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Abstract

We are pleased to dedicate this survey on kernelization of the Vertex Cover problem,
to Professor Juraj Hromkovič on the occasion of his 60th birthday. The Vertex Cover
problem is often referred to as the Drosophila of parameterized complexity. It enjoys a long
history. New and worthy perspectives will always be demonstrated first with concrete results
here. This survey discusses several research directions in Vertex Cover kernelization.
The Barrier Degree of Vertex Cover is discussed. We have reduction rules that kernelize
vertices of small degree, including in this paper new results that reduce graphs almost to
minimum degree five. Can this process go on forever? What is the minimum vertex-degree
barrier for polynomial-time kernelization? Assuming the Exponential-Time Hypothesis, there
is a minimum degree barrier. The idea of automated kernelization is discussed. We here
report the first experimental results of an AI-guided branching algorithm for Vertex Cover
whose logic seems amenable for application in finding reduction rules to kernelize small-degree
vertices. The survey highlights a central open problem in parameterized complexity. Happy
Birthday, Juraj!

1 Introduction and Preliminaries
A vertex cover of a graph is a subset of its vertices containing at least one endpoint of each of
its edges. The Vertex Cover problem asks, given a graph G and an integer k, whether G
contains a vertex cover of size at most k.

The study of the Vertex Cover problem lies at the roots of the theory of NP-completeness:
It is one of Karp’s 21 NP-complete problems [48] and plays a central role in the monograph
of Garey and Johnson [36]. However, interest in the Vertex Cover problem reaches far
beyond pure theory. One reason is that it naturally models conflict resolution,1 a problem
occurring in numerous scientific disciplines, with an international workshop devoted to it [2].
Other applications include classification methods (see, e.g., [37]), computational biology (e.g.,
[14]), and various applications follow from the duality of Vertex Cover with the Clique
∗Michael R. Fellows, Lars Jaffke, Alíz Izabella Király and Frances A. Rosamond acknowledge support from the

Bergen Research Foundation (BFS).
1In the textbook [17], the problem was entertainingly introduced as ‘Bar Fight Prevention’.
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problem (see, e.g., [1]). The latter finds numerous applications in fields such as computational
biology and bioinformatics [10, 49, 50, 67, 74], computational chemistry [23, 54, 72], and electrical
engineering [16,41].

In parameterized/multivariate algorithmics [17,21,63], the objects of study are computational
problems whose instances are additionally equipped with a integer k, the parameter, typically
expressing some structural measure of the instance of the problem. The goal is to design
algorithms for hard problems whose runtime confines the combinatorial explosion to the parameter
k rather than the size of the input. A parameterized problem is called fixed-parameter tractable
if it can be solved in time f(k) · nO(1) where f is some computable function, k the parameter
and n the input size. The second central notion in the field of parameterized algorithms is
that of a kernelization [20, 22, 28], a polynomial-time algorithm (usually described as a set of
reduction rules) that takes as input an instance (I, k) of a parameterized problem and outputs
an equivalent instance (I ′, k′), where |I ′|+ k′ ≤ g(k) for some computable function g.2

Kernelization (for the first time!) provided a theory of preprocessing with mathematically
provable guarantees. On the other end, kernelization has immediate practical implications, as
demonstrated by Karsten Weihe’s problem [69,70] (see also [25,26]) concerning the train systems
in Europe. By the means of two simple reduction rules, graphs (instances) on 10, 000 vertices are
reduced to equivalent instances whose connected components are of size at most 50, making the
reduced instance solvable exactly even by brute force in reasonable time, after the preprocessing,
even though the general problem is NP-hard. Similar reduction rules have been successfully
applied in the context of cancer research [4] and spread of virus [24].

The notions of fixed-parameter tractability and kernelization are tightly linked. It has been
shown by Cai et al. that a parameterized problem is fixed-parameter tractable if and only if it has
a (polynomial-time) kernelization algorithm [11]. Kernelization for the Vertex Cover problem,
which is often referred to as the Drosophila of parameterized complexity [21,33,39,63], enjoys
a long history. In 1993, the first kernel on O(k2) vertices was obtained, and is accredited to
Buss [8], with more refined reduction rules given in [3]. Kernels with a linear number of vertices
were obtained in various ways. Using classic graph theoretic results, Chor et al. gave a kernel on
3k vertices [15] (see also [27]), a kernel on 2k vertices was obtained via an LP-relaxation by Chen
et al. [12] and another kernel on 2k vertices without the use of linear programming was obtained
by Dehne et al. [18]. The next series of improvements gave kernels on 2k − c vertices [65] and
the current champion which is due to Lampis has 2k − c log k vertices [53], where in the latter
two c is any fixed constant. Another kernel on 2k −O(log k) vertices was observed in [61]. An
experimental evaluation of several of the earlier kernels was carried out in [1].

