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Abstract

Background: The metabolic consequences of preoperative carbohydrate load in breast cancer patients are not
known. The present explorative study investigated the systemic and tumor metabolic changes after preoperative
per-oral carbohydrate load and their influence on tumor characteristics and survival.

Methods: The study setting was on university hospital level with primary and secondary care functions in south-
west Norway. Serum and tumor tissue were sampled from a population-based cohort of 60 patients with operable
breast cancer who were randomized to either per-oral carbohydrate load (preOp™; n = 25) or standard pre-
operative fasting (n = 35) before surgery. Magnetic resonance (MR) metabolomics was performed on serum samples
from all patients and high-resolution magic angle spinning (HR-MAS) MR analysis on 13 tumor samples available
from the fasting group and 16 tumor samples from the carbohydrate group.

Results: Fourteen of 28 metabolites were differently expressed between fasting and carbohydrate groups. Partial
least squares discriminant analysis showed a significant difference in the metabolic profile between the fasting and
carbohydrate groups, compatible with the endocrine effects of insulin (i.e., increased serum-lactate and pyruvate
and decreased ketone bodies and amino acids in the carbohydrate group). Among ER-positive tumors (n = 18),
glutathione was significantly elevated in the carbohydrate group compared to the fasting group (p = 0.002), with a
positive correlation between preoperative S-insulin levels and the glutathione content in tumors (r = 0.680; p =
0.002). In all tumors (n = 29), glutamate was increased in tumors with high proliferation (t-test; p = 0.009),
independent of intervention group. Moreover, there was a positive correlation between tumor size and proliferation
markers in the carbohydrate group only. Patients with ER-positive / T2 tumors and high tumor glutathione (≥1.09),
high S-lactate (≥56.9), and high S-pyruvate (≥12.5) had inferior clinical outcomes regarding relapse-free survival,
breast cancer-specific survival, and overall survival. Moreover, Integrated Pathway Analysis (IPA) in serum revealed
activation of five major anabolic metabolic networks contributing to proliferation and growth.
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Conclusions: Preoperative carbohydrate load increases systemic levels of lactate and pyruvate and tumor levels of
glutathione and glutamate in ER-positive patients. These biological changes may contribute to the inferior clinical
outcomes observed in luminal T2 breast cancer patients.

Trial of registration: ClinicalTrials.gov; NCT03886389. Retrospectively registered March 22, 2019.

Keywords: Breast cancer, Carbohydrate load, Proliferation, Insulin, Insulin c-peptide, S-lactate, S-pyruvate, Tumor
glutamate, Tumor glutathione, Fasting state, Ketonic bodies, Clinical outcome,

Background
Breast cancer is the most common female malignancy and
one of the most frequent causes of death among women
in the Western world [1]. Breast cancer incidence has
more than doubled in the last 50 years, probably due to in-
creased estrogen exposure and a change towards high
levels of alimentary carbohydrates and fat [2, 3]. Even
though breast cancer originates locally in the breast, circu-
lating tumor cells (CTCs) may spread to the systemic cir-
culation before and during surgery [4] and establish
distant micrometastases [5]. These CTCs must thrive and
survive attacks from the innate and adaptive immune sys-
tem. Thus, tumor cells have to establish a favorable metab-
olism that can produce energy, protection mechanisms,
and the necessary biomass to survive the journey from the
breast tumor to remote locations, including transform-
ation into dormancy [6]. The luminal breast cancer sub-
type, which express estrogen receptor (ER) and/or
progesterone receptor (PR) in the tumor cells, comprise
the largest subgroup, accounting for approximately 75%
of all breast cancers. Endocrine resistance in this sub-
type can creates micrometastases that escape anti-
estrogen therapy and can hibernate for many years
before they become clinically overt [7]. The molecular
features underlying these cellular characteristics are
driven by hallmarks of cancer [8], including changes
in cellular energetics and metabolism, followed by a
vast number of necessary metabolic modifications to
strengthen the metabolic needs of breast cancer cells
[9]. A well-known cellular characteristic of tumor
cells is increased glucose consumption and glycolysis
towards lactate despite the presence of oxygen, a fea-
ture called ‘the Warburg effect’ [10, 11]. This meta-
bolic switch includes the production of ribose for
DNA synthesis and allowing amino acids to be a
source for ATP production [12]. Furthermore, the
Warburg effect extends to increased choline metabol-
ism for cell membrane synthesis and increased amino
acid turnover for protein synthesis [10, 13].

Even though much is known about metabolism in breast
cancer cells [14], little is known about the influence of
carbohydrate loading in the early recovery after surgery
(ERAS) program [15] on peri-operative metabolism in the
systemic circulation and locally in the breast tumor. We

recently conducted a randomized controlled trial (RCT) in
which operable breast cancer patients were treated with
either two oral loads of enriched carbohydrate solution or
a standard fasting procedure comprising free drinking of
tap water before surgery [16]. In this study, luminal breast
cancer patients, who received oral pre-operative carbohy-
drates, had a higher tumor proliferation and an adverse
survival. The goal of the present paper, using the same pa-
tients, was to further explore the metabolic differences in
serum and the tumor. Based on our previous findings, we
hypothesize that the metabolic changes after carbohydrate
loading will correlate with proliferation and outcome in
patients with ER positive tumors. Also, we also wanted to
study whether such metabolic alterations correlate with
other tumor characteristics or translate into differences in
clinical outcome.

Methods
Ethics statement
This paper is an explorative study based upon a recently
published randomized controlled trial (RCT) approved
by the Regional Ethics Committee in Western Norway
(#2015/1445) and was retrospectively registered at Clini-
caltrials.gov (NCT03886389).

Patients
Details on these patients have been described previously
[16]. In short, between 12 May 2009 and 23 June 2010 a
population-based cohort of 61 operable breast cancer
patients (Stage I and II) were randomized into an inter-
vention group receiving preoperative per-oral carbo-
hydrate loading (n = 26) or a control group (n = 35)
receiving the standard preoperative fasting protocol.
The patients in the carbohydrate group drank 200mL

pre-Op™ (Nutricia, the Netherlands). This non-carbonated
carbohydrate enriched drink contained 100 kCal per bot-
tle containing 4.2 g (2.1%) glucose and 20 g (10%) polysac-
charides. A loading dose of two bottles pre-Op™ were
given 18 h before surgery (i.e. the evening before surgery)
and another 2 bottles were administered 2–4 h before
surgery (i.e. the morning of the operation day). In contrast,
the control group practiced the standard fasting procedure
with free intake of tap water 12–14 h before surgery. From
this cohort, patients with available fresh frozen tissue and
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serum samples were included in the present study (Fig. 1).
The patient characteristics are given in Table 1.

Blood sampling
Blood samples were drawn immediately before surgery.
In total three serum gel tubes and one EDTA plasma
tube were drawn in this study. One serum gel tube and
one EDTA plasma tube were delivered within an hour to
the department of medical biochemistry for standard
analysis. For metabolomics analyses, two serum gel tubes
were centrifuged within one hour at 4 °C, 2500 x g in 10
min. After centrifugation, the serum of the two tubes
were mixed and a minimum of 1.1 mL serum were sent
for analyses in Haukeland University Hospital, Bergen,
Norway, the rest of the serum were stored in 1 mL cryo-
tubes at − 80 °C in the biobank at Stavanger University
Hospital, Stavanger, Norway.

Tumor tissue sampling
Immediately after removal of the surgical specimen from
the systemic circulation, it was transported to the
Department of Pathology for further sampling. To avoid
necrotic areas, cancerous tissue from the invasive front
of the tumor (i.e. tumor periphery) was immediately
snap-frozen in liquid nitrogen and stored at − 80 °C until
assayed for tissue metabolomics. Before HR-MAS

analysis, tissues from all of the patients were analyzed
consecutively for histopathology and immunohistochem-
istry as described preciously [16].

Serum hormone and protein analyses
Serum was transported to the Hormone Laboratory, Hau-
keland University Hospital, Bergen, Norway. Insulin, insulin
c-peptide, insulin growth factor 1 (IGF-1), and insulin
growth factor binding protein 3 (IGFBP-3) were measured
by the IMMULITE 2000 two-site chemiluminescent immu-
nometric assay (Siemens Medical Solutions Diagnostics).

