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There is a large array of methods to extract knowledge and perform ecological fore-
casting from ecological time-series. However, in spite of its importance for data-min-
ing, pattern-matching and ecological synthesis, methods to assess their similarity are 
scarce. We introduce distantia (v1.0.1), an R package providing general toolset to 
quantify dissimilarity between ecological time-series, independently of their regular-
ity and number of samples. The functions in distantia provide the means to compute 
dissimilarity scores by time and by shape and assess their significance, evaluate the 
partial contribution of each variable to dissimilarity, and align or combine sequences 
by similarity. We evaluate the sensitivity of the dissimilarity metrics implemented in 
distantia, describe its structure and functionality, and showcase its applications with 
two examples. Particularly, we evaluate how geographic factors drive the dissimilarity 
between nine pollen sequences dated to the Last Interglacial, and compare the tem-
poral dynamics of climate and enhanced vegetation index of three stands across the 
range of the European beech. We expect this package may enhance the capabilities of 
researchers from different fields to explore dissimilarity patterns between multivariate 
ecological time-series, and aid in generating and testing new hypotheses on why the 
temporal dynamics of complex-systems changes over space and time.
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Background

Multivariate ecological time-series (METS hereafter) are ordered sequences of observa-
tions of a set of variables describing the state of an ecological system at given times 
(Turchin and Taylor 1992). Good examples of METS are the point-data produced by 
automatic meteorological stations and buoys, and the spatio-temporal data provided by 
remote sensors, climate simulations or palaeoecological studies, among many others.

There is no shortage of methods to extract knowledge from METS and perform 
ecological forecasting. Frequentist, Bayesian and machine learning methods can help 
establish links between abiotic drivers and biotic responses (Thackeray et al. 2016), 
evaluate ecological memory processes (Ogle et al. 2015), detect critical transitions in 
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ecosystem dynamics (Dakos et al. 2012), or establish causal 
links between environmental drivers and biotic responses 
(Sugihara  et  al. 2012). However, the comparison of multi-
variate time-series, in spite of its importance for data-mining, 
pattern-matching and ecological synthesis, has received far 
less attention (but see Wang et al. 2013, Górecki and Łuczak 
2015), and open-source tools to assess the dissimilarity 
between METS are relatively scarce.

According to Wang et al. (2013), available methods to com-
pare METS can be divided in those that assess dissimilarity 
by time (lock-step methods), and those that assess similar-
ity by shape (elastic methods). Lock-step methods compare 
METS of the same dimensions and only require the compu-
tation of a distance (e.g. Euclidean) between paired samples. 
However, lock-step methods are generally sensitive to differ-
ences between METS due to time shifts in temporal patterns 
(Wang et al. 2013). Elastic measures tackle this issue by assum-
ing that the values of the gradient over which samples have 
been taken (time, depth) are either unavailable, too uncertain 
to be taken into account, or irrelevant due to differences in 
context between the METS (e.g. sites at different latitudes or 
elevations). The goal of elastic measures is to align the shapes 
of the compared METS by pairing their most similar samples 
while maintaining sample order. This particular property 
makes elastic dissimilarity measures very attractive to analyse 
METS taken at different temporal resolutions, sites where time 
shifts are to be expected due to large latitudinal or elevational 
gradients (Zhang et al. 2004), or data for which defining the 
time or age of the samples can be expensive or inaccurate, as is 
often is the case of palaeoecological datasets.

