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Abstract— During the last ten years or so, diffusion tensor
imaging has been used in both research and clinical medical
applications. In order to construct the diffusion tensor images,
a large set of direction sensitive MRI acquisitions are required.
These acquisitions in general have a lower signal-to-noise ratio
than conventional MRI acquisitions. In this paper we discuss
computationally effective algorithms for noise removal for DTI
using the framework of shape-adaptive discrete cosine transform.

I. INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DTI) is an
important magnetic resonance imaging protocol used in both
research and in clinical applications. The DTI modality has
the advantage that highly structured tissue, for example the
nerve fibers in the human brain can be studied non invasively
[15], [25]. From a series (typically 6-50) of direction sensitive
MR acquisitions a 3 × 3 diffusion tensor can be estimated
for each voxel of the imaging domain. From these voxel-wise
diffusion tensors a number of interesting clinical quantities can
be estimated and used to investigate or differentiate between
normal and abnormal tissue, e.g. in Multiple Sclerosis or
Schizophrenia research [7], [8], [13].

However, it is a well-known fact that the MRI signal from
the scanner contains measurement noise which degrades the
images. The signal to noise ratio (SNR) in DTI is low com-
pared to standard MRI. This makes it important to construct
good models and methods for noise removal of diffusion tensor
data. Due to the huge amount of data, the methods should be
efficient with regards to computational time. In the following,
we model the MRI signal as a composition of clean signal and
additive normally distributed noise

Snoisy = Sclean + η(0, σ). (1)

Although we cannot in general assume that the noise is
normally distributed with zero mean, we may approximate the
noise by such a distribution.

Several successful methods for denoising of diffusion tensor
MRI have been proposed [2], [3], [20]–[22], [24]. The exist-
ing state-of-the art methods are based on partial differential
equations. The nature of these methods typically makes them
computationally heavy. In this paper we introduce an alterna-
tive and effective method for regularization of matrix valued
images, based on shape-adaptive discrete cosine transform
(SA-DCT) methods [1], [6], [10].

II. BACKGROUND

A. Diffusion Tensor Imaging

Tensor valued data occurs in many branches of science,
see e.g. [23]. In this paper the tensor valued data comes

from diffusion tensor MRI of the human brain. From a set of
K direction sensitive magnetic resonance images {Sk}Kk=1 a
symmetric positive definite tensor D ∈ R3×3 is constructed in
each voxel of the image domain. This matrix yields structural
information of the tissue in each voxel.

The relationship between each direction weighted measure-
ment and the diffusion tensor D is given by the Stejskal-Tanner
equation [19] [18]

Sk = S0e
−bgT

k Dgk , k = 1, 2, · · · ,K (2)

where b is a positive scalar, and gk ∈ R3 is the direction
in which measurement Sk is acquired. From K direction
weighted measurements this gives us K equations that we
use for estimating the six unknowns of the diffusion tensor
D. This can be done for example by a linear least-squares
method, or other more adaptive methods [16]. We note that
since the transformation (2) is nonlinear, we do not know the
distribution of the noise in each element of the tensor D. Hahn
et.al has studied how noise propagates through the estimation
process [9].

In structured tissue such as white matter, the self-diffusion
of water is highly anisotropic. In gray matter and in ser-
brospinal fluid the self-diffusion of water is more or less
isotropic. Therefore, based on knowledge of the diffusion
tensor D, a model of the paths in the white matter can be
constructed via fiber tracking [15] [14] [14] [25].

The quality of the estimated diffusion tensor depends on
many parameters. One particular parameter is the number of
direction sensitive acquisitions. A high number of direction
sensitive acquisitions gives a tensor estimate of good quality.
On the other hand, a small number of acquisitions gives a
low scanner time for each patient. In this paper we investigate
the possibility of post processing the data from a low number
of acquisitions, and still construct tensor estimates of high
quality. Thus, a partial goal is to decrease the scanner time
for each patient.