Serum metabolomics analyses
A separate aliquot of serum was transported to the MR
Core Facility at NTNU, Trondheim, Norway for metabolo-
mics analyses. Thawed samples (100 μL) were mixed with
bacteriostatic buffer (100 μL; pH 7.4, 0.075mM Na2HPO4,
5mM NaN3, 5mM TSP), transferred to 3-mm NMR tubes,
and stored at 5 °C until analysis (< 15 h). The MR analysis
was performed using a Bruker Avance III Ultrashielded
Plus 600MHz spectrometer (Bruker Biospin GmbH,
Germany) equipped with a 5mm QCI Cryoprobe with inte-
grated, cooled pre-amplifiers for 1H, 2H, and 13C. Experi-
ments were fully automated using the SampleJet™ in
combination with Icon-NMR in TopSpin 3.1 software (Bru-
ker Biospin). One-dimensional 1H Nuclear Overhauser

Fig. 1 Flowchart of study participants
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effect spectroscopy (NOESY) and Carr–Purcell–Meiboom–
Gill (CPMG) spectra with water presaturation were ac-
quired at 310.15 K. The spectra were Fourier transformed

to 128 K after 0.3Hz exponential line broadening and auto-
matically phased and baseline-corrected. Spectra were fur-
ther processed in Matlab 2013b (The Mathworks Inc.,

Table 1 Clinical variables in the randomized groups

Carbohydrate
group (N=26)

Fasting group
(N=35)

Carbohydrate group with
tissue (n=16)

Fasting group with
tissue (n=13)

Age

<55 12 (46%) 16 (46%) 9 (56%) 7 (53%)

≥ 55 14 (54%) 19 (54%) 7 (44%) 6 (46%)

Lymph Node status

Negative 19 (70%) 25 (71%) 11 (69%) 9 (69%)

Positive 8 (30%) 10 (29%) 5 (31%) 4 (31%)

Tumor size (pT)

pT1 (<2cm) 16 (61%) 30 (85%)a 7 (44%) 9 (69%)

pT2 (≥2cm) 10 (39%) 5 (14%) 9 (57%) 4 (31%)

Grade

1 4 (15%) 7 (20%) 2 (13%) 2 (15%)

2 10 (37%) 20 (57%) 4 (25%) 7 (53%)

3 13 (48%) 8 (23%) 10 (63%) 4 (31%)

ER status

Positive 21 (81%) 29 (83%) 11 (69%) 9 (69%)

Negative 5 (19%) 6 (17%) 5 (31%) 4 (31%)

PR statusa

Positive 13 (50%) 28 (80%)b 7 (44%) 11 (85%)

Negative 13 (50%) 7 (20%) 9 (56%) 2 (15%)

HER2 status

Negative 23 (88%) 34 (97%) 13 (81%) 12 (92%)

Positive 3 (12%) 1 ( 3%) 3 (19%) 1 (8%)

MAI

<10 14 (56%) 27 (77%) 6 (38%) 10 (77%)

≥ 10 11 (44%) 8 (23%) 10 (62%) 3 (23%)

PPH3

<13 14 (56%) 21 (60%) 7 (44%) 6 (46%)

≥ 13 12 (44%) 14 (40%) 9 (56%) 7 (54%)

Ki67

≥ 15 17 (65%) 17 (50%) 3 (19%) 5 (42%)

<15 9 (35%) 17 (50%) 13 (81%) 7 (58%)

≥ 30 12 (46%) 10 (29%) 6 (38%) 8 (67%)

<30 14 (54%) 24 (71%) 10 (62%) 4 (33%)

TILs

<10% 24 (92%) 31 (89%) 15 (94%) 13 (100%)

≥10% 2 (8%) 4 (11%) 1 (6%) 0 (0%)

End of follow-up status

No distant metastasis 22 (85%) 33 (94%) 11 (67%) 11 (85%)

Distant metastasis 4 (15%) 2 (6%) 3 (20%) 1 (7%)
aSignificantly different between fasting and carbohydrate group (Fisher’s exact test)
bp=0.052 in tissue subset
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Natick, MA, USA). The CPMG spectral region between 0.1
and 4.2 ppm was selected for further processing. Chemical
shifts were referenced to the left alanine peak at 1.47 ppm.
Metabolites were identified based on previous assignment
[17, 18]. Twenty-eight metabolites were identified as meas-
urable and their areas calculated by integrating the area
under the signal curve.

Breast tumor tissue metabolomics analyses
In the 29 patients with available tissue, the tumors were
larger (45% vs. 9% pT2/3/4, p = 0.003), had a higher histo-
logical grade (52% vs. 18% grade 3, p = 0.022), were more
often ER-negative (35% vs. 3%, p = 0.002), and had higher
proliferation (59% vs. 27% PPH3-positive, p = 0.002) than
those without tissue. Thus, we had a selection bias of lar-
ger, non-luminal and a more proliferative tumors into the
present study compared to the original study [16]. Tissue
was transported on dry ice to the MR Core Facility at
NTNU, Trondheim, Norway, for metabolomics analyses.
Tissue samples were prepared frozen on a metal plate
bathed in liquid nitrogen to minimize tissue degradation.
Biopsies (11.0 ± 2.3mg) were cut to fit 30 μL disposable in-
serts (Bruker Biospin Corp, USA) filled with 3 μL D2O con-
taining 25mM formate. The insert containing the frozen
sample was placed in a 4-mm diameter zirconium rotor
(Bruker, Biospin GmbH, Germany) and kept at − 20 °C
until analysis (< 8 h). Spin-echo spectra were acquired on a
Bruker Avance DRX600 spectrometer with a 1H/13C magic
angle spinning (MAS) probe with gradient (Bruker Biospin
GmbH, Germany) using the following parameters: 5 KHz
spin rate, 5 °C probe temperature, 5-min temperature
acclimatization before shimming and spectral acquisition,
CPMG pulse sequence (cpmgpr1d; Bruker) with 4 s water
suppression prior to a 90° excitation pulse, total echo time
77ms, 256 scans, and spectral width 20 ppm. Spectra were
Fourier transformed into 64 K following 0.3 Hz line broad-
ening. Phase correction was performed automatically for
each spectrum using TopSpin 3.1.
Spectra were preprocessed in Matlab 2013b as follows

[19]. The spectral region between 1.4–4.70 ppm, which
contained the majority of the metabolite signals, was
selected for further processing. Chemical shifts were
referenced to the creatine peak at 3.03 ppm. The spectra
were baseline-corrected using asymmetric least squares
[20] with parameters λ = 1e7 and p = 0.0001, setting the
lowest point in each spectrum to zero. Lipid peaks at
4.34–4.27, 4.19–4.14, 2.90–2.7, 2.31–2.18, 2.11–1.92, and
1.68–1.5, and ethanol at 3.67–3.62, were excluded. The
resulting spectra were normalized to the total area to cor-
rect for differences in sample size and tumor cell content.
Metabolite peak assignment was based on previous identi-
fication [21]. Twenty metabolites were identified as meas-
urable, and the area under the signal curve in the
preprocessed spectra was used to calculate their relative

intensities. The metabolite integrals were log10 trans-
formed to satisfy prerequisite assumptions of normality.

Endpoints
Proliferation differences between the carbohydrate and fast-
ing groups were evaluated by Ki67 (< 15% or ≥ 15 and <
30% or ≥ 30%), mitotic activity index (MAI; < 10 or ≥ 10),
and PPH3 (< 13 or ≥ 13). The metabolic response to pre-
operative oral carbohydrate loading was evaluated in serum
(preoperative) by 1H NMR and in tumor tissue by HR-
MAS MRS.

Univariate analysis
Metabolite differences between groups were assessed by
student T-tests. Correlations between continuous vari-
ables were assessed by Pearson correlation. Categorical
variables were compared by Chi square tests. P-values
were considered significant when p < 0.05. When multiple
variables were compared, the resulting p-value tables were
corrected for multiple testing by the Benjamini-Hochberg
method [22].

