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A B S T R A C T

Introduction: Delayed cerebral ischemia (DCI) is a major cause of disability and death after aneurysmal sub-
arachnoid hemorrhage. The literature suggests that impaired cerebrovascular reactivity (CVR) may be a pre-
dictor for DCI; still no CVR based prediction model has been developed. Increased knowledge about possible
predictors of DCI can improve patient management in high-risk patients and allow for shorter hospital stay in
low-risk patients.
Method: CVR was examined in 42 patients with aneurysmal subarachnoid hemorrhage and 37 patients treated
for unruptured intracranial aneurysm, using acetazolamide test with transcranial Doppler monitoring of blood
flow velocities. Patients were followed for development of DCI, separated into clinical deterioration and
radiographic infarction.
Results: For all patients, regardless of aneurysm rupture status, CVR was on average 5.5 percentage points lower
on the ipsilateral side of aneurysm treatment. Patients with clinical deterioration due to DCI had lower CVR than
patients without DCI, and the difference was larger on the contralateral side (33.9% vs. 49.2%). Two prediction
models were constructed for clinical deterioration due to DCI. The area under the receiver operating char-
acteristic curve was 0.82 in the model using established predictors, and 0.86 in the model that also included
CVR.
Conclusion: Our findings support the hypothesis that impaired CVR may be an independent predictor of clinical
deterioration due to DCI, and may assist in identifying patients at risk after aneurysmal subarachnoid hemor-
rhage. Ipsilateral CVR reduction occurs in all patients after aneurysm treatment, regardless of DCI development,
thus highlighting the need to evaluate ipsi- and contralateral CVR separately.

1. Introduction

Delayed cerebral ischemia (DCI) is a major cause of disability and
death after aneurysmal subarachnoid hemorrhage (aSAH) [1,2]. Iden-
tification of patients at high risk of developing DCI can improve patient
management, and valid predictors of DCI could allow for shorter hos-
pital stay in patients at low risk. Large amount of subarachnoid blood
and poor clinical admission status are known predictors for DCI [3–7].
Other predictors, like smoking and hydrocephalus have been suggested
[8]. Still, additional information is needed to make prediction more
accurate.

Cerebrovascular reactivity (CVR) is often impaired in the early

phase after aSAH [9–15], especially in patients with poor clinical grade
[12,16–18]. Several test methods have shown reduced CVR in patients
with aSAH compared with unruptured intracranial aneurysms (UIAs)
[9–12,19], but this has not been confirmed for the transcranial Doppler
(TCD) and acetazolamide (AZ) test (TCD-AZ test) [20]. With one ex-
ception [14], the literature suggests that impaired CVR may be asso-
ciated with vasospasm and can be a potential predictor for DCI after
aSAH [15–17,21–30]. However, sample sizes have been limited,
methodology has varied and inconsistent and outdated definitions of
DCI have been used. To our knowledge, no CVR based prediction model
has yet been developed.

The main objective of this study was to assess if impaired CVR can
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be a predictor for DCI after aSAH. In adjunct, we wanted to assess the
relationship between aneurysm rupture status and CVR assessed by
TCD-AZ test, in order to improve understanding of CVR in this patient
group.

2. Methods

2.1. Participants

Patients treated at the Department of Neurosurgery, Haukeland
University Hospital between February 2011 and May 2013 were pro-
spectively included. Inclusion criteria were: age≥ 18 years and treat-
ment for saccular intracranial aneurysms with endovascular coiling or
surgical clipping. Exclusion criteria were: previous treatment of in-
tracranial aneurysms, giant aneurysms treated with proximal artery
occlusion, carotid stenosis (> 50%) or occlusion, lack of transtemporal
bone window in TCD examination, DCI present at admission, moribund
patients, and contraindications to acetazolamide.

2.1.1. Clinical, sonographic and radiographic assessment
In all patients demographics, body weight, smoking status, hy-

pertension, aneurysm location, and treatment modality was recorded.
In patients with ruptured aneurysms, the clinical status upon admission
was evaluated with Glasgow Coma Scale (GCS) [31] and World Fed-
eration of Neurological Surgeons (WFNS) scale [32]. Admission com-
puted tomographic (CT) scan was classified according to the modified
CT Fisher scale [33].

Patients were monitored clinically, sonographically and radio-
graphically for development of DCI, vasospasm and cerebral infarction.
Neurological status was scored routinely three times a day, and more
frequent as regarded necessary. As a pragmatic choice, sonographic
examinations were performed whenever possible, in order to avoid
conflicts with patient investigations or treatment. Blood flow velocities
in major intracranial arteries were assessed with transcranial color-
coded sonography (TCCS) using a portable Philips CX50 system
(5–1MHz sector array probe) and Lindegaard Index was calculated
[34]. TCCS was performed daily and more frequent if neurological
deterioration occurred. Neuroimaging, i.e. CT or magnetic resonance
imaging (MRI) with or without angiography and digital subtraction
angiography (DSA) was performed tailored to the clinical situation. An
experienced neuroradiologist (GM) assessed all angiograms, CT and
MRI scans retrospectively for vasospasm and cerebral infarctions.

