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Abstract 

Question 

Do remote sensing signals represent beta diversity? Does beta diversity agree with community 

types? 

 

Location 

UNESCO Man and Biosphere Reserve, La Palma, Canary Islands. 

 

Methods 

We recorded perennial, vascular plant species abundances in 69 plots (10 m x 10 m) in three pre-

defined community types along an elevational gradient of 2400 m: succulent scrubland, Pinus 

canariensis forest and subalpine scrubland. The remote sensing data consists of structural variables 

from airborne Light Detection and Ranging (LiDAR) and multispectral variables from a time series of 

Sentinel-2 (S2) images. Non-metric Multidimensional Scaling was used to assess beta diversity 

between plots. K-means unsupervised clustering was applied to remote sensing variables to 

distinguish three community types. We subsequently quantified the explanatory power of S2 and 

LiDAR variables representing beta diversity via the Mantel test, variation partitioning and 

Multivariate Analysis of Variance. We also investigated the sensitivity of results to grain size of 

remote sensing data (20, 40, 60 m). 
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Results 

The beta diversity between the succulent and pine community is high, whereas the beta diversity 

between the pine and subalpine community is low. In the wet season, up to 85% of beta diversity is 

reflected by remote sensing variables. The S2 variables account for more explanatory power than 

the LiDAR variables. The explanatory power of LiDAR variables increases with grain size, whereas the 

explanatory power of S2 variables decreases. 

 

Conclusion 

At the lower ecotone, beta diversity agrees with the pre-defined community distinction, while at the 

upper ecotone the community types cannot be clearly separated by compositional dissimilarity only. 

The high beta diversity between the succulent scrub and pine forest results from positive feedback 

switches of Pinus canariensis being a fire-adapted, key tree species. 

In accordance with the spectral variation hypothesis, remote sensing signals can adequately 

represent beta diversity over large extent, in short time and at low costs. However, in-situ sampling 

is necessary to fully understand community composition. Nature conservation requires such 

interdisciplinary approaches. 

 

Keywords 

Beta diversity, conservation biogeography, elevation gradient, island biogeography, LiDAR, plant 

community, remote sensing, Sentinel, spectral variation hypothesis, time series, treeline, vegetation 

indices 

 

Introduction 

 

The spatial and temporal change rates of species composition, i.e. beta diversity, are at the heart of 

community ecology ever since Clements (1916). However, the community definition is still largely 

debated (Palmer and White, 1994; Chiarucci, 2007; Ricklefs, 2008). The controversy revolves around 

the coherence and integrity of ecological entities through different scales of space and time (Jax, 
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2006). In order to assess community patterns, concepts of beta diversity are applied that quantify 

the compositional dissimilarity between species assemblages (Anderson et al., 2011). 

 

Processes responsible for observed patterns of species coexistence, usually referred to as “assembly 

rules”, can be deterministic, stochastic, interrelated and contingent, which led Lawton (1999) to call 

community ecology “a mess”. Vellend (2010) proposed the following overarching processes shaping 

beta diversity and community patterns: selection, drift, speciation and dispersal. These factors and 

anthropogenic activities determine beta diversity and, thus, biodiversity in general (Socolar et al., 

2016), which the human well-being depends on (Cardinale et al., 2012). It is therefore important to 

study patterns of beta diversity as well as corresponding drivers. 

 

The existence of communities implies the delineation of community types. Because natural 

boundary sharpness varies (Wilson and Agnew, 1992; Auerbach und Shmida, 1993), community 

distinction is not necessarily discrete. Transition between communities can be rather continuous. 

This is why community limits are specifically considered as transition zones also known as ecotones 

(Livingston, 1903). In early times, an ecotone was associated with a clear separation of plant 

physiognomy (Clements, 1905). The recent definition of ecotone by Lloyd et al. (2000) is based on 

beta diversity and describes it as a “zone where directional change in vegetation (i.e. qualitative and 

quantitative species composition) is more rapid than on the other side of the zone.” Although 

ecotones are a standard entity in landscape ecology (Wiens et al., 1992), Hufkens et al. (2009) point 

out that they do not have standardized spatial and temporal units. 

 

In order to analyse the spatial and temporal complexity of plant communities, comprehensive field 

sampling and monitoring is needed, which is time consuming and costly. Remote sensing (RS) can be 

a powerful tool to estimate beta diversity patterns over large extents, in short time and at low costs 

(Rocchini et al., 2016). RS sensors provide data that reveal biodiversity patterns from local to global 

extent as well as temporally resolved. RS sensors are used to detect changes in community 

composition, with changes in spectral diversity as a measure of beta diversity (Rocchini et al., 2005). 

This application rests on the spectral variation hypothesis (SVH) explaining the relationship between 

environmental heterogeneity, species diversity and spectral information (Palmer et al., 2002). 

Environmental heterogeneity increases habitat heterogeneity and, thus, species diversity (i.e. 

habitat-heterogeneity hypotheses; Simpson, 1949). Environmental heterogeneity also increases 
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spectral heterogeneity. Therefore, spectral variation is associated with alpha and beta diversity 

(Palmer et al., 2002, Rocchini et al., 2004). However, the SVH does not apply to all ecosystems and 

depends on the extent of RS and in-situ data as well as the spatial, temporal and spectral resolution 

of RS data (Schmidtlein and Fassnacht, 2017). 

 

This study refers to the SVH, because we investigate to what degree RS signals of species 

assemblages can explain beta diversity, i.e. the compositional dissimilarity between species 

assemblages. As a case study, we sampled the semi-natural plant communities along a continuous 

elevational gradient on La Palma, Canary Islands. First, we test the SVH using structural RS variables 

from light detection and ranging (LiDAR) and multispectral variables from a time series of Sentinel-2 

images (S2). Since RS sensors can hardly account for small, rare and understorey species, we expect 

that RS signals do not adequately explain beta diversity that is derived from in-situ observations. This 

combination of data and techniques has not been used before to represent beta diversity with RS 

products. Second, we analyse to what extent beta diversity agrees with the pre-defined community 

types. 

