin Offset Mooring

Data for this study were obtained from the Eggvin Offset Mooring, which was located in the

Eggvin Offset (70.6°N, 15.6°W), in the northwestern Iceland Sea. The mooring was deployed

from 28 August 2016 to 7 June 2018. Its purpose was to measure dense-water formation and

flow through the offset, where the deepest and densest mixed layers in the Iceland Sea were

expected to be found according to Våge et al. (2015). The location of the mooring was intended

to be ice free in winter, still sufficiently close to the ice edge, in order to be exposed to the most

intense cold-air outbreaks.

The mooring was equipped with 25 point hydrographic instruments, current meters and

temperature loggers: five Sea-Bird Electronics 56 (SBE56) measuring temperature every 30 sec-

onds, four Sea-Bird Electronics 37 (SBE37) measuring temperature, salinity, and pressure every

15 minutes, eleven Sea-Bird Electronics 39 (SBE39) measuring temperature and pressure every

15 minutes, one Seaguard measuring temperature, salinity, pressure, and point velocity every

30 minutes, one Rotor Current meter (RCM-07) from Aanderaa, which measured velocity every

second hour, and three Acoustic Doppler Current Profilers (ADCP, two work horses and one long

ranger), measuring velocity every hour and every second hour, respectively (Fig. 3.1; Tab. 3.1).

A closer look at the pressure data revealed that the instruments that measured pressure had

13
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undergone a drift. From the deployment in August 2016, the pressure sensors at each depth

available showed a trend in reduced pressure until November 2016. Moreover, the Eggvin Offset

Mooring must have been deployed a bit farther to the south on the slope, such that it covered

the entire water column from 8 m (instead of 50 m as planned) in the surface layer to the bottom

depth at 1200 m.

3.2 Additional data

Additional hydrographic and velocity data used in this study were obtained from three ship-

board conductivity-temperature-depth (CTD) sections across the Eggvin Offset from R/V Håkon

Mosby (August 2016), R/V Alliance (February 2018), R/V Kristine Bonnevie (June 2018), and an

Argo float (ID: 3901988, Fig. 3.2).

The shipboard hydrographic and velocity surveys sampeled the Eggvin Offset three times

while the mooring was deployed. The first cruise was related to the deployment of the Eggvin

Offset Mooring and crossed the channel, from south to north, in late August 2016. The second

survey was during the winter cruise with the Iceland Greenland Seas project (Renfrew et al.,

2019), which crossed the Eggvin Offset at the end of February and beginning of March 2018.

The last section was taken in June 2018, during the recovery of the mooring. Hydrographic

and velocity measurements obtained from CTD casts, lowered Acoustic Doppler Current Pro-

filers (LADCPs) and ship-mounted instruments on these three cross-sections of the channel

have been used in this study to supplement the mooring data. The hydrographic fields from

the CTD sections were used to compute the geostrophic shear via the thermal wind relation.

These geostrophic velocities were then referenced with the shipboard ADCP data to obtain ab-

solute geostrophic velocities, following the method by Semper et al. (2019). Here, velocities are

positive towards the east.

The Argo float was deployed 2 km from the Eggvin Offset Mooring at the end of February

2018. The float profiled to approximately 1000 m every day and drifted through the channel at

200 m depth until 16 May 2018. At that time, the float was near the eastern end of the channel,
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Figure 3.1: The instrumentation of the Eggvin Offset Mooring, schematic by Helge Bryhni, De-
cember 2019, University of Bergen.
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and started profiling every fifth day and drifting at 1000 m instead. The Argo float was equipped

with hydrographic sensors and its velocity through the Eggvin Offset was estimated and com-

pared to the mooring data, by use of its positions and time.

Due to the lack of salinity data, the in-situ temperature data were used in the analysis, while

for the cruise and Argo data, Conservative Temperature was used. Subsequently, the word ’in-

situ temperature’ refers to the actual measured temperature from the mooring, and ’tempera-

ture’ refers to the Conservative Temperature from the cruises and Argo float. ’Salinity’ in the text

refers to Absolute Salinity and ’density’ is always potential density anomaly. The TEOS-10 global

seawater toolbox was used for all conversions (McDougall and Barker, 2011).

Figure 3.2: Map of CTD stations from the three cruises, the Argo track and the location of the
Eggvin Offset mooring (red star). Yellow squares are from R/V Håkon Mosby in August 2016,
purple diamonds are from R/V Alliance in February 2018, and black dots are from R/V Kristine
Bonnevie in June 2018. The black line represents the track of the Argo float, which was deployed
2 km west of the mooring on 28 February 2018. The Argo drift is shown by colored dots, from
light green to dark green (28 February to 16 May) to grey (16 May to 21 September). In this period
the float profiled down to 1000 m every day and drifted at 200 m depth. The float started to dive
every fifth day and drifted at a depth of 1000 m. Color shading is ocean depth.

The atmospheric and sea ice data were obtained from the latest climate reanalysis data,

ERA5, a product from the European Centre for Medium-Range Weather Forecasts (Copernicus

Climate Change Service (C3S), 2017). The data were downloaded to cover the area of interest
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[65°N – 80°N, 35°W – 20°E] in the time period the mooring was deployed. The ERA5 data set

provides hourly fields on single pressure levels. The fields included in this study were the 2 m

atmospheric temperature, 10 m wind, mean sea level pressure, sea ice concentration, sensible

and latent heat fluxes, mean shortwave radiation, and mean long wave radiation.

3.3 Current data

The Eggvin Offset Mooring was well equipped with instruments measuring current velocity. At-

tached to the mooring were three ADCPs, one Seaguard current meter, and one RCM measuring

flow velocity and direction. One work horse ADCP at 59 m was facing upward and sampled all

the way to the sea surface with a beam frequency of 300 kHz. Another ADCP was attached at 60

m and faced downward. This was a long ranger and reached all the way down to 663 m. The last

ADCP was sampling the depth range from 680 m to 544 m, faceing upward as well. The Seaguard

measured the velocity and direction at one point, at 367 m depth. The ADCPs had a resolution

of 0.1 cm/s and a range of ± 500 cm/s, while the Seagurad RCM had a resolution of 0.01 cm/s

and a range of 0-300 cm/s. The RCM-07 at great depth had a problem with the rotor container,

such that the velocity data were not possible to recover.

The velocities were rotated into a coordinate system aligned with the mean flow and the con-

tours of constant depth in the Eggvin Offset. These two methods resulted in an east/northeastward

flow of 3° ("mean flow-method") and 5° ("bathymetry-method") in the Eggvin Offset (Fig. 3.3),

where 0° was east. The bathymetry-method was used further in this study, as the geometry in

the channel was used in later calculations.

Moreover, the significance of the velocity data was addressed. This was done by calculating

the standard mean error of the rotated along-stream velocities over the whole time period av-

eraged over four depth intervals: 10 m – 100 m, 100 m – 300 m, 300 m – 500 m and 500 m – 700

m (Fig. 3.4). High sampling frequency over a continuous time period gave the measurements a

type of memory (auto correlation), which means that a sample at time t+1 is a function of the

sample at time t. The standard mean error was computed by considering the integral time scale
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Figure 3.3: The location of the Eggvin Offset mooring (red star) and direction of un-rotated (red)
and rotated currents (green) in the Eggvin Offset. Black lines are depth contours and color shad-
ing is ocean depth.

of the time series, which is the sum of squared auto correlation functions.

The velocities were weak and the error ellipses were larger than the mean velocities (Fig.

3.4). This means that the velocities were not significant in magnitude, but they had a preferred

direction. Despite large fluctuations in the upper layer, the velocities at intermediate and greater

depths were all directed to the east. The angle of the ellipse depended on the covariance of

the U (east-west) and V (north-south) components of the flow. The magnitude, on the other

hand, depended on the variance of the velocity data. The length of the axes of the ellipses were

determined by the standard mean error in the along- and across-stream directions.

3.4 Calibration

After the recovery of the mooring in June 2018, the data were inspected for spikes, drifts, and

other issues. The hydrographic data set was overall very good, except for one troublesome con-
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ductivity sensor at 1198 m and a fault with the rotor container on the RCM-07 that measured

current velocity at 1200 m. Data from these two sensors were therefore excluded from the anal-

ysis.

