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Preface   

This dissertation is submitted as a partial fulfillment of the requirements for the 

degree Philosophiae Doctor at the Department of Earth Science, University of 

Bergen. The project was jointly funded by the Research Council of Norway (RCN) 

and Tectonor AS through RCN’s Industrial Ph.D. program. Professor Nestor Cardozo 

was the supervisor at the beginning of the project from January 2016 to December 

2017 at the University of Stavanger. From December 2017 to January 2020 the 

project was continued and finalized at the University of Bergen with Professor Rolf 

Mjelde as the supervisor. Throughout the whole project period colleagues from 

Tectonor have been involved, Dr. Willy Fjeldskaar as the main industrial supervisor 

and Drs. Ingrid Fjeldskaar Løtveit and Ivar Grunnaleite as co-supervisors. 

The motivation to carry out the present investigation is essentially due to my 

employment in Tectonor, an enterprise “providing specialized geological expertise to 

the petroleum exploration industry” (www.tectonor.com). Through the work for the 

company I was exposed to a number of geological problems, and it was interesting 

and educational to experience how challenges, faced by the oil and gas industry, 

raised questions where no clear answer could be found in the research literature. 

Among the questions surfacing in this way was if it was possible to predict fairly 

accurately how magmatic intrusions influences the petroleum potential in a 

sedimentary basin due to acceleration of the maturation of organic material in areas 

that otherwise would remain immature. 

References cited in the papers in Part II are found at the end of each paper, whereas 

references in Part I of the thesis follow at the very end of the dissertation. 
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Abstract 

For many volcanic basins, the thermal effect of igneous intrusions is decisive for their 

petroleum potential because such thermal impact may lead to maturation of organic 

material in areas that otherwise would remain immature. Many factors contribute to 

the outcome of such intrusions, and in this thesis the influence of a number of 

parameters, including sill thickness, timing of emplacement, structural changes of 

sedimentary basins, lithologies and diagenesis, have been modeled to improve the 

ability to predict the development of the whole petroleum system as a function of its 

thermal history. By quantifying the effect of several of these factors, the aim of this 

project has been to estimate the thermal impact of magmatic intrusions on maturation 

and diagenesis, from the very first temperature increase in the host rock to the long 

term influence, in terms of permeability and migration. 

Sill thickness and timing of emplacement is central in the first Paper where the 

thermal effect of 0 m, 50 m and 100 m thick sills are compared. The results show 

large differences on the thermal effect of the tested thicknesses, particularly for 0 m 

versus 100 m, but also 50 m versus 100 m thick sills. Whereas immature areas in the 

vicinity of sills that are 50 m thick will remain immature, they become fully matured 

when the sills are twice as thick. Timing of sill emplacement can be essential, 

particularly if the source rocks are between two or more sills intruded with a time 

lapse. 

Transient thermal effects of normal faulting in basins with magmatic intrusions are in 

focus in the second Paper. As fault movements occur, the basin momentarily 

experiences thermal instability in the proximity of the fault zone. How long this 

thermal instability lasts, depends on several factors, such as the physical properties of 

the rocks and the time lapse of fault movement. The results show that the largest 

differences between steady state and transient thermal calculations are found in the 

hanging wall. If sills intrude shortly after fault movement, the rocks in the hanging 

wall are colder than the rocks at the same depth in the foot wall. As the thermal effect 

of magmatic intrusions is dependent on the pre-intrusion host-rock temperatures, the 
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thermal effect of the sills is smaller in the hanging wall than the foot wall due to the 

lower host rock temperatures. However, if the sills intrude with a time lapse in 

relation to the fault slip, the sedimentary rocks have become warmer and the effect of 

the intruding sills is larger. Other factors that influence the thermal effects of sill 

intrusions in sedimentary basins are fault displacement, time span of faulting and 

deposition, fault angle, the thermal conductivity of the rocks, specific heat capacity 

and basal heat flow. How the faults are restored in the modeling process also 

influences the thermal development in the basin after fault slip. 

Diagenesis/chemical compaction is the focus of the third Paper. The study quantifies 

the thermal effect of magmatic intrusions on three different diagenetic processes: the 

transition of opal A to opal CT to quartz; the smectite to illite transition; and the 

dissolution and re-precipitation of quartz. All these processes are temperature 

dependent and may induce deterioration of the reservoir quality by reducing the 

porosity. Diagenetic alterations can contribute to changes in the physical properties of 

the rocks. These changes can cause rocks to respond differently to stress conditions in 

the subsurface. Emplacement of magmatic intrusions influences all the studied 

diagenetic processes and result in porosity loss of rocks in their proximity. Results 

show that stresses build up in the stiffer rocks, like the sills and diagenetic altered 

areas. Such stress accumulations may potentially lead to fault slip or opening of 

fractures and thus increase the permeability and the potential of fluid migration. 

Overall, this study shows the need for good representation of the subsurface sill 

thicknesses and structural development, particularly prior to emplacement of 

magmatic intrusions. Through magmatic intrusion and their impact on the maturation 

of organic material, diagenetic processes, location of stress concentrations, and the 

potential effect on permeability and migration pathways, this study highlights how 

these factors may have long-term effect on the petroleum system. Other crucial 

variables are sill thickness and clustering of the sills at multiple levels. The thermal 

conductivity of host rocks is the factor influencing the transient thermal effects the 

most, after fault slip and the increased temperatures enhance maturation and 

diagenesis in their vicinity.  



 

11 

 

List of Publications 

 

Paper 1:  

Sydnes, M., Fjeldskaar, W., Løtveit, I.F., Grunnaleite, I., Cardozo, N. (2018): “The 

importance of sill thickness and timing of sill emplacement on hydrocarbon 

maturation”, Marine and Petroleum Geology, 89, 500-514, doi: 

10.1016/j.marpetgeo.2017.10.017 

 

Paper 2:  

Sydnes, M., Fjeldskaar, W., Grunnaleite, I, Løtveit, I.F., Mjelde, R. (2019): 

“Transient Thermal Effects in Sedimentary Basins with Normal Faults and 

Magmatic Sill Intrusions – A Sensitivity Study”, Geosciences, 9, 160; 

doi:10.3390/geoscineces9040160, Special Issue “Future Advances in Basin 

Modeling: Suggestions from Current Observations, Analyses and 

Simulations”. 

 

Paper 3:  

Sydnes, M., Fjeldskaar, W., Grunnaleite, I., Løtveit, I.F., Mjelde, R. (2019): “The 

influence of magmatic intrusions on diagenetic processes and stress 

accumulation”, Geosciences, 9, 477, doi:10.3390/geosciences9110477, 

Special Issue “Future Advances in Basin Modeling: Suggestions from Current 

Observations, Analyses and Simulations”.   

 

 

 

 

 



 

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Contents 

Preface ............................................................................................................................................................. 5 

Acknowledgements .......................................................................................................................................... 7 

Abstract ............................................................................................................................................................ 9 

List of Publications ......................................................................................................................................... 11 

Contents ......................................................................................................................................................... 13 

Part I - Introduction and summary ............................................................................................................... 15 

Chapter 1 - Introduction ................................................................................................................................. 17 

1.1 Motivation and objectives of the study ......................................................................................... 18 

Chapter 2 - Magmatic intrusions in sedimentary basins ................................................................................ 21 

2.1 Observations of sills in the field and on seismic data .................................................................... 23 

2.2 Volcanic basins worldwide and on the Norwegian Continental Shelf ........................................... 25 

Chapter 3 - The main effects of magmatic intrusions on sedimentary basins ............................................... 29 

3.1 Effect on temperature ................................................................................................................... 29 

3.2 Effect on maturation...................................................................................................................... 31 

3.3 Effect on diagenesis ....................................................................................................................... 32 

3.4 Stress effect of sills ........................................................................................................................ 33 

Chapter 4 - Methods and softwares ............................................................................................................... 35 

4.1 Basin modeling .............................................................................................................................. 36 

4.1.1 Basin Modelling Toolbox (BMT)............................................................................................. 37 

4.1.2 Move ...................................................................................................................................... 38 

4.2 Stress modeling ............................................................................................................................. 39 

4.2.1 Comsol Multiphysics® ........................................................................................................... 40 

Chapter 5 - Results and future work .............................................................................................................. 43 

5.1 Contribution and conclusions of this study ................................................................................... 43 

5.1.1 Sensitivity of sill thickness on basin temperature and maturation ....................................... 43 

5.1.2 Effect of faulting on pre-intrusion basin temperature .......................................................... 44 

5.1.3 Effect of sills on diagenetic processes ................................................................................... 45 

5.1.4 Effect of sills on permeability ................................................................................................ 46 

5.2 Limitations to the modeling ........................................................................................................... 46 

5.3 Further implications....................................................................................................................... 48 

5.4 Future work ................................................................................................................................... 49 

 



14 
 

Chapter 6 - Summary of Papers 1-3 ............................................................................................................... 53 

Paper 1: The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation

 ............................................................................................................................................................. 53 

Paper 2: Transient thermal effects in sedimentary basins with normal faults and magmatic sill 

intrusions – A sensitivity study ............................................................................................................ 54 

Paper 3: The influence of magmatic intrusions on diagenetic processes and stress accumulation .... 55 

Part II - Papers .............................................................................................................................................. 57 

Paper 1: The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation ....... 59 

Paper 2: Transient Thermal Effects in Sedimentary Basins with Normal Faults and Magmatic Sill Intrusions – 

A Sensitivity Study .......................................................................................................................................... 77 

Paper 3: The influence of magmatic intrusions on diagenetic processes and stress accumulation ............. 111 

References .................................................................................................................................................... 141 

 



 

 

 

 

 

Part I 

Introduction and summary 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

                   Chapter 1 

 

 

 

 

Introduction 

According to the annual report, Energy outlook 2019, by British Petroleum (BP, 

2019); “The demand for energy is set to increase significantly driven by increases in 

prosperity in the developing world”. This report intends to predict the future energy 

needs and challenges towards 2040 and explore the forces that drive the global 

energy changes by considering several possible future scenarios. In a world 

demanding transition from fossil fuels to renewable energy supplies, accompanied by 

global growth in population and wealth makes this is a particularly difficult task. 

This report predicts an increase in the need of hydrocarbons to feed the worlds future 

energy demands. Although renewable energy is expected to play a larger role to meet 

these needs, fossil fuels will still be the main source of energy in decades to come. 

This is a challenge for the energy companies, not only in their search for new “green” 

energy forms, but also in their handling of the actual transition phase, a phase 

requiring continued petroleum exploration, search for new commercial hydrocarbon 

reserves, and investigation of new petroleum plays. 

This project explores the petroleum potential of volcanic sedimentary basins and the 

thermal impact of magmatic intrusions on the petroleum system (Fig. 1). Worldwide 

there are several producing oil and gas fields located in volcanic basins (Zou et al., 

2013). However, on the Norwegian Continental Shelf such reservoirs are considered 

a fairly new, challenging petroleum play. The intensions of the project are to improve 

the certainty of the assessment of the hydrocarbon potential in volcanic basins and 
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increase the knowledge related to the thermal impact of magmatic intrusions. It 

emphasizes how the interpretation and modeling phase ultimately effect the 

maturation and diagenetic estimates of basins with magmatic intrusions.  

 

Figure 1: Simple, schematic presentation of the project. Top: project title. Bottom: 

the topics of the three Papers. Papers 1 and 2 explore the consequences of the 

interpretation and basin modeling process related to volcanic sedimentary basins. 

Paper 3 explores magmatic intrusions effect on diagenetic processes. 

Below follows a paragraph stating the motivation and objectives of the study 

followed by a description of different intrusion types in volcanic basins worldwide, as 

well as factors influencing the petroleum potential of basins with intrusions. 

Furthermore, the methods used in this study are presented followed by a summary of 

the results and conclusions of this project. Part II presents the three scientific articles 

resulting from this work. 

1.1 Motivation and objectives of the study 

On seismic reflection data magmatic intrusions can be observed and interpreted, 

however, their effects on temperature, maturation and diagenesis can only be 
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calculated through basin modeling. Basin modeling commonly operates with time 

steps representing several millions of years. Such a time-resolution is too coarse 

when studying the thermal effect of magmatic intrusions, as the main effects are 

present the first million years. Estimations of the thermal effect of these features 

demand a high-resolution system in both time and space. Therefore, the motivation 

for this study is twofold: One relates to how the thermal effect of magmatic intrusions 

is estimated, the other to the several unanswered questions regarding the impact of 

magmatic intrusions on the petroleum system. 

A large body of knowledge exists on the thermal effect of igneous intrusions in 

volcanic basins. It is well established that magmatic intrusions influence the thermal 

development of sedimentary basins (e.g. Galushkin, 1997; Fjeldskaar et al., 2008; 

Aarnes et al., 2010; Peace et al., 2017; Spacapan et al., 2018). Aarnes et al. (2010) 

studied the thermal effect of the thickness of sills, vertical spacing between the sills 

(Aarnes et al., 2011) and timing of emplacement (Aarnes et al., 2015). Neither of the 

studies model the intrusions emplaced into their natural environment accounting for 

the effects of the geological, structural and thermal development of the basin prior to 

emplacement of sills. Fjeldskaar et al (2008) modeled the effect of sill intrusions on 

the transformation of organic matter emplaced into a structural complex basin. 

However, the sensitivity of the basin to sill thickness was not pursued. 

For a basin without sills, Fjeldskaar et al. (2017) found a large gap in the calculated 

thermal development when the faults were restored to when they were not restored. 

This indicates that the estimated thermal development of basins is sensitive to how 

they are reconstructed and represented. The thermal effect of magmatic intrusions is 

dependent on the pre-intrusion host rock temperature (e.g. Aarnes et al., 2010; 

Spacapan et al., 2018). Therefore, it is important to explore the sensitivity of basins to 

factors influencing the temperature history of structurally complex volcanic basins in 

order to make good thermal estimates. Very few studies estimate the temperature 

effect of magmatic intrusions emplaced into structurally complex basins. Such a 

study requires a modeling system that can restore the geological and structural 
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history, which forms the foundation for the thermal development and the basis for 

quantifying the thermal effect of magmatic intrusions in sedimentary basins. 

Studies on diagenesis and the effect of igneous intrusions on such processes have 

resulted in contrasting conclusions. Haile et al. (2018) found that the sill intrusions on 

Edgeøya (Svalbard) had not affected the diagenesis in their vicinity, while at 

Wilhelmøya (Svalbard) convection related to igneous intrusions had influenced the 

diagenetic process (Haile et al. 2019). At Trail Ø (East Greenland), Therkelsen 

(2016) found that both conductive and convective heat transfer due to magmatic 

intrusion had contributed to increased diagenetic alterations in their vicinity. 

However, little has been done to incorporate estimates of diagenesis in basin 

modeling of volcanic sedimentary basins. Because diagenesis may alter reservoir 

properties through dissolution and precipitation of minerals, it is of interest to the oil 

and gas industry to predict reservoir quality. 

The overall goal of this project is to contribute to better prediction of thermal 

development and hydrocarbon potential of basins with magmatic intrusions (Fig. 1), 

and to attempt answering some of the challenges faced by the petroleum industry. It 

aims at broadening the perspectives on how magmatic intrusions affect all parts of the 

petroleum system. From the very first temperature increase in the basin sediments, to 

the long term influence due to the accelerated maturation and diagenesis and the 

potential alteration of permeability and porosity in rocks. More specifically the goals 

of the project can be summarized as follows: 

1. Analyze the effect of sill thickness and timing of emplacement on the 

temperature and hydrocarbon maturation of sedimentary basins. 

2. Quantify the thermal effects of the most important factors affecting the thermal 

history in structurally complex sedimentary basins with magmatic intrusions. 

3. Quantify the effect of magmatic intrusions on transitions of opal A to opal CT 

to quartz, smectite to illite and quartz diagenesis. Assess the influence of 

diagenetic processes and the sills themselves on the stress field in a 

sedimentary basin, and the potential impact on fracture and fault permeability.
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Magmatic intrusions in sedimentary basins 

Magmatic intrusions, in contrast to magmatic extrusions, represent magma emplaced 

and solidified beneath the surface of the earth. Intrusions emplaced as hot liquid 

magma, penetrates upwards due to buoyancy caused by the density difference 

between the magma and the host rock (Gudmundsson and Løtveit, 2012). There are 

four main types of intrusions; batholiths, laccoliths, sills and dykes (Fig. 2). 

Batholiths are the largest types of intrusions and are commonly formed when several 

smaller intrusions merge into one large unit which is layer discordant. Laccoliths are 

layer concordant features responsible for substantial doming of the overlying 

sequences, exerting a high magma pressure on the overlying units. Commonly 

magma is fed into laccoliths directly from underneath (Fig. 2). Sills are also layer 

concordant, but are tabular in shape and typically thinner than laccoliths. There are 

examples of sills forcing overlying sequences to bulge upwards (e.g. Hansen and 

Cartwright, 2006; Jackson et al., 2013; Eide et al., 2017; Omosanya et al., 2017; 

Magee et al., 2019), however, not to the same degree as laccoliths. Dykes are 

considered the smallest of the intrusions and are layer discordant. Although generally 

smallest, they are vital for the magma plumbing system to function as they feed the 

system with magma from deeper sources. 
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Figure 2: Simple sketch of a system containing batholiths, laccoliths, sills and dykes. 

The focus of this study is on the sills, as this is the group of intrusions often observed 

in sedimentary basins having an intense thermal effect on their host rocks. However, 

the results of this study are applicable for magmatic intrusions of all kinds. Sills may 

feed other sills with magma (e.g. Eide et al., 2017), however, one or more dykes must 

be present to supply magma from a source deeper within the crust. Dykes are 

deflected into sills when local stresses change into favoring sill emplacement, usually 

at interfaces between two layers (Gudmundsson, 1990, 2011a). Sills are known to act 

as both low permeable seals and fractured reservoirs (Zou et al., 2013; Gudmundsson 

and Løtveit, 2012). 
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2.1 Observations of sills in the field and on seismic data 

Sills commonly have large acoustic impedance relative to their host rocks, which 

often make them easy to locate on seismic images (Fig. 3a) (Smallwood and Maresh, 

2002). However, determining the upper and lower boundaries of sills can be difficult. 

How well a sill can be detected and separated from the host rock depends on its 

thickness, the acoustic impedance contrast and the frequency bandwidth of the 

seismic wavelet (Hart, 2000; Osagiede et al., 2014; Magee et al., 2015). Dykes are 

commonly beyond seismic resolution due to their small size/proportions, and sub 

vertical dykes are ordinarily impossible to locate on reflection seismic data. However, 

in some areas dykes are well resolved in high quality 2D and 3D seismic reflection 

data due to post-emplacement rotation by structural development of the basin 

(Phillips et al., 2018). If a sufficient number of dykes are present, or if the dykes are 

thick enough, they will also have a thermal contribution in sedimentary basins. This 

factor is however, not pursued in this study. 

Field observations of sills (Fig. 3b,c) suggest that sill thicknesses commonly are from 

a few meters to some hundred meters (e.g. Aarnes et al., 2011; Gudmundsson and 

Løtveit, 2012) and the aspect ratio (lateral dimension versus thickness) normally lies 

within the 150-500 range (Hansen et al., 2011; Gudmundsson and Løtveit, 2012). A 

subsurface study by Mjelde et al. (1997a) from the Vøring Basin model sills to be 

locally more than 500 m thick based on Ocean Bottom Seismograph (OBS) data. 

Interpretation of multichannel seismic reflection data and amplitude modeling from 

the same basin suggest that sills are generally around 100 m thick (Berndt et al., 

2000). 
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Figure 3: a) Sills on seismic reflection data. Arrows point at some of the sills. b) Sills 

intruded into volcanic rocks on Iceland (Photo I. Grunnaleite. Permission granted). 

c) Magmatic intrusions in a sedimentary basin in East Greenland (Eide et al., 2017. 

Permission granted).  
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2.2 Volcanic basins worldwide and on the Norwegian Continental Shelf 

Today, several producing oil and gas fields in Asia, Australia and in North and South 

America are located within volcanic provinces and many future petroleum 

exploration activities are expected to be associated with such regions (Zou et al., 

2013; Senger et al., 2017). The Neuquen Basin (Argentina), Amazonas Basin 

(Brazil), North Basin (USA) and Niigata Basin (Japan) (Zou et al., 2013) are some 

examples of basins with producing volcanic oil and gas fields. Volcanic provinces, 

also known as large igneous provinces (LIPs) (Fig. 4), are formed under abnormal 

circumstances, as opposed to conventional continental rifting and oceanic spreading 

mechanisms (Coffin and Eldholm, 1994). Successful exploration on volcanic margins 

requires understanding of their tectonic development, heat-flow history, intrusion 

mechanisms, and the effects of emplacement of magmatic intrusions on the petroleum 

system.  

 

Figure 4: Map showing approximate location of some of the Large Igneous 

Provinces (LIPs); modified after Coffin and Eldholm (1994) and Geoffroy (2005). 

Base map obtained from: https://non-art.info/map-of-thw-world-map/physical-map-

of-the-world-land-cover-maps-com/. 
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These igneous provinces (Fig. 4) are characterized by their extensive crustal 

emplacement of iron and magnesium rich (mafic) rocks and include continental flood 

basalts, volcanic passive margins, oceanic plateaus, submarine ridges, seamount 

chains, and ocean basin flood basalts (Coffin and Eldholm, 1994). 

On the Norwegian Continental Shelf there are a few basins known to accommodate 

magmatic intrusions. The Vøring and Møre Basins (Fig. 5) (e.g. Planke et al., 2005; 

Galushkin, 1997; Fjeldskaar et al., 2008) are probably the two basins containing the 

largest volume of emplaced magmatic material. These basins are located offshore the 

west coast of Mid-Norway in the Norwegian Sea and are dated to have been intruded 

by magma simultaneously to the opening of the North Atlantic in Early Eocene 

(Svensen et al., 2010).  

 

Figure 5: Approximate location of known basins with magmatic intrusions on the 

Norwegian Continental Shelf; Vestbakken Volcanic Basin, Sørvestsnaget Basin, 

Lofoten Basin, Vøring Basin and Møre Basin. Base map obtained from: 

www.earth.google.com, on December 6
th

 2019. 
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Magmatic intrusions are also known to be present in the Lofoten Basin in the 

Norwegian Sea (Fig. 5) (Mjelde et al., 2002), and in some locations in the SW 

Barents Sea, like the Sørvestsnaget Basin (e.g. Mjelde et al., 2002) and in the 

Vestbakken Volcanic Province (Fig. 5) (e.g. Fjeldskaar et a., 2008; Gac et al., 2018). 
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The main effects of magmatic intrusions on sedimentary 

basins 

In a petroleum system, the thermal history is one of the most important factors as it 

controls the formation and migration of hydrocarbons, the hydrocarbon properties, 

and the diagenetic processes that are important for the physical properties of the 

rocks. The emplacement of magmatic intrusions may significantly alter the thermal 

history of sedimentary basins.  

3.1 Effect on temperature 

The thermal calculation of any sedimentary basin is founded on its geohistory.  

Reconstruction of the geohistory, therefore, becomes important, and it is commonly 

based on a digitized seismic section which can be performed by either forward or 

backward modeling. All sediments in the digitized section are assigned a lithology 

with defined porosity/depth trends in order for the system to compact or decompact 

(depending respectively on forward or backward reconstruction process) the deposits 

through the geological evolution. Generally, reconstruction methods do not account 

for the complex structural history of basins. However, some methods restore the 

structural development, which has been shown by Fjeldskaar et al. (2017) to be 

crucial, as it can result in underestimation of temperature by ~80 °C (Fig. 6)
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The assigned lithologies in a section also contain information about vertical and 

horizontal thermal conductivity and specific heat capacity which are important 

parameters for the thermal calculations.  For a sedimentary basin following a cycle of 

depositions and subsidences, the thermal history is a function of the heat flow from 

the mantle, the surface temperature, sediment deposition and subsidence, uplift and 

erosion, paleo-water depths, and the ability of sedimentary rocks to transfer heat. 

Usually, basin thermal calculations are based on heat transfer by conduction, since 

the main heat flow in the lithosphere occurs through this process (Allen and Allen, 

2014). All these factors result in variation of the temperature with depth, often 

increasing by 30 °C∙km
-1

 (Allen and Allen, 2014). 

 

Figure 6: Thermal differences in a basin when fault movement is accounted for 

versus when it is not accounted for. The estimated temperatures are higher in the 

basin when fault movement is restored (modified after Fjeldskaar et al., 2017). 

Thermal calculations can be performed either by the steady-state or the transient 

models. The steady-state method assumes that the basin maintains thermal 

equilibrium from one modeled time step to the next. Transient thermal calculations, 

on the other hand, take into account the time needed for the basin to warm up or cool 

down, and requires more computer time than the steady-state models. When 

magmatic intrusions are emplaced, the magma temperature is around 1000 
o
C 
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(Gudmundsson and Løtveit, 2012), which is considerably higher than the surrounding 

host rock. The resulting thermal effects are short lived in geological terms, and 

transient thermal modeling with frequent time intervals are required to obtain 

accurate calculations and study the thermal effect. Calculations of the thermal effects 

thus require much higher temporal and spatial resolution than is generally the case in 

basin modeling. Modeling of the temperature and maturity effects of magmatic sills is 

therefore hardly ever done based on a realistic geohistory of 2D seismic sections. 

The ultimate thermal effect of magmatic intrusions is sensitive to the host-rock pre-

intrusion temperature (Dow, 1977; Bostick and Pawlewicz, 1984; Raymond and 

Murchison, 1988; Aarnes et al., 2010; Moorcroft and Tonnlier, 2016; Spacapan et al., 

2018) and it has been found to have larger thermal impact than the magma intrusion 

temperatures and the sill thickness (Aarnes et al., 2010). Unfortunately, this 

parameter is one of the most difficult to determine as evidence of this temperature is 

erased with the sill emplacement and further geological development. The host rock 

pre-intrusion temperature can only be estimated by thorough temperature modeling. 

Magmatic intrusions are commonly emplaced into structurally complex sedimentary 

basins where several factors affect the thermal development. It is therefore important 

to do this modeling as realistic as possible. 

3.2 Effect on maturation 

Maturation of organic material in source rocks is a function of the temperature (e.g. 

Gluyas and Swarbrick, 2015). For organic material to transform into oil or gas, the 

source rock must maintain high temperatures over millions of years; ~80-150
 o

C to 

form oil and ~150-180
 o

C to obtain gas (Allen and Allen, 2014; Gluyas and 

Swarbrick, 2015). The need for good thermal-history calculations to make good 

maturation predictions is therefore evident.  