B. Shape-Adaptive Discrete Cosine Transform

The 2D discrete cosine transform (DCT) is extensively used
in image science. In its original formulation it transforms a
quadratic region in the spatial domain to the frequency domain.
Being a harmonic transform the DCT has a compactification
property, i.e. fairly good approximations of the signal can
be achieved by employing only a few of the coefficients
in the frequency domain. However, when the domain of
the transform contains sharp edges and only a few of the
coefficients in the frequency domain are employed for the
reconstruction to the spatial domain, various artifacts such as
smearing of edges and Gibbs phenomena occur. To avoid these
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artifacts, it has been shown by several authors that the region
should be as homogeneous as possible. This is achieved by
replacing the static regions from the standard DCT by regions
which adapts to the information in the image. We choose these
regions in such a way that the data can be well approximated
by a smooth, slowly varying function. Such a function is well
approximated by few coefficients from the frequency domain.
The regions should ideally not contain any discontinuities.

In a series of papers, Katkovnik, Foi, Egiazarian, Astola and
others describe shape adaptive DCT (SA-DCT) for denoising
of 2D grayscale and color images [1], [5], [10], [11]. The
algorithm can be divided into three different stages, namely
construction of an adaptive neighborhood for each point in
the domain, transformation and thresholding of each neigh-
borhood, and finally estimation of the noise-free image. The
adaptive neighborhoods are constructed by local polynomial
approximations (LPA) in combination with the intersection
of confidence intervals (ICI) rule []. The transformation of
each neighborhood to the frequency domain is done by the
Sikora DCT algorithm, and hard thresholding is applied on
the coefficients in the frequency domain. The inverse Sikora
DCT algorithm is then applied resulting in a denoised region.
Since there is a region around every pixel, and in general these
regions overlap, we have an over complete basis. This over
complete basis is used to construct a final image by weighting
the basis elements in a proper way.

The state-of-the-art results obtained by the SA-DCT meth-
ods in 2D as well as their efficiency makes them attractive for
denoising of 3D scalar valued images as well as 3D matrix
valued images. In this paper we extend the framework of SA-
DCT to both 3D scalar valued and 3D matrix valued images.

C. Overview

In section III-A we will describe our 3D extension of the
SA-DCT algorithm. In section III-B we describe how the 3D
algorithm can be applied to our 3D matrix valued DTI data.

III. METHODS

A. The Shape-adaptive discrete cosine transform

Let I : RN → R denote the noisy dataset which is dis-
cretized on a uniform grid. In the rest of this paper we restrict
the attention to 2-dimensional and 3-dimensional datasets, so
N ∈ {2, 3}. We refer to the resulting denoised dataset as I−.
Presently, we treat the standard deviation σ of the noise of I
as a parameter. However, we will later show how to obtain a
good estimate of σ.

A main ingredient of the SA-DCT method is the adaptive
neighborhood Ωx surrounding each voxel x ∈ RN . The idea
is that this neighborhood should contain voxels that in some
way are ”similar”, i.e. homogeneous. A neighbouring point
y ∈ RN can either have an intensity I(y) which is close to
the intensity I(x), or the intensities can differ substantially.
In the case where I(y) ≈ I(x), we want to include the point
y in the adaptive neighborhood of x. To decide which voxels
that should belong to the adaptive neighborhood of a given
point, we use local polynomial approximations (LPA) and the
intersection of confidence intervals (ICI) rule [11].

g(1) = [1]

g(2) = [0.6500000, 0.3500000]

g(3) = [0.4083333, 0.3333333, 0.2583333]

g(5) = [0.2400, 0.2200, 0.2000, 0.1800, 0.1600]

g(7) = [0.15250, 0.14928, 0.14607, 0.14285, 0.13964, 0.13642, 0.13321]

g(9) = [0.111, 0.111, 0.111, 0.111, 0.111, 0.111, 0.111, 0.111, 0.111]

TABLE I
THE SIX LPA KERNELS g(h), h ∈ H = {1, 2, 3, 5, 7, 9} USED IN THE

PAPER.

To construct the adaptive neighborhood we consider a set of
directions θi ∈ RN such that each component of θi is either
-1, 0 or 1, but never all equal to zero. It follows that there
must be 3N − 1 such directions in an N -dimensional dataset.
In 2D [10] there are eight such directions; the four cardinal
and the four intermediate compass directions. In 3D there are
26 unique directions, following a similar pattern.