 

 

Methods 

Study Region  

 

The subtropical-Mediterranean island of La Palma is located at the northwestern edge of the Canary 

archipelago in the Atlantic Ocean, approximately 400 km west of the African coast at 28° N (Fig. 1). 

The entire island is designated as ‘UNESCO Man and Biosphere Reserve’. The elevational gradient 

and trade winds from the northwest constitute diverse climatic attributes leading to the existence of 

eight different ombrotypes ranging from hyperarid to humid within a small geographical extent 

(Garzón-Machado et al., 2013). 
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Figure 1: Location of sampling plots on La Palma, Canary Islands. a) The Canary Islands are located in 

the Atlantic Ocean to the west of the African continent. b) The entire island is a UNESCO Man and 

Biosphere Reserve. The digital elevation model (Irl et al., 2015) shows the location of the sampling 

plots. The plots that include Pinus canariensis were classified as “Pine forest (PF)”. Plots below the 

pine forest without Pinus canariensis were classified as “Succulent scrub (SC)”, and plots above the 

pine forest without Pinus canariensis as “Subalpine scrub (SA)”. c) The false-colour composite image 

supports the visual interpretation of vegetation and is based on the Sentinel-2 imagery from 14 Jan 

2017 with 10 m resolution (Band 8, Band 4 and Band 3). 
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Field sampling 

 

Field sampling was performed along the elevational gradient (from 45 to 2400 m a.s.l.) present on 

the northwestern part of the island, where anthropogenic pressure is low, semi-natural land cover is 

largely preserved, edaphic conditions are homogeneous (Carracedo et al., 2001) and human 

activities are scarce. Field work was conducted during February and March 2017. Three main 

community types were crossed along elevation (Del Arco Aguilar et al., 2010). Succulent scrublands 

occur in semi-arid conditions at low elevation (~0-500 m) and is dominated by Euphorbia scrubs. The 

vegetation height can exceed 2 m. The vegetation cover is constantly high, but bare soil and rock can 

be found. The plant communities in mid elevations are dominated by the endemic Pinus canariensis, 

which also forms the treeline both towards high and low altitudes (~500-2000 m). The canopy cover 

and height peaks in mid elevation. The understorey consists of scrub species. The forest ground is 

covered by pine needles. The subalpine communities (~2000-2400 m) are characterized by the 

summit broom scrub Adenocarpus viscosus subsp. spartioides (hereafter Adenocarpus viscosus). The 

vegetation height barely reaches 2 m. Bare soil, rock and deadwood is frequently found in this 

vegetation zone. In accordance with Del Arco Aguilar et al. (2010), we pre-classified the sampling 

sites including Pinus canariensis as pine forest (PF), while those without Pinus canariensis below the 

pine forest were designated as succulent scrub (SC) and those above the pine forest were designated 

as subalpine (SA). 

 

We applied a stratified random sampling along the elevational gradient. Thereby SC, PF and SA 

defined the strata. We avoided anthropogenic land use, northern slopes steeper than 20°, to 

prevent sites from being unnatural and appearing dark and distorted in remote sensing imagery. Due 

to ridges and steep slopes some sites appear linearly arranged (Fig. 1). In each sampling site, a 

10 m x 10 m plot was used to record plant community data. We sampled ten SC, 48 PF and 11 SA 

plots. We recorded abundances of all vascular plant species within the plots, by estimating their 

coverage within three vertical strata (tree, scrub and herb layer). Since the presence of annual plants 

is driven by short-term weather events that differ locally, we only considered perennial plant 

species. The stochastic, short-term variation of the occurrence of annuals during the seasons makes 

it very difficult to conduct reliable comparison with remote sensing data that are recorded at a 

different time. We used Muer et al. (2016) for the nomenclature of vascular plant species. 
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Since we are interested in changes of abundance-based species composition, we applied relative 

abundances to calculate beta diversity. Relative abundance per species and plot was calculated as 

the species’ coverage divided by the sum of coverages of all species in all vertical strata. By this 

definition, we can accurately assess changes in species composition between plots, because land 

cover types other than vegetation (i.e. bare soil, rock, litter), that bias the beta diversity based on 

absolute abundances, are neglected. If other cover types were considered, we would notice a 

reduction in absolute species abundances, even if the relative species abundances remain constant. 

However, such cover classes and the coverage of species influence the composition of RS signals. To 

perform an analysis of the composition of RS signals, we used the following explanatory variables; 

we estimated the absolute coverages of bare soil, rock, pine needles and deadwood that are not 

vertically covered by any other strata in the plot. In this RS-specific analysis, we also consider the 

absolute coverages of the ten most abundant species that are uncovered by other strata. We refer 

to these coverages as ‘RS-specific’ coverages. 

 

Environmental Data 

 

Since mean annual temperature and mean annual precipitation are among the most important 

climate variables in community ecology at the landscape scale (Whittaker, 1970), we used them to 

characterize the plant communities in the study region. These climatic variables were generated by 

the interpolation of data from meteorological stations applying linear regression kriging technique 

(for details see Irl et al., 2015). We extracted climate data for each plot from the grid by averaging 

the values of all climate cells that fall within the plot. In order to evaluate the human impact on 

species composition, we calculated for each plot the planar distance to the nearest anthropogenic 

infrastructure, i.e. roads and buildings of any kind (Fig. S1, Appendix 1). 