The rest of the measurements were calibrated by comparing the time series of in-situ tem-

perature and conductivity with the three surveys that crossed the channel in the time period

the mooring was deployed. Data from the nearest station to the mooring from each survey were

used. The distances were 1.7 km, 1.1 km, and 1.6 km between the mooring and the nearest

station on R/V Håkon Mosby, R/V Alliance, and R/V Kristine Bonnevie, respectively. The values

used for comparison from the CTD stations were averaged over a depth interval, ± 10 m the

depth of the moored instrument. The calibration points from the mooring were averaged over

a time interval, which was ± 1 day from the time of the CTD casts. Standard deviations for each

calibration value were added, and visual inspection of each time series from the mooring was

done to validate the data. If the calibration points were not inside the limits of the standard

deviations, corrections were made.

Most of the time series passed the above criteria and recorded throughout the 2-year de-

ployment. Only four time series had to be calibrated (Table 3.1). The calibration adjustment

was either done by adding a constant, if the measurements were only off by a constant, or by

multiplying with a linear function if the problem was a linear drift in the sensors. An example of

the first method is illustrated below (Fig. 3.5).
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Table 3.1: An overview of the different instruments at the Eggvin Offset Mooring, accuracy of the
instruments, and whether the measurements had to be adjusted for drifts/offsets. The abbre-
viations are: D (depth), accuracy (Acc.), calibration (Cal.), in-situ temperature (T), conductivity
(C) and velocity (vel). Green color indicates that the data were not calibrated, while red color
means that the data were calibrated. "Yes, linear" means that the data set was corrected by a
linear function and the "yes, constant" means that the data set was corrected by adding a con-
stant.

Instrument D [m] Acc. T Acc. C Acc. vel Cal. T Cal. C Cal. vel

SBE37 sn5447 8 ± 0.002 °C ± 0.003 mS/cm no no

SBE56 sn5186 34 ± 0.002 °C no

ADCP sn3505 59 ± 0.4 °C ± 0.5 cm/s no no

ADCP sn8645 60 ± 0.4 °C ± 0.5 cm/s no no

SBE56 sn5187 85 ± 0.002 °C no

SBE37 sn5225 111 ± 0.002 °C ± 0.003 mS/cm no no

SBE56 sn5188 136 ± 0.002 °C no

SBE39 sn3746 162 ± 0.002 °C no

SBE56 sn5189 188 ± 0.002 °C no

SBE39 sn6145 213 ± 0.002 °C no

SBE56 sn5190 265 ± 0.002 °C no

SBE39 sn3566 316 ± 0.002 °C no

Seaguard sn508 367 ± 0.03 °C 0.002 mS/cm ± 0.15 cm/s no yes, constant no

SBE39 sn3569 419 ± 0.002 °C no

SBE39 sn3570 470 ± 0.002 °C no

SBE39 sn3571 521 ± 0.002 °C no

SBE39 sn3572 572 ± 0.002 °C yes, linear

SBE39 sn6147 624 ± 0.002 °C no

ADCP sn15331 674 ± 0.4 °C ± 0.5 cm/s yes, constant no

SBE37 sn8975 675 ± 0.002 °C ± 0.003 mS/cm no no

SBE39 sn3573 726 ± 0.002 °C no

SBE39 sn3251 778 ± 0.002 °C no

SBE39 sn3574 983 ± 0.002 °C no

SBE37 sn8974 1186 ± 0.002 °C ± 0.003 mS/cm no unrecoverable

RCM-7 sn10909 1188 ± 0.05°C ± 0.15 cm/s yes, constant unrecoverable
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Figure 3.4: Error ellipses of velocity data from the Eggvin Offset Mooring over the whole time
period (August 2016 to June 2018). The ellipses represent the standard mean error of the veloc-
ity data from the four depth intervals presented. The blue arrows represent the direction and
magnitude of the mean flow. When error ellipses are larger than the arrows, the velocity is not
significantly different from zero. Additionally, more circular ellipses indicate that the flow does
not have a very steady direction.
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Figure 3.5: Time series of un-corrected (a) and corrected (b) in-situ temperature from the ADCP
at 674 m. Calibration points are from the mooring (red dots) and the nearest station to the
mooring at the three cruises (green dots), with error bars explained in the text above.

3.5 Synthetic salt data

Salinity data were only available at four depths: 8 m, 111 m, 367 m, and 675 m. One method

was therefore attempted to calculate salinity from in-situ temperature and conductivity data,

to investigate salinity and density variations in the Eggvin Offset. A tight one-to-one relation-

ship was identified between moored in-situ temperature and conductivity at the four depth the

instruments measured both parameters. This one-to-one relationship gave motivation to try

to construct synthetic salinity data for the entire water column. Linear and polynomial calcu-

lations of conductivity as a function of in-situ temperature and depth were then conducted,

with measurements from the mooring and the three CTD stations, following the approach of

Darelius et al. (2011). The resulting linear functions were quite distinct from each other, due to

different in-situ temperature ranges at different depths. Thus, it was not possible to apply one-

to-one correlations between in-situ temperature and conductivity at each depth throughout

the entire water column. This was also confirmed by the CTD casts near the mooring (Fig. 3.6).

These measurements indicated that the density change with depth was dominated by salinity,

not temperature (Fig. 3.7). Hence, salinity and density data at all depths from the Eggvin Offset

Mooring could not be estimated.
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Figure 3.6: Temperature (blue), density (black), and salinity (red) from the nearest CTD stations
to the Eggvin Offset Mooring at the three cruises R/V Håkon Mosby (HM), R/V Alliance (AL), and
R/V Kristine Bonnevie (KB). None of the three profiles are one-to-one.

3.6 Mixed-layer depth

The high vertical resolution of in-situ temperature made it possible to estimate the mixed-layer

depth from a temperature difference criterion (Fig. 3.8, Nilsen and Falck, 2006; Våge et al., 2015).

While Nilsen and Falck 2006 used a temperature difference of ∆T = 0.8°C in the Greenland Sea,

Våge et al. (2015) found that ∆T = 0.2°C was a better fit to the less stratified Iceland Sea. In this

study, ∆T = 0.15° was the best estimate, chosen after visual inspection of several temperature

differences. The stratification of the water column and lower in-situ temperature resolution

than the hydrographic profiles considered by Våge et al. (2015) might have been the reason why

a smaller ∆T was better in the Eggvin Offset.
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Figure 3.7: Anomalies in temperature (blue), density (black) and salinity (red) from the nearest
CTD stations to the Eggvin Offset Mooring at the three cruises R/V Håkon Mosby (HM), R/V
Alliance (AL), and R/V Kristine Bonnevie (KB). The density profiles follows the salinity profiles,
not the temperature profiles.

The difference criterion method was applied using an autonomous temperature algorithm,

where a reference time series of in-situ temperature was chosen. The uppermost instrument at

8 m was the natural reference, but during the convection period, November through April, this

method resulted in too shallow mixed layers. Hence, the algorithm was divided into summer

and convective seasons. The convective season was further divided in three stages, where the

reference time series were set to 36 m in stage 1, 111 m in stage 2, and 162 m in stage 3 (gray

shading in Fig. 4.3). Stage 3 was only observed the first winter from 5 April to 5 May 2017. The

mixed-layer depth was then estimated to be the depth of the instrument where the reference

temperature plus the temperature difference reached (Tr e f + ∆T ). The resulting mixed layers

were still too shallow due to the separation distance of the instruments (25 m in the upper 300 m

and 50 m between 300 m and 800 m depth). This was corrected by adding 12.5 m to the mixed-
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Figure 3.8: In-situ temperature time series from every instrument attached to the Eggvin Offset
Mooring. Colors from red to blue indicate the depth of the records, from the surface to the
bottom. The depth of the mixed layer can be inferred by studying the depth of the deepest
instrument when the time series converge.

layer time series in the upper 300 m and 25 m for depths between 300 m and 800 m.