Kinetics of kerogen degradation is a common approach in maturation modeling 

(Tissot and Welte, 1984) utilizing the relationship between temperature and 

chemical-reaction rates given by the Arrhenius equation (1) (Tissot and Welte, 1984; 

Allen and Allen, 2014). 
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                                                                                                 (1)                                                                                          

where k is the reaction rate, A0 is the pre-exponential constant/frequency factor (mol/ 

cm
2
s), Ea is the activation energy (J/mol), R is the real gas constant (8.314 J mol

-1
K

-1
) 

and T is the temperature. A0 represents a constant describing how often chemical 

species collide within a system, whereas Ea represents the energy barrier necessary for 

a chemical reaction to occur. Both these parameters are unique for any given 

chemical reaction. 

Kerogen type must be defined for the source rocks in the basin. There are three types 

of kerogen that mainly transform into oil and gas, denoted kerogen type I, II and III. 

Their unique activation energies and frequency factors result in dissimilar behavior 

and cracking of oil and gas under different conditions (e.g. Gluyas and Swarbrick, 

2015). 

The rate of a chemical reaction is doubled when the temperature is increased 

approximately by 10 °C (Tissot and Welte, 1984; Allen and Allen, 2014). Thus, with 

emplacement of magmatic intrusions a tremendous increase in the chemical-reaction 

rates will take place in their proximity. However, the increased temperatures 

following such emplacement feed the system with a lot of energy, which may lead to 

a transition from kinetic to thermodynamic control so that more energy-demanding 

transformations may occur (Atkins et al., 2017). This may in turn result in formation 

of kerogen less prone to form hydrocarbons (Tissot and Welte, 1984; Michelsen, 

2017). 

3.3 Effect on diagenesis 

Diagenesis is the alteration occurring when chemical compounds dissolve and are 

either re-deposited or form new components that precipitate (Allen and Allen, 2014). 

Several diagenetic reactions occur in the subsurface, including quartz diagenesis, 

transition of opal A to opal CT, dolomitization of carbonate rocks and alterations of 

clay minerals (e.g. Tissot and Welte, 1984; Allen and Allen, 2014; Dralus et al., 

2013; Peltonen et al., 2009). These chemical transformations cause porosity loss and 
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increase of rock densities, seismic velocities and physical rock strength (e.g. Nobes, 

et al., 1992; Roalset and Wei, 1997a and b; Peltonen et al., 2009; Neagu et al., 2010). 

In some cases, potentially good reservoir rocks may be totally destroyed by such 

chemical transformations leaving little or no porosity for hydrocarbons to 

accumulate. However, these diagenetic changes are also known to create hydrocarbon 

traps and fractured reservoirs (Dralus, 2013; Tsuji et al., 2011). 

Diagenesis, like maturation, is thermally dependent and is commonly described by 

kinetics governed by the Arrhenius equation (1) (Dralus, 2013), where k for this 

reaction is the rate constant of precipitation. As for maturation, increased 

temperatures due to magmatic intrusions are anticipated to enhance the diagenetic 

processes, which are determined by the lithology and chemical material in the 

subsurface. Modeling of these effects caused by sill intrusion had not been performed 

prior to this work.  

3.4 Stress effect of sills 

Sedimentary basins commonly consist of multiple heterogeneous layers with rocks of 

contrasting Young’s modulus (stiffness) and contain a network of faults and fractures 

developed through tectonic events. These faults and fractures are resulting from 

stresses that have acted on the basin over its lifetime and they constitute weaknesses 

in the subsurface prone to be reactivated (Gudmundsson, 2011b). The current stress 

field in a basin determines the faults and fractures that are potentially active and 

open. 

Magmatic intrusions are hydrofractures, primarily extension fractures, usually 

generated, partly or entirely, by fluid pressure (Gudmundsson and Brenner, 2001). 

These fractures open up perpendicular to the minimum compressive principal stress, 

σ3, and propagate in the direction of the maximum compressive principal stress, σ1 

(Gudmundsson, 2011b). When sills are emplaced, they induce stresses on the host 

rocks and this may lead to activation/reactivation of faults and open fractures and 

could possibly cause formation of fractured reservoirs even at distances far away 
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from the sill itself. In addition, sills can function as hydrocarbon seals and even as 

fractured reservoirs (Gudmundsson and Løtveit, 2012). 

The emplaced sills eventually solidify and become typically stiffer than their 

sedimentary host rocks (Gudmundsson, 2011b). Areas in close proximity of sills have 

been identified to have increased diagenetically modified rocks (e.g. Therkelsen, 

2016) and constitute together with the sills, the stiffer rocks in the basin, as the 

diagenesis may have increased the physical strength of the rock by more than 100% 

(Roaldset and Wei, 1997b). Stiffer rocks tend to accumulate stress as opposed to the 

softer layers (e.g. Gudmundsson and Brenner, 2001; Gudmundsson et al., 2002; 

Gudmundsson, 2011b), which make these areas prone to activate/reactivate faults and 

fractures. The stress effects of sills and the diagenetically modified area have so far 

received little attention. 
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Methods and softwares 

The project aims at reaching conclusions applicable to volcanic basins in general. 

This is accomplished by using the geometry of real basins with magmatic intrusions 

and applying global instead of site-specific parameters to the sections. The Vøring 

basin, offshore mid-Norway, is an example of a basin located in a volcanic passive 

margin that has developed during continental rifting and breakup derived by 

lithospheric extension due to plate tectonics (Geoffroy, 2005).  With extension 

follows thinning of the lithosphere, subsidence, sedimentation, passive buoyant-

driven upwelling of the mantle in the thinned area (McKenzie, 1978; Sengör and 

Burke, 1978) and possible emplacement of magmatic intrusions (Geoffroy, 2005). 

Most of the magmatic activity in the Vøring basin is proposed to originate from a LIP 

related to the Iceland hotspot that has influenced the North Atlantic since Early 

Cenozoic (Coffin and Eldholm, 1994; Howell et al., 2014; Mjelde et al., 2016). Such 

an area is ideal for studying the thermal effect of emplaced magmatic intrusions in 

sedimentary basins, but in some cases it is convenient to use synthetic profiles, which 

simplifies the modeling, for instance when differentiating the sensitivity of key 

parameters to the thermal development of sedimentary basins as performed in Paper 2 

of this project. 

In the mantle, the main heat transfer mechanism is convection, while in the 

lithosphere it is conduction (Allen and Allen, 2014). The main processes influencing 

the thermal effect of intrusions have been calculated by conduction modeling. 
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Convection may locally play a significant role and is a function of lithology, porosity 

and permeability, but is generally considered a secondary heat transfer mechanism in 

the lithosphere (Robertson, 1988) and is beyond the scope of this project. 

4.1 Basin modeling 

The starting point for all geohistory reconstructions in our study is the present basin 

geometry. All polygons in the digitized section are assigned a lithology with 

corresponding porosity/depth trend, thermal conductivity and specific heat capacity. 

An inversed, backstripping process is utilized, where one layer at a time is removed 

and the underlying sequences are decompacted based on the porosity/depth trend 

after exponential functions described by Sclater and Christie (1980). Faults are 

restored by vertical shear, a process that leaves no gaps or overlaps in the geometry 

and keeps track of rock masses, which is essential for the thermal and maturation 

modeling (Fjeldskaar et al., 2017). Furthermore, it simplifies and accelerates the 

compaction calculations (Fjeldskaar et al., 2003). Potential eroded material is added 

and paleo-water depths may be defined for every timestep but are not accounted for 

here. For timesteps with presence of sills, the sill polygons are assigned magmatic 

intrusion lithology with corresponding physical properties. These sill polygons are 

activated at time of emplacement.  Similar procedure repeats itself all the way to the 

top basement. The result is structural and geological history of the basin, which forms 

the basis for further thermal and maturation modeling. 

The thermal development of the basin is calculated by a conductive finite difference 

model (cf. Fjeldskaar et al., 2008, 2017) with rectangular finite difference thermal 

grid (Fig. 7), which is redefined at each timestep. Vertical and horizontal grid lines 

must be inserted so that the geometries are accurately represented. Particularly fine 

grid around small features, e.g. sills, must be inserted in order to provide realistic 

calculations.    

In contrast to the modeling of the geological and structural history, the thermal 

calculation is a forward process, taking the temperatures from the previous timestep 

into account. The upper boundary condition is the surface temperature, which in this 
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project is kept constant at 7 °C and the lower boundary condition is the basal heat 

flow in our calculations kept constant through time (44 mW∙m
-2

 for Paper 1 and 47 

mW∙m
-2

 for Papers 2 and 3). This heat flow value is just above one heat flow unit 

(Allen and Allen, 2014) and is typical for some continental shelves, e.g. parts of the 

Norwegian continental shelf and is in agreement with values measured in Europen 

Archean cratons (Nyblade and Pollack, 1993; Pascal et al., 2010).  

Classical first-order kinetics is utilized for the maturation and diagenesis calculations 

(cf. Fjeldskaar et al., 2008, 2017). For all maturation modeling in this project, 

kerogen type II is assumed, as it is the most common kerogen type in marine shales 

(Tissot and Welte, 1984). In order to fully investigate the effect igneous intrusions 

have on the hydrocarbon maturation, the whole basins are defined as source rocks. 

However, for a case study of a specific basin, only the actual source rock will be 

defined as such.  

For the modeling of diagenesis, precipitation, which is temperature dependent, is the 

rate limiting factor for all processes (Walderhaug, 1994, 1996). The precipitation is 

proportional to the rate constant (k) given by the Arrhenius equation (1). 

4.1.1 Basin Modelling Toolbox (BMT) 

Basin Modelling Toolbox (BMT
TM

; a trademark of Tectonor)
 
is a high-resolution, 

temporal and spatial, 2D basin modeling software that reconstructs the structural and 

geological development and predicts the thermal and maturation evolution based on 

digitized seismic sections (Fig. 7). The software enables modeling of complex 

structural processes, including magmatic intrusions and the heat flow related to these 

features (Lander et al., 1994; Fjeldskaar et al., 2003, 2017). The thermal finite 

difference grid consists of minimum 400 x 400 cells, but the grid density and size 

depends on the complexity of the subsurface geometry. In terms of temporal 

resolution, the gap between every timestep depends on the digitized horizons. 

However, after emplacement of igneous intrusions, the timesteps are as small as 100 

years. 
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Figure 7: The appearance of the work suite in BMT.  a) Shale basin with magmatic 

sill intrusions. b) Same shale basin as in a) with the rectangular finite difference 

thermal gridding included. Please notice the extra fine gridding around smaller 

features, incorporated to ensure accurate calculations.  

4.1.2 Move 

BMT solely restores faults by vertical shear. Fault restoration other than vertical 

shear, was done by the software Move (Petex Ltd) (www.petex.com/products/move-

suite). Move is a structural modeling and analysis software with 2D and 3D kinematic 

modules that enables e.g. integrating and interpreting data, cross-section construction, 

kinematic restoration and validation, and geomechanical modeling. For this study, the 

2D kinematic reverse modeling was used to perform antithetic and synthetic inclined 

shear fault restoration on a constructed 2D section in Paper 2 (Fig. 8). The porosity 

and decompaction calculations are based on exponential functions after Sclater and 
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Christie (1980) in both Move and BMT, and the same values are used in the two 

softwares. 

 

Figure 8: The appearance of the work suite in Move and the resulting geometries of 

fault plane and bedding when section is restored by 10 degrees synthetic inclined 

shear (solid lines) and by 30 degrees anthitetic inclined shear (dashed lines). 

4.2 Stress modeling  

Rocks at low temperatures and low pressures commonly behave as a linear elastic 

material up to 1-3% strain (Farmer, 1983; Paterson and Wong, 2005). Therefore, 

stress modeling of brittle rocks is commonly based on linear elasticity theory 

following Hooke’s law (2) which states that the strain (ε) in a body is proportional to 

the applied stress (σ). 

σ = Eε          (2) 

where E is Young’s modulus. Since the unit for both σ and E is pascals (Pa), ε is 

unitless. Young’s modulus is a measure of the stiffness of a material and its ability to 

withstand deformation when forces are applied (Gudmundsson, 2011b). Poisson’s 

ratio (ν) is another unitless material constant in linear elasticity theory, and is the ratio 

of a materials lateral expansion/contraction in relation to the longitudinal 

contraction/expansion when forces are applied. For rocks, this ratio normally lies 

within the range 0.15-0.35, but usually it is 0.25 (Bell, 2000; Gudmundsson, 2011b).  
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Rocks exceeding 1-3% strain will experience irreversible deformation such as 

fracturing or faulting. Fracturing or faulting occurs when the tensile or shear strength 

of the rock is exceeded (Gudmundsson, 2011b). For most rocks the shear strength 

normally is in the range 1-12 MPa and the tensile strength is usually half of the shear 

strength, 0.5-6 MPa (Haimson and Rummel, 1982; Schultz, 1995; Amadei and 

Stephansson, 1997). 

In this study, 2D modeling was performed for stress calculations in Paper 3. 2D 

modeling infers the third dimension to be infinite, which is a good approach as sills 

generally are much larger in the third dimension than the two others (e.g. 

Gudmundsson and Løtveit, 2012). Setting up the model involves defining the 

geometry and assigning elastic properties to the polygons. The polygons represent 

units of material with properties corresponding to the rock types under investigation. 

Before adding compressional or extensional loading to the model, the lower boundary 

is fastened to avoid rotation and translation of the rock body.  

All polygons in the studied models in this project are given a Poisson’s ratio of 0.25, 

and the assigned Young’s modulus values are typical for the rocks they represent 

(Gudmundsson, 2011b). The models include; host rock (10 GPa), sills and basement 

(both 50 GPa), area modified by diagenesis (20 GPa), fault core and damage zone 

(0.1 GPa and 1 GPa respectively) and, fault core and damage zone altered by 

diagenesis (0.2 GPa and 2 GPa respectively). The densities for all rock units are 

assumed to be 2700 kg∙m
-3

. Before running the models, 5 MPa extensional or 

compressional loading is applied to the sides of the model to replicate an extensional 

or compressional stress regime. 

4.2.1 Comsol Multiphysics® 

In order to investigate stress accumulations related to the sills and areas affected by 

diagenesis, we used the software Comsol Multiphysics® 5.2.a (www.comsol.com). 

Comsol Multiphysics® is a numerical simulation software for modeling of key 

processes within most fields of engineering and scientific research. It is a commercial 

finite element method (FEM) software that solves 2D and 3D problems based on 
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partial differential equations. The geometry under investigation is divided into finite, 

triangular, interacting volume (3D models) or surface (2D models) elements in a 

process named meshing. The element mesh density increases at boundaries between 

neighboring domains and particularly where geometries have pointed edges (Fig. 9).  

 

Figure 9: Illustration of the domain of the model divided into triangular, interacting 

elements. Areas closest to for instance faults, sills and fractures consist of denser 

element mesh, and are particularly dense in the proximity of pointed edges/shapes.   

Every triangular element consists of three corners, referenced as nodes, and three 

edges (Fig. 9). The FEM method is based on the assumption that transfer of forces 

between element edges can be represented by the interaction of forces at the element 

nodes. This requires expressions for the forces acting at the nodes that manage to 

simulate the forces acting along the element boundaries. For assembling a solution 

for the whole geometry, numerical approximations of the differential equations for 

each element are then combined (Brady and Brown, 2005). 



 

 

 

 

                     

 

 

 

 

 



 

 

 

       Chapter 5  

  

 

 

Results and future work 

5.1 Contribution and conclusions of this study 

Schutter (2003) concluded that magmatic intrusions may potentially influence all 

parts of the petroleum system. The results from this study show that the increased 

temperatures caused by these features impact the source rocks and the transformation 

of organic material to hydrocarbons. They also impact the reservoir rocks by 

enhanced diagenesis and the potential migration by affecting location of stress 

accumulations. 

5.1.1 Sensitivity of sill thickness on basin temperature and maturation 

This study has quantified the effect of interpreting and modeling sills that are 0 m, 50 

m and 100 m thick. The results document the large difference in the thermal effect 

and calculated potential of source rocks when sills are accounted for, or not, and also 

when they are modeled with variable thickness. For source rocks located between 

clusters of sills, the timing of emplacement can be essential for the hydrocarbon 

maturation. When the upper sills in a cluster intrude last, it has a positive effect on the 

area of hydrocarbon maturity.  

The main results show that: 

 Sill thickness has significant impact on the thermal effect of magmatic 

intrusions and ultimately the maturation of organic material in sedimentary 

basins. This is especially true for sills intruding at 3-5 km depth. The main 



44 

 

 

thermal effect of sills occurs the first 1 million years after emplacement, but 

thermal differences may last up to ~10 million years after intrusion. 

 Modeling sills too thin may lead to underestimation of the petroleum potential 

of a basin, and overestimation if sills are modeled too thick. 

 Considering the timing of emplacement may be necessary in order to estimate 

the range of possible maturation for source rock between sills. There is a 

boosted thermal effect of magmatic intrusions when the upper cluster of sills 

intrudes last. 

 The high temperatures of magmatic intrusions impact the source rocks by 

maturing organic matter at depths that otherwise would be immature. 

5.1.2 Effect of faulting on pre-intrusion basin temperature 

The transient processes in structurally complex basins with magmatic intrusions have 

received little attention. This project has highlighted the significance of good 

representation of the structural development of basins, by quantifying the sensitivity 

of the most important factors for thermal development in basins with magmatic 

intrusions. It is particularly important to include transient thermal effects in such 

cases because the thermal effect of magmatic intrusions are shortlived compared to 

those caused by other geological processes, and because the pre-intrusion host rock 

temperature is vital to the ultimate thermal effect (e.g. Aarnes et al., 2010; Spacapan, 

et al., 2018).  

This study shows: 

 After fault slip, the sedimentary basin experiences transient thermal effects 

that may last several million years.  

 The amount of fault displacement, time span of faulting and deposition, fault 

angle, thermal conductivity, specific heat capacity, basal heat flow and 

restoration method, impact the transient thermal effects of structurally 

complex basins. The thermal conductivity of the lithology is the most 

significant parameter that influences the pre-intrusion host rock temperature 

the most. 
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 Ignoring the transient thermal effects proceeding normal faulting may lead to 

under- or overestimation of the pre-intrusion host-rock temperatures and will 

have implications for the calculated effect of magmatic intrusions on 

hydrocarbon maturation. This is particularly important when assessing the 

effect of several sills intruded at multiple levels. The maximum pre-intrusion 

host-rock temperature sills can intrude into is a basin that has regained steady 

state after fault slip. 

5.1.3 Effect of sills on diagenetic processes 

Gudmundsson and Løtveit (2012) showed how sills can act as seals for hydrocarbon 

accumulations, as well as constitute fractured reservoirs themselves. They also 

demonstrated how sills may contribute to the formation of fractured reservoirs in stiff 

rocks at time of emplacement. But sills may also contribute to deterioration of 

reservoir properties through diagenesis. This study has quantified the porosity loss 

due to magmatic intrusions for the following diagenetic processes; opal A to opal CT 

to quartz, smectite to illite and quartz diagenesis. All processes are temperature 

dependent (e.g. Walderhaug, 1994, 1996; Roaldset and Wei, 1997a, b, 1998) and 

influenced by the emplacement of magmatic intrusions. 

The main conclusions are: 

 Conductive thermal effects of magmatic intrusions significantly impact the 

diagenesis in sedimentary basins. The depth of emplacement determines which 

diagenetic processes are affected.  

 Sill thickness influences the size of the diagenetically altered area and the 

amount of porosity loss. This is particularly the case when sills are intruded as 

clusters at multiple levels. 

 Diagenetic alterations caused by magmatic intrusions may lead to reduction in 

the reservoir quality as pores are clogged by precipitation of minerals. 
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5.1.4 Effect of sills on permeability 

The sills and the area modified by diagenesis are commonly stiffer than their host 

rocks. Stiff rocks tend to concentrate stress in heterogeneous basins (Gudmundsson 

and Brenner, 2001; Gudmundsson et al., 2002; Gudmundsson, 2011b), possibly 

leading to opening of fractures and activation of fault slips. As open fractures and 

active faults increase the permeability (Gudmundsson, 2001), they may act as 

conduits for fluid flow and therefore influence the migration of hydrocarbons. If the 

initiated fault or fracture is in the sealing part of the hydrocarbon trap, magmatic 

intrusions may potentially influence the seal and trap for hydrocarbons and thus lead 

to leakage.  

The main results show that:  

 Sills and area altered by diagenesis influence accumulation of stresses in the 

subsurface. Stresses tend to build up in the sills and in the diagenetically 

altered area, making the area prone to opening of fractures, 

activation/reactivation of faults and contribute to increased permeability. 

 For the petroleum system this implicates that the effect of magmatic intrusions 

may influence the permeability and migration pathways not just at time of 

emplacement, but also long term effects due to their stiffer nature compared to 

their host rocks. 

5.2 Limitations to the modeling 

In numerical modeling the quality of the input data defines the quality of the results. 

This project aims at general conclusions regarding the extended thermal effect of 

magmatic intrusions in sedimentary basins. The parameters used in this study are thus 

of typical global average and not site-specific values. This can lead to significant 

differences between the reported results compared to anticipated results using site-

specific input parameters. For the temperature calculations this includes thermal 

conductivity, specific heat capacity, heat flow from the mantle and surface 

temperatures. 



47 

 

Thermal convection is not accounted for in this project, but several studies point out 

that significant convection occurred in Cenozoic time subsurface e.g. the Norwegian 

Sea (e.g. Svensen et al., 2003, 2004; Planke et al., 2005, Kjoberg et al., 2017). Such a 

heat transmission would definitely impact the cooling rate around magmatic 

intrusions (Iyer et al., 2013, 2017) and should be investigated in site-specific studies 

involving igneous intrusions. Latent heat of crystallization will add heat to the system 

when magmatic intrusions start to cool and minerals crystallize, as the crystallization 

process is an exothermic reaction. This additional heat is also not accounted for in the 

calculations here, and will have impact on the thermal effect, particularly of thick 

sills (Lander et al., 1994).  

Defining the correct kerogen type is crucial for the outcome of the maturation 

calculations. This is related to the frequency factors and activation energies that are 

different for the various kerogen types (Tissot and Welte, 1984). The thermal impact 

of magmatic intrusions will influence all the kerogen types and the resulting 

maturation, however, the effect may differ. In this study kerogen type II is used, 

another kerogen type will give different maturation results than those presented in 

this project. 

As maturation, diagenesis is also thermally dependent. The Arrhenius equation (1) 

gives the reaction rates as a function of the temperature, and the calculations in this 

study show areas where kinetic requirements are met for different diagenetic 

processes. However, for diagenesis to occur several other requirements related to 

lithology, chemical materials and the composition of circulating pore fluids must be 

fulfilled (e.g. Sachsenhofer et al., 1998; Essene and Peacor, 1995). In the modeling of 

diagenesis in this project it is assumed that these additional requirements are met. 

Furthermore, potential reactions in the subsurface, caused by catalysts and/or 

quenchers (which may retard or accelerate the reactions) (cf. Kastner et al., 1977; 

Huang et al., 1993; Bjørkum et al., 1998; Roaldset et al., 1998; Ireland et al., 2010) 

have not been considered. The diagenetic results of this study must therefore be 

interpreted with care, observing that the diagenesis effect may be overestimated. 
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In this project the modeling is based on sill intrusions in homogeneous basins. 

However, typical sedimentary basins are heterogeneous consisting of multiple layers 

of various stiffnesses. In volcanic sedimentary basins the sills themselves and the 

rocks modified by diagenesis will likely constitute the stiffest rocks (Gudmundsson, 

2011b) and thereby accumulate the most stress when stress is applied (Gudmundsson 

and Brenner, 2001; Gudmundsson et al., 2002; Gudmundsson, 2011b). For site 

specific studies it is important to include regional and local stresses acting on the 

basin. Furthermore, the heterogeneity of the sedimentary basin should be accounted 

for, as it will influence stress accumulations and thereby areas prone to open fractures 

or activate/reactivate faults.  

5.3 Further implications 

The calculations of the thermal effects of magmatic intrusions performed in this study 

may be of interest beyond the petroleum industry and the geosciences research 

community. All subsurface kinetic processes may be influenced by the emplacement 

of magmatic intrusions. Production of coal is a function of pressure and heat (Hatch 

and Affolter, 2015), and increased temperatures due to magmatic intrusions may 

therefore possibly lead to coalification and altered coal quality at shallower depths 

than expected (e.g. Yao et al., 2011). Such intrusions may also accelerate the 

production of methane gas related from coal deposits (e.g. Jiang et al., 2011; Yao and 

Liu, 2012; Wang et al., 2014; Shi et al., 2018; Rahman et al., 2018; Chen et al., 

2020). Geothermal fields are known to produce energy sourced by intrusions (e.g. 

Scott et al., 2015, 2018; Montanari et al., 2017). Calculations similar to those 

performed in this study may therefore be relevant for prediction of heat and possible 

duration of energy production from such a field.  

It is also conceivable that these results may be of interest to the minig industry. Gold, 

silver and other profitable transition metals are found and produced from ores that are 

genetically related to intrusions, often hydrothermally deposited (e.g. Moorhouse, 

1942; Sillitoe and Thompson, 1998; Parada and Stolyarov, 2012; Fayol et al., 2016; 

Guice, et al., 2017; Maier and Hanski, 2017; Eldursi et al., 2018). Diamonds and 
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other gemstones are reported to be present in some magmatic intrusions (e.g. 

Haggerty, 1999; Dill, 2018). Therefore, to locate magmatic intrusions and study their 

hydrothermal vents and effect on increased permeability through fracture opening and 

fault activation/reactivation, similar to what has been performed here, may contribute 

to exploration of essential metals and gemstones. 

5.4 Future work 

General conclusions have been the aim of this project. Therefore, a reasonable next 

step is to use the methodology applied in this thesis in site-specific studies. The 

magmatic intrusions in the Vøring Basin have been extensively studied from multiple 

angles (e.g. Mjelde et al, 1997 a, b; Planke et al., 2005; Fjeldskaar et al., 2008; Planke 

et al., 2017). However, a case study where all available data is combined in order to 

more specifically determine the thermal effect of the intrusions in a particular area is 

lacking. A good approach would be to start with the semi-regional ocean bottom 

seismograph (OBS) data model by Mjelde et al. (1997a) who estimated the sills to be 

considerably thicker than indicated by the regional procedure and anticipated in this 

study. These data, combined with conventional seismic reflection data (like those 

used as basis in this study), vitrinite reflectance and fluid inclusion data, would 

contribute to estimate the thermal effect of the magmatic intrusions in the Vøring 

Basin. Furthermore, a detailed interpretation of the structural elements can be 

implemented, and restoration of the structural development can be executed with 

several restoration methods, like the ones utilized in Paper 2. Modeling of the 

diagenetic effect of the igneous intrusions can be added along with a detailed stress 

modeling based on the regional and local stress fields. Possible permeability changes 

through time and migration opportunities may be predicted. 

In East Greenland, an onshore sedimentary basin with sill intrusions has been studied 

by Eide et al. (2017a) (Fig. 3c). They have also attacked the “sub-sill imaging 

problem” (Eide et al., 2017b) by making synthetic seismograms of outcrop lidar data 

of igneous intrusions in a sedimentary basin. A comparative study of data from this 

East Greenland basin combined with the seismic reflection and OBS data from the 
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Vøring basin could be an approach to determine the sill thicknesses and amount of 

intruded material in this offshore Norwegian Sea basin. 

