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ABSTRACT/ SUMMARY:  

Tumor dormancy is considered one of the major unsolved questions in cancer biology. Understanding the 

mechanisms responsible for maintaining and interrupting dormancy would be a major step towards preventing 

overt metastatic disease. Increasing evidence points to tissue trauma and subsequent wound healing as 

contributing events in escape from dormancy. In this review, we outline relevant aspects of the wound healing 

process, and relate this to mechanisms of tumor dormancy and metastatic progression. In addition to important 

findings in epidemiological and experimental studies, more direct evidence of such a link has recently been 

presented. These results can have major implications for treatment and prevention of cancer. 

Keywords: Tumor dormancy, metastasis, wound healing, inflammation 

1. 1 Wound healing and cancer 

The process of wound healing is a carefully orchestrated series of partly overlapping events, involving multiple 

local and systemic changes, all with the intent to restore tissue homeostasis, regain function and protect from 

infection. Whether the wound is caused by a traumatic event or deliberately inflicted by surgery, successful 

healing is crucial, as demonstrated by the major health issues caused by deficient wound healing capacity seen in 

diabetic patients amongst others. The similarities between the composition of the granulation tissue in healing 

wounds and the stroma of tumors led to the seminal publication by Harold Dvorak, stating that tumors are 

“wounds that do not heal” [1]. Clinical observations of increased susceptibility for cancer development at sites of 

chronic inflammation, such as ventricular cancer in H. Pylori-infected gastric mucosa, hepatocellular cancer in 

patients with chronic viral hepatitis and colorectal cancer in inflammatory bowel disease, demonstrate the 

interplay between cancer development and local inflammation[2]. The increased risk of breast and colorectal 

cancer in obesity, a condition of chronic elevation of inflammatory mediators, supports the existence of a 

systemic effect[3]. One of the first experimental evidences that infliction of wounds leads to tumor formation 

was the Fisher brothers’ series of experimental factors influencing the formation of hepatic metastases, where 

both liver resection (local trauma effect) and laparotomy (systemic effect) caused an increase in liver metastasis 

formation[4, 5]. Later, in a model of tumor development after injection with Rous sarcoma virus, Bissel and 

coworkers demonstrated that tumors developed at a site distant from inoculation only if a wound was inflicted at 

that site. If the animal was treated with an anti-inflammatory drug, tumor development was prevented[6]. The 

stimulating effect on cancer cells by cells involved in wound healing has later been demonstrated in even more 
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sophisticated models, such as melanoma cells in wounded translucent zebrafish, where live imaging revealed 

rapid divergence of wound healing activated neutrophils to nearby pre-neoplastic cells causing increased 

proliferation and full malignant transformation[7]. Recently, outgrowth of dormant tumors at a distant 

anatomical site in response to surgery and wound healing was robustly demonstrated in a murine model system 

of immune-restricted tumor growth. Inflammatory monocytes were implicated as the functional mediators, and 

the effect was counteracted by perioperative administration of an NSAID.[8] 

2.1 Tumor dormancy overview 

The concept of tumor dormancy, where cancer cells from a primary tumor disseminate early and enter a state of 

dormancy with a potential to cause late relapses is recognized in many cancers[9]. Autopsy studies have revealed 

dormant tumors in a large number of people dying from other causes, reviewed in [10, 11]. When comparing the 

prevalence of microscopic tumors of the thyroid and breast in autopsy studies to overt thyroid and breast cancer 

it is clear that for most people, the cancer remains dormant throughout life [12, 13]. Most research in the field of 

tumor dormancy has been focused on breast cancer, notorious for late relapses even decades after apparently 

successful treatment of small primary tumors[14]. Studies of the relapse pattern of breast cancer in several large 

patient series have revealed a biphasic distribution of relapses, consistent with the existence of a dormant 

phase[15, 16]. The mechanisms causing and maintaining dormancy in the clinical setting are not definitely 

established. Models suggest multiple factors such as inability to recruit blood vessels[17], immune 

suppression[18], entrance into cell cycle arrest[19], microenvironmental growth restriction[20] and 

autophagy[21]. Likewise, the means by which cancer cells can escape from dormancy are not fully elucidated, 