A density-difference criterion was conducted with the density data from the Argo float when

it drifted on the southern slope in the Eggvin Offset. The same method as for the temperature-

difference criterion was used, and the resulting time series was compared with the mixed-layer

time series from the mooring and from the temperature-difference criterion used on the tem-

perature data from the Argo float. This comparison was done to strengthen the representation

of the mixed-layer time series from the mooring data.
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3.7 Transport estimates

An interest in this study was to see whether the Eggvin Offset was an important pathway of over-

flow water into the Iceland Sea. Transports through the Eggvin Offset were therefore estimated

for two different layers of dense water. One was the mixed layer, when the water was suffi-

ciently dense (σθ ≥ 27.8 kg/m3) to contribute to the overflow across the GSR. The second was

the dense water at greater depths corresponding to the NIJ transport mode (Semper et al., 2019).

The bulk hydrography of the NIJ is −0.29°C ± 0.16°C and 35.075 g/kg ± 0.006 g/kg, which cor-

responds to a density of approximately 28.05 kg/m3 (Tab. 3.2; Semper et al., 2019). The den-

sities of the freshest and warmest water, and the saltiest and coldest water, were used to esti-

mate a density span for the NIJ transport mode (± 0.01 kg/m3). The resulting range was then

28.04 kg/m3 to 28.06 kg/m3 and was used to estimate the depth interval of deep, dense water in

the Eggvin Offset: 550 m – 850 m (Fig. 3.9).

Table 3.2: Properties of the NIJ transport mode (Semper et al., 2019). Corresponding depth
(Corr. depth) is the depth in the Eggvin Offset where the properties of NIJ transport mode water
are found.

Temperature [°C] Salinity [g/kg] σθ [kg/m3] Corr. depth [m]

Mode -0.29 ± 0.16 35.075 ± 0.006 28.05 672

Max. -0.45 35.081 28.063 851

Min. -0.13 35.069 28.037 548

Diff. -0.32 00.012 00.026 303

The geometry of the Eggvin Offset was studied in order to determine the region the Eggvin

Offset Mooring could represent, which in turn was used in the transport estimates. The offset

is a zonal gap with sloping bathymetry (shallower water) to the north and south (Fig. 2.2), and

the Eggvin Offset Mooring was deployed on the southern slope, in a steep terrain (Fig. 3.10). It

was therefore assumed that the mooring could represent the southern slope, from the southern

point where the slope begins and to the local maximum depth 21 km farther north. This had

to be argued for, and hence the steepness and some dynamics of this slope and channel were
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Figure 3.9: Depths estimated from the densities obtained from the nearest CTD stations of the
three surveys (R/V Håkon Mosby, R/V Alliance, and R/V Kristine Bonnevie). The densities cor-
respond to the North Icelandic Jet transport mode. Green hexagons indicate the mean depth of
the three CTD casts at the different densities.

investigated.

The southern slope could be divided into two sections based on the bathymetry of the slope.

The slope was steeper toward the south and less steep toward the north. The southernmost

11 km were in approximately the same steepness range, and the northernmost 10 km were in

another, less steep range (Fig. 3.10). The Eggvin Offset Mooring was therefore assumed to at

least represent the southernmost 11 km, and at most the entire slope presented in Fig. 3.10.

Furthermore, these maximum and minimum widths were used together with maximum and

minimum depths and velocities to estimate the range of maximum and minimum transports.
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Figure 3.10: Bathymetry of the southern slope in the Eggvin Offset (thick blue line). The red star
is the location of the Eggvin Offset Mooring, and the dashed lines are the least square lines of
the bathymetry to indicate regions of similar steepness.

Additional assumptions for geostrophic flow were considered: Friction at the bottom and

at the surface were neglected, uniform flow along the southern slope (Fig. 4.25), the water was

shown to be horizontally homogenous (flat isopycnals: Figs. 4.11, 4.12, and 4.13), and the flow

was assumed to be non-divergent and with no vertical shear. The water was therefore not al-

lowed to climb up or down the slope. Furthermore, the theory of geostrophic flow says that the

flow turns right at Northern Hemisphere. Additionally, the circulation will follow the potential

vorticity contours ( f /h = const ant ), where f is the Coriolis parameter and h is depth, in the

case where barotrophic flow is evident, as for the Eggvin Offset (equation 10-22 in Marshall and

Plumb, 2016). The flow will therefore follow the contours of constant depth (isobaths).

The Rossby Number, hence the relation between lateral advection and the Coriolis force,
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was estimated to be much lower than 1, by use of a mean velocity over intermediate to great

depths (0.011 m/s) and a length scale covering the southern slope of the Eggvin Offset. Based

on these assumptions, the mooring is considered representative of the flow along the southern

slope of the Eggvin Offset, that spans over 21 km, from [70.6°N, 15.6°W] to [70.9°N, 15.6°W]. The

transports were then estimated for the two dense-water layers, together with transport ranges

from minimum to maximum transports.
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Results

Data from the Eggvin Offset Mooring, combined with shipboard measurements and an Argo

float, have been investigated to answer the questions for this study (Chapter 1). The aim was to

find whether wintertime convection occured in the Eggvin Offset, and the depths and densities

of the mixed layers. Were the mixed layers sufficiently dense to contribute to the overflow wa-

ter at Denmark Strait? Or, was dense water formed another place and transported through the

Eggvin Offset?

4.1 On the hydrography of the Eggvin Offset

The two-year in-situ temperature record from the Eggvin Offset Mooring showed that the upper

layer was dominated by a pronounced seasonal signal, with relatively warm summers and cold

winters (Fig. 4.1). The surface layer started to freshen in May and June 2017. The fresh water

was most pronounced in August 2017, with a salinity much lower than 34.66 g/kg, which is the

definition of the Polar Front in the Nordic Seas (Section 2.2; Swift and Aagaard, 1981; Langehaug

et al., prep). In October 2017, the surface water was substantially more saline, and by November

2017 there was no longer a well-defined surface layer, but a mixed-layer depth of 75 m (Figs. 4.1,

4.2a, and 4.3). The water column was thereby well preconditioned for open-ocean convection,

which agrees with observations west of the Eggvin Offset in winter 2015-16 (Våge et al., 2018).

Surface cooling continued from December through April in winter 2016-17, and from December

through March in winter 2017-18. The continued cooling led to further deepening of the mixed

30
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layer (Figs. 4.1 and 4.3).

Figure 4.1: In-situ temperature time series from the Eggvin Offset Mooring, with observations
from 22 depths (black triangles) and a time step of every second hour. The black line represents
the mixed-layer depth calculated from the algorithm described in Section 3.6.

The seasonal variability differed at greater depths (Fig. 4.2a, c, and d). The most pronounced

seasonal signal was observed at the surface, as expected, and decreased with depth (Figs. 4.2

a–d). For example, the salinity range at 8 m was [33.56-35.04] g/kg, at 111 m it was [34.99-35.065]

g/kg, and at 367 m the range was [35.045-35.075] g/kg. The temperature range also became

narrower with greater depths. Moreover, the temperature increased from summer until the end

of December at 111 m and over the whole winter at 367 m (Figs. 4.2a, c, and d). During those

periods the surface was cooling.

The cooling and densification started at the end of December for both winters at 111 m depth

and in winter 2016-17 at 367 m, much later than at the surface (Figs. 4.4, 4.5, and 4.6a). This

implies that two different mechanisms, atmospheric cooling and ocean advection, regulated

the hydrographic change from May to December at the surface and at depth, respectively.
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Figure 4.2: Temperature versus salinity, with isopycnals in gray. a) Monthly averaged tem-
perature/salinity over the whole time period, with blue colors illustrating 2017 and red colors
2018, from September (light shading) to August (dark shading). b) Monthly averaged tempera-
ture/salinity at the surface over the two winters, c) Monthly averaged temperature/salinity over
the whole time period at 111 m, and d) monthly averaged temperature/salinity at 367 m. The
error bars represent the standard mean error of temperature and salinity. Note the different axes
in a).
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Figure 4.3: Evolution of the a) mixed-layer depth and the b) mixed-layer density in the Eggvin
Offset. The shading and numbers indicate the different stages (Subsection 4.1.1).