There is no known subquadratic bound on the number of edges in any kernel for Vertex
Cover, and the question whether such a kernel exists was a long standing open question
in multivariate algorithmics. It was finally shown that up to logarithmic factors, Vertex
Cover kernels with a quadratic number of edges are likely to be optimal: Dell and van
Melkebeek, building on work of Bodlaender, Downey, Fellows and Hermelin [6, 7], also Fortnow
and Santhanam [35], showed that there is no kernel on O(n2−ε) bits, for any ε > 0, unless
NP ⊆ coNP/poly [19]. The latter would imply that the polynomial hierarchy collapses to its
third level [73] which is widely considered to be implausible by complexity theorists.3

In another line of research, following the parameter ecology program [31], the existence

2As the focus of this text is on the Vertex Cover problem, we refer to [38, 56] for general surveys on the
subject of kernelization and to [59] for a survey on the corresponding lower bound machinery.

3We also refer to [46, pages 19f] and [71, Appendix A] for brief accounts of the implausibility of NP ⊆ coNP/poly.
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of kernels for Vertex Cover w.r.t. parameters that take on smaller values than the vertex
cover number was studied. Such parameterizations are typically referred to as structural
parameterizations of Vertex Cover. The first such result is due to Jansen and Bodlaender
who gave a kernel on O(`3) vertices, where ` is the size of a feedback vertex set of the graph [47].
Further results include polynomial kernels where the parameter is the size of an odd cycle
traversal or a König deletion set [52], the size of vertex deletion sets to maximum degree at
most two [58], pseudoforest [34] and d-quasi forest [42], or small treedepth [9]. Using the above
mentioned lower bound machinery, it was shown that there is no kernel polynomial in the size of
a vertex deletion set to chordal or perfect graphs unless NP ⊆ coNP/poly [5, 31].

As Vertex Cover is the primary intellectual “lab animal” in parameterized complexity, new
and worthy perspectives will always be demonstrated first with concrete results here. We discuss
several research directions in (Vertex Cover) kernelization. The first one is based on the
observation that several reduction rules are known to kernelize vertices of small degree [8,32,66];
a natural question is whether this process can go on ‘forever’, i.e., whether we can find, for any
fixed constant d ∈ N, a set of reduction rules that kernelize in polynomial time to a reduced
graph (the kernel) of minimum degree d. On the negative side, we observe that unless the
Exponential-Time Hypothesis [44, 45] fails, this is not the case even if the exponent in the
polynomial-time kernelization is some arbitrary function of d. On the positive side, we give a
clear account of reduction rules for Vertex Cover that were first observed by Fellows and
Stege [32] that kernelize instances to minimum degree ‘almost five’ (see Theorem 5 for the exact
statement) and discuss how this question is closely related to finding faster fpt-algorithms for
Vertex Cover, a question that lies at the very heart of parameterized complexity research.

In the light of the ongoing machine-learning and artificial intelligence revolution, one might
wonder whether AI could assist in the search for new reduction rules of parameterized problems
as well. While this question seems far out, we report first experimental results of an AI-guided
branching algorithm for Vertex Cover whose logic seems amenable for application in finding
new reduction rules to kernelize to increasing minimum degree.

The rest of this paper is organized as follows. In the remainder of this section, we give
preliminary definitions and introduce the necessary background. In Section 2 we review some
classic Vertex Cover kernels. Section 3 is devoted to the topic of kernelizing small-degree
vertices. We there give a description of reduction rules observed by Fellows and Stege [32] (see
also [66]). In Section Section 4 we report results on an AI-guided branching algorithm whose
ideas might lay the foundations of automatically generated reduction rules for Vertex Cover.
We conclude with an open problem in Section 5.

Technical Preliminaries and Notation. For two integers a and b with a < b, we let
[a..b] := {a, a+ 1, . . . , b} and for a positive integer a, we let [a] := [1..a].

Throughout the paper, each graph is finite, undirected and simple. Let G be a graph.
We denote the vertex set of G by V (G) and the edge set of G by E(G) ⊆

(V
2
)
. For a vertex

v ∈ V (G), we denote by N(v) the (open) neighborhood of G, i.e., N(v) := {w | {v, w} ∈ E(G)}.
The degree of v is the size of the neighborhood of v, i.e., deg(v) := |N(v)|. We define the
closed neighborhood of v as N [v] := N(v) ∪ {v}. For a set of vertices W ