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Preface

This dissertation is submitted as a partial fulfilment of the requirements for the
degree Doctor of Philosophy (PhD) at the University of Bergen. The dissertation
consists of two parts. Part I provides a theoretical and methodological background
for the articles in Part II. Part II is a collection of articles covering various aspects
of mathematical imaging, with main focus on methods based on partial differential
equations. The scientific contribution of the thesis is collected in part II.
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Part I

Background





(Håvamål)

Introduction and Outline

Digital images are used extensively in our society, and have become a natural
part of our life. In medicine, images of different modalities are used both in
diagnostics and research. The area of medical imaging is in fact an important
motive power for the development of the area of mathematical imaging. In our
project, we have studied mathematical models for enhancement and analysis of
images. Medical imaging, in particular magnetic resonance imaging (MRI) has
been the main motivation behind the work in the project.

We start with a basic introduction to mathematical imaging. A digital image
can be interpreted as a discrete function sampled on a mesh. This mesh is usually,
but not restricted to, a uniform quadratic (in 2D) or cubic (in 3D) mesh where all
the sides of the elements have the same size. In two dimensions the elements are
called pixels, whereas in three dimensions the elements are called voxels. Mathe-
matically we describe the image by

f(xi) : Ω→ Q, (1)

where Ω is the domain over which the image is sampled, and Q is a subset of the
nonnegative integers. The function f can be a scalar-, vector- or tensor- valued
function. We will treat all these possibilities later in this thesis. Digital images are
described as discrete functions. But since the size of the pixels/voxels usually is
very small compared to the domain Ω, we may look at f as a discretization of a
function f : Ω→ Q where Ω is a continuous domain. Therefore it is customary to
view the function as a continuous mapping from the imaging domain to (a subset
of) the real numbersR

f : Ω→ R. (2)

In the analysis of the mathematical models used in this thesis, we implicitly treat
the image as a continuous function with a continuous domain. But in all numerical
implementations, the domain of f is discrete, and f takes floating point values.
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The images considered herein are constructed from one or several measure-
ments. We might model the image formation by the model

f = Ku+ η, (3)

where u is the true image, K is a deterministic degradation operator (e.g. a con-
volution operator) and η is indeterministic degradation (noise) [3]. For a generic
image processing application, we cannot say anything about neither the determin-
istic degradation operator K or the indeterministic degradation η. However, for
a specific application it is often possible to say something about the error. The
deterministic degradation operator can for example be a blurring operator. The
indeterministic measurement error is usually modeled by a random distribution.
In the papers in this thesis we assume that the deterministic degradation operator
is neglectable. Then the degradation model becomes

f = u+ η. (4)

We assume that η is normally distributed noise with zero mean. This is a sim-
ple model which might not fully reflect the real world. In this thesis we mainly
process Magnetic Resonance (MR) images. In this case the noise is not normally
distributed. However, we model (approximate) the noise as normally distributed.

The field of mathematical imaging is vast. We may distinguish between at
least three different methodologies, namely transform, statistical and variational
methods. We stress that there are no exact borders between these methodologies;
a specific method can sometimes be expressed in terms of several different math-
ematical languages. In the major part of the research of this thesis (Papers A-D)
we focus on variational (PDE) methods. In these papers we process the images in
the spatial domain. But Paper E in is written in the context of transform and statis-
tically based methods. In that paper we work in both the spatial and the frequency
domain.

In chapter 1 we introduce the reader to a few PDE models which are related to
image processing applications. This chapter is central to four of the five papers in
part II in this thesis. In chapter 2 we give a brief introduction to the field of dif-
fusion tensor magnetic resonance imaging (DTMRI), since this imaging modality
has been a main motive power in the project. Two of the papers in the second part
of this thesis are directly connected to DTMRI applications.



Chapter 1

PDE Image Processing

Partial Differential Equations (PDEs) has proved to be an extremely flexible and
powerful concept in mathematical modeling [10, 25, 74]. The mathematical mod-
eling of a vast number of physical processes rely on PDEs. During the last 20
years, Partial Differential Equation (PDE)s have been used extensively also in im-
age processing applications [63, 66, 61, 65, 20]. Modeling of natural phenomena
has been elegantly adapted to modeling in image processing. Perhaps the most
well-known image processing task that is inspired by physical modelling of nat-
ural phenomena is noise removal. As we will see, we can remove noise in images
by equations very similar to the heat equation, which is the prototype of a par-
abolic (evolutionary) PDE [25, 74]. Similarly, curves (edges) can be moved by
applying equations similar to the transport equation, which is the prototype of a
hyperbolic PDE. We will touch upon this kind of equations towards the end of
this chapter [61]. In this chapter we review a few important PDE image process-
ing models that are directly or indirectly related to the papers in the second part
of this thesis. For the sake of clarity, we first consider models for scalar valued
images, i.e. grayscale images. As we will see later, most of the methods can be
generalized to vector (color) and matrix valued images as well.

The linear heat equation (sometimes called the linear diffusion equation) is
probably the simplest PDE that is practical for image modeling. Recall the heat
equation with a given initial condition f(x) and Neumann boundary conditions

ut(x, t) = ∇2u(x, t) in Ω× (0,∞) ,

u(x, 0) = f(x), (1.1)
un(x, t) = 0 on ∂Ω× (0,∞) .

Here ut(x, t) denotes time derivative of u(x, t), un(x, t) denotes the normal deriv-
ative of u(x, t) and ∇2u(x, t) denotes the Laplacian of u(x, t). In physical mod-
eling, the heat equation describes how heat spreads in a spatial domain as time
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evolves. From an initial temperature distribution u(x, 0) = f(x), the equation
(1.1) gives us the temperature distribution u(x, t) at any time t > 0. From in-
tuition we know that an initial temperature distribution gets averaged out with
time ∗.

The fact that the heat equation has an averaging effect can be used for image
denoising purposes. Noise is a random signal with substantially higher frequency
than the signal itself. We might hope that it is possible to pick an optimal stop-
ping time t∗ such that the noise is averaged out, but the important features of the
underlying image are still kept. By solving the heat equation, we can construct
multiscale representations which are gradually smoother as time evolves. This is a
powerful idea, especially when the linear heat equation is interchanged with more
adaptive nonlinear equations. By appropriately modifying the heat equation, we
can construct equations which preserves, and even enhance the most important
information in images: namely edges. In the next section we give an introduction
to scale space methods, which we interpret as solving a generalization of the heat
equation. This approach is sometimes called diffusion filtering, even though the
two terms scale space modeling and diffusion filtering does not always mean the
same thing.

1.1 Scale Space Formulation

As mentioned in the previous section, multiscale representations of images can
be constructed by solving a PDE of parabolic character, i.e. an evolutionary PDE.
The image f(x) is used as initial data and u evolves towards a steady-state solution
with increasing time. We may formally write such a PDE as

ut(x, t) = F (D2u,∇u, u, x, t), in Ω× (0,∞) ,

u(x, 0) = f(x), (1.2)
un(x, t) = 0 on ∂Ω× (0,∞) .

as in [20, 60]. Here ∇u is the spatial gradient of u, and D2u is a compact no-
tation of the set of all second derivatives. The term scale space comes from the
interpretation of the time variable t as a scale parameter. Initially, especially in
the presence of noise in the data, details at all scales exists in the image. But as
time evolves, small scales disappear, and only the large scales persist. Eventually,
as t → ∞, u converges to a steady state which is determined by the boundary
condition on u. Thus, we construct a hierarchical or multilevel representation of

∗ Diffusion is modeled by the same equation. The temperature distribution in the heat equation is
in diffusion modeling interchanged with a density distribution.
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the image data. This can be written as the embedding of f into a family of images

{Ttf} , t ≥ 0, (1.3)

ordered according to a continuously increasing t. The operator T0 is the identity
operator. We construct the hierarchical representation (1.3) by solving a PDE on
the form (1.2). The PDE can be solved by a time-stepping scheme where the time
step ∆t is a fixed small number. This means that we compute approximations
to the embedding (1.3) at time instants t = 0,∆t, 2∆t, · · · , N∆t. Note that this
resembles the steepest descent method from nonlinear optimization [58]. We il-
lustrate the concept of scale spaces in Figure 1.1, where two scale space flows
of very different nature are depicted. The scale space methods has proved to be
powerful methods for many image processing purposes [1, 2, 13, 87].

Scale spaces can be derived in various ways. In the work by Alvarez et. al,
scale spaces are constructed by an axiomatic approach [1]. They divide the axioms
into three different categories, architectural, stability and morphological axioms.
Some of the axioms are similar to principles that are well-known in the theory
of PDEs, e.g. the max/min principle and the causality principle. By requiring the
different axioms to hold, they deduce which PDE that must be solved.

In this thesis we follow another approach and instead interpret the scale spaces
via diffusion filter methods. This means that we construct the hierarchical family
of images by solving PDEs related to the linear heat equation. We will in the
rest of this section study a diffusion equation which is more general than the heat
equation (1.1), but slightly less general than the equation (1.2), namely

ut(x, t) = ∇ · (D(∇u, u, x)∇u) , in Ω× (0,∞) ,

u(x, 0) = f(x), (1.4)
un(x, t) = 0, on ∂Ω× (0,∞) .

where D is a diffusivity coefficient which prevents diffusion across edges, and
allows for diffusion in smooth regions of u. This diffusion coefficient can be
either scalar- or matrix-valued.