The cooling and densification of the water masses at 111 m depth (Fig. 4.5) coincided with

mixed layers deeper than 111 m. When the water at 111 m was cooled, the mixed-layer depth

was equal to, or deeper than, 111 m (Fig. 4.6c). The observations also revealed that the density

at 367 m equaled that of 111 m and 8 m the first week in February 2017 and nearly throughout

April 2017 (light red shading in Fig. 4.6). This implies that the mixed layer reached at least 367 m

in winter 2016-17, which supports the mixed-layer evolution inferred from in-situ temperature

data only (Fig. 4.1).
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Figure 4.4: Time series of temperature (blue), salinity (red), and density (orange) from the in-
strument at 8 m attached to the Eggvin Offset Mooring. The purple shading represents when
the mooring was covered by sea ice, and the gray shading represents when the Polar Front was
east of the mooring. The black dash-dotted lines mark the maximum densities of winters 2016-
17 and 2017-18.
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Figure 4.5: Time series of temperature (blue), salinity (red), and density (orange) from 111 m
depth from the Eggvin Offset Mooring. The black dash-dotted lines represent the highest den-
sities from winter 2016-17 and winter 2017-18.
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The density change differed between the two winters and with depth (Fig. 4.7). While the

water in the first winter was densified over the entire water column through the whole winter

(December to April), the water in the second winter was only observed to densify at 8 m and 111

m in that time period. At 367 m and 675 m the water actually became less dense during winter

2017-18. A warming at 111 m led to decreased density from summer until the end of December

in both winters, and at 367 m in winter 2016-17. Densities in the first winter were generally

higher than in the second winter.
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Figure 4.6: Temperature (a), salinity (b), and density (c) at the four depths: 8 m (orange), 111 m
(purple), 367 m (red), and 675 m (green). The black dashed line in (b) represents the 34.66 g/kg
isohaline (the Polar Front), the light purple shading in (c) represent the time period when the
mixed-layer depth (mld) was equal to, or deeper than, 111 m, and the light red shading represent
the time period when the mixed-layer depth (mld) was equal to, or deeper than, 367 m.
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Figure 4.7: Monthly mean density at the four depths with salinity measurements, a) 8 m, b) 111
m, c) 367 m, and d) 675 m, from October to April. Winter 2016-17 is represented by the blue line,
while winter 2017-18 is represented by the red line. The error bars represent the standard mean
error.

The mixed-layer evolution nearly mirrored the seasonal hydrographic signal (black line in

Fig. 4.1). The mixed layer was shallow in summer when warm, fresh water occupied the surface,

and deepened when the Polar Front migrated westward and the water was cooled in winter.

The winter convection period started at the beginning of November, due to intensive surface

cooling from September to February (Figs. 4.4 and 4.15). The cooling of the water continued

from February to April. At the end of April 2017, the deepest mixed layers were observed. They
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reached down to approximately 400 m (Fig. 4.3). Fig. 4.4 also shows that the coldest, saltiest,

and densest water (σθ = 28.02 kg/m3) was seen at the end of April 2017. This was observed

immediately before the mooring was completely covered by sea ice, which happened in two

pulses (not shown).

The first pulse occurred 27 to 29 April 2017, before the sea ice retreated for almost a week.

Then the second pulse of sea ice reached the mooring location on 4 May 2017 and stayed for six

days before it migrated towards Greenland. The water masses observed at the mooring, below

the sea ice, were classified as cold, fresh, and light Polar Surface Water (purple shading in Fig.

4.4; Swift and Aagaard, 1981; Rudels et al., 2005). These were the only times the mooring was

completely covered by sea ice during the two years. However, a tongue of sea ice came near the

mooring in mid-February 2017 (not shown), which was recognized as a drop in temperature and

salinity at 8 m depth (Fig. 4.4).

In winter 2017-18, the deepest mixed layers occurred at the end of March and reached down

to approximately 300 m (Fig. 4.3). This winter was in general warmer than the first winter,

and the coldest, saltiest, and densest water was found at the end of March (σθ = 27.97 kg/m3).

Hence, despite the differences, the mixed layers in both winters became more than sufficiently

dense to supply the overflow water through Denmark Strait (σθ ≥ 27.8 kg/m3). However, the

isopycnal considered a lower limit for the densest portion of the overflow water (σθ = 28.03 kg/m3)

was only nearly ventilated in the Eggvin Offset during winter 2016-17.

The Argo float that was deployed at the end of February 2018 during the R/V Alliance cruise

(Fig. 3.2) was directly compared with the mooring data over the same time period. The general

temperature variability on the southern slope of the Eggvin Offset was relatively similar to the

temperature record from the Argo float in winter 2017-18 (Figs. 4.8 and 4.9). The mixed-layer

depths determined from both temperature and density criteria from the Argo float were also

comparable with the mixed-layer depths estimated from the mooring data. Mixed-layer depths

from the float reached approximately 200 m in the first week of March 2018, while the Argo float

was located on the southern slope of the channel, less than 12 km away from the mooring (Fig.

4.10). This suggests that the mixed-layer depths estimated from the in-situ temperature from
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the mooring are representative for the Eggvin Offset.

Figure 4.8: Temperature (color shading in a) and salinity (color shading in b) from the Argo float.
White contour lines are density, and the black line represents the mixed-layer depth estimated
with the temperature algorithm from the Argo float. Gray patches are bathymetry from ETOPO1
(Amante and Eakins, 2009).



CHAPTER 4. RESULTS 41

Figure 4.9: In-situ temperature (color shading) and mixed-layer depths (black line) from the
Eggvin Offset Mooring (a) and the Argo float (b), for the time period from 28 February 2018 to
16 May 2018.

The three cruises that occupied a section across the Eggvin Offset showed that the water was

in general horizontally homogeneous. This was seen in the temperature, salinity, and density

measurements (flat isopycnals in Figs. 4.11, 4.12, and 4.13). Similarly showed the Argo float,

that circulated in the channel before it drifted into the Iceland Sea, that the whole channel in

general was relatively horizontally homogeneous (Fig. 4.8).



CHAPTER 4. RESULTS 42

Figure 4.10: Time series of mixed-layer depth (mld) from the Eggvin Offset Mooring (EOM,
green) and the Argo float (red and pink). The green and red lines are calculated using the tem-
perature algorithm, while the pink line is calculated from the density method (Section 3.6). The
shading indicates where the Argo float was relatively close to the Eggvin Offset Mooring (3 km –
12 km away).
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Figure 4.11: Temperature (a), salinity (b), and density (c) across the Eggvin Offset, with data
collected from R/V Håkon Mosby in August 2016. The cross-section (in km) is from south (left)
to north (right). The numbers and black contours are density. The black diamonds show the
different CTD stations. The red star is the location of the Eggvin Offset Mooring.
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Figure 4.12: Temperature (a), salinity (b), and density (c) across the Eggvin Offset, with data
collected from the R/V Alliance in February 2018. The cross section (in km) is from south (left)
to north (right). The numbers and black contours are density. The black diamonds show the
different CTD stations. The red star is the location of the Eggvin Offset Mooring.
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Figure 4.13: Temperature (a), salinity (b), and density (c) across the Eggvin Offset, with data
collected from the R/V Kristine Bonnevie in June 2018. The cross section (in km) is from south
(left) to north (right). The numbers and black contours are density. The black diamonds show
the different CTD stations. The red star is the location of the Eggvin Offset Mooring.
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4.1.1 Atmospheric forcing

The two winters in the Eggvin Offset were quite different. The hydrographic measurements re-

vealed that winter 2017-18 was in general warmer than the previous winter, and that the mixed-

layer depths were shallower and the mixed-layer densities were lower. There are two ways the

water can be cooled, either by atmospheric forcing or by advection of colder water masses. This

subsection focuses on the regional and local atmospheric conditions. Could late-winter atmo-

spheric forcing explain the differences of the hydrography between the two winters?