A pioneer example of elastic dissimilarity measures applied 
to ecological data is the sequence slotting algorithm (Birks and 
Gordon 1985), which aims to compare and combine strati-
graphical sequences. The original variants of this algorithm 
were first implemented as the Fortran programs SLOTSEQ 
and SEQSLOT (Gordon and Birks 1974, Birks and Gordon 
1985, Clark 1985). It was later extended by Maher (1993) 
to improve its graphical output, and finally implemented as 
the Windows program CPLslot (Hounslow and Clark 2016). 
Sequence slotting has remained restricted to palaeoecology and 
palaeoclimatology, where it has been used to compare pollen 
or other fossil stratigraphical sequences (Lotter  et  al. 1992, 
Anderson et al. 1994) and palaeoclimatic and palaeomagnetic 
data (Thompson and Clark 1989, Maher and Thompson 
1995). The sequence slotting method shares most of its internal 
logic with dynamic time warping (DTW, Berndt and Clifford 
1994). DTW evaluates the extent to which one time-series has 
to be reshaped in order to match another reference time-series. 
The method is implemented in the R packages ‘dtw’ (Giorgino 
2009) and ‘Tsdist’ (Mori et al. 2016), and has been used to 
align remote sensing data with different temporal resolutions 
(Baumann  et  al. 2017), cluster areas with similar temporal 
dynamics (Suominen 2018), and to correlate stratigraphical 
data from different sediment cores (Trauth et al. 2018).

In this paper we present the R package distantia (Benito 
and Birks 2019), which contributes to the ecosystem of open-
source packages aimed at comparing METS by expanding on 

the original ideas of the sequence slotting method through new 
features that may be of interest for both ecologists and palaeo-
ecologists. Among others, the package provides functions to: 1) 
prepare and transform the data; 2) compute dissimilarity scores 
based on lock-step and elastic methods; 3) apply a restricted 
permutation test to assess the significance of the dissimilarity 
values; 4) evaluate the individual contribution of each variable 
to the overall dissimilarity of the compared METS.

Methods and features

Dissimilarity metrics

The R package distantia implements the metric Ψ (Gordon 
and Birks 1974; Eq. 1). It computes the dissimilarity between 
two METS A and B (with lengths m and n) as the sum of dis-
tances between their respective samples (ABbetween), normal-
ized by the sum of distances between the consecutive samples 
within each sequence (ABwithin). This normalization allows the 
comparison of Ψ values across pairs of sequences with differ-
ent lengths.

ψ = −AB AB
AB

between within

within 	
(1)

The component ABbetween can be computed in different ways 
depending on the nature of the data and the objective of the 
analysis. If the comparison is made by time with a lock-step 
method, then A and B must have the same length, and the 
distances between their respective samples with the same 
index i are computed through a distance function D (Eq. 2).
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If A and B have a different number of samples, or the com-
parison is to be made by shape, an elastic method relying 
on a dynamic programming algorithm is used. The original 
formulation (Gordon and Birks 1974) follows an orthogonal 
search pattern within the distance matrix (Eq. 3, Fig. 1), and 
aims to intercalate the samples of both sequences (hence its 
original name, sequence slotting).
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Additionally, the distantia package introduces a diagonal 
search mode (Eq. 4), which can both intercalate and/or pair 
together samples of each sequence based on their similarity.
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Equations 3, 4 can generate long straight segments (Fig. 1) 
called ‘blocks’ in sections where no best-match between sam-
ples of each METS can be found. Blocks inflate the value of 
ABbetween and Ψ artificially because the distance to the same 
sample of one of the sequences is counted several times on 
each block. This issue is particularly problematic when two 
sequences represent the same system dynamics, but one of 
them has a lower number of samples due to missing data 
or differences in sampling resolution. The distantia package 
incorporates an algorithm, activated by the option ignore.
blocks = TRUE, that identifies straight segments within the 
least-cost path generated by Eq. 3, 4, which are then ignored 
during the computation of Ψ. This option yields more con-
servative dissimilarity scores when the compared sequences 
have very different numbers of rows.

Finally, the component ABwithin of Eq. 1, which represents 
the cumulative sum of dissimilarities between consecutive 
samples of each sequence, is computed according Eq. 5.
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Structure and features

The distantia package has a modular design, and offers a set of 
core functions that perform the basic operations required to 
assess dissimilarity between pairs of METS, and a set of larger 
functions that combine the operations of the basic functions 
to perform more complex tasks (Table 1).

The features of the package are applicable to a wide range of 
ecological problems aiming to answer the question ‘do these 
sites/times show the same patterns?’. Comparisons by time 
can be applied to METS produced by meteorological sta-
tions, remote sensing platforms and other automatic devices, 
while comparisons by shape are useful when a temporal shift 

Figure 1. Distance matrix between two METS A (lower panel) and 
B (left panel) of 10 samples each when using a lock-step method 
(light grey diagonal line), an elastic measure (dark grey line) and an 
elastic measure considering diagonals (black dotted line). Straight 
segments with a length of more than two samples that run parallel 
to the matrix axes are called ‘blocks’.

