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Abstract
Purpose of Review For uterine cervical cancer, the recently revised International Federation of Gynecology and Obstetrics
(FIGO) staging system (2018) incorporates imaging and pathology assessments in its staging. In this review we summarize
the reported staging performances of conventional and novel imaging methods and provide an overview of promising novel
imaging methods relevant for cervical cancer patient care.
Recent Findings Diagnostic imaging during the primary diagnostic work-up is recommended to better assess tumor extent and
metastatic disease and is now reflected in the 2018 FIGO stages 3C1 and 3C2 (positive pelvic and/or paraaortic lymph nodes).
For pretreatment local staging, imaging by transvaginal or transrectal ultrasound (TVS, TRS) and/or magnetic resonance imaging
(MRI) is instrumental to define pelvic tumor extent, including a more accurate assessment of tumor size, stromal invasion depth,
and parametrial invasion. In locally advanced cervical cancer, positron emission tomography-computed tomography (PET-CT)
or computed tomography (CT) is recommended, since the identification of metastatic lymph nodes and distant metastases has
therapeutic consequences. Furthermore, novel imaging techniques offer visualization of microstructural and functional tumor
characteristics, reportedly linked to clinical phenotype, thus with a potential for further improving risk stratification and individ-
ualization of treatment.
Summary Diagnostic imaging by MRI/TVS/TRS and PET-CT/CT is instrumental for pretreatment staging in uterine cervical
cancer and guides optimal treatment strategy. Novel imaging techniques may also provide functional biomarkers with potential
relevance for developing more targeted treatment strategies in cervical cancer.

Keywords Cervical cancer . Transvaginal ultrasound . Magnetic resonance imaging . Diffusion-weighted imaging . Positron
emission tomography . Imaging biomarkers

Introduction

Uterine cervical cancer is the most common gynecologic
malignancy worldwide and one of the leading causes of
cancer-related deaths in women, especially among women
living in lower-income countries [1]. Cervical cancers,
until recently, were strictly clinically staged according to
the International Federation of Gynecology and Obstetrics
(FIGO) system on the basis of gynecologic examination,
and if needed cystoscopy, proctoscopy, colposcopy, and
biopsy [2]. Since the FIGO staging revision in 2018
[3•], available imaging and pathological assessments are
incorporated in stage determination. The FIGO stage is
directly related to prognosis and guides the stratification
of patients to different treatment regimens ranging from
primary (radical) surgical resection to definitive chemora-
diation or palliative chemotherapy [4].
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FIGO and TNM Staging

Until 2018, the FIGO staging system for cervical cancer was
solely clinical and thus did not require information on nodal
status. Furthermore, diagnostic imaging findings, known to
substantiate and refine the clinical findings, were not formally
incorporated in the stage. Therefore, in 2018, the European
Society of Gynecological Oncology (ESGO) together with the
European Society for Therapeutic Radiotherapy and
Oncology (ESTRO) and the European Society for Pathology
(ESP) jointly published new guidelines for the staging, treat-
ment, and follow-up of cervical cancer patients where they
recommended dual pretreatment staging by TNM and FIGO
[5]. TNM staging does to a much stronger degree than the
former FIGO 2009, integrate various modalities, including
imaging [6], more closely reflecting the standard clinical prac-
tice in many high-income countries. With the publication of
the new FIGO staging system in 2018, also FIGO acknowl-
edges the large contribution of imaging on evaluating disease
extent, with a direct consequence for treatment and prognosis.
As an example, imaging singly diagnoses regional metastatic
lymph nodes (FIGO stage 3C), hydronephrosis (FIGO stage
3B), and distant metastases (FIGO stage 4B), all with thera-
peutic consequences.

The high incidence rate of cervical cancer in lower-income
countries, with more limited or at least not standard access to
imaging facilities, explains why the FIGO staging system pre-
viously did not incorporate imaging findings. It has been ar-
gued that unequal staging requirements would lessen the com-
parability between countries and thus reduce the statistical
power for global analyses. However, high-income countries
have already introduced various imaging modalities at pre-
treatment cervical cancer staging leading to increased diag-
nostic accuracy and correspondingly more tailored treatment
algorithms; factors that could not be weighed appropriately in
the previous FIGO staging system [5]. The ESGO/ESTRO/
ESP guidelines combining TNM and the clinical (2009) FIGO
as well as the revised FIGO (2018) staging have aimed to
bridge this gap. The FIGO (2018) staging system though does
not recommend any routine (imaging) investigations, and
thus, allocation to final stage in different countries will remain
different. The ESGO/ESTRO/ESP guidelines, a European ini-
tiative, are stricter and state that the (TNM) staging should be
based on various modalities including imaging, pathology and
physical examination, documenting the modality used to de-
termine the stage.

Diagnostic Imaging at Primary Staging

Most centers in high-income countries routinely employ diag-
nostic imaging at primary work-up in cervical cancer.
Accordingly, the National Cancer Comprehensive Network

(NCCN) guidelines [7] for cervical cancer recommend
pelvic magnetic resonance imaging (MRI), chest radiog-
raphy and/or chest/abdominal/pelvic computed tomogra-
phy (CT), or whole-body positron emission tomography-
CT (PET-CT) in the primary diagnostic work-up to as-
sess local tumor extent and metastatic spread. Which
imaging modality each individual patient undergoes is
typically guided by putative FIGO stage, perceived risk
of metastatic disease, and local access to the different
imaging modalities.