We span a star shaped skeleton Ω∗x around each point x in
the image domain by tracing the voxels along straight lines
in the directions of θi. The length di corresponding to the
straight line in the direction of θi in the skeleton is determined
by the ICI algorithm. We close the skeleton such that it
becomes a polygonal hull by joining neighboring endpoints
of the vertices in the skeleton by line segments (in 2D) or
triangles (in 3D). We denote the domain inside this closed
polygonal hull by Ωx. For each voxel in the image domain
such an adaptive neighborhood is constructed. In the following
section we explain how we can use the LPA-ICI method to
compute the length di of each branch in the star.

1) LPA-ICI: To span the region Ω∗x we calculate the support
of each branch in the star, i.e. how many voxels that should be
included along each direction vector θi, i = 1, 2, · · · , 3N − 1.
The idea is that the voxels in Ω∗x should have intensity values
which are close to the intensity value of the voxel x. Variations
in the included data should be due to the noise level and small
local variations, and not due to edges in the image.

To achieve this we filter each direction with LPA kernels
{g(h)}h∈H of varying length h. The specific choice of H is
discussed in the section on numerical results, and shown in
figure III-A.1. For each kernel g(h) containing weights g

(h)
i ,

where i ∈ 1, 2, · · · , h, we have the property that the center
voxel x has the highest weight g

(h)
1 . In addition the weights

sum to 1 and decrease with the length of the filter.
We can look at this filtering as a convolution of the data

with a filter kernel of varying length. When the kernel g(h) is
applied to the voxels in direction θi we get

µ(h) =
h∑

j=1

g
(h)
j I(x + (j − 1)θi). (3)

Notice that for each direction θi we get |H| filtered values for
the center pixel x.

The standard deviation of the noise in µ
(h)
i is given trough

the relation

σµ(h) = σ‖g(h)‖ (4)
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Algorithm 1 sadct(I, σ, Γ)
Require: I is an N -dimensional image, σ is the standard

deviation of the noise of I
1: for all x ∈ I do
2: Set Ωx ← lpaicix(I, σ, Γ)
3: Set Ω̂x ← dct(Ωx)
4: Define cutoff frequency f as in eq. (10)
5: Apply f as specified in eq. (??) giving Ω̂−x
6: Set Ω−x ← dct−1(Ω̂−x )
7: Define weight k ← (‖Ω̂−x ‖+ 1)‖Ωx‖
8: for all y ∈ Ω−x do
9: Set I−(y)← I−(y) + kΩ−x (y)

10: Set K(y)← K(y) + k
11: end for
12: end for
13: for all x ∈ I− do
14: I−(x) ← I−(x) / K(x)
15: end for

h1

a


q µ(1)D1

a

h2

a


q µ(2)D2

a

h3 = di

a
{q µ(3)D3

a

h4

a{ q µ(4)D4

a

Fig. 1. An example of the LPA-ICI algorithm when H = {hj}4j=1.
The area between the dashed lines shows the intersection of all previous
confidence intervals. When the intersection is empty (here at h4) the algorithm
is terminated.

For each direction we then get the confidence intervals

Dh = [µ(h) − Γσµ(h) , µ(h) + Γσµ(h) ], (5)

where Γ > 0 is a global parameter of the algorithm. A large
Γ results in a large noise tolerance, and more voxels will be
included in the regions, and vice versa.

The ICI rule states that along the direction vector θi we
should choose the largest distance di ∈ H where we have
intersection of all the confidence intervals, see figure III-A.1.
More precisely

di = max
h∈H
{h : (D1 ∩ D2 ∩ · · · ∩ Dh) 6= ∅} (6)

Having determined the length of each branch in the star
shaped domain Ω∗x, we define the neighborhood Ωx as all
voxels inside the polygonal hull closing Ω∗x with branches diθi,
where i ∈ 1, 2, · · · , 3N −1. By construction, the intensities in
this region should not contain large changes due to edges in the
image. The noise in this region can now easily be removed by
thresholding small coefficients in the frequency domain. We
use the discrete cosine transform for this purpose in section
III-A.2.

