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Abstract: Natural products (NPs) remain the most prolific resource for the development of
small-molecule drugs. Here we report a new machine learning approach that allows the identification
of natural products with high accuracy. The method also generates similarity maps, which highlight
atoms that contribute significantly to the classification of small molecules as a natural product
or synthetic molecule. The method can hence be utilized to (i) identify natural products in large
molecular libraries, (ii) quantify the natural product-likeness of small molecules, and (iii) visualize
atoms in small molecules that are characteristic of natural products or synthetic molecules. The models
are based on random forest classifiers trained on data sets consisting of more than 265,000 to
322,000 natural products and synthetic molecules. Two-dimensional molecular descriptors, MACCS
keys and Morgan2 fingerprints were explored. On an independent test set the models reached areas
under the receiver operating characteristic curve (AUC) of 0.997 and Matthews correlation coefficients
(MCCs) of 0.954 and higher. The method was further tested on data from the Dictionary of Natural
Products, ChEMBL and other resources. The best-performing models are accessible as a free web
service at http://npscout.zbh.uni-hamburg.de/npscout.

Keywords: natural products; natural product-likeness; machine learning; random forest;
classification; similarity maps; visualization; molecular fingerprints; web service

1. Introduction

Natural products (NPs) continue to be the most prolific resource for drug leads [1–4]. A recent
analysis found that over 60% of all small-molecule drugs approved between 1981 and 2014 are genuine
NPs, NP analogs or their derivatives, or compounds containing an NP pharmacophore [5]. NPs are
characterized by enormous structural and physicochemical diversity [6–8]. Some of the regions in
chemical space covered by NPs are not, or only rarely, populated by synthetic molecules (SMs) [7,9].
The structural complexity of many NPs exceeds that of compounds found in conventional synthetic
libraries for screening, in particular with respect to stereochemical aspects, molecular shape, and ring
systems [10–18].

The primary bottleneck of NP research is the scarcity of materials for testing. In a recent study,
we showed that the molecular structures of more than 250,000 NPs have been deposited in public
databases, and that only approximately 10% of these are readily obtainable from commercial providers
and other sources [19].
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Given the fact that NPs exhibit a wide range of biological activities that are of immediate
relevance to human health, new avenues that would make NP research more effective are being
explored, in particular, research involving computational approaches [2]. For example, computational
methods have been employed successfully for the identification of bioactive NPs [20–22] and their
bio-macromolecular targets [23–26]. They have also been successfully utilized for the design of simple
synthetic, bioactive mimetics of NPs [27–29]. In this context, computational methods for quantifying the
NP-likeness of compounds can be valuable tools to guide the de novo generation of NP mimetics and
optimize the NP-likeness of lead compounds. Such methods may also be useful for identifying genuine
NPs in commercial compound libraries, which often also contain SMs [19]. This can be valuable in the
context of library design and for the prioritization of compounds for experimental testing.

The best-known in-silico approach for identifying NPs is the NP-likeness score developed
by Ertl et al. [30]. The NP-likeness score is a Bayesian measure that quantifies a compound’s
similarity with the structural space of NPs based on structural fragments. As such, the model can
identify sub-structures characteristic to NPs. The method has been re-implemented, with some
modifications, in various platforms (e.g., [31–33]). Among them is the Natural-Product-Likeness
Scoring System [31], which allows the calculation of the NP-likeness score (with some modifications).
The Natural-Product-Likeness Scoring System also allows the use of customized data sets for training.
An alternative approach for quantifying NP-Likeness, following a similar modeling strategy, but based
on extended connectivity fingerprints (ECFPs), was reported by Yu [34]. Also a rule-based approach
has been reported [35].

In this work, we present the development and validation of new machine learning models for
the discrimination of NPs and SMs. To the best of our knowledge, these models are trained on the
largest collection of known NPs that have been employed for the development of such classifiers.
Among further developments, we present the utilization of similarity maps [36] for the visualization
of atoms of a molecule, which are characteristic for NPs or SMs, according to the models.