This study has done a first approach in including diagenetic predictions in relation to 

magmatic intrusions, and the effect such transformations may have on stress 

accumulations. Magmatic intrusions and the associated increased heat flow will also 

have implications for other temperature dependent chemical processes occurring in 

the subsurface than those studied here. Increased porosity is observed in close 

proximity of magmatic intrusions due to diagenesis of carbonate rocks (Xu et al., 

2015), and represents an example of a diagenetic process not studied here, and which 

can be pursued in the future. 

Sills are known to intrude into or in proximity of salt sequences (Schofield et al., 

2014). Salts have high thermal conductivity and therefore conduct heat better than 

other lithologies. This result in higher temperatures above such sequences compared 

to areas at the same depth without salt (e.g. Grunnaleite and Mosbron, 2019). These 

increased temperatures above salt structures may lead to more mature organic 

material at shallower depths than areas at corresponding depth without salt 

(Grunnaleite and Mosbron, 2019). If magmatic intrusions are emplaced in the vicinity 

of such structures, these unusual high temperatures may lead to even larger areas with 

matured organic material overlying these structures than modeled in this study. The 

extreme heat from magmatic intrusions may possibly also lead to salt movements 

(Schofield et al., 2014). Salt exerting pressure on the overburden may cause 

fracturing and potential fault slip, thereby influencing the permeability of the basin. 

This is an unexplored topic. 

Where there are sills, there must be one or more dykes reasonably close by. Some 

basins are stacked with dykes, like the Farsund Basin located offshore southern 

Norwegian North Sea (Phillips et al., 2018).  Generally, dykes are not visible on 

seismic data. Minakov et al. (2012) discovered that by combining magnetic and 

seismic data, dykes could be located. This suggests that by combining these data sets, 
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the heat contribution of dykes can also be incorporated into the thermal calculations, 

a topic that has received little attention and is yet to be examined. 
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Summary of Papers 1-3 

Paper 1: The importance of sill thickness and timing of sill emplacement 

on hydrocarbon maturation 

Magnhild Sydnes, Willy Fjeldskaar, Ingrid Fjeldskaar Løtveit, Ivar Grunnaleite and 

Nestor Cardozo 

From seismic sections it can be difficult to determine the thickness of magmatic 

intrusions due to insufficient seismic resolution, as well as timing of emplacement. 

The objective of Paper 1 is to investigate the influence of magmatic sill thickness and 

timing of emplacement on temperature and maturation of organic matter in 

sedimentary basins. A 2D seismic section from the Vøring Basin containing some 40 

interpreted sills is utilized to study the effect of sill thickness on the thermal and 

maturation history. Results for sill thicknesses of 0 m, 50 m and 100 m are presented 

in the study. Furthermore, the sills in the study were divided into an upper and a 

lower cluster of sills and modeled to intrude with time intervals of 10 000 years and 

100 000 years. Additionally, sills beyond seismic resolution and their effect on the 

surrounding host rocks were studied by performing a 1D modeling of well 7316/5-1 

in the Barents Sea, containing 9 sills naturally divided in an upper and a lower 

cluster. Vitrinite reflectance data from this particular well permit the study of the 

effect of thin sills on temperature and maturation.
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In order to investigate the geological, structural, thermal and maturation development 

of the studied section, BMT was used. The results show that sill thickness has 

significant influence on the thermal impact of magmatic intrusions and ultimately the 

hydrocarbon maturation. The largest thermal differences for scenarios of varying sill 

thickness are, as expected, closest to the sills, and the thicker the sills, the larger the 

thermal aureole and area of increased matured organic material. When comparing 

maturation levels for the tested sill thicknesses, results show up to 100% difference in 

matured organic matter in close proximity of sills and in particularly in areas between 

close-lying, neighboring sills. There is a positive thermal effect of sills intruding in 

one pulse as opposed to two pulses, at least for thinner sills. This is also observed for 

sills intruding in two pulses when the first pulse intrudes at deeper levels than the 

second pulse. For sills beyond seismic resolution the results show that thin sills 

within a cluster consisting of other thicker sills will not influence the maturation 

significantly. However, thin sills with no thicker sills in their immediate vicinity play 

an important role in the total maturation of organic material in their surroundings. 

 

Paper 2: Transient thermal effects in sedimentary basins with normal 

faults and magmatic sill intrusions – A sensitivity study 

Magnhild Sydnes, Willy Fjeldskaar, Ivar Grunnaleite, Ingrid Fjeldskaar Løtveit and 

Rolf Mjelde 

The pre-intrusion host-rock temperature has been shown to play a significant role on 

the thermal effect of magmatic intrusions, and ultimately, their effect on maturation 

of organic material. This study quantifies the thermal effects of the most important 

factors affecting the thermal history in structurally complex sedimentary basins with 

magmatic sill intrusions. These factors are related to faulting, physical properties, and 

restoration method of the structural evolution of the basin, and are 1) fault 

displacement, 2) time span of faulting and deposition, 3) fault angle, 4) thermal 

conductivity, 5) basal heat flow, and 6) restoration method. All modeling examples 

were executed on the same constructed clastic profile and one parameter at a time 
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was changed. This method allows for keeping track of the magnitude and impact of 

the individual factors, while avoiding other factors obscuring the thermal 

calculations. BMT was utilized to reconstruct the geohistory, as well as the structural 

development and the thermal and maturation calculations. The software Move was 

used to restore the structural evolution with 10º, 20º and 30º antithetic inclined shear 

and 10º synthetic inclined shear. As BMT solely performs fault restoration through 

vertical shear, and Move does not perform thermal and maturation calculations, the 

resulting reconstruction from Move was replicated in BMT through a function called 

“volume editing”, enabling thermal calculations of the resulting basin geometries 

from different restoration methods. 

All the tested parameters show, to various degrees, transient thermal effects that will 

impact the estimation of pre-intrusion host rock temperatures of basins with intruding 

magmatic sills. Thermal conductivity is the factor that the most influences the basins 

transient thermal history and steady state is obtained 3-22 million years after fault slip 

has occurred. The other tested factors obtain steady state within a smaller timespan. 

Thermal differences up to 40 °C can occur for sills intruding at time of fault slip 

compared to sills intruding 10 million years later. This 40 °C temperature difference 

in host rock temperature may have significant impact on the calculated thermal effect 

of magmatic intrusions and thereby also on the maturation calculations. For sills 

intruding as clusters and not as individual sills, this pre-intrusion temperature 

difference will have an even larger impact on the maturation estimations. 

 

Paper 3: The influence of magmatic intrusions on diagenetic processes 

and stress accumulation 

Magnhild Sydnes, Willy Fjeldskaar, Ivar Grunnaleite, Ingrid Fjeldskaar Løtveit and 

Rolf Mjelde 

Chemical compaction, known as diagenesis, is dependent on the temperature in the 

subsurface. Emplacement of magmatic intrusions provides abrupt thermal changes in 
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their proximity, which has been clearly presented in Papers 1 and 2. The objective of 

Paper 3 is to study magmatic intrusions effect on the diagenetic processes in their 

vicinity and furthermore, the effect they have on stress accumulations in the 

subsurface.  

A section from the Vøring Basin has been utilized in this study to ensure realistic 

proportions and structures of basins with magmatic intrusions. BMT has been used to 

perform the geological, structural, thermal, maturation and the diagenetic modeling. 

The influence of magmatic intrusions on three diagenetic processes has been 

quantified; opal A to opal CT to quartz, smectite to illite, and quartz diagenesis. The 

results clearly show enhanced porosity loss due to magmatic intrusions in comparison 

to areas not intruded. Particularly areas between clusters of sills are prone to 

intensified diagenesis. However, the effect of sills is dependent on depth of 

emplacement. This is because maximum diagenetic alterations occur at different 

temperatures for different processes, making depth of emplacement a crucial factor 

for sill influence. For diagenetic processes to occur, several other conditions must be 

met. BMT includes the thermal calculations and the possible porosity loss caused by 

diagenesis. However, it does not take into account the biogenic and chemical material 

present, and circulating pore fluids, which ultimately determine the possible 

diagenetic processes. 

During diagenesis, the physical properties of rocks are altered making the 

diagenetically transformed areas prone to respond differently to stresses. The sills 

themselves are typically stiffer than their host rocks in sedimentary basins. These 

features will concentrate stresses, as stiffer rocks tend to concentrate stress in 

heterogeous basins. The results show that areas altered by diagenesis and the sills 

themselves, concentrate stresses, which may lead to opening of fractures where 

tensile stresses concentrate, and initiation or reactivation of fault movement where 

shear stresses concentrate. This may contribute to increased permeability and 

influence the hydrocarbon migration, as faults and fractures may act as conduits for 

fluid flow.
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A B S T R A C T

Magmatic sills in sedimentary basins can be relatively easy to interpret on seismic data because they stand out
due to their high acoustic impedance in relation to the sediments. However, determining sill thickness is
challenging unless the sills are drilled. This study explores the influence of magmatic sill thickness and timing of
emplacement on temperature and hydrocarbon maturation in sedimentary basins. A 230 km long 2D transect
through the Vøring Basin in the Norwegian Sea is modeled and sill thickness and timing of emplacement are the
only parameters varied. The transect holds ∼40 sills that intruded at∼55 Ma with a temperature of 1000 °C in a
shale-dominated sequence. Several sill thickness scenarios were tested, but results for 0 m (no sills), 50 m and
100 m are presented here. Furthermore, the 50 m and 100 m thick sills were tested to intrude as upper and lower
clusters separated by time intervals of 10 and 100 kyr. To study the effect of sills below seismic resolution, 1D
modeling of well 7316/5-1 in the Barents Sea was performed. This well contains 9 sills distributed in an upper
and a lower group. Vitrinite reflectance data from the well allow studying the effect of thin sills on temperature
and maturation. The results show a clear connection between sill thickness and the temperature and maturation
history of the basin. The largest impact of sill intrusions is at 3–5 km depth. For sills intruding as clusters, there
are regionally marginal differences related to timing of emplacement but local differences especially in the close
vicinity of the sills occur. This work indicates that the interpretation of sill thickness has a substantial influence
on the prediction of the maturation and petroleum potential of sedimentary basins holding magmatic intrusions.
Sills below seismic resolution contribute to increased maturation in its surroundings. Differences in the timing of
sill emplacement within 10–100 kyr show local effects that may influence the petroleum potential of source
rocks between two sill complexes.

1. Introduction

Oil and gas reserves in volcanic provinces are found on all con-
tinents and many future petroleum exploration areas will be located in
volcanic margins (Caineng et al., 2012; Senger et al., 2017). Magmatic
sills in sedimentary basins commonly stand out on seismic images due
to their high acoustic impedance (AI) resulting in high amplitude re-
flections compared to the surrounding sediments (Smallwood and
Maresh, 2002). However, determining the boundaries, top and base, of
magmatic sills from seismic is not straightforward, unless the intrusions
are drilled. How well a layer is detected and separated on seismic de-
pends on its thickness, AI contrast (Hart, 2000), and the seismic wavelet
frequency (Osagiede et al., 2014; Magee et al., 2015). The higher the
wave frequency the thinner the sills that can be detected and resolved
(Brown, 2004; Osagiede et al., 2014; Magee et al., 2015; Schofield

et al., 2015). For a typical wave frequency of 30 Hz at 2–3 km depth,
the minimum sill thickness that can be clearly interpreted is ∼50 m.
Heterogeneous host rocks may modify the seismic expression of the sill
and create seismic artifacts (Magee et al., 2015).

In outcrops, magmatic sills show thicknesses ranging from a few
meters (Burchardt, 2008; Polteau et al., 2008; Galerne et al., 2011;
Senger et al., 2014; Button and Cawthorn, 2015; Schofield et al., 2015)
to several hundred meters (Chevallier and Woodford, 1999; Polyansky
and Reverdatto, 2006; Galerne et al., 2010, 2011; Aarnes et al., 2011;
Hansen et al., 2011). Seismically interpreted sill thicknesses are nor-
mally within a few tens of meters to a few hundred meters (Hansen and
Cartwright, 2006; Cukur et al., 2010; Gudmundsson and Løtveit, 2012;
Wang et al., 2012; Inam et al., 2014).

Seismic provides little or no information on the timing of sill em-
placement. Dating of magmatic intrusions exists in some areas, and the
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tectonic evolution of the basin may also indicate possible ages of em-
placement, but these approaches have high uncertainty. Gleadow and
Brooks (1979) estimated an average uncertainty of 1–3 Myr in sill
emplacement ages based on fission track dating of sphenes, zircons and
apatites. Other studies report similar uncertainties for the dating of
magmatic intrusions (Trude et al., 2003; Quinn et al., 2005; Svensen
et al., 2010, 2012; Zhong et al., 2011). Outcrop studies of volcanic
basins such as central East-Greenland and the Karoo Basin, South
Africa, indicate that clusters of sills consisting of many levels of intru-
sions possibly were emplaced simultaneously (Planke et al., 2005;
Svensen et al., 2012). A study of intrusions in the Guaymas Basin, Gulf
of California (Einsele, 1982), suggests that sill clusters were emplaced
in pulses separated by 10–100 kyr, which fits well with the 10–20 kyr
interval for basalt interruptions in the Mid-Atlantic Ridge (Moore et al.,
1974). Works by Svensen et al. (2010, 2012) in the Vøring and Karoo
basins suggest even longer time intervals.

Several studies have shown and acknowledged that magmatic in-
trusions affect the temperature history and hydrocarbon maturation of
sedimentary basins (Galushkin, 1997; Othman et al., 2001; Aarnes
et al., 2010, 2011; Wang, 2012; Wang et al., 2013; Peace et al., 2017;
Schofield et al., 2017). Fjeldskaar et al. (2008) studied the impact of
sills on temperature, vitrinite reflectance, and transformation ratio in
the Vøring Basin and Gjallar Ridge area, Norwegian Sea. Their results
show that the temperature in the vicinity of the sills increases drasti-
cally just after the emplacement and diminishes with time, increasing
the transformation ratio in the sediments. In the same region, Aarnes
et al. (2015) found that gas generation in the host rock due to sill in-
trusions can be significant, despite relatively poor total organic content
(TOC) in the source rocks.

These examples show that magmatic intrusions influence the basin
temperature and maturation, but how sensitive the petroleum potential
of basins is to sill thickness and timing of emplacement has received
little attention. The aim of the present study is to analyze the impact of
these factors on the temperature and hydrocarbon maturation of sedi-
mentary basins. This is done by modeling of a 2D geological section
across the Vøring Basin in the Norwegian Sea and 1D modeling of well
7316/5-1 in the Barents Sea. Different modeling scenarios reflecting
uncertainties in sill thickness and timing of emplacement have been
tested. The modeled well and geological section represent specific lo-
cations, but the paper aims at conclusions applicable to volcanic basins
in general. The results show that uncertainties in sill thickness and
timing of sill emplacement influence the prediction of temperature and
maturation history, i.e. the evaluation of petroleum potential of the
basin.

2. Geological setting

The Vøring Basin lies offshore mid-Norway (Fig. 1), and is known
for its numerous magmatic intrusions. This region is bounded by the
Bivrost Lineament to the NE and the Vøring Transform Margin to the
SW (Fig. 1). During the onset of the opening of the North Atlantic from
Late Cretaceous to Early Eocene, the area experienced extensive mag-
matic activity (Saunders et al., 1997; Eldholm et al., 2000; Torsvik
et al., 2001; Meyer et al., 2007; Hansen et al., 2009; Ganerød et al.,
2010). This study uses the depth-converted and interpreted seismic
profile by Fjeldskaar et al. (2008), which crosses the Vøring Basin from
SE to NW, from the Dønna Terrace to the volcanic Vøring Marginal
High (Fig. 1).

Three main rifting episodes are identified in this area, which gen-
erated grabens, basins and structural highs. The first occurred in the
Carboniferous-Permian and coincided with the onset of rifting in the
North Atlantic (Bukovics et al., 1984; Gabrielsen et al., 1984; Price and
Rattey, 1984; Surlyk et al., 1984; Brekke and Riis, 1987; Blystad et al.,
1995; Doré and Lundin, 1996). The next took place in the Late-Mid

Jurassic to Early Cretaceous and led to subsidence and development of
accommodation space for the thick Cretaceous sedimentary sequence
consisting mainly of shales (Swiecicki et al., 1998; Scheck-Wenderoth
et al., 2007). The third and last episode occurred from Late Cretaceous
to Early Eocene and coincided with the opening of the North Atlantic,
development of the Vøring Marginal High, and intrusion of numerous
sills in the Cretaceous basin fill (Mjelde et al., 1997; Brekke, 2000).
Abdelmalak et al. (2016) describe four tectono-volcanic stages of the
magmatism of the Vøring Margin. The first stage of basaltic andesitic
flows was emplaced into subaqueous sediments as dykes and sills, fol-
lowed by subaerial dacitic flows in stage two. Finally, ocean-breakup
and emplacement of volcanic flows over the Vøring Marginal High in
stages three and four.

The stratigraphic column of the area consists mainly of marine to
deep marine deposits (mainly shale) with intercalations of shallow
marine sediments (mainly sandstone) in the Upper Jurassic and
Cretaceous (Fig. 2). The Paleocene consists of chalk deposits in some
areas, and the Lower Eocene has volcanic intrusions within the shales.
Oligocene, Neogene and Quaternary deposits are mainly shales with
some ice rafted debris in the Plio-Pleistocene (Fig. 2). The studied 2D
transect is 230 km long and holds ∼40 interpreted sills located at
2.5–7 km depth with lateral extension of the sills varying from 3 to
40 km (Fig. 3). The time of intrusion is ∼55 Ma, which is supported by
ages derived from zircon dating of magmatic sills in the Vøring area
(55.6 ± 0.3 Ma and 56.3 ± 0.4 Ma, 6607/5-2 and Utgard wells;
Svensen et al., 2010).

3. Methodology and model set up

The software BMT (Basin Modelling Toolbox, Tectonor AS) was
used to model the geological, structural, thermal and maturation his-
tory of the studied profile and well. BMT is a high-resolution system
with the ability to model complex tectonic processes such as igneous
intrusions and their related heat flow (Lander et al., 1994; Fjeldskaar,
2003).

The starting point is the present day geometry obtained by the in-
terpreted and depth converted 2D seismic section (Fig. 3a–b) after
Fjeldskaar et al. (2008). All digitized layers in the section are assigned a
lithology with regard to porosity/depth trend, thermal conductivity and
specific heat capacity (Table 1).

For every timestep, one by one layer is removed and the underlying
sequences are decompacted (Fig. 3c), a process that is based on the
defined porosity/depth trend for each assigned lithology. The porosity/
depth trends are exponential functions as described by Sclater and
Christie (1980). Furthermore, folds and faults are restored using ver-
tical shear, which is a reasonable model for extensional settings (Gibbs,
1983). Vertical shear keeps track of the rock mass, which is funda-
mental for the temperature and maturation modeling, and it simplifies
and accelerates the calculation of compaction (Fjeldskaar, 2003). If
magmatic intrusions are present at a specific timestep, these polygons
are assigned magmatic intrusion lithology with related physical prop-
erties acting from the time of emplacement. Palaeo-water depths are
not included. Eroded material is added to the western part of the section
at timesteps 74 Ma and 66 Ma, since unconformities interpreted on the
profile imply that the sedimentary sequence was eroded at these stages.
The impact of erosion on the resulting temperatures and maturation in
the basin is only local and limited to the eroded area and does not
influence the larger area of interest here.

When the geohistory for the whole section has been modeled, the
basin thermal development is calculated using a transient finite dif-
ference model (see Fjeldskaar et al., 2008; Fjeldskaar et al., 2017 for
further details). The finite difference grid consists of minimum
400 × 400 cells of varying sizes with an average size of 576 m × 25 m
(width and height). The grid size however, depends on the complexity
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of structures, and around magmatic sills it is especially small to ensure
good temperature calculations. Fjeldskaar et al. (2008) modeled the
temperature effect of sill emplacement with the numerical BMT model
versus an analytical model, and demonstrated that the numerical code
works well for high-resolution modeling, both spatially and temporally.

The temperature history is calculated by conduction and controlled
by the thermal conductivity and specific heat capacity of the litholo-
gical units in the basin. The palaeo-temperature regime of the sedi-
ments is a result of the heat flow from the base of the lithosphere (lower
boundary condition) and the sediment-water temperature (upper
boundary condition). As the lower boundary condition we assume
constant heat flow of 44 mWm−2 over time and palaeo-surface tem-
perature is set to 7 °C (upper boundary condition). This is done to keep
the model as general as possible. Convection is not included in the
model. The temperature regime in the host rock before sill intrusions
are calculated, and at time of intrusion the sills heat supply is included
in the thermal calculations. To obtain a correct maturation history it is
crucial that the sill intrusions are modeled with a realistic temperature
history of the basin also before the emplacement. If the background
temperature history of the basin has errors so will the modeled ma-
turation history. Intrusion temperature is set to 1000 °C, which is within
the normal magma temperature range (Gudmundsson and Løtveit,
2012). No latent crystallization heat is considered.

Temperature is the most important factor influencing the matura-
tion of source rocks (Tissot et al., 1987). Thus, temperature modeling is
the foundation for maturation modeling and the resulting conversion of
kerogen to hydrocarbons. Different kerogen types respond dissimilarly
to thermal influence, and the kerogen type is therefore an important
parameter to specify for the source rock. In our study the whole sedi-
mentary sequence is modeled as source rock with kerogen type II,
which is commonly the case for marine shales (Tissot and Welte, 1984).
The kerogen maturation model in BMT is based on classical first-order
kinetics applicable to decomposition reactions (see Fjeldskaar et al.,
2008; Fjeldskaar et al., 2017 for further details).

Based on field observations, sill thickness is likely to be within a few
meters to a few hundred meters (Aarnes et al., 2011; Gudmundsson and
Løtveit, 2012). The aspect ratio, i.e. the relation between the lateral

dimension of a sill and its maximum thickness, is generally in the
150–500 range (Hansen et al., 2011; Gudmundsson and Løtveit, 2012).
The lateral dimension in this study is in the 3–40 km range giving a
thickness range of ∼ 6–270 m. Fjeldskaar et al. (2008) used a sill
thickness of 50 m in this area, but data from well 6607/5-2 (Fig. 1)
shows that sills up to 100 m thick exist. Results from three sill thick-
nesses are presented here: 0 m (no sills), 50 m and 100 m all intruding
simultaneously at 55 Ma. These thicknesses are within the range of
what usually can be separated on seismic (Fig. 4) and would normally
be accounted for in temperature modeling. Fig. 3b shows the depth-
converted seismic section with the present basin geometry and 100 m
thick sills.

In the next set of simulations, the impact of timing of sill empla-
cement was tested. The sills in the profile were divided in two clusters
that intrude at different depths during two pulses. There are several
possible scenarios for sill clusters along this profile, but a random dis-
tribution was selected based on what seems realistic in relation to the
location of faults, as outcrop observations show that faults can be
conduits for magma transport (Planke et al., 2005). The sills are
grouped into lower sills (turquoise, Fig. 3c), and upper sills (black,
Fig. 3c) and three scenarios were modeled: 1) all sills intrude at 55 Ma;
2) the upper sills are emplaced before the lower sills; and 3) the lower
sills are emplaced before the upper sills. Scenarios 2 and 3 were tested
for two intrusion intervals: 10 kyr apart (at 55 and 54.99 Ma) and 100
kyr apart (at 55 and 54.90 Ma) since these time intervals are within the
normal intrusion interval range indicated by other studies (Einsele,
1982; Aarnes et al., 2015).

The modeling described above, concentrate on clusters of sills that
are thick enough to be detected on seimic. However, as pointed out,
sills may escape detection on seismic but will still contribute to the
maturation and induce changes in the vitrinite reflectance, a commonly
used indicator for thermal maturity of source rocks. Thus, by studying
vitrinite reflectance, sills that are undetectable on seismic may be dis-
covered. Well 7316/5-1 in the Barents Sea gives a unique opportunity
to study the effect of sills that are below seismic resolution. This well is
situated in the western Barents Sea on the Vestbakken Volcanic
Province and holds 9 sills varying in thickness from about 5 to 50 m.

Fig. 1. Location of the modeled 2D transect extending SE-NW across the Vøring Basin in the Norwegian Sea, offshore mid-Norway (red line). Map base is from the Norwegian Petroleum
Directorate Map Server. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Four sills are located at ∼2.9–3.1 km and five sills at ∼3.6–4.0 km
depth, leaving ∼500 m of sediments between the two sill clusters. The
intrusion of sills in two levels creates a natural division of an upper and
a lower group. Vitrinite reflectance data from the well demonstrate

when the sills influence the maturation to a significant degree and when
they do not. Different intrusion time intervals were tested and various
sills were selectively excluded from the calculations to study their in-
fluence on the maturation.

Fig. 2. Lithostratigraphic chart over the Vøring and Møre basins.
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Fig. 3. a) Seismic section VB-17-90 in two-way travel time. b) 2D section showing the present day situation based on interpreted and depth-converted seismic section with 100 m thick
sills. c) Restored 2D section at the time of sill intrusion (55 Ma) with 50 m thick sills. Points in Fig. 3b are used in Figs. 6 and 7, points in Fig. 3c are used in Figs. 11 and 12.

Table 1
Lithological parameter values used in the modeling.

Time units Lithology Age
Ma

Porosity-depth trend Conductivity (kv) (Wm−1 K−1) Heat capacity
(Jkg−1 K−1)

Surface Porosity Exponential constant (km−1) Low porosity High porosity

Quaternary Shale 0–3 0.63 0.51 2.35 1.50 1190
Pliocene Shale 3–5 0.63 0.51 2.35 1.50 1190
Oligocene Shale 5–34 0.63 0.51 2.35 1.50 1190
Eocene Shale 34–56 0.63 0.51 2.35 1.50 1190
Paleocene Shale 56–66 0.63 0.51 2.35 1.50 1190
Cretaceous Shale 66–145 0.63 0.51 2.35 1.50 1190
Jurassic Shale 145–201 0.63 0.51 2.35 1.50 1190
Triassic Shale 201–252 0.63 0.51 2.35 1.50 1190
Permian Shale 252–298 0.63 0.51 2.35 1.50 1190
Basement Metamorphic 0.04 0.05 3.1 3.1 1100
Sills Intrusion 55 0.04 0.05 3.1 3.1 1100
Asthenosphere 3.5 3.5 1100
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3.1. Limitations to the modeling

Several factors important in the modeling of a real, heterogeneous
basin are not considered in this study. These include convection, latent
heat of crystallization and variable sill thickness in the lateral dimen-
sion.