Table 1. Main functions of distantia.

Name Function Input Output

workflowPsi() Computes Ψ among two or more METS. 
Implements lock-step and an elastic methods.

A data frame with  
two or more METS.

A data frame with sequence  
names and Ψ values.

workflowPsiHP() High-performance version of the function above Same as above (SAA) SAA
workflowNullPsi() Computes Ψ on restricted permutations  

of the input data. 
SAA data frames with null Ψ values  

and the probability of  
obtaining a given Ψ under the 
null hypothesis.

workflowNullPsiHP() High-performance version of the function above. SAA SAA
workflowImportance() Jackknife approach to compute the  

contribution of each variable to Ψ.
SAA Absolute and relative change (%) 

in Ψ when each variable is 
removed.

workflowSlotting() Combines two sequences into one. A data frame with  
two METS.

A data frame with the combined 
sequences.

workflowPartialMatch() Finds the section of a longer sequence that  
better matches a shorter sequence. 

SAA A data frame with matching 
sections of the longer sequence 
and their Ψ with the short 
sequence.

workflowTransfer() Transfers an attribute (generally time or age)  
from one sequence to another.

SAA The sequence with the transferred 
attribute.
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between sequences is expected, as it would be the case with 
palaeoecological or phenological data.

As a novel feature, distantia implements the function 
workflowImportance() to quantify the partial contribution 
of each variable of the compared dataset on their dissimilar-
ity. This feature aims to answer the question ‘why are these 
sequences different?’ by applying a jackknife approach, which 
consists of computing partial Ψ values by removing one vari-
able at a time. This feature is illustrated with an example in 
the following section.

The package also provides the function workflowPsiNull() 
which applies a restricted permutation test to estimate the 
probability of finding a given Ψ value by chance. The permu-
tation occurs at a local temporal scale, by switching randomly 
selected datapoints, independently by column, with one of 
their immediate column neighbours. This method assumes 
that METS observed from the same system must show similar 
overall trends and local differences resulting from the observa-
tional error and the inherent randomness of ecological systems.

Examples

In this section we describe two examples of the potential 
applications of distantia in different subfields of ecology: 1) 
comparison of nine central European pollen sequences dated 
to the Last Interglacial; 2) comparison of the environmen-
tal and vegetation dynamics of three plots of Fagus sylvatica 
located across its presence range in Europe. In both cases, dis-
similarity was computed with an elastic method considering 
diagonals and block removal.

Comparison of pollen sequences dated to the Last 
Interglacial

The Last Interglacial (hereafter, LIG) was a warm period 
dated to 129–116 ka BP, and is well represented in the 
European pollen record (Tzedakis 2007). Here we use dis-
tantia to: assess dissimilarity between nine unevenly sampled 
pollen sequences from central Europe (Supplementary mate-
rial Appendix 1 Table A1); quantify the influence of geo-
graphic features on the dissimilarity among sequences; and 
identify pollen types contributing to the differences between 
sequences.

Ψ values show that the sites are organized into three groups 
according to their similarity (Fig. 2a). We fitted the GLM 
model Ψ ~ distance + difference in elevation + difference in lati-
tude, and found that difference in elevation is the most rel-
evant predictor of dissimilarity between the pollen sequences 
(Supplementary material Appendix 1 Table A3; Fig. 2b).

Two sites (Achenhang and Jammertal, Fig. 2c) show a dis-
proportionate dissimilarity (Ψ = 2.507, p = 0.986) considering 
their distance (184 km) and elevation difference (~233 m). To 
better understand this discrepancy we assess the contribution 
of each pollen type to their dissimilarity with workflowIm-
portance(). We find that Ψ is reduced by 22.7% when Picea 
is removed, followed by Corylus (9.91%), Carpinus (7%) and 

Abies (5.76%). These differences are explained by the expan-
sion of Picea into the Alps (Achenhang) at the beginning of 
the LIG (Ravazzi 2002), while Jammertal shows a succes-
sion characteristic of a lowland, with an early expansion of 
Corylus and a climate optimum featuring a high abundance 
of Carpinus (Klotz et al. 2003).