For assessment of local tumor extension, MRI has long
been considered the imaging method of choice providing ex-
quisite soft tissue resolution allowing an accurate assessment
of tumor size, localization, and local infiltration as well as
pelvic lymph node enlargement [8, 9]. Transrectal ultrasound
(TRS) or transvaginal ultrasound (TVS) may also provide
detailed and accurate information on local tumor extent when
performed by ultrasound-trained gynecologists [10, 11].

For the assessment of pelvic and paraaortic lymph node
metastases and for the detection of distant metastases in local-
ly advanced cervical cancer, MRI and CT have been widely
used [9]. However, both MRI and CT have low sensitivities
for the detection of metastatic lymph nodes [9], whereas PET-
CT reportedly demonstrates better sensitivity [12, 13]. This
may be related to the size criterion typically employed to
diagnose metastatic lymph nodes at CT and MRI, thus by
definition missing the smaller metastases, and to the fact that
CT and MRI are inferior to PET-CT for differentiation be-
tween metastatic enlarged nodes and hyperplastic enlarged
nodes. However, PET-CT also yields low sensitivity for diag-
nosing small/microscopic metastases [14]. Thus, negative im-
aging findings for lymph node metastases based on any imag-
ing modality do not rule out occult lymph node metastases in
cervical cancer. This is clearly illustrated by a recent random-
ized trial reporting significant rate of upstaging (33%) after
surgical staging (including paraaortic lymph node dissection)
compared to clinical/radiological stage, in locally advanced
cervical cancer patients (FIGO stage 2B-4) [15]. These limi-
tations in diagnosing paraaortic lymph node metastases pre-
operatively are also taken into account in the ESGO-ESTRO-
ESP cervical cancer guidelines (2018), which recommend sur-
gical staging, consisting of paraaortic lymph node dissection
in locally advanced cervical cancer also in patients with neg-
ative paraaortic lymph nodes on imaging [11].

It should also be noted that nonenlarged FDG-PET-CT
positive lymph nodes may pose serious diagnostic challenges.
These lymph nodes are normally considered for biopsy in
order to confirm or rule out metastatic disease, which is nec-
essary to enable the appropriate treatment. Unfortunately,
these normal-sized lymph nodes may sometimes be hard to
identify during surgery, and the biopsies may thus yield false
negative results. Furthermore, whether the PET-positive
lymph nodes actually have been removed at surgery may be
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hard to confirm, unless a new PET-CT examination is
performed.

Novel functional imaging methods within ultrasound
(CEUS, contrast-enhanced ultrasound), MRI (including dy-
namic contrast-enhanced (DCE) MRI and diffusion weighted
imaging (DWI)), hybrid imaging techniques, i.e., positron
emission tomography-magnetic resonance imaging (PET-
MRI) as well as the use of different radiotracers for PET con-
tinue to gain further interest as promising additional imaging
tools in the characterization of various cancer types, including
cervical cancer [10, 12, 16–23, 24•, 25]. This interest origi-
nates in their ability to visualize and quantify functional and
microstructural tumor characteristics preoperatively which
have been shown to be closely associated to clinical pheno-
type, FIGO stage, lymph node metastases, prognostic histo-
logical tumor markers, treatment response, and outcome [10,
12, 16–23]. Thus, both conventional and functional imaging
may potentially provide preoperative imaging biomarkers in
cervical cancer, relevant for treatment and prognosis, and for
monitoring treatment response. These biomarkers may, if fur-
ther translated into the clinic, lead to substantial clinical ben-
efit, enabling improved risk stratification and precision treat-
ment. For example, if nodal metastasis is more accurately
diagnosed preoperatively, patients can be tailored directly to
their right treatment modality, avoiding surgery, and thus
avoiding increased risk of long-term side effects including
lymph edema through the exposure to both surgery and che-
moradiation [26–28]. This will also reduce the treatment costs.
Similarly, patients with tumor burden nearing the upper limit
of surgical resectability will benefit from more accurate char-
acterization and treatment planning. Finally, in patients who
wish to opt for fertility sparing treatment options, the surgical
feasibility and remaining functional cervical length need to be
carefully assessed.

This review provides an overview of current conventional
and novel imaging methods relevant for pretreatment staging
and treatment planning in cervical cancer and their corre-
sponding reported staging performances. The potential of
novel functional imaging methods to yield further imaging
biomarkers to individualize treatment based on improved pre-
operative risk stratification in cervical cancer is also discussed.

Prognosis and Treatment in Relation to FIGO
Stage

The prognosis in cervical cancer is highly dependent on FIGO
stage and ranges from almost 100% 5-year disease-free sur-
vival rates for stage 1A to 5–15% for stage 4 [2, 29]. Imaging
and histological findings that have recently been added in the
FIGO staging system are lymph node metastases. Other fac-
tors of importance include, e.g., minimum thickness of unin-
volved cervical stroma, lymphovascular space invasion

(LVSI), age, comorbidities (e.g., anemia, HIV infection), and
high-risk histological subtypes, e.g., adenosquamous and neu-
roendocrine carcinomas [29–32].