The mean atmospheric turbulent heat fluxes were twice as high (more negative) in winter

2016-17 (-95 W/m2) than winter 2017-18 (-56 W/m2, Figs. 4.14a, b, and 4.15a, b). Hence, a much

stronger cooling was observed in the ocean surface in winter 2016-17 than in winter 2017-18.

Additionally, the 50% and 15% sea ice edge were much closer to the Eggvin Offset Mooring in

winter 2016-17 than in winter 2017-18 (Figs. 4.14a and b). The highest heat fluxes were found

near the ice edge, as expected, which in part explains the higher heat fluxes in winter 2016-17

than the following winter at the mooring location (Fig. 4.14a and b).
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Figure 4.14: ERA5 reanalysis data, averaged over the late-winter months (February-April). The
left column shows winter 2016-17 and the right column shows winter 2017-18. The red star is the
location of the Eggvin Offset Mooring. a) and b) show the turbulent heat flux with bathymetry as
white contour lines. The thick black lines are the 50% and 15% sea ice concentration contours.
c) and d) show 2 m atmospheric temperature, with black contours of mean sea level pressure.
e) and f ) show the wind speed, with black arrows representing the strength and direction of the
wind. The white contours are bathymetry from ETOPO1 (Amante and Eakins, 2009).



CHAPTER 4. RESULTS 48

The mean 2 m atmospheric temperature was three times as cold in the first winter than the

following (-3°C versus -1°C, Figs. 4.14c and d). While winter 2016-17 was always below 0°C,

winter 2017-18 had periods of positive temperatures. These positive temperatures were found

during February 2018, when strong and warm southerly winds dominated the entire Nordic Seas

and north of Fram Strait (Fig. 4.16). Simultaneously as this warming, the 15% sea ice concentra-

tion edge retreated towards Greenland.

The Eggvin Offset was also exposed by southeasterly winds in February 2017, but they were

weaker, and additionally, northerly winds occupied the Nordic Seas north of 70° W and along

the ice edge of east Greenland (Fig. 4.16). The late-winter mean northerly winds were in general

stronger in the first winter compared to the second (Figs. 4.14e and f).
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Figure 4.15: Atmospheric heat fluxes from ERA5 reanalysis data. The purple lines are 2-day
filtered data, while the gray lines are unfiltered, hourly data. a) shows sensible heat fluxes (shf),
b) latent heat fluxes (lhf), c) shortwave radiation (sw hf), and d) long wave radiation (lw hf).
Negative values are defined as heat going from the ocean to the atmosphere (upward). The
thick, black dashed lines and numbers are late-winter means.
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The atmospheric differences of the two winters were investigated more closely, in order to

better understand the oceanic differences (Fig. 4.17). The differences in turbulent heat flux, 2 m

atmospheric temperature, and wind speed and direction between the two winters are presented

in Fig. 4.17. Firstly, these show that the atmospheric heat fluxes were much higher in the Eggvin

Offset the first winter, and were located along, or near, the ice edge. Secondly, the 2 m atmo-

spheric temperatures were much lower the first winter than the following winter over the whole

region. Finally, the northerly winds were stronger in the Eggvin Offset, and along the ice edge,

in winter 2016-17 than winter 2017-18 (green color in Fig. 4.17c).
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Figure 4.16: Monthly mean 2 m atmospheric temperature (color shading), wind speed and di-
rection (black arrows), and 15% sea ice edge (blue contours for winter 2016-17 and red contours
for winter 2017-18). The white contours are bathymetry from ETOPO1 (Amante and Eakins,
2009) and the atmospheric data are from Copernicus Climate Change Service (C3S) (2017).
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To further investigate the interaction between the atmosphere and the ocean, different time

periods with relatively constant mixed-layer depths (gray shading in Fig. 4.3a) were studied

more closely together with atmospheric turbulent heat fluxes (Figs. 4.18 and 4.19). This method

made it possible to compare the generally much higher ocean heat flux with the atmospheric

heat flux. These periods are hereafter called stages, and the very high temporal resolution of the

moored measurements made it possible to cover cold-air outbreak events (Section 2.3; Renfrew

et al., 2019).
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Figure 4.17: Late winter (February-April) differences between winter 2016-17 and 2017-18 (first
winter minus second winter). a) Difference in turbulent heat flux (color shading) and late win-
ter mean sea ice extent (black contours, winter 2016-17 to the east and winter 2017-18 to the
west). b) Difference in 2 m atmospheric temperature (color shading). c) Difference in wind
strength (color shading) and mean wind direction (black arrows). The red star is the location of
the Eggvin Offset Mooring.
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In winter 2016-17, several cold-air outbreak events were observed in all three stages. In stage

one, two examples are from 15 to 17 November and from 6 to 8 December (Fig. 4.18a). In stages

two and three, the turbulence heat fluxes were in general higher, and some cold-air outbreak

events were observed from 11 to 13 January and 21 to 23 April. The following winter was quite

different. Only two stages were observed, as the mixed layer was not made sufficiently dense

to penetrate deeper in the water column (Fig. 4.19). However, the atmospheric turbulent heat

fluxes in November were relatively high, but not sufficiently high to deepen the mixed layer.

In fact, the atmospheric heat flux and the ocean heat flux were strongly anti-correlated in this

time period, which means that another mechanism must impact the hydrography in the upper

ocean.



CHAPTER 4. RESULTS 55

Figure 4.18: Atmosphere (green) and ocean (blue) heat fluxes during three different stages indi-
cated in Figure 4.3, in winter 2016-17. The red line represents the difference between the ocean
and atmosphere heat fluxes (ocean minus atmosphere). Note the different time axes of the three
panels.
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The difference between the oceanic heat flux and the atmospheric heat flux (light red line

in Figs. 4.18 and 4.19) followed the oceanic heat flux most of the time, which means that the

atmospheric heat flux was low compared to the ocean heat flux. In general for winter 2016-17,

the atmospheric heat flux increased in magnitude from stage 1 to stage 3, from ca. −50 W/m2

to −130 W/m2. In winter 2017-18, on the other hand, the atmospheric heat flux decreased in

magnitude from stage 1 to stage 2, from ca. −140 W/m2 to −60 W/m2. Note, these numbers

deviate from the mean late-winter values mentioned above, as these values represent the mean

of the first and last stages.

The atmospheric forcing had a pronounced effect on the mixed-layer depth. As such, the

stronger atmospheric heat fluxes in 2017 contributed to deeper mixed layers, and oppositely, the

weaker atmospheric heat fluxes in 2018 caused shallower mixed layers than the first winter (Fig.

4.20). Note that the strongest atmospheric heat flux in the beginning of March 2018 corresponds

to the cold-air outbreak observed during the Iceland Greenland Seas project field campaign

(Renfrew et al., 2019). This event lasted for more than 10 days, until 12 March 2018, which is

seen from the relatively strong atmospheric heat flux period in the ERA5 data in this study (Fig.

4.20b). This event led to a rapid deepening of the mixed layer, approximately 200 m.
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Figure 4.19: Atmosphere (orange) and ocean (dark red) heat fluxes during the two stages indi-
cated in Figure 4.3, in winter 2017-18. The light red line represents the difference between the
ocean and atmosphere heat fluxes (ocean minus atmosphere). Note the different time axes of
the three panels.
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Figure 4.20: Atmospheric heat fluxes (thf) and mixed-layer depths (mld). a) Filtered atmo-
spheric turbulent heat fluxes (green) and filtered mixed-layer depths (blue), both for winter
2016-17. b) Filtered atmospheric turbulent heat fluxes (light red) and filtered mixed-layer
depths (dark red) for winter 2017-18. The light gray lines are unfiltered time series.

4.1.2 The impacts of sea ice

Sea ice is another important factor that can impact the mixed-layer depth. The strongest heat

fluxes are found in the vicinity of the ice edge (Section 2.3; Figs. 4.14a and b; Marshall and

Schott, 1999; Renfrew and Moore, 1999; Våge et al., 2015 and Papritz and Spengler, 2017), due to



CHAPTER 4. RESULTS 59

discharge of cold polar air masses over the relatively warm ocean surface.