Multivariate analyses (serum and tissue)
Multivariate analyses were performed in R V.3.5 [23]
using the package PLS [24] and MetaboAnalyst [25].
Metabolite values were auto-scaled (mean-centered and
divided by variance) before multivariate analysis. Princi-
pal component analysis (PCA) was performed to evalu-
ate the data sets for outliers. Partial least squares
discriminant analysis (PLS-DA) was performed to ex-
plore differences in serum and tissue metabolic profiles
between categories: carbohydrate loading vs fasting. Par-
tial least squares (PLS) was used to find correlations be-
tween the tissue metabolic profile and variables (MAI,
PPH3, Ki67, serum (S)-glucose, S-insulin, S-insulin c-
peptide, S-IGFR, S-IGFPB3, S-estradiol). Metabolites
were evaluated by Variable Importance in Projection
(VIP) score. The VIP score is a measure of how import-
ant each variable was for creating the discrimination
model. It is calculated as a weighted sum of squares of
the PLS loadings, where the weights are based on the
amount of y-variance explained in each dimension [26].
PLS and PLS-DA classification parameters were evalu-
ated by ‘leave-one-out’ cross validation due to the lim-
ited sample numbers. Permutation testing was carried
out as an additional model validation; sample classes or
responses were shuffled, and the model rebuilt with the
same numbers of latent variables as the original model.
One thousand permutations were performed, and
models were considered significant if the final accuracy
(of classification models) or R2 (of regression models)
were > 95% of the permuted accuracy values (p < 0.05).
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Thresholds in survival analyses
Relapse-free survival (RFS) was defined as the time from
surgery until a relapse from any site. Breast cancer-
specific survival (BCSS) was defined as the time from
surgery until death from breast cancer, whereas overall
survival (OS) was until death from any cause. Receiver-
operator characteristic (ROC) analysis identified optimal
thresholds for the various continuous metabolite vari-
ables using relapse ‘Yes/No’ as the categorical variable
(Table 8 in Appendix). The cut-off values obtained in
RFS analysis were also used in the BCSS and OS ana-
lyses. In ER-negative patients, none of the explanatory
variables with ROC-derived thresholds were significant
for analysis of RFS, BCSS, or OS. Therefore, further
analyses were limited to ER-positive patients. The ROC-
obtained thresholds were confirmed with the minimal p-
value/maximal Wald-value in a Cox model. In the
multivariabel Cox analyses the ‘Forward Wald’ method
was primarily used. In cases of an unstable model, a
stepwise backward analysis was performed.

Metabolite set enrichment analysis and ingenuity
pathway analysis (IPA)
Serum metabolite levels were uploaded to the Enrich-
ment module of MetaboAnalyst to explore the pathways
affected by the carbohydrate intervention. Pathway-
associated metabolite sets with sets containing at least
two metabolites were used. Pathways with p-values
≤0.05 (after FDR correction) were interpreted as signifi-
cant. Serum metabolites with significantly different
expression (p = 0.05) and their corresponding fold
changes were imported into the Ingenuity Pathway Ana-
lysis (IPA) software (Ingenuity, Redwood City, USA) to
explore which biological and molecular functions these
metabolites were involved in and how these and their
direct and indirect target molecules were connected,
using the network function in IPA. Additionally, we
examined if there were a direct or indirect connection
between the top network and seven microRNAs related
to tamoxifen resistance from our previous paper [27],
using the grow function with a moderate or experimen-
tally observed confidence level.

Results
Systemic metabolism
The results of the quantification of serum metabolites in
the carbohydrate and fasting groups are given in Table 2.
Fourteen out of 28 metabolites were significantly altered
between the groups. PLS-DA revealed a significant differ-
ence in metabolic profiles between the two groups.; (one
component, classification accuracy = 0.85; p < 0.001; Fig. 2a).
The main increased markers were increased serum (S) lac-
tate and S-pyruvate in the carbohydrate group (p < 0.0001;
Fig. 2a and b). Among the patients in the fasting group, the

levels of ketone bodies, such as S-acetate, S-acetoacetate,
and S-3-hydroxybutyrate, were increased (Table 2). In
addition, we observed increased S-N-acetylated groups, S-
leucine, S-valine and S-isoleucine in the fasting group (all
p < 0.05; Fig. 2b). We found positive correlations between
tumor size and S-lactate (r = 0.344; p = 0.016) and tumor
size and S-pyruvate (r = 0.370; p = 0.009).
In the carbohydrate group, there was a positive lin-

ear correlation between proliferation (Ki-67) and
tumor size (r = 0.782, p = 0.038). When Ki-67, PPH3
and MAI were included in a forward and backward
stepwise linear regression MAI was the only inde-
pendent factor explaining increment in tumor size
with a Beta = 0.530 (95%CI, 0.201 to 0.875) P = 0.009.
In the fasting group, there was no correlation be-
tween tumor size and proliferation.’

Serum glucose and insulin responses
The mean fasting glucose and insulin values at admission
were 5.4mmol/L (95% CI 5.1 to 10.0) and 9.4 mIU (95%
CI 6.8 to 32.5), respectively (normal ranges: glucose, 4.0 to
6.0mmol/L; insulin, 6.0 to 27.0 mIU; c-peptide, 0.3 to 2.4
nmol/L). In the carbohydrate group, the mean preoperative
insulin value was 35.6 mIU (26.7 to 106 mIU), compared
to 9.1 (8.6 to 22 mIU) in the fasting group (student’s t-test
p < 0.001). For C-peptide, the mean values in the carbohy-
drate and fasting groups were 2.10 nmol/L and 0.76 nmol/
L, respectively (p < 0.001). We found significant univariate
correlations between the serum concentrations of pre-
operative insulin (Table 3), Insulin C peptide (Table 9 in
Appendix) IGFBP3 (Table 10 in Appendix), but not to
IGF1 (Table 11 in Appendix). Multivariate analysis with
leave-one-out cross-validation showed significant correla-
tions between the serum metabolic profile and insulin
(Cross-validated (CV) (R2 = 0.33, p < 0.001; Fig. 3a+b),
Insulin C-peptide (CV R2 = 0.35, p < 0.001; Fig. 3c+d),
IGFBP3 (CV R2 = 0.11, p < 0.001; Fig. 3e+f), but not IGF-1.
For both insulin and insulin C-peptide, the most important
metabolites for predictions were increased S-glucose, S-
lactate and decreased S-Leucine. For IGFBP3, the most
important metabolites were increased S-Acetone, S-
Glycoprotein, and S-Leucine. We also found positive corre-
lations between S-lactate and the preoperative increase in
S-insulin and S-insulin / c-peptide (r = 0.57; p < 0.001 and
r = 0.61; p < 0.0001), and between S-pyruvate and the in-
crease in preoperative S-insulin and S-insulin c-peptide
(r = 0.54; p < 0.001 and r = 0.60; p < 0.001).

Tumor metabolism
Metabolites included in the analysis are presented in
Table 4. PLS-DA did not result in a significant model dis-
criminating between fasting and carbohydrate-fed patients,
and no metabolites were significantly different in univariate
testing when all tumors were analyzed (Fig. 4a). However,
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for ER-positive tumors (n = 18), glutathione was signifi-
cantly elevated in the carbohydrate group compared to the
fasting group (p = 0.002; Fig. 4b), even after adjusting for
tumor size. In the ROC analysis, we found an area under
the curve (AUC) of 0.894 (95%CI = 0.687–1.000, p =
0.0015) for glutathione in discriminating between fasting
and carbohydrate-fed patients with ER-positive tumors
(Fig. 4c). The difference was also significant in the ER-
positive tumors with low proliferation (MAI < 10; n = 7).
Moreover, we found a positive correlation between pre-
operative S-insulin levels and the glutathione content in
tumor tissue (r= 0.680; p = 0.002). Furthermore, we ob-
served a higher level of tissue glutamate in tumors with a
high proliferation as measured by Ki67</≥ 15% (p = 0.004).
This association remained significant when adjusted for

intervention group using a general linear model with inter-
vention status as fixed factor, Ki67</≥ 15% as random fac-
tor, and tissue Glutamate as dependent variable (p = 0.009).
Also, choline (p = 0.002) and phosphoetanolamine (p =
0.019) were increased in T2 tumors compared to T1
tumors.

Survival analysis
First, we used S-lactate, S-pyruvate, and tissue (T) gluta-
thione as continuous variables in a univariate Cox model
for RFS, BCSS and OS. Both S-pyruvate and S-lactate,
but not T-glutathione reached significance with a hazard
ratio (HR) for RFS of 1.53 (95% CI, 1.11 to 2.11; p =
0.009) and 1.08 (95% CI, 1.01 to 1.17; p = 0.029), respect-
ively. For BCSS the HR for the continuous variables of

Table 2 Serum metabolites with p-values from t-tests, fasting group versus carbohydrate (CH), for all patients and for the ER positive
subset