Perona and Malik were pioneers in scale space image processing [63]. The
Perona-Malik flow can be used for both edge detection purposes and image de-
noising purposes. In the Perona-Malik (PM) model, the governing PDE is given
by

ut = ∇ ·
(
g(|∇u|2)∇u

)
, (1.5)

where g is a smooth function with the properties g(0+) = 1 and g(∞) = 0, and
g′ ≤ 0. One specific choice of g is

g(|∇u|2) = e−|∇u|2/2σ2

, (1.6)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: An illustration of two totally different scale spaces; Gaussian scale
space in the left column and Perona-Malik scale space in the right column. Time
is increasing from the upper to the lower rows. The small scale features are disap-
pearing in both flows, but in totally different fashions. The image is one slice of a
T2 weighted MR image of the author.
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where σ is a scalar parameter. It is natural to interpret σ as a noise-level parameter.
The function g(·) acts like an edge detector. In regions where the gradient is steep,
the diffusivity in equation (1.5) is small. Thus g prevents (forward) diffusion
across edges. In regions where the gradient is nonsteep the diffusivity becomes
large. The Perona-Malik flow gives resulting images which are smoother than the
input image, but the edges are well preserved and even enhanced. The flow can
be better understood by a decomposition of the equation (1.5) [89]. We may write
equation (1.5) on the form

ut(x, t) =
(
g(|∇u|2) + 2|∇u|2g′(|∇u|2)

)
∂ηηu (1.7)

+ g(|∇u|2)
(
∇2u− ∂ηηu

)
, (1.8)

where η = (∇u/|∇u|) is the direction which is normal to the level curves of u.
We now observe that in the case where |∇u| ≤ λ, the equation is a traditional
diffusion equation. But when |∇u| > λ, the factor in front of uηη becomes nega-
tive. This in turn implies that the Perona-Malik filter in fact works as a backward
in time diffusion filter across large discontinuities in the data. This backward
diffusion is however surprisingly stable [89].

Weickert and his coworkers are also pioneers in scale space imaging [88, 90].
In a series of papers, they have studied isotropic and anisotropic diffusion in im-
age processing. Weickert also introduced the so-called structure tensor for im-
age processing applications, where the diffusion coefficient D is matrix valued
[90, 88]. In their work, the scale space is constructed by solving anisotropic equa-
tions of the form

ut = ∇ ·
(
D(∇u∇uT )∇u

)
(1.9)

In physics, a scalar valued diffusion is called isotropic, since it is not direction
specific. Thus the PM diffusion is isotropic. A diffusion that depends on the
direction is called anisotropic.

Scale space methods can be used directly for constructing multi scale repre-
sentations of images, as shown for example in Figure 1.1. Then we are interested
in the whole family {Ttf}, or at least a subset of it. But when scale space methods
are used for image denoising purposes, then one member of the family is used as
the solution to the denoising problem. Selecting a good stopping time is crucial,
in order to pick out the best member u(x, t∗) in the family of scales which is clos-
est to a noise free image in a given norm. If we stop the flow at a time t << t∗,
we get a result which still contains noise. On the contrary, if we stop the flow at
a time t >> t∗, the resulting image is over-simplified. The optimal stopping time
in scale space methods is strongly related to the noise level in the image. Thus, if
a good estimate for the noise level is known, then a good estimate of the optimal
stopping time can be found. Estimates of good stopping times for scale space
models have been constructed by Mrázek and coworkers [49, 50].
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To summarize, by scale space modeling we can construct a multi scale repre-
sentation of images by solving a diffusion-like PDE. In the case where scale space
methods are used for denoising purposes, a single member of the family of images
must be picked out by a stopping criteria. Estimation of the optimal stopping time
is in general difficult, and the stopping criteria often includes a free parameter.

The scale space methods have counterparts which are formulated as minimiza-
tion problems. The minimization functionals are constructed in such a way that
both large deviations from the initial data and rapid oscillations in the solution are
penalized. We will in this thesis refer to these methods as variational or regular-
ization methods. Some scale spaces corresponds to minimization problems, like
the linear heat equation, but a scale space solution is not required to correspond to
a minimum of a functional. This is the case for the Perona-Malik equation.

1.2 Regularization Formulation

A functional is a rule that assigns a real number to a function. Sometimes the
solution of a PDE corresponds to the minimum of a energy-like functional. This
minimum can be found by calculus of variations [28]. In four of the papers in the
second part of this thesis, we solve minimization problems on the abstract form

min
u
{F (u, f) + λR(u)} , (1.10)

where R is a regularization functional which measures the smoothness of the
solution u, and F is a fidelity functional measuring the closeness of the solution
u to the input data f in a given norm. The positive scalar λ controls whether
the solution should be close to the input data, or a smooth solution. We see that
if λ = 0, the minimum of the functional in Equation (1.10) is the input data f .
If λ is very large, the solution depends almost exclusively on the regularization
functional. In this case the solution will be (piecewise) smooth†.

In a slightly different context, Tikhonov (1906-1993) developed a method to
find reasonable solutions to ill-posed problems on the form

min
u
‖Ku− f‖2. (1.11)

Here K is a ill-posed matrix, typically a discretization of a Fredholm integral
equation of the first kind. The term ill-posed comes from the property that small

† Sometimes the regularization parameter λ is written in front of F (u, f). Then a small λ gives a
smooth solution, and a large λ gives a solution which is close to the data. We use both formulations
in the papers in the second part of this thesis.
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perturbations in f could lead to large perturbations in the solution. Thus a straight-
forward inversion of the operatorK gives results which by no means are meaning-
ful. Tikhonov realized in the 1960’s that by solving the modified problem (1.12)

min
u

{
||Ku− f ||22 + λ2||Lu||22

}
, (1.12)

with L being a linear operator (e.g. Lu = u or Lu = ∇u), you get a well-posed
solution as long as λ is large enough. By requiring ||Lu||22 to be bounded, we
“force” the solution to be smooth [80, 29].

Image deblurring is an example of a ill-posed problem where we can directly
employ the framework of Tikhonov. But even in the case where the operator K is
not at all ill-posed (i.e. when K = I) we can use the methodology of Tikhonov
to construct solutions which in some sense are regular. The notion of regularity
however depends on the regularization operator. Typically the solution of a PDE
image processing problem is the minimizer of a functional of the form

E(u) =

∫
Ω

(
(u− f)2 + λΨ(|∇u|)

)
dx. (1.13)

Here the first term in the integral in Equation (1.13) is the fidelity integral, while
the second term is the regularization integral. The properties of the minimizer of
E heavily depends on the choice of the regularization function Ψ. In section 1.2.2
we study a few specific choices of Ψ.

We will in this section introduce the framework that we need to find the mini-
mum of a functional. We mainly follow the exposition in the book [28] and lecture
notes from lectures held by Joachim Weickert. The functionals that we want to
minimize are of the form

E(u) =

∫
Ω

F (x, u,∇u)dx. (1.14)

However, to introduce the concepts of calculus of variations, we first look at the
functional

E(u) =

∫ b

a

F (x, u, u′)dx. (1.15)

We want to find an expression for the function u that minimize the functional of
Equation (1.15). In standard calculus, a necessary criterium for x∗ to be a min-
imum point of the function f is that f ′(x∗) = 0. In the calculus of variations
the corresponding criterium is a differential equation. This equation is called the
Euler-Lagrange equation which is attributed to Euler (1707-1783) and Lagrange
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(1736-1813). We will now see that integration by parts and other standard meth-
ods from calculus are sufficient to derive the Euler-Lagrange equation correspond-
ing to the minimum of the functional in Equation (1.15).

Let us assume that v(x) is a minimizer of the functional (1.15), that is

E(v) < E(w) ∀w. (1.16)

We might perturb the function v(x) with another function h(x)

u(x, ε) = v(x) + εh(x). (1.17)

Since the function v(x) is a minimum of E, we know that

g(ε) = E(u(x, ε)) (1.18)

has a minimum at ε = 0. This means that the derivative g′(ε)of this function must
vanish at ε = 0. Thus we must have

0 = g′(0) =
d

dε
E(v + εh)|ε=0 =

d

dε

∫ b

a

F (x, v + εh, v′ + εh′)dx|ε=0 (1.19)

Using the chain rule, we see that the derivative (w.r.t ε) of the last term of Equa-
tion (1.19) becomes

0 =

∫ b

a

[Fuh+ Fu′h
′]dx. (1.20)

Using integration by parts, we get

0 =

∫ b

a

[Fuh−
d

dx
Fu′h]dx+ Fu′h|ba (1.21)

Since v is the minimizer of the functional from Equation (1.15), it must be the
minimizer for any perturbation h. We can in particular choose h in such a way
that h(a) = h(b) = 0. A more general and natural boundary condition is however

Fu′|ba = 0. (1.22)

This boundary condition is called the natural boundary condition. Thus the Equa-
tion (1.21) gives us what is called the Euler-Lagrange equation corresponding to
the functional of Equation (1.15).