 

Remote Sensing Data 

 

We considered RS products that represent multispectral and structural vegetation properties, and 

are thus appropriate to distinguish plant communities (Xie et al., 2008; Pettorelli et al., 2014). To 

account for multispectral differences that may occur during the seasons, we selected 13 Sentinel-2 

images (S2; European Space Agency 2017), covering the time period from February 2016 to February 
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2017 (Table S1, Appendix 1). We chose S2, since this sensor provides images of high radiometric (12 

bands), temporal (five days revisit time) and spatial resolution (10 to 60 m) that are publicly available 

and free of charge (see https://sentinel.esa.int/documents/247904/685211/Sentinel-

2_User_Handbook). The downloaded images were given as a geometrically and radiometrically 

corrected Top-of-Atmosphere (TOA) Level-1C product. We applied atmospheric, terrain and 

bidirectional reflectance distribution (BRDF with cosine of local solar zenith angle) correction using 

the Sen2Cor plugin (see http://step.esa.int/main/third-party-plugins-2/sen2cor/) within the 

Sentinel-2 toolbox of the Sentinel Application Platform (SNAP) to generate Bottom-Of-Atmosphere 

(BOA) Level-2A products. These products include a masking layer for classifying pixels affected by 

clouds as “medium cloud probability”, “high cloud probability” and “cirrus”. The cloud mask covered 

a maximum of two plots per image (Table S1, Appendix 1). Such plots were excluded from analyses. 

Band 1 (aerosol, 60 m), Band 9 (water vapour, 60 m) and Band 10 (cirrus, 60 m) were removed by 

the preprocessing procedure, as they are only needed for cloud-masking. The remaining bands are 

Band 2 (blue, 10 m), Band 3 (green, 10 m), Band 4 (red, 10 m), Band 5 (red edge, 20 m), Band 6 (red 

edge, 20 m), Band 7 (red edge, 20 m), Band 8 (near-infrared [NIR], 10 m), Band 8a (red edge, 20 m), 

Band 11 (shortwave infrared [SWIR], 20 m) and Band 12 (shortwave infrared [SWIR], 20 m).  

 

We also applied basic vegetation indices to explore plant characteristics that lead to spectral 

differences. The normalized differentiation vegetation index NDVI ([Band 8-Band 4]/[Band 8+Band 

4]) is one of the most popular proxies for primary productivity (Pettorelli, 2013). Higher values of the 

moisture stress index MSI ([Band 11/Band 8]) reveal less leaf water content (Hunt and Bock, 1989). 

The plant senescence reflectance index PSRI ([Band 4 – Band 2] / Band 6) increases with canopy 

stress (carotenoid concentration), canopy senescence and fruit ripening (Merzlyak et al., 1999). The 

anthocyanin reflectance index ACR1 ([1/Band 3] / [1/Band 5]) demonstrates canopy changes by 

growth and death (Gitelson et al., 2001). The carotenoid reflectance index CRI1 ([1/Band 2] / 

[1/Band 3]) represents carotenoid concentration relative to chlorophyll (Gitelson et al., 2002); 

carotenoid pigments increase with weakening vegetation. The photochemical reflectance index PRI 

([Band 2-Band 3] / [Band 2+Band 3]) indicates light use efficiency (Gamon et al., 1997); the PRI index 

changes with carotenoid pigments in live foliage and thus describes productivity and stress. 
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Metrics derived from airborne light detection and ranging (LiDAR) are able to account for both 2D 

and 3D vegetation structure, which helps to distinguish vegetation that differs in structural variables 

such as growth height and canopy cover (Pettorelli et al., 2014). Airborne laser scanning (ALS) point 

cloud data from April 2009 was downloaded from the Spanish National Geographic Institute (IGN). 

The point clouds have a density of 0.5 points per 1 m² (see Appendix 2). After data pre-processing, 

several indices were calculated with a grain size of 20 m. The canopy height model (CHM) returns 

the average of normalized heights above ground. The tree fraction cover (TFC) is the proportion of 

first ALS returns over 2 m above ground from the total amount of first ALS return in the raster cell. 

The vegetation fraction (VF) reflects the number of all returns over 0.5 m height divided by the 

number of all returns within the cell. The return proportion (RP) indices were calculated as the 

number of ALS returns in different vertical strata (0.5 m, 2 m, 5 m, 10 m, 15 m, 20 m, 25 m) divided 

by the total number of ALS returns in the cell. Thus, RP informs about the three-dimensional 

vegetation structure. The effective leaf area index (LAI) was computed based on the gap probability, 

but not corrected for woody elements or the clumping effect. For classifications based on RS data all 

variables were standardized to zero mean and unit variance. In order to retrieve (pairwise) distances 

between plots based on these standardized RS variables, we applied the Euclidean distance 

measure.  

 

To reduce the bias induced by GPS inaccuracy when extracting the RS data by plot centroids, we use 

RS metrics with a minimum grain size of 20 m. In addition, we evaluated the results sensitivity to 

coarser grain sizes (40 m and 60 m) by aggregating the RS metrics, i.e. taking the mean value. 

 

Statistical Analyses 

 

Our methodological approach to analyse the relationship between in-situ and RS variables is 

summarised in Figure 2. To describe the given plant communities and demonstrate the species’ 

realized environmental niches, we modelled the coenoclines of the ten most abundant species. A 

coenocline is a response curve of the species abundance along a single gradient (Whittaker, 1967). 

Species with overlapping coenoclines form communities. We applied two environmental gradients: 

mean annual temperature and mean annual precipitation. Coenclines were generated by fitting 

generalized additive models (GAM) with Gaussian distribution and link function, and thin plate 

regression splines as the single penalty smooth class (Wood, 2017). Because we were facing unequal 
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sample sizes between community types, we conducted non-parametric Kruskal-Wallis Analysis of 

Variance ANOVA (Siegel and Castellan, 1988) to identify differences in species richness (Fig. S2, 

Appendix 1). Linear regression models were applied to determine the relationship between species 

richness and environmental gradients. Model assumptions were verified visually. 
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Figure 2: Flow chart describing the remote sensing and in-situ data as well as the statistical analyses 

to evaluate the relationship between both. For details see Methods section. 