Primary treatment of cervical cancer is guided by clinical
staging results and findings from diagnostic imaging [33]. For
early-stage disease (FIGO (2018) stage 1A, 1B1, 1B2) treat-
ment typically consists of surgery or definitive chemoradia-
tion [34], the former consisting of either conization, simple
hysterectomy, radical hysterectomy or fertility-sparing sur-
gery (conization, simple trachelectomy or radical trachelecto-
my) typically combined with pelvic lymph node staging ex-
cept in FIGO stage 1A1 with lymphovascular space invasion
(LVSI)-negative tumor [34, 35]. However, as chemoradiation
is equally effective in early stage disease (but rendering pa-
tients susceptible to more unpredictable long-term side effects
and menopause), surgery should only be performed if no risk
factors requiring adjuvant radiation treatment, including met-
astatic lymph nodes, are identified [26]. For fertility-sparing
treatment, established eligibility requirements exist which re-
quire preoperative imaging for their assessment: histologically
proven squamous cell carcinoma or usual-type (human
papillomavirus-related) adenocarcinomawith size ≤ 2 cm, dis-
tance from tumor margin to internal cervical os > 1 cm and
absence of suspected lymph node metastases [35]. Radical
surgery may represent a therapeutic option in selected patients
with tumor size > 4 cm (FIGO stage 1B3/2A2) and negative
lymph nodes on radiological staging, in particular in patients
without other risk factors. In locally advanced cervical cancer
(FIGO stage ≥2B), definitive management with concomitant
pelvic chemoradiotherapy (platinum based) and brachythera-
py is the preferred treatment [5, 33, 34]. The planning of
radiotherapy target volume is guided by clinical stage and
very much influenced by diagnostic imaging findings that
allow the delineation of local tumor extension and the identi-
fication of pelvic and paraaortic nodal involvement before
radiotherapy [34, 35]. Additionally to guide target volume in
locally advanced cervical cancer, paraaortic dissection may be
considered before treatment for staging purposes in patients
with negative paraaortic lymph nodes on imaging.

Pelvic Tumor Extent and Distant Spread

Especially in high-income countries imaging is an essential
part of the diagnostic work-up in cervical cancer and support-
ive to determine the TNM and revised FIGO stage with focus
on tumor size, hydronephrosis, and spread beyond the pelvis.
It also identifies imaging findings that yield prognostic infor-
mation relevant for therapy choice, i.e., presence of lymph
node metastasis and more accurate determination of tumor
size. Combined with results from clinical examinations and
histopathological examination of the tumor, preoperative
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imaging defines the optimal therapeutic strategy in cervical
cancer patients.

The diagnostic performances of preoperative imaging
methods for the identification of markers suggesting more
aggressive disease [36, 37], including tumor size > 4 cm, deep
stromal invasion (tumor invading > 2/3 of the stromal wall),
parametrial infiltration, and pelvic lymph node metastases
(Table 1) are critical, if these are to safely guide a tailored
therapeutic approach in cervical cancer patients. Equally crit-
ical is how the reported diagnostic performance based on the
different imaging methods compares with the performance of
the clinical examination, serving as reference (Table 1).
Importantly, treatment planning should exclusively be under-
taken in gynecologic-oncological centers with comprehensive
expertise in diagnosis and management of gynecologic can-
cers having a large volume of patients. The experience of
readers, irrespective of imaging modality, is also critical for
accurate pretreatment staging and assessment of treatment
response.

TVS/TRS

Transvaginal/transrectal ultrasound (TVS/TRS) is typically
performed by the treating gynecologist with the advantage
of being readily available at low cost. The transrectal approach
is a preferred option over transvaginal insertion of the probe in
case of bulky tumor to reduce the risk of bleeding from
exophytic portion of tumor and enables better analysis of a
distal part of the cervix which is often hampered by artifacts
due to tumor bleeding, necrotic friable tissue, and contact
between the probe and the tumor.

The cervical cancer tissue is typically depicted as hyper-
or isoechoic (relative to the surrounding stroma) in adeno-
carcinomas and hypoechoic in squamous cell carcinomas
[10, 53] (Fig. 1a). The reported diagnostic performance of
TVS/TRS for the assessment of tumor size > 4 cm, deep
stromal invasion (tumor invading > 2/3 of the wall), and
parametrial invasion is overall quite good with reported
sensitivities (specificities) [accuracies] of 78% (99%)
[95%], 88–91% (93–97%) [91–93%], and 60–83% (89–
100%) [87–99%], respectively [10, 38–41].

TVS/TRS, when performed at experienced centers, report-
edly yields comparable diagnostic staging performance met-
rics to that of pelvic MRI (Table 1) [10, 35, 40, 42–44].

A European multicenter trial of early stage cervical cancer
even suggests that TVS/TRS may be more accurate than MRI
in detecting post-conization residual tumor and in assessing
parametrial invasion [40], whereas after neoadjuvant chemo-
therapy a lower sensitivity of TVS/TRS than of MRI in de-
tecting residual tumor was reported in a different single-center
study [54]. Furthermore, TVS/TRS has an established role for
assessing the eligibility criteria of fertility sparing treatment,
with high accuracy for measuring distance from tumor to the
internal cervical os and the remaining cervical length after
cone biopsy. Intraoperative ultrasound may also aid the sur-
geon in deciding the optimal excision level securing a maxi-
mum length of tumor-free cervix for future pregnancies.