Fu −
d

dx
Fu′ = 0. (1.23)
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The Euler-Lagrange equation corresponding to Equation (1.14) for d spatial di-
mensions is given by

Fu −
d∑

i=1

∂xi
Fuxi

= 0, (1.24)

with the natural boundary condition

∂u

∂n
= 0 on ∂Ω. (1.25)

In the remaining part of this section, we use the shorthand notation

E ′(u) := Fu −
d∑

i=1

∂xi
Fuxi

(1.26)

for the Euler-Lagrange equation. At a minimum v, we have

E ′(v) = 0, (1.27)

thus we mimic the notation from standard calculus.
In Papers A-D in this thesis the solution strategy is to solve a parabolic PDE,

which at steady-state corresponds to E ′(v) = 0. Note that this strategy resembles
the scale space formulation with an additional fidelity term. Thus it is clear that
the regularization formulation and the scale space formulation are closely related.
This connection has been thoroughly studied by Weickert and Scherzer [70].

1.2.1 Solution Strategy

We use the method of steepest descent to find a solution u that satisfies the Euler-
Lagrange equation corresponding to an energy functional. This methodology fits
well with the diffusion formulation from the previous chapter.

The method of steepest descent is probably the simplest method in nonlinear
minimization [58]. From a starting point u0, we construct a sequence of solutions
uk from the equation

uk+1 = uk − αgk, (1.28)

where α is a small stepsize parameter, and g is the derivative of the minimization
functional. If we interpret the parameter α as a time step and reorder terms in
Equation (1.28), we see that we have the equation

uk+1 − uk

α
= −gk, (1.29)
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which is nothing but a discretization of the equation

ut = −g. (1.30)

If we interpret the derivative g as

g = E ′(u), (1.31)

we see that if we are able to reach a steady-state to the equation (1.30) then u
is a solution to the Euler-Lagrange equation corresponding to the minimization
functional E. Thus we construct the solution to the minimization problem by
solving the equation (1.30) to steady-state.

We stress that the steepest descent methods is inefficient w.r.t computation
time. The convergence of the steepest descent is only of first order. On the other
hand, the steepest descent method is robust in the sense that it leads to simple
numerical schemes that are easy to implement.

There are many strategies for speeding up the convergence, and perhaps the
most intuitive (traditional) way is by employing Newton methods or quasi-Newton
methods [58, 7].These methods are known to have quadratic convergence behav-
iour, at least in a neighborhood of the solution. Alternatively, multigrid methods
might be employed [84, 18]. Chambolle has developed quick algorithms for solv-
ing regularization problems based on a duality formulation, where the solution
can be seen as a projection of the data to a convex set [15]. Recently, Darbon and
Sigelle have developed even quicker (and even more exotic) methods for the solu-
tion of a class of regularization problems based on graph theory [24]. So there are
many ways to accelerate the solution process. However, in this thesis we do not
focus on quick algorithms, we rather study the underlying properties of the math-
ematical models. Therefore we employ simple finite difference steepest descent
schemes.

1.2.2 Common Regularization Functionals
In scale space modeling, the resulting image depends heavily on the properties of
the underlying diffusion equation, as we have seen for example in Figure (1.1). In
the following we will introduce the reader to a few regularization functionals that
are commonly used for image denoising purposes.

Laplacian with L2 fidelity

In regularization modeling, an analogue to the heat equation is the Laplacian reg-
ularization functional with the L2 fidelity functional

G(u, f) =

∫
Ω

|∇u|2 dx+
λ

2

∫
Ω

(u− f)2 dx. (1.32)
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By differentiation, we see that the Euler-Lagrange equation corresponding to the
functional (1.32) is

G′(u) = −∇2u+ λ(u− f). (1.33)

At a minimum v of the functional we have

G′(v) = 0. (1.34)

By the gradient descent method, the minimum v corresponds to the steady-state
solution to the problem

ut(x, t) = ∇2u(x, t)− λ(u(x, t)− f(x)),

u(x, 0) = f(x), (1.35)
un(x, t) = 0.

The steady state solution to Equation (1.35) with a varying regularization pa-
rameter λ gives solutions of similar character as the Gaussian scale space with
varying stopping time t. But this means that using the regularization functional
(1.32), we cannot expect to keep the edge information in the resulting image. This
follows naturally from the properties of the Laplacian operator ∇2u. It is a well-
known fact that the solution of the linear heat equation is smooth for all t > 0 even
when the initial condition u(x, 0) is a nonsmooth function [25, 74]. More specif-
ically, the solution to the equation (1.35) belongs to the Sobolev space W 1,2(Ω)
which is defined by

W 1,2(Ω) =
{
u : u ∈ L2(Ω), ∇u ∈ L2(Ω)d

}
, (1.36)

where d is the dimension of the domain Ω [3]. The additional fidelity term does
not change this fundamental property of the solution. To allow for edges in the
solution, the regularization functional must be modified, i.e. we need to search for
the solution in another function space which allows for discontinuities. To do this
we replace the Diriclet functional with the total variation functional, and instead
of searching for a continuous solution we search for a solution which is in the
space of bounded variations.

Total variation with L2 fidelity

Among the most successful image denoising models is the total variation model
that was first used for image processing by Rudin, Osher and Fatemi (ROF) in
[65]. The idea of this model is to use the Total Variation (TV) functional

R(u) =

∫
Ω

|∇u| dx (1.37)
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as a regularization functional instead of the Diriclet integral. Adding the L2 fi-
delity term, the ROF functional becomes

G(u, f) =

∫
|∇u|dx+

λ

2

∫
(u− f)2dx. (1.38)

Despite the minor difference in notation compared to the functional (1.32), the
modification of the regularization term in the functional has a major impact on the
solution to the denoising problem. The reason is that the TV functional penalizes
jumps in the solution in a completely different way than the Diriclet functional.

We have already formally introduced the notion of the TV functional. For a
one dimensional signal u, the total variation functional is rigorously defined as

TV (u) = sup
h>0

∫ ∣∣∣∣u(x+ h)− u(x)
h

∣∣∣∣ dx. (1.39)

However, in practice the TV functional of a one dimensional function is treated as

TV (u) =

∫
|ux|dx. (1.40)

This not so rigorous definition can be used for higher dimensions, such that we get
the definition of the multi dimensional TV functional as in (1.37). More rigorously
we can define the total variation of a function u by∫

Ω

|∇u| = sup
{∫

Ω

u∇ · gdx : g ∈ C1
c (Ω, Rn), |g(x)| ≤ 1∀x ∈ Ω

}
,(1.41)

whereC1
c denotes the set of at least one time differentiable functions with compact

support.
A nice thing about TV(u) is that it is finite for any function that is bounded,

even for discontinuous functions [60]. As long as a function u does not have
infinitely large jumps, then TV(u) is finite. In image processing applications this
property of the TV functional allows a regularized image to be a discontinuous
function. This is in strong contrast to the Diriclet functional (i.e. p = 2), which
is unbounded for all discontinuous functions. This important property of the TV
functional in fact only holds for p = 1 for functionals on the form

Rp(u) =

∫
|∇u|pdx. (1.42)

As noted by Chan and others, we may interpret the TV norm of a function as
integration along all level sets of the function. This implies that the TV norm
depends on both the size of jumps and geometry of the level sets [17]. Since
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edges as well as geometry are among the most prominent features for human
perception, functions with finite total variation are attractive building blocks for
imaging purposes, rather than continuous functions.

By differentiation, we find the Euler-Lagrange equation corresponding to
Equation (1.38)

G′(u, f) = −∇ ·
(
∇u
|∇u|

)
+ (u− f). (1.43)

Again, following the standard gradient descent approach, we find the zero point
of the Euler-Lagrange equation by solving the equation

ut = ∇ ·
(
∇u
|∇u|

)
− (u− f) (1.44)

u(x, 0) = f(x) (1.45)
un(x, t) = 0 (1.46)

to steady state. The minimizer of the ROF problem is in the space of bounded
variations

BV(Ω) =

{
u ∈ L1 |

∫
Ω

|∇u| <∞
}

(1.47)

Even though the ROF model for denoising purposes is superior to the heat
equation with the L2 fidelity term, the method has a few drawbacks, namely the
staircase effect and loss of contrast and geometry. Additionally, textures are not
well handled with the original ROF model [3, 93].

In paper (A)-(D) in this thesis, we have used the total variation regularizer for
various applications. We consider this regularizer as a “standard” or “generic” reg-
ularizer. It is however clear that the total variation regularizer can be interchanged
with other regularizers in some applications. Regarding the fidelity functional, we
have only used the L2 norm as a measure of closeness. This is a very natural norm
to use for many applications. However, for some applications the L1 norm can
give better results [19].