Metabolite p-valuea Fold change p-valuea ER+ Fold change ER+

3-Hydroxybutyrate 0.010 -1.06 0.010 -1.07

Acetate <0.001 -1.22 <0.001 -1.21

Acetoacetate <0.001 -1.25 <0.001 -1.20

Acetone 0.250 -1.18 0.508 -1.11

Alanine 0.692 1.01 0.544 -1.02

Asparagine 0.237 -1.05 0.376 -1.04

Citrate 0.503 1.03 0.726 1.01

Creatine 0.905 -1.01 0.704 -1.02

Creatinine 0.066 -1.06 0.039 -1.07

Dimethylsulfone 0.319 -1.09 0.154 -1.15

Glucose 0.969 1.00 0.972 1.00

Glutamine 0.005 -1.06 0.013 -1.07

Glycerol 0.065 -1.05 0.054 -1.06

Glycoprotein 0.243 -1.06 0.408 -1.05

Isoleucine <0.001 -1.26 0.001 -1.22

Isopropyl alcohol 0.009 -1.12 0.038 -1.10

Lactate <0.001 1.36 <0.001 1.26

Leucine <0.001 -1.20 0.002 -1.17

Lysine <0.001 -1.12 <0.001 -1.11

Methanol 0.495 -1.04 0.511 -1.04

Methionine 0.052 -1.11 0.062 -1.11

N-acetylated groups <0.001 -1.15 <0.001 -1.15

Phenylalanine <0.001 -1.12 <0.001 -1.13

Proline 0.298 -1.03 0.236 -1.03

Propylene Glycol <0.001 -1.13 0.004 -1.10

Pyruvate <0.001 1.27 <0.001 1.23

Threonine 0.035 -1.07 0.016 -1.08

Valine <0.001 -1.31 <0.001 -1.29

Abbreviations: ER+ Estrogen Receptor positive
aSignificant at p ≤ 0.016 after Benjamini-Hochberg correction for multiple testing
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S-pyruvate and S-Lactate were 1.85 (95%CI, 1.15 to 2.97;
p = 0.011) and 1.13 (95%CI, 1.01 1.26; p = 0.028) respect-
ively. The corresponding observations for OS were 1.63
(95%CI, 1.11 to 2.40; p = 0.014) for lactate and 1.10
(95%CI, 1.002 to 1.20; p = 0.045) for pyruvate. There-
after, the following independent variables were dichoto-
mized according to the optimal ROC-derived thresholds:
S-lactate, S-pyruvate, preoperative S-insulin, preo-
perative S-insulin-c-peptide, and tissue glutathione. In
addition, the well-established prognostic factors tumor
size, nodal status, histological grade, MAI 10, Ki-67-30
and PPH3–13 were deemed clinically relevant and in-
cluded as explanatory variables in the multivariable ana-
lyses. The results of the univariate RFS, BCSS, and OS
analyses are given in Tables 5, 6 and 7, respectively. Pa-
tients with a high glutathione content in the tumor
(≥1.09) had a 37% risk of experiencing a relapse and 37%
risk of dying of breast cancer compared to no relapses
and no deaths in patients with a low glutathione content
in the tumor (both comparisons: p = 0.038; HR = Inf.;
Fig. 5a and d). Patients with high S-lactate (≥56.9) had
RFS of 71% compared to 97% for those with lower S-
lactate (p = 0.002, HR = 7.47; 95% CI 1.66–33.6; Fig. 5b).
Patients with S-pyruvate ≥12.5 had an adverse RFS of
50% compared to 95% for the patients with S-pyruvate
< 12.5 (p < 0.0001; HR = 13.6; 95% CI 2.61–70.6; Fig. 5c).
The same pattern was observed in the BCSS and OS
analyses for these three prognostic variables (Fig. 5e-i).
Notably, only one contralateral relapse occurred in the
fasting group – all others were in the carbohydrate

group. Even though the relapses were restricted to pa-
tients with T2 tumors, tumor category was not an inde-
pendent prognostic factor in the multivariable analyses.
In the multivariable analysis for RFS, S-pyruvate was the
only factor left in the final model (HR = 12.8; 95% CI,
2.47 to 66.8), and only S-lactate remained in the final
multivariable model for BCSS (HR = 14.8; 95% CI 1.54 to
142). Furthermore, S-pyruvate was the sole factor to
reach significance in the multivariable model of the OS
analysis (HR = 18.2; 95% CI 2.03 to 164).

Pathway analyses
In the Pathway analyses, MetaboAnalyst and IPA
showed complimentary information. Quantitative
metabolite set enrichment analysis (MSEA) identified
biologically meaningful patterns in serum metabolite
concentration changes (Fig. 6a and Table 12 in Appen-
dix). Significantly enriched pathways included energy as-
sociated metabolic pathways (amino sugar metabolism
and pyruvate metabolism which links to glutamate
metabolism, the citric acid cycle, gluconeogenesis and
the Warburg effect). IPA showed the main functions of
the involved metabolites as cellular growth and prolifera-
tion, molecular transport, small molecule biochemistry,
carbohydrate metabolism and amino acid metabolism
(Fig. 6b). Interestingly, the metabolites showed a pattern
congruent with growth of organism (Fig. 6c) with metab-
olites increased in carbohydrate-fed patients activating
growth pathways, and downregulation of metabolites
acting as inhibitors of growth. Finally, four (miR-26a-5p,

Fig. 2 Partial Least Square Discriminant Analysis (PLS-DA) in serum. a Scores plot showing serum samples from the fasting group (green) and
carbohydrate group (red). The carbohydrate and fasting groups have significantly different metabolic profiles as evidenced by permutation
testing. b Variable Importance in Projection (VIP) scores showing the top 14 metabolites contributing to differences between the groups. The
right column indicates increased (red) or decreased (green) metabolite in the indicated group
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miR-30c-5p, miR126-3p and miR-210-3p) out of the
seven microRNAs found to be involved in resistance to
tamoxifen in our previous review [27] could indirectly
be associated with the metabolic network through insu-
lin signaling pathways (Fig. 6d). The same metabolic
pathways were evident when only ER positive patients
were considered.

Discussion
We present the first study to examine the effect of per-
oral preoperative carbohydrate load on perioperative
metabolism in operable breast cancer patients. Among

the 15 different serum metabolites that distinguished
fasting from the per-oral carbohydrate load, we observed
increased systemic lactate and pyruvate, decreased
ketone bodies, increased glycerol, and reduced amino
acids in the patients who received the carbohydrate load.
Moreover, we found highly significant positive correla-
tions between S-insulin and S-lactate and S-pyruvate.
Thus, changes in these 15 key metabolites are consistent
with increased glycolysis, increased ketolytic activity,
reduced lipolysis, and reduced proteolysis, which are
exactly the same metabolic modifications seen after
carbohydrate challenge in healthy persons [28]. Being
able to capture these well-known metabolic effects of in-
sulin increases the reliability of our model to detect
other changes that may follow a carbohydrate load.
It may be considered that 18 h is too short to expect

effect of the carbohydrate load on tumor cell proliferation
and metabolism. However, in vitro studies show that
glucose fed MCF-7 cells increase their proliferation after
12–24 h [3] .Others found the same pattern in three
different breast cancer cell lines [29]. As the cell lines
lack the in vivo endocrine response to glucose the
increased proliferation was based on GTP-ase driven
phosphorylation of EGFR with increased activity and
longevity of this receptor as a consequence. Also, ani-
mals fed with a diet containing increased glucose
show an increased epithelial mesenchymal transition
(EMT) [30].
The increased S-lactate and S-pyruvate in the carbohy-

drate patients stems primarily from two sources. Firstly,
lactate is the product of glycolysis, especially in muscle
cells, and is transported to the liver for conversion back
to glucose, known as the Cori cycle [31]. The intended
effect of preOP is to contra act and reduce insulin resist-
ance that follows surgical stress [32]. This stressor leads
to reduced mitochondrial ATP production and lactate
formation [33, 34]. In healthy individuals, an oral glucose
tolerance test (OGTT) showed a negative correlation
between differences in S-glucose concentrations and dif-
ferences in S-lactate levels (i.e. a rise in S-glucose leads
to a reduction in S-lactate) [35]. Moreover, during 180
min after an OGTT among non-insulin dependent
diabetic mellitus (NIDDM) patients there was no signifi-
cant alteration in S-lactate levels [36]. Thus, it is unlikely
that preOp itself creates a systemic lactate production.
Therefore, S-lactate in our patients may come from
excretion of intracellular lactate and pyruvate produced
in the breast cancer cells. Consequently, lactate and
pyruvate in the present study are probably translocated
into the systemic circulation via mono carboxylate trans-
porter type 4 (MCT-4), which is a known part of the
Warburg effect [13]. Despite the fact that systemic me-
tabolite concentrations are functional read outs of the
numerous homeostatic reactions in the body, which will

Table 3 Serum metabolite values correlated to insulin
(Pearson’s correlation) for the total study population, and the
carbohydrate and fasting groups separately

Metabolite R (All) P (All)* R (CH) P (CH) R (F) P (F)