Consistent reliability of ultrasound diagnostics is, however,
inherently dependent on the experience and skills of the ultra-
sonographer, being able to obtain representative images
depicting the pathology of interest, and ultrasound is thus
especially prone to interobserver variation. Its acceptance is
also dependent on the technical ease of storage and retrieval of

Table 1 Reported diagnostic performance of pelvic imaging methods and diagnostic pelvic examinations for the assessment of large tumor size (>
4 cm), deep stromal invasion (> 2/3 of the stroma), parametrial invasion, and metastatic lymph nodes in cervical cancer

Imaging method/diagnostic
examinations

Tumor size > 4 cm Deep (> 2/3) stromal
invasion

Parametrial invasion Lymph node metastasis

Sens.
(%)

Spec.
(%)

Acc.
(%)

Sens.
(%)

Spec.
(%)

Acc.
(%)

Sens.
(%)

Spec.
(%)

Acc.
(%)

Sens.
(%)

Spec.
(%)

Acc.
(%)

TRUS/TVUS [10, 38–41] 78 99 95 88–91 93–97 91–93 60–83 89–100 87–99 43 96 NR

CT [13, 35, 42–44] NR NR NR NR NR NR 14–55 77–100 74–82 31–58 92–97 NR

Conventional MRI [10, 13, 24•, 35,
40, 42–45]

81 95 93 89 88 88 40–90 77–98 65–97 37–71 83–93 77

DWI [46, 47, 48•] NR NR NR NR NR NR 81–92 78–99 79–98 86 84 NR

MRI with USPIO [49] NR NR NR NR NR NR NR NR NR 91–100 87–94 88–95

FDG PET-CT [13, 35, 43, 50] NR NR NR NR NR NR NR NR NR 34–82 93–100 NR

FDG PET-MRI [24, 25] NR NR NR NR NR NR 90 94 NR 83–91 90–94 87

Sentinel node biopsy [43, 51, 52] NR NR NR NR NR NR NR NR NR 91 100 NR

Clinical examination [41] NR NR NR NR NR NR 52 92 84 NR NR NR

Acc. accuracy, CE contrast enhanced, CT computed tomography, DWI diffusion weighted imaging, FDG fluorodeoxyglucose,MRImagnetic resonance
imaging, NR not reported, PET positron emission tomography, Sens. sensitivity, Spec. specificity, TRUS transrectal ultrasound, TVUS transvaginal
ultrasound, USPIO ultrasmall particles of iron oxide
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especially high-quality dynamic images, where ease of re-
trieval on demand is a must. Due to the small field of view
and limited depth of penetration using high-frequency vaginal
ultrasound probes, TVS/TRS is not considered suited for valid
assessment of pelvic and paraaortic lymph node metastases
(Table 1). However, with technical advances in vaginal probes
allowing increasing depth of penetration, TVS/TRS may to
some extent allow visualization of deeper pelvic structures,
i.e., internal and external iliac lymph nodes, given that no
bowel air obstructs the view.

MRI

Pelvic magnetic resonance imaging (MRI) has long been
established as a valuable imaging method in the primary di-
agnostic work-up of macroscopically visible cervical cancers
(stage ≥1B) [55]. According to established guidelines, MRI
should include at least two T2-weighed sequences in sagittal
(Fig. 1c, f), axial oblique (Fig. 1g), or coronal oblique orien-
tation in relation to the long and short axis of the uterine cervix
[55]. Including an axial T1-weighted sequence from the sym-
physis to the left renal vein is recommended for detection of
enlarged pelvic and/or abdominal lymph nodes. DCE MRI
with T1-weighted series and DWI are optional sequences ac-
cording to European Guidelines on cervical cancer [55].
However, these imaging methods are increasingly routinely
performed at many centers and may also prove particularly
valuable for patients desiring fertility preserving treatment in
order to assess their eligibility [56, 57].

Cervical cancers are typically intermediate hyperintense on
T2-weighted images (Fig. 1c, f–g); the sagittal plane allows
evaluation of tumor extension into the uterine body or the
vagina whereas the axial oblique plane is better suited to as-
sess parametrial invasion. On noncontrast T1-weighted series,
the tumor is usually isointense to the normal cervix.

On DCE-MRI, tumors typically exhibit early enhancement
with hyperintensity relative to the normal cervical stroma in
the arterial phase (~ 30 s postcontrast), and with early wash-
out in the tumor, making it typically hypointense relative to
the normal cervical stroma in the equilibrium and late equilib-
rium phase (~ 2 min and > 2 min post contrast) (Fig. 2a–d).
Smaller tumors typically enhance homogeneously, whereas
larger tumors are frequently necrotic with resulting variable
enhancement, however often exhibiting an enhancing rim that
facilitates tumor delineation [56]. The DCE-MRI cervical tu-
mor enhancement pattern with characteristic early arterial en-
hancement in cervical cancer as opposed to delayed enhance-
ment in endometrial cancer may also aid in differentiating
between these two entities when preoperative biopsies are
inconclusive [58].

DWI is an adjunctional functional MRI sequence which is
increasingly employed for tumor diagnostics, also when locat-
ed within the pelvis [59]. DWI depicts water mobility within

tissues, a characteristic which allows it to be indirectly infor-
mative on tumor microstructure, tumor cellularity, and cellular
membrane integrity. Furthermore, DWI enables quantitative
assessment of diffusion properties based on the calculated
apparent diffusion coefficient (ADC), which is a function of
the exponential decrease in tissue signal intensity with increas-
ing diffusion-weighting (b-values) [56, 60]. Cervical cancer
tissue typically exhibits restricted diffusion with high signal
intensity of the primary tumor and metastatic lymph nodes on
high b-value DWI and corresponding low signal intensity on
the ADC map (Fig. 2e, f).

The reported sensitivities (specificities) [accuracies] of
conventional MRI (primarily based on T2-weighted se-
quences) for the detection of tumor size > 4 cm, deep stromal
invasion, parametrial invasion, and lymph nodemetastases are
81% (95%) [93%], 89% (88%) [88%], 40–74% (77–98%)
[70–97%], and 37–60% (92–93%) [NR], respectively
(Table 1) [10, 35, 40, 42–44]. Importantly, these numbers for
assessment of parametrial invasion exceed those of clinical
examination with reported sensitivities (specificities) [accura-
cies] of 52% (92%) [84%] (Table 1) [41].