The result from regularization by functional minimization depends on the
properties of the minimization functional (1.10). Since the equations are solved to
steady state, we do not have a stopping criteria in the regularization formulation.
However, the regularization parameter λ has a similar role as the stopping time
t in the scale space formulation. So the two approaches are closely related. By
selection of λ, the minimum of the functional (1.10) is a compromise between
a completely smooth solution and a solution which is close to the initial data f .
Correspondingly, if we choose a small stopping time t in the scale space formu-
lation, we get a solution which is close to the initial data. A large stopping time
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corresponds to a very smooth solution. Thus we see that a parameter selection is
important in both scale space methods and the variational methods. In the scale
space setting, we have to pick out a good stopping time t, while in the variational
setting we have to choose a proper fidelity parameter λ.

PDE Regularization of Matrix Valued Images
So far in this thesis, we have considered methods for scalar valued images, i.e.
grayscale images. Blomgren and Chan among others have developed total varia-
tion based methods for vector valued images[68, 9] . When generalizing methods
for grayscale images to color images, the simplest approach is to employ scalar
methods to each channel independently. Blomgren and Chan solve a coupled set
of three PDEs for regularization of color images via TV flow [9]. They show that
this is a better approach than solving a set of three uncoupled PDEs. The reason is
that a coupling of the channels is needed if the PDE flow is supposed to preserve
edge information in the regularized color image. They observe that if the ROF
model is used on each channel individually, i.e.

∂ui

∂t
= ∇ ·

(
∇ui

|∇ui|

)
− λ(ui − fi) i = 1, 2, 3, (1.48)

we get nonappealing results. This is because the three image channels are regular-
ized in the same fashion, using the same λ in each channel, even if the intensity of
the different channels could differ substantially. To overcome this problem they
incorporate information from all channels into the flow of each individual channel
by introducing the weighting factor

wj =
TV[uj]√∑3
i=1 (TV[ui])

2
, j = 1, 2, 3, (1.49)

and solve the set of modified equations

∂uj

∂t
= wj∇ ·

(
∇uj

|∇uj|

)
− λ(uj − fj), in Ω× (0,∞)

uj = fj in Ω× {0}
∂uj

∂n
= 0 on ∂Ω× (0,∞),

for j = 1, 2, 3. The steadystate solution to this system of equations corresponds
to the minimization problem

min
u


√√√√ 3∑

j=1

TV[uj]2 +
λ

2

3∑
j=1

||uj − fj||22

 . (1.50)
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As noted by Blomgren and Chan, the weighting term wj in each channel uj is
equivalent to the mapping

λi ← λ

√∑3
i=1 (TV[ui])

2

TV[ui]
. (1.51)

Using the model Blomgren-Chan model, a channel with a high total variation
norm is stronger regularized than a channel with low total variation norm, which
is quite intuitively correct. In paper D we make a natural extension of the Blom-
gren Chan model to yield a regularization method for matrix valued images. Our
extension has two essential ingredients; the information flow between the differ-
ent imaging channels is ensured by the Blomgren-Chan coupling and the positive
definiteness of the diffusion matrix D is ensured via the implicit representation
D = LLT , where L is a lower triangular matrix.

Recall that the Frobenius norm of a matrix A ∈ RM×N is defined by

‖A‖F =

√√√√ M∑
i=1

N∑
j=1

|aij|2. (1.52)

Inspired by the Blomgren Chan model, we use this norm as a model for a corre-
sponding norm in the total variation setting by defining the total variation norm of
a M ×M matrix valued function D as

TV(D) =

√√√√ M∑
i=1

M∑
j=1

(TV[dij])
2. (1.53)

Using this definition, we formulate a minimization problem for matrix valued
functions that is equivalent to the vector valued minimization problem of Blom-
gren and Chan

min
dij

{
TV(D) +

λ

2

∑
ij

||dij − fij||22

}
(1.54)

We see that this formulation reduces to the Blomgren Chan model if D is inter-
changed with a 3 × 1 vector function and to the ROF model if D is interchanged
with a scalar function. From a physical modelling viewpoint, the matrix D is re-
quired to be symmetric and positive definite, at least if the model is supposed to be
used for diffusion tensor regularization. We go into details on diffusion tensor im-
ages later in this text. To ensure positive definiteness and also symmetry, we have
chosen to represent the tensor implicitly on the form of a Cholesky factorization

D = LLT . (1.55)
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Instead of working directly with the tensor elementsDij , we work with the factors
Lij . The Cholesky factorization ensures that the matrix D is both symmetric and
positive definite. Even though we work implicitly on the factors Lij , we minimize
the functional of equation (3.15), which depends on the full matrixD, not only the
factor L. This fully justifies the term regularization of matrix valued data. This
is in contrast to the work of Wang and coauthors [86]. Instead of regularizing the
matrixD they regularize the Cholesky factor L. It is more natural to regularize the
whole matrix D. However, when we introduce the LLT factorization, we cannot
prove that the functional is convex, or even quasi-convex. But from numerical ex-
periments, we observe that our formulation for all practical purposes converges to
the same minimum with different (in fact completely random) initial conditions.
Thus it seems like our formulation is at least quasi-convex. Another important dif-
ference between our proposed model and the model by Wang and coauthors is that
we solve a coupled set of PDEs, while they solve for each channel individually. In
Paper D we show by numerical experiments that this in fact makes a difference.

1.3 Inverse Scale Space Formulation

During the last couple of years, attention has been drawn to inverse scale space
methods, which might be interpreted as a hybrid between scale space methods and
regularization methods. Consider the scale space flow depicted in the diagram in
Figure 1.1. Initially the data f contains information at all scales, and u becomes
increasingly regular with time. If no stopping criteria is imposed on the solution,
u will converge to mean(f) at every point in the imaging domain. Thus in scale
space modelling, information is lost as time is increased. This was illustrated for
two different scale spaces in Figure 1.1. In inverse scale space modeling the flow
is in the opposite direction, as shown in Figure 1.2.

From the initial condition u = mean(f), information of decreasing scale is
added to u as time evolves. Thus in inverse scale space modeling, information is
gained as time evolves. The inverse scale space methods have not been as thor-
oughly studied as forward scale space methods. The first attempts to construct
inverse scale space methods for image processing purposes was done by Scherzer
and Groetch in 2001 [69]. In their work, they show similarities between scale
space modeling and regularization of ill-posed inverse problems. The method-
ology of inverse scale space methods is related to regularization methods for ill-
posed inverse problems, in particular to Tikhonov regularization [80, 30, 85]. For
a detailed description of the field of regularization of inverse problems, we refer
the reader to the work of Per Christian Hansen[30], and the book of Curtis R.
Vogel [85].

In 2003, Tasdizen and coauthors introduced a novel techique for image
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: We here show how the relaxed inverse scale space flow forms a series
of coarse to fine approximations (a)-(e) to the noisy input image f (lower right
corner).

processing, where they smooth the field of the unit normals of the image. Af-
terwards they construct new surface based on the smoothed normals [78]. This
idea was further developed by Lysaker, Osher and Tai [44]. Osher and coauthors
maturized the ideas from these two papers. They developed the so-called iterative
refinement technique for image regularization [59]. This is closely related to in-
verse scale space methods. Burger, Osher and others studied inverse scale space
methods in the papers [12]. They study the flow given by

∂tp = −∂uF (f, u) p ∈ ∂uR(u), (1.56)

where F is a fidelity functional, R is a regularization functional and ∂uR(u) de-
notes an element of the subgradient of R,

∂uR(u) = {p ∈ BV (Ω)∗|R(v) ≥ R(u) + 〈p, v − u〉,∀v ∈ BV (Ω) , (1.57)

and ∂uF (f, u) denotes an element of the subgradient of F

∂uF (u) =
{
q ∈ L2(Ω)|F (v, f) ≥ F (u, f) + 〈q, v − u〉,∀v ∈ L2(Ω) .(1.58)

Here we have used the notation BV (Ω)∗ to denote the dual space of BV (Ω),
and 〈·, ·〉 denotes the L2 innerproduct. Note that for differentiable operators the
subgradient becomes the usual derivative.
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However, since this equation is a flow in p, and the relation between p and u
is not explicitly given, it is not straight forward to solve this equation in practice.
In Paper C, we study properties of a numerical tractable implementation of a PDE
inverse scale space method, which approximates the inverse scale space flow. This
flow was proposed by Burger et.al. They proved that the flow is convergent for
linear regularization operators [11]. In our work, we follow this up and prove
that the relaxed flow is convergent for a class of nonlinear convex regularization
operators that are used in practice.

1.4 Level Set Formulation

In 1987 Osher and Sethian introduced a new method for interface evolvement in
hyperbolic PDEs [61]. The method they invented is called the level set method,
and it has revolutionized the way interfaces are handled in image processing and
computer vision applications. Instead of representing a curve Γ by an explicit
parametrization, they embed the interface Γ into the zero-level of a continuous
higher dimensional function φ and thus made a very flexible framework for in-
terface evolution. The concept of level set modelling has since the introduction
in 1987 become an important tool in many branches of applied mathematics and
computer science [71, 60]. The method is in particular widely used in imaging
and vision science, see for example the book by Osher and Fedkiw, the book by
Sethian or the book by Malladi and others [60, 71, 45].