 

Beta diversity can be understood as the dissimilarity between plots regarding their species 

composition (Whittaker, 1967). We applied Non-metric Multidimensional Scaling (NMDS) to assess 

beta diversity and distinguish plant communities (Legendre and De Caceres, 2013). The NMDS is a 

distance-based, indirect ordination technique. We avoided direct ordination methods, since we were 

interested in unconstrained results that only rest on compositional dissimilarity (McCune and Grace, 

2002). The NMDS ranks distances between input data (plots). Therefore, NMDS bypasses the 

linearity assumptions of metric ordination methods. Here, we applied Hellinger distance to calculate 

the distance matrix among plots regarding their species composition (Legendre and De Caceres, 

2013). The Hellinger distance downweighs the occurrence of rare species. Thus, we controlled for 

overrated influence of rare species in dissimilarity calculations. We calculated a two-dimensional 

ordination space running 100 tries and involving random starting configurations, to find the optimal 

solution by NMDS, i.e. the lowest stress value. The NMDS-space was rotated to principal 

components; most variation in the data is shown along the first axis, followed by the second. We 

conducted post-hoc correlation of explanatory variables to the NMDS via surface and vector fitting, 

to interpret the influence of explanatory variables onto the compositional dissimilarity represented 

by the location of plots in the NMDS-space. We eventually calculated beta diversity as the Euclidean 

distances between plot locations in the two-dimensional NMDS space. 

 

Subsequently, we utilized the Mantel test (Mantel, 1967) to quantify the correlation between beta 

diversity and the pairwise distances between plots based on RS variables. Moreover, variation 

partitioning was used to reveal the combined and independent effects of S2 and LiDAR variables 

explaining the beta diversity (Legendre and Anderson, 1999). Variation partitioning is based on a 

Redundancy Analysis (RDA), linearly modelling the relationship between a set of dependent 

variables and two sets of explanatory variables. We also employed K-means unsupervised 

classification algorithm (Lloyd, 1982) to distinguish three community types considering RS variables 

only. We aimed at creating three classes, because existing vegetation maps predefine three main 

community types in the study region: succulent scrub, pine forest and subalpine scrub. K-means 

algorithm has been used before to test the SVH (Schmidtlein and Fassnacht, 2017). We then 
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conducted Multivariate Analysis of Variance MANOVA (Anderson, 2001) to estimate how K-means 

classification on RS variables fits to the beta diversity. 

 

The Mantel test, variation partitioning and MANOVA was applied to each S2 image as well as to the 

mean, range (|max-min|) and standard deviation of all dates. We can consequently identify seasonal 

variation of the explanatory power of RS signals, and account for complementarity of RS signals over 

time. This time series analysis was also conducted separately for each of the three vegetation types. 

Here we only applied the Mantel test, since the sampling size of SC and SA was too small to apply 

variation partitioning, and the MANOVA requires vegetation classes, which is pointless to produce 

within single community types. The beta diversity within vegetation types was thereby again given 

by the point distances in the NMDS that involves all plots (see above). 

 

Furthermore, we applied a Principal Component Analysis PCA (Mardia et al., 1979) to the RS 

variables, but used the S2 variables from the S2 image that showed the highest mean of the three 

correlational results from the Mantel test, variation partitioning and MANOVA. We thus illustrate 

the variation in RS signals that can best explain beta diversity, and depict the RS products that add 

most to this variation. As for the NMDS, we added post-hoc correlation of explanatory variables via 

vector fitting. In addition, variation partitioning onto a RDA was used to separate the variation 

among these date-specific S2 variables that can be explained by RS-specific coverages of the ten 

most abundant species and of non-vegetation cover types (i.e. bare soil, rock, pine needles and 

deadwood). 

 

Data processing and statistical analyses were conducted using open-source R Statistics (R Core Team, 

2017; Version 1.0.136) and corresponding default settings, if not mentioned differently (Table S2, 

Appendix 1). 
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Results 

 

The responses of the ten most frequent perennial plant species to the major climatic gradients are 

clear and unimodal (Fig. 3a, b). In the semi-arid conditions of the low elevation zone, several species 

associated with succulent communities show their maximum performance with the highest 

temperature and lowest precipitation along the elevation gradient (Euphorbia balsamifera, Retama 

rhodorhizoides, Rubia fruticosa, Schizogyne sericea). Cistus monspeliensis, Cistus symphytifolius and 

Erica arborea become more abundant with decreasing temperature and increasing precipitation. 

They share their realized environmental niches with Pinus canariensis, which is most abundant at a 

mean annual temperature of approximately 14°C and at the highest annual precipitation found in 

the region (~925 mm). In the subalpine communities, Adenocarpus viscosus and Arrhenatherum 

calderae show their maximum abundance with decreasing precipitation and lowest temperatures. 

 

Figure 3: Species abundance versus environmental gradients. Generalized additive models (GAM) 

indicate the relative abundance of the ten most abundant species in the data set along a) mean 

annual temperature, and b) mean annual precipitation. The linear regression model demonstrates 

the relationship between c) perennial species richness and mean annual temperature, and between 

d) perennial species richness and mean annual precipitation. Species abbreviations: Adenocarpus 

viscosus (Adenvisc), Arrhenatherum calderae (Arrhcald), Cistus monspeliensis (Cistmons), Cistus 
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symphytifolius (Cistsymp), Erica arborea (Ericarbo), Euphorbia balsamifera (Euphbals), Pinus 

canariensis (Pinucana), Retama rhodorhizoides (Retarhod), Rubia fruticosa (Rubifrut), Schizogyne 

sericea (Schiseri). 

 

Species richness is also clearly related with climatic variables, namely a positive relation with 

temperature and a negative relation with rainfall (Fig. 3c, d). Despite these significant relationships, 

the three main vegetation types are clearly identified in the species richness versus temperature 

graph, but not in the species richness versus rainfall graph, which is explained by rainfall decrease at 

high elevations. We did not detect a significant relationship between the relative abundance of Pinus 

canariensis and perennial species richness (not shown), but the SC plots harbour considerably more 

species than both other classes (Fig. S2, Appendix 1). 