but as wound healing has been demonstrated to accelerate cancer growth [22], and epidemiological studies have 

revealed a peak in relapses after surgical procedures[23, 24] the theory that some factors in wound healing can 

mediate escape from tumor dormancy is highly relevant. This is especially unsetteling when considering the fact 

that surgery, where cancer-stimulating wound healing may take place in the presence of occult, dormant 

micrometastases, remains primary treatment in many cancer forms. In addition to wound healing, cancer surgery 

also includes anesthesia and analgesia, as well as potentially perioperative hypothermia and hypovolemia, factors 

that may add to cancer growth stimulation. Details on the scientific evidence for such effects were recently 

comprehensively reviewed [25]. When studying the phases of wound healing, with inflammation, immune 

suppression, stimulation of proliferation and migration of cells [26], a stimulating effect on dormant cancer cells 
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makes biological sense. Each phase of wound healing is outlined below with corresponding evidence from 

studies linking the involved mechanisms to escape from tumor dormancy. 

3.1 The phases of wound healing and their effects on tumor dormancy and metastasis 

3.1.1 The immediate response 

The immediate response, initiated by tissue and vessel trauma, rapidly leads to blood clotting to stop local 

hemorrhage. The blood clot, predominantly consisting of cross-linked fibrin and platelets, previously considered 

merely a temporary physical sealing of the wound, is now known to have several biological functions [27]. 

When endothelial integrity is disrupted, underlying collagen and von Willebrand factor are exposed and activate 

platelets in the blood stream. Activated platelets release alpha-granules, packed with over 300 growth factors and 

cytokines including platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF), transforming growth factor beta (TGF-β) and matrix metalloproteinases 

(MMPs) [28, 29]. This cocktail of factors is intended to attract inflammatory cells, stimulate cell proliferation, 

vessel formation and degradation of matrix. If a microscopic tumor is suspended in dormancy by insufficient 

blood supply, this release of VEGF may constitute an “angiogenic switch” allowing escape from dormancy by 

stimulated angiogenesis[17, 30] and VEGF levels have been correlated with disease progression[31]. In vitro and 

in vivo studies have demonstrated both improved wound healing and enhanced breast cancer cell colony 

formation by addition of platelet lysate [32, 33, 34]. The main effect of platelet activation on cancer seems to be 

to promote invasion and metastasis. TGF-β is one of the most potent drivers of epithelial to mesenchymal 

transition (EMT), a process where cells of epithelial origin gain a more mesenchymal phenotype by losing 

polarity and cell-to-cell adhesions, downregulating E-cadherin and upregulating vimentin, thus becoming more 

mobile[35]. This is needed for keratinocytes to re-epithelialize the wound surface, but when adopted by cancer 

cells, especially in combination with leakier capillaries due to VEGF and matrix degradation by MMPs, 

promotes invasion and metastasis. Fig. 1a. 

3.1.2 Inflammation 

Chemoattractants released from platelets, together with complement activation leads to the next phase: 

inflammation. First to arrive are the neutrophils[36], followed by macrophages[37] and lymphocytes. 

Neutrophils secrete prostaglandin E2 (PGE2), and reactive oxygen species (ROS), further fueling inflammation 

with the purpose of eradicating invading bacteria [38]. Macrophages also secrete PGE2 when stimulated by pro-
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inflammatory cytokines such as IL-6, and bacterial lipopolysaccharides (LPS) [39]. PGE2 is prominent among 

the inflammatory mediators that also exert tumor-sustaining effects [40], and elevated levels have been 

associated with poor prognosis in various malignancies, including breast, lung and colon [41, 42, 43, 44]. 