Convection and thereby any heat advection by fluids is not ac-
counted for in the modeling. Several studies regarding hydrothermal
vents in the Vøring area (Svensen et al., 2003, 2004; Planke et al., 2005;
Kjoberg et al., 2017) indicate transmission of heat from deeper areas.
Therefore the cooling rate in this study may be a minimum estimate.

Permeability is one key factor controlling the intensity and pattern
of fluid flow in sedimentary rocks. A basin consisting mainly of shales is
normally considered having low permeability. But still in low perme-
able rocks with intruded sills, fluid flow occurs (Schofield et al., 2010)
and influence the thermal evolution (Iyer et al., 2013). Hot fluids at the
lower and upper margins of the sill will rise slowly from both tips of the
sill, resulting in enhanced maturation in these areas (Iyer et al., 2013,
2017). This also contributes to heat advection from areas where sills are
emplaced and thereby faster cooling of the host rock. However, ac-
cording to Podladchikov and Wickham (1994) conductive heat transfer
is a good approximation for magmas containing 10% water or less.

Neglecting latent heat of crystallization is a reasonable assumption
for shales where the contents of organic material are only a small
fraction of the total rock mass (Aarnes et al., 2015). Some studies in-
corporate latent crystallization heat by including additional heat at the
time sills are allowed to cool (Peace et al., 2017). Here, however, the
focus is on the relative difference between the resulting effects of var-
ious scenarios of sill thickness and timing of intrusion. Including ad-
ditional heat from latent heat of crystallization will result in higher
peak temperatures, transformation ratios and larger areas affected by
the intrusions, but the relative differences between the compared sce-
narios will remain the same.

In this study, the sills are assumed approximately the same thickness
from one lateral end to the other which is often not the case. Modeling
the sills with varying thicknesses is more realistic. However, constant
lateral sill thickness is a reasonable assumption for comparing the ef-
fects of different sill thicknesses.

4. Results

4.1. The effect of sill thickness

In sedimentary basins, temperature generally increases gradually
with burial depth (e.g. Fig. 5a) and is related to the geothermal gradient
in the area, which is a function of the heat flow and thermal con-
ductivity of the present sediments. Emplacement of magmatic sills de-
livers additional heat into the basin and disrupts this general tem-
perature distribution. After sill emplacement, the thermal effect is
initially located in the immediate vicinity of the sills (Fig. 5b–c), but
with time, the heat is dissipated and will affect a larger area around the
sills.

There is a clear correlation between the sill thickness and the
temperature increase. Thick sills (100 m) result in higher temperatures
and larger affected areas than thin sills (50 m) (Fig. 5b–c). This can be
illustrated by using four points of increasing depth and decreasing
distance to a sill in the central part of the basin (black to red points,
Fig. 3b). At these points the peak temperatures drop sharply and con-
tinue to decline slowly the first Myr after sill intrusion (Figs. 6 and 7).
Around 10 Myr later, all three scenarios show the same temperatures
(Fig. 7). From ∼40 Ma to the present, the model with 100 m thick sills
results in a slightly colder basin temperature than the scenario without
sills (Fig. 6). This is related to the higher thermal conductivity of sills in
comparison to the sediments.

Maturation of organic material is closely associated with the tem-
perature evolution in the basin. For basins without magmatic sills, the
maturation is mainly determined by the geothermal gradient and the
transformation ratio increases gradually with depth as the temperatures
increases (Fig. 8a). Although the effect of sills may not be detectable in
the present-day temperatures (Figs. 6 and 7), it is reflected in the pre-
sent-day maturation of hydrocarbons (Figs. 6 and 8). Basins holding
magmatic sills show area of increased transformation ratios similar to
the pattern of increased temperatures around the sills. The area of in-
creased present-day maturation is larger in the model with 100 m thick
sills than in the model with 50 m thick sills (Fig. 8b–c).

When the basin maturity with and without 100 m thick sills is
compared, it is clear that large parts at 3–5 km depth are much more
mature in the first case. In some areas, the difference in maturation is
up to 100%, but in general it is between 10 and 50% (Fig. 9a). The
trend is the same, but less pronounced when the sill thickness is re-
duced to 50 m. Maturation differences between the 50 and 100 m thick
sills scenarios are around 10–20%. Closer to the sills this difference can
be up to 40–60%, and in some smaller areas it can reach 100% (Fig. 9b).

4.2. The effect of timing of sill emplacement

Modeling results of the 2D section show that simultaneous intrusion
of several sills impacts the maturation in much the same way as suc-
cessive intrusion of the same number of sills. This is illustrated in
Fig. 10 for 50 m thick sills intruding with a time lapse in both the lower
and upper clusters. Similar results were observed for the 100 m thick
sills (not presented here). For all intrusion scenarios, the timing of sill
emplacement does not influence the maturation of shallow sediments
(< 2–3 km). Such sediments were either not present at time of intru-
sion, or the thermal effects were not significant enough to influence the
maturation, which is currently ongoing at these depths. Deep sediments
(> 5 km) show high levels of matured organic material. Although sill
emplacement increases the temperatures, the thermal impact has con-
ceivable an insignificant influence on the maturation process as these

Fig. 4. Relationship between peak frequency and intrusion thickness, and their values
needed to identify top and bottom boundaries of sills on seismic. Modified after Osagiede
et al. (2014) and Magee et al. (2015). Limit of separability is assumed to be the vertical
seismic resolution, it refers to the combination of peak frequency and intrusion thickness
where sills top and base can be distinguished. Limit of visibility refers to the minimum
combination of peak frequency and intrusion thickness when reflections on seismic
confidently can be identified as a sill.
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Fig. 5. Calculated temperature at 1 kyr years after intrusion
(54.999 Ma) showing a) scenario 1, no sills; b) scenario 2,
50 m thick sills; and c) scenario 3, 100 m thick sills. For
scenario 1, temperature increases gradually with depth. For
scenarios 2 and 3, abrupt, large temperature increase in the
vicinity of emplaced sills is evident. Intrusion temperature
is 1000 °C. The areas of high temperatures are marked in
yellow to red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Temperature and transformation ratio for the four points in the central part of the basin shown in Fig. 3b. The first column corresponds to the scenario with no sills, second column
to 50 m sills, and third column to 100 m sills. In all plots, the four lines correspond to the four points and have increasing depth (black, green, blue, red) and decreasing distance to
intruded sill. Intrusion temperature is 1000 °C. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sediments were already within the oil window at time of intrusion. The
maturation is therefore more related to burial depth than the tem-
perature increase caused by sill intrusions. Sediments at 3–5 km depth
are the most affected by the emplacement of sills regardless of their
timing. The results indicate that modeling the emplacement of sills in
one pulse is accurate enough to predict the general influence of sill
emplacement on basin maturation provided the intrusion interval be-
tween the sills is 10–100 kyr.

There are, however, local effects that must be considered, as they
may impact the maturation of source rock between sill clusters of dif-
ferent ages. These local effects are studied at three different locations
between the upper and lower sill clusters, with a vertical distance be-
tween the sills of ∼300 m, at depths of 4–5 km (Fig. 3c) and for a time
interval of 100 kyr (results for 10 kyr interval are similar). When all sills
are emplaced simultaneously, the full temperature effect occurs in-
stantly resulting in one temperature peak, but when two sill clusters are
emplaced at different stages, the temperature effect is distributed over
two magma pulses and two temperature peaks (Fig. 11). The question is
whether or not the hydrocarbon potential of the source rock placed
between the sill clusters would be affected by the order the sills are
emplaced.

The highest temperatures are obtained when all sills intrude si-
multaneously (Fig. 11). When the sills intrude as two pulses at different
times, the second magma pulse tends to result in higher temperatures
than the first one at the studied locations. Furthermore, higher tem-
peratures are obtained during the second magma pulse when the lower

sill cluster intrudes first (Fig. 11), suggesting that the first, deeper pulse
of magma thermally affects sediments at shallower depths. This effect is
also seen in the temperatures between the two magma pulses, where
the sediments affected by the emplacement of deeper sills preserve
higher temperatures prior to the emplacement of the upper sills
(Fig. 11). A higher host rock background temperature produced by the
earlier emplacement of the lower sills allows for a more gradual cooling
of these sills, as opposed to lower background temperature and abrupt
cooling of the upper sills when they intrude first (Fig. 11). After em-
placement of the second sill cluster, the basin strives to achieve tem-
perature equilibrium. Since the model with upper sills intruding first
results in less contrasting temperatures between the two magma pulses,
it leads to a more gradual cooling of the sill clusters, and equilibrium is
reached at higher temperatures than in the model with lower sills in-
truding first (Fig. 11).

There is a clear correspondence between the highest temperature
obtained and the maturation (Fig. 12). The highest transformation ratio
for 50 m thick sills is achieved when all sills are emplaced in one pulse.
Although there are variations, the results show higher transformation
ratios when the lower sills intrude before the upper sills. The exception
is the easternmost point at 4.4 km depth for 50 m thick sills (Fig. 12)
where the results may have been affected by other neighboring sills. For
the 100 m thick sills, there is no significant difference in the resulting
transformation ratio, since all scenarios result in ∼100% transforma-
tion of the organic material. Thus, the timing of sill emplacement may
introduce an extra degree of uncertainty when dealing with sill com-
plexes, especially if source rock is situated between the sill clusters.

4.3. Well 7316/5-1

The results from well 7316/5-1 in the Barents Sea are particularly
interesting as they show that leaving out both the thin or one of the
thick sills in the upper cluster still makes an adequate match with the
observed vitrinite reflectance data (Fig. 13). For the lower cluster,
however, only the thinnest sill (∼5 m) can be left out without sig-
nificant difference in calculated maturation. Based on these results, it is
reasonable to conclude that thin sills between thick sills that are rela-
tively closely spaced, do not significantly influence the maturation in
the basin. However, thin sills that are emplaced with no thick sills in the
immediate vicinity play an important role in the maturation of organic
material (Fig. 13).

Regarding the timing of intrusion, the results for this well show the
best match when the lower sill cluster intrudes last with a 10 kyr time
interval (Fig. 14). Seemingly, this gives a better match with the ob-
served vitrinite reflectance data than the results for sills intruding si-
multaneously. In most parts of the well, calculated vitrinite reflectance
declines when changing from 10 to 100 kyr intrusion interval, in-
dicating less mature source rock for intrusion intervals of 100 kyr. For a
50 kyr intrusion interval, the results are essentially the same as for
100 kyr interval (not presented here). Well depth between 3300 m and
3525 m and a 100 kyr intrusion interval gives roughly the same cal-
culated vitrinite reflectance as scenario without sills (Fig. 14).

Another interesting observation is the dissymmetry of the calculated
vitrinite reflectance between the sill clusters, especially for the 100 kyr
intrusion interval. The upper cluster ends at 3100 m depth, and the
lower starts at 3600 m. The graph for the 100 kyr intrusion interval
(Fig. 14) suggests that the upper sills affect the maturation processes
200 m below the cluster, while the lower sills influence the same pro-
cesses just some 50 m above the cluster.

5. Discussion

5.1. Sill thickness

Through seismic interpretation and amplitude modeling, Berndt
et al. (2000) concluded that the thickness of individual sills in the

Fig. 7. Temperature evolution for the deepest and shallowest points in the central part of
the basin shown in Fig. 3b. Green line corresponds to the scenario with no sills, blue line
to 50 m sills and red line to 100 m sills. At both locations, the three thickness scenarios
attain the same temperatures around 10 Myr after intrusion. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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Vøring Basin, offshore mid-Norway was about 100 m, whereas 2D ray
tracing modeling of the same area, indicated sill thicknesses of ap-
proximately 200 m (Mjelde et al., 1997). Well 6607/5-2 on the Utgard
High, Norwegian Sea (Fig. 1), penetrated two sills, 2 m and 92 m thick,
before it stopped some 40 m into a third sill. On seismic, however, only
the 92 m thick sill is visible (Planke et al., 2005). Therefore, it is rea-
sonable to assume that only a fraction of existing sills are imaged and
interpreted on seismic data. This is supported in a study by Schofield
et al. (2015). They found that only two sills in well 205/10-2b, in the
Faroe-Shetland Sill Complex, could be clearly interpreted from seismic
and these two sills amounted to about 40% of the intruded material in
the well. The same study also revealed decreasing limits of visibility
and separability of sills in a normal sequence of Cretaceous to

Paleocene sediments of the Faroe-Shetland Basin. This indicates that
decreasing seismic resolution with depth may leave thick intrusions
unresolved in deeper parts of the section.

These studies clearly show that determination of the thickness of
intrusions in a basin is sensitive to seismic resolution. Modeling sills too
thin leads to an underestimation of the petroleum potential of the basin,
while modeling sills too thick results in an overestimation, especially in
the depth range 3–5 km. In either case, the ultimate consequence is a
wrong estimate of maturation up to 100% in the close vicinity of sills.
Sills that are not visible on seismic and not detected by well data will
generally not be incorporated in the modeling, thus affecting the pre-
dicted basin temperature and maturation. This shows that knowledge
about sill thickness is crucial for accurate assessment of the

Fig. 8. Present day calculated transformation ratio for the three modeled scenarios: a) no sills, b) 50 m thick sills and c) 100 m thick sills. Maturation increases gradually with depth (a)
whereas organic material is matured at shallower depths for scenarios modeled with sill intrusions (b–c). The areas of high transformation ratios are marked in yellow to red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Differences in transformation ratio between: a) 100 m thick sills versus no sills and b) 100 m thick sills versus 50 m thick sills. Yellow to red colors indicate areas of largest
differences in maturation between the compared scenarios. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Transformation ratio for sills intruding 10 and 100 kyr apart. Upper row: lower sills intrude first and upper sills last. Middle row: upper sills intrude first and lower sills last.
Bottom row: all sills intrude at 55 Ma. All sills have a thickness of 50 m. The areas of high transformation ratios are marked in yellow to red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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hydrocarbon prospectivity of sedimentary basins in volcanic provinces.
However, it is important to keep in mind that the degree of hydro-
carbon maturation depends on the location of potential source rocks in
the basin in relation to the emplaced sills.

Well 7316/5-1 in the Barents Sea is a good example of sill clusters
where a large fraction of the present sills would be neither detected
(visible) nor resolved (separated) (Fig. 4) on seismic and therefore be
left out of the temperature and maturation calculations. Thin sills en-
countered by wells are discovered, but may not be visible on seismic
which makes it difficult to determine its horizontal extent and three-
dimensional geometry. Data from this well show that vitrinite re-
flectance (Figs. 13 and 14) is influenced by sills of various thicknesses.

Our modeling shows that even one of the thicker sills in the upper
part of well 7316/5-1 can be left out and still the calculated vitrinite
reflectance have an adequate match with the observed data (Fig. 13).
However, in the lower part of the well, even thin sills left out of the
calculations result in poor correlation between observed and calculated
vitrinite reflectance. The results from this well are closely tied to the
distance between sills and the possibility of heat exchange between

neighboring sills, which is related to the vertical distribution of the
intruded material. This is in accordance with Aarnes et al. (2011) who
show that the interaction between sills becomes stronger with de-
creasing vertical distance between sills. At a vertical distance of seven
sill thicknesses the sills will interact thermally, and for thin sills (10 m)
a vertical distance of four sill thicknesses gives an optimal output re-
garding the total hydrocarbon potential (Aarnes et al., 2015). The upper
interval (200 m) of well 7316/5-1 consists of 50% intruded material,
whereas the lower interval (400 m) contains 13% sill material (Fig. 13).
Based on these results, it is reasonable to conclude that thin sills be-
tween thick sills in basins can safely be left out of the temperature and
maturation calculations, whereas in basins or parts of basins with only
thin sills, every sill counts in the calculations.

The age of the sills is, in our case, 55 Ma. In other areas the age of
the sills can be different. However, the modeled effect of sill emplace-
ment is not, to a significant degree, affected by the emplacement age of
the sills because of the short-lived significant temperature increase, as
shown in Figs. 11 and 12. A geothermal gradient different from our case
can lead to small changes in maturation from the results reported here.

Fig. 11. Temperature histories at the points indicated in Fig. 3c, and for the three scenarios of sill emplacement (green, blue, red). First column is for the 50 m thick sills, and second
column is for 100 m thick sills. Time interval between sill clusters is 100 kyr. Notice that the temperature scale is different between the 50 and 100 m thick sills plots. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.2. Timing of sill emplacement

Outcrop observations show that many sills are emplaced as clusters
(Planke et al., 2005; Aarnes et al., 2011; Svensen et al., 2012; Eide
et al., 2016). Based solely on seismic, it may be impossible to determine
if the sills intruded simultaneously or as clusters at different times.
Magee et al. (2014) concluded that radiometric or seismic-stratigraphic
data from one or more sills in a cluster are not sufficient to characterize
the timing of emplacement of the entire sill network.

Aarnes et al. (2015) studied the impact of two 100 m thick sills,
where the upper sill intruded last with increasing time interval up to
100 kyr apart. They concluded that two sills intruding with a time in-
terval< 50 kyr show a positive effect on the total methane production
potential. Hanson and Barton (1989) also found a positive effect for
intrusions emplaced simultaneously as opposed to when complete
cooling was allowed between magmatic pulses. A time interval of
10–100 kyr between sill intrusions will not be detected with current
dating methods. Based on these facts, the sills in this study were divided

into upper and lower sill complexes to study the effect different timing
of sill emplacement has on the temperature and maturation of source
rock between sill clusters. The resulting maturation shows insignificant
differences regarding timing of emplacement for the 100 m thick sills
and only small differences for the 50 m thick sills. Overall, modeling the
sills as contemporary gives a good first approximation to the petroleum
potential of the basin (Fig. 10). However, the presence and the type of
source rock between the sill clusters are key factors in the prospectivity
assessment.

Aarnes et al. (2015) also found that simultaneous sill emplacement
may lead to 25% higher total hydrocarbon potential than if the em-
placement occurs in two separate events (intrusion interval > 50 kyr).
Our results show similar local effects for the 50 m thick sills and 100 kyr
intrusion interval, which show up to 40% higher maturation when all
sills intrude simultaneously as opposed to in two pulses. The 100 m
thick sills show no differences in maturation regardless of timing of
intrusion, all scenarios show approximately 100% matured organic
material (Fig. 12). Aarnes et al. (2015) use a vertical spacing of 760 m

Fig. 12. Transformation ratio at the points indicated in Fig. 3c, and for the three scenarios of sill emplacement (green, blue, red). First column is for the 50 m thick sills, and second
column is for 100 m thick sills. Time interval between sill clusters is 100 kyr. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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between the modeled sills, while in our study, the spacing between the
upper and lower sills in the area of the monitored points is ∼300 m
(Fig. 3c). There is a critical vertical distance between neighboring sills
at which the sills thermal aureoles start to interact (Aarnes et al., 2011).
This critical distance is related to the thickness of the sills, because the

thermal aureole increases with sill thickness. For thick sills, the vertical
spacing between neighboring sills must be relatively large to avoid
interaction between their thermal aureoles. Thus, it is reasonable to
expect that with increasing vertical distance between the upper and
lower sills, the results for the 100 m thick sills will approach those of
the 50 m thick sills. Nevertheless, if the sill clusters are closely spaced
(< 300 m vertically), the timing of sill emplacement has insignificant
influence on the resulting maturation of source rock between two
complexes of thick (100 m) sills.

The best match between observed and calculated vitrinite re-
flectances for well 7316/5-1 is achieved when the lower sills intrude
last with an intrusion interval of 10 kyr (Fig. 14). This observed time
interval is in accordance with results from other studies (Einsele, 1982;
Aarnes et al., 2015). Furthermore, this result is also in keeping with
work reported by Barnett and Gudmundsson (2012), which indicates
that the upper sill tends to be the oldest for sill complexes intruding
over a relatively short period of time. Therefore, as a first approxima-
tion in predicting the transformation ratio of a basin, it is recommended
to consider the upper sills to be the oldest unless there are good in-
dications to assume otherwise. Further, the results from timing of in-
trusion in well 7316/5-1 show that intervals> 50 kyr can be con-
sidered as two separate events. This is in accordance with observations
by Aarnes et al. (2015). However, our results also show that the upper
sill cluster consisting of a much larger fraction of intruded material as
well as thicker sills, influence the maturation processes and thereby the
vitrinite reflectance further downwards (200 m) than the lower sill
cluster with relatively thin sills affects the same process upwards
(50 m). This is in agreement with our results regarding sill thicknesses
from the modeling of the 2D transect in the Vøring Basin (Figs. 5–9).

A potentially significant consequence of sill intrusions in a basin is a
change from kinetic to thermodynamic control of the chemical reac-
tions modifying the source rock. Due to the temperature increase, en-
ergetically more demanding transformations can take place (De Paula
and Atkins, 2014). In general, these transformations are oxidative and
lead to formation of more CO2 and a type of kerogen that is less prone
to form hydrocarbons (Tissot and Welte, 1984; Michelsen, 2017). Such
development has been supported by laboratory simulations (Goodarzi
and Gentzis, 1990) and can clearly be seen in the variation of the ob-
served vitrinite reflectance in well 7316/5-1 (Figs. 13 and 14).

6. Conclusions

In general this study shows that the thickness of sills has a large
impact on the temperature and maturation of sedimentary basins,
especially at 3–5 km depth. It advocates for thorough interpretation of
sill thickness to correctly assess the petroleum potential of volcanic
basins. For areas with source rocks between sill complexes, considering
the timing of sill emplacement can be necessary to estimate the range of
expected transformation ratios. This is especially important if sills are
thin, or thick but with large (> 300 m) vertical spacing. There is a
positive effect on temperature and maturation when upper sill clusters
intrude last. As presumably many sills are left out, due to their non-
visibility and separability on seismic, the amount of interpreted sills in
the basin is perhaps the largest uncertainty when modeling and asses-
sing sills effect on the petroleum system. For intervals with low fre-
quency of intruded material, every sill influences the maturation.
However, for intervals with high frequency of intruded material, thin
sills have no significant influence on the maturation.

A good representation of the structural development of the basin is
fundamental for proper thermal modeling as it affects the heat flow in
the basin. In BMT, fault restoration is based on a vertical shear model
but other restoration methods exist, e.g. inclined shear. Sensitivity
modeling on fault restoration methods will determine to what degree
different restoration methods influence the modeled heat flow and best
represents the observed heat flow in the basin. This is the subject of
future work.

Fig. 13. Calculated and observed vitrinite reflectance in well 7316/5-1 in the Barents Sea
for various modeling scenarios. The upper part show intruded sills (in yellow) and host
rock (in green). The white Xs highlight the sills left out in the calculations. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 14. Calculated vitrinite reflectance for different intrusion intervals plotted against
observed vitrinite reflectance in well 7316/5-1 in the Barents Sea. All nine sills in the well
were included, but the four sills of the upper level (2.9–3.1 km) are assumed to have
intruded first.
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Abstract: Magmatic intrusions affect the basin temperature in their vicinity. Faulting and physical
properties of the basin may influence the magnitudes of their thermal effects and the potential source
rock maturation. We present results from a sensitivity study of the most important factors affecting
the thermal history in structurally complex sedimentary basins with magmatic sill intrusions. These
factors are related to faulting, physical properties, and restoration methods: (1) fault displacement,
(2) time span of faulting and deposition, (3) fault angle, (4) thermal conductivity and specific heat
capacity, (5) basal heat flow and (6) restoration method. All modeling is performed on the same
constructed clastic sedimentary profile containing one normal listric fault with one faulting event.
Sills are modeled to intrude into either side of the fault zone with a temperature of 1000 ◦C. The
results show that transient thermal effects may last up to several million years after fault slip. Thermal
differences up to 40 ◦C could occur for sills intruding at time of fault slip, to sills intruding 10 million
years later. We have shown that omitting the transient thermal effects of structural development
in basins with magmatic intrusions may lead to over- or underestimation of the thermal effects of
magmatic intrusions and ultimately the estimated maturation.

Keywords: normal faulting; sill intrusions; transient thermal effects; steady state; basin modeling;
volcanic basins

1. Introduction

Hydrocarbon discoveries associated with magmatic intrusions are common in many sedimentary
basins throughout the world [1–3], and these intrusions may potentially affect all parts of the petroleum
system [4]. The impact of magmatic intrusions has been studied in several basins worldwide,
e.g., Vøring Basin, Norway (e.g., [5–7]), Karoo Basin, South Africa (e.g., [8–10]), Gunnedah Basin,
Australia [11], Neuquén Basin, Argentina (e.g., [12,13]), Bohai Bay Basin, China (e.g., [14,15]). All these
studies conclude that magmatic intrusions significantly influence the basin thermal history and thus
the maturation of organic material in their vicinity.

Several studies have identified the pre-intrusion temperature of the host rock as an important
variable for the ultimate thermal and maturation levels of sedimentary basins with magmatic
intrusions [8,10,13,16–18]. However, this variable is one of the most difficult parameters to constrain,
as the traces of pre-intrusion temperature and maturation are erased instantly in the thermal aureole
of magmatic intrusions when magmatic emplacement occurs [19] and the basin has been subject to
later geological development. As magmatic intrusions often are emplaced into structurally complex
sedimentary basins, it is crucial to understand how the basin’s structural evolution affects the

Geosciences 2019, 9, 160; doi:10.3390/geosciences9040160 www.mdpi.com/journal/geosciences
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temperature development. With such knowledge it should be possible to discern temperature effects of
the structural development from temperature effects of magmatic intrusions. This is important as the
pre-intrusion temperatures have implications for the magnitude of the thermal effect of sills, i.e., size
and temperatures of the thermal aureole, which eventually will have implications for the estimated
maturation of the basin.

Magmatic intrusions and their effect on temperature and maturation in the surrounding host rocks
have been subject of several studies (e.g., [8,13,19–24]). Only a few studies model sills intruding into
structurally complex basins under development, while taking the temporary host-rock temperature
and maturation into consideration (e.g., [7,25]). Structurally complex basins are characterized by
numerous faults, changing lithologies with different physical properties and area specific heat flow.
To estimate the basin’s thermal development as a function of time, the geohistory of the basin must first
be established by reconstruction. In standard basin modeling, the impact of the structural development
on the temperature history is seldom taken into account and this may give incorrect thermal and
maturation predictions [26].

Several studies exist on temperature modeling in fault zones, but many of these focus on the effects
related to uplift and erosion observed in the footwall part of the fault zone and not on the thermal
transients in the hanging wall section (e.g., [27–34]). To our knowledge no studies includes magmatism
in a fault setting. In our study the main focus is on the transient thermal effects of normal faults with
syn- and post-rift deposits, and the influence such structural development has on the thermal effects of
sills. Possible transient thermal effects due to erosion have not been pursued in this study.