Note that since we only perform a LPA-ICI estimation on
the voxels that coincide with the skeletonized domain Ω∗x, we
do not have direct control over the intensity values in the set
Ωx\Ω∗x. It has been shown that for scalar images this approach
is a good compromise between efficiency and accuracy. See
for example [Foi].

2) The DCT algorithm of Sikora: The discrete cosine
transform (DCT) is used extensively in image science. The
one dimensional DCT is defined as

ẑk = ck

N−1∑
n=0

zn cos
[

π

N

(
n +

1
2

)
k

]
, (7)

where c0 =
√

1
N and ck =

√
2
N k > 0. The coefficients

ck ensures that the transform is orthogonal. Note that this
transform can be expressed as a matrix-vector product

ẑ = Az (8)

The matrix A is in general orthogonal, which implies that the
inverse DCT can be expressed as

z = AT ẑ (9)

Two and three dimensional DCT are usually achieved by
successively applying the one dimensional DCT along the
coordinate axes. However, note that Ωx will in general not
be rectangular. Sikora has developed an algorithm for discrete
cosine transform on non-rectangular domains [17]. In this
paper we employ this algorithm. In the following we let Ω0

x

denote the quadratic (in 2D) or cubic (in 3D) zero-extension
of Ωx. Note that when examining Ωx along the coordinate
axes, it may be non-contiguous. This causes problems when
applying the traditional DCT algorithm as many components
of the DCT domain will be needed to represent these high
jumps in intensities introduced by the zero-padding. Sikoras
approach avoids this problem by first shifting all values of Ω0

x

corresponding to values in Ωx along the first coordinate axis
so that they become consecutive in Ω0

x. A one dimensional
DCT, of varying length, is then applied to all the shifted data.
The same procedure is then applied to each dimension in turn,
by first shifting the data and then applying the 1D DCT. When
applying the inverse DCT we need to invert these shifts, so a
record of the rearrangements must be maintained.

In Figure III-A.2 we display a 2D example of how the non-
zero padded pixels are shifted to produce consecutive values,
first in the x-direction and then in the y-direction.

3) Thresholding in the DCT domain: Let Ω̂x denote the do-
main transformed from Ωx using the DCT algorithm described
in the previous section and let ẑ denote a given coefficient in
Ω̂x. In addition let |Ω̂x| denote the number of coefficients in
the neighborhood Ω̂x. The cutoff threshold f is given as

f = σ

√
2 log(|Ω̂x|) + 1, (10)

and the hard thresholded coefficients ẑ− is given as

ẑ− =
{

ẑ if ẑ ≥ f
0 if ẑ < f

,

for all ẑ ∈ Ω̂x.
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Fig. 2. An overview of how the nonzero pixels are collected in one corner
by the algorithm of Sikora.

The thresholded region is then transformed and shifted
back into the spatial domain by the inverse (Sikora) DCT (as
outlined in section III-A.2) giving Ω−x in the spatial domain.

4) Estimation from over-complete basis: Notice that since
we calculate a region Ωx for every voxel in the image we
have extensive region-overlap, i.e. we have an over complete
basis. To reconstruct an image from this information, we have
to weight the data in a proper way. We assign a weight to
every region and use the information in overlapping regions
to estimate the denoised image. It is a standard approach to use
weights that are inversely proportional to the mean variance
of the region. However, for adaptive regions this leads to over
smoothing. To compensate for this we can divide the weights
by the square of the size of the region.

The mean variance of the region Ω−x is given by

σ2
Ω−x

= σ2 1 + |Ω̂−x |
|Ω̂x|

, (11)

where |Ω̂−x | is the number of nonzero coefficients in Ω̂−x . This
gives the following weights for the regions

wx =
1

(1 + |Ω̂−x |)|Ω̂x|
. (12)

The regions can now be weighted together giving the final
recovered estimate I− using the relation

I−(p) =
∑

x wxΩ−x (p)∑
x wx

, (13)

for all p ∈ I and where the sum is taken over all voxels x so
that Ω−x contains p.