 

Figure 4a reveals that the S2 variables from 14 Jan 2017 (20 m grain size) correlate on average 

strongest with the beta diversity. We additionally observe a “W”-shape; the correlation between S2 

variables and beta diversity is stronger during the wet (December-March) and dry season (June-

September), compared to other months. The multitemporal analysis demonstrates that neither the 

mean, nor the range and standard deviation of the time series reaches the highest correlation 

results of single image dates (Fig. 4b). Here the multitemporal mean of S2 variables yields on 

average strongest correlation with beta diversity, compared with the multitemporal range and 

standard deviation. Interestingly, the multitemporal MANOVA results are weakest among the three 

statistical tests, but for single dates the two strongest correlations are produced by MANOVA (Fig. 

4a). The Mantel test reveals a rRS=0.41 (p<0.001) considering all RS variables from 20 m resolution 

data (Fig. 4c). Considering only LiDAR variables yields a Mantel rLiDAR of 0.18 (p=0.008). Variation 

partitioning of beta diversity through a combination of S2 and LiDAR variables (20 m grain) leads to a 

total RRS² of 0.85 (p<0.001). The RS2² resulting from independent effects of S2 signals is 0.59 

(p=0.001). The RLiDAR² of the independent effect of LiDAR signals is 0.01 and not significant (p=0.111). 

The combined effects of S2 and LiDAR variables produce RS2+LiDAR²=0.25. Accordingly, RS2² + RLiDAR² + 

RS2+LiDAR² = RRS²=0.85. Applying K-means classification algorithm to all RS variables leads to the 

differentiation of three classes that moderately explain the dissimilarities in species composition 

(Fig. 4c; MANOVA: p<0.001, RRS²=0.53). When considering S2 variables only (Fig. 4c), K-means 

classification outcomes adequately reflect the beta diversity (p<0.001, RS2²=0.70). A classification 

solely based on LiDAR variables yields a worse fit (Fig. 4c; p=0.001, RLiDAR²=0.19). The correlation 
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results between S2 variables and beta diversity decrease with increasing grain size (low resolution), 

while for LiDAR variables the correlation slightly increases (Fig. 4c). Except for variation partitioning, 

the statistical tests reveal that the correlation between all RS variables and beta diversity among 10 

m plots is strongest for 20 m grain size, but resulting differences in explanatory power between grain 

sizes can be marginal. 

 

 

Figure 4: Time series analysis of Sentinel-2 (S2) images and sensitivity analysis concerning grain size. 

In a) the date-specific correlation results between the S2 variables of 13 images (20 m grain size) and 

the beta diversity are shown. Part b) shows the correlation results applying the multitemporal mean, 

range (|max-min|) and standard deviation of the time series of S2 variables. The S2 image from 14 

Jan 2017 indicates the strongest correlation in view of the three statistical tests (Multivariate 

Analysis of Variance, Mantel test, variation partitioning). This S2 image was used for the sensitivity 

analysis in c). Here, we show the statistical results for coarser grain sizes (40 m and 60 m) by 

aggregating the RS derived metrics (i.e. taking the mean value). “Ns” highlights non-significant 

(p0.05) correlation results. 

 

Separating the time series analyses by vegetation types resulted in Figure 5. Particularly SC 

undergoes temporal variation in S2 signals and shows highest Mantel r among communities followed 

by PF and SA (Fig. 5a); the SA correlations also range a lot and became even negative, but are not 

significant due to low sample size and very homogeneous S2 signals; the “w”-shape is less clear for 

PF. The multitemporal mean of the time series produces strongest correlation for SC, followed by 

the multitemporal range and standard deviation (Fig. 5b); for PF, this is vice-versa. 
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Figure 5: Time series analysis of Sentinel-2 (S2) images, separated by community type. In a) the date-

specific Mantel correlations between the S2 variables of 13 images (20 m grain size) and the beta 

diversity of the subalpine, pine and succulent community are shown. Part b) demonstrates the 

Mantel correlation results between the mean, range (|max-min|) and standard deviation of the time 

series of S2 variables and the beta diversity of the three community types. “Ns” highlights non-

significant (p0.05) correlation results. 

 

The NMDS based on the species abundances (Stress=0.06) demonstrates no clear distinction 

between PF and SA (Fig. 6a). At lower altitudes, a considerable gap between PF and SC does become 

obvious. Consequently, the similarity in species composition between SA and PF is considerably 

higher than between SC and PF. Within PF we find an emphasized compositional variation in the 

lower part close to the transition to SC. Such variation along the second NMDS axis appears in the 

subalpine zone as well. The relationship between beta diversity and nearest distance to 

anthropogenic land use is very weak (Fig. S1, Appendix 1). We focus in the following on RS variables 

derived from RS data at 20 m spatial resolution from the S2 image acquired on 14 Jan 2017; among 

these RS variables, Band 3, Band 5, Band 6, Band 7, Band 8, Band 8a, NDVI, PSRI, MSI, RP0.5m, 

RP2m, RP5m, RP10m, LAI, VF correlate significantly (p<0.05) with the NMDS scores (Fig. 6a; for 

details see Table S3, Appendix 1). These variables are mostly associated with the second NMDS axis, 

which accounts for less beta diversity than the first axis. Canopy stress, senescence or fruit ripening 

(PSRI), water stress (MSI) and productivity (NDVI) are associated with the first NMDS axis. 
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Figure 6: The location of plots in the two-dimensional ordination space calculated via Non-metric 

Multidimensional Scaling (NMDS) and Principal Component Analysis (PCA). a) The PC-rotated NMDS 

space is representing beta diversity calculated by the Hellinger distance between plots, considering 

the abundances of perennial plant species. The NMDS-stress value of 0.06 depicts a good fit. b) The 

PC-rotated PCA space is calculated by the remote sensing (RS) variables derived from the Sentinel-2 

image taken on 14 Jan 2017. A proportion of 60% of total variance is explained by PC1 (39%) and PC2 

(21%) (for details see Table S4, Appendix 1). The vectors of explanatory variables (brown arrows) and 

PCA-input variables (black arrows) were fitted after generating the ordination space (for details see 

Table S3, Appendix 1). Species abbreviations: Adenocarpus viscosus (Adenvisc), Agrostis spec. 