Notably, the reported diagnostic performance for the as-
sessment of parametrial invasion and lymph node metastases
has a wide range. Although DCE-MRI usually depicts the
cervical tumor boundaries very precisely, it has not been
shown to yield better local staging accuracy compared to that
of T2-weighted images [56]. The addition of DWI, though,
reportedly yields better sensitivities (specificities) [accuracies]
for the detection of parametrial invasion (81% (78%) [79%])
and lymph node metastases (86% (84%) [NR]) [46, 47]. The
addition of DWI has also been shown to yield higher reader
confidence and better tumor delineation among the less expe-
rienced radiologist, whereas the measured maximum tumor
dimensions are practically identical when derived from DWI
and the conventional series [61].

The use of lymph node specific contrast agent based on
ultrasmall particles of iron oxide (USPIO) has been shown
to dramatically improve the diagnostic performance of MRI
for the detection of metastatic lymph nodes in uterine cancer
with reported sensitivity (specificity) [accuracy] of 91–100%
(87–94%) [88–95%] (Table 2) [49]. Unfortunately, this con-
trast agent has been withdrawn by the manufacturer pending
further validation before potential implementation in the
clinic.

CT

In locally advanced cervical cancer or in early stage disease
with suspicious lymph nodes on pelvic MRI or TVS/TRS,
contrast-enhanced (CE) computed tomography (CT) of the
thorax, abdomen, and pelvis is widely employed at primary
diagnostic work-up for the detection of lymph node metasta-
ses and distant spread. CT images are typically acquired in the
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axial/transverse plane (Fig. 1e), perpendicular to the long axis
of the body, and the images may be reformatted in various

planes. Intravenous contrast is normally recommended, unless
contraindicated.
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Primary tumors, when visible on CE CT, are typically
depicted as slightly hypodense or isodense relative to the sur-
rounding stromal and myometrial tissue (Fig. 1e). For local

staging, CE CT has since long been regarded inferior to MRI
and TVS due to lower CTsoft-tissue contrast resolution. Thus,
recent indices for diagnostic performance of CT for the assess-
ment of large tumor size and deep stromal invasion are not
reported in the literature. For CT assessment of parametrial
invasion and pelvic lymph node metastases, the reported sen-
sitivities (specificities) [accuracies] are 14–55% (77–100%)
[74–82%] and 31–58% (92–97%) [NR], respectively, illus-
trating that pelvic CT has limitations in accurately defining
pelvic tumor extent in cervical cancer (Table 1) [35, 42–44].

However, as published studies including meta-analyses
comparing PET-CT and CT are limited by substantial
between-study heterogeneity, the new ESGO-ESTRO-ESP
joint guideline concludes that there is currently insufficient
evidence to justify recommending PET-CT before CT for
the evaluation of paraaortic lymph node metastases in cervical
cancer [11, 13, 50]. Accordingly, the new ESGO-ESTRO-
ESP guideline recommends CT or PET-CT for assessment of

Fig. 2 Paraaxial T1-weigthed MRI prior to contrast (a), at 30 s
postcontrast (b) and 2 min postcontrast (c) and DWI (e, b = 1000 s/
mm2) with corresponding ADC map (f) depicting a cervical lesion
(arrows) in a 41-year-old woman diagnosed with squamous cell
carcinoma, clinical FIGO stage 1B1 cervical cancer (same patient as in
Figs. 1f, g and 3a, b). The cervical cancer tissue (arrows; red ROIs in a–c)
is isointense relative to the normal stromal tissue (green ROIs in a–c) on
T1-weighted MRI prior to contrast (a), hyperintense at 30 s postcontrast
(b), and slightly hypointense at 2 min postcontrast (c). The corresponding

time-intensity curves of cervical cancer tissue and normal stromal tissue
are depicted in d. The tumor tissue also exhibits restricted diffusion with
hyperintensity on high b-value DWI (e) and hypointensity on the
corresponding ADC map (f). Due to MRI findings suggesting left
parametrial invasion with disrupted stromal ring to the left (best seen in
c and Fig. 1g), this patient was subjected to primary brachytherapy
followed by chemotherapy (cisplatin). The patient had no signs of
recurrence at 2.5 years posttreatment
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�Fig. 1 Bulky cervical cancer depicted by grayscale TRS (a), color
Doppler TRS (b), and sagittal T2-weigthed MRI (c) in a 26-year-old
patient with squamous cell carcinoma, clinical FIGO stage 1B2. The
cervical cancer lesion (white arrows) appears hypoechoic on TRS (a)
and with high perfusion on color Doppler (b). The same tumor is
hyperintense on T2-weighted MRI (c). After surgical removal
macroscopic transversal section (d) shows tumor infiltrating the anterior
lip of the cervix (white arrows), while the endocervical canal (yellow line)
and posterior labium is intact (yellow tip showing external cervical os).
Axial contrast-enhanced CT (e) depicting a slightly hypodense cervical
lesion (arrows) relative to the surrounding stroma in a 54-year-old patient
with squamous cell carcinoma, clinical FIGO stage 1B1. Sagittal (f) and
paraaxial (g) T2-weighted MRI depicting a hyperintense cervical lesion
(arrows) in a 41-year-old woman with squamous cell carcinoma, clinical
FIGO stage 1B1 cervical cancer (same patient as in Fig. 2 and Fig. 3a, b).
The incidentally detected hyperintense lesion in the uterine cavity (f,
black arrow) was diagnosed as a benign endometrial polyp



nodal and distant disease in locally advanced cervical cancer,
whereas PET-CT is preferred in patients eligible for chemora-
diotherapy with curative intent [11].