Sea ice concentration from ERA5 were used to investigate the effect of the proximity of the

sea ice edge to the mooring location on the mixed-layer evolution in the Eggvin Offset (Fig. 4.21).

In the first winter (February-April), the 15% sea ice concentration edge was 70 km west of the

Eggvin Offset Mooring. In the second winter, this 15% sea ice concentration edge was 125 km

west of the mooring, much closer to the Greenland coast. Furthermore, the sea ice advanced

towards the mooring during winter 2016-17, while it was closest to the mooring at the beginning

of the following winter and retreated towards Greenland with time (Fig. 4.22). This was in line

with the wind observations, where the northerly winds strengthened during winter 2016-17, and

were in general weak during winter 2017-18 (Fig. 4.16).

Figure 4.21: Sea ice concentration as a function of distance between Greenland and the Eggvin
Offset Mooring, during winter 2016-17 (a) and winter 2017-18 (b). The color shading represents
time from February (dark blue) to April (light blue). There are many more lines than observed
from this figure, as several are converging due to the lat-lon resolution. The map (c) shows the
x-axis, which has its origin (the ’0’) at the Greenland coast at the same latitude as the Eggvin
Offset Mooring. The red star is the Eggvin Offset Mooring.
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In order to find the dominating factor for deep-water formation in this area, it was of in-

terest to understand the link between the sea ice edge and the atmospheric heat fluxes. The

atmospheric turbulent heat fluxes were therefore investigated as a function of the 15% sea ice

concentration edge, between Greenland and the Eggvin Offset Mooring (Fig. 4.22). The largest

heat fluxes were found at, or near, the ice edge for both winters. The extent of the ice edge was

coherent with the peak in heat fluxes for both winters. The differences between the two winters

became evident: higher turbulent heat fluxes in the first winter than in the second one.

Figure 4.22: Atmospheric turbulent heat fluxes as a function of the sea ice edge for winter 2016-
17 (a) and 2017-18 (b). The y-axes are normalized heat flux and the x-axes are distance from the
ice edge. Negative heat fluxes represent heat loss from the ocean. The color shading is transpar-
ent and represents time, from February (dark colors) to April (light colors). The transparency is
added to illustrate the large amount of profiles that are plotted.

4.2 Flow through the Eggvin Offset

Observations from this study showed that water sufficiently dense to supply the overflow at

Denmark Strait (σθ ≥ 27.8 kg/m3) was ventilated in the Eggvin Offset during both winters. The

densities at intermediate and greater depths were also sufficiently dense to supply the densest

component of the NIJ, which has a transport mode of 28.05 kg/m3 ± 0.01 kg/m3 (Section 3.7;

Semper et al., 2019). The NIJ transport mode was, however, not formed in the Eggvin Offset,
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only nearly the first winter. Such dense water could have been transported through the Eggvin

Offset. Transports of two dense-water layers were estimated in order to address the importance

of the Eggvin Offset to the DSOW: One transport concerned the mixed layer, and the other layer

was estimated over the depth interval where densities corresponded to the NIJ transport mode

which is 550 m to 850 m in the Eggvin Offset (Fig. 3.9).

The circulation in the Eggvin Offset was hence studied, by use of velocity data from the moor-

ing, shipboard data from the three cruises, and the drift of the Argo float (Section 3.3). The time

and depth averaged displacement of water in the Eggvin Offset indicated the direction of flow at

different depths (Fig. 4.23). The displacement of water varied over time, especially in the surface

layer. A northwestward flow was observed in the upper 100 m, while at intermediate and great

depths the flow was more or less eastward into the Iceland Sea. This was especially true from

January through May for both years (Fig. 4.24). The flow through the channel was in general

relatively weak with a pronounced barotropic signal, seen as nearly constant velocities in the

vertical (Fig. 4.24).
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Figure 4.23: Progressive vector diagram of a 5-day low-pass filtered, depth-averaged displace-
ment in the Eggvin Offset, from August 2016 to June 2018.

Sections of absolute geostrophic velocity, constructed from shipboard and ship-mounted

measurements from the three cruises (Section 3.2), showed the velocity variation across the

channel (Fig. 4.25). The velocities were low, and varied horizontally and from section to sec-

tion. The velocities were, however, approximately uniform at intermediate and great depths

along the southern slope of the channel (Section 3.7; Fig. 3.10).
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Figure 4.24: Along-stream velocities over the two years. Data are 5-day low-pass filtered and
from the three ADCPs that covered the water column from 11 m to 700 m depth (Section 3.3).
The instruments are separated by white bands. Red colors indicate eastward flow, toward the
Iceland Sea, while blue colors indicate westward flow, toward Greenland. Velocity in cm/s.

The horizontal density variation across the channel was close to zero, observed from the

flat isopycnals in Figs. 4.11, 4.12, and 4.13. Based on the assumptions listed in Section 3.7, the

resulting geostrophic flow in the channel was permitted to only follow the isobaths (Fig. 4.26).

This statement is also supported by the general knowledge of geostrophic flow on the Northern

Hemisphere, flowing at right angles to the slope with shallower water on the right-hand side

(equation 10-22 in Marshall and Plumb, 2016; Brown, 2016). This implies that water flowing

through the Eggvin Offset is going from west to east into the Iceland Sea. Observations from the

mooring agreed with this assertion (Fig. 4.24).
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Figure 4.25: Absolute geostrophic velocity across the Eggvin Offset from the three cruises: a) R/V
Håkon Mosby, b) R/V Alliance, and c) R/V Kristine Bonnevie. Red colors are eastward velocity
into the Iceland Sea, and the blue colors are velocity towards Greenland. Velocities are in cm/s.
The black diamonds represent the CTD stations, and the red star is the location of the Eggvin
Offset Mooring.
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Figure 4.26: Isobaths in the Eggvin Offset (70°N, 15°W). The green arrows (added to the fig-
ure) indicate the direction of the geostrophic flow, following the isobaths (black contours). The
red star is the Eggvin Offset Mooring (EOM). The colored shading is bathymetry from ETOPO1
(Amante and Eakins, 2009).

Based on these arguments and observations, the transport of dense water in the mixed layer,

for periods when the density was higher than 27.8 kg/m3, was estimated to be 0.013 Sv1 with

a transport range of [0.007 Sv to 0.015 Sv], averaged over the two years (Fig. 4.27). The dense-

water transport at depth, on the other hand, was estimated to be 0.072 Sv with a transport range

of [0.024 Sv to 0.105 Sv], averaged over the two years (Fig. 4.28). The overall transport, especially

at depth, was directed into the Iceland Sea.

1Sv = 106 m3/s, and is an oceanographic unit used to measure volumetric transport.
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Figure 4.27: Transport in the mixed layer when the 27.8 kg/m3 isopycnal was ventilated in the
Eggvin Offset. Unfiltered transport is shown in orange, the black line is 7-day filtered transport,
the gray line is the zero line to indicate when there was eastward or westward flow. Positive
transport is directed into the Iceland Sea. The green line is the overall mean transport of 0.013
Sv.
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Figure 4.28: Transport of dense water, 28.04kg/m3 ≤σθ ≤ 28.06kg/m3, averaged over 550 m -
850 m depth. The orange line is unfiltered data, the black line is 7-day filtered transport, and the
green line is the overall mean transport of 0.072 Sv.



Chapter 5

Discussion

The subject of investigation in this study is the Eggvin Offset, which is the northernmost gap in

the Kolbeinsey Ridge that connects the EGC to the west with the Iceland Sea to the east (Fig.

2.1). Analyses of a two-year mooring deployment revealed new findings of winter open-ocean

convection and circulation in the northwestern Iceland Sea, where the deepest and densest

mixed layers have been found in previous studies (Section 2.3; Våge et al., 2015; Pickart et al.,

2017). However, the region was until lately scarcely sampled, because of sea ice cover in the past

and harsh weather conditions during winter. Results from this study have therefore enhanced

our knowledge of mixed-layer evolution and circulation in the northwestern Iceland Sea, as de-

scribed below.