In a series of papers, two of which appear in this thesis as Papers A and B,
we have developed and analyzed new methods related to the level set method
[40, 41, 42, 43]. We note that even though we refer to these methods as level set
methods, we could equally well have called them labeling methods, as was men-
tioned by a reviewer of one of our papers. The labeling is however variational in
the sense that we control the regularity of the resulting functions. Before we go
into details on this model, we give an introduction to standard level set modeling,
in particular level set image segmentation. Image segmentation is the task of di-
viding the set of pixels of the image into a set of classes or domains, where each
distinct class corresponds to a specific property in the image. Thus we might con-
sider segmentation as a higher level task than noise removal. We have considered
an image segmentation model where the classes are based on the intensity values
in the image. In our image segmentation algorithms, the aim is to label each pixel
in the imaging domain, and identify the interfaces between the different classes.
This is however a bit in contrast to shape driven segmentation where shapes are
more prominent features than intensity values.

The level set method can be used to implicitly represent curves Γ separating
the image into a set of distinct regions [16, 83, 67, 3]. Instead of working with a
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Figure 1.3: Levelset motion by mean curvature (MMC) flow. The leftmost col-
umn shows the configuration of the zero level of φ(x, 0) and the full surface
φ(x, 0). The two next columns shows corresponding configurations φ(x, 0.5) and
φ(x, 1.5). Eventually the circle will disappear in a point. The flow is simulated by
the Matlab level set toolbox developed by Ian Mitchell [46, 79].

parameterization of the curves, the zero level of φ implicitly represents the curves.
This is the rational idea of the level set method [61]. The curves are moved by
solving a PDE in φ. Which PDE that is solved depends on the application at hand.
The implicit representation of the curves makes it possible to deal with topological
changes like merging and splitting without any involvement of the difficulties that
may occur when representing the curves by an explicit parameterization.

Osher and Sethian derived fundamental equations for interface movement in
their 1987 paper [61]. One of these equations describe motion by mean curvature
(MMC). In that case, the equation in φ(x, t) reads

∂

∂t
φ(x, t)− |∇φ(x, t)|

(
∇φ(x, t)

|∇φ(x, t)|

)
= 0, (1.59)

φ(x, 0) = φ0, (1.60)

with appropriate boundary conditions. In Figure 1.3 we illustrate how the zero-
level of a function φ(x, t) develops under the MMC-flow. This flow is fascinating
in the sense that every initial curve will shrink to one or more circles, each that
will eventually disappear in a point.

In level set modeling, it is customary to require the level set function to be
a distance function, to avoid the function to become to flat or steep. One reason
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is that a distance function is easier to handle numerically than a more general
function. Another reason is that when the level set function is required to be a
distance function the involved equations can be simplified [60]. The solution of
the Eikonal equation

|∇φ| = 1 (1.61)

is a distance function. In practice, we can solve the equation

∂

∂t
φ(x, t)− sgn(φ(x, t))(1− |∇φ(x, t)|) = 0, (1.62)

φ(x, 0) = φ0 (1.63)

with appropriate boundary conditions to steady state [60]. Note the similarity
with the variational regularization formulation introduced earlier in this thesis;
an equation of parabolic character is solved to steady-state in order to find the
solution to an elliptic equation. Solving equation (1.62) to steady state is called
redistancing. It is done at every few iteration of the equation for the evolvement
of the level set function. We note that the redistancing procedure does not change
the zero level of φ. It merely replaces the function φ0 by a distance function φ
which has the same zero level as φ0.

Chan and Vese proposed to use the level set model for image segmentation
purposes in a variational setting [16, 83]. More precisely they minimize a binary
version of the Mumford-Shah functional which in a simplified form reads

FMS(u,Γ) =

∫
Ω

|u− u0|2dx+ µ|Γ|+ ν

∫
Ω\Γ
|∇u|2dx (1.64)

with the level set function φ representing the evolution of the boundary curve Γ
[51]. In the functional (1.64) |Γ| represents the length of the boundary surround-
ing the object, while µ and ν are scalar weighting parameters. This leads to a
functional in φ that is minimized by solving the corresponding Euler-Lagrange
equation. For a two phase segmentation (object and background), the idea is that
inside the object, φ should be positive, and outside the object φ should be nega-
tive. Thus the zero level of φ represents the interface between the object and the
background. From an initial configuration φ0, the goal is to end up with a function
φ such that the zero level of φ coincides with the interface between the object and
the background. Chan and Vese formulated the following functional

F (c1, c2,Γ) = µ · Length(Γ) + ν · Area(inside(C))

+

∫
insideΓ
|u0 − c1|2dx+

∫
outsideΓ
|u0 − c2|2dx, (1.65)
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where c1 = mean(u0) inside Γ and c2 = mean(u0) outside Γ. The edge Γ is
represented by the zero level of the level set function φ. Expressed in terms of φ
the functional (1.65) reads

F (c1, c2, φ) = µ ·
∫

Ω

δ(φ)|∇φ|dx+ ν ·
∫

Ω

H(φ)dx

+

∫
Ω

|u0 − c1|2H(φ)dx+

∫
Ω

|u0 − c2|2(1−H(φ))dx,(1.66)

where H(φ) denotes the Heaviside function

H(φ) =

{
1, φ > 0,

0, φ ≤ 0,
(1.67)

and δ(φ) denotes the delta function

δ(φ) =

{
1, φ = 0,

0 elsewhere.
(1.68)

This functional is minimized using a gradient descent method on φ. Using the
shorthand notation from the previous sections, this can be expressed by the equa-
tion

φt = −F ′(φ), (1.69)

or more specifically as

φt = δε(φ)

(
µ∇ ·

(
∇φ
|∇φ|

)
− ν − (u0 − c1)2 + (u0 − c2)2

)
,(1.70)

φ(x, 0) = φ0, (1.71)

where δε(φ) denotes a smooth approximation to δ(φ). In order to segment an
image into more than two different classes, a number of level set functions {φi}Ni=1

can be used, with N = log2(n), where n is the number of classes. The model of
Chan and Vese is successfully used in many applications.

Inspired by the work of Chan and Vese [16, 83] and Chan and Tai [21, 75, 32]
we have proposed variants of the level set framework for representing domains and
their interfaces [40, 41, 42, 43]. We have named these methods piecewise constant
level set methods, to reflect the fact that at convergence, the level set function is
piecewise constant. In the above mentioned papers, two of which appears in the
second part of this thesis, we use the proposed methods for image segmentation
purposes. As usual in the work in this thesis, we employ standard steepest descent
methods. Tai, Christiansen and others have further developed these methods with
respect to computational efficiency [76, 22, 77], and they have also generalized
the methods from 2D to 3D. Tai, Nielsen, Li, Yao and others have extended the
methods in other directions; to interface problems related to characterization of
oil reservoirs [53, 57, 54, 56, 55, 39, 38].
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φ1 > 0

φ2 < 0

φ1 > 0

φ2 > 0

φ1 < 0

φ2 > 0

φ1 < 0 φ2 < 0

Figure 1.4: The Chan-Vese model can be extended to n phase segmentation by
the introduction of log2(n) level set functions. Here two level set functions are
used for four phase segmentation.



Chapter 2

Diffusion Tensor Imaging

Matrix valued data arise in many applications, ranging from fluid dynamics, med-
ical imaging and modeling of black holes in astrophysics [91]. In two of the pa-
pers in the second part of this thesis, we study regularization methods for matrix
valued images, in particular from medical images of the human brain, via Diffu-
sion Tensor Magnetic Resonance Imaging (DTMRI). In this chapter we give an
introduction to important concepts of diffusion tensor imaging.

During the last 15 years, DTMRI has become a popular MR modality used
both clinically and in research. The main advantage of DTMRI compared to other
imaging modalities is the ability to measure direction specific (anisotropic) dif-
fusion of water molecules in living tissue, e.g a human brain. Before we go into
the details of DTMRI we give a brief overview of the basic principles of magnetic
resonance imaging.

2.1 Magnetic Resonance Imaging

We will now give an overview of some of the concepts behind Magnetic Res-
onance Imaging (MRI) and DTMRI. For a more detailed description, we re-
fer the reader to the papers of Mori, Barker et.al, Bammer and Natt and Frahm
[47, 48, 4, 52].

Nuclear Magnetic Resonance (NMR) was discovered independently in 1946
by Edmund Purcell and Felix Block [8, 64]. For their discoveries they received
the Nobel Price in 1952. In 1973 the first Magnetic Resonance Image (MRI) was
acquired by Paul Lauterbur [37]. Lauterbur was together with Peter Mansfield
rewarded the Nobel Price in 2003.

A nucleon with an odd nucleon number (number of protons + number of neu-
trons) spins around its own axis. The direction of the axis of rotation is ran-
domly distributed in the absence of an external magnetic field. In the Magnetic
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Resonance (MR) scanner a strong uniform magnetic field is applied to the nuclei,
and the rotation axis of the nuclei gets aligned parallel or antiparallel to the mag-
netic field. Then a brief electromagnetic signal with the right resonance frequency
interacts with the spin, and flips the proton into the opposite direction. When the
electromagnetic signal disappear, the protons gradually align with the uniform
magnetic field again. During the time of realignment to the uniform field, the nu-
cleons emit energy, which can be measured by a receiver in the MR machine. The
realignment time differs among the different tissue classes of the human brain.