2. Materials and Methods

2.1. Data Preparation

NPs were compiled from several physical and virtual NP databases (see Results for details).
The chemical structures were parsed directly from SMILES notation, where available. Alternatively,
chemical structures stored in chemical table files (e.g., SDF) were parsed with RDKit [37] and
converted into SMILES. Minor components of salts were removed by the method described in ref. [38].
Any compounds with a molecular weight below 150 Da or above 1500 Da, and any compounds
consisting of elements other than H, B, C, N, O, F, Si, P, S, Cl, Se, Br, or I were filtered. The “canonicalize”
method, which was implemented in the “tautomer” class of MolVS [39], was used for neutralizing
the molecular structures and merging tautomers. After the removal of duplicate SMILES (ignoring
stereochemistry), the processed NP reference data set consisted of a total of 201,761 NPs.

SMs were compiled from the “in-stock” subset of ZINC [40,41]. In a first step, 500,000 compounds
of ZINC were picked by random selection from the complete “in-stock” subset and pre-processed
following the identical protocol used for the NP databases. After generating unique, canonicalized
SMILES, any molecules present in the NP reference data set were removed from the SM data set (as
determined by the comparison of canonicalized SMILES). Then, random sampling was used to compile
a reference data set of SMs of identical size as the NP reference data set (i.e., 201,761 compounds).

The Dictionary of Natural Products (DNP) [42] and the ChEMBL database [43,44] were
pre-processed following the identical protocol outlined for the NP and SM data sets. The ChEMBL
sub-set of molecules, published in the Journal of Natural Products, was retrieved directly from
ChEMBL [43,45]. The natural products subset of ZINC was downloaded from the ZINC website [46].
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2.2. Principal Component Analysis

Fifteen two-dimensional molecular descriptors calculated with the Molecular Operating
Environment (MOE) [47] were used for principle component analysis (PCA): MW (Weight), log
P (log P (o/w)), topological polar surface area (TPSA), number of hydrogen bond acceptors (a_acc),
number of hydrogen bond donors (a_don), number of heavy atoms (a_heavy), fraction of rotatable
bonds (b_rotR), number of nitrogen atoms (a_nN), number of oxygen atoms (a_nO), number of acidic
atoms (a_acid), number of basic atoms (a_base), sum of formal charges (FCharge), number of aromatic
atoms (a_aro) and number of chiral centers (chiral), and number of rings (rings).

2.3. Model Building

Prior to model building, the preprocessed NP and SM reference data sets were merged, resulting
in a total of 403,522 data records. The merged data set was then randomly split into a training set of
322,817 and a test set of 80,705 compounds (ratio of 4:1). In fingerprint space, structurally distinct
molecules may have identical fingerprints. For this reason, de-duplication, based on fingerprints, was
separately performed for all NPs and all SMs in the training data. Any fingerprints present in both the
NP and SM subsets were removed, in order to avoid conflicting class labels. This procedure resulted in
a training set of 156,119 NPs and 161,378 SMs represented by Morgan2 fingerprints, and in a training
set of 108,393 NPs and 157,162 SMs represented by MACCS keys.

Morgan2 fingerprints (1024 bits) [48,49] and MACCS keys (166 bits) were calculated with
RDKit, and 206 two-dimensional physicochemical property descriptors were calculated with MOE.
Random forest classifiers (RFCs) were generated with scikit-learn [50,51] using default settings, except
for “n_estimators”, which was set to “100”, and “class_weight”, which was set to “balanced”.

The NP-likeness calculator [30,31,52] was trained on atom signatures derived from the identical
NP and SM data sets, used for training the RFCs. Subsequently, the NP-likeness score was calculated
for each molecule in the test set, according to the atom signatures. All calculations used a signature
height of 3, resulting in scores ranging from −3 to 3. Molecules with a score greater than 0.0 were
labeled as NPs, and molecules with a score lower, or equal to 0.0 were labeled as SMs. NP class
probabilities (and AUCs) were derived by normalizing these scores to a range from 0.0 to 1.0.

2.4. Similarity Maps

Similarity maps were computed with the RDKit [37] Chem.Draw.SimilarityMaps module based
on RFCs derived from Morgan2 fingerprints (1024 bits).