PET-CT

Positron emission tomography-computed tomography (PET-
CT) combines two imaging techniques, simultaneously visu-
alizing both morphologic and metabolic tumor characteristics,
thus allowing co-registration of structural and functional data
in fused images (Fig. 3). PET-CT is increasingly employed in
the preoperative staging of various cancers, including gyneco-
logic cancers [35, 43, 50, 73, 74]. The most common radio-
tracer is fluorodeoxyglucose (18F-FDG), a glucose analogue
that preferentially accumulates in malignant tissue due to its
higher rate of glycolysis. Due to limitations of spatial resolu-
tion, FDG PET-CT is, however, unlikely to replace MRI for
assessing primary local tumor extent.

For the detection of pelvic lymph node metastases FDG
PET-CT, although yielding slightly lower diagnostic perfor-
mance than sentinel node biopsy (Table 1) [43, 51, 52], seems
to outperform conventional MRI, CT, and US, making it a
very attractive noninvasive imaging method particularly in
patients at high risk of metastatic disease [35, 43, 50, 52].
The reported sensitivities (specificities) of FDG PET-CT in
the detection of lymph node metastases are 72–75% (93–
100%) (Table 1) [35, 43, 50, 52]. The ability to correctly
identify metastatic lymph nodes is, however, largely affected
by lymph node size; node-based sensitivities of 100%, 67%,
and 13% in metastatic nodes ≥ 10 mm, 5–9 mm, and ≤ 4 mm,
respectively, have been reported in uterine cancers [14]. A
down side of the method is a high percentage of nonspecific
incidental findings urging additional investigations, patient
distress, and raising costs.

Importantly, FDG PET-CT also provides important infor-
mation about distant spread. In a multicenter trial, Gee et al.

Table 2 Potential imaging biomarkers in cervical cancer

Imaging modality
and/or parameter
(i.e., imaging
biomarker)

Imaging characteristics of primary tumor
predicting aggressive features/disease

Possible link between imaging
biomarker and tumor
pathophysiology

Proposed tumor cutoffs
for risk stratification

Tumor size all
imaging
modalities

Large tumor size predicts deep stromal invasion,
parametrial involvement, lymph node metastases
and poor prognosis [38, 45, 62•, 63]

Large tumor size is a marker
of aggressive disease

Tumor size: > 20.5 mm predicts
deep stromal invasion [38];
> 30 mm predicts parametrial
invasion [45]

TVU

Echogenicity Isoechoic and hyperechoic tumors, relative to normal
cervical stroma, are more common in
adenocarcinomas while hypoechoic tumors are
often found in squamous cell carcinomas [10, 53]

Doppler parameters Abundant vascularization is associated with
aggressive disease and poor treatment response
[10, 16]. Low VI predicts poor treatment response
in LACC [64]

Increased vascularization is marker
of aggressive disease.

Tumor hypoxia predicts resistance
to therapy.

PI < 0.82 predicts high-risk
disease [16]

MRI

ADC-value (based
on DW MRI)

Low tumor ADC and low ADCmin predict
squamous cell subtype, high grade, PMI and
recurrence/metastases/poor survival
[17–19, 47, 65]

Textural tumor ADC features predict histologic
grade and nodal metastases [66, 67]

Increased cellularity and
intratumor heterogeneity of
water movement predict
aggressive phenotype

ADC < 0.9 for PMI [47]
ADC < 0.85 and ADCmin ≤ 0.61 for

poor prognosis [17, 18]

Blood flow (based
on DCE-MRI)

Pretreatment tumor DCE-MRI markers reflecting
reduced blood flow/contrast enhancement predict
poor treatment response and survival
[21, 22, 68, 69]

Tumor hypoxia is linked to therapy
resistance and aggressive
disease

LETV > 0.6 cm3 predicts poor
outcome [22]; Fp < 50th percentile
predicts poor outcome [69]

FDG PET-CT High values of SUVmax, SUVmean,MTV, and TLG in
tumor and/or in lymph nodes predict advanced
disease and recurrence [63, 70, 71]

Increased tumor metabolism is
linked to advanced disease and
aggressive phenotype

Tumor SUVmax ≥ 15.6,
MTV > 48 mL, and nodal
MTV > 10 mL predict poor
prognosis [17, 70, 72]

ADC apparent diffusion coefficient (10−3 mm2 /s), mean value unless otherwise specified, ADCmin minimum ADC value, AP anteroposterior, CC
craniocaudal, DCE dynamic contrast enhanced, DW diffusion weighted, Fp plasma flow, FDG fluorodeoxyglucose, LACC locally advanced cervical
cancer, LETV low-enhancing tumor volume, LNM lymph node metastases, MRI magnetic resonance imaging, MTV metabolic tumor volume, NR not
reported, PET positron emission tomography, PI pulsatility index, PMI parametrial invasion, SUV standard uptake value, TFD tumor free distance to
serosa, TLG total lesion glycolysis, TV transverse, TVS transvaginal ultrasound, VI vascularization index
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[75•] found that FDG PET-CTyielded high specificity (98%),
positive predictive value (79%) and sensitivity of 55% for
detecting distant metastases (defined as nonregional lymph
nodes and lesions in the peritoneum, bone, liver, and lung)
in patients with locoregional advanced cervical cancer.
Furthermore, unexpected distant metastases were diagnosed
in 14% of patients with locoregional advanced cervical cancer
[75•]. Thus, the use of FDG PET-CT, particularly in high-risk
cervical cancer patients, would potentially benefit patients by
enabling more tailored therapy, obviating overly aggressive
procedures in patients not eligible for curative therapy.