2.1.2. Cerebrovascular reactivity
CVR testing was performed with acetazolamide (AZ). The AZ dose

was 1000mg for patients weighing<80 kg, and 15mg/kg for patients
weighing ≥80 kg. The maximum dose was 1500mg. CVR testing was
performed after aneurysm treatment to avoid risk of (re-)rupture.
Patients treated for unruptured intracranial aneurysms (UIA) were ex-
amined once, whereas patients treated for aSAH underwent serial
testing during the hospital stay. The time interval between examina-
tions was minimum 24 h. To avoid steal phenomenon and neurological
deterioration, CVR testing was not performed after a patient was di-
agnosed with DCI. TCD was used to monitor blood flow velocities in the
middle cerebral arteries (MCA) after intravenous injection of acet-
azolamide (AZ) [20]. Cerebrovascular reactivity was calculated as the
maximum percentage change in MFV in MCA after administration of
acetazolamide: CVR (%)= [(MFVAZ –MFVBASELINE) / MFVBASELINE] x
100, where MFVBASELINE is mean blood flow velocity before acet-
azolamide and MFVAZ is mean blood flow velocity (maximum change)
after acetazolamide. In patients with a paradoxical velocity reduction
after AZ due to a steal phenomenon, CVR will be a negative value.

2.1.3. Clinical deterioration and cerebral infarction due to delayed cerebral
ischemia

All patients with aSAH, regardless of presence of ischemic

symptoms or not, were given 60mg nimodipine orally every four hours
to prevent DCI [35,36]. Critically ill patients and patients with swal-
lowing difficulties were given nimodipine as intravenous infusion
2mg/h. Patients with severe and refractory radiographic vasospasm
and clinical deterioration due to DCI were given intraarterial nimodi-
pine [37]. Patient management was not influenced by CVR results.

We distinguished between clinical deterioration and radiographic
infarction due to DCI [38,39].

Clinical deterioration (DCIclinical) was defined as a new focal neu-
rological impairment or≥ 2 points reduction in Glasgow Coma Score,
lasting for minimum 1 h, and not appearing immediately after an-
eurysm occlusion. Other causes of deterioration were excluded by
clinical assessment, cerebral CT or MRI, and laboratory analyses.

Radiographic infarction (DCIinfarction) was defined as a new infarc-
tion identified on CT or MR scans during the hospital stay, within six
weeks after aSAH. Infarctions present on the admission or immediate
postoperative CT, and hypodensities resulting from the clipping or
coiling procedure, ventricular catheter placement or intraparenchymal
hematoma were not regarded as cerebral infarctions from DCI.

Angiographic vasospasm was defined as arterial narrowing present
on CTA, MRA or DSA, not attributable to atherosclerosis, catheter-in-
duced spasm, or vessel hypoplasia. Angiographic vasospasm was clas-
sified as none, mild (< 33% reduction in arterial diameter), moderate
(34–66%) or severe (≥67%), and was also categorized with the Nathal
grading scale [40].

Sonographic vasospasm was defined as time-averaged peak velocity
(TAPV) ≥120 cm/s in any cerebral artery and Lindegaard index ≥3

Table 1
Patient, aneurysm and treatment characteristics.

aSAH (n=42) UIA (n=37)

Age, yearsa 53 ± 13 50 ± 11
Height, cma 171 ± 9 169 ± 8
Weight, kga 76 ± 18 77 ± 16
BMI, kg/m2a 26 ± 5 27 ± 5
Female 24 (57.1) 24 (64.9)
Hypertension 19 (45.2) 18 (48.6)
Smoking
Current 27 (64.3) 20 (54.1)
Previous 8 (19.0) 13 (35.1)
Never 7 (16.7) 4 (10.8)

Multiple aneurysm 9 (21.4) 12 (32.4)
Aneurysm diametera,b 7 ± 3 7 ± 3
Location treated aneurysms
Middle cerebral artery 12 (28.6) 17 (45.9)
ACOM, anterior complex and pericallosa 17 (40.5) 7 (18.9)
ICA, incl. ophthalmic artery and PCOM 6 (14.3) 10 (27.0)
Basilar top, cerebelli superior, PICA, VB, distal
posterior

7 (16.7) 3 (8.1)

Treatment modality
Coil 30 (71.4) 22 (59.5)
Clip 12 (28.6) 15 (40.5)