Lactate 0.57 <0.001 0.31 0.136 0.70 <0.001

pyruvate 0.54 <0.001 0.26 0.203 0.54 0.001

Acetate -0.53 <0.001 -0.40 0.046 -0.22 0.212

N.acetylgroups -0.41 0.001 -0.06 0.788 0.10 0.576

Acetoacetate -0.34 0.008 -0.04 0.847 0.21 0.221

Valine -0.31 0.016 0.31 0.137 0.28 0.105

Lysine -0.29 0.027 0.01 0.947 0.43 0.010

Citrate 0.28 0.029 0.27 0.192 0.50 0.002

Isoleucine -0.28 0.030 -0.03 0.881 0.36 0.035

Glucose 0.26 0.043 0.40 0.047 -0.09 0.622

Propylene_Glycol -0.24 0.062 0.07 0.748 0.21 0.219

Creatine -0.23 0.075 -0.39 0.054 -0.18 0.292

Leucine -0.23 0.079 0.17 0.425 0.25 0.149

Phenylalanine -0.19 0.149 0.43 0.033 0.24 0.163

Glycerol -0.19 0.152 -0.12 0.555 0.11 0.541

Alanine 0.15 0.262 0.18 0.386 0.30 0.076

Isopropyl alcohol -0.12 0.344 0.20 0.331 0.12 0.500

3-Hydroxybutyrate -0.10 0.442 0.12 0.562 0.36 0.035

Methanol -0.10 0.457 -0.06 0.778 -0.05 0.761

Glutamine -0.09 0.506 0.30 0.150 0.06 0.737

Creatinine -0.08 0.543 0.23 0.263 -0.05 0.755

Threonine -0.08 0.567 0.10 0.627 0.32 0.062

Acetone 0.04 0.780 0.15 0.489 0.39 0.019

Proline -0.04 0.789 0.11 0.593 -0.03 0.880

Glycoproteins 0.02 0.873 0.06 0.787 0.49 0.003

Asparagine -0.01 0.923 -0.05 0.818 0.47 0.005

Methionine 0.01 0.941 0.37 0.067 0.08 0.653

Dimethylsulfone 0.00 0.997 0.17 0.404 0.05 0.777

Abbreviations: CH Carbohydrate group, F Fasting group, P Pearson’s correlation
p-value, R Pearson’s correlation R value.
*Significant at p ≤ 0.043 after Benjamini-Hochberg correction
** Significant at p ≤ 0.03 after Benjamini-Hochberg correction
*** Significant at p ≤ 0.035 after Benjamini-Hochberg correction
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blur the contribution from the cancer cell metabolism to
the serum levels [18], our present observation of positive
correlation between larger tumor size and increasing S-
lactate is supported by Hui S et al. [37].. Also, the posi-
tive correlation between proliferation and tumor size
solely occurs in the carbohydrate group this suggests
that carbohydrate exposure to larger tumors (i.e.T2
tumors) increases both proliferation and S-lactate. Thus,
this indicates that lactate from the Warburg effect in the
tumor cells may have a substantial contribution to the
systemic lactate and pyruvate levels. This observation
also adheres to the lack of correlation between intra
tumor lactate/pyruvate and fasting/carbohydrate status
in the present study, as the former are probably excreted
from the cells into the systemic environment.
Moreover, tumor cells not only produce lactate for

excretion through MCT-4, they are also able to take up
systemic circulating lactate and pyruvate via the MCT-
1 transporters [38]. Regardless of the source, systemic

lactate and pyruvate will certainly benefit the free CTCs
shed from the tumor during surgery that are on their
way to distant tissue to form micrometastases [39] but
may also benefit the preoperatively established occult
micrometastases [40, 41]. Lactate and pyruvate are the
most preferred substrates for lactate/pyruvate dehydro-
genase (LDH/PDH), ensuring a 1:1 ratio between lac-
tate and pyruvate when equilibrium is reached. Thus,
LDH provides substrate for both the production of
ATP via the tricarboxylic acid (TCA) cycle [37] and
also increased gluconeogenesis for the production of ri-
bose for nucleotide synthesis via the pentose phosphate
pathway (PPP) [38]. Notably, increased levels of serum
LDH [42] and increased expression of LDH in breast
cancer tissue [43] and lung tumors [44] are associated
with an inferior prognosis.
In line with other studies [45], we observed a positive

correlation between higher proliferation and increased
glutamate content in tumor tissue. Glutamate is a

Fig. 3 Correlation between serum metabolic profile and serum insulin, insulin C-peptide, and IGFBP3. Samples from carbohydrate-fed patients are
shown in red, while samples from fasting patients are shown in blue. Metabolites are colored according to their variable importance in projection
(VIP) score and labeled when VIP≥1. a Measured insulin vs. predicted insulin levels based on metabolic profile (cross-validated measurements). b
Metabolites versus regression coefficient for insulin. Increased S-glucose, S-lactate, and decreased S-Leucine are important to prediction of serum
insulin from the metabolic profile. c Measured insulin C peptide vs. predicted insulin C-peptide levels. d Regression weight plot showing
metabolites versus the regression coefficient for insulin C-peptide. Increased S-Glucose, S-Lactate, and decreased S-Leucine are important to
prediction of serum insulin C-peptide from the metabolic profile. e Measured Insulin Growth Factor Binding Protein 3 (IGFBP3) vs. predicted
IGFBP3 based on metabolic profile. f Regression weight plot showing metabolites versus the regression coefficient for IGFBP3. Increased S-
Acetone, S-Glycoproteins, and S-Leucine are important to prediction of serum IGFBP3 from the metabolic profile
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metabolic product of glutaminolysis, which drives mem-
brane trafficking to promote breast cancer cell invasive-
ness [46]. In addition, the expression of glutaminase
genes GLS and GLS2 correlates with increased tumor
growth rates [47]. Many tumors become glutamine-

dependent, as it serves as a direct route into the TCA
cycle at the alpha-ketoglutaric acid level with conse-
quential ATP production. Together with glycine and
cysteine, glutamate is a precursor to the tripeptide gluta-
thione, which is an antioxidant molecule that serves to
‘buffer’ superoxide insults encountered in the tumor
microenvironment [45]. Glutathione is the major thiol-
containing endogenous antioxidant and serves as a redox
buffer against various sources of oxidative stress. In tu-
mors, maintaining a supply of glutathione is critical for
cellular survival because it allows cells to resist the oxi-
dative stress associated with rapid metabolism, DNA-
damaging agents, and inflammation, among others [48,
49]. Glucose metabolism and biosynthesis of glutathione
are often modulated by the PI3K/Akt pathway, which is
often dysregulated in breast cancer tumors [50, 51]. Im-
portantly, one of the effects of targeting the PI3K/Akt-
pathway upstream [52] and downstream [19] is reduced
glutathione content in tumor cells. In the PPP-pathway,
NAD+ and NADP are converted into NADH and
NADPH, respectively, which contribute to maintaining
glutathione (GSSG) in the reduced state (GSH) [53].
Thus, the PPP-pathway in the Warburg effect secures a
high intracellular level of glutathione, which is regarded
as the most important cellular protection system against
attack from reactive oxygen species (ROS) in both divid-
ing and hibernating luminal cells [10], and also in cancer
stem cells [54]. Thus, preoperative carbohydrate loading
seems to create a doubly favorable environment that will
probably serve the CTCs liberated during surgery [39]
more than the already established micrometastases [55].
First, CTCs have a surplus of cellular fuel via lactate and
pyruvate available systemically. Second, they benefit
from an increased level of intracellular protection sys-
tems against ROS via increased tumor glutathione. Both

Table 4 Tumor metabolites with fold changes and t-test p-
values in carbohydrate vs fasting groups

Tumor metabolite P (All)a FC (All) P (ER+)b FC (ER+)

Acetate 0.844 -1.030 0.620 -1.095

Alanine 0.322 1.038 0.163 1.067

Ascorbate 0.300 -1.099 0.991 -1.001

Aspartate 0.385 1.100 0.545 1.088

Choline 0.136 1.056 0.547 1.027

Creatine 0.418 -1.062 0.558 -1.051

Glucose 0.495 -1.151 0.500 -1.201

Glutamate 0.172 1.047 0.146 1.055

Glutamine 0.955 1.003 0.816 -1.015

Glutathione 0.006 1.082 0.002 1.103

Glycerophosphocholine 0.712 -1.018 0.762 -1.018

Glycine 0.186 1.063 0.162 1.090

Lactate 0.862 1.006 0.922 1.004

Leucine 1.000 1.000 0.947 -1.004

Myoinositol 0.445 -1.038 0.768 -1.018

Phosphocholine 0.517 1.027 0.291 1.051

Phosphoethanolamine 0.211 1.050 0.544 1.031

Scylloinositol 0.926 -1.007 0.565 1.060

Succinate 0.788 1.022 0.503 1.067

Taurine 0.982 1.001 0.902 1.004

Abbreviations: ER+ Estrogen receptor positive, FC Fold change, P T-test p-value
aSignificant at p ≤ 0.001 after Benjamini-Hochberg correction
bSignificant at p ≤0.030 after Benjamini-Hochberg correction