(Agrospec), Allium canariense (Allicana) Arrhenatherum calderae (Arrhcald), Cenchrus ciliaris 

(Cenccili), Cistus symphytifolius (Cistsymp), Echium brevirame (Echibrev), Echium wildpretii 

(Echiwild), Erica arborea (Ericarbo), Erysimum scoparium (Erysscop) Euphorbia balsamifera 

(Euphbals), Euphorbia canariensis (Euphcana), Periploca laevigata (Perilaev), Pericallis papyracea 

(Peripapy), Pinus canariensis (Pinucana), Plantago webbii (Planwebb), Pterocephalus porphyranthus 
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(Pterporp), Retama rhodorhizoides (Retarhod), Rhamnus crenulata (Rhamcren), Rubia fruticosa 

(Rubifrut), Rumex acetosa (Rumeacet), Schizogyne sericea (Schiseri), Sonchus hierrensis (Sonchier). 

 

 

The PCA based on RS variables shows that both axes contribute to the differentiation of vegetation 

types (Fig. 4b), but the three communities appear less clearly separated than for the species data 

(Fig. 4a); the distances between SC, PF and SA are not as pronounced as in the species-based NMDS 

ordination. Increasing S2 band values are mostly related to SC. The majority of LiDAR metrics 

increase along PF plots. Weakening vegetation, canopy growth or death (CRI1, ACR1), and 

productivity (NDVI) are also associated with the pine community. Light use efficiency (PRI), water 

stress (MSI) as well as canopy stress, senescence or fruit ripening (PSRI) accompany SA plots. The 

structural variable RP0.5m is related to SA, whereas RP2m reflects SC. The PCA axes’ loadings of the 

RS variables are given in Table S4 (Appendix 1). Among the other explanatory variables, only the RS-

specific coverage of Cistus monspeliensis, Cistus symphytifolius and Erica arborea are not 

significantly correlated with the PCA scores (Table S3, Appendix 1). The RS-specific coverage of the 

other species are correctly linked to their corresponding communities. RS-specific coverage of 

deadwood is linked to SA, of rock and bare soil to SC as well as SA.  

 

Furthermore, variation partitioning onto the RDA explaining the variation in RS variables leads to a 

total RTotal² of 0.62 (p=0.001) that is the sum of the effects of the RS-specific coverages of species and 

non-vegetation types (rock, bare soil, deadwood, pine needles): RTotal
2 = RSpecies² + RNon-vegetation² + 

RSpecies+Non-vegetation². Thereby, RS-specific species’ coverages independently account for an RSpecies² of 

0.29 (p=0.001), whereas the independent effect of non-vegetation coverages scores a non-significant 

(p=0.067) RNon-vegetation² of 0.05. The combined effects of vegetation and non-vegetation coverages 

result in RSpecies+Non-vegetation²=0.28. 

 

 

Discussion 

Beta Diversity and Remote Sensing Signals 
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Contrary to our initial expectations, we show that a combination of multispectral and structural RS 

variables can explain up to 85 % of beta diversity in the plant communities of the study system. The 

S2 variables constitute more explanatory power than the LiDAR variables we selected. These 

outcomes are partly in line with similar studies that consider different variables and scales. He et al. 

(2009) quantified the relationship between NDVI-distances (derived from MODIS with 250 m 

resolution) and plant beta diversity (using pairwise Bray-Curtis dissimilarity) within entire US 

counties. The highest Mantel r was achieved at the species level (r=0.4); see He and Zhang (2009) for 

a similar approach at the global scale. Hall and colleagues (2012) used multispectral variables 

derived from QuickBird imagery with a grain size of 2.4 m. They applied variation partitioning on 

grassland beta diversity (local-to-regional richness ratio), sampled in 0.5 m plots representative for 

larger sites, which resulted in an R² of 0.27 for the independent effect of multispectral RS variables. 

That is lower than the explanatory power we found, although their study scale was much smaller. 

 

Indeed, the different extents of pixels and plots affect the correlation between RS signals and beta 

diversity. On the one hand, pixels larger than the plot extent imply a mixture of spectral signals that 

do not only originate from the plot extent (Nagendra et al., 2010). On the other hand, applying a 

sampling design with pixels smaller than the plot extent implies either to sample vegetation in larger 

plots or to use RS data with higher spatial resolution (Rocchini et al., 2010). Plots larger than 10 m by 

10 m are rarely applied in vegetation ecology, because the sampling effort is large, particularly in 

open vegetation types (Chytrý and Otýpková, 2003). Moreover, Rocchini (2007) demonstrates a 

Mantel r of 0.69 of the correlation between species diversity sampled in 10 m by 10 m plots and 

QuickBird data with much smaller spatial resolution (3 m); this Mantel r is not considerably larger 

than our findings; in case of oversampling (i.e. plots larger than pixels) high-resolution data may 

contain a considerable amount of noise (Nagendra and Rocchini, 2008), even though the species 

composition of pixels may be inaccurate in case of undersampling (i.e. plots smaller than pixel). An 

increase in spectral resolution can also compensate low spatial resolution (Rocchini et al., 2007). 

 

Usually communities that are subject to climate seasonality can be well separated by RS data 

(Horning et al., 2010). During the wet (December to March) and dry season (June to September), 

multispectral variables correlate stronger with the dissimilarity in species composition than in other 

months. The multitemporal variables, however, cannot explain the same amount of beta diversity 

than date-specific variables at maximum. That offers potential for further investigations, exploring 
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the explanatory power of date-specific multispectral variables and vegetation indices to detect the 

reasons behind these findings. We assume that the dominant and stem-succulent species of the 

succulent zone such as Euphorbia balsamifera and Euphorbia lamarckii shed their leaves in the dry 

season (Muer et al., 2016). In addition, understorey species of the pine forest and subalpine species 

frequently show discolouration during dry spells. The highly abundant bright yellow flowers of the 

dominating Adenocarpus viscosus might also lead to multispectral differentiation of subalpine 

vegetation in June (Muer et al., 2016). Furthermore, during the wet season, ice-storms can cause 

discoloration of Adenocarpus viscosus as a result of leave tissue damage (Palomares Martínez et al., 

2012).  