Treatment sidec

Left 21 (50.0) 19 (51.4)
Right 21 (50.0) 18 (48.6)

ACOM: anterior communicating artery; aSAH: aneurysmal subarachnoid he-
morrhage; BMI: body mass index; ICA: internal carotid artery; PCOM: posterior
communicating artery; PICA: posterior inferior cerebellar artery; UIA: un-
ruptured intracranial aneurysms; VB: vertebrobasilar arteries.

a Mean ± standard deviation. All other variables are reported as n (%).
b Maximum diameter of the aneurysm dome. For patients with aSAH the size

of the ruptured aneurysm is reported. For patients that underwent treatment for
multiple UIA during the same procedure, aneurysm size was averaged.

c Twenty-four patients with midline aneurysms (ACOM and basilar top) were
allocated to the chosen side of approach. One patient treated with combined
clipping of an ACOM aneurysm and a right middle cerebral artery aneurysm in
one procedure was allocated to the right side. The coiling procedure failed to
adequately secure the aneurysm in one patient, so clipping was performed in-
stead.
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[34]. Severe sonographic vasospasm was defined as TAPV ≥200 cm/s
and Lindegaard index ≥6.

2.1.4. Ethics
The study was conducted in accordance with the Declaration of

Helsinki (2013) of the World Medical Association, and was approved by
the local ethics committee (the Regional Committees of Western
Norway for Medical and Health Research Ethics, approval number
2011/144). Written informed consent was obtained from all patients or
a legal representative.

2.2. Statistical analysis

We reported CVR separately as ipsilateral and contralateral values
to avoid that mean values could obscure side differences [41]. Due to
the wide range of reported CVR measured by TCD and AZ in healthy
subjects [42–54] and patients with UIA [20], we studied CVR as a
continuous variable. Effects are reported per percentage point change in

CVR. Midline aneurysms were allocated according to chosen side of
approach for treatment. Standard t-tests and multiple regression ana-
lyses (adjusted for age, sex, hypertension, smoking, aneurysm diameter
and treatment modality) were carried out to examine the relationship
between CVR and rupture status.

We then compared clinical, radiographical and sonographical vari-
ables of patients with and without DCIclinical, with chi-squared or
Fisher's exact test, as appropriate. Next, we assessed the predictive
potential of both contralateral and ipsilateral CVR for DCIclinical and
DCIinfarction, to decide which measure of CVR was most appropriate to
use in patients with multiple measurement (first, lowest, or within-
patient average of all exams). A priori, we chose the lowest or first
measured CVR as the exposure (more convenient in clinical use). t-test
was used to compare CVR in aSAH patients with and without DCIclinical
or DCIinfarction, and to assess side differences. Simple logistic regression
analyses were conducted for both DCIclinical and DCIinfarction versus both
within-patient average CVR and lowest measured contralateral CVR.
Further, box plots were constructed, based on the lowest measured

Fig. 1. Box plots comparing cerebrovascular reactivity (CVR)
in patients with unruptured intracranial aneurysms (UIA),
aneurysmal subarachnoid hemorrhage (aSAH) without clin-
ical deterioration due to delayed cerebral ischemia (DCI), and
aSAH with clinical deterioration due to DCI. For patients with
aSAH serial measurements of CVR were performed, and the
lowest measured value is presented. Ipsilateral CVR are
shown in dark grey boxes, and contralateral CVR in light grey
boxes. Boxes extend from the 25th to the 75th percentile.
Horizontal bars represent the median, and whiskers extend to
the most extreme point that is< 1.5 times the interquartile
range from the box. Mean values are marked with white
crosses, and outliers are depicted as points.

Table 2
Blood flow velocities and cerebrovascular reactivity in patients with ruptured vs. unruptured aneurysms.

UIA (n=37) aSAH (n= 42)

Singel exam First exam Lowest value Average of all exams p-values UIA vs. aSAH

MFVBASELINE (cm/s)
Ipsi 60 ± 14 57 ± 20 55 ± 19 61 ± 18 0.54, 0.25, 0.79
Contra 58 ± 14 59 ± 18 53 ± 18 60 ± 19 0.79, 0.18, 0.59

MFVAZ (cm/s)
Ipsi 94 ± 18 80 ± 28 76 ± 27 86 ± 25 0.02, 0.003, 0.15
Contra 93 ± 23 86 ± 29 79 ± 29 89 ± 29 0.25, 0.02, 0.42

ΔMFVAZ (cm/s)
Ipsi 34 ± 9 23 ± 21 18 ± 17 25 ± 17 0.004, < 0.001, 0.01
Contra 36 ± 11 28 ± 19 22 ± 15 29 ± 16 0.03, < 0.001, 0.03

CVR (%)
Ipsi 59 ± 19 43 ± 35 33 ± 28 45 ± 30 0.02, < 0.001, 0.02
Contra 63 ± 17 48 ± 27 40 ± 23 51 ± 25 0.008, < 0.001, 0.01
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iCVR and cCVR for UIA, aSAH without DCIclinical, and aSAH with
DCIclinical.