3. Results

3.1. Compilation of Data Sets for Model Development

An NP reference data set of 201,761 unique NPs was compiled from 18 virtual NP libraries and
nine physical NP databases. The reference data set is identical to that compiled as part of our previous
work [8], with two amendments: First, the compounds of the DNP [42] were not included in the data set,
as they serve as an external test set in this work, and second, the recently published Natural Products
Atlas database [53] was added as a new data source. An overview of the NP data sources utilized in
this work is provided in Table 1. The table also reports the number of molecules that are contained in
the individual databases prior to, and after, data preprocessing. This is a procedure that includes the
removal of salt components and stereochemical information, the filtering of molecules composed of
uncommon elements, and with a molecular weight (MW) below 150 Da or above 1500 Da, and the
removal of duplicate molecules (see Methods for details). An equal amount (i.e., 201,761) of synthetic
organic molecules (SMs) was collected from the “in-stock” subset of ZINC [41] by random selection.
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Table 1. Size of the individual data sets prior to and after data preprocessing.

Name 1

Number of
Molecules in

SMILES Notation
Successfully Parsed

with RDKit

Number of
Unique Molecules

After Data
Preprocessing

Scientific Literature
and/or Online Presence

UNPD 229,140 161,228 [54,55]
TCM Database@Taiwan 56,325 45,422 [56,57]

NP Atlas 20,018 18,358 [53]
TCMID 13,188 10,918 [58,59]
TIPdb 8838 7620 [60–62]

Ambinter and Greenpharma NPs 7905 6680 [63,64]
AnalytiCon Discovery MEGx 4315 4063 [65]

NANPDB 6841 3734 [66,67]
StreptomeDB 3990 3353 [68,69]

NPs of PubChem Substance Database 3533 2638 [70,71]
NuBBE 1856 1637 [72,73]

Pi Chemicals NPs 1783 1511 [74]
NPCARE 1613 1479 [75,76]
NPACT 1516 1376 [77,78]

InterBioScreen NPs 1359 1116 [79]
AfroDb 954 865 [80,81]

TargetMol Natural Compound Library 850 745 [82]
HIM 1284 641 [83,84]

SANCDB 623 588 [85,86]
UEFS Natural Products 493 469 via ZINC [40,87]

p-ANAPL 538 456 [88]
NCI/NIH DTP NP set IV 419 394 [89]

HIT 707 362 [90,91]
AfroCancer 388 352 [92,93]

AfroMalariaDB 265 250 [94,95]
AK Scientific NPs 242 177 [96]

Selleck Chemicals NPs 173 163 [97]
NP data set TOTAL - 201761

1 UNPD: the Universal Natural Products Database; TCM Database@Taiwan: the Traditional Chinese Medicine
Database@Taiwan; NP Atlas: the Natural Products Atlas; TCMID: the Traditional Chinese Medicine Integrated
Database; TIPdb: the Taiwan Indigenous Plant Database; NANPDB: the Northern African Natural Products
Database; StreptomeDB: Streptome Database; NuBBE: Nuclei of Bioassays, Ecophysiology and Biosynthesis of
Natural Products Database; NPCARE: Database of Natural Products for Cancer Gene Regulation; NPACT: the
Naturally Occurring Plant-based Anti-Cancer Compound-Activity-Target Database; AfroDb: NPs from African
medicinal plants; HIM: the Herbal Ingredients in-vivo Metabolism Database; UEFS Natural Products: the natural
products database of the State University of Feira De Santana; p-ANAPL: the Pan-African Natural Products Library;
NCI/NIH DTP NP set IV: the NP (plated) set IV of the Developmental Therapeutic Program of the National Cancer
Institute/National Institutes of Health; HIT, the Herbal Ingredients’ Targets Database; AfroCancer, the African
Anticancer Natural Products Library; AfroMalariaDB, the African Antimalarial Natural Products Library.

3.2. Analysis of the Physicochemical Properties of Natural Products and Synthetic Molecules

Prior to model development, we compared the chemical space covered by the 201,761 unique
NPs, and the equal number of unique SMs, using principal component analysis (PCA), based on
15 relevant physicochemical properties (see Methods for details). The score plot in Figure 1 shows that
the chemical space of SMs is essentially a sub-space of NPs.