Among the physiological functions of PGE2 in wound healing are stimulation of proliferation, migration and 

angiogenesis, cancer cells may utilize these effects to increase metastatic efficiency [40]. PGE2 is also a key 

mediator of cancer immune evasion by suppressing type I interferons and T-cell mediated tumor elimination and 

altering dendritic cell maturation and ability to secrete cytokines [45]. The cancer promoting role of PGE2 is 

further supported by the beneficial effect on recurrence free survival associated with cyclooxygenase (COX) -

inhibitors such as aspirin [46, 47]. A central role for neutrophils in escape from dormancy was supported by an 

in vivo study of LPS-induced inflammation in mice with disseminated dormant carcinoma cells. By upregulation 

of EMT-factor Zeb1, dormancy was interrupted and macroscopic metastases developed. Neutrophil depletion 

abrogated this effect [48].  ROS and reactive nitrogen species can have tumorigenic effects by directly damaging 

DNA as well as by modifying proteins involved in critical steps of cell-cycle checkpoint control, DNA-repair 

and apoptosis [49]. In addition, ROS stimulates activation of COX-2 and thereby increases PGE2-production 

[38]. A large number of cells, including fibroblasts, keratinocytes, endothelial cells and macrophages, produce 

IL-6 in response to infection and tissue damage [50]. The classical effects of IL-6 includes induction of fever, 

hepatocyte stimulation to produce acute phase proteins such as C-reactive protein (CRP) and release of 

adrenocorticotropic hormone [51, 52], mainly mediated via signal transducer and activator of transcription 3 

(STAT3). In cancer cells, IL-6 has been demonstrated to induce EMT [53, 54], promote proliferation and 

survival, and serum levels are a negative prognosticator of both relapse and response to therapy in breast and 

kidney cancer patients [55, 56, 57]. CRP and IL-6 levels have been demonstrated to be negative prognostic 

markers in most cancers [58, 59, 60, 61, 62].  

Recent evidence suggests an important role of macrophages in early breast cancer dissemination; intra-epithelial 

macrophages were observed in early murine mammary lesions, corresponding to ductal carcinoma in situ in 

humans, depletion of macrophages at these early stages significantly reduced later metastatic development [63]. 

The macrophages in wound healing are predominantly of the M2, or alternately activated type [64], which is 

considered to be mainly pro-tumorigenic, as compared to the classically activated M1 macrophages, potent 

killers of microorganisms and cancer cells [65]. The M2 macrophages have a central role in promoting 

angiogenesis, tissue remodeling and repair by producing growth factors including VEGF, EGF, TGF-β and 

fibroblast growth factor (FGF) and enzymes and inhibitors to digest extracellular matrix, such as MMPs, 
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urokinase-type plasminogen activator (uPA) and its receptor uPAR [65]. In a model of carcinoma cell growth, 

high uPAR was demonstrated to induce escape from dormancy by upregulating the mitogenic extracellular 

regulated kinase (ERK) 1/2, and blocking the apoptotic and growth-arresting activity of p38 via regulation of 

fibronectin fibril assembly [66]. Production of PGE2 and accumulation of neutrophils and macrophages is partly 

counteracted by activation of the hypothalamic-pituitary-adrenal (HPA) axis, which takes place within minutes 

of wounding and results in release of cortisol and adrenaline [67]. However, this also results in release of T-

regulatory cells (Tregs), and can thus aid in cancer immune evasion [68]. The physiological rationale for this 

immunomodulatory effect in wounding probably is to avoid excessive tissue damage and autoimmunity [69, 70]. 

VEGF, in addition to its angiogenic effects, also contributes to immunosuppression by inhibiting dendritic cell 

maturation of hematopoietic progenitor cells [71] allowing for accumulation of myeloid-derived suppressor cells 

[72]. Silencing VEGF in vivo has been shown to unleash an antitumor immune response leading to tumor 

eradication [73] and VEGF blockade to decrease the number of Tregs [74]. Fig. 1b. 