From this, two prediction models for DCIclinical were created. Model
I included WFNS, modified CT Fisher scale, age, sex, smoking, and
hydrocephalus, all variables suspected to affect risk of DCIclinical. Model
II included all variables from Model I plus contralateral CVR. Model
discrimination was assessed with area under the ROC curve (AUC), and
model calibration with Hosmer-Lemeshow's C and calibration plots
[55]. Results were adjusted for optimism using the bootstrapping
techniques [56]. Uniformity of fit was evaluated across clinical grade
(WFNS I-III vs. IV-V).

Statistical analysis was performed with R version 3.4.3 [57]. The
data that support the findings of this study are available from the
corresponding author upon reasonable request.

3. Results

3.1. Patients, aneurysm and treatment

An overview of the source population is available in the online
supplement (Table S1). Of 136 patients consecutively recruited during
the study period, 57 were excluded, leaving a study population of 79
patients. In total, 37 patients were treated for UIA and 42 patients had
aSAH (Table 1).

3.2. Cerebrovascular reactivity

In total, 101 bilateral and 20 unilateral examinations were per-
formed. In patients with aSAH, 84 examinations were done. Median
time for first exam was 3.2 (IQR 3.2; range: 1.3–15.0) days after ictus
and 2.3 (IQR 2.9; range: 0.8–10.8) days after aneurysm treatment.
Median time for the exam with the lowest CVR value was 5.3 (IQR 4.5;
range: 1.8–20.2) days after ictus and 4.7 (IQR 3.9; range: 0.8–19.8)
days after aneurysm treatment. In patients with UIA, a single ex-
amination was performed a median of 2.2 (IQR: 1.8; range: 1.1–6.2)
days after aneurysm treatment.

3.3. Ruptured versus unruptured aneurysms

Patients with aSAH had lower CVR compared with patients with
UIA (Fig. 1). There was no difference in baseline velocities (MFVBASE-

LINE) between aSAH and UIA patients (Table 2). Increase in velocity
after AZ (ΔMFVAZ) was however smaller in patients with aSAH, yielding
lower both ipsilateral and contralateral CVR. For all patients, regardless
of aneurysm rupture status, CVR was on average 5.5 percentage points
lower on the ipsilateral side (p= .04). Regression analyses (adjustment
for age, sex, hypertension, smoking, aneurysm diameter and treatment
modality) confirmed that CVR was lower in patients with aSAH. Pa-
tients with UIA had a single CVR measurement, whereas aSAH patients
were subject to several measurements. There are thus several ap-
proaches to calculate individual CVR: the first exam, the lowest value
across exams, or the within-patient average for all exams, on both the
ipsilateral and contralateral side. Using the first exam, the adjusted
ipsilateral CVR was 19.6 percentage points lower in patients with aSAH
(p= .005), and the contralateral CVR was 16.6 percentage points lower
(p= .002). Using the lowest value across exams, the adjusted difference
between the aSAH and UIA groups was 31.1 percentage points on the
ipsilateral side (p < .001), and 23.6 percentage points on the con-
tralateral side (p < .001). Using the within-patient average, CVR was
19.6 percentage points lower among patients with aSAH on the ipsi-
lateral side (p= .002) and 14.7 percentage points lower on the con-
tralateral side (p= .004).

3.4. Delayed cerebral ischemia and cerebral infarctions

Of 42 aSAH patients, 22 (52.4%) developed DCIclinical. Median time
from ictus to diagnosis of DCIclinical was 9 days (IQR 4.8, range 5–19).
Furthermore, 19 patients (45.2%) developed DCIinfarction, and five pa-
tients (11.9%) developed infarctions from other causes (Table 3). Four
patients with severe, refractory radiographic vasospasm and DCIclinical
were given nimodipine intrarterially as rescue therapy and survived
with DCIinfarction. In all patients, angiographic vasospasm and
DCIinfarction were located bilaterally or on the same side as the ruptured
aneurysm. No patients had isolated vasospasm or infarctions on the
contralateral side of the ruptured aneurysm. The overall prevalence of
poor grade patients and thick bleedings was high; with WFNS grade IV-
V in 42.9% of all patients with aSAH, and modified Fisher grade 3–4 in
66.7%. The proportion of patients with excellent clinical admission
status (WFNS grade I) was lower (p= .02) and hydrocephalus was more
prevalent (p= .007) in patients with DCIclinical.