PET-MRI

FDG PET-MRI is a novel hybrid imaging technique allowing
simultaneous acquisition of MRI images, providing excellent
soft-tissue contrast yielding high-resolution morphological in-
formation, combined with PET images, providing metabolic
information from the same tissue [24•, 25]. In cancer patients
staged by both MRI and FDG PET-CT, e.g., locally advanced
cervical cancer, hybrid PET-MRI seems particularly attractive,

providing multiparametric tumor imaging, with lower radia-
tion dose exposure than that of PET-CT. A few studies explor-
ing the value of FDG PET-MRI at primary diagnostic work-up
in cervical cancer patients have been published [24•, 25].
Interestingly, one of the studies reported higher sensitivity
and specificity for the identification of lymph node metastases
and distant metastases based on PET-MRI compared to that of
MRI alone [24•].

Interobserver Agreement for Staging

Good interobserver agreement is crucial for the usefulness of a
diagnostic test, and the interobserver agreement for any test
should ideally be assessed prior to implementation in the clin-
ic. For pretreatment staging byMRI and CT in cervical cancer,
the diagnostic performance metrics as well as the interobserv-
er agreement based on MRI are reportedly significantly better
than that based on CT [44], making MRI clearly superior for
cervical cancer staging. Nevertheless, some limitations in
agreement are reported also for MRI with reported kappa

Fig. 3 FDG PET-CT in a 41-year-old woman with squamous cell
carcinoma, clinical FIGO stage 1B1 cervical cancer (a, b; same patient
as in Fig. 1f, g and Fig. 2), and a 70-year-old woman with squamous cell
carcinoma, clinical FIGO stage 3B cervical cancer (c, d). The primary
cervical cancer lesions are typically highly FDG-avid (white arrows). The

slightly FDG avid lesion (black arrow) in the uterine cavity depicted in a
and b (also seen in Fig. 1f) was verified as a benign endometrial polyp.
The highly FDG-avid tumor mass close to the left pelvic side wall (open
white arrows; c and d) represents a metastatic iliac lymph node
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values for staging of 0.44–0.75 [44, 76] and for the assessment
of parametrial invasion of 0.70–0.75 [48•]. Interestingly, also
for the assessment of clinical FIGO stage (being primarily
based on pelvic examination under anesthesia), moderate (κ
value of 0.49) interobserver agreement has been reported [77],
illustrating that limitations in interobserver agreement are, to
various extents, shared by all established methods in routine
clinical use.

Novel Imaging Methods for Staging

Current intensive research efforts on novel imaging tech-
niques as well as new contrast agents or tracers may provide
improved imaging tools, potentially enabling more accurate
depiction of tumor extent and better detection of metastatic
disease in cervical cancer. Furthermore, novel imaging tech-
niques allow depiction and quantification of tumor character-
istics that previously could not be assessed and that, if they
prove relevant for prognosis and treatment in cervical cancer,
may serve as biomarkers guiding therapy.

Imaging Biomarkers

A biomarker is defined as a “characteristic that is objectively
measured and evaluated as an indicator of a normal biologic
processes, pathogenic processes, or pharmacologic response
to a therapeutic intervention” [78]. Imaging-based tumor ex-
tent as well as microstructural and functional tumor character-
istics may be closely linked to clinical phenotype, and may
thus serve as biomarkers improving risk stratification and tai-
loring therapeutic strategy in cervical cancer (Table 2).

Tumor Size

All conventional diagnostic imaging methods yield informa-
tion on primary tumor size, and a large tumor has long been
known to predict advanced stage and poor prognosis in cervi-
cal cancer (Table 2) [45, 62•, 63]. Two recent studies have
found that primary tumor size > 20.5 mm predicts deep stro-
mal invasion [38] and that primary tumor size > 30 mm pre-
dicts parametrial invasion [45]. Thus, by employing cutoff
values for primary tumor size, pretreatment tumor size mea-
surements may be incorporated into risk stratification models
that potentially may guide therapy.

Ultrasound Echogenicity and Doppler

Tumor echogenicity and Doppler characteristics at preopera-
tive US may potentially provide additional information rele-
vant for stage and prognosis in cervical cancer. Interestingly,
isoechoic and hyperechoic tumors, relative to normal cervical

stroma, are more common in adenocarcinomas while
hypoechoic tumors are more often observed in squamous cell
carcinomas [10, 53]. Abundant vascularization (Doppler ul-
trasound) in primary tumor is shown to be associated with
high-risk histological and clinical features [16]. Furthermore,
tumor US-derived 3D vascular indices prior to chemoradia-
tion therapy are reportedly associated with treatment response
in locally advanced cervical cancer [64]. Interestingly, the
lower vascular indices observed in patients with poor treat-
ment response is likely to be linked to tumor hypoxia, which is
known to induce therapy resistance in various solid tumors
[64].

ADC Reflecting Microstructure

DW MRI with measurement of tumor ADC value provides
additional information on tumor microstructure with potential
relevance for staging and prediction of aggressive disease. In
cervical cancer, low tumor ADC value and low minimum
ADC value have been shown to be associated with squamous
cell subtype, high grade, parametrial invasion, and poor sur-
vival [17, 19, 47, 65]. Furthermore, an early increase in tumor
ADC during chemoradiation is associated with tumor size
reduction and therapeutic response; thus, tumor ADC may
represent a potentially useful biomarker of early treatment
response [79–81].