In MRI the signal is measured in the Fourier domain. The MRI acquisition
can be understood as a sampling of the discrete Fourier transform of the MRI
signal. Thus the signal must be transformed to the spatial domain by the inverse
discrete Fourier transform before the data can be interpreted a human readable
image. Depending on the application at hand, the data can be sampled in more or
less time efficient ways. We will not go into details on how the data is sampled
and how the data is transformed from the Fourier domain to the spatial domain.

2.2 Diffusion Tensor Imaging

The principles behind diffusion NMR were discovered as early as in 1965 by
Stejskal and Tanner [73, 72]. Note that this is eight years before the introduction
of MRI. Diffusion tensor imaging was introduced as late as 1994 by Basser et. al
[5], although diffusivity of water at microscopic length scales was measured by
LeBihan et. al in 1985 [23].

Particles suspended in a fluid are not stationary objects. They oscillate and
constantly collide with other particles, and with the molecules of the fluid. This
phenomena is called Brownian motions, and it has a completely random nature.
Depending on properties of the matter in which the particles are suspended, the
diffusion can be isotropic (same in all directions) or anisotropic. If we suspend
a droplet of ink at a sheet of cleenex paper, the colored molecules will diffuse
isotopically, described by the equation

∂C

∂t
= d∇2C, (2.1)

where C is the concentration of ink, and d is a diffusion constant (a positive
scalar). Recall that this equation is similar to the heat equation with temperature
interchanged with concentration. In DTI, what we measure is the self-diffusion of
water. This can be modelled by a probability distribution P (x, t), where P (x, t)
describes the probability of finding a particle in a certain position at a particular
time, given the initial distribution of particles P (x, 0). In an isotropic medium the
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Figure 2.1: The axons are the messengers of the electrical signals between nerve
cells in the body. They are surrounded by an insulating shield of myelin. The
illustration is drawn by Heidi Lie.

equation which describes the diffusion in terms of the probability function is

∂P (x, t)

∂t
= d∇2P (x, t). (2.2)

We see that this is the same as equation (2.1). The solution to this equation is
given by the Gaussian distribution

P (x, t) =
1√
4dπt

exp
−‖x‖2

4dt . (2.3)

We can roughly divide the tissue of the human brain into three classes, white
matter, gray matter and cebro spinal fluid. In gray matter and cebro spinal fluid
water molecules can move more or less freely in all directions. Thus the diffusion
is isotropic in these tissue classes. In white matter, the movement of the wa-
ter molecules is more restricted. Along nerve fibers (axons) the water can move
relatively freely. But the axons are surrounded by a shield of myelin (a lipid),
which the molecules can not easily penetrate. Furthermore, the axons are bundled
together. Thus the diffusion of water molecules becomes anisotropic in white mat-
ter. For illustrations of myelinated axons and bundles of them, see Figures 2.1 and
2.2.

In the highly structured tissue, water molecules can diffuse more freely along
certain directions than others. This means that the diffusion is anisotropic, and we
can describe it by an equation on the form

∂P (x, t)

∂t
= ∇ · (D∇P (x, t)), (2.4)
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Figure 2.2: The upper figure shows one particular axon with a shield of myelin,
which is damaged at one place. The lower leftmost figure shows a bundle of
myelinated axons. The lower rightmost figure shows a drawing of a histological
slide from the crossection of a bundle of axons. The illustrations are drawn by
Heidi Lie.

where D ∈ R3×3 is the so-called diffusion tensor. The matrix D contains struc-
tural information of the anisotropy of the average diffusion of water. This matrix
varies from point to point in the brain. By Diffusion Tensor Imaging (DTI) we
measure the local isotropy/anisotropy of the self diffusion of water inside the var-
ious types of tissue. We can make pointwise estimates of the matrix D from a
series of direction sensitive MR acquisitions. In the MR scanner we do as usual
have a strong stationary field B. The axis of the spin of water molecules is par-
allel to the stationary field B. As in regular MR, an electromagnetic field pulse
is applied to the molecules. The molecules emit signal as they realign with the
field. Then a new electromagnetic field pulse flipping the molecules in the op-
posite direction is applied. The molecules will again emit signal as they realign
with the magnetic field. If the molecules were stationary objects, i.e. if no Brown-
ian movements took place, then the measurement of the MR signal after the two
pulses would give similar results. But due to the Brownian motion (self diffusion)
of the molecules in the period between the two MR pulses, a signal loss can be
measured. By measuring this signal loss in a series of different directions, we can
get information about the isotropy/anisotropy of the diffusion of water in tissue.
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Figure 2.3: An example of a visualization of a human brain using the fibertracking.
The data comes from a DTI scan with 25 diffusion directions. The fibertracking
was done with the software MedINRIA [26].

From the information of the properties of the diffusion we can construct diffu-
sivity maps which can be visualized directly or we can further use the information
to construct a model of the pathways in the human brain from the MR acquisi-
tions. This kind of reconstruction of pathways in tissue is called fiber tracking
[94, 95, 47]. Fiber tracking is in the literature used for tracking both nerve fibers
in white matter in the human brain and muscle fibers in the heart muscle. We show
a fiber tracking visualization of the nerve fibers in a human brain in Figure 2.3.

To make a good model of e.g. a brain by fiber tracking, the DTMRI measure-
ments must be of high quality. The main focus of the study of diffusion tensor
images in this thesis is on how we can construct good regularization methods for
diffusion tensor images. We have mainly focused on PDE models for regulariza-
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Figure 2.4: The action of any matrix A on the unit sphere is a hyper ellipsis. We
write this as A = UΣV ∗ [82].

tion of diffusion tensor images (Paper D), but recently we have also studied how
we can construct transform based methods for regularization of diffusion tensor
images (Paper E).

2.3 Diffusion Tensor Model

The main ingredient of the diffusion tensor model is the symmetric positive
definite (SPD) matrixD ∈ R3×3. This matrix models the self-diffusion coefficient
of water-molecules in each voxel in the imaging domain. We will now motivate
how we may interpret the diffusion matrix as a hyper ellipsis in R3. Every matrix
A ∈ CM×N can be decomposed into the factors

A = UΣV ∗, (2.5)

where U ∈ CM×M and V ∈ CN×N are unitary (orthogonal) matrices, and Σ ∈
RM×N is a nonnegative diagonal matrix

Σ = diag(σ1, σ2, · · · , σn), σ1 ≥ σ2 ≥, · · · ,≥ σn > 0. (2.6)

We denote the complex conjugate by ∗. The factorization (2.5) is called the sin-
gular value decomposition (SVD), and is one of the most fundamental matrix
decompositions. The singular value decomposition motivates the following inter-
pretation of a matrix; Any matrix transforms the unit sphere to an hyper ellipsis
[82]. By a hyper ellipsis we mean a higher dimensional generalization of the con-
cept of an ellipsis. A visualization of such a transformation is shown in Figure 2.4
for a matrix A ∈ R2×2. Another important matrix factorization, which we at least
in the setting of diffusion tensor modeling can look at as a special case of the
SVD, is the eigenvalue decomposition of a matrix A ∈ CM×M .

A = XΛX−1 (2.7)
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where Λ ∈ CM is the diagonal matrix containing the eigenvalues of A and X ∈
RM×M .x The columns xi of X are called eigenvectors of A. The eigenvalues and
eigenvectors obey the following equations

Axi = λixi i = 1, 2, · · · ,M. (2.8)

This decomposition is however only applicable to quadratic ( A ∈ CM×M ) matri-
ces of full rank. We see that if the columns of X are orthogonal to each other, we
get a decomposition which is similar to the singular value decomposition.

In the case where A = A∗, that is when A is symmetric, the singular values
of A are the absolute values of the eigenvalues of A. In addition, when all the
eigenvalues are positive, the eigenvalue decomposition equals the singular value
decomposition, modulo permutations of the eigenvectors/eigenvalues. In the dif-
fusion tensor model, we deal with the special case of symmetric matrices with
positive eigenvalues. Then the hyper ellipsis is called the diffusion ellipsoid. We
will see that from a physical perspective, symmetry and positivity are crucial prop-
erties of an adequate diffusion tensor model.

The physical interpretation of the diffusion ellipsoid is that the length of each
semi axis of the ellipsoid determines the ability of water molecules to diffuse
along the direction of each particular semi axis. In a completely isotropic region,
the hyper ellipsis is simply a scaled unit sphere. In anisotropic regions the hyper
ellipsis is a deformed sphere. If one eigenvalue is much larger than the other
two, the diffusion ellipsoid is cigar shaped. In this case the prominent part of
the diffusion is along the direction of the eigenvector corresponding to the largest
eigenvalue. If the two largest eigenvalues are of equal size, and the third is much
smaller than the others, then the diffusion ellipsoid is disc-shaped. In this case
the prominent part of the diffusion is restricted to a plane spanned by the two
eigenvectors corresponding to the two largest eigenvalues. The sphere, cigar, and
the disc comprises the three most characteristic ellipsoid shapes. In Figure 2.5 we
show ellipsoids which are members of these three main categories.