 

In January, as our date-specific PCA showed, the vegetation indices PSRI, MSI, PRI, ACR1 and CRI1 

may represent vegetation stress. Especially the high-elevation pine and subalpine community 

experience freezing temperatures and low precipitation. Trade winds prevent the orographic and 

convective rise of moist air, leading to aridity also in the subalpine zone throughout several months 

(González Henríquez et al., 1986). The trade-wind cloud facilitates fog-drip. The high reflectance of 

red light (i.e. Band 4, Band 5 and PSRI) was mostly associated with the succulent and subalpine 

scrub. This is an indicator for low leaf pigment content and small leaf area, besides brown rock, soil 

and litter (Frampton et al., 2013). In addition, leaf water content is positively related to chlorophyll 

content (Sims and Gamon, 2002). Thus, leaf water content (i.e. MSI) of the succulent and subalpine 

scrub may be low due to aridity resulting in less chlorophyll and higher reflectance. Another reason 

for high reflectance in the visible spectrum refers to succulent leaf thickness, which prevents light 

penetration and absorption of lower leaf layers (Sims and Gamon, 2002). High NDVI values 

correspond to the pine forest, where annual precipitation is highest, probably indicating high 

biomass production. Most LiDAR-derived structural variables represent the physiognomic forest 

structure very well (Rees, 2007; Ørka et al., 2012). The association of structural variables 

representing different heights above ground (RP variables) with the community types in the date-

specific PCA agrees with observed vegetation heights in the field.  

 

In our study multispectral S2 variables explain beta diversity more accurately than structural LiDAR 

variables. One reason is that the vegetation coverages of both scrub types are similar and 

characterized by rocky outcrops and bare soil. Considering additional LiDAR metrics that particularly 

differentiate the vertical scrubland structure between 0.5 and 2 m may lead to a stronger correlation 
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between LiDAR products and beta diversity. Besides, the LiDAR data was acquired in April 2009. 

Since then perennial plant coverage and structure may have slightly changed. However, increasing 

grain size results in increasing explanatory power of LiDAR variables applying MANOVA, while 

explanatory power of S2 variables decreases in all statistical tests. The low LiDAR point density and 

thus high variation (noise) in LiDAR variables could be responsible for weak correlations with beta 

diversity at small scales (20 m). The noise is reduced by averaging pixel values, i.e. with increasing 

extent the LiDAR metrics become more stable. Hence, the average structural signatures of entire 

community types are rather reflected by relatively large grain sizes (60 m), which then lead to more 

distinct LiDAR-based classes in K-means clustering that correlate stronger with beta diversity. 

 

A proportion of 62% of variation in S2 signals from 14 Jan 2017 can be explained by RS-specific 

coverages of species and non-vegetation cover, but the RS-specific coverages of bare soil, rock and 

litter barely add to the differentiation of plots based on S2 signals only. 38% of variation in S2 

variables can neither be explained by the species’ coverages, nor by non-vegetation cover types, 

probably because of differing spatial extents of plots and pixels and GPS-location bias.  

 

GPS-inaccuracy affects the co-location of RS and in-situ data. For S2 imagery, a GPS-location error of 

3, 6 and 18 m is given for 10, 20 and 60 m bands, respectively (Baillarin et al., 2012). Due to the field-

sampling conditions (i.e. cloud-free, no northern aspects, slope <20°, no obstacles), the GPS accuracy 

of the plot locations could be reduced to a mean of 3.6 m (±1.0 m standard deviation). However, the 

cardinal direction of the true location shift remains unknown. Thus, a total GPS-error of 6 m for 20m-

bands plus the GPS error of the plot locations is possible and likely to cause unexplained variation 

when correlating RS with in-situ data. However, as the sensitivity analysis shows, the GPS bias seems 

to be minor, since the lowest grain size of 20 m yields equally high correlation results compared to 

40 m and 60 m. 

 

The moderate conformity of RS-based classes with the beta diversity pattern reveals that both sets 

of variables, S2 and LiDAR, are able to reclassify the pine forest plots, even though unsupervised 

classifications may be less accurate than supervised techniques (Horning et al., 2010). Both sets 

seem to contradict each other, because the explanatory power decreases when it comes to defining 

vegetation classes considering a combination of both sets. Therefore, increasing the number of RS 

variables does not necessarily lead to more variation explained.  
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The RS data were not able to totally resolve the community types and beta diversity in this semi-

natural system, which suggest similar RS properties of different species assemblages. Understorey 

species may be highly abundant and determine beta diversity, but are not detectable for RS sensors. 

In case heterogeneous, yet distinct plant communities comprise the same spectral signals (Sha et al., 

2008), the potential of RS approaches in vegetation science is limited. 

 

Species Richness and Beta Diversity 

 

A series of studies describe continuous change in plant composition along an elevational gradient 

(Whittaker, 1956; Hamilton, 1975; Ogden and Powell, 1979; Enright, 1982; Auerbach and Shmida, 

1993). In contrast, we identified two very distinct communities at low altitudes - succulent scrub and 

pine forest - even though the main environmental gradients do not change abruptly. The sharp 

ecotone appears with the presence of the Canarian-endemic Pinus canariensis. Other ordination-

based studies also reveal discontinuities in compositional patterns with the increasing dominance of 

a key tree species (Walker and Guppy, 1976; Druitt et al., 1990), inducing positive-feedback switches 

(Wilson and Agnew, 1992); Pinus canariensis influences environmental resources (e.g. water, light 

and nutrient availability), so that thermophilic species such as Euphorbia balsamifera and Retama 

rhodorhizoides do not to establish in the forest understorey. This is associated with selection, a 

major process shaping species communities, resulting from fitness differences and interactions 

between species and the environment (Vellend, 2010).  