3.1.3 Proliferation, migration and contraction 

Proliferating, sprouting blood vessels are a key component to wound healing by supplying nutrients, cells and 

growth factors. While endothelial cells of stable blood vessels produce thrombospondin-1 (TSP-1), which 

induces breast cancer cell quiescence, sprouting vessels not only loses TSP-1, but are also rich in tumor-

promoting factors such as periostin and TGF-β, thus sparking metastatic outgrowth as has been demonstrated 

both in vitro and in vivo [75]. Metastasis incompetent cancer cells have been demonstrated to create a metastasis 

refractory microenvironment by endocrine and paracrine secretion of prosaposin, a peptide that increases 

expression of TSP-1. Highly metastatic cells have significantly lower levels of this peptide [76]. Bone-marrow 

specific genetic deletion of TSP-1 increased metastasis formation in distant organs in vivo, an effect that was 

abrogated by bone marrow transplant from TSP-1+ donors. In the same study, pharmacological induction of 

TSP-1 dramatically suppressed metastasis [77].  Activated neutrophils have been shown to participate in 

degrading TSP-1 in the lungs, further facilitating escape from dormancy [78]. The bone marrow is considered a 

dormancy supportive niche; this may be mediated by TGF-β and dependent on the EMT associated receptor 

tyrosine kinase Axl [79]. Increased Axl activity has been associated with a differentiated and proliferating 

cellular phenotype which can switch to an invasive, non-proliferative, therapy resistant and dormant phenotype 

when the Axl activity is reduced[80, 81]. In prostate cancer cells, Axl has been demonstrated to be upregulated 

when binding to osteoblasts, and decreased in proliferating metastases [82]. Keratinocytes and fibroblasts from 
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the wound margins are stimulated to migrate into the wound and proliferate, mainly by TGF-β which is secreted 

from activated platelets in the early phase and later by several cell types [83]. In keratinocytes, migration is 

preceded by a partial epithelial-to-mesenchymal-transition, EMT, where the keratinocytes downregulate cell-to-

cell contact and hemidesmosomes, rearrange the cytoskeleton, secrete proteases  and extend lamellipodia to be 

able to degrade connective tissue and move into the granulation tissue of the wound [49]. These mechanisms, 

when applied to cancer cells, facilitate invasion and dissemination and thus metastatic seeding. In cancer, the 

EMT is more frequently complete, characterized by complete loss of cell-to-cell adhesions and expression of 

mesenchymal marker proteins like vimentin, resembling early embryogenesis, as opposed to the partial EMT in 

wound healing keratinocytes[84]. For cancer cells to regain their proliferative potential, mesenchymal to 

epithelial transition, MET, is also necessary as the decision between EMT/MET state determines if the cell 

should “go or grow” [85]. In physiological wound healing, the keratinocytes, by an as yet undetermined signal, 

reverts to the epithelial phenotype at completion of wound healing leading to the final phase, resolution and 

remodeling [86]. Parallel to these events, fibroblasts are recruited to the wound site and deposit extracellular 

matrix proteins. A few days after injury, fibroblasts differentiate to myofibroblasts with expression of α-smooth 

muscle actin, responsible for wound contraction [87]. Fibroblasts and myofibroblasts can be recruited by cancer 

cells to secrete growth factors, aid in invasion and in generating a cancer-supporting stroma which immune cells 

and cytotoxic agents have difficulties penetrating [88, 89, 90]. Fig. 1c. 

3.1.4 Resolution and remodeling 

In normal wound healing, the inflammation and proliferation, by not fully understood mechanisms, resolves 

when tissue regeneration is completed. The early collagen III-dominated matrix is gradually replaced by collagen 

I in dense bundles forming stiff scar tissue[91]. It has been demonstrated, in vivo and in vitro, that a collagen I-

rich, fibrotic environment can be a determinant of cytoskeletal reorganization in dormant tumor cells, inducing 

proliferation and metastasis formation through β1-integrin downstream signaling, an effect that was repealed by 

blocking β1-integrin [92].  

The resolution phase also includes regrowth of appendages, MMPs degrades and remodels the extracellular 

matrix to form organized collagen and proteoglycans, neutrophils and macrophages undergo apoptosis or return 

to the vasculature [27]. Failure of this resolution, with sustained inflammation, due to chronic infection, 

paracrine signaling from cancer cells, or other mechanisms, is a well-recognized hallmark of cancer [93]. Fig. 