Note that the diffusion tensor model as described in this thesis can be extended
to more complex models, where not only one diffusion tensor is estimated for each
voxel in the imaging domain. The voxels are macroscopic while the underlying
diffusion process happens at a sub-voxel level. We are therefore only able to
measure the average diffusion of molecules in each voxel. If two bundles of nerve
fibers are crossing within a single voxel, the one-tensor model will not be able to
correctly model diffusion in this voxel. In such voxels multi-tensor models might
better characterize the diffusion, see for example the paper by Bergmann et. al [6].
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Figure 2.5: Three different types of diffusion ellipsoids, corresponding to
spherical- (a), planar- (b) and cigar shaped (c) diffusion.

2.4 Diffusion Tensor Estimation

We have already mentioned that the diffusion tensor is estimated from a series of
MR acquisitions. We explain this process in detail. We now have a series of K
gradient weighted MR measurements {Sk}Kk=1 : R3 → R, with the corresponding
directions xk ∈ R3, k = 1, 2 · · · , K. In addition we have the nonweighted image
S0 : R3 → R. All the images are sampled in the Fourier domain, transformed
to the spatial domain on a quadratic mesh in 2D, and stacked together to a 3D
image. However, to estimate the tensor we work with one voxel at the time. The
Stejskal-Tanner equation

Sk = S0e
−bgT Dg (2.9)

relates the diffusion tensor D to the measurements [73, 72]. Note the similarity
with equation (2.3). The scalar b is a machine parameter dependent on the strength
of the magnetic field, the acquisition time and other MR parameters [81]. Since
the only unknown in (2.9) is the tensor, and this tensor has six degrees of freedom,
at least six measurements Sk must be acquired in addition to the nonweighted im-
age. Often the number of direction weighted images is increased in order to make
better estimates of the diffusion tensor. It is customary to use 25 or even 50 gra-
dient directions. Another way to increase the accuracy of the estimated tensor is
by performing a large series of repeated measurements (NEX) along a relatively
low number of gradient directions. Of course, the acquisition time does increase
with both the number of gradient directions and the number of repeated measure-
ments. However, with increased measurement time follows patient movement and
increased cost per patient. In Paper D we investigate the possibility of decreasing
the number of repeated measurements and instead post-process the data.
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The estimation of the tensor can for example be done by a linear least squares
approach. Let G be the K × 3 matrix with rows gk. From G we derive the matrix

Ĝ =
(
g2
1 2g1g2 2g1g3 g2

2 2g2g3 g2
3

)
. (2.10)

A specific choice of G gives

G =


1 0 1
−1 0 1
0 1 1
0 1 −1
1 1 0
−1 1 0

 Ĝ =


1 0 2 0 0 1
1 0 −2 0 0 1
0 0 0 1 2 1
0 0 0 1 −2 1
1 2 0 1 0 0
1 −2 0 1 0 0

 . (2.11)

By minimizing the functional

min
d
‖Ĝd− f‖, (2.12)

where d is the vector containing the six unique elements of the tensor D, and f is
the vector with elements fk = ln(S0)−ln(Sk)

b
, we make an estimate of the diffusion

tensor. This problem has the formal solution

d = (ĜT Ĝ)−1ĜTf. (2.13)

In the case where G has more than six rows, Ĝ will also have more than six rows,
and the inverse must be interpreted as a pseudo-inverse. We see that in this case,
the solution is a least squares solution to the tensor estimation problem.

In the numerical experiments in this thesis we use two different imaging pro-
tocols, with six and 25 gradient directions respectively.

2.5 A Handful of Anisotropy Measures
We have now estimated the diffusion tensor. What we need next is a way to
measure the anisotropy of diffusion tensors. A large set of anisotropic measures
are used in the literature [14, 92, 31]. Most of these measures exclusively depend
on the eigenvalues of the diffusion tensor, and hence they are rotational invariant.
We will show a few of the most commonly used measures of anisotropy [92, 31].
In each voxel of the imaging domain, we can define the mean diffusivity

MD =
tr(D)

3
. (2.14)

This measure differentiates between isotropic and anisotropic tissue. But since it
does not contain any information about the relative size of the eigenvalues of D,



36 Diffusion Tensor Imaging

some information is thrown away if we use this measure. Better measures which
takes into account the relative size of the eigenvalues in fact exists. We assume
that the eigenvalues are sorted in decreasing order, i.e. λ1 ≥ λ2 ≥ λ3. The relative
anisotropy, which is defined by

RA =

√
1

6

(λ̄− λ1)2 + (λ̄− λ2)2 + (λ̄− λ3)2

λ1 + λ2 + λ3

. (2.15)

is one such measure. Another commonly used anisotropy measure is the fractional
anisotropy defined by

FA =

√
3

2

(λ̄− λ1)2 + (λ̄− λ2)2 + (λ̄− λ3)2

λ2
1 + λ2

2 + λ2
3

(2.16)

where λ̄ = (λ1 + λ2 + λ3)/3. Both the fractional anisotropy and the relative
anisotropy are used in practical applications. However, it seems like the fractional
anisotropy is the measure which is most robust to noise in the measurements [31].
The scaling factors are chosen such that the range of both RA and FA is [0, 1].

The anisotropy of the diffusion tensor can also conveniently be expressed via
barycentric coordinates, as done by Westin et. al [92, 36]. They use the three
diffusivity parameters

cl =
λ1 − λ2

λ1 + λ2 + λ3

, cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3

. (2.17)

By construction we always have

cl + cp + cs = 1. (2.18)

We observe that in regions of completely isotropic diffusion, the index cs = 1, and
cp = cl = 0. In regions where one single diffusion direction is dominant we have
cl = 1 and cp = cs = 0. In the third extreme case the diffusion is restricted to a
plane spanned by the eigenvectors corresponding to the two dominant eigenvalues.
Then cp = 1 and cl = cs = 0. We can interpret the triplet (cl, cp, cs) as coordinates
in a barycentric coordinate system, as shown in Figure 2.6.

We note that the scalar fractional anisotropy (FA) measure is not as precisely
determining the structure of the tensor as the barycentric triplet. But in practice,
we are often merely looking for a measure of anisotropy rather than a detailed
description of the diffusion tensor. In clinical studies, the fractional anisotropy
seems to be the prominent measure of anisotropy. It is commonly used together
with the field of eigenvectors corresponding to the largest eigenvalues in order to
make RGB direction encoding visualizations of 3D data [62]. This has become
a standard way for visualization of anisotropy in diffusion tensor imaging. The
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cl
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cp

Figure 2.6: A barycentric coordinate system can be used to classify diffusion
matrices according to anisotropy. The figure is generated by the software package
teem written by Gordon Kindlmann [35, 36].

Figure 2.7: An example of a slice of direction encoded DTI. In the leftmost image
we show raw data from four measurements and in the rightmost we show the same
data regularized by the total variation regularization method developed in Paper D
in the second part of this thesis.

strength of the technique is that it displays the fractional anisotropy and direc-
tional information about the diffusion at the same time. Another way to visualize
diffusion tensor fields is by volume rendering of the diffusion tensor as ellipsoids
or more general by volume rendering of glyphs [36, 35].





Chapter 3

Summaries of Papers

We have arranged the papers chronologically, based on when the work on the
papers was done. The first three papers are already published in journals or con-
ference proceedings. Complete bibliographic details are written on the cover page
of each paper. We will now give a short summary of each paper.
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Summary of Paper A

A Binary Level Set Model and some Applications
to Mumford-Shah Image Segmentation

Johan Lie, Marius Lysaker and Xue-Cheng Tai

In this paper we develop a new method for representation of domains in for
image segmentation applications. As illustrated in the Figure 1.4 and explained in
Chapter 1, it is possible to represent a set of domains in an image by the sign of
level set functions. At most log2(N) level set functions are required to represent
N domains. It is however possible to represent the domains in other related ways.
If we assume that we have an object and the background, we instead represent this
by a function which takes the value φ = 1 inside the object and the value φ = −1
at the background. Then we can write an equation for an image consisting of the
object and the background as

u =
c1
2

(φ+ 1)− c2
2

(φ− 1). (3.1)

From this formulation, it is clear that the interface between the object and the
background is implicitly defined as points where the function φ has jumps.