Functional dynamics of three populations of Fagus 
sylvatica

The European beech Fagus sylvatica is a drought-sensitive tree 
dominant in central and western Europe. Here we evaluate 
the dissimilarity in climate and photosynthetic dynamics 
between three evenly sampled METS of the same length rep-
resenting mono-specific stands in Spain (ES), Germany (DE) 

Figure  2. Analysis of similarity/dissimilarity between LIG pollen 
sequences. (a) Similarity (Ψ−1) between the sites Achenhang (Ach), 
Glowczyn G2 (G_G), Grobern94 (G94), Jammertal (Jmm), Kletnia 
Stara (K_S), Krumbach I (K_I), Naklo (Nkl), Ostrow (Ost) and 
Warszawa Kasprzak (W_K); (b) dissimilarity versus difference in 
elevation; (c) pollen curves of taxa contributing to the dissimilarity 
between Achenhang and Jammertal.
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and Sweden (SE; Supplementary material Appendix 1 Section 
1.2) selected from the EU Forest database (Mauri  et  al. 
2017). We used the ‘MODISTools’ R package (Tuck et  al. 
2014) to retrieve EVI time-series (enhanced vegetation index 
from 2001 to 2018) for these sites and coupled them with cli-
mate time-series from the CRU TS v. 4.03 (Climate Research 
Unit) dataset (Harris et al. 2014).

Using distantia we find that stands in DE and SE were more 
similar between them than with ES. All variables contributed 

to dissimilarity between sites, with the exception of climate 
variables when comparing the DE and SE sites (Table 2).

When grouping the data by year to better understand 
temporal trends in dissimilarity patterns and variable contri-
bution to dissimilarity, we note that all locations are increas-
ing their dissimilarity throughout time, albeit frequently 
interrupted by punctuated events, likely linked to cold and 
warm spells (Fig. 3a). The breakdown of dissimilarity by vari-
able shows that EVI is the variable with the strongest positive 

Table 2. Dissimilarity between three Fagus sylvatica stands in Spain, Germany and Sweden; Ψ-null is the null expectation of Ψ, computed 
on 999 restricted permutations of the input datasets; p is the proportion of Ψ-null values that were lower than Ψ. Columns Temperature, 
Rainfall and EVI represent Ψ % reduction when each variable is removed.

Sites Ψ Ψ-null p Temperature Rainfall EVI

Spain Germany 1.2845 1.3502 0.075 11.46 11.66 12.71
Spain Sweden 1.4009 1.4112 0.607 10.18 7.20 10.94
Germany Sweden 0.8351 1.0060 0.001 −0.70 3.57 10.66

Figure 3. Dissimilarity over time between three stands of Fagus sylvatica in Spain (SP), Germany (GE) and Sweden (SE, panel a), and partial 
contribution of each variable to dissimilarity (panel b).
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influence on the increasing dissimilarity, followed by tem-
perature (Fig. 3b).

This trend results from EVI values increasing across sites 
during the winter and spring months, but only in SE these 
are increasing during the summer as well. Meanwhile, ES 
and DE populations show decreased EVI values during these 
months (Supplementary material Appendix 1 Fig. A10–
A12). Increased summer temperature linked to lower rainfall 
is the likely explanation, but the data available (12 cases per 
year) are insufficient to establish the statistical significance of 
these findings.

Sensitivity analysis of dissimilarity measures

We analyse the sensitivity of the dissimilarity measures avail-
able in distantia on the example datasets climate and pol-
lenGP provided with the package (Supplementary material 
Appendix 1 Section 2 for further details) under two different 
scenarios: 1) increasing differences in data values of initially 
identical datasets; 2) increasing differences in the number of 
rows between otherwise identical datasets. In scenario 1, an 
increasing number of data-points is randomly selected and 
modified by adding or subtracting a random percentage of 
their own value, while in scenario 2, an increasing number 
of rows is randomly selected and removed from one of the 

compared datasets. Each random data modification or row 
removal is performed 30 times per scenario, and the average 
and standard deviation of Ψ is computed across iterations.