The calculated pre-intrusion temperatures are dependent on the representation of the basin’s
structural development [13,25,26]. The purpose of this study is to quantify the thermal effects of the
most important factors affecting the thermal history in structurally complex sedimentary basins with
magmatic sill intrusions. We do this by running a series of simple models. A more realistic model
would require higher structural resolution with variation of lithological and geometrical properties
in space and time. However, many simultaneously varying factors affecting the thermal evolution
would obscure the magnitude and impact of the individual factors. We therefore first study the
thermal effects on structural complex basin on a simple, synthetic profile followed by analysis of the
subsequent sensitivity sets: (1) fault displacement, (2) time span of faulting and deposition, (3) fault
angle, (4) thermal conductivity and specific heat capacity, (5) basal heat flow and (6) restoration method.
The overall goal is to test the sensitivity of faulting, physical properties of the lithologies and choice of
fault restoration method on the thermal effect of magmatic intrusions in complex sedimentary basins.
We aim for some general conclusions that are applicable to sedimentary basins with normal faults and
magmatic sill intrusions.

2. Methods

Our study investigates the relative effect faulting, different physical properties and choice of
restoration method have on the resulting thermal and maturation history in structurally complex
sedimentary basins intruded by sills. A simple, synthetic profile containing one listric fault and a
number of horizons, including syn- and post-rift deposits, is used as the basis for this study (Figure 1).
Throughout the simulations, one parameter is changed at a time which allows for evaluating the
impact each parameter has on the modeling results. Table 1 shows the different modeling sets, the
tested parameter values and default values of non-changing parameters. Shale and sandstone are the
applied lithologies as these are common in sedimentary basins worldwide.
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Figure 1. The synthetic profile with one active, listric fault used in the modeling. The green color (in 
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Figure 1. The synthetic profile with one active, listric fault used in the modeling. The green color
(in this case) represents shale lithology. White squares indicate the blow-up area of following figures.

2.1. Thermal and Maturation Modeling

The geological, structural, thermal, and maturation history of the studied synthetic profile is
performed with BMT (Basin Modelling Toolbox, Tectonor AS), a high-resolution 2D basin modeling
software [26,35,36]. All thermal and maturation modeling simulations starts with present day geometry,
where every horizon is given a specific age and all polygons are assigned a lithology with related
porosity/depth trend, thermal conductivity and specific heat capacity (Table 2, upper part).

Table 2. Lithological parameters used in the modeling, based on standard values published in the
literature (e.g., [37,38]).

Porosity-Depth Trend Conductivity (kv) (W·m−1·K−1) Heat Capacity

Lithology Surface
Porosity

Exponential
Constant (km−1) Low Porosity High Porosity (J·kg−1·K−1)

Shale (Default) 0.63 0.51 3.00 (6%) 2.80 (60%) 1190
Sandstone (Default) 0.45 0.27 3.30 (6%) 1.50 (40%) 1080

Basement, metamorphic 3.10 3.10 1100
Magmatic intrusions 3.10 3.10 1100

Asthenosphere 3.50 3.50 1100

Shale, average conductivity 0.63 0.51 1.98 (6%) 1.19 (60%) 1190
Shale, max. conductivity 0.63 0.51 4.08 (6%) 2.08 (60%) 1190

Sandstone, average
conductivity 0.45 0.27 2.36 (6%) 1.72 (40%) 1080

Sandstone, max. conductivity 0.45 0.27 6.24 (6%) 4.20 (40%) 1080

Shale, min. heat capacity 0.63 0.51 3.00 (6%) 2.80 (60%) 840
Shale, max. heat capacity 0.63 0.51 3.00 (6%) 2.80 (60%) 1420

Sandstone, min. heat capacity 0.45 0.27 3.30 (6%) 1.50 (40%) 760
Sandstone, max. heat capacity 0.45 0.27 3.30 (6%) 1.50 (40%) 3350

The first modeling step is a backstripping process, where one horizon at a time is removed, faults
are restored and underlying deposits are decompacted. This process is repeated all the way down to
top basement and in this way the section’s geohistory is built. All elements that characterize the basin,
such as faults, horizons, and lithologies, are parts of the geohistory process, and must be carefully
defined. For the geohistory reconstruction a special type of grid was developed in BMT [26]. The grids
are vertical line segments that are connected to the base of a polygon. A grid is always created at
each digitized point in the present-day polygon. Additional grid columns are added to the section
automatically. The number of inserted grid points can be controlled by the user (the default is 70). The
foundation for thermal and maturation modeling is established during the geohistory process, and it is
therefore important that the geological reconstruction of the basin is accurate.
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The next step in the modeling process is the thermal development of the basin. BMT utilizes
finite difference calculations by conduction with a rectangular finite difference grid of varying sizes
(cf., [7,26]). For every reconstructed timestep in the geohistory, BMT builds a new high-resolution
thermal modeling grid. Where needed, grid lines are automatically inserted so that the geometry
is accurately represented. Around small features, like sills, the grid size is especially fine to ensure
realistic calculations. The finite difference grid in this study consists of minimum 400 × 400 cells of
varying sizes with an average size of 80 m × 30 m (width and height). The spatial variation in rock
properties and possible differences from one timestep to the next are adjusted for so that appropriate
finite difference calculations are maintained.

The finite difference calculation by conduction is controlled by the temperatures from the
previous timestep, thermal conductivity (vertical and horizontal) and specific heat capacity of the
basin’s lithology/lithologies (see Appendix A for details on the numerical temperature model from
Fjeldskaar et al. [7]). Temperature-dependent thermal conductivity is used, which commonly leads
to reduction of the conductivity with increasing temperature. However, compared to conduction
variations derived from differences in porosity and lithology, the temperature dependent variations
are considered to be modest [35]. The lower boundary condition of the temperature calculations is the
basal heat flow from the mantle, and the upper boundary condition is the paleo-surface temperature.
The surface temperature is kept constant at 7 ◦C, and the heat flow is constant over the profile.
Fjeldskaar et al. [7] tested BMT’s numerical model versus an analytical model on the temperature effect
of sill emplacement, and documented good performance for high-resolution modeling, both spatially
and temporally.

Maturity modeling is completed in BMT and all calculations in this study assume kerogen type II,
the most common in marine shales [39]. Classical first-order kinetics for the decomposition reactions is
the basis for the maturation model in BMT (see [7,26]). In this study the whole basin is set as source
rock in order to study the potential maturation effect of magmatic sill intrusions. However, for a case
study, only the potential source rock would be defined as such a sequence.

2.2. Restoration of Faults

Several algorithms exist for restoring the structural evolution of basins. The different algorithms
result in different basin and fault geometries, which again impact the calculated thermal history.
Commonly, basin modeling simplifies the structural reconstruction of basins, e.g., by not reconstructing
the faults through time, regardless the fact that hydrocarbons often accumulate in complex geological
structures associated with faults [26]. According to Dula [40] reconstruction with simple inclined
antithetic shear of 20◦ is one of the methods that best represents the observed fault shape, but all tested
reconstruction methods in that study gave adequate results.

The present study utilizes vertical shear as a standard fault reconstruction method. However,
different segments of simple shear, including inclined antithetic and synthetic shear are explored
(Figure 2). Furthermore, we investigate how the different resulting geometries impact the thermal
history. Because BMT restore faults solely by vertical shear, and the software Move (Petex Ltd.)
does not have the ability to perform thermal and maturation modeling, both Move and BMT were
used to model the structural development of the section. In the restoration process BMT and Move
both use the backstripping process, which removes layers one by one and decompact the underlying
sequences based on the given porosity-depth trend for the assigned lithology/lithologies. The porosity
calculations are based on exponential functions (cf., [37]) and the same values are used in both softwares
(Table 2). Move is a commercial software restoring geological cross sections by kinematic algorithms.
Six algorithms are available for fault restoration, these are: simple shear, fault parallel flow, fault bend
fold, fault propagation fold, trishear, and detachment fold. BMT is a non-commercial basin modeling
software with the ability to perform fault restoration (by vertical simple shear) so that structural effects
on temperature estimates are accounted for (cf., [26]).
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Figure 2. Illustration of the technique of (a) vertical simple shear, (b) antithetic inclined simple shear
and (c) synthetic inclined simple shear. Antithetic simple shear results in a broader basin compared to
for instance synthetic shear. Modified after Fossen [41].

In our study Move was used to restore the fault by antithetic and synthetic inclined shear. The
tested angles for inclined shear are summarized in Table 1. The resulting reconstructions from Move are
replicated in BMT by utilizing a “volume editing” function (cf., [26]). This method enables calculations
of the thermal histories for the different restoration methods. All models have the same starting
geometry. However, through restoration by different algorithms the paleo geometries will differ and
so will the temperature histories.

2.3. Thermal Effects of Sills

On reflection seismic data, upper and lower boundaries of sills can be difficult to discern due to
limited vertical resolution (cf., [42–45]). Many sills may therefore be left out in seismic interpretations
due to sill thicknesses below the detection limit of the data (e.g., [44,45]). Sill thickness, both when
sills intrude individually or as clusters, has a large impact on the temperature and maturation in
sedimentary basins (e.g., [8,25]). The relative timing between sills emplaced as clusters is especially
important if potential source rocks are located between sills [25]. Reported sill thicknesses from the
literature vary from ~10 cm to >400 m (e.g., [44,46–55]). In our study a modest sill thickness of ~50 m
has been chosen for the modeled sills and we assume the sills to intrude during one pulse with a
magma temperature of 1000 ◦C. In BMT this is done by changing the lithology in sill polygon from
shale to sill lithology, with related physical properties at time of intrusion. The sills have been modeled
to intrude at various times relative to fault slip. This is done to study the interaction of two transient
thermal effects simultaneously. As the largest thermal and maturation impact of sill intrusions are
found at 3–5 km depths [25], the sills are modeled to intrude within this depth range. Commonly
magmatic sills observed in the field and on seismic images (e.g., [7,52]) are layer concordant. Therefore,
the sills in the study are modeled accordingly.
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Latent crystallization heat introduces an extra source of heat when magma cools and starts to
crystallize [56,57]. This extra heat source is not taken into account, as it is the relative differences
between scenarios that are of interest in our study. Heat advection by fluids in relation to magmatic
intrusions is common (e.g., [5,58–61]). However, convection is not accounted for in our modeling, as
convection is considered insignificant in low permeability rocks (e.g., [7,8,13,25,62]) and is beyond the
scope of this study.

3. Modeling Strategy and Results

A basin not subjected to tectonic deformation undergoes a slow rate of erosion or sedimentation
and has a gradual temperature increase with burial depth. Such a basin is in steady state [63]. On the
other hand, structurally active basins may undergo sudden erosion or high influx of sediments, e.g.,
due to increased accommodation space during faulting, leading to abrupt changes in the geothermal
gradient. When magmatic intrusions are emplaced into such active basins, the temporary, local
change in temperature is not solely an effect of the hot magma intruding the system, but also due
to transient thermal effects caused by structural development. Figure 3 shows the studied synthetic
profile assuming thermal steady state with input parameters as given in Table 2.
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Figure 3. Temperature regime for the modeled basin in steady state solution.

Emplacement of sills and significant structural development may occur within the same timeframe
(e.g., [30,64,65]). Therefore, we want to investigate the combined transient thermal contributions from
the structural development and magmatic intrusions. The results should be considered as trends, not
absolute values, as the study aim to give some general conclusions. The models are considered to have
arrived at steady state when the whole basin show transient temperatures <1 ◦C from the steady state
temperatures. However, for some cases exact steady state conditions are obtained right after reaching
this limit, for other cases several million years (Myr) are required before actual steady state is obtained.

3.1. Thermal Effect of Slip along a Single, Normal Fault

Normal faulting causes downward displacement of sediments and generally deposition of syn-rift
sediments (ref., Figure 1) in the hanging wall section of the fault zone. These down faulted sediments
in the hanging wall are initially colder than the sedimentary rocks at the same depth in the footwall
part, which result in transient thermal effects mostly in the hanging wall part (Figure 4). The basin is
thermally unstable and results in a temperature difference up to 40 ◦C from one side of the fault zone to
the other at the time of fault slip (Figure 4). Post-rift sediments deposited over the whole basin leads
to thermal transient effects also in the foot wall section. However, these temperature differences will
vary depending on physical properties and geometry of the basin. In the event of extension and normal
faulting, the footwall temperatures are hardly influenced at time of fault slip. At 1000 years after the fault
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movement the isotherms in the footwall show a small downward bend towards the fault zone, indicating
a small thermal influence by the neighboring colder sediments in the hanging wall (Figure 4).
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Figure 4. Temperature regime in the uppermost 8 km of the basin 1000 years after fault movement and
sediment deposition. Fault slip is 1200 m.

The main temperature effect of magmatic sills lasts only some thousand years (see e.g., [25]). In
accordance with this, we have here assumed that the syn- and post-rift sediments (Figure 1) of the
timestep with fault movement are deposited over a period of only some thousand years. Deposition of
these sediments leads to thermal instability in the basin. Figure 5 shows the temperature difference
between steady state and transient models for deposition of these sediments at 10,000 years (10 kyr)
and 500 kyr after fault slip. This causes larger parts of the basin to have transient temperatures up to
20 ◦C lower than under steady state conditions even up to 500 kyr after fault slip (Figure 5). Around
10 Myr is required for the basin to reach steady state temperatures.

Geosciences 2019, 9, 160 9 of 33 

 

 

Figure 5. Temperature difference between steady state and transient model of the studied synthetic 

profile at 10 kyr (a) and 500 kyr (b) after fault displacement. 

3.1.1. Fault Displacement 

The original model has a fault displacement of 1200 m with syn-rift deposits of the same 

thickness and about 600 m of post-rift deposits, taking place over one timestep (Figure1). These post-

rift deposits are kept unchanged in all tested scenarios. Additional four fault displacement models 

were tested; 500 m, 1000 m, 2000 m, and 3000 m (Table 1). As expected, temperature differences across 

the fault zone increases with the fault displacement. With 3000 m fault slip there is a temperature 

difference of more than 50 °C across the fault zone immediately after fault slip (Figure 6a). In the 

footwall part, the isotherms make a gentle downward bend towards the fault zone. As time passes, a 

gradual heating of the sediments in the hanging wall section occurs and the bend of the isotherms 

from the footwall side ties with those of the hanging wall (~10 kyr after faulting) creating continuous 

isotherms (Figures 6b,c). There is also a slight temperature change in the footwall part due to the 

deposition of cold post-rift sediments over that area.  

Figure 5. Temperature difference between steady state and transient model of the studied synthetic
profile at 10 kyr (a) and 500 kyr (b) after fault displacement.



Geosciences 2019, 9, 160 9 of 31

3.1.1. Fault Displacement

The original model has a fault displacement of 1200 m with syn-rift deposits of the same thickness
and about 600 m of post-rift deposits, taking place over one timestep (Figure1). These post-rift deposits
are kept unchanged in all tested scenarios. Additional four fault displacement models were tested;
500 m, 1000 m, 2000 m, and 3000 m (Table 1). As expected, temperature differences across the fault
zone increases with the fault displacement. With 3000 m fault slip there is a temperature difference of
more than 50 ◦C across the fault zone immediately after fault slip (Figure 6a). In the footwall part, the
isotherms make a gentle downward bend towards the fault zone. As time passes, a gradual heating of
the sediments in the hanging wall section occurs and the bend of the isotherms from the footwall side
ties with those of the hanging wall (~10 kyr after faulting) creating continuous isotherms (Figure 6b,c).
There is also a slight temperature change in the footwall part due to the deposition of cold post-rift
sediments over that area.
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With increasing fault slip but within the same timeframe, the volume of deposited sediments and
time needed for basin to regain steady state increases. For the modeled basin with 500 m of fault slip,
large parts of the basin differ ~20 ◦C from the steady state basin 10 kyr after displacement (Figure 7a).
Around 9 Myr later the basin obtains steady state. When fault displacement is 3000 m, large parts of
the hanging wall section differ more than 50 ◦C from the steady state basin at 10 kyr after fault slip
(Figure 7b). Steady state is achieved approximately 11 Myr after fault slip. As expected a basin with
larger fault slip and higher influx of sediments requires more time to regain steady state, compared to
a basin with smaller fault slip and less sediment deposits.
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3.1.2. Time Span of Faulting and Deposition

So far the modeling assumes the fault slip to be almost instantaneous (taking place over 10 kyr).
The next set of models explores four different time spans of faulting and deposition of the same
amount of sediments: 1, 5, 10, and 20 Myr. The results show that slower faulting and deposition rates,
as expected, keep the basin closer to a steady-state condition compared to high rates (Figure 8a,b).
Adding 10 Myr to the faulting and deposition time results in a basin with transient temperatures much
closer to those of steady state throughout the whole period. For a faulting and deposition rate over
20 Myr, the basin is never in a state of thermal instability. The resulting trend show that basins with
the same amount of sediment input and faulting and deposition time up to 10 Myr regains steady
state approximately 10 Myr after faulting initiated (Figure 8c). This means that from time of faulting
and deposition to the process is finalized, more time is required for a basin with rapid fault slip and
deposition to regain steady state compared to a basin with slow fault slip and deposition. It emphasizes
how crucial the time relation is for faulting and deposition and basin’s thermal development after
fault slip.
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Figure 8. (a) Temperature difference between steady state and transient temperatures with fault slip
and deposition over 10 kyr. (b) Temperature difference between steady state and transient temperature
with fault slip and deposition over 1 Myr. Temperatures in (a,b) are from the same timestep, 10 kyr and
1.01 Myr respectively after faulting started. The red point in (b) indicates location of point plot in (c).
(c) Resulting temperatures for four tested time spans of deposition of syn- and post-rift sediments.

3.1.3. Fault Angle

The previous results show that the largest thermal differences between steady state and transient
temperatures are found in the hanging wall part of the basin. For all the tested fault angles the results
are broadly similar, but the temperature effect will change with the fault angle. As the fault angle
is changed, so is the affected area of the hanging wall. With a steeper fault angle a smaller part of
the basin experiences the largest thermal instabilities (Figure 9a). The opposite is the case for lower
fault angles, a larger part of the basin will then experience higher thermal instabilities before the basin
regain steady state (Figure 9b). Five different fault angles have been tested (Figure 9a,b). All scenarios
show temperature differences up to 45 ◦C between transient and steady state models. Around 10 Myr
after fault slip all scenarios regain steady state temperatures.
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Figure 9. Temperature difference between steady state and transient model 10 kyr after fault slip for
the steepest (a) and the least steep (b) studied listric fault.

3.1.4. Thermal Conductivity and Specific Heat Capacity

The thermal conductivity (W·m−1
·K−1) of a lithology relates to the rock’s ability to transfer heat.

Rocks with low thermal conductivity result in warm basins, while high thermal conductivity rocks
give colder basins. A lithology’s specific heat capacity (J·kg−1

·K−1) is the physical property crucial for
the time frame needed to transfer heat through the stratum and thus for the time needed for basins to
regain steady state after sediment deposition or erosion. So far the section has been modeled as all shale
with properties as listed in Table 2. Commonly, basins consist of altering layers of different lithology
types, often shale and sandstone. Therefore, the following four scenarios have been compared: all
shale, all sandstone, all shale with one sandstone layer, and all sandstone with one shale layer.

Thermal conductivities and specific heat capacities of shale and sandstone show a large variation
(e.g., values in Table 2). The default values are given in Table 2 and to illustrate the span of values
within the same lithology segment, we refer to Čermác and Rybach [38]. Their minimum and maximum
specific heat capacities and the average and maximum thermal conductivities of sandstone and shale
are used in this study (Table 2). In order to determine the thermal conductivity values based on the
rock’s porosity, the mixing law arithmetic mean model [66] has been used:

k = Φ·kf + (1 − Φ)ks, (1)

where the thermal conductivity (k) is obtained on the basis of the rock porosity (Φ) by combining the
thermal conductivity of rock matrix (ks) with that of the pore fluid (kf).

Generally, sandstones have higher thermal conductivities than shales, resulting in colder basins
where they are abundant. The results from the homogeneous basins, either all shale or sandstone,
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coincide with this, showing high temperatures in the basin when the thermal conductivity is low, and
lower temperatures when the thermal conductivities are high. A comparison between two basins with
the same fixed specific heat capacity, but with one basin modeled with average shale conductivity, to
another basin modeled with default shale conductivity, shows up to 140 ◦C difference between the
two models shortly after fault slip (Figure 10a). With fixed specific heat and changing conductivity
the results show that the basin needs longer time to regain steady state in basins with low thermal
conductivity values due to the higher temperatures obtained in these basins (Figure 10b). This applies
for both scenarios with all shale and all sandstone of varying thermal conductivity. Steady state is
regained from 3–22 Myr after fault slip and the quickest scenario to regain steady state is the sandstone
basin with maximum thermal conductivity.
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Figure 10. (a) Thermal difference between transient temperatures of basin (10 kyr after fault slip)
modeled with average conductivity to basin modeled with default conductivity. (b) Point plot results
from location of point given in Figure 8b, showing the steady state and transient temperatures for the
three tested conductivities for shale and sandstone. Conductivity values given in Table 2.

In the case where the thermal conductivity is fixed and the specific heat capacities are changed
in the different modeling scenarios (Table 2, lower part), the steady state temperatures for all the
scenarios are, as expected, the same (Figure 11). However, with increasing specific heat, the time
needed for the basin to obtain steady state increases (Figure 11). This is especially visible in the point
plot for sandstone basin in Figure 11, because of large difference in the published heat capacity values
of sandstone, but the effect is also visible for the shale basin. For all tested scenarios steady state is
obtained between 8–18 Myr after fault slip.
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Location of studied point indicated in Figure 8b. Heat capacity values given in Table 2.

To accommodate the fact that basins commonly consists of different lithologies, the polygon with
syn- and post-rift deposits have been changed in the following simulation (Figure 12a). The thermal
conductivity is fixed with values as for the default shale or sandstone (Table 2). However, the specific
heat capacity is changed using default, minimum, and maximum values for the sandstone and shale
(Table 2). With the presence of a sandstone layer in an otherwise shale basin, the results show that the
temperatures in the basin increases. For the opposite case, a layer of shale in an otherwise sandstone
basin, the temperatures in the basin decreases (Figure 12b).
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Figure 12. (a) Shale and sandstone basins with sandstone layer and shale layer respectively. The red
point indicates location for point plot in (b). (b) Results show the temperatures for the three tested
heat capacities for shale basin with one sandstone layer and sandstone basin with one shale layer. For
comparison, temperatures for homogeneous basin are also plotted. For heat capacity values see Table 2.



Geosciences 2019, 9, 160 15 of 31

The variation of specific heat capacity in a homogeneous basin resulted in quite a time gap
(8–18 Myr) for the sandstone basin to regain steady state (Figure 11). However, the shale basin required
less time to arrive at steady state for the tested specific heat capacities (8–10 Myr). For homogeneous
basins, shale or sandstone, steady state was regained around 10 Myr after fault slip (Figure 12b). The
presence of another lithology influences the basin temperatures and thus the time needed for the basins
to regain steady state. For a shale basin with a sandstone layer, steady state was obtained around
13 Myr after fault slip for all the specific heat capacities. Sandstone basin with a shale layer regains
steady state around 6 Myr after fault slip regardless of the specific heat capacities (Figure 12b). These
results are related to the porosities at the depth at which the different lithology layers are modeled and
the contrasting thermal conductivity for shale and sandstone.

3.1.5. Basal Heat Flow

The basal heat flow, which is the heat sourced from the mantle, transferred through the basin and
constitutes the lower boundary condition in the models, is so far kept constant at 47 mW·m−2. This
basal heat flow value is slightly above one heat flow unit and is typical for some continental shelves,
e.g., parts of the Norwegian Continental Shelf. However, to study the influence of the basal heat
flow on the temperature development in the basin, three additional values were tested: 40 mW·m−2,
60 mW·m−2, and 80 mW·m−2 (Table 1). Figure 13b shows the results for 40 and 80 mW·m−2 together
with the default heat flow (47 mW·m−2). Increased heat flow leads to higher steady-state temperatures
and longer time is therefore needed for the basin to regain steady state (Figure 13b). The resulting
transient temperatures of basins modeled with 80 mW·m−2 and 40 mW·m−2 show thermal differences
up to 140 ◦C (Figure 13a). For the tested values, the models regain steady state approximately between
9 and 12 Myr after the fault slip. Increasing basal heat flow gives higher temperatures in the basin, and
as a consequence, a longer time is needed for the basin to arrive at steady state after fault slip.
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Figure 13. (a) Thermal difference between transient temperatures in basin with basal heat flow of
80 mW·m−2, to basin with basal heat flow of 40 mW·m−2 at 10 kyr after fault slip. (b) Results show the
temperatures for the default and the two extreme values for heat flow: 47 mW·m−2, 40 mW·m−2, and
80 mW·m−2. Location of studied point is indicated in Figure 8b.
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3.2. Restoration Methods

Different fault restoration methods cause different basin geometries. It is of interest to explore
what effect these different geometries have on the resulting basin temperatures. In addition to vertical
shear, we have therefore tested the basin reconstruction for 10◦ antithetic and synthetic shear, 20◦ and
30◦ antithetic shear and a case without fault reconstruction (Table 1). Basin reconstruction without
fault restoration was done by moving the hanging wall section vertically up such that the timeline
split by the fault zone is horizontally connected. This process gives no lateral mass movements of the
basin. Vertical simple shear modeling was, as mentioned in the method section, done by BMT, while
the alternative fault reconstructions were performed with Move. Antithetic simple shear results in a
wider basin (Figure 2) and the larger the angle, the wider the basin. Synthetic simple shear results in a
narrower basin (Figures 2 and 14) relative to the other methods. Vertical simple shear falls in between
these two, while basin reconstruction without fault restoration results in a geometry which is quite
different from the other restored scenarios. Figure 14 shows the resulting geometries of the fault plane
and top and bottom basement after fault slip of the six tested reconstruction methods. The basins with
non-restored fault and restored by 10◦ synthetic inclined shear (purple and green line respectively,
Figure 14) result in the shallowest hanging wall and top basement.
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Figure 14. Resulting basin geometries after fault slip with the tested fault restoration methods. The
different colored lines represent the resulting geometry of fault plane and Top and Bottom Basement
after fault is restored by the six tested restoration methods. dg = degrees.

The geometry variations resulting from the tested restoration methods involve varying footwall
and hanging wall area and burial depth, which result in differences in the thermal calculations,
especially in the footwall section. Therefore, the thermal differences between them are concentrated in
the footwall part of the basin at the time of fault slip (Figure 15). Figure 15c shows that the temperatures
prior to fault slip show a larger difference on the footwall side compared to the hanging wall side.
The comparison between the non-restored basin to basin restored by 30◦ antithetic shear, shows the
largest area with thermal differences (Figure 15a), while the thermal differences between vertically-
and non-restored basins are the most pronounced (Figure 15b). Although the thermal differences do
not last long, ~1 Myr, such temperature differences might play a role concerning timing of generation
and ultimately migration of hydrocarbons. For this particular case, the modeled thermal differences
result in up to 40% maturation difference of the potential organic matter in a limited time and area
of the footwall section (not shown here). All the tested restoration methods require approximately
10 Myr to achieve a steady state after fault slip. We therefore conclude that the tested restoration
methods do not lead to large differences in time needed for the basins to achieve steady state. However,
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temperature differences due to different restoration methods may lead to temperature variations that
might influence the maturation calculations.
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Figure 15. (a) Temperature difference between a scenario restored with 30 degrees antithetic inclined
shear, compared to a scenario with non-restored fault. (b) Temperature difference for a scenario restored
with vertical shear compared to a scenario with non-restored fault. (c) Temperature point plot from
foot wall (left) and hanging wall (right) in the two points indicated in (b).