DCE-MRI Depicting Microvasculature

DCE MRI is a novel functional imaging technique allowing
quantitative assessment of tissue perfusion and vascular per-
meability, enabling characterization of tumor microvascula-
ture and the angiogenic profile of tumor tissue in vivo [82].
Tumor hypoxia, which is a characteristic feature of various
solid tumors and believed to promote tumor progression and
resistance to chemoradiation treatment [83, 84], may thus play
a pivotal role in the pathogenic mechanisms leading to tumor
growth and metastatic spread, in cervical cancer. Pretreatment
DCE-MRI tumor parameters, e.g., low-enhancing tumor vol-
ume (LETV) and low-enhancing tumor fraction (LETF), have
been reported to predict treatment response and survival in
cervical cancer suggesting an interesting link between putative
microvascular tumor hypoxia depicted by advanced imaging
methods and poor radioresponsiveness in cervical cancer [22,
68]. This is supported by a recent DCE-MRI study which
calculated plasma flow (Fp), finding that low tumor Fp was
associated with poor prognosis in cervical cancer [69].

FDG PET-CT Depicting Metabolism

Paralleling the well-documented feasibility of FDG PET-CT
for detecting regional lymph node metastases and distant
spread in cervical cancer [35, 75•], the potential value of
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FDG PET-specific quantitative tumor parameters for
predicting clinical and histologic tumor characteristics and
prognosis in cervical cancer has been increasingly explored
[17, 63, 70–72]. Interestingly, high values for the primary
tumor metabolic PET parameters; maximum and mean stan-
dard uptake value (SUVmax and SUVmean), metabolic tumor
volume (MTV), and total lesion glycolysis (TLG) have been
linked to advanced stage and high-risk disease in cervical
cancer [63, 70, 71, 85], suggesting that increased tumor me-
tabolism is a marker of a biologically more aggressive cancer
phenotype. Metabolic parameters may also provide markers
for risk stratification that may aid in providing better individ-
ualized therapy in the future [17, 70, 72].

In Vivo MR Spectroscopy Reflecting Biochemistry

In vivo MR spectroscopy (MRS) obtains biochemical in-
formation noninvasively from a selected volume of inter-
est, typically tumor tissue, and signals from chemical nu-
clei (typically hydrogen) are registered. MRS has long
been established to be a valuable adjunct to conventional
MRI in the assessment of, e.g., tumors in the brain, pros-
tate, and breast [86]. Tumor (1H) MRS from 3T MRI was
recently reported to yield elevated tumor lipid resonance
levels and characteristic spectra predicting poor prognos-
tic HPV genotypes and persistent disease following con-
current chemoradiation in cervical cancer [87].

Textural Imaging Features Reflecting Tumor
Heterogeneity

Texture analysis is an image postprocessing technique an-
alyzing a set of quantified metrics to assess the spatial
arrangements of densities/intensities in a volume of inter-
est. Quantitative measures of image heterogeneity have
been shown to be closely linked to tissue markers of het-
erogeneity, hypoxia, and angiogenesis and have also been
shown to predict survival for various cancers [88]. In cer-
vical cancer, texture analysis of tumor regions of interest
(ROIs) from ADC maps has been shown to yield texture
markers predicting high histological grade and lymph node
metastases [66]. Interestingly, high-dimensional sets of im-
aging features, often referred to as radiomic features, based
on both MRI and PET-CT have also been shown to reveal
textural markers associated with prognosis and response to
therapy in cervical cancer [67, 89].

Novel PET Tracers

A wide range of novel PET radiotracers are currently being
developed with the aim of depicting and quantifying relevant
biological processes and molecular targets in clinical oncolo-
gy. PET imaging of cervical cancer with tracers specific for

hypoxia, i.e., tracers based on fluorine-labeled nitroimidazoles
(e.g., 18F-MISO and 18F-FAZA) or copper-labeled diacetyl-
bis(N4-methylthiosemicarbazone) (60Cu-ATSM) analogues,
have been tested in a few small cervical cancer patient series,
hinting at a relation between increased uptake of thesemarkers
and reduced survival [90]. Nevertheless, the potential of PET-
CT using hypoxia tracers in cervical cancer is still largely
unexplored. Furthermore, imaging using other novel PET
tracers specifically targeting cellular mechanisms (e.g., prolif-
eration, amino acid metabolism, angiogenesis, and apoptosis),
which may be dysregulated in tumor cells, may lead to better
understanding of the biologic processes relevant for tumor
progression and metastatic spread in cervical cancer in the
future. Further testing of novel PET tracers prior to possible
clinical implementation in cervical cancer patient care is thus
largely awaited.

Conclusions

Imaging during the primary diagnostic work-up in cervical
cancer is essential to accurately assess tumor extent and met-
astatic disease, and thus select the best therapeutic option; and
with the revised FIGO staging and the dual TNM/FIGO stag-
ing system according to the ESGO/ESTRO/ESP guideline its
role is further emphasized. For pretreatment staging, imaging
by TVS/TRS and/or MRI is instrumental to assess local pelvic
tumor extent, and PET-CT or CT has a similar role to assess
lymph nodemetastases and distant spread. Furthermore, novel
imaging techniques offer visualization of microstructural and
functional tumor characteristics that are linked to clinical phe-
notype, thus with a potential for improving risk stratification
and treatment. Novel imaging biomarkers should, however, be
thoroughly assessed for reproducibility and studied in combi-
nation with currently standardly applied biomarkers in cervi-
cal cancer; only then the potential added value of new imaging
biomarkers for cervical cancer patient care in the future can be
fully assessed.
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