1d. 
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4.1 Conclusions and future perspectives 

As outlined above, many of the signaling molecules and cells involved in wound healing have also been 

demonstrated to play a role in escape from tumor dormancy and development of metastases. Connecting the dots 

is a first step to being able to target this interplay in order to prevent overt, incurable, metastatic disease. An 

epidemiological study by our group identified a subgroup of breast cancer patients with early recurrences 

presenting with multiple, similar sized metastases, indicative of a synchronized onset of growth [94]. Post-

surgery wound healing may constitute such a synchronizing signal. To study the effect of surgery on metastatic 

relapse, we proceeded to study the relapse pattern after delayed breast reconstruction. This revealed a peak in 

relapses 18 months after reconstruction[23], similar to what has been observed after primary breast cancer 

surgery[15]. The height of the peak correlated with the extent of surgery, thus demonstrating a dose-response 

relationship suggesting a causal connection[23]. The systemic impact of surgery on metastatic growth is also 

demonstrated in a study of patients presenting with stage IV disease, where locoregional surgical treatment of the 

breast tumor resulted in improved local control but also a significant reduction in distant progression-free 

survival [95].When considering targeting dormant cancer cells in the clinical setting one faces several obstacles. 

Treatment to maintain cancer cell dormancy throughout the patient’s life might appear attractive. However, 

patients’ adherence to therapy, which inevitably comes with side effects, to prevent an uncertain risk of 

recurrence is limited, as has been demonstrated for adjuvant hormonal therapy in early-stage breast cancer 

patients [96]. In this study, full adherence to prescribed treatment was 49%. Inducing escape from dormancy in 

order to make the cells sensitive to treatment is a risky method if we are not certain to be able to kill all cancer 

cells. At present, the most plausible approach would be to selectively prevent escape from dormancy at times 

when the risk is elevated, such as at surgery or during subsequent wound healing. Indeed, a short term burst of 

angiogenic factors has been demonstrated in vivo to be able to push a dormant tumor into progressive growth, 

after this, lower levels sufficed to maintain this phenotype [97]. Still, these findings remain to be confirmed. The 

peri-operative time as a window of opportunity to prevent escape from dormancy, is further supported by 

epidemiologic observations of improved disease-free survival and overall survival when non-steroidal anti-

inflammatory drugs are used intraoperatively in conservative breast cancer surgery [98]. A randomized clinical 

trial investigating this is ongoing [99]. Identifying and targeting dormant tumor cells, to prevent metastatic 

relapse, is one of the great, unsolved questions in cancer research today, the answer to which could lead to 

entirely new treatment approaches and numerous lives saved.  
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Legends 

Fig. 1 a) The immediate response. Activated platelets release growth factors (vascular-endothelial growth factor 

(VEGF), transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF)), cytokines and and 
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matrix metalloproteinases (MMPs). These factors recruit inflammatory cells and stimulate vessel sprouting, re-

epithelialization and degradation of matrix, but may also stimulate pre-existing dormant tumor cells at a distant 

site for proliferation and migration. EMT=epithelial to mesenchymal transition. b) Inflammation. Neutrophils 

and macrophages secrete growth factors, cytokines, reactive oxygen species (ROS) and prostaglandin E2 

(PGE2), fueling an inflammatory response in the wound and surrounding tissues. Systemic levels increase, and 

these factors are also known to be able to stimulate proliferation and migration of tumor cells. Macrophage-

derived uPA has been demonstrated to induce escape from dormancy by upregulating mitogenic extracellular 

regulated kinase (ERK) 1/2 and downregulating the growth arresting, pro-apoptotic p38. Systemic release of 

cortisol and adrenaline stimulates T-regulatory cells and can thus aid in cancer immune evasion. The receptor 

tyrosine kinase Axl is downregulated in proliferating metastases. c) Proliferation, migration and contraction. 

Sprouting vessels produce tumor-promoting factors such as TGF-β. In order to re-epithelialize the wound 

surface, keratinocytes undergo a partial EMT. Fibroblasts generate scar-tissue and can aid cancer cells in 

invasion and migration. d) Resolution and remodeling. In normal tissue, inflammation and proliferation resolves 

by unknown mechanisms when tissue is regenerated, inflammatory cells return to the vasculature. A stiff, 

fibrotic environment can determine cytoskeletal reorganization through β1-integrin downstream signaling, 

inducing proliferation and metastasis formation in cancer cells located in this environment. 
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