3.3. Sill Intrusions in the Basin

As mentioned above, earlier studies have pointed out the importance of host-rock temperatures
at time of emplacement for the resulting thermal effects of intrusions [8,13,16–18]. In our study two
sills, ~50 m thick, one in the hanging wall and one in the footwall, have been modeled to intrude the
basin with increasing time lapse after fault slip. Figure 16 shows the results for sills intruding at time
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of fault slip, 1 Myr and 10 Myr after fault slip. There is a clear thermal instability on both sides of the
fault zone. However, due to the masses of faulted rock and larger deposits of sediments in the hanging
wall section, the thermal effects of the fault displacement are more pronounced here. Therefore, the
largest differences in the thermal effects of the sills as time passes are expected to be found here.
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Temperatures to the left are at time of intrusion, in the middle, 10 kyr after intrusion, to the right,
100 kyr after intrusion.

At the time of intrusion, the temperatures in the close proximity of the sills increases dramatically
(cf., [25]). As time passes the area with increased temperatures grow and consequently the temperatures
starts to fall. The thermal effect of sills has a quick rise and fall within the first 1 Myr after intrusion.

Modeling results at 1000 years after fault slip show that there is a temperature difference up to
40 ◦C on either side of the fault zone (Figure 4). Results also show that as time passes the basin regains
steady state (Figure 6a–c), which for most scenarios in this study occur somewhere between 3 and
22 Myr after fault slip. For sills intruding at time of fault slip the host-rock temperature effects are lower
compared to sills intruding into a basin with a time lapse after fault slip, which have temperatures
closer to that of a basin in steady state. A consequence is that sills intruding with a time lapse in relation
to fault slip have higher background temperatures and the thermal effects will be more prominent
(Figure 16). These thermal differences are still present 100 kyr after sill intrusion. In the hanging wall
there is a temperature difference around 40 ◦C between the cases where the sills intrude at time of
fault slip and 10 Myr after fault slip (Figure 16). The highest potential host-rock temperature effect of
intruding sills will be in a steady state basin.

The largest thermal differences between basins with faults restored in different ways, was found
between basin with fault restored by vertical shear to basin with non-restored fault (Figure 15b).
Therefore, we have tested the possible influence of a non-restored fault basin with sills on the calculated
thermal effects. As the thermal differences between a basin restored by vertical shear to a basin with a
non-restored fault was found in the footwall part of the fault zone (Figure 15b), this is also the area
where it is expected that possible differences in thermal effects of sills will be found (Figure 17a).
However, the thermal results of the basin with sills and non-restored fault show very small thermal
differences from basin with sills and fault restored by vertical shear (Figures 16 and 17a). The most
pronounced thermal difference is found between the scenarios where sills intrude 1 Myr after fault slip.
These small temperature differences will not significantly influence the maturation calculations for the
two scenarios.

Sedimentary basins worldwide normally consist of changing layers of different lithologies with
contrasting properties. A homogeneous shale basin with a lower thermal conductivity, such as
the average conductivity used in this study (Table 2), result in a warmer basin (Figure 10a,b) and
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consequently gives a higher host-rock temperature effect for intruding sills. This emphasizes that the
basin lithologies and their thermal conductivities have large influence on the temperatures in the basin.
We have here tested a case where the sills intrude into a shale basin with a sandstone layer (Figure 12a).
The results show no differences for the sills intruding into the basin at time of fault slip (Figure 17b).
However, as time passes (1 Myr and 10 Myr after fault slip) the presence of the sandstone layer makes
a difference in the resulting thermal effects of the sill intrusions. Sills intruding 10 Myr after fault slip
cause thermal differences in some areas up to 20 ◦C in both the footwall and hanging wall 10 kyr after
sill intrusion (Figures 16 and 17b).
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Figure 17. (a) Calculated temperatures 10 kyr after sills intrude into a basin with non-restored faults.
(b) Calculated temperatures 10 kyr after sills intrude into a shale basin with a sandstone layer as shown
in Figure 12a left.

As the results in Figures 16 and 17 show, the thermal impact of sill intrusions are more pronounced
when emplaced into a basin closer to thermal steady state. This more pronounced thermal impact also
influences to a small degree the maturation levels around the sills, especially the area above the sills in
the hanging wall (Figure 18a). Reports from onshore and offshore sedimentary basins with magmatic
intrusions show that sills often occur in clusters (e.g., [6,9,52,67]). It is considered that multiple sills
intruding at different levels within a certain time frame thermally impacts a larger rock volume of the
basin compared to one single intrusion (e.g., [8,21,68]). To replicate a basin with clusters of sills, two
more sills have been added to the model, one on either side of the fault zone. The thermal effect of sill
swarms intruding with different timing relative to fault slip have a large impact on the matured organic
material, particularly in the area between the sills on both sides of the fault zone (Figure 18b). In the
heterogeneous basin, the warmer host-rock temperatures compared to the homogeneous basin, result
in more transformed organic material on both sides of the fault zone for sills intruding at time of fault
slip, as well as for sills intruding 10 Myr after fault slip. However, the maturation differences between
the homogeneous and heterogeneous basins are more prominent when the sills intrude 10 Myr after
fault slip (Figure 18b).
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Figure 18. (a) Calculated maturation for one sill intruding on either side of the fault zone. (b) Calculated
maturation for two sills intruding on both sides of the fault zone. Left side show results for sills
intruding at time of fault slip. Right side show results for sills intruding 10 Myr after fault slip.

4. Discussion

The purpose of this work was to study the transient thermal effects in structurally complex
basins with normal faults and sill intrusions. To uncover trends of several parameters transient
thermal effects in sedimentary basins, both extreme and realistic values were tested. Three specific
cases were addressed: the transient thermal effects of normal faulting, the ultimate effect of fault
restoration method on thermal modeling, and the impact of sill intrusions in structurally complex
basins. Interesting effects were discovered and are discussed separately in the following.

4.1. Transient Thermal Effects in Relation to Normal Fault Slip

Figure 4 shows that the geothermal gradient, especially in the hanging wall, changes abruptly
after fault displacement and with time the basin arrives at a thermal steady state (Figure 6). The
isotherms in the footwall are somewhat affected by down-faulted colder rocks and deposition of colder
sediments in the hanging wall, which is in accordance with the work by ter Voorde and Bertotti [29]. By
preserving a constant heat flow from the basement the model has been simplified which is acceptable
as it does not change the relative differences between compared scenarios. A constructed synthetic
profile has been used to uncover the thermal effects of normal faulting in structurally complex basins.
Steady state is regained 3–22 Myr after the fault slip, but the time elapsed for the tested parameters and
model runs to achieve this varies considerably: for fault displacement 9–11 Myr, thermal conductivity
3–22 Myr, specific heat capacity 8–18 Myr and basal heat flow 9–12 Myr. For the remaining tested
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parameters (Table 1) the variation of time needed to restore steady state is much smaller between the
tested values, only some 100 kyr.

The syn- and post-rift deposits (Figure 1) in the studied section are 1800 m thick. These sediments
are modeled to be deposited over five different time spans (Table 1); 20, 10, 5, and 1 Myr and 10 kyr,
which correspond to a sedimentation rate of 0.09–180 mm·year−1. The sedimentation rate roughly
overlaps the reported sedimentation rates (0.4–100 mm·year−1 for the referenced papers) (e.g., [69–75]).
ter Voorde and Bertotti [29] suggest that the extension rate somewhat controls the thermal effect
of sediment deposition. They argue that high sedimentation rates will temporarily cool the basin
while low sedimentation rates lead to heating. According to their study the “turning points” are at
sedimentation rates of 2.0, 2.2, and 1.4 mm·year−1 for shale, siltstone, and sandstone, respectively.
Our results show that sedimentation rates > 0.18 mm·year−1 for shale result in basins with transient
thermal effects, in agreement with results reported by Ehlers et al. [34]. The numerical temperature
model is different in the two studies. Additionally, the resolution of the finite difference grid is much
finer in our study as the focus is on a smaller part of the basin compared to the work by ter Voorde and
Bertotti [29]. These elements may possibly be the reason for the different results.

All the tested deposition time spans ≤10 Myr for the syn- and post-rift sediments regain steady
state approximately 10 Myr after fault slip. However, there is a difference of 600 kyr for regaining
steady state between the modeled scenarios. When faulting and deposition occur over a time span of
10 Myr, steady state is restored 200 kyr after the fault slip ceased. Basins with faulting and deposition
over a time span of 10 kyr and 1 Myr, regains steady state after 9.6 and 9.7 Myr, respectively. Although
the compared models keep the basin in an unstable thermal condition over approximately the same
time span, the slow rate of faulting and deposition makes the thermal instability less prominent as
opposed to basins with a high rate of faulting and deposition (Figure 8). This coincides with the result
for the models were the fault displacements are varied. The larger the fault slip, the larger the thermal
differences on either side of the fault zone (Figure 7), which results in longer time required for the basin
to regain steady state. For basins with faulting and deposition occurring over >10 Myr, the basin is
close to, or in, steady state throughout the whole deposition process; this is in accordance with Bertotti
and ter Voorde [30] and ter Voorde and Bertotti [29].

In addition, our calculations show that there is a 40 ºC difference after fault slip from one side of
the fault zone to the other. Larger temperature differences have been reported in the literature, e.g.,
by Graseman and Mancktelow [76] (and references therein) who observed differences above 100 ◦C
on either side of the Simplon Fault Zone in Switzerland. Although such a high difference may not
be enough to cause regional disturbances in the geothermal field [30], it can lead to significant local
maturation differences of deposited organic material if such thermal differences occurred in basins
of sedimentary rocks. Since the oil window typically lies between 80 and 150 ◦C [77], some tens of
degrees difference in temperature may thus lead to different stages of organic maturation on either
side of a fault zone. The maturation calculations in BMT follow the Arrhenius equation, which ties the
reaction rates of kerogen to the temperature differences and the activation energies of the kerogen type.
For given activations energies and temperatures, the reaction rates of kerogen are roughly doubled
for every 10 ◦C rise (e.g., [39]). This indicates that a 10 ◦C difference will have implications for the
estimated maturation in the basin.

Figure 10 demonstrates the importance of the thermal conductivity for the obtained temperature
levels in the basin. Worldwide basins show a variety of alternating lithologies, and consequently
differences in thermal conductivities [38,63]). Our modeling shows that thermal conductivity, as
well as the fault movement, influence both the steady state and the transient temperatures in the
basin (Figure 12), and therefore the time needed to regain steady state. This is in keeping with
results reported by Fjeldskaar et al. [78] who demonstrated the need for an accurate description of
the thermal-conductivity variation to obtain a correct thermal history, on which the prediction of
maturation is based.
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The thermal conductivity of lithologies, amount of fault slip, time span of faulting and deposition,
angle of fault zone, and basal heat flow will influence both the size of the affected area and level of the
thermal imbalance. Specific heat capacity will determine the time needed for a basin to regain steady
state (Figure 11) [26,35].

4.2. Fault Restoration and Its Effect on Thermal Modeling

Hydrocarbons are often trapped in structurally complex basins, yet structural reconstruction is
often over-simplified in traditional basin modeling [26]. We have shown that the tested restoration
methods do not lead to substantial differences in the thermal estimates. Dula [40] concludes that 20
degrees antithetic simple shear result in a geometry resembling the natural basin the most. However,
resulting thermal calculations for vertical shear and 20 degrees antithetic shear show negligible
differences. We therefore conclude that thermal estimates of transects restored by vertical shear give
reasonable results.

The largest thermal differences are found between basins with the greatest deviation in restored
geometry and, consequently, deviation in burial depth. Thermal differences up to 35 ◦C are found when
the temperatures obtained for basin restored by vertical shear are compared to basin with non-restored
fault. Fjeldskaar et al. [26] demonstrated the importance of fault reconstruction for the temperature
modeling on a 2D section from the Gulf of Mexico. Up to 70 ◦C in temperature differences were
observed in the footwall part of the basin between model with reconstructed faults versus model
with no fault reconstruction. This strongly suggests that accounting for the structural evolution in
sedimentary basins is essential for a reliable thermal and maturation modeling. The results from
this study along with those of Fjeldskaar et al. [26] emphasize the importance of proper structural
reconstruction of sedimentary basins and highlights the need to study the transient thermal effects that
occur in a basin proceeding a fault slip in order to make good thermal and maturation estimates.

4.3. Fault Slip and Magmatic Intrusions

As mentioned above, the pre-intrusion host-rock temperatures are acknowledged to be important
for the thermal effect of magmatic intrusions and the size of the thermal aureole (e.g., [8]). Fault slip
and magmatic intrusions may occur within the same timeframe (e.g., [30,64,65]). Results in this study
show that the thermal effects of magmatic intrusions are sensitive to the timing of the fault slip relative
to the timing of the sill emplacement (Figures 16–18). The basin with no sills shows that millions of
years are required to restore steady state after fault movement (Figures 5 and 6). Before fault slip,
sediments in the hanging wall are buried at shallower depths in the basin compared to after fault slip.
The cold sediments in the hanging wall will gradually experience a temperature increase up to 40 ◦C
over a time span of ~10 Myr. With warmer host-rock temperatures the thermal effect of intrusions
is higher. Figures 8 and 10–12 show temperature histories as a function of various parameters with
time to equilibrium of several Myr. However, temperatures rebound within 1 Myr or less to only a
few degrees from steady state temperatures. Sedimentary basins in general would possibly not show
variation in maturation due to transient thermal effects over ~1 Myr. Unless, the thermal differences
were of a certain magnitude, as the reaction rates of kerogen is doubled for every 10 ◦C rise (e.g., [39]) as
mentioned above. Sydnes et al. [25] show that the main thermal effect of magmatic sill intrusions occurs
within the first 1 Myr after intrusion. This indicates that if faulting and sill intrusion occurs within the
same timeframe, two transient thermal effects operate simultaneously in the basin. Disregarding these
transient thermal effects could possibly lead to over- or underestimation of the basin maturation.

Sills intruding around the time of fault slip are emplaced into a basin with lower background
temperatures than sills intruding 10 Myr after fault displacement. However, these differences in
host-rock temperatures lead to larger thermal effects (Figure 16), as mentioned above, but do not
result in large differences in maturation of organic material when one sill intrudes on both sides of the
fault zone (Figure 18a). This is in contrast to the results of Aarnes et al. [8] who concluded that the
host-rock temperature is an important parameter in relation to aureole thickness and thus the amount
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of generated gas after intrusion of one sill. They found that increasing the host-rock temperature by
50 ◦C has a larger impact on the aureole thickness than both the option of increasing the temperature
of the intruding magma by 50 ◦C or by increasing the sill thickness by 50 m. They also found that
thinner sills have smaller thermal aureoles than thicker sills [8]. In this study ~50 m thick sills have
been used as opposed to the work by Aarnes et al. [8], who studied a 100 m thick sill. This difference in
sill thickness might possibly be the reason for the different conclusions in these two studies.

As for sill clusters, a 40 ◦C difference in background temperature results in a larger area
with matured organic material around the intruded sills (Figure 18b). This is in agreement with
Aarnes et al. [21] and Sydnes et al. [25] who showed that the thermal aureole of sill clusters at multiple
levels thermally impacts a larger volume of surrounding rocks than single sills. Both these studies
also show that sill thickness plays a role in the thermal and maturation effects. A 100 m thick sill will
mature organic material in a larger rock volume than a thinner sill [21,25].

Figure 10 shows clearly that the thermal conductivity plays a significant role for the obtained basin
temperatures. The results of sills intruding into a heterogeneous shale basin with a sandstone layer
has a greater thermal effect on the surrounding host rocks, and is especially visible for sills intruding
10 Myr after fault slip (Figure 17). With the presence of higher thermal conductivity lithologies the
host-rock temperatures increases and the thermal and maturation effect of magmatic intrusions are
enhanced (Figure 18a,b), a conclusion supported by others (e.g., [8,16,21]).

4.4. Limitations of the Study

4.4.1. Assumptions

A simple model with one listric fault and one faulting event has been used in this study. The layers
end horizontally in the fault zone and most of the tested scenarios assume a homogeneous lithology.
Deposited sediments are modeled to reach the surface in every timestep, meaning that there are no
constraints on the sediment supply and sea level is not accounted for. The magmatic sill intrusions are
modeled to be horizontal and concordant to the layering with a constant sill thickness. Natural basins
commonly consist of several faults, several faulting events, and different fault dips possibly dipping
in various directions. Furthermore, layers often show a bending downwards towards the fault zone
of a listric fault and they commonly show a large lithological heterogeneity, which might lead to a
variation in physical properties. All these factors may result in variations in the estimated transient
thermal effects and the time needed for the basin to regain steady state after fault slip, and contribute
to contrasting host-rock temperatures. The occurrence of salt in the vicinity of sills will in particular
influence the thermal situation in basins. Including all the above mentioned factors is possible and will
turn the model into a more realistic example. However, doing so will limit the general conclusions
that can be drawn from our study. By keeping the model simple the study is focused on fundamental
questions related to transient thermal effects in basins with normal faults and magmatic sills. Revealed
trends in this study are therefore applicable for basins in general with such features, as the relative
differences between the tested parameters will remain more or less the same.

Sills vary normally in thickness and shape, e.g., saucer-shaped, v-shaped, and transgressive
sills (cf., [67,79,80]). Sill thickness influences the temperature effects in the surrounding area; a thick
magmatic sill has a wider thermal influence on the surroundings than a thin sill. It influences the size
of the thermal aureole surrounding it (e.g., [8,25]) and an uneven sill thickness could possibly lead to
an uneven thermal aureole. In a 2D model, the intrusion is extended infinitely in the 3rd direction.
This is a good approximation as sills commonly have much larger horizontal dimensions compared
to the vertical dimension. The sills are often several km in lengths and widths, while possibly only
50–100 m thick. For typical sill dimensions, the 2D modeling is sufficient for realistic temperature
calculations. Fjeldskaar et al. [7] studied the 3D effect of magmatic sill intrusions and investigated
what length/width ratio of the sill that requires a 3D calculation to give realistic temperature results.
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In the temperature modeling the initial temperature of the intruding magma is set to 1000 ◦C
and latent crystallization heat is not accounted for. Most magmas have temperatures ranging from
700 to 1300 ◦C (cf., [81] and references therein) making the chosen temperature in this study a mean
value. Higher magma temperatures will increase the thermal effects of the sills, whilst a lower magma
temperature will have the opposite effect. However, the relative differences between the compared
models in this study will stay the same, as the intruding magma initial temperature is constant in
all models.

Magmatic sills are often fed by dykes in magmatic upwelling zones. These near vertical features
will contribute with additional heat to the thermal history of basins with sills. However, magmatic
sills can also be fed by other sills over relatively large distances which has been observed in the field
(e.g., [52]).

Latent heat of crystallization is thermal energy released when the sill undergoes a phase transition
from liquid to solid. The composition of the magma may differ, which may lead to different timing of
the emissions of latent heat as components have different crystallization temperatures. Peace et al. [62]
have estimated the additional latent heat to be 488 ◦C, which is a substantial thermal contribution.
Heat due to solidification of the magma will be released as long as the sill contains liquids and until
the sill has solidified completely. However, introducing this additional heat as one pulse, either by
increasing the starting temperature of the magma or introducing it as an additional heat when the sills
start to cool, may result in an overestimation of the effect of sills [20].

4.4.2. Temperature Model

The temperature calculations are done by a finite difference scheme. The grid resolution is very
high around magmatic sills and in areas of irregular structures. Fjeldskaar et al. [7] showed that
the numerical temperature results for magmatic sills match the analytical solutions quite well, both
spatially and temporally. On this basis, we argue that the uncertainty of the conduction-temperature
calculations is of minor importance.

In our model we assume that the sills cool by conduction, but it is possible that the process could
be accelerated by convection. Water convecting in the vicinity of sill intrusions could significantly
modify the temperature and maturity effect of intrusions. Convection of hot fluids from the magma, the
host-rock water, and decomposition products of kerogen is dependent on the permeability of porous
host rocks or hydrofracturing in less porous host rocks (cf., [60,61,82–84]. How the fluids from magma
and host rock affect the fluid pressure and flow is determined by the host-rock porosity, permeability,
and amount of fluids present [85]. Wang and Manga [83] showed that for rocks with low permeability
(<10 mD) symmetrical contact aureoles are produced, implying that conduction is the favorable cooling
method for sills and host rocks after emplacement. On the other hand, rocks of high permeability
(>50 mD) show maturation asymmetry above the sill, implying occurrence of convection-influenced
maturation [83]. Annen [84] studied the maximum temperatures of three rocks of different water
saturations: dry, hydrated and total water saturated, and found that in close proximity to an intrusion
(~10 m) there were no differences in the temperatures, whereas at a distance of 50 m there was a ~50 ◦C
maximum temperature difference. Dry rock has the highest temperature and water saturated rock the
lowest. This means that convection of water lowered the temperature by ~50 ◦C. It was concluded that
diffusivity contrasts between magma and host rock and incremental sill emplacement had more effect
on the aureole thickness than host-rock water content [84]. For the present study this implies that
for highly porous and permeable lithologies (e.g., sandstone) the predicted time for cooling might be
overestimated. However, for less porous and permeable lithologies (e.g., shale) the estimated cooling
rates would be adequate. This was also shown by temperature and maturity modeling on data from
offshore Norway [7].

Another aspect of convection, is the possible increased permeability that occurs when sills are
emplaced. Sill emplacement may potentially induce stresses high enough on the surrounding host
rocks to reactivate or produce new shear fractures or open up tensile fractures (e.g., [86,87]), allowing
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for increased permeability and possibly increased convection. However, accumulation of stresses and
reactivation and/or production of faults and fractures are highly area specific and dependent on, e.g.,
the lithology, deformation features and existing weakness zones. Although increased convection due
to emplacement of sills have been identified on seismic images (e.g., [67]) it is too area specific to be
included in a study aiming for some general conclusions.

Radioactive decay within the sedimentary section itself can generate heat, but is not accounted for
in this study. Rybach [88] found, however, that the contribution of radioactivity in the sedimentary
section was generally no more than a few percent of the overall heat budget, which support that the
errors by not accounting for radioactive heat, is insignificant. Others have concluded for the opposite
and advocate for including radiogenic heat production in the thermal history modeling (e.g., [89,90]),
but also emphasize the large area-variations in radiogenic heat production for the same lithologies [90].

Frictional heating from fault displacement may potentially have implications for the thermal
history in a basin. ter Voorde and Bertotti [29] calculated for shear stress of 100 MPa and an extension
rate of 2 mm·year−1 that the thermal contribution from frictional heat would be 2.5 ◦C. They concluded
that this could not influence the thermal situation in the basin to a significant degree. However, with
higher extensional rates and larger shear stress the frictional heating may become important.

4.4.3. Kerogen Type

Simulations of kerogen maturation can only be as good as the kinetic parameters used in the
model. The parameters are derived from laboratory experiments, and are assumed to be applicable to
geological processes although the scales are different by orders of magnitude. Thus the uncertainty in
the calculated maturity can be significant.

As mentioned above, the maturation modeling in our study assumes kerogen type II, which is
considered to be the most abundant among marine shales [39]. Kerogen degradation is temperature
dependent following the Arrhenius law (e.g., [39,63]). Due to kerogen types having different activation
energies, reaction rates of other kerogen types in the models presented here, could result in different
maturity effects in the modeled scenarios.

5. Concluding Remarks

We have studied the transient thermal effects in a constructed basin with magmatic sill intrusions
and one normal faulting event. Several factors related to faulting, physical properties, and fault
restoration methods have been tested to study possible differences in resulting calculated temperature
regimes over time. Sills of modest sill thickness (50 m) have been modeled to intrude before the basin
has regained steady state after fault slip, enabling the study of two transient thermal effects acting
simultaneously in the basin.

From the results in this study, the following conclusions can be drawn:

• After fault slip, the basin is thermally unstable and is influenced by transient thermal effects
that may last up to several million years. This implies that transient thermal effects should be
accounted for if sills are emplaced after the structural events, as they might affect the pre-intrusion
host-rock temperatures.

• With increasing fault displacement, the temperature effects of fault slip on either side of the fault
zone increases, as does the time the basin is thermally unstable.

• For faulting and deposition occurring over a time span of more than 10 Myr, the basin is in, or close
to, a steady state throughout the entire period. However, for the same basin, but with faulting
and deposition occurring over less than 10 Myr, the basin is thermally unstable for ~10 Myr. This
means that the shorter the time used on faulting and deposition, the longer is the time the basin is
thermally unstable.

• Different fault angles barely influence the time the basin is in a transient state. All tested angles
lead to steady state ~10 Myr after fault slip. However, different fault angles cause changes in



Geosciences 2019, 9, 160 26 of 31

the foot wall and hanging wall areas and thus affect the host-rock temperature and therefore the
temperature effect of potential sills.

• Thermal conductivity is the parameter influencing pre-intrusion host-rock temperatures in the
basin the most. As temperatures increase, so does the time needed for the basin to regain steady
state after fault slip. For basins with identical temperature regimes, the specific heat capacity is
the important property determining the time needed for the basin to regain steady state.

• The obtained temperatures in the basin increase with increasing basal heat flow, thereby increasing
the time needed to arrive at a steady state after fault slip.

• Different restoration methods result in basins of different geometries, leading to temporary thermal
differences mainly in the footwall part of the basin. The largest thermal differences are found
between basins with fault restored to basin with non-restored fault.

• Disregarding transient thermal effects proceeding normal fault slip may lead to both under- or
overestimation of pre-intrusion host-rock temperature. This will influence the calculated effects
of intruded sills and has implications for the estimate of how magmatic intrusions influence
hydrocarbon maturation and is particularly the case for sills intruding as clusters at multiple levels.

• A basin that has regained steady state after normal faulting has the highest potential
host-rock temperature.

Emplacement of magmatic intrusions may possibly affect the reservoir quality and the fault
and fracture permeability in their vicinity. Future work should evolve around the effects magmatic
intrusions have on the diagenetic processes in its surroundings.
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Appendix A

Numerical temperature model,
The following equation is discretizised,
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where T is the temperature, Kh is the horizontal conductivity, and Kv is the vertical conductivity. Finite
differences and a cell-centered grid are used. In the block with indices (ij) the expression
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Khi+ 1
2 , j is the value of Kh at the boundary between the blocks (i,j) and (i + 1,j). It is computed as the

harmonic mean of Khi,j and Khi + 1,j.
The expression ∂

∂z Kv∂T
∂z is treated analogously.

This gives M · N equations to find the Ti,j, unknowns, where i = 1,2, . . . ,M, j =1,2, . . . ,N. Here, M
and N are the number of blocks in x-direction and z-direction, respectively.