The different approaches to CVR (first exam, lowest value and

Table 3
Characteristics of patients with aneurysmal subarachnoid hemorrhage.

Total
(n=42a)

Clinical DCI
(n=22)

No clinical
DCI (n=19)

p-Value

GCS on admissionb 11 ± 4 11 ± 4 12 ± 4 0.44
WFNS
I GCS 15 8 (19.0) 1 (4.5) 7 (36.8) 0.02c

II GCS 13–14, without
neurological deficit

14 (33.3) 9 (40.9) 5 (26.3) 0.51

III GCS 13–14, with
neurological deficit

2 (4.8) 1 (4.5) 1 (5.3) 1.00c

IV GCS 7–12 10 (23.8) 7 (31.8) 3 (15.8) 0.29c

V GCS 3–6 8 (19.0) 4 (18.2) 3 (15.8) 1.00c

Modified CT Fisher
1 Thin SAH without
IVH

6 (14.3) 1 (4.5) 5 (26.3) 0.08c

2 Thin SAH with IVH 8 (19.0) 4 (18.2) 3 (15.8) 1.00c

3 Thick SAH without
IVH

15 (35.7) 7 (31.8) 8 (42.1) 0.72

4 Thick SAH with IVH 13 (31.0) 10 (45.5) 3 (15.8) 0.09
Hydrocephalus (during

primary stay)
30 (71.4) 20 (90.9) 9 (47.4) 0.007

Cerebral infarction due to
DCI

19 (45.2) 13 (59.1) 5 (26.3) 0.07

Angiographic vasospasm
None 22 (52.4) 6 (27.3) 16 (84.2) < 0.001
Mild 3 (7.1) 2 (9.1) 1 (5.3) 1.00c

Moderate 12 (28.6) 9 (40.9) 2 (10.5) 0.07
Severe 5 (11.9) 5 (22.7) 0 (0.0) 0.05c

Angiographic scale ad
modum Nathald

No vasospasm 22 (52.4) 6 (27.3) 16 (84.2) < 0.001
One axis 5 (11.9) 2 (9.1) 2 (10.5) 1.00c

Two axes 1 (2.4) 1 (4.5) 0 (0.0) 1.00c

Three axes 6 (14.3) 5 (22.7) 1 (5.3) 0.19c

Generalized/diffuse
vasospasm

8 (19.0) 8 (36.4) 0 (0.0) 0.004c

Sonographic vasospasme

None 20 (48.8) 1 (4.8) 18 (94.7) < 0.001
Mild to moderate 14 (34.1) 13 (61.9) 1 (5.3) < 0.001
Severe 7 (17.1) 7 (33.3) 0 (0.0) 0.009c

aSAH: aneurysmal subarachnoid hemorrhage; CT: Computer Tomography; DCI:
Delayed cerebral ischemia; GCS: Glasgow Coma Score; IVH: intraventricular
hemorrhage; SAH: subarachnoid hemorrhage; WFNS: World Federation of
Neurosurgical Societies score.

a Missing information regarding presence or absence of clinical DCI in one
patient due to sedation

b Mean ± standard deviation. All other variables are reported as n (%)
c Due to few observations Fishers exact is used instead of chi-squared test
d The vascular axes were defined as follows: a) internal carotid artery, b)

middle cerebral artery, c) anterior cerebral artery, d) vertebral artery, e) basilar
artery, f) posterior cerebral artery, and g) any other arterial territory.

e Missing sonographic information in one patient.
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within-patient average) were compared for patients with and without
DCIclinical or DCIinfarction (Tables S2-S3). For DCIinfarction, there was no
difference in ipsilateral or contralateral CVR between groups across all
approaches (Table S2). For DCIclinical (Table S3), there was no difference
in ipsilateral CVR between groups. However, the lowest contralateral
CVR was lower in patients with DCIclinical than without (33.9% vs.
49.2%, p= .05) and the difference in within-patient average CVR was
even larger (43.2% vs. 61.9%, p= .02). Differences in first-exam CVR
were less apparent (44.0% vs. 56.2%, p= .19). Mean combined values
of the right and left side masked side-differences between the groups.
Fig. 1 shows box plots illustrating the difference between ipsi- and
contralateral sides.

Because CVR on the ipsilateral side was similar between patients
with and without DCIclinical and DCIinfarction, contralateral CVR was se-
lected as the exposure variable in logistic regressions (Fig. 2). CVR did
not predict DCIinfarction, but did predict DCIclinical. For DCIclinical, OR was
0.96 for both the lowest value (95% CI 0.93–1.00, p= .05) and within-
patient average (95% CI 0.93–1.00, p= .03). This corresponds to a 4%
reduction in the odds of developing DCIclinical per percentage point in-
crease in CVR. Hence, DCIclinical risk increased with lower contralateral
CVR. The risk of developing DCIclinical is 28.3% when the lowest CVR on
the contralateral side is 75%, whereas the risk is 49.0% with CVR 50%
and 70.1% with CVR 25%.