5.1 On the hydrography of the Eggvin Offset

The Eggvin Offset Mooring provided observations of seasonal variability in hydrography in the

mixed layer (Fig. 4.2). The seasonal variability of salinity can be linked to the migration of the

Polar Front, which is defined as the boundary between the Polar and the Arctic domains of the

Nordic Seas (Section 2.2).

The observations demonstrated that the Polar Front, and hence the extent of Polar Water,

migrated east of the mooring in summers 2016 and 2017, when the salinity at 8 m was observed

to be less than 34.66 g/kg (Fig. 4.4). During fall, the surface layer became substantially more

68
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saline as the Polar Front returned toward the west. This seasonal cycle of the Polar Front is

closely linked to seasonal changes in large-scale wind stress in the Nordic Seas (Våge et al., 2018;

Langehaug et al., prep). The northerly winds were weak in the Eggvin Offset during summer (not

shown), which allowed the Polar Water to extend farther to the east. During fall and winter, the

northerly winds strengthened and pushed the Polar Front westward (Fig. 4.16). This is in line

with glider observations west of the Eggvin Offset in winter 2015-16 (Våge et al., 2018). The lat-

eral migration of the Polar Front is therefore an important factor for preconditioning the water

for wintertime open-ocean convection in the Eggvin Offset.

The seasonal signal differed between the surface and greater depths. While the surface was

cooling from fall throughout the winter, the measurements from 111 m and 367 m showed a

warming until December. When the mixed layers reached 111 m and 367 m, however, the water

at 111 m and 367 m started to cool, respectively (Fig. 4.3). This means that two different mech-

anisms were causing the hydrographic changes at surface and at depth. While the surface was

exposed to local, atmospheric cooling, the water at depth was modified by advection of water

through the channel. This advected water may come from the outer branch of the EGC, which

has been observed to flow southeastward north and south of Jan Mayen, and thus may supply

the Eggvin Offset (Bourke et al., 1992; Håvik et al., 2017).

Furthermore, the hydrography in the Eggvin Offset agrees with the water properties ob-

served in the outer EGC in summer. Håvik et al. (2017) found that the water masses from the

offshore end of two transects differed north and south of Jan Mayen. While the Atlantic- origin

Water was present across the entire section in the Greenland Sea, a section toward the Eggvin

Offset revealed less saline and colder water masses, distinct from Atlantic- origin Water masses.

The temperature and salinity ranges of these water masses are in the same range as measured in

the Eggvin Offset, where no maximum salinity and (nearly) no maximum in temperature were

found at intermediate depths.
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5.2 Evolution of the mixed-layer depth

Mixed-layer depths were determined from an autonomous algorithm applied to the in-situ tem-

perature data, which is based on a difference criterion (Section 3.6; Nilsen and Falck, 2006), and

validated by visual inspection. This was possible due to the high vertical resolution, especially

in the upper 300 m.

The mixed-layer time series from the mooring was compared to the mixed-layer depths de-

termined using measurements from the Argo float (Figure 4.9). Despite the drift of the float, the

mixed-layer depth compared relatively well, especially for the first set of Argo profiles when it

was within 12 km from the mooring. The mixed-layer time series from the Argo float were de-

termined from both a temperature-difference criterion and a density-difference criterion. The

first method was the same as used for the mooring, and gave the most similar time series (Fig.

4.10). This comparison strengthened the mixed-layer time series estimated from the mooring

data.

The mixed layer in winter 2016-17 reached approximately 400 m depth, with a maximum

density of σθ = 28.02 kg/m3, almost sufficiently dense to supply the densest part of the over-

flow. In winter 2017-18 the mixed layer reached approximately 300 m depth, with a maximum

density of σθ = 27.97 kg/m3. Hence, sufficiently dense water to supply the overflow across the

GSR (σθ > 27.8 kg/m3), and therefore also the deepest limb of the AMOC was ventilated in both

winters.

The findings from the first winter agree with observations from glider transects in late Febru-

ary 2016, west of the Eggvin Offset. In this region the mixed-layer depth was estimated to 400 m

with a density of σθ = 28.01 kg/m3 to 28.02 kg/m3 (Våge et al., 2018), the same as the densest

mixed layers observed in the Eggvin Offset the following year. The mixed-layer temperature

from February 2016 and winter 2016-17 was also in the same range [−0.2°C to −0.4°C]. The

mixed layer in winter 2017-18 was never as cold and dense. Lack of adequate cooling to obtain

a higher density in the latter winter may be why it never achieved as deep mixed layers as the

previous winters.
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5.3 Comparison of winter 2016-17 and winter 2017-18

Among the most visible findings from this study was the differences between the two winters.

The water in winter 2016-17 was in general colder and had deeper mixed layers than winter

2017-18. Preconditioning of the upper water layer occured throughout fall in both years, until

the mixed layers rapidly deepened early in winter, down to 200 m in the first winter and 100 m

in the second winter (Fig. 4.3). The first winter had a substantial cooling period during fall and

early winter, while the cooling in that time period for the second winter was more moderate

(Fig. 4.4). The strong cooling in winter 2016-17 continued over the late-winter months, from

ca. 0.1°C to−1.0°C, while the mixed-layer temperature in winter 2017-18 was never much colder

than 0°C.

The differences became even more evident later in winter. The cooling ended in April the

first winter and in March the following year. The water started to warm already in April in the

second winter. A result of this difference in cooling/warming was observed in the mixed-layer

evolution of the two winters. The rapid cooling seen from January to March resulted in a mixed-

layer depth of 300 m the first winter, while the second winter underwent a more moderate cool-

ing, which resulted in a mixed-layer depth of ca. 200 m. The first winter continued to cool from

March to April, which caused even deeper mixed layers, ca. 400 m, while the latter winter started

to warm and reached shallower depths in the same time period, ca. 175 m (Fig. 4.3).

The cooling/warming and the depths of the mixed layers can be linked to the atmospheric

forcing. While strong northerly winds were observed in both years from November to January

(not shown), the large-scale wind pattern changed in the second winter. Strong southerly winds

dominated, not just the Eggvin Offset area, but the entire Nordic Seas and north of Fram Strait

throughout February 2018 (Fig. 4.16b). These southerly winds brought warm subtropical-origin

air masses toward the Eggvin Offset. Additionally, the northerly winds were in general weaker

this winter compared to winter 2016-17. These factors help explain why winter 2017-18 was

warmer, had shallower mixed layers and weaker atmospheric heat fluxes than winter 2016-17.

The unusual wind pattern in February 2018 is comparable with the strong southerly winds
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that occupied the central and eastern Nordic Seas during the extraordinary heating event in De-

cember 2015 (Section 2.3; Moore, 2016). This event caused a significant warming adjacent to the

North Pole over a couple of days and reduced sea ice cover in the area. Moore (2016) suggested

that in addition to the long-term warming of the North Pole, other changes have resulted in an

easier pathway for cyclones to excess the northern area. These are changes linked to the arctic

amplification: enhanced warming at high northern latitudes, causing sea ice loss, warmer and

moister air masses, and changes in the large-scale wind pattern in the region. The description

Moore (2016) presented can be linked to the reduction of sea ice in the Nordic Seas and the

midwinter warming together with southerly winds in February 2018.

In addition to the contribution of the southerly winds to the less extent of sea ice the second

winter is the strength of the northerly winds in the northern part of the Nordic Seas. These

large-scale winds are suggested to be related to the sea ice transport from the Arctic Ocean into

the Nordic Seas (Langehaug et al., prep). Weak northerly winds in this area during the winter

2017-18 are therefore considered to partly explain the less sea ice extent.

All of these factors contributed to the difference between the two winters, and they are all

linked together. To understand the importance of the sea ice, its distance to the mooring was

investigated along with the atmospheric heat fluxes. The strongest heat fluxes were observed

approximately at, or just offshore of, the sea ice edge (Fig. 4.22), which agrees with a previous

study in this area (Papritz and Spengler, 2017). The sea ice was closer to the mooring, there were

stronger heat fluxes, stronger northerlies and the mixed layers were colder and deeper in the

first winter compared to the following winter.