We use both Dirichlet and Neumann boundary conditions for the temperature model. For Dirichlet
boundary conditions the temperature, T, at the boundary is given whereas for Neumann conditions
the heat flux, Kh∂T

∂x and Kv∂T
∂z , is given. A Neumann boundary condition with a heat flux of zero is

used for the basin edges.
An iterative method is used to solve the linear system. Conjugate gradients are used as

an acceleration method [92,93]. The conjugate gradient method is preconditioned by nested
factorization [94].
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Abstract: Diagenetic changes in sedimentary basins may alter hydrocarbon reservoir quality with
respect to porosity and permeability. Basins with magmatic intrusions have specific thermal
histories that at time of emplacement and in the aftermath have the ability to enhance diagenetic
processes. Through diagenesis the thermal conductivity of rocks may change significantly, and the
transformations are able to create hydrocarbon traps. The present numerical study quantified the
effect of magmatic intrusions on the transitions of opal A to opal CT to quartz, smectite to illite and
quartz diagenesis. We also studied how these chemical alterations and the sills themselves have
affected the way the subsurface responds to stresses. The modeling shows that the area in the vicinity
of magmatic sills has enhanced porosity loss caused by diagenesis compared to remote areas not
intruded. Particularly areas located between clusters of sills are prone to increased diagenetic changes.
Furthermore, areas influenced by diagenesis have, due to altered physical properties, increased stress
accumulations, which might lead to opening of fractures and activation/reactivation of faults, thus
influencing the permeability and possible hydrocarbon migration in the subsurface. This study
emphasizes the influence magmatic intrusions may have on the reservoir quality and illustrates
how magmatic intrusions and diagenetic changes and their thermal and stress consequences can be
included in basin models.

Keywords: magmatic intrusions; diagenesis; stress; porosity; permeability; basin modeling;
stress modeling

1. Introduction

Magmatic intrusions are commonly emplaced with much higher temperatures compared to their
host rocks. Therefore, when emplaced into sedimentary basins, they may influence all parts of the
petroleum system [1]. Several studies have shown how such intrusions influence the temperatures
and hydrocarbon maturation in sedimentary basins (e.g., [2–11]). Other studies focus on the stress
induced by the sills on the host rocks as they intrude (e.g., [12,13]). However, only a few studies have
reported on the effect magmatic sill intrusions have on the diagenetic processes in sedimentary basins.
Haile et al. [14] concluded in their work at Edgeøya (Svalbard) that conductive heat from intrusions did
not seem to have affected the diagenetic products in the area. However, at Wilhelmøya (Svalbard) there
is evidence suggesting that hydrothermal fluid flow originating from sills has affected the chemical
transformations [15]. In a study of sandstones at Traill Ø (East Greenland) it was concluded that a
combination of conductive and convective heat from magmatism enhanced the diagenetic process [16].

In essence, porosity and permeability determine the quality of petroleum reservoirs [17,18]. At the
time of sediment deposition, the process of sediment lithification starts [19], driven by mechanical
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and chemical diagenesis. Mechanical alterations are related to compaction of the sediments by burial,
while chemical alteration is the compaction occurring when chemical compounds are dissolved and
re-deposited or new components are precipitated. While the mechanical changes are strictly a result
of increasing burial depth and vertical loading, chemical changes are less predictable and highly
dependent on the chemical compounds and the temperature (e.g., [20]). Diagenesis results in porosity
loss, increased rock densities and seismic velocities (e.g., [21–25]). Due to the sensitivity of chemical
diagenesis to temperature, basins subjected to magmatic intrusions are particularly prone to abrupt
and sudden changes of physical properties. Laboratory measurements show an increase of physical
rock strength (>100%) on the transition of opal A to opal CT [23], which imply that diagenetic processes
may also affect the way the rocks respond to subsurface stresses.

Diagenetic transformations are reported from sedimentary basins worldwide (e.g., [26–34]).
The Monterey Formation in California, USA, has been extensively studied with regard to the
transformation of opal A to opal CT (e.g., [35–39]), but diagenetic alterations have also been observed
several places in wells and on seismic data from the Norwegian Continental Shelf (e.g., [24,40–47]). All
of the latter studies report observed transitions of either opal A to opal CT or smectite to illite in the
Vøring Basin, offshore mid-Norway. We used a 2D section from the Vøring Basin with numerous sills
as the basis for the modeling, as it represents the structures of a magmatic basin better as opposed to
a synthetic profile. Modeling of a real 2D section will thus give more realistic results, even though
the parameters are of global nature. A detailed case study of the effects of magmatic intrusions on
diagenesis in the Vøring Basin is beyond the scope of this work.

The main goal of the study is to quantify the effect of magmatic intrusions on transitions of opal A
to opal CT to quartz, smectite to illite, and quartz diagenesis which was done with basin modeling
software (BMTTM, [48]). A second goal is to assess the influence of diagenetic processes and of the
sills themselves on the stress field in a sedimentary basin and the potential impact on fracture and
fault permeability, which is of significant importance for the petroleum systems. The results show that
magmatic sills and related thermal effects might have notable implications for the porosity loss due to
diagenesis in their vicinity. Diagenetic alterations and the sills themselves influence the location and
magnitude of stress accumulations in the basin and thereby have implications for the fault and fracture
development, and implicitly for the migration of fluids.

2. An Example of the Evolution of a Volcanic Basin—The Vøring Basin

The Vøring Basin is located offshore mid-Norway and is bounded by the Bivrost Lineament
to the NE and the Vøring Transform Margin to the SW (Figure 1). The area consists of grabens,
basins, and structural highs developed over three main rifting episodes from Carboniferous to Eocene
times (e.g., [49] and references therein); (1) Carboniferous-Permian; coincided with the onset of
rifting in the North Atlantic [40,50–55]; (2) Late-Mid Jurassic to Early Cretaceous; led to subsidence
and development of accommodation space for the thick Cretaceous sedimentary sequence [56,57];
(3) Late Cretaceous to Early Eocene; coincided with the opening of the North Atlantic, development
of the Vøring Marginal High, and intrusion of numerous sills in the Cretaceous basin fill [49,58].
Subsequent events were dominated by seafloor spreading and accretion of oceanic crust in the
expanding Norwegian-Greenland/North Atlantic Sea [59,60]. In the post-rift phase, the Vøring area
experienced localized tectonic uplift, erosion, sediment deposition, subsidence, flexure, and isostatic
uplift partly due to numerous glaciations and deglaciations of the Fennoscandian landmasses [61,62].
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Figure 1. Location of the studied profile (VB-2-87-B) in the Vøring Basin offshore mid Norway. Modified
after Sydnes et al. [10].

The sedimentary deposits of the Vøring Basin mainly consist of marine to deep marine sediments
(mainly shale) with intercalated shallow marine sediments (mainly sandstone) in the Upper Jurassic
and Cretaceous [49]. The Paleocene consists of shale with minor sandstone and limestone deposits [63],
and the Lower Eocene consists of shales. The magmatic intrusions were emplaced in lower Eocene
time within the entire sedimentary sequence. Oligocene, Neogene, and Quaternary deposits are
mainly shales with some ice rafted debris in the Plio-Pleistocene. The outer Vøring Basin was in the
Miocene and early Pliocene dominated by deep-water deposits consisting of biosiliceous hemipelagic
sediments [46,64].

The utilized 2D transect, VB-2-87-B (Figure 1), is about 100 km long and holds some 20 interpreted
sills located at ~3–5 km depth with lateral extension of the sills varying from about 3 to 30 km (Figure 2).
A velocity model by Hjelstuen et al. [64] was used for depth conversion of the section. The time of
intrusion activity is estimated at ~56 Ma, which is supported by ages derived from zircon dating of
magmatic sills in the Vøring area (55.6 ± 0.3 Ma and 56.3 ± 0.4 Ma, 6607/5-2 and Utgard wells; [65]).

From Carboniferous and up to the beginning of Eocene, the Vøring Basin was part of an active rift
phase [49]. As the active rifting ceased the Vøring area subsequently experienced thermal subsidence
and ridge push due to continental break up and opening of the North Atlantic. Repeated glaciations,
mainly since 2.6 Ma, have led to sediment depositions in the Vøring Basin. Currently the regional
stress field of coastal and mainland Norway is somewhat affected by post-glacial uplift and erosional
unloading/loading [62,66–70] in addition to compressive ridge-push. To make our results generally
applicable, the section from the Vøring Basin is solely used as a basis for the modeling, and site-specific
parameters such as lithology and rock properties, are substituted by global values.
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Figure 2. Seismic section and the interpreted, depth converted section of VB-2-87-B in the Vøring Basin
offshore mid-Norway. Interpretation is obtained from Blystad et al., [40].

3. Methods and Results for Magmatic Intrusion’s Influence on Diagenetic Processes

To perform the modeling of structural evolution, geohistory, thermal development, maturation,
and diagenesis, BMTTM (Tectonor AS) was used. All models are in 2D, which infer the third dimension
to be infinite. This is a good approximation when sills and faults are modeled, as the third dimension
commonly is much larger than the two others (e.g., [12]).

3.1. Geohistory, Temperature, Maturation, and Diagenesis

BMT is a high-resolution 2D basin modeling software utilizing a backstripping process, starting
with present day geometry, in order to reconstruct the geohistory of an interpreted seismic section
(Figure 2) [48,71,72]. One horizon at a time is stripped from the section and fault restoration and
decompaction (based on the given porosity-depth trends assigned for the lithologies) of underlying
sequences follow. This process is repeated all the way to the top basement, thus building the geohistory.
The fault restoration in BMT is performed by vertical simple shear, a method that leaves no gaps in the
geometry and allows for thermal and maturation calculations to be performed (cf. [48]).

BMT bases the thermal calculations on the finite difference method by conduction. The resulting
temperature history depends on the thermal conductivity and specific heat capacity of the sediments
as well as the basal heat flow from the mantle [48,71]. The surface temperature is the upper boundary
condition in the calculations and is kept at 7 ◦C, whereas the lower boundary condition is the basal
heat flow which is set to 47 mW·m−2 over the profile and over time. With these settings, the BMT
calculations generate the basis for the maturation and diagenetic modeling. Kerogen type II is assumed
for the maturation modeling, and maturation is calculated using classical first-order kinetics [48].
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3.1.1. Silica Diagenesis—Quartz Diagenesis

Quartz diagenesis occurs over three connected steps involving dissolution of quartz grains,
transport of dissolved silica over short distances, and precipitation of quartz cement on clastic quartz
grains [19,73]. BMT performs quantitative estimates of quartz cementation caused by dissolution of
silica as described in Walderhaug [74,75] and Lander and Walderhaug [76]. The method is based on
an empirically derived quantification of quartz precipitation as a function of temperature, and the
precipitation is considered rate limiting for the whole cementation process (in [75] and references
therein). This is a different approach than several other quantitative models where quartz dissolution
is considered the limiting factor (e.g., [77–81]). As the diagenesis is thermally dependent (e.g., [74,75]),
quartz cementation is an indicator of the maximum reached temperature and the burial depth.

Diagenesis is a complex process consisting of a number of transformations occurring
simultaneously. According to Walderhaug [74,75], the rate limiting step is the precipitation, which is
described by first-order kinetics and is proportional to the rate constant (k) given by the Arrhenius
equation (Equation (1)).

k = A0e(
−Ea
RT ), (1)

where k is the rate constant of mineral precipitation per unit surface area (mol/cm2s), A0 is a
pre-exponential constant/frequency factor (mol/cm2s), Ea is the activation energy (J/mol), R is the
real gas constant (8.314 J mol−1 K−1), and T is the temperature. A0 is the number that describes how
often molecules collide within the system under consideration. Ea is the energy needed for a specific
chemical reaction to occur and both parameters are unique for any reaction [17]. The kinetic equation
is integrated over temperature and time for a given timestep. By multiplying this with the available
grain surface area obtained from the porosity history of the reconstructed geohistory, the mineral
cement precipitated is calculated. However, increasing grain coating on quartz minerals reduces the
possibility for precipitation of diagenetic minerals. The porosity loss calculations in this study assume
zero grain coating, the porosity loss due to cementation might therefore be overestimated.

3.1.2. Silica Diagenesis—Opal A to Quartz Via Opal CT

Diatoms and radiolarian are two examples of siliceous plankton that after death enrich deep water
sediments with dissolved non-crystalline silica known as opal A [82]. Such fragments are associated
with low-energy deposition environments and amorphous silica is commonly found in deep water
sediments amongst clay and silt deposits. Through burial and increased temperatures opal A converts
to quartz via opal CT; this is observed in several basins worldwide, as documented in the introduction.
The conversion of biogenetic/amorphous silica, opal A, to diagenetic/microcrystalline silica, opal
CT, and subsequently to stable/crystalline silica, quartz, occurs through several dissolutions and
precipitations as the burial depth increases (e.g., [39,83,84]). This reorganization from non-crystalline
to crystalline silica causes changes in rock structures, mechanical properties, porosity, and permeability
and may potentially generate traps for hydrocarbons (e.g., [23,38,39,84,85]).

One approach to determine the depth of these diagenetic processes is an empirical derived
schematic presentation of the relation between temperature, rock composition, and silica-phase
changes [86,87], which can be used in areas of known temperatures. Another approach is to determine
experimentally the reaction kinetics under given chemical conditions which can be used for basins
worldwide (e.g., [22,38,88]. A third approach was discovered by Neagu et al. [25] who found a
connection between rotated fault planes and amount of porosity loss due to the conversion of opal A
to opal CT.

Generally, each chemical reaction has its specific pre-exponential constant and activation energy
which can be derived experimentally [17]. Additionally, all chemical reaction rates are temperature
dependent [89]. Therefore, the method described above for quartz diagenesis was used to predict
the precipitation rate for the transition of opal A to opal CT to quartz. Laboratory studies show that
the activation energy for the opal A to opal CT transition is lower than for the transition of opal CT
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to quartz and this indicates that reorganization of amorphous silica to microcrystalline silica require
lower temperature than the conversion of microcrystalline silica to crystalline silica [22]. This implies
that the opal A/opal CT transition is expected to be located at shallower depths than the opal CT/

quartz boundary.
In this study the values reported by Dralus et al. [39] for the transition of opal A→ opal CT→

quartz was used (Table 1), as their study results in improved predictions of the opal A to opal CT
boundary compared to other published kinetics [38]. They also found that high content of organic
matter slows the transitioning of opal A to opal CT and that different kinetic parameters are required
for rocks with high and low organic content.

3.1.3. Clay Diagenesis—Smectite to Illite

During burial diagenesis, illitization of smectite is a commonly occurring mineralogical reaction
of clay rich sediments and shales. The conversion is a gradual process leading to mixed layers with
different illite/smectite ratios [90] and is accompanied by volume loss and reduction in permeability [91].
With increasing burial depth and temperatures, the percentage of illitic beds in the illite/smectite
mixed layers increases (e.g., [24,92]). The temperature is an important factor in the smectite to illite
diagenetic process (e.g., [91]), but the presence of pore water and potassium (K+) are also essential for
this transition to take place [42,93–95]. Smectite reacts with potassium, possibly sourced by K-feldspar,
and the outcome is illite, silica, and water (e.g., [42]) from a complex dissolution/precipitation process
where the precipitation is rate limiting (e.g., [96–99]). A common approach for modeling the conversion
of smectite to illite is by using the Arrhenius equation and regarding the transformation as either a one
step reaction with one reaction rate (e.g., [94,100]) or as several parallel reactions with rates spread
over a defined range (e.g., [101]).

Table 1. Kinetic data used for the opal A/CT/quartz diagenesis and smectite to illite modeling. *Values
obtained from Sachsenhofer et al. [103].

Diagenetic Process Ea (kJ mol−1) A0 (mol/cm2s)

Opal A—opal CT—quartz Dralus et al. [39]
36.99 (low TOC) 1.04 × 1014

33.44 (high TOC) 3.01 × 1010

32.52 (Quartz) 1.96 × 109

Smectite to illite
Roaldset et al. [95] 33

1.02 × 108

2.72 × 109

Huang et al. [94] 28 8.08 × 104

Hillier et al. [102]* 31 1.81 × 103

The method described above for quartz diagenesis is also applied for the estimation of smectite
to illite diagenesis. However, it is important to note that this method does not take into account the
presence of chemical components that can act as catalysts or quenchers. As for quartz diagenesis,
precipitation is considered rate limiting for the smectite to illite transition and it is assumed that critical
chemical components, e.g., potassium, are present for the reaction to occur. Kinetic data from three
different studies were tested: (1) Roaldset et al. [95], (2) Huang et al. [94], and (3) Hillier et al. [102].
Their preferred parameters are given in Table 1.

3.2. Opal A to Opal CT—Testing of the Method

To test the quantification methods described above for the diagenetic processes, 1D modeling
was performed on a well in the North Sea. Roaldset and Wei [23] observed the opal A to opal CT
transition to be at 1740 m depth in well 30/9-B-50H (Figure 3) in the Oseberg area (North Sea). This area
has experienced several millions of years of Cenozoic tectonic quiescence [104–107] and is presently
close to maximum burial depth [95], which makes this particular well excellent for testing of the
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method. The stratigraphy was obtained from a well close by (well 30/6-2; Figure 3) consisting mainly
of sandstones and claystones (see Table 2 for parameters).
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Table 2. Lithological parameters used in the modeling, based on standard values published in the
literature (e.g., [108,109]).

Lithology Porosity—Depth Trend Conductivity (kv)
(Wm−1 K−1)

Heat
Capacity

Surface
Porosity

Exponential
Constant (km−1)

Low
Porosity

High
Porosity (Jkg−1K−1)

Sandstone 0.45 0.27 3.30 (6%) 1.50 (45%) 1080

Claystone 0.63 0.51 1.70 (6%) 1.00 (60%) 940

Shale 0.63 0.51 2.00 (6%) 1.40 (60%) 1190

Basement, metamorphic 3.10 3.10 1100

Magmatic intrusions 3.10 3.10 1100

Asthenosphere 3.50 3.50 1100

Roaldset and Wei [23] showed that the opal A to opal CT transition zone coincided with a porosity
reduction of around 20%. Results from the 1D model of well 30/9-B-50H shows that 20% porosity loss
starts around 1740 m below seafloor (Figure 4). This coincides with the observations by Roaldset and
Wei [23], which gives a strong indication that the method gives realistic results.
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Figure 4. The modeled porosity loss in well 30/6-2 in the North Sea. The result coincides well with
observations by Roaldset and Wei [23] which shows the porosity loss starting approximately around
1740 m depth.

3.3. Example from the Vøring Basin, Section VB-2-87-B

To study the effect emplaced sills have on the diagenesis in basins, the methods described in
Section 3.1 were used on the seismic line VB-2-87-B (Figure 2) in the Vøring Basin (Figure 1). This
transect contains approximately 20 interpreted magmatic sills, as well as a horizon denoted opal CT
(Figure 2). The sills were modeled to intrude in one pulse at 56 Ma, with a magma temperature of
1000 ◦C which is within normal magma temperature range [12]. Table 2 summarizes the parameters
used in the modeling. The thermal effect of sills and the effect on the diagenetic processes are largest
the first million years after intrusion [5,10]. The figures below show results for 1 Myr after the intrusion
of the sills.

3.3.1. Quartz Cement

The resulting diagenetic effects (Figure 5) show large differences between models where sills are
accounted for and when they are disregarded. It is well known that sill thickness plays a role in the
size of the thermal aureole, as well as the amount of matured organic matter in the vicinity of sills
(e.g., [5,10]). This is also clearly illustrated in Figure 5 where results for alternatives with no sills, 50 m
and 100 m thick sills are shown. The entire basin is assumed to have sandstone lithology (see Table 2
for properties). Some areas show up to 40% difference in porosity loss between the models (Figure 5).
The areas where the largest differences are found are located close to the sills and in the areas between
clusters of sills. With increasing sill thickness a larger area between the sill clusters have increased
porosity loss (Figure 5). This is in accordance with Sydnes et al. [10] who found that the vitrinite
reflectance in a well in the Barents Sea is a function of the spacing and the possible heat exchange
between neighboring sills. For single, relatively shallow lying sills, the sill thickness does not impact
the size of the area of porosity loss to a significant degree. However, for deeper lying single sills, the
sill thickness will impact the size of the diagenetically altered area (Figure 5).
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Figure 5. Results for porosity loss due to quartz diagenesis for basin holding no sills (upper), 50 m
thick sills (middle), and 100 m thick sills (lower).

Quartz diagenesis due to sill emplacement will have implications for the reservoir quality in the
vicinity of sills, in particular for reservoirs lying between clusters of sills. For our basin with this
particular geohistory and thermal development, sills intruding at any depth in the sedimentary rocks
will enhance the porosity loss due to quartz diagenesis. The generated diagenetic changes as a result
of intruding sills (as shown in Figure 5) should still be visible today, as the surrounding host rocks at
the same depth have not yet reached the same amount of quartz diagenesis.

3.3.2. Opal A to Opal CT to Quartz

The transition from opal A to opal CT is considered to occur over some tens of meters and up
to 200 m [41]. Roaldset and Wei [23] found the transition zone of opal A to opal CT to start where
the porosity reduction is around 20%. Therefore, we assume that the transition zone starts where the
modeling result show 20% porosity loss and ends around 200 m deeper down. The basin is now set as
all shale and assumes presence of amorphous silica. Figure 6 shows the modeled opal CT transition
zone for the studied transect in the Vøring Basin with and without sills included in the calculations.
The largest contrast between the two models are found in the shallower areas and for sills situated at
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depths <1500 m below seafloor (Figure 6). For the scenario where sills are not included, the transition
zone results in a more or less horizontal zone around 1200 m depth. When the thermal contribution
of sills is included in the calculations, the opal A/CT boundary is found as shallow as approximately
700 m depth. This implies that the additional heat from the sills moved the transition zone up to 500 m
shallower depths. The influence of sills on the further transition of opal CT to quartz is more or less
the same as for opal A to opal CT and therefore not shown here.Geosciences 2019, 9, x FOR PEER REVIEW 10 of 28 
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Figure 6. The results for the opal A/CT transition zone when sills are disregarded (upper) and when
they are included (lower). The transition zone is assumed to start where the porosity loss exceeds 20%.

3.3.3. Smectite to Illite

Transformation of smectite to illite may occur in sediments and rocks containing clay minerals,
and the basin is therefore assumed to have only shale lithology. The results for all the tested kinetic
values show that magmatic intrusions and their heat contribution influence the diagenesis and result in
transition of smectite to illite at shallower depths than without sills (Figure 7). However, the published
and used A0 and Ea values give significantly different results (Figure 7). The values proposed by
Roaldset et al. [95] with high frequency factor (Table 1; Figure 7) give results similar to the result
for the transition of opal A to opal CT (Figure 6). Without sills the transition from smectite to illite
occurs around 1200 m depth and with sills this boundary lies about 500 m shallower. Results for the
parameter values proposed by Hillier et al. (Table 1; [102]) show a porosity loss of 10% and increasing
with depth, starting at >2000 m depths when sills are disregarded (Figure 7 pink, stippled lines lower
left). For models where sills are included a porosity loss up to 40% is obtained in areas close to the sills
(Figure 7). The results are quite similar to results displayed for quartz diagenesis (Figure 5). For the
Vøring Basin, a transition in seismic velocity, porosity, and density, believed to resemble the smectite to
illite transition, has been observed at depths corresponding to 80–90 ◦C [24]. The modeled isotherms of
80 and 90 ◦C for the model without sills are shown in Figure 7 (left). According to Peltonen et al. [24],
the kinetic parameter values preferred by Roaldset et al [95] result in a transition of smectite to illite at
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a shallower depth than 80–90 ◦C. The kinetic values of Hillier et al. [102] result in a transition zone that
lies deeper than the 80–90 ◦C isotherm.Geosciences 2019, 9, x FOR PEER REVIEW 11 of 28 
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Figure 7. Modeling results of smectite to illite diagnesis when sills are disregarded (left) and when
they are included (right). The kinetic parameters of Roaldset et al. [95] and Hillier et al., [102] are used
(cf. Table 1). The modeled isotherm of 80–90 ◦C is marked for scenario without sills (left). Lower left,
pink, stippled lines indicate location of 10% and 15% porosity loss.

From field observations it has been reported concurrent onset of oil generation and the conversion
of smectite to illite (e.g., [110]). When comparing the resulting maturation assuming kerogen type II in
the section from the Vøring Basin (Figure 8) with and without sills, there is a good correlation for both
scenarios when compared to the smectite to illite conversion, when kinetic values by Hillier et al. [102]
were used. Without sills the maturation starts at depths >2900 m at lateral location 50 km on the
transect (Figure 8). At the same point in the transect without sills and Hillier et al. parameters ([102];
Figure 7), a porosity loss of 10% due to conversion of smectite to illite starts around 2700 m depth
(Figure 7 pink, stippled lines lower left), which gives about 200 m difference in the location of the onset
of hydrocarbon generation and smectite to illite conversion. For the modeled hydrocarbon maturation
with sills (Figure 8) there is also a good correlation with the modeled porosity loss due to conversion to
illite with the use of Hillier et al. [102] kinetic values (Figure 7).
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Figure 8. Hydrocarbon maturation for the studied transect without (upper) and with (lower) sills.
The onset of maturation of organic material and the onset of porosity loss due to transition of smectite
to illite is almost concurrent (compare to Figure 7).

4. Methods and Results for Stress Accumulation Influenced by Diagenetic Processes and Sills
Themselves

As stated in the introduction, the physical properties of rocks subject to diagenesis will be altered
(e.g., [22,23,95]. The increase in rock stiffness, as a consequence of diagenesis is of particular interest
when studying how diagenesis may change the way the rocks respond to stresses. Additionally,
the sills themselves are much stiffer than the host rocks in sedimentary basins and will accumulate
stresses when subject to compressional or extensional loading [12,111].

4.1. Stress Modeling

To investigate how diagenesis and sills might affect stress accumulations in the subsurface, we used
Comsol Multiphysics 5.2.a (www.comsol.com), a commercial finite element method (FEM) software
that solves problems based on partial differential equations. The stress effects were studied on two
synthetic cases and on the section from the Vøring Basin (Figure 2). All the models are in 2D and have
fault zones divided into two separate units, consisting of a fault core which is surrounded by a damage
zone with stiffnesses of 0.1 and 1 GPa, respectively (Figure 9). A typical Poisson’s ratio of 0.25 [112] was
used in all the models and they were all subject to either horizontal compressional or extensional stress
of 5 MPa to resemble horizontal regional or local stresses. All sills were assumed to be solidified and
have Young’s modulus values resembling such a situation. Properties are as summarized in Table 3.
The lower boundary was fastened in all models to avoid translation and rotation of the rock body.
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Figure 9. Schematic overview of the synthetic models with an enlargement of the fault zone and
definition of the units and Young’s modulus values used in the models. The X’s indicate the boundary
fixated to avoid translation and rotation of the rock body during loading.