The prediction models using lowest value and within-patient

Fig. 2. Probabilities of developing clinical deterioration (A, B) and cerebral infarction (C, D) due to DCI for different CVR values, as predicted by logistic regression.
CVR on the contralateral side of aneurysm treatment is used in the models, and the lowest measured CVR (A, C) and within-patient-average CVR of all exams is
presented (B, D). The solid black line shows the estimated regression line. Uncertainty is indicated by the shadowed area (95% confidence band). Two patients,
marked with a solid grey and black dot, had a paradoxical velocity reduction after AZ.
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average were similar for DCIclinical, even though the p-value for the OR
was slightly lower in the second model. Still, the lowest measured CVR
is more convenient to use in clinical practice, and the time of the lowest
CVR reflects the typical time period for onset of DCI. The lowest value
on the contralateral side was therefore chosen as the CVR predictor for
DCIclinical in the following analyses.

In prediction Model I the area under the receiver operating char-
acteristic curve (AUC) after correction for optimism was 0.82, and in
Model II the corresponding AUC was 0.86 (Table 4). Confidence in-
tervals for AUC for the two models were overlapping. Receiver oper-
ating characteristic curves and calibration plots are shown in Fig. 3.
Hosmer and Lemeshow's C statistics were C=15.33 (Model I), and
C=9.41 (Model II). Stratification for clinical grade (WFNS I-III vs. IV-
V) did not cause any major changes in the prediction models.

Two patients had a paradoxical velocity reduction after AZ. One
patient with a single contralateral CVR of −14.9% (grey dot, Fig. 2)
developed both DCIclinical and DCIinfarction. Another patient with a ne-
gative CVR recovered without ischemic symptoms or infarction (black
dot, Fig. 2). Notably, the CVR reduction was transient, with CVR of
−15.4% in the first exam and 37.4% when re-tested a week later,
making the within-patient average CVR 11.0%.

4. Discussion

To our knowledge, this is the first study that has used TCD and AZ to
compare CVR in patients with aSAH and UIA. The study indicates that
contralateral CVR may be an independent predictor for clinical dete-
rioration due to DCI after aSAH, but CVR is not able to predict radio-
graphic infarction due to DCI.

Various methods are used to assess CVR [58]. It is unclear if CVR
results are consistent for different methodologies. Comparing results by
multiple methods could elucidate potential differences, but has not
been done. The TCD-AZ test is widely applied for CVR testing. The
method has some advantages compared with other methods (easier set-
up, reduced need for patient co-operation, high safety profile), but also
some disadvantages (potential side effects, dose-dependent effects, and
contraindications for AZ) [58]. We found that CVR was considerably
lower in patients with ruptured aneurysms compared with patients with
unruptured aneurysms and this difference appeared to be bigger on the
ipsilateral side of aneurysm treatment. This is in concordance with

previous CVR-studies using other vasoactive stimuli and measurement
methods [9–12,19].

Since the 1970s, literature has suggested that impaired CVR may be
associated with DCI after aSAH [14–17,21–30]. With the exception of
one study [14], these findings are consistent across different meth-
odologies, study designs, sample sizes, and definitions of DCI. Study
sizes have however been small, and CVR has not been integrated as
standard assessment after aSAH [35,59–61]. In clinical work, a CVR
based prediction model of DCI would be valuable.

In our prediction models, the confidence intervals for the coeffi-
cients of the established predictors all included the value 1 by quite
some margin, whereas the confidence interval for the coefficient of CVR
was 0.89 to 1.00 (Table 4). Note also that 0.94 is the OR per unit change
in CVR, which corresponds to an OR of about 0.54 per change of 10,
and an OR of 0.05 per change of 50. Among patients in our study, CVR
ranges from less than zero to>90. Hence, contralateral CVR appears to
be the strongest predictor of DCI in the model. The confidence intervals
of the AUCs were overlapping, which indicates that CVR did not have
additional value in the prediction of DCI after aSAH. Still, including
CVR in the model caused a substantial increase of optimism adjusted
AUC from 0.82 to 0.86. This warrants further investigation, especially
as a more accurate prediction model for DCI is needed.

Practical considerations such as ease-of-use and patient comfort are
arguments in favor of single CVR testing. Serial testing is time con-
suming and can be challenging due to reduced patient co-operation,
postoperative intracranial air, drains and monitoring equipment in the
intensive care unit. Still, DCI has a dynamic nature, the first measured
CVR had very low predictive power, and serial CVR-measurements
provided added information regarding the dynamic changes in CVR
throughout the acute phase after aSAH.