Furthermore, the sea ice extent in the Nordic Seas has been substantially reduced over the

past century (Moore et al., 2015). The sea ice loss has occured mostly in the southwestern Nordic

Seas, which may be very critical for the formation of deep water in the Iceland Sea. Deep-water

formation (with σθ ≥ 28.03 kg/m3) does not occur in the Iceland Sea nowadays, but there may

have been periods in the past when the sea ice extended all the way to the Iceland Sea gyre. In

that case, the Iceland Sea gyre must have had a more important role in the formation of dense

DSOW. Lack of wintertime data in the region prevents us from knowing this for sure (Swift et al.,
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1980).

Moore et al. (2015) found that the heat fluxes were reduced by more than 50% from 1955 to

2015 in the Iceland Sea gyre. The winter mean heat flux was -50 W/m2 in 2015 (Moore et al.,

2015). This value is comparable to the mean heat flux in winter 2017-18 in the Eggvin Offset.

The winter mean heat flux found in the Eggvin Offset the first winter was, on the other hand,

more comparable with the observations from winter 2015-16 in the western Iceland Sea (-120

W/m2, Våge et al., 2018). The region observed in Våge et al. (2018) was farther to the west than

the Eggvin Offset and therefore also the Iceland Sea gyre, thus closer to the sea ice edge and

exposed to colder air masses. These comparisons suggest that when the sea ice edge is near,

strong heat fluxes are observed, while when the sea ice edge is farther west, the heat fluxes are

weaker.

5.4 Dense water transport through the Eggvin Offset

The hypothesis for this thesis was that the Eggvin Offset is an important passage for dense water

between the Iceland and Greenland Seas. If this was the case, and if supported by available ob-

servations, water advected through the Eggvin Offset, and dense water formed in this channel,

would have been a substantial source to the NIJ. However, the velocity measurements from the

Eggvin Offset Mooring did not support this hypothesis.

The velocities were relatively weak, as seen from the mooring data and the CTD sections

across the channel at different times (Figs. 4.24 and 4.25). The velocities observed from the

mooring data were overall directed eastward, especially from December to April for both years

and at intermediate and great depths. (Fig. 4.23). The surface layer, on the other hand, was more

variable and directed towards the west/northwest. This agrees with the theory of Ekman trans-

port that is perpendicular and at right hand-side of the large-scale winds, which are directed

southward in this case.

The velocities were found to be relatively uniform and barotrophic along the southern slope

in the channel, where the Eggvin Offset Mooring was deployed (Fig. 4.25). This indicated that
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the mooring could represent the southern slope in the channel, from the beginning of the slope

to the local maximum depth, 21 km farther north.

The general statement by Brown (2016), that the water flows with shallower water at right-

hand side on the Northern Hemisphere, together with the theory of geostrophy and conserved

potential vorticity (Marshall and Plumb, 2016), was supported by the mean direction of the ve-

locities from the mooring. The velocities were directed east, towards the Iceland Sea (Section

3.7). Additionally, the Argo float that drifted at 200 m depth from February to May 2018, floated

through the channel along the southern slope, eastward, into the Iceland Sea (Fig. 3.2). This

strengthens the argument of an eastern flow through the channel.

The above assumptions and considerations are rough, and only used in order to get an in-

dication of the dense-water transport through the channel. The large errors associated with the

width of the transports were assessed by estimating minimum and maximum transports. Fi-

nally, the transports in the Eggvin Offset were not particularly high, 0.013 Sv [0.007 Sv to 0.015 Sv]

for the mixed layer and 0.072 Sv [0.024 Sv to 0.105 Sv] for the deeper transport, compared to the

overall mean transport of the NIJ, which has an average transport of 1.4 Sv ± 0.1 Sv (Semper

et al., 2019). However, the transport estimates in the Eggvin Offset are significantly different

from zero, and the deep-layer transport could potentially contribute with 5% of the NIJ.



Chapter 6

Conclusion

This study has expanded our knowledge of water transformation and circulation in the sparsely

sampled northwestern Iceland Sea. Open-ocean convection was observed during both winters

the Eggvin Offset Mooring was deployed, and the wintertime mixed layers became sufficiently

dense to contribute to the DSOW. Sufficiently dense water to supply the NIJ, and hence the

densest component of the DSOW, was not formed in the Eggvin Offset, but almost during the

first winter. Such dense water was, however, observed at intermediate and greater depths.

Among the major findings from this study are the differences between winter 2016-17 and

winter 2017-18. During the first winter, the mixed-layer depth reached 400 m, while in the fol-

lowing winter it only reached 300 m. The first winter was also colder, had stronger northerly

winds, stronger flow, the mooring was closer to the sea ice edge, and it had twice as strong tur-

bulent heat fluxes than the second winter.

Hence, the differences of the water hydrography between the two winters can be explained

by the change in the large-scale wind pattern. Strong southerly winds dominated the region in

February 2018, which carried warmer air masses towards the Eggvin Offset, and the winter mean

northerly winds were weak, especially in the northern region of the Nordic Seas (Fig. 4.16). Both

of these wind patterns are linked to sea ice retreat (Section 2.3; Moore, 2016; Langehaug et al.,

prep). The less extent of sea ice causes weaker heat fluxes in the Eggvin Offset, and thereby less

cooling and shallower mixed layers.
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Another important feature affecting the evolution of the mixed layer was the position of the

Polar Front. The Polar Front, or the lateral extension of Polar Surface Water, was observed to mi-

grate seasonally. Its position was further linked to the large-scale winds and the preconditioning

of the water column in the Eggvin Offset.

The transports estimated through Eggvin Offset were significantly different from zero, 0.013 Sv

[0.007 Sv to 0.015 Sv] in the mixed layer and 0.072 Sv [0.024 Sv to 0.105 Sv] at depth, but of no sig-

nificant magnitude. Despite observations of overflow water formed in the channel, the veloc-

ities were too low to make the channel an important source to the DSOW, and thereby, to the

lower limb of the AMOC. If the period August 2016 to June 2018 is representative for a longer

time period, the Eggvin Offset is neither an important pathway, nor source, of dense water to

the DSOW.



Chapter 7

Future work

In this study, the oceanic and atmospheric heat fluxes were compared at different stages of the

mixed-layer evolution, and some cold-air outbreaks were identified (Figs. 4.18 and 4.19). This

can be studied in much more detail, due to the high temporal resolution from the 8 m moored

instrument and the hourly ERA5 reanalysis data. A further study of this aspect might hopefully

enhance our understanding of the oceanic response to atmospheric forcing in this region. Ad-

ditionally, it would be of interest to investigate the link between the oceanic heat fluxes, mixed-

layer evolution, and the Polar Mesoscale Cyclones (PMC) that occur frequently in the area (Lin-

ders, 2009; Condron and Renfrew, 2013).

Case studies of different cold-air outbreak events and corresponding oceanic behavior could

also be of interest. For example, 67 PMCs events were observed at or nearby the Eggvin Offset

in the time period the mooring was deployed (Denis Sergeev, 2019, personal communication).

Nevertheless, a general study of the impact PMCs have on the mixed-layer depths over the win-

ter would be an interesting study. What is the role of the PMCs in preconditioning and cooling

the water? Are they more important than the distance to the sea ice edge, or the large-scale wind

system? The ongoing global warming might change the track of the PMCs, will that impact the

formation of overflow water in the western Nordic Seas?

The lateral and seasonal cycle of the Polar Front is important in order to precondition the

water before open-ocean convection could take place. Is it only the northerly winds that impact
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the lateral extent of the Polar Front? And, what impact does its position have on the deep-water

formation in the Iceland and Greenland Seas? Is much freshwater mixed into the gyres? What

amount of surface water is moved east and west with seasons?

The transports in the Eggvin Offset were relatively small. So, when suggested that this chan-

nel was not the major connector between the Greenland and Iceland Seas, where does the dense

water at depth in the Iceland Sea originate from? Or moreover, where is the dense water in the

NIJ formed and how is it transported southward from the Greenland Sea? Eggvin Offset being

ticked off the box, at least based on the presented observations, a future study will be to investi-

gate other channels that connect the Greenland to the Iceland Sea.
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