Fig. 4 a Principal Component Analysis (PCA) of tumor metabolites. No grouping of fasting vs carbohydrate groups observed. b Glutathione levels
in ER positive tumors. c ROC curve for classification into carbohydrate or fasting group by glutathione concentration in ER-positive tumors. AUC=
0.894; 95%CI=0.0.687-1.000, P=0.002
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effects will increase the probability of CTCs thriving and
surviving as micrometastases, which then may erupt as
clinical relapse years later, compatible with the tumor
biology of luminal breast cancers. However, our ob-
served clinical endpoint between 3 to 7 years must be
regarded as ‘early relapses’ when coming to luminal

cancers [56]. Thus, we need a much longer follow up to
capture the late recurrences in order to get the correct
picture of the clinical outcome of the present study.
Several attempts have been made to reverse the above-

mentioned metabolic pathways for treatment purposes.
The first attempt was to reverse the Warburg effect with

Table 5 Univariate analysis of Relapse Free Survival in ER+ patients

Variable Events / At risk % Survival P HR 95% CI

Fasting / Carbohydrate

Fasting 1/29 97

Carbohydrate 6/21 71 0.012 9.34 1.12 –77.7

S-Pyruvatea

< 12.5 2/39 95

≥ 12.5 5/10 50 <0.0001 13.59 2.61– 70.6

S-Lactatea

< 56.9 3/40 93

≥ 56.9 4/9 56 0.002 7.47 1.66 – 33.6

S-Preoperative Insulin

< 18.3 I.U. 1/29 97

≥ 18.3 I.U. 6/21 71 0.012 9.34 1.12 – 77.7

S-Preoperative C-peptide

< 1.22 nM 1/29 97

≥1.22 nM 6/21 71 0.011 9.51 1.14-79.0

Tumor
Glutathione

< 1.09 0/10 100

≥ 1.09 3/8 63 0.038 Inf.

Tumor size

T1 3/40 93

T2 4/10 60 0.003 7.09 1.57-31.9

Nodal status

N0 3/33 91

N+ 4/17 73 0.160 2.80 0.625-12.6

Grade

1 0/11 100

2+3 7/39 82 0.136 31.1 0.019 – 50547

MAIa

<10 4/39 90

≥10 3/10 70 0.092 3.38 0.751–15.2

Ki67a

<30% 3/37 92

≥30% 4/12 67 0.023 4.84 1.08 – 21.8

PPH3

<13 3/35 91

≥13 4/15 73 0.116 3.13 0.699-14.0
aMissing information on one patient in the ER+ group leading to n=49 patients analyzed for this variable
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the polyphenol resveratrol, which blocks PDH/LDH. In
colon cancer cells, resveratrol inhibits proliferation, glu-
coneogenesis, and PPP [57]. By blocking PDH, resvera-
trol promotes mitochondrial electron transport chain
overload with increased ROS production, ultimately

resulting in apoptosis [58]. Secondly, a ketogenic diet
has been shown to be effective in preclinical studies [59].
A ketogenic diet produces a large amount of intracellu-
lar ketone bodies that have a direct cytotoxic effect.
Furthermore, the ketogenic state inhibits insulin/IGF
signaling and downstream signaling pathways, such as
PI3K/Akt/mTOR [60]. Interestingly, in the present
study, the patients in the fasting group reached a keto-
genic state with increased ketone bodies, which may
have created an unfavorable environment for the cancer
cells in the tumor and for the liberated CTCs. This is in
line with a recent RCT of using ketogenic diet as adju-
vant treatment in one of the study arms. They observed
a better overall survival in the group that received
ketogenic diet [61]. Others have recently shown a pro-
found effect of ketogenic diet in a xenografted breast
cancer mouse model with increased ketone bodies and
increased aminoacidic [62], which is in line with our
observations. The authors hypothesize that the anti-
cancer effect may be mediated through immunological
mechanisms [62]. Thus, use of a ketogenic diet as
adjuvants to conventional therapy is rooted in several
studies [63].
Likewise, physical activity is known to prevent and

improve survival in several cancer forms and is thus
recommended as a measure to both prevent and treat
breast cancer [64, 65]. One of the mechanisms behind
these observation is a change in the estrogen metab-
olism after 180 min exercise pr. week. They found an
increased 2 hydroxy-estrone level known to
antagonize the estradiol action [66] This observation
is important for both in the preventive setting as
breast cancer risk is correlated to total life exposure
of estrogens [67]. Also, changes in diet affect the can-
cer incidence [68], and also prognosis in breast cancer
patients [69].
A combination of calorie restriction and physical exer-

cise in postmenopausal women did also reduce insulin
levels [70]. In our patients, we found that metabolic
changes after the carbohydrate load affected the ER-
positive breast cancer patients. Thus, ketogenic diet
combined with physical exercise would probably be
beneficial for our patients as this approach will affect
both the ER and insulin signaling pathways.
Interestingly, intermittent fasting (i.e. caloric res-

triction for 16–48 h [71] has been proven to affect
the metabolism and disease process in a beneficial
manner. Notably, intermittent fasting in animal stud-
ies have demonstrated reduction of tumor size [72]. In
humans, intermittent fasting improves insulin sensitivity
and thus reduces insulin and IGF-1 related signaling in
over weighted individuals [72, 73]. Preclinical studies show
that intermittent fasting more than 2 days is as effective as
chemotherapy to reduce cancer load [74]. Thus, the

Table 6 Univariate analysis of Breast Cancer Specific Survival in
ER+ patients

Variable Events /
At risk

% Survival P HR 95% CI

Fasting /Carbohydrate

Fasting 0/29 100

Carbohydrate 4/21 81 0.015 Inf.

S-Pyruvate

< 12.5 0/40 100

≥ 12.5 4/10 60 <0. 0001 Inf.

S-Lactatea

< 56.9 1/40 98

≥ 56.9 3/9 67 0.002 14.8 1.53-142

S-Preoperative Insulin

< 18.3 I.U. 0/29 100

≥ 18.3 I.U. 4/21 81 0.015 Inf.

S-Preoperative C-peptide

< 1.22 nM 0/29 100

≥1.22 nM 4/21 81 0.015 103 0.025-429676

Tumor
Glutathione

< 1.09 0/10 100

≥ 1.09 3/8 63 0.038 Inf.

Tumor size

T1 0/40 100

T2 4/10 60 <0.0001 Inf.

Nodal status

N0 1/33 97

N+ 3/17 82 0.080 5.92 0.615 – 56.9

Grade

1 0/11 100

2+3 4/39 90 0.277 30.1 Inf.

MAIa

<10 2/39 95

≥10 2/10 80 0.124 4.12 0.580- 29.3

Ki67a

<30% 1/37 97

≥30% 3/12 75 0.014 9.91 1.03-95.3

PPH3

<13 2/35 94

≥13 2/15 87 0.399 2.27 0.320 – 16.1
aMissing information on one patient in the ER+ group leading to n=49
patients analyzed for this variable
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ketones derived from intermittent fasting decreases cancer
cell viability by attacking several hallmarks of cancer [75].
The IPA-analyses confirmed that the systemic re-

sponse to the carbohydrate load converge towards path-
ways involved in proliferation and growth of the
organism. Moreover, other pathways related to the
Warburg effect were also involved. Thus, peroral

preoperative carbohydrate load shifts the systemic me-
tabolism towards a very fortunate and beneficial envir-
onment for CTCs liberated from the tumor under the
operation. Interestingly, four out of seven microRNAs
related to endocrine resistance [27] also regulate the
same metabolic pathways through insulin signaling path-
ways, which are known to be involved in endocrine