Overall, 52.4% of patients with aSAH in this study developed DCI.
In comparison, the reported incidence of DCI is 20–35% in larger case
series [1,62–70]. The high frequency of DCI may reflect the high pro-
portion of poor grade patients in our cohort, as poor clinical grade upon
admission is associated with higher risk of developing DCI. Given the
high proportion of patients with large bleedings and poor clinical
conditions in our study, results may not be fully valid for other popu-
lations. Still, stratification for clinical grade (WFNS I-III vs. IV-V) did
not cause any major changes in the prediction model.

In a previous report we argued that ipsi- and contralateral CVR
should be assessed separately, as mean values can conceal side-differ-
ences [41]. One-year follow-up study indicated that patients with un-
ruptured aneurysms had a temporary reduction in ipsilateral CVR. The
present study indicates that ipsilateral CVR is reduced also after treat-
ment for ruptured aneurysms. Ipsilateral CVR reduction thus seem to
occur in all patients after aneurysm treatment, regardless of DCIclinical
status. Acknowledging this side-difference enables improved inter-
pretation of CVR after aneurysm treatment. Aneurysm treatment in it-
self does not induce a substantial CVR reduction on the contralateral
side, making the contralateral CVR more suitable as a predictor since
any DCI-related CVR reduction will be more pronounced on this side
compared with the already reduced CVR on the ipsilateral side.

In concordance with the pre-existing hypothesis that CVR can pre-
dict DCI, we found impaired CVR in patients with DCIclinical.
Surprisingly, we did not find an equivalent reduction in CVR in patients
with DCIinfarction. This is quite a conundrum as one would expect im-
paired CVR for both categories of DCI, assuming clinical symptoms and
infarctions are two time-points in a continuum of the same disease. The
statistical power in our study may be insufficient to detect CVR im-
pairment in patients with DCIinfarction. Still, as DCIinfarction is presumably
associated with more advanced ischemia one would also expect CVR
impairment to be more advanced in patients with DCIinfarction compared
with DCIclinical. However, the pathophysiology of cerebral ischemia
after aSAH is multifactorial and complex [71], and it is possible that
there are differences in the pathogenesis for clinical and radiographical
presentations. Furthermore, we used DCIinfarction as a dichotomous

Table 4
Multivariable predictors of clinical deterioration due to delayed cerebral
ischemia after aneurysmal subarachnoid hemorrhage.

Odds ratio (95% Confidence Interval)

Model I (without
CVR)

Model II (with
CVR)

Candicate predictors
CVR – 0.94 (0.89, 1.00)
Smoking (current vs. former/never) 0.33 (0.04, 2.63) 0.20 (0.01, 3.2)
Hydrocephalus 0.30 (0.02, 4.40) 0.06 (0.00, 4.0)

Established predictors
Modified CT Fisher I-II ref ref
Modified CT Fisher III-IV 3.1 (0.40, 23) 2.1 (0.13, 31)
WFNS I ref ref
WFNS II-III 24 (0.71, 836) 3.2 (0.03, 303)
WFNS IV 69 (1.07, 4450) 31 (0.16, 5892)
WFNS V 5.9 (0.14, 251) 1.0 (0.01, 162)

Demographic characteristics
Male sex 13 (1.14, 150) 37 (2.0, 666)
Age 0.90 (0.82, 0.99) 0.95 (0.85, 1.05)

AUC, crude 0.90 (0.80, 1.00) 0.96 (0.90, 1.00)
AUC, adjusted for optimisma 0.82 (0.69, 0.90) 0.86 (0.70, 0.94)

AUC: area under the receiver operating curve; CT: computed tomography; CVR:
cerebrovascular reactivity; ref.: reference; WFNS: World Federation of
Neurological Surgeons Scale.

a Adjusted for optimism with bootstrapping techniques
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Fig. 3. Discrimination and calibration plots for predictive models with and without CVR. A, The crude receiver operating characteristic (ROC) show the dis-
crimination of the predictive model with and without CVR, not adjusted for optimism. See Table 4. B, The plot shows the calibration (actual outcome versus predicted
outcome) analyzed in four equal groups for both predictive models.
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variable, not taking into account the size or severity of the infarction.
For ethical reasons, moribund patients and patients with increased ICP
were excluded (Table S1), this probably reduced the number of patients
with severe infarctions that was tested and left a higher proportion of
minor infarctions in the studied population. Additional studies with
larger study sample and more comprehensive radiographical ex-
aminations including assessment of infarction size could help clarify if
impaired CVR is associated with DCIinfarction or not.