 

Shade-tolerant species such as Erica arborea and Myrica faya do, however, occur under humid 

conditions in the lower pine forest, but not in the arid conditions of the upper succulent zone. We 

expected a continuous transition in species composition between the succulent and the pine 

community, according to the distribution of Cistus monspeliensis and Cistus symphytifolius that occur 

in open forest stands of low elevation as well as in the upper succulent zone. However, their 

abundances are too low to substantially increase compositional similarity in the lower ecotone. In 

contrast, the leguminous and light-demanding scrub Adenocarpus viscosus that dominates above the 

treeline is also abundant in open Pinus canariensis-stands at higher elevations. Consequently, the 

similarity in species composition between the pine forest and the subalpine zone is much higher 
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than between the pine forest and the succulent scrub. This is in agreement with Hamilton and 

Perrott (1981) who conclude that, along elevation gradients, lower community limits are strongly 

influenced by competition, whereas upper limits are mostly climatically determined. 

 

We propose that the sharp community boundary also results from different species pool sizes. 

Species pool size is generally smaller at higher elevation due to lower speciation rates (Ricklefs, 

1987) and decreasing area with elevation (Karger et al., 2011). Dissimilarity in species composition 

intrinsically increases with richness differences between species assemblages, because the chance of 

species overlap decreases (Anderson et al., 2011). At the upper treeline, only about three perennial 

vascular plant species are present, whereas approximately eight species occur at the lower transition 

zone. Furthermore, species richness strongly decreases from the succulent scrub to the pine forest, 

but stays constant from the pine forest to the subalpine scrub. Hence, beta diversity is enhanced 

across the lower treeline, not only due to species replacement, but also due to richness differences. 

 

The strict separation between the succulent and pine forest community might also be explained by a 

difference in disturbance regimes, which influence selection (Lawton, 1999), but also speciation in 

evolutionary time spans (Vellend, 2010). Regular occurrence of fire is common in the Canary pine 

forest ecosystem (Climent et al., 2004). Fire sometimes spreads into the subalpine zone (Irl et al., 

2014). Contrary to thermophilic species of the succulent vegetation, Pinus canariensis and 

understorey species display adaptations to fire (pyropyhtes). Pinus canariensis produces epicormics 

shoots and basal sprouts, and serotinous cones release seeds after fire events (Climent et al., 2004). 

Understorey species such as Myrica faya, Erica arborea, Cistus symphytifolius, Cistus monspeliensis 

and Adenocarpus viscosus regenerate quickly after fire events (Höllermann, 2000). From field 

observations (burned area) and literature review (Climent et al., 2004; Méndez et al., 2015; Molina-

Terrén et al., 2016), short-term fire regimes do not vary among plots and long-term forest 

regeneration does not depend on the fire regime either (Méndez et al., 2015). Consequently, the fire 

regime might explain the strong compositional differentiation between pine forest and succulent 

scrub due to the selection and speciation of species being differently adapted to fire (Arévalo et al., 

2001). 
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Furthermore, the European rabbit (Oryctolagus cuniculus), the feral goat (Capra hircus) and the 

Barbary sheep (Ammotragus lervia), introduced mammals on La Palma, induce the dominance of 

Adenocarpus viscosus at high elevation (Irl et al., 2012). Moreover, anthropogenic land use 

influences pine forest diversity at lower altitudes (Vellend et al., 2007). Thinning of Pinus canariensis-

plantations for timber production enhances habitat heterogeneity, understorey species diversity, 

seed production and regeneration of Pinus canariensis (Otto et al., 2012). Although we did not find 

evidence for recent anthropogenic impacts, the legacy of such disturbance regimes can act over 

decades (Vellend et al., 2007). In any case, fire and herbivory likely contribute to the decline of 

species richness with elevation in the study region (Irl et al., 2015), despite precipitation increase, 

since rabbit densities can be high above the treeline (Cubas et al., 2018). Thus, decreasing richness 

differences may reduce beta diversity between the subalpine and pine community. 

 

The vague community boundary between the pine forest and the subalpine scrub raises questions 

about the existence of two distinct communities. Community and respectively ecotone definition are 

a matter of scale (Ricklefs, 2008; Hufkens et al., 2009). Here we apply a regional approach that does 

not consider transition at local scale nor through time. Moreover, we did not test for causal 

mechanisms determining compositional (dis-)continuities (Shipley and Keddy, 1987). From a 

physiognomy point of view, the treeline may indicate the community limit, but in terms of species 

composition, limits are unclear (Walker et al., 2003). Often boundaries are human constructs. Lines 

on a map drawn between ecoregions do not implicitly correspond with any obvious physical 

discontinuities in nature (Strayer et al., 2003). Because fundamental environmental gradients were 

adequately covered by the plots and the relationship between beta diversity and nearest distance to 

anthropogenic land use was very weak, these outcomes are unlikely to be caused by sampling bias 

or human influence. 

 

 

Conclusion 

 

Our study demonstrated the potential of multiple RS products to represent patterns in plant 

community composition over large extents, in short time and at low costs. In-situ sampling was 

indispensable to precisely determine and understand beta diversity and community distinction. The 
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degree of accordance between spectral and beta diversity depends not only on the studied system, 

but also on the methods applied (Schmidtlein and Fassnacht, 2017). Such methods that identify and 

map discontinuities in beta diversity are necessary for conservation planning and wildlife 

management (Socolar et al., 2016).  

 

On the one hand, spatial and temporal resolution of RS data may limit the potential of linking field 

observation with RS data, since interaction between species and environment may occur at scales 

finer than those RS can deliver. In such cases, other techniques than those applied here may be 

appropriate (e.g. high spatio-temporal and hyperspectral resolution, space-borne LiDAR), but most 

high-quality RS data are costly. On the other hand, in-situ data are also often missing. Facing these 

limitations, project collaborations are necessary to bring together scientist from ecology and remote 

sensing to exploit the vast potential of a combination of in-situ data and earth observation for 

science and conservation practice. 
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