NPs have on average a higher MW than SMs (506 Da vs 384 Da) and a larger proportion of heavy
compounds (38% vs. 10% of all molecules have a MW greater than 500 Da; Figure 2a). SMs have a
narrower distribution of calculated log P values as compared to NPs (Figure 2b) but their averages
are comparable (3.31 versus 3.25). SMs and NPs show clear differences in the entropy of element
distributions in molecules, with NPs having, on average, a lower entropy than SMs (1.39 versus 1.63;
Figure 2c). NPs tend to have more chiral centers (mean 6.66 vs. 0.75; Figure 2d), substantially fewer
nitrogen atoms than SMs (mean 0.76 vs. 2.94; Figure 2e), and more oxygen atoms (mean 7.39 vs. 2.88;
Figure 2f) [7,10,12–15,17].
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3.3. Model Development and Selection

Random forest classifiers [98] were trained on three different descriptor sets: 206 two-dimensional
physicochemical property descriptors calculated with MOE [47], Morgan2 fingerprints (1024 bits) [48,49]
calculated with RDKit [37], and MACCS keys (166 bits), also calculated with RDKit. Model performance
was characterized utilizing the Matthews correlation coefficient (MCC) [99] and area under the receiver
operating characteristic curve (AUC). The MCC is one of the most robust measures for evaluating the
performance of binary classifiers, as it considers the proportion of all classes in the confusion matrix
(i.e., true positives, false positives, true negatives, and false negatives). The AUC was used to measure
how well the models are able to rank NPs early in a list.

As reported in Table 2, the models derived from any of the three descriptor sets performed very
well. The AUC values, that were obtained during 10-fold cross-validation, were between 0.996 and
0.997; the MCC values were 0.950 or higher. No noticeable increase in performance was obtained by
the further increase in the number of estimators (n_estimators) and the optimization of the maximum
fraction of features considered per split (max_features; data not shown). Therefore, we chose to
use 100 estimators, and the square root of the number of features, as the most suitable setup for
model generation.

Table 2. Performance of models derived from different descriptors or fingerprints.

Test Method Metric 1
MOE

Two-Dimensional
Descriptors

Morgan2
Fingerprints
(1024 Bits)

MACCS
Keys

NP-Likeness
Calculator

10-fold cross-validation
AUC 0.997 0.997 0.996 /
MCC 0.953 0.958 0.950 /

Independent test set AUC 0.997 0.997 0.997 0.997
MCC 0.954 0.960 0.960 0.959

1 AUC: area under the receiver operating characteristic curve: MCC: Matthews correlation coefficient.

3.4. Model Validation

In a first step, the performance of the selected models was tested on an independent test set.
The AUC and MCC values, that were obtained for the selected models on this independent test set, are
comparable with those obtained for the 10-fold cross-validation: AUC values were 0.997 for models
based on any of the three types of descriptors and MCC values were 0.954 or higher.
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Given the fact that the type of descriptor, used for model generation, did not have a substantial
impact on model performance, we opted to select the model based on MACCS keys as the primary
model for further experiments, because of its low complexity and good interpretability. This model
achieved a very good separation of NPs and SMs for the independent test set, as shown in Figure 3a.
Approximately 63% of all NPs were assigned an NP class probability of 1.0, whereas 51% SMs were
assigned an NP class probability of 0.0. Only approximately 1% of all compounds were assigned
values close to the decision threshold of 0.5 (i.e., between 0.4 and 0.6).
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The model’s ability to identify NPs was also tested using the DNP as an external validation
set. By definition, the DNP should consist exclusively of NPs. After the removal of any molecules
present in the training data (based on canonicalized SMILES), the preprocessed DNP consisted of
60,502 compounds. Approximately 95% of these compounds were predicted as NPs by the model,
demonstrating the model’s capacity to identify NPs with high sensitivity (Figure 3b).

3.5. Comparison of Model Performance with the NP-Likeness Calculator

We compared the performance of the model derived from MACCS keys to the NP-likeness
calculator (based on the Natural-Product-Likeness Scoring System; see Introduction), which we trained
and tested on the identical data sets used for the development of our models. On the independent
test set, the NP-likeness calculator performed equally well as our model, with an AUC of 0.997 and
an MCC of 0.959 (Table 2). Approximately 95% of all compounds of the DNP were classified as NPs
(i.e., having assigned an NP-likeness score greater than 0; see Figure S1), which is comparable to the
classification obtained with our model based on MACCS keys.