Under scenario 1, lock-step and elastic-diagonal methods 
yield equivalent results across transformations and distance 
metrics, and both are more sensitive to changes in the data 
than the elastic-orthogonal methods, especially when the dif-
ferences between the METS being compared are relatively 
small (Fig. 4). Ψ values increase exponentially under scenario 
2 when blocks are not removed during the computation of 
ABbetween, independently of the data transformation or dis-
tance metric used. On the other hand, methods removing 
blocks yield exponential responses with different rates, dem-
onstrating their suitability to assess differences between data-
sets sampled at different temporal resolutions.

Several recommendations emerge from our sensitivity 
analysis: 1) each combination of distance metric, data trans-
formation and dissimilarity algorithm yields a particular scale 
of Ψ values for a given pool of datasets, and therefore different 
methods must not be used in the same analysis; 2) Euclidean 
distances coupled with elastic-diagonal and lock-step meth-
ods are more sensitive to small differences between datasets; 
3) data transformations, such as the Hellinger transformation 
commonly applied to pollen data (Birks and Gordon 1985), 
increase the sensitivity and reduce the bias of dissimilarity 

Figure 4. Sensitivity of the dissimilarity measures implemented in distantia (abbreviations: elasdi, elastic diagonal; elasdi no blocks, elastic 
diagonal with block removal; elasor, elastic orthogonal; elasor no blocks, elastic orthogonal with block removal; locks, lock-step) to increas-
ing number of modified datapoints (scenario 1, upper panel) and decreasing number of rows in one of the datasets (scenario 2, lower panel).
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scores; 4) the elastic-diagonal no-blocks method shows the 
most balanced properties across types of datasets and scenar-
ios of differences between datasets.

Discussion

Multivariate time-series are the most relevant data format 
that ecologists have available to analyse and understand the 
dynamics of complex systems (Boero et al. 2015). However, 
open-source tools to quantify dissimilarity between METS 
taken at different times or sites are scarce. This package fills 
this gap by introducing the R package distantia, which pro-
vides a general toolset to streamline the assessment of dissimi-
larity between METS.

We have shown that distantia covers an array of dissimi-
larity metrics useful to analyse different types of METS, 
including those that are unevenly sampled and have different 
number of cases. Comparisons by shape (i.e. elastic), are espe-
cially relevant when the collected data are unevenly spaced 
along the sampling dimension, as it is commonly the case 
with palaeoecological datasets (Willis et al. 2010). However, 
elastic measures are relevant as well when the importance of 
the sampling dimension (time in most cases, but others such 
as elevation or latitude are possible) is context-dependant, 
even when the data is regularly sampled. Phenological or cli-
matological observations at different latitudes or elevations 
are a clear example of this, since elastic dissimilarity mea-
sures can easily accommodate time-delays in temperature 
change without penalizing the resulting dissimilarity scores 
when the objective is to compare dynamics without a focus 
on synchronicity. On the other hand, comparisons by time 
(i.e. lock-step) are the natural option when the synchronicity 
between the studied phenomena is relevant, and the data are 
captured by automatic devices, or generated by simulations 
such as global circulation models.

Independently of the nature of the data, distantia is 
designed to simplify the analysis of METS as much as possi-
ble. In consequence, functions such as workflowPsiHP() can 
be applied to many sequences at once, facilitating analysis 
on large published databases such as Neotoma (Goring et al. 
2015), remote sensed data such as MODIS products (LP 
DAAC 2019), or climate data such as CRU TS (Harris et al. 
2014), among many others.

We hope this package may enhance the capabilities of 
researchers from different fields to easily explore dissimilar-
ity patterns between METS, and to generate and test new 
hypotheses on why the dynamics of complex-systems changes 
over space and time.

To cite distantia or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 0’:
Benito, B. M. and Birks, H. J. B. 2019. distantia: an open-source 

toolset to quantify dissimilarity between multivariate ecological 
time-series. – Ecography 42: 000–000 (ver. 0).
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