Table 3. Physical properties used in the stress modeling, based on standard values for rock properties
published in the literature (e.g., [111]).

Young’s Modules

Host Rock Area Modified
by Diagenesis Basement Fault Core/

Damage Zone
Fault Core/Damage Zone
Modified by Diagenesis Sills

10 GPa 20 GPa 50 GPa 0.1 GPa/1 GPa 0.2 GPa/2 GPa 50 GPa

4.2. Stress Effects of Sills and Diagenesis

In general, stress accumulations indicate areas prone to either opening of fractures or
activation/reactivation of faults. Areas where tensile stresses accumulate may lead to opening
of fractures or keep existing fractures open, whereas activation/reactivation of faults may occur in
areas where shear stresses accumulate. Active faults and open fractures increase the permeability in
the area where they are located. Typical global properties of rocks were used in the models (Table 3)
and the results show the location of stress concentrations, and how sills and diagenesis affect stress
accumulations. The models were based on the assumption that rocks behave as linear elastic up
to 1%–3% strain at low temperature and pressure [113,114] depending on the rock strength. Strain
exceeding 1%–3% commonly results in failure. Normally the shear strength of rocks lies between 1 and
12 MPa and the tensile strength is half of the shear strength, normally between 0.5 and 6 MPa [115–117].
Stresses exceeding these limits will commonly initiate fault movement and open fractures, respectively.

When comparing models where sills and sill-initiated diagenesis are accounted for versus when it
is disregarded, it is possible to determine if and how these units may have influenced fracture and fault
related permeability. Laboratory studies show that the physical strength of rocks increases by more
than 100% on the transition of opal A to opal CT [23]. Therefore, the stiffness of the diagenetically
altered area is doubled compared to the Young’s modulus value of the rocks not altered by diagenesis.

Synthetic Case

A synthetic case of arbitrary dimensions shows that in a homogeneous basin, stresses build up
at and around the fault tips when subject to compression and extension (Figure 10). Red and yellow
colors in the models represent areas where stresses concentrate, while blue colors are areas of small to
no stress accumulations. Fractures may open and increase the permeability close to the sides of the
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fault tips where the tensile stresses concentrate (Figure 10). The direction of the fractures will follow
the direction of σ1 (maximum principal compressive stress) and open in the direction of σ3 (minimum
principal compressive stress or maximum principal tensile stress) [111]. Initiation of fault movement
may occur at the fault tips where shear stresses accumulate, and as the shear stresses are larger at the
upper tip, this is the area most likely for fault slip initiation (Figure 10).

Geosciences 2019, 9, x FOR PEER REVIEW 14 of 28 

 

to no stress accumulations. Fractures may open and increase the permeability close to the sides of the 

fault tips where the tensile stresses concentrate (Figure 10). The direction of the fractures will follow 

the direction of σ1 (maximum principal compressive stress) and open in the direction of σ3 (minimum 

principal compressive stress or maximum principal tensile stress) [111]. Initiation of fault movement 

may occur at the fault tips where shear stresses accumulate, and as the shear stresses are larger at the 

upper tip, this is the area most likely for fault slip initiation (Figure 10). 

 

Figure 10. Stress results for the synthetic case of a fault zone with arbitrary dimensions in a 

homogeneous basin. The tensile and shear stress developed in a homogeneous basin with one fault 

subject to horizontal compressive stress of 5 MPa (indicated by horizontal arrows). The host rock has 

a Young’s modulus value of 10 GPa, the damage zone is 1 GPa, and fault core 0.1 GPa. 

As shown in Sections 3.3.1–3.3.3, magmatic sills will influence the diagenetic processes in their 

proximity (see Figures 5–7). In order to include this impact in the synthetic model, a second model 

featuring the same fault, but with one sill surrounded by a diagenetically altered area was added. 

The results (Figure 11) show that in addition to accumulating shear and tensile stresses at the fault 

tips, due to compression, stresses mainly build up in the sill and in the area modified by diagenesis 

surrounding the sill. This occurs as stresses tend to build up in layers/zones of stiffer rocks in contrast 

to softer rocks in heterogeneous basins (e.g., [111,118,119]). These shear stress accumulations are also 

present in the fault zone, particularly where the sill crosses the fault, and consequently, potential fault 

reactivation may start in this area. The accumulated shear stresses in the sill and diagenetically 

modified area may result in linking of present weaknesses and potentially initiate growth of new 

faults within this area, if the shear strength of the rock is exceeded [111]. Tensile stresses concentrating 

in the area modified by diagenesis along the fault zone and within the diagenetically altered damage 

zone may, if the tensile strength of the rock is exceeded, open fractures [111]. Similar results are 

obtained for the same model subject to extension, however, the resulting tensile stresses will be much 

larger compared to when subject to compression (not shown here) and accordingly the chance of 

opening fractures will increase. 

Figure 10. Stress results for the synthetic case of a fault zone with arbitrary dimensions in a homogeneous
basin. The tensile and shear stress developed in a homogeneous basin with one fault subject to horizontal
compressive stress of 5 MPa (indicated by horizontal arrows). The host rock has a Young’s modulus
value of 10 GPa, the damage zone is 1 GPa, and fault core 0.1 GPa.

As shown in Sections 3.3.1–3.3.3, magmatic sills will influence the diagenetic processes in their
proximity (see Figures 5–7). In order to include this impact in the synthetic model, a second model
featuring the same fault, but with one sill surrounded by a diagenetically altered area was added.
The results (Figure 11) show that in addition to accumulating shear and tensile stresses at the fault
tips, due to compression, stresses mainly build up in the sill and in the area modified by diagenesis
surrounding the sill. This occurs as stresses tend to build up in layers/zones of stiffer rocks in contrast
to softer rocks in heterogeneous basins (e.g., [111,118,119]). These shear stress accumulations are also
present in the fault zone, particularly where the sill crosses the fault, and consequently, potential
fault reactivation may start in this area. The accumulated shear stresses in the sill and diagenetically
modified area may result in linking of present weaknesses and potentially initiate growth of new faults
within this area, if the shear strength of the rock is exceeded [111]. Tensile stresses concentrating in the
area modified by diagenesis along the fault zone and within the diagenetically altered damage zone
may, if the tensile strength of the rock is exceeded, open fractures [111]. Similar results are obtained
for the same model subject to extension, however, the resulting tensile stresses will be much larger
compared to when subject to compression (not shown here) and accordingly the chance of opening
fractures will increase.
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Figure 11. The resulting tensile and shear stresses of a fault with sill intruded through the fault zone
with a surrounding area of diagenetic alteration when subject to horizontal compressive stress of 5 MPa
(indicated by horizontal arrows). Dimensions are arbitrary in this synthetic model.

4.3. Example from the Vøring Area

For the transect VB-2-87-B in the Vøring Basin, the influence of sills and diagenetically altered
area (as given in Sections 3.3.1–3.3.3) was included to investigate its effect on the stress accumulations.
The mid-Norwegian margin is presently experiencing compression. However, this is not a specific
study of the Vøring area, therefore, to study the response to compressive and tensile horizontal stresses
the model was subjected to both. The area to the left (Figure 12a) with several faults and sills, is of
particular interest as it displays the interaction between faults, sills, and areas modified by diagenesis.
As the smectite to illite transition zones (Figure 7) show boundaries much like the one of opal A to opal
CT (Figure 6) and quartz diagenesis (Figure 5), this transition was not included in the study, as the
results are expected to be more or less the same as for the opal CT transition zone and quartz diagenesis.Geosciences 2019, 9, x FOR PEER REVIEW 16 of 28 
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Figure 12. (a) Stress results for the Vøring profile when the sills are excluded, and diagenesis is
disregarded. The results show the shear stresses due to 5 MPa compressive horizontal stress (indicated
by horizontal arrows). The white box indicates the area enlarged in (b) and (c), the red box indicates
the area enlarged in Figures 13 and 14. (b) The same scenario as in (a) but with the tensile stresses due
to compression. (c) The same scenario as in (a) and (b), but with tensile stresses due to 5 MPa extension
(indicated by horizontal arrows).
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Figure 13. Stress results for the basin with 50 m thick sills subject to horizontal compressive stress of
5 MPa. The area and scale are shown by the red box in Figure 12. (a,b) The results for the basin when
the sills and the transition zone of opal CT are accounted for. (c,d) The results when sills and quartz
diagenesis are accounted for. White circles indicate areas where the sill does not penetrate the fault
zone, however, parts of the fault zone have area altered by diagenesis.
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Figure 14. Stress results for the basin with 50 m thick sills subject to horizontal tensile stress of 5 MPa.
The area and scale is shown by the red box in Figure 12. (a,b) Results for basin where sills and the
transition zone of opal CT is accounted for. (c,d) Results for when sills and quartz diagenesis is
accounted for. The white circle to the right indicates the area where the sill does not penetrate the fault
zone, however, parts of the fault zone have area altered by diagenesis. This area concentrates stresses,
and when high enough, may contribute to fault reactivation and fracture development. The sills are
50 m thick.

The transformation zone of opal A to opal CT starts when the porosity reduction is around 20%
(cf. Figure 6; [23]) and is modeled to end around 200 m deeper (cf. [41]). Five different scenarios were
tested and subject to horizontal compressive and tensile stresses of 5 MPa: (1) the basin with both sills
and diagenesis disregarded (Figure 12), (2) the basin with sills but diagenesis disregarded, (3) the basin
without sills but with opal A to opal CT transition zone included, (4) the basin with sills and opal A to
opal CT transition zone included (Figures 13 and 14) and, (5) the basin with sills and quartz diagenesis
(Figures 13 and 14).

Common results for all the models, whether subject to compressive or tensile stress, is that stresses
build up at the fault tips (like the synthetic models), and in particular at the lower tips (Figure 12a–c).
This is due to the larger contrast in rock stiffness between the fault zones and the basement compared
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to the contrast between the fault zones and the host rock (cf. Table 3). Shear stresses are more or less the
same with regard to location and strength of accumulations, whether they are subject to compression
or extension. However, the tensile stresses are much lower for the models subject to compression
(Figure 12b) than those subject to extension (Figure 12c).

When subject to both compression and extension, the synthetic models show that both shear
and tensile stresses mainly concentrate in the sill and area modified by diagenesis, also where these
features cross the fault zone (Figure 11). Figure 13 shows the results for the Vøring basin subject to
compression and when sills and the opal CT transition zone are included (Figure 13a,c), as well as
when sills and the quartz diagenetically modified area are accounted for (Figure 13b,d). For all cases,
areas of increased tensile stresses are few and small, but potential fractures may open along the fault
zone to the right and increase the permeability if the stresses become high enough (Figure 13c,d). In
addition, areas indicated by white circles in Figure 13c,d, show elevated tensile stresses related to where
the sill and diagenetically modified area cross the fault zone. Fractures may open or remain open if
stress concentrations grow high enough, thereby contributing to increased permeability in these areas.
The shear stresses tend to build up in the areas modified by diagenesis and in the sills. Where the sills
cross the faults, stress concentrations are, without exceptions, particularly high (Figure 13a,b) and may
reactivate the fault if they exceed the rock’s shear strength of 1–12 MPa. Elevated shear stresses in the
opal CT transition zone and area modified by quartz diagenesis, may potentially initiate growth of
new faults if the stresses become high enough, and thereby contribute to increased permeability.

When the basin is subject to extension the shear stresses concentrate in the same location with the
same strength (Figure 14a,b), as when subject to compression (Figure 13a,b), for all scenarios. If the
shear stresses exceed the shear strength of the rocks, fault slip will be initiated in some areas (colored
red and yellow). However, the tensile stresses are much larger for the basin subject to extension
(Figure 14c,d) as opposed to compression (Figure 13c,d). The entire sills tend to concentrate tensile
stresses, not just when crossing fault zones (Figure 14c,d). Additionally, the diagenetically altered
area of both opal CT and quartz accumulate higher tensile stresses compared to their surroundings.
The high concentrations of tensile stresses show that the basin is prone to open fractures and increase
the permeability in several areas. Due to the particularly high stress concentrations in the sills and the
areas that have undergone diagenetic transitions, fractures are expected to first open in these places.

5. Discussion

Magmatic intrusions may influence the location and amount of porosity loss due to diagenesis,
given that the necessary physical, biogenic, and/or chemical conditions are present. Two specific topics
are addressed in this study: (1) quantification of the effect of magmatic intrusions on several diagenetic
processes (opal A to opal CT to quartz, smectite to illite, and quartz diagenesis) and (2) the effect of
sills and diagenetically altered areas on the fracture and fault permeability in basins with emphasis on
the effect of these factors on petroleum systems.

5.1. Effects of Diagenesis on Petroleum Systems

Diagenesis contributes to loss of porosity and permeability in petroleum reservoirs and thus
essentially harm the reservoir quality [90]. However, the same processes may also enhance the porosity
and permeability through development of secondary porosity by dissolution, grain coating, and
fracturing of layers that have become brittle [90]. All diagenetic products can aid in calibrating the
thermal history of basins, as the transformation of each diagenetic product commonly occurs over a
specific temperature range. Thereby, they are markers for maximum temperatures and burial depths
and may uncover areas exposed to unusual environments, i.e., uncommon heat flow or uplift and
erosion, and they can be used together with for instance vitrinite reflectance and fluid inclusion data to
calibrate thermal predictions.

The thermal conductivity of sediments could rise 4–5 times when opal CT transitions to quartz [120],
as a result of the porosity loss. In the Bjørnøya Basin (Barents Sea) this difference in thermal conductivity



Geosciences 2019, 9, 477 18 of 28

results in about 10 ◦C higher temperatures in the Paleocene/Eocene shales for opal CT rich shale
compared to quartz rich shale [118]. This temperature difference is caused by the nature of clay
minerals that have a flattened structure favoring horizontal over vertical heat transport [120]. This is
an example of the importance of including diagenesis in basin modeling. Modeling of diagenesis will
ensure good thermal models when assessing the petroleum potential of sedimentary basins [120].

When the effects of diagenetic processes on petroleum reservoirs are considered, it is important to
realize that chemical compounds in subsurface fluids can be catalysts or quenchers for the processes.
First of all, the transition of opal A to opal CT to quartz requires presence of amorphous silica in
the sedimentary rocks. Kastner et al. [83] studied the chemical controls on the opal A to opal CT
transition and found that the diagenetic process is increased in carbonate rocks and reduced in clay-rich
rocks. The presence of magnesium and hydroxide ions was found to enhance the conversion of opal
A to opal CT. Subsequent transformation of opal CT to quartz released magnesium and hydroxide
ions [83] and fluids enriched in magnesium and hydroxide ions were expelled upwards along faults
increasing the transformation of opal A to opal CT at shallower depths [121]. Conversion of smectite
to illite requires the presence of clay minerals in the sedimentary rocks. Furthermore, the presence
of potassium has proved to enhance this conversion process. The transformation rates of smectite to
illite increases with high potassium concentrations and lower temperatures are needed to start the
conversion [95]. The potassium is commonly sourced by k-feldspars, which requires such minerals
to be present for diagenesis to occur [91]. On the other hand, laboratory studies indicate that the
presence of magnesium ions retards the conversion process in the early phases of the smectite to illite
conversion [94]. Therefore, although thermal requirements are met for diagenetic alterations to occur,
it is ultimately the biogenic and/or chemical compounds in the rocks and pore fluids that determine
the possible diagenetic processes.

5.2. Effect of Magmatic Sills on the Diagenetic Process in Reservoir Rocks

Earlier studies of magmatic intrusions and their effect on porosity evolution and diagenesis of
reservoir rocks have come to contrasting conclusions (e.g., [14,15,122–124]). The diagenetic processes
of sandstone reservoirs are likely to be controlled by the initial composition of the sand, original
pore water composition, content of neighboring lithologies, burial and thermal history, and timing of
cementation relative to accumulation of petroleum [17,47,82]. These criteria can largely explain the
contrasting conclusions that are put forward in the referenced literature.

Haile et al. [14] conclude in their study at Edgeøya (Svalbard) that quartz cementation is
unaffected by the short-lived heating of magmatic sills in reservoir rocks. They suggest that slow quartz
cementation rates are in contrast to the relatively short-lived magmatic heating and will therefore not
leave fingerprints on the diagenetic process. This conclusion contrasts from the results in our study
which clearly show that magmatic sill intrusions affect the diagenesis in their proximity (Figures 5–7).
Nejbert et al. [125] state that most sills in the Svalbard area are about 10–30 m thick. The sills are
relatively thin and the distances between the sills are unknown in the study by Haile et al. [14], which
could explain the contrasting conclusions of their study and ours. The magmatic sill thickness, distance
from sills, and clusters of sills are pointed out in several studies to have significant importance on
the thermal effect of magmatic intrusions (e.g., [3,5,6,9–11]). Our study shows that thermal effects
will also affect diagenetic transformations (i.e., Figure 5). The location of sampling in the study by
Haile et al. [14] might also be too far from sills to be thermally affected by them.

Another aspect is the temperature of the intruding magma. As the thermal effect of sills is a
function of the temperature of the intruding magma, a lower magma temperature than 1000 ◦C (used
in this study), would result in smaller thermal aureole surrounding the sills and consequently decrease
the area affected by diagenesis. This could also to some degree explain the contrasting conclusions.
The host rock pre-intrusion temperature is identified to be crucial for the thermal effect of magmatic
intrusions (e.g., [5,8,11]), and ultimately the effect of magmatic intrusions on diagenetic processes.
Factors such as fault displacement, time span of faulting and sediment deposition, fault angle, rock
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thermal conductivity and specific heat capacity, basal heat flow, and restoration method used to
simulate the fault movement through time, are all factors that influence the host rock pre-intrusion
temperatures. For a specific, detailed area study, all these factors are crucial and require thorough
assessment [11].

5.3. Silica Diagenesis

Silica diagenesis embraces two distinct types of chemical compaction processes, both of which
are thermally dependent. The first studied here is quartz diagenesis and is related to pressure
dissolution of quartz minerals, diffusion of dissolved silica and precipitation of quartz cement.
Quartz cementation is the number one porosity reduction process in sandstones below 2000 m
depth (e.g., [17,126,127]). Rapidly increasing porosity loss due to quartz cementation occurs when
temperatures exceed 100–110 ◦C [75] and hydrocarbons do not seem to influence the porosity reduction
process [91]. Grain coatings of clays have been found to inhibit quartz cementation and contribute to
porosity preservation (e.g., [128–130]). Furthermore, at depths for peak mineral dissolution, such as
quartz dissolution, the porosity is found to increase through secondary porosity production before it
decreases again at deeper burial depth [130]. For basins without magmatic intrusions the porosity loss
in petroleum reservoirs due to quartz diagenesis are expected to be found at depths corresponding to
the mentioned temperature range (100–110 ◦C). As the results in this study show, magmatic intrusions
in sedimentary basins contribute to abrupt changes in the diagenetic processes (Figure 5) and reservoirs
with reduced porosity may thus be found at shallower depths than expected. Reservoirs located
between sills in a cluster are particularly prone to porosity reduction due to quartz diagenesis.

The transition of siliceous sediments from opal A through opal CT to quartz, starts at lower
temperatures than the silica transition discussed previously. Opal A dissolves and subsequently
precipitates to opal CT at about 50–60 ◦C, and further transition into crystalline quartz starts around
80–90 ◦C [131]. These transformations are known to create hydrocarbon traps. In Onnagawa Formation,
Yurihara oil and gas field (Japan) and Monterey Formation in California (USA), the opal CT/quartz
boundary acts as a seal due to its low permeability, while the quartz rich layers underneath, with
higher permeability, act as a reservoir [38,132]. For basins following the thermal development without
particular interruptions, the transition zone of opal A to opal CT will normally be in the temperature
range of 50–60 ◦C, and the opal CT to quartz transition at depths corresponding to 80–90 ◦C. Results
from this study show that sills intruding at depths <1500 m moves the opal A/CT transition zone to
significantly shallower depths. For basins with magmatic sill intrusions emplaced at shallow depths,
such a hydrocarbon trap model would lie at shallower depths than basins without sills, and could
possibly go undiscovered if sills are not included in the thermal and diagenetic calculations during
basin modeling. The opal A/CT boundary has been mistaken for a flat spot as oil/water contact and
drilled (e.g., [22]). When incorporating the diagenetic transition of opal A to opal CT in basin modeling,
such errors may be avoided.

Opal CT Boundary in the Vøring Basin

The opal A to opal CT transition zone is found at surprisingly shallow depths in some areas
of the Vøring Basin. Several reasons for this fossilized opal A/CT transition have been suggested.
The transition zone is proposed to have developed during Miocene and died out in Early Pliocene
(e.g., [44,49,133]). As the transition of amorphous silica to opal CT is a temperature dependent reaction
(e.g., [22,24,73–75]) the fossilized transition is a record of peak paleo temperatures which may reflect
max burial depth of the basin, uplift and erosion of the area, higher thermal gradient in the past,
or another unknown thermal event [22,44,49,131]. The Eocene magmatic sills are, however, not the
cause of the observed shallow opal A/CT zone because the extra heat provided by the intrusions did
not affect the diagenesis as shallow as the Miocene/E Pliocene formations.



Geosciences 2019, 9, 477 20 of 28

5.4. Smectite to Illite

The conversion of smectite to illite is one of many different clay diagenetic processes occurring
in the subsurface. Illite has a fibrous texture and small amounts of this clay may dominate the pore
space and largely reduce permeability [91]. The smectite to illite transition is of particular interest for
the oil and gas industry as it may coincide with the onset of oil generation [90]. For the Vøring Basin,
Peltonen et al. [24] found that major smectite to illite conversion occurred at depths corresponding
to a temperature interval of 80–90 ◦C. For shales in the Gulf Coast (USA), the major rate of smectite
to illite conversion was found at temperatures of 90–120 ◦C [134]. Other studies conclude that the
illitization process starts at 50 ◦C and ceases around 100 ◦C [135]. These diverse temperature ranges
for the smectite to illite conversion is also reflected in the modeling results in this study, when different
published kinetic parameters are used (Figure 7). This emphasizes the complexity of the smectite to
illite conversion, and possibly clay diagenesis in general. An area influenced by magmatic activity in
western Pannonian Basin (Hungary), show a divergent effect of magmatic heating on clay minerals and
the smectite to illite transformation [103]. Such results emphasize that, although thermal requirements
are met for diagenetic processes to take place, other factors must also be fulfilled for chemical reactions
to occur (cf., [136]). For the smectite to illite diagenetic functionality described here, caution must be
exercised in the interpretation of the results. This means that the described method can be used to locate
areas that fulfill the required kinetics for alterations to occur. This is a good first approximation in pin
pointing areas prone to have undergone diagenetic changes in the basin. However, subsurface chemical
knowledge is needed in order to examine if other necessary criteria are met for diagenetic alterations.

5.5. Influence of Sills and Diagenesis on Stress Accumulations

When sills have solidified and are subject to compressive and tensile stresses, this study shows that
the sills and the diagenetically altered areas accumulate stress (Figures 10–14). When stresses exceed
the shear and/or tensile strengths of the rock, the rocks will fail and fault movement will be initiated or
fractures will develop, respectively. This occurs because stresses tend to build up in the stiffer layers
as opposed to softer rocks (e.g., [111,116,117]), which will be decisive for where fractures develop
and faults could be reactivated. From the models (Figures 10–14) it can be deduced that the higher
the contrast in rock stiffness, the higher the stress concentration in the stiff layers. For diagenetically
modified areas, with higher increase in rock stiffness than studied here (doubled the stiffness of the
host rock), the potential stress accumulation in the area modified by diagenesis will be higher, and the
likelihood of fault initiation and fracture opening is increased. On the other hand, in an opposite
situation, the potential stress concentration will be lower and so will the likelihood of fault movement
and fracture opening.

It has been proposed that diagenetic processes may affect the fluid flow properties in the subsurface
(e.g., [14,47]), a statement which is confirmed by the results in this study. This is the case, not just due to
how diagenesis modifies rocks porosity and permeability, but also to how these diagenetic alterations
change the rock’s physical properties. An active fault may increase the temporary permeability
many times, and faults and fractures may dominate the fluid transport in the rock masses if they
are interconnected [111]. The results in this study show that sills or diagenetically altered areas
(Figures 11–14) could ultimately lead to opening of fractures or initiate fault movements if the tensile
or shear stresses of the rocks are exceeded. For a petroleum system, such an outcome can be crucial,
as opening of fractures and fault movement increase the permeability and supports fluid flow, possibly
to new locations. Thus, we conclude that sills and their related diagenetically modified areas may
influence the subsurface fluid migration pathways through time and space and increase the permeability,
as opening of fractures and reactivation of faults may act as fluid conduits.
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5.6. Limitations of the Calculations

All basins have their particular thermal and structural histories concerning e.g., sediment source,
lithology, fluid circulation, pore fluid chemistry, and structural development. These variations all play
a part in possible chemical alterations in the subsurface and lead to unique diagenetic development.
Therefore, information regarding these elements must be included for more detailed local studies.

In numerical modeling there is a direct link between the quality of the input data and the quality
of the output from the models. When studying a particular area, caution must be taken regarding
various parameters. For instance, we only studied conductive heat transfer in the subsurface and heat
convection by fluids is not accounted for. Convection by fluids could influence the resulting thermal
and diagenetic calculations to various degrees (cf., [137–141]). The Vøring area shows proof of fluid
convection (e.g., [142]), our results therefore show maximum porosity loss, at least for some areas.
However, for basins that show little to no signs of convecting fluids, the presented estimations are
adequate. We argue that the method presented here is a good approach to reveal areas needing further
investigation of possible diagenetic alterations and thus possible alterations of reservoir properties.

6. Concluding Remarks

This study quantified the porosity loss due to the transition of opal A to opal CT to quartz, smectite
to illite and quartz diagenesis and how magmatic intrusions may affect the diagenetic process. As the
diagenetic alterations change the physical properties of the rock, it was shown how these alterations
and the sills themselves influence location of stress accumulations in a basin and thus may contribute
to changes in fracture and fault permeability. All these factors have implications for the petroleum
system and the results are summarized as follows:

• Conductive thermal effects of sills significantly influence the diagenetic processes in sedimentary
basins.

• The effect of magmatic intrusions on the diagenetic processes depends on the depth at which
the magmatic sills intrude. Maximum diagenetic changes occur at different temperatures for the
different processes. For sills to influence the transition of opal A to opal CT they must intrude at
depths >1500 m.

• Sill thickness influences the size of the diagenetically altered area, particularly where clusters of
sills are closely spaced.

• Sills and diagenetically modified areas influence location of stress accumulations and may
contribute to initiation of fault movement and opening of fractures. As fractures and faults can
act as conduits for fluid flow, sills and areas modified by diagenesis may therefore contribute to
increased permeability.

• A thorough case study is required to determine the sill’s specific effect on diagenetic processes and
stress accumulations in the Vøring Basin and other volcanic basins. This is now made possible
with the work done in this study.
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