Table 7 Univariate analysis of Overall Survival in ER+ patients

Variable Events /At risk % survival P HR 95% CI

Carbo/Faste

Faste 1/29 97

Carbohydrate 4/21 81 0.068 6.02 0.675–53.8

S-Pyruvata

< 12.5 1/39 97

≥ 12.5 4/10 60 <0.0001 19.2 2.14–172

S-Lactatea

< 56.9 2/40 95

≥ 56.9 3/9 67 0.009 7.58 1.26–45.4

S-Preop Insulin

< 18.3 I.U. 1/29 97

≥ 18.3 I.U. 4/21 81 0.068 6.016 0.672–53.9

S-Preoperative C-peptide

< 1.22 nM 1/29 97

≥1.22 nM 4/21 81 0.068 6.02 0.672–53.9

Tissue Glutathione

≤1.0855 1/10 90

>1.0855 3/8 63 0.140 4.72 0.488–45.7

Tumor size

T1 1/40 98

T2 4/10 60 < 0.0001 19.2 2.20 –176

Nodal status

N0 2/33 94

N+ 3/17 82 0.205 3.01 0.502–18.0

Grade

1 0/11 100

2+3 5/39 87 0.222 30.2 0.004–223736

MAIa

<10 3/39 92

≥10 2/10 80 0.235 2.83 0.471–16.9

Ki67a

<30% 2/37 95

≥30% 3/12 75 0.049 5.040 0.842–30.2

PPH3

<13 3/35 91

≥13 2/15 87 0.641 1.53 0.255–9.13
aMissing information on one patient in the ER+ group leading to n=49 patients analyzed for this variable
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resistance with reduced effect of tamoxifen and aroma-
tase inhibitors. Thus, it seems plausible to introduce
metformin early on as adjuvant treatment to regain the
endocrine sensitivity. Intriguingly, circulating micro-
RNAs from the tumor in exosomes [76] can perform
cell-independent microRNA biogenesis and promote
tumorigenesis away from the primary tumor [77]. Thus,
we may speculate that one of the steps in the metastatic
process is to control the systemic metabolic pathways to
ensure a beneficial environment and survival of the
liberated cancer cells [54]. Moreover, increased cellular
uptake of glucose via the Warburg effect [10] favor
differentiating glycosylation of intracellular proteins

included paucimannosylation [78]. Intriguingly, the
metastatic Epithelial-Mesenchymal-Transition (EMT)
process is regulated through glycosylation of key regula-
tor proteins, that are frequently modulated via the insu-
lin /IGF signaling [79]. Thus, glycosylation opens up a
connection between the glucose/insulin signaling and
increased survival of CTCs trough enhancement of the
EMT-processes.
Taken together, this explorative study indicates that the

carbohydrate loading state and fasting state have opposite
systemic and micro-environmental effects, which may ex-
plain why the relapses in the present study were skewed
towards the carbohydrate group, with an inferior RFS,

Fig. 5 Survival analyses for Tumor-Glutathione, Serum-lactate and Serum-pyruvate. a-c Relapse Free Survival (RFS); d-f Breast Cancer Survival
(BCSS); g-i Overall Survival (OS)
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BCSS, and OS in patients with high tissue glutathione,
high S-lactate, and high S-pyruvate. The favorable macro-
and micro-environmental changes for the tumor that
come from carbohydrate loading reflect the Warburg ef-
fect, which serves the CTCs and micrometastases more
than the patient [80]. In luminal cancers, the Warburg
pathway enzyme PFKFB4 acts as a molecular fulcrum that
couples sugar metabolism to transcriptional activation by
stimulating the ER co-activator SRC-3 to promote aggres-
sive metastatic tumors [81].
The present study has several weak points. First, it

is a post hoc explorative analysis of an RCT. There-
fore, the various analyses are not sufficiently powered
regarding the various endpoints. In addition, tissue
samples were not available for all patients, which re-
duces the number of patients in the various analyses.
Thus, this creates a greater risk of a type II error
than a type I error. Furthermore, the tissue analyses
were skewed towards patients with larger tumors.
This could introduce systematic error in the analysis.
However, tumor size was not included in the final
Cox models in any survival analysis, indicating that
this error was not strong enough to blur the effects
of the metabolites. Also, including diet recalls and

demographic data of the patients would have
strengthened the study. Detecting the well-known
endocrine metabolic fingerprint of insulin strengthens
the method and the reliability of the various findings
in this study. However, the study is too small to con-
clude on preoperative preparation guidelines; fasting
or carbohydrate loading. Moreover, the pilot nature of
the present study calls for validation in a larger study
with a long-term follow-up. Introducing a ketogenic
diet as a third study arm may test out whether ketone
bodies could wipe out the liberated CTCs and thus
improve survival.

Conclusion
Preoperative oral glucose loading increases systemic levels
of lactate and pyruvate, and tumor levels of glutathione and
glutamate in luminal breast cancer patients. In fasting
patients, the proapoptotic ketone bodies are increased.
These biological changes may contribute to the survival
differences observed between these two study groups.
Integrated Pathway Analysis (IPA) in serum revealed
activation of five major anabolic metabolic networks con-
tributing to proliferation and growth mainly through insu-
lin signaling pathways.

Fig. 6 Pathway analyses in serum metabolites. a Metabolite Set Enrichment Analysis of serum metabolism. Significantly enriched pathways are
annotated in the pathway network. The circle size denotes significance of the pathway, and lines denote at least 25% shared metabolites in the
pathways. b Ingenuity pathway analysis (IPA) bar chart showing the top 5 functions enriched in the dataset. c IPA pathway network showing the
metabolites connected to four microRNAs found to be involved in tamoxifen resistance. Metabolites in green are downregulated in
carbohydrate-fed patients, while metabolites in red are upregulated. MicroRNAs are colored purple. d IPA Function plot showing metabolites
involved in organismal growth. Orange arrows indicate activation, while blue arrows indicate inhibition
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Appendix

Table 8 ROC – analysis with ‘Relapse / No relapse’ as dichotomous variable in ER+ patients

Test variable AUC 95% CI Sensitivity
(%)

Specificity
(%)

P Threshold

S-lactate 0.769 0.609 – 0.929 57 88 0.024 56.9

S-pyruvate 0.765 0.541 – 0.989 71 86 0.026 12.5

Tumor-Glutathione 0.711 0.485 – 0.938 100 66 0.260 1.09

S-preoperative Insulin 0.724 0.554– 0.896 86 67 0.059 18.3 I.U./L

S-preoperative insulin c-peptide 0.735 0.566 – 0.903 86 67 0.049 1.22 nM

Table 9 Metabolites correlated to serum insulin C peptide (Pearson’s correlation) for all patients, carbohydrate group, and fasting
groups

Metabolite R All P Alla R CH P CHa R F P Fb

Lactate 0.611 <0.001 0.401 0.047 0.577 <0.001

Pyruvate 0.596 <0.001 0.395 0.051 0.431 0.010

Acetate -0.513 <0.001 -0.344 0.092 -0.092 0.598

N-acetylgroups -0.398 0.002 -0.092 0.663 0.397 0.018

Valine -0.366 0.004 0.189 0.366 0.385 0.023

Acetoacetate -0.352 0.006 -0.058 0.781 0.348 0.041

Isoleucine -0.333 0.009 -0.166 0.428 0.488 0.003

Lysine -0.301 0.020 -0.064 0.763 0.646 <0.001

Propylene Glycol -0.260 0.045 0.044 0.833 0.305 0.075

Citrate 0.244 0.060 0.262 0.205 0.348 0.041

Leucine -0.242 0.063 0.125 0.551 0.416 0.013

Glucose 0.233 0.074 0.345 0.092 0.187 0.282

Creatine -0.209 0.110 -0.444 0.026 0.005 0.978

Phenylalanine -0.206 0.115 0.357 0.080 0.503 0.002

Methanol -0.185 0.157 -0.162 0.438 -0.269 0.118

Glycerol -0.152 0.246 -0.111 0.596 0.323 0.059

Glutamine -0.152 0.248 0.216 0.300 0.058 0.740

Alanine 0.150 0.252 0.207 0.320 0.303 0.077

Isopropyl alcohol -0.134 0.307 0.185 0.375 0.222 0.199

Threonine -0.108 0.409 0.000 1.000 0.462 0.005

3-Hydroxybutyrate -0.098 0.455 0.153 0.464 0.439 0.008

Creatinine -0.077 0.557 0.176 0.399 0.158 0.365

Dimethylsulfone 0.076 0.565 0.264 0.202 0.332 0.051

Acetone 0.027 0.835 0.078 0.710 0.530 0.001

Proline -0.014 0.913 0.154 0.462 0.049 0.778

Asparagine -0.012 0.927 -0.126 0.547 0.624 <0.001

Glycoproteins 0.012 0.928 0.003 0.989 0.606 <0.001

Methionine 0.010 0.938 0.412 0.041 0.138 0.430
aSignificant at p ≤ 0.045 after Benjamini-Hochberg correction
bSignificant at p ≤ 0.041 after Benjamini-Hochberg correction
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Table 10 Metabolites correlated to serum Insulin Growth Factor Binding Protein 3 (IGFBP3) (Pearson’s correlation) for all patients,
carbohydrate group, and fasting groups