This approach can be generalized in the following way. Assume that the im-
age consists of N different regions {Ωi}Ni=1. Then we construct a set of N basis
functions {ψi}Ni=1 such that

ψi(x) =

{
1 : x ∈ Ωi ⊂ Ω,

0 : x ∈ Ω \ Ωi.
(3.2)

Using this representation, we may write a function u with N different constant
levels as the sum

u =
n∑

i=1

ciψi. (3.3)

We now have a way to represent a piecewise constant image u, which we may
use for image segmentation purposes by solving a minimization problem. This
problem is related to the problem (1.66) in the Chan-Vese method. However, at
convergence we require the level set function to have a piecewise constant nature.
The basis functions {ψi}Ni=1 corresponding to the different regions {Ωi}Ni=1 in the
image are at convergence only allowed to take the values 1 or 0. Therefore we
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need to solve a constrained variational problem. We do this by an augmented
Lagrangian formulation [7, 58]. Define the segmentation functional

F (φ, c) =
1

2

∫
Ω

|u− u0|2dx+ β

N∑
i=1

∫
Ω

|∇ψi|dx, (3.4)

and the set of constraintsK(ψi) such thatK(ψi) = 0 in Ωi for all i = 1, 2, · · · , N .
We want to solve the constrained problem

min
φ,c
{F (φ, c)} subject to K(ψi) = 0. (3.5)

The augmented Lagrangian functional which corresponds to the segmentation
functional F (c, φ) is

Lµ(φ, c, λ) = F (φ) +
N∑

i=1

∫
Ω

λiKidx+
µ

2

N∑
i=1

K2
i dx. (3.6)

Here µ is a scalar, c is a vector of N components and λ is a function of the
same dimension as φ. Note that the segmentation functional (3.4) have similarities
with the functional in the Chan-Vese functional (1.66). The first integral in the
functional (3.4) is a fidelity functional, while the second term is a regularization
functional which measures the total variation of each basis function. By recalling
the properties of the total variation regularizer, it is clear that the regularizer in
some sense measures the perimeter of the basis functions.

Following the standard augmented Lagrangian minimization approach [7, 58],
we minimize the functional (3.4) by searching for a saddle point of the augmented
functional (3.6), i.e. a point where

∂Lµ(φ, c, λ)

∂φ
= 0,

∂Lµ(φ, c, λ)

∂λ
= 0,

∂Lµ(φ, c, λ)

∂c
= 0. (3.7)

This means that to find a minimum of the segmentation functional (3.4) we ba-
sically need to solve a set of three coupled equations to steady state. However,
because of the sometimes severe illposedness of the problem, care must be taken
in the optimization process.

In the paper we show numerical experiments on synthetical and semi-realistic
images.
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Summary of Paper B
Piecewise Constant Level Set Methods and

Image Segmentation

Johan Lie, Marius Lysaker and Xue-Cheng Tai

In this paper we unify the methods from Paper A and another related paper
[43] to a more general framework for image segmentation. We give an overview
of the methods developed in Paper A and [43]. What is new compared to Paper
A is that we do not specify a particular way how to generate the basis functions,
but rather try to focus on the basic framework of piecewise constant level set
modeling.
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Summary of Paper C
Inverse Scale Space Methods for

Nonlinear Regularization

Johan Lie and Jan M. Nordbotten

Burger, Osher, Gilboa and Xu introduced a computationally effective way how
to compute an inverse scale space flow [11, 12]. This flow is called the relaxed
inverse scale space flow. It is formulated as a modification of a standard regular-
ization flow, by

ut = −p(u) + λ(u− f + v) (3.8)
vt = α(f − u), (3.9)

u(x, 0) = mean(u), (3.10)
v(x, 0) = 0, (3.11)

where λ and α are positive scalars, and v is a function of the same dimensions
as u. The function p(u) is the derivative of a regularization functional. If we set
α > 0, it is plausible to believe that the second equation will drag the solution
from the initial state u(x, 0) = 0 towards the forcing data f . And since the first
equation is merely a modification of a standard regularization flow, we might also
believe that the flow of u will in some sense smooth this flow. This is in fact what
happens in practice.

By inspection, we see that the steady state solution (ut = vt = 0) of this flow
must obey

u = f, (3.12)

v =
p(f)

λ
. (3.13)

In the paper we discuss properties of this relaxed scale space flow, and introduce a
theoretical foundation for the nonlinear inverse scale space flow as a regularization
flow. In particular, we introduce an energy e(t) measuring how far we are from
the steady state solution.

We show that the time derivative of the energy is always negative, hence

e(t) < e(0) ∀ t. (3.14)

Using this property of the energy , we prove that the relaxed inverse scale space
flow will always converge to the steady state solution (3.12) as long as the regu-
larization functional corresponding to p(u) is convex.

We perform some numerical experiments in the paper.
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Summary of Paper D
Total Variation Regularization of

Matrix Valued Images

Oddvar Christiansen, Tin-Man Lee, Johan Lie,
Usha Sinha and Tony F. Chan

In the paper we develop a new regularization method for matrix valued im-
ages, in particular for diffusion tensor images of the human brain. We do this
by generalizing the model introduced by Blomgren and Chan for vector valued
images to matrix valued images [9].

By the model Blomgren-Chan model, a channel with a high total variation
norm is stronger regularized than a channel with low total variation norm. Our
extension has two essential ingredients; the information flow between the different
imaging channels is ensured by the Blomgren-Chan coupling and the positive
definiteness of the diffusion matrix D is ensured via the implicit representation
D = LLT , where L is a lower triangular matrix. Instead of working directly with
the tensor elements Dij , we work with the factors Lij . The Cholesky factorization
ensures that the matrix D is both symmetric and positive definite.

We formulate a minimization problem for matrix valued functions that is very
similar to the vector valued minimization problem of Blomgren and Chan

min
dij

{
TV(D) +

λ

2

∑
ij

||dij − fij||22

}
(3.15)

We perform numerical experiments on synthetic data and data from DTI ac-
quisitions from a human brain.
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Summary of Paper E
Shape Adaptive DCT for Denoising of

Tensor Valued Images

Ørjan Bergmann, Oddvar Christiansen,
Johan Lie and Arvid Lundervold

In the paper we generalize the so-called Shape Adaptive Discrete Cosine
Transform (SADCT) methods [27, 33] from 2D scalar valued images to 3d matrix
valued images.

In the SADCT methodology, a region Ωx is constructed around each point x
in the dataset. This region grows outwards from each data point x until the region
“collides” with an edge. Whether or not we have reached an edge is controlled
by a statistical criteria called the Intersection of Confidence Interval (ICI) criteria
[34]. The data inside each region Ω is used to construct estimates of the denoised
data.

We perform preliminary numerical experiments, and indicate that the SADCT
methodology is well suited for denoising of matrix valued data like diffusion ten-
sor images.





Chapter 4

Conclusions and Further Work

In this thesis we have touched upon mathematical problems in imaging science.
Our focus has mainly been PDE driven methods, and the application area has
mainly been medical imaging. We have tried to be open-minded with respect to
solution methodology/strategy.

We have developed a framework for segmentation of scalar images which can
be seen as a variant of the standard level set methods. The model has been studied
to some extent. The model has its own peculiarities, like illposedness. This makes
it a nontrivial task to solve the corresponding minimization problems. Work has
been done to speed up convergence of these methods, see for example the work
by Tai and others.

Furthermore, we have studied properties of relaxed inverse scale space meth-
ods, and established a proof that the flow proposed by Burger, Osher and cowork-
ers in fact behaves as intuitively expected. In the relaxed inverse scale space for-
mulation we use concepts from both scale space methods and the regularization
methods. It is clear that it should be possible to generalize the relaxed inverse
scale space methods also to matrix valued images. This has become clear after
we have been working on the regularization flow for matrix valued images. More
work must however be done in this direction.

Then we have developed a new mathematical model for regularization of ma-
trix valued images via total variation modeling. This model has been studied to
some detail. The model is a clean and clear generalization of the concept of total
variation regularization of matrix valued images. The results of the work seems
promising. We have in the work on total variation regularization shown that we
can decrease the number of required MR acquisitions by postprocessing of the
data. However, to really make the model practical, more research must be done
to speed up the computations of the solution. We do believe that it is possible
to use a dual formulation like the one Chambolle used for the scalar valued total
variation regularization problem [15].
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Last, we have generalized the SADCT methods from 2D scalar valued images
to 3D matrix valued images. As far as we know this is the first attempt to regu-
larize matrix valued data with SADCT methods. We find the results of this work
to be very promising. We observe that the methods give at least as good results as
the total variation regularization formulation. Concerning the SADCT methods it
is clear that these methods can be further developed with respect to computational
time. These methods are direct methods, i.e. not iterative methods. And in addi-
tion, the methods are quite local in nature. This makes it easy to paralleling the
methods; they are “embarrassingly parallelizable”. This would make the methods
extremely quick.

In all the papers related to PDE methods, we have used the method of steepest
descent for the solution of the minimization problems. It is clear that this is not an
optimal solution approach with respect to computational time. The piecewise con-
stant level set methods from paper A and B have already been further developed
by Tai, Christiansen and others to overcome the slow convergence behaviour. For
the regularization of matrix valued images by PDE methods, it would certainly be
very interesting to see if this could be done in the same way as Chambolle has
done for scalar valued images [15]. This is a very interesting topic for further
research.



Acronyms

PDE Partial Differential Equation

TV Total Variation

ROF Rudin, Osher and Fatemi Model for image denoising

PM Perona-Malik

FA fractional anisotropy

SPD symmetric positive definite

DTI Diffusion Tensor Imaging

DTMRI Diffusion Tensor Magnetic Resonance Imaging

MR Magnetic Resonance

MRI Magnetic Resonance Image

NMR Nuclear Magnetic Resonance
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