3.6. Analysis of Class Probability Distributions for Different Data Sets

In addition to the above experiments, we used the model based on MACCS keys for profiling the
ChEMBL database and a subset thereof. The ChEMBL database [44] primarily contains SMs, and 87%
of all compounds stored in ChEMBL were predicted as such (Figure 4a). Interestingly, 42,949 molecules
(~3%) were assigned an NP class probability of 1.0, and therefore likely are NPs. This finding is
in agreement with our previous study, which identified approximately 40,000 NPs in the ChEMBL
database, by overlapping the database with a comprehensive set of known NPs [19].
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A subset of the ChEMBL database containing molecules originating from the Journal of Natural
Products [45] has been used as a source of genuine NPs to train models for the prediction of
NP-likeness [31]. Our model based on MACCS keys predicts a small percentage of the molecules (less
than 4%) in this data set as not NP-like (Figure 4b). Closer inspection of the compounds predicted as
not NP-like reveals that these are, for example, SMs used as positive controls in biochemical assays.
They include the drugs celecoxib, glibenclamide and linezolid, all of which are predicted with an NP
class probability of 0.0. This experiment demonstrates that the classifiers can be used as powerful tools
for the identification of NPs or SMs in mixed data sets with high accuracy.

A second example of a data set that by its name is assumed to consist exclusively of NPs
is the natural products subset of ZINC [46]. The class probability distribution calculated for this
subset however is similar to that obtained for the complete ChEMBL, indicating the presence of a
substantial number of SMs (including NP derivatives and NP analogs) in this subset (Figure 4c): Only
approximately 43% of all compounds in the NPs subset of ZINC were classified as NPs; around 23%
were assigned an NP class probability of 1.0.
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3.7. Analysis of Discriminative Features of Natural Products and Synthetic Molecules

The most discriminative features were determined, based on the feature_importances_ attributes
computed with scikit-learn (see Methods for details). For the classifier based on MOE two-dimensional
molecular descriptors, the three most important features were the number of nitrogen atoms (a large
fraction of NPs has no nitrogen atom; see Figure 2e), the entropy of the element distribution in molecules
(NPs have on average lower element distribution entropy than SMs; see Figure 2c), and the number
of unconstrained chiral centers (NPs have on average more chiral centers than SMs; see Figure 2d).
An overview of the ten most important features is provided in Table 3.

Table 3. Feature importance for the random forest classifier based on MOE two-dimensional descriptors.

Identifier Used by MOE Feature Importance 1 Description

a_nN 0.103 Number of nitrogen atoms.

a_ICM 0.051 Entropy of the element distribution in the molecule.

chiral_u 0.045 Number of unconstrained chiral centers.

GCUT_SLOGP_0 0.045 Descriptor derived from graph distance adjacency
matrices utilizing atomic contribution to log P.

SlogP_VSA0 0.044 Surface area descriptor taking into account the
contributions of individual atoms to log P.

chiral 0.042 Number of chiral centers.

GCUT_SLOGP_3 0.036 Descriptor derived from graph distance adjacency
matrices utilizing atomic contribution to log P.

a_nO 0.025 The number of oxygen atoms.

GCUT_PEOE_0 0.025
Descriptor derived from graph distance adjacency

matrices utilizing partial equalization of orbital
electronegativities charges.

SlogP_VSA1 0.024 Surface area descriptor taking into account the
contributions of individual atoms to log P.

1 From the feature_importances_ attribute of the classifier based on MOE two-dimensional descriptors. The higher,
the more important the feature is.

For the classifier based on MACCS keys, the 15 most important features are reported in Figure 5.
In agreement with the differences observed in the physiochemical property distributions of NPs versus
SMs (see Analysis of the Physicochemical Properties of Natural Products and Synthetic Molecules),
the most important MACCS keys describe the presence or absence of nitrogen atoms, such as key 161,
matching molecules containing at least one nitrogen atom, key 142, matching molecules with at least
two nitrogen atoms, and keys 117, 158, 122, 156, 75, 110, 133, 92 and 80, matching molecules containing
specific nitrogen-containing substructures. Also several oxy gen-containing substructures are among
the most important features, such as keys 139, 117, 110, 92.
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3.8. Similarity Maps