Metabolite R (All) P (All)* R (CH) P (CH)* R (F) P (F)*

Isoleucine 0.424 0.001 0.414 0.040 0.351 0.039

Glycoproteins 0.410 0.001 0.224 0.282 0.478 0.004

Asparagine 0.401 0.001 0.364 0.073 0.399 0.018

Leucine 0.393 0.002 0.107 0.612 0.440 0.008

Acetone 0.383 0.003 0.298 0.148 0.397 0.018

Lysine 0.378 0.003 -0.017 0.937 0.459 0.006

N.acetylgroups 0.342 0.007 -0.241 0.247 0.484 0.003

Phenylalanine 0.322 0.012 0.114 0.586 0.314 0.066

Propylene-Glycol 0.321 0.012 0.044 0.833 0.349 0.040

Isopropyl-alcohol 0.319 0.013 -0.079 0.706 0.434 0.009

Alanine 0.310 0.016 0.100 0.635 0.413 0.014

Acetoacetate 0.243 0.062 0.036 0.866 0.192 0.268

Threonine 0.206 0.114 -0.250 0.228 0.395 0.019

Valine 0.196 0.134 0.050 0.814 0.082 0.640

Acetate 0.180 0.169 0.079 0.707 0.066 0.707

Lactate -0.166 0.205 -0.347 0.090 0.207 0.232

pyruvate -0.164 0.211 -0.287 0.164 0.131 0.453

Methionine -0.158 0.228 -0.484 0.014 -0.066 0.704

Glycerol 0.137 0.296 -0.384 0.058 0.360 0.034

Proline -0.124 0.345 -0.358 0.079 0.004 0.982

Creatine 0.103 0.435 0.175 0.401 0.051 0.773

Creatinine 0.084 0.522 -0.189 0.365 0.146 0.403

Methanol 0.079 0.549 0.288 0.162 -0.110 0.528

Glutamine 0.075 0.569 -0.176 0.399 0.123 0.481

Glucose 0.055 0.678 0.007 0.972 0.186 0.285

Citrate 0.031 0.812 -0.052 0.804 0.134 0.442

Dimethylsulfone -0.005 0.967 -0.255 0.219 0.096 0.584

3-Hydroxybutyrate -0.001 0.993 -0.320 0.119 0.046 0.794

Abbreviations: CH Carbohydrate group, F Fasting group, P Pearson’s correlation p-value, R Pearson’s correlation R value.
*Significant at p ≤ 0.01 after Benjamini-Hochberg correction for multiple testing
**Significant at p ≤ 0.037 after Benjamini-Hochberg correction for multiple testing
***Significant at p ≤ 0.04 after Benjamini-Hochberg correction for multiple testing
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Table 11 Metabolites correlated to serum Insulin Growth Factor 1 (IGF1) (Pearson’s correlation) for all patients, carbohydrate group,
and fasting groups

Metabolite R (All) P (All)a R (CH) P (CH)a R (F) P (F)a

Methionine -0.318 0.013 -0.591 0.002 -0.135 0.438

Isopropyl_alcohol -0.314 0.015 -0.318 0.121 -0.330 0.052

Creatinine -0.302 0.019 -0.381 0.061 -0.265 0.124

Proline -0.274 0.034 -0.465 0.019 -0.095 0.585

Valine -0.251 0.053 -0.122 0.563 -0.406 0.015

Propylene_Glycol -0.230 0.077 -0.159 0.446 -0.291 0.089

Acetoacetate -0.230 0.077 -0.168 0.421 -0.308 0.072

Methanol -0.218 0.094 -0.001 0.996 -0.400 0.017

Acetone -0.184 0.159 -0.061 0.772 -0.247 0.152

pyruvate -0.173 0.186 -0.271 0.191 -0.179 0.303

Leucine -0.160 0.222 -0.090 0.670 -0.208 0.231

3.Hydroxybutyrate -0.157 0.230 -0.231 0.266 -0.114 0.515

Dimethylsulfone 0.155 0.238 0.032 0.880 0.245 0.155

Threonine -0.152 0.248 -0.397 0.050 0.013 0.941

Lactate -0.139 0.289 -0.323 0.115 -0.026 0.882

N.acetylgroups -0.131 0.320 -0.385 0.057 -0.038 0.830

Glycerol -0.125 0.342 -0.430 0.032 0.075 0.668

Lysine -0.118 0.370 -0.169 0.418 -0.104 0.551

Glutamine 0.100 0.447 -0.053 0.801 0.257 0.136

Isoleucine -0.096 0.468 0.116 0.582 -0.225 0.193

Acetate -0.092 0.483 0.031 0.883 -0.148 0.395

Creatine -0.087 0.507 -0.002 0.994 -0.154 0.378

Glycoproteins -0.081 0.539 -0.059 0.779 -0.088 0.614

Citrate 0.063 0.631 0.115 0.584 0.014 0.936

Alanine -0.048 0.717 -0.070 0.738 -0.048 0.783

Glucose 0.017 0.899 -0.008 0.969 0.079 0.652

Phenylalanine 0.011 0.931 0.253 0.222 -0.080 0.648

Asparagine -0.006 0.962 0.393 0.052 -0.163 0.349

Abbreviations: CH Carbohydrate group. F Fasting group, P Pearson’s correlation p-value, R Pearson’s correlation R value.
aSignificant at p ≤ 0.002 after Benjamini-Hochberg correction for multiple testing
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Table 12 Results from Quantitative Metabolite Set Enrichment Analysis

Metabolic pathway Total Cmpd Hits Statistic Q
(Expected 1.613)

Raw p FDR

Amino Sugar Metabolism 33 3 24.50 0.000 0.000

Propanoate Metabolism 42 1 44.09 0.000 0.000

Valine, Leucine and Isoleucine Degradation 60 4 31.60 0.000 0.000

Pyruvate Metabolism 48 3 28.66 0.000 0.000

Phenylalanine and Tyrosine Metabolism 28 2 31.54 0.000 0.000

Fatty Acid Biosynthesis 35 3 25.58 0.000 0.000

Aspartate Metabolism 35 3 16.23 0.000 0.000

Ethanol Degradation 19 1 33.64 0.000 0.000

Tyrosine Metabolism 72 1 32.22 0.000 0.000

Butyrate Metabolism 19 1 32.22 0.000 0.000

Lysine Degradation 30 1 31.52 0.000 0.000

Biotin Metabolism 8 1 31.52 0.000 0.000

Carnitine Synthesis 22 1 31.52 0.000 0.000

Ammonia Recycling 32 3 14.09 0.000 0.000

Warburg Effect 58 5 13.16 0.000 0.000

Cysteine Metabolism 26 1 27.23 0.000 0.000

Pyruvaldehyde Degradation 10 1 27.23 0.000 0.000

Urea Cycle 29 3 13.38 0.000 0.000

Glutamate Metabolism 49 3 13.38 0.000 0.000

Gluconeogenesis 35 3 17.45 0.000 0.000

Ketone Body Metabolism 13 2 17.24 0.000 0.000

Glycolysis 25 2 13.61 0.000 0.000

Citric Acid Cycle 32 2 14.00 0.000 0.001

Glycine and Serine Metabolism 59 5 8.26 0.000 0.001

Alanine Metabolism 17 2 13.75 0.000 0.001

Transfer of Acetyl Groups into Mitochondria 22 3 9.34 0.001 0.001

Glucose-Alanine Cycle 13 3 9.17 0.001 0.002

Pyrimidine Metabolism 59 1 12.64 0.005 0.008

Nicotinate and Nicotinamide Metabolism 37 1 12.64 0.005 0.008

Purine Metabolism 74 1 12.64 0.005 0.008

Phenylacetate Metabolism 9 1 12.64 0.005 0.008

Threonine and 2-Oxobutanoate Degradation 20 1 7.42 0.035 0.048

Methionine Metabolism 43 1 6.38 0.052 0.065

Betaine Metabolism 21 1 6.38 0.052 0.065

Spermidine and Spermine Biosynthesis 18 1 6.38 0.052 0.065

Glycerolipid Metabolism 25 1 5.74 0.065 0.080

Galactose Metabolism 38 2 2.87 0.184 0.219

Arginine and Proline Metabolism 53 2 0.94 0.575 0.665

Glutathione Metabolism 21 1 0.27 0.692 0.743

Selenoamino Acid Metabolism 28 1 0.27 0.692 0.743

Tryptophan Metabolism 60 1 0.27 0.692 0.743

Sphingolipid Metabolism 40 1 0.00 0.969 0.969

Lactose Synthesis 20 1 0.00 0.969 0.969

Lactose Degradation 9 1 0.00 0.969 0.969
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