There are limitations to our study. The study population is small,
although the number of patients (n=42) is higher than in other neu-
rosonological studies (median n=27, range 18–34)
[14,16,19,22,30,72,73]. Further limitations are the lack of external
validation of the prediction model. We did not examine patients ac-
cording to a rigid time schedule. To better compare the aSAH and UIA
groups, and overcome the dynamic nature of CVR over time, CVR
should ideally have been examined in all patients at the same time
intervals after treatment. All patients underwent cerebral imaging with
CT and/or MRI after aneurysm treatment. Among 42 patients with
aSAH, 17 were only evaluated with CT/CTA during their primary
hospital stay. Still, MRI was performed in the majority of patients
during follow-up. Of the 39 patients alive after one year, 36 underwent
MRI; two were tourists and lost to follow-up; and one patient declined
to take the exam due to claustrophobia. We used a well-known classi-
fication system for cerebral infarction [74,75]. Still, the attribution of
infarction etiology after aSAH is difficult and not easily validated [76],
and one cannot be certain whether infarctions are related to DCI or not.
To avoid misclassifying procedure-related infarcts as vasospasm-in-
duced, CT and MRI scans should be performed between 24 and 48 h
after aneurysm occlusion. This was only done in 33 of 42 patients. The
diagnosis of sonographic vasospasm and clinical deterioration due to
DCI was set without blinding of CVR-results. Ideally, the AZ doses
should have been bodyweight-based in all patients in the study, not
only in patients weighing ≥80 kg. Still, the recommended AZ dose of
13 to 18mg/kg [46,77] was achieved in 91.7% of CVR tests. We used
different brands of AZ, yet no difference in CVR has been found when
the three manufacturers were compared [41].

A strength of our study is the methodology. Unlike the majority of
previous studies [14,15,17,21–29], we used standardized definitions of
DCI separated into clinical and radiographic findings [38,39]. We
performed serial testing, which is better adjusted to the dynamic nature
of vasospasm and DCI. We also tested CVR in patients treated for UIA to
increase our general understanding of CVR in patients with intracranial
aneurysms. One sonographer (MLB) performed all ultrasound ex-
aminations and CVR-tests to reduce operator variability. One neuror-
adiologist (GM) diagnosed angiographic vasospasm and cerebral in-
farction, unaware of the patient's clinical and sonographic status.

Central drawbacks with regards to clinical use is that CVR testing is
time consuming and that a number of patients experience side effects
related to AZ, like headache, flushing, nausea or paresthesia [20]. Still,
potential side effects are usually transient and well tolerated [78].
Results are promising, but does not provide firm confirmation that
impaired CVR predicts DCI. There are still unresolved issues, and it is
too soon to recommend routine use of CVR in clinical practice. Results
needs to be externally validated, and the conundrum regarding CVRs
relation to DCIinfarction needs to be investigated. If validation studies
confirm our findings, CVR testing may assist clinicians in early identi-
fication of patients who may benefit from aggressive prophylactic
treatment, closer monitoring, or repeat vascular imaging. Determining
those at greatest risk can help reduce DCI-related poor outcomes while
minimizing treatment complications and titrate length of stay in an
intensive care unit.

Pretreatment CVR testing could assess potential effects on CVR
caused by aneurysm treatment itself. Still, patients were not examined
prior to treatment because of the potential risk of causing aneurysm (re-
)rupture, and to avoid delay in the acute treatment of a ruptured an-
eurysm. CVR can be assessed at an earlier time in patients with UIA

with assumed low rupture risk and no planned treatment, but this will
not give any information about the status of cerebrovascular integrity
immediately before aneurysm treatment or rupture. We did not take
into account variations of intracranial pressure (ICP) or systemic blood
pressure in patients with aSAH. AZ does not cause major changes in
systemic blood pressure [43,79], but may lower ICP by reducing cere-
brospinal fluid secretion [80]. AZ may also increase ICP by cerebral
vasodilation [81] and may not be well suited for patients with increased
ICP. These high-risk patients are closely monitored for development of
DCI and AZ testing might be of less importance. In less severe cases,
however, improved prediction of DCI is highly useful, and can assist
medical and logistic decision making.

5. Conclusions

Impaired CVR on the contralateral side may be an independent
predictor of DCIclinical, and may assist in identifying patients in need of
closer observation after aSAH. An ipsilateral CVR reduction occurs in all
patients after aneurysm treatment, regardless of DCIclinical status,
highlighting the need to consider ipsilateral and contralateral CVR se-
parately. This study underscores the value of serial CVR measurements,
and future studies aiming to investigate the relationship between CVR
and DCI after aSAH should take this into account. Our prediction model
can be useful in clinical practice, but needs to be validated.
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