B. SA-DCT for denoising of DTI

It is not completely clear whether the raw data {Sk}Kk=0 or
the estimated tensor {Dij}3i,j=1 should be processed in order
to remove noise from diffusion tensor data. While it can be

argued that the noise should be removed as close to its source
as possible, it is possible to preserve implicit properties of the
tensor if we work in the tensor domain. In the current version
of this paper, we have chosen to process the data in the tensor
domain. More research must be done in order to check which
approach that is best for real DTI data. In another paper, two
of the authors have investigated total variation regularization
of tensor valued data [3]. In that paper, the estimated tensor
is regularized. In order to ensure positive definiteness of the
regularized tensor, it is represented implicitly as D = LLT

where L is a lower triangular matrix. In this paper we adapt
this approach when regularizing tensor valued data by SADCT
methods.

IV. PRELIMINARY RESULTS

In this section we show preliminary qualitative numerical
results achieved by the method proposed in this paper. A
quantitative analysis of the results will be done in a maturized
version of the paper, where we will also compare our approach
with other approaches, like [3]. We process both synthetically
produced images and real diffusion tensor images of a healthy
human volunteer.

Example 1: 3D scalar valued data

We have in this paper generalized the SADCT methods
from 2D to 3D images. In the first example we want to
show the difference between application of the 2D SADCT
algorithm slice by slice (quazi-3D) and application of the full
3D algorithm. We use data from the “brainweb” database, a
database of semi-realistic simulated MR images [4].

As expected, there is a difference between the two ap-
proaches. When we apply the quazi-3D algorithm along slices
in the Z-dimension of the image, it is clear that the noise
reduction is only be performed in each slice in the XY
plane, and not across different slices. When we apply the full
3D algorithm, the noise reduction is performed in the same
manner along all three dimensions. The difference between
the two approaches can be seen in Figure 3. In Figure 3 we
show a slice of the image which is orthogonal to the XY-plane
along which the quazi-3D algorithm is applied. As we can
observe from Figure 3 the result from the full 3D algorithm
proposed in this paper is better than the result from the quazi-
3D algorithm. In Figure 4 we show a zoom-in of a small
portion of the result from Figure 3.

Example 2: 3D tensor valued synthetic data

The main motivation behind this paper is regularization of
tensor valued images, in particular diffusion tensor images.
First we regularize a synthetic DTI dataset where the object
that is simulated is a torus. The DTI torus has been generated
by the software teem, written by Gordon Kindlmann [12]. We
use the software DTI-studio developed by Mori and coworkers
for the visualization of the color coded FA images [?]. We have
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Fig. 3. In this figure we show the difference between application of the two-dimensional SADCT along slices in a 3D image, and application of the
three-dimensional SADCT. In the upper left corner the true image is shown. In the upper right corner the noisy image is shown. In the lower left corner we
see the result after application of the quazi-3D algorithm, and in the lower right corner we see the result after application of the full 3D algorithm proposed
in this paper. See also Figure 4

used the gradient directions given by the rows of the matrix
1.0000 0.0000 1.0000
−1.0000 0.0000 1.0000
0.0000 1.0000 1.0000
0.0000 1.0000 −1.0000
1.0000 1.0000 0.0000
−1.0000 1.0000 0.0000

 (14)

Example 3: 3D tensor valued real brain data

We also show preliminary results on real diffusion tensor
images of a healthy volunteer. The images have been acquired
by a 3T MR scanner using the same gradient directions as
in the previous example. In the example we use only one
acquisition of each diffusion weighted image, thus the total
number of acquisitions in this example is seven. We note that
the denoised result is a bit over-regularized. In a later version
of this paper we will however perform numerical tests with

a number of different parameter-configurations, and compare
the results with averages of multiple acquisitions.

V. DISCUSSION

In this paper we have extended the SADCT methods from
2D scalar valued images to 3D tensor valued images. We
have shown preliminary numerical experiments on both 3D
scalar valued images and 3D tensor valued images. The
numerical studies indicates that the SADCT framework can
successfully be applied to tensor valued images. However, to
make more solid conclusions we will perform more numerical
experiments, in particular quantitative measurements of the
quality of the denoised images.

The method is local in nature, thus it is natural and easy to
paralellize the algorithm to speed up the calculations.
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