Similarity maps [36] allow the visualization of the atomic contribution of molecular fingerprints
and can be extended to visualize the “atomic weights” of the predicted probability of the machine
learning model. During several test runs with different Morgan fingerprint, radii, and bit vector lengths,
we identified a radius of 2 and a bit vector length of 1024 bits as the most suitable setup for generating
fine-grained similarity maps. The examples of similarity maps, generated with this descriptor, and the
random forest approach, are reported in Table 4 for representative molecules, none of which have
been part of model training. In this similarity maps, green highlights mark atoms contributing
to the classification of a molecule as NP, whereas orange highlights mark atoms contributing to the
classification of a molecule as SM. As expected, the similarity maps for the NP arglabin are mostly green,
whereas for the synthetic drugs, bilastine and perampanel, are mostly orange. For NP derivatives
and mimetics, the similarity maps are more heterogeneous and show green, as well as orange areas.
The thrombin receptor antagonist vorapaxar is a derivative of the piperidine alkaloid himbacine.
Vorapaxar shares a decahydronaphtho[2,3-c]furan-1(3H)-one scaffold with himbacine, but has the
piperidine ring replaced by a pyridine, besides other modifications. The similarity map generated for
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vorapaxar shows that the model correctly identifies the decahydronaphtho[2,3-c]furan-1(3H)-one as
NP-like, whereas it associates the modified areas with synthetic molecules. In the case of empagliflozin,
which mimics the flavonoid phlorozin, the model correctly recognizes the C-glycosyl moiety as NP-like,
whereas other atoms in the molecule are associated with synthetic molecules.

Table 4. Examples of similarity maps generated by the NP classifier based on Morgan2 fingerprints.

Similarity Map 1 Name Source 2 NP Class
Probability

Disease
Indication

Year
Introduced
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perampanel S 0.16 antiepileptic 2012 

1 Green highlights mark atoms contributing to the classification of a molecule as NP, whereas orange 
highlights mark atoms contributing to the classification of a molecule as SM. 2 N: Unaltered NP; ND: 
NP derivative; S*: Synthetic drug (NP pharmacophore); S: Synthetic drug; NM: Mimic of NP. 
Definitions according to ref [5]. 

3.9. NP-Scout Web Service 

A web service named “NP-Scout” is accessible free of charge via http://npscout.zbh.uni-
hamburg.de/npscout. It features the random forest model, based on MACCS keys for the 
computation of NP class probabilities and the random forest model, based on Morgan2 fingerprints 
(with 1024 bits) for the generation of similarity maps. 

Users can submit molecular structures for calculation, by entering SMILES, uploading a file with 
SMILES or a list of SMILES, or drawing the molecule with the JavaScript Molecule Editor (JSME) 
[102]. The results page (Figure 6) presents the calculated NP class probabilities and similarity maps 
of submitted molecules in a tabular format. The results can be downloaded in CSV file format. 
Calculations of the NP class probabilities and the similarity maps take few seconds per compound 
and approximately 15 min for 1000 compounds. Users may utilize a unique link provided upon job 
submission to return to the website after all calculations have been completed. 
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1 Green highlights mark atoms contributing to the classification of a molecule as NP, whereas orange highlights mark
atoms contributing to the classification of a molecule as SM. 2 N: Unaltered NP; ND: NP derivative; S*: Synthetic
drug (NP pharmacophore); S: Synthetic drug; NM: Mimic of NP. Definitions according to ref [5].

3.9. NP-Scout Web Service

A web service named “NP-Scout” is accessible free of charge via http://npscout.zbh.uni-hamburg.
de/npscout. It features the random forest model, based on MACCS keys for the computation of NP
class probabilities and the random forest model, based on Morgan2 fingerprints (with 1024 bits) for
the generation of similarity maps.

Users can submit molecular structures for calculation, by entering SMILES, uploading a file
with SMILES or a list of SMILES, or drawing the molecule with the JavaScript Molecule Editor
(JSME) [102]. The results page (Figure 6) presents the calculated NP class probabilities and similarity
maps of submitted molecules in a tabular format. The results can be downloaded in CSV file format.
Calculations of the NP class probabilities and the similarity maps take few seconds per compound
and approximately 15 min for 1000 compounds. Users may utilize a unique link provided upon job
submission to return to the website after all calculations have been completed.
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4. Conclusions

In this work, we introduced a pragmatic machine learning approach for the discrimination of
NPs and SMs and for the quantification of NP-likeness. As shown by validation experiments using
independent and external testing data, the models reach a very high level of accuracy. An interesting
and relevant new aspect of this work is the utilization of similarity maps to visualize atoms in
molecules making decisive contributions to the assignment of compounds to either class. A free web
service for the classification of small molecules and the visualization of similarity maps is available at
http://npscout.zbh.uni-hamburg.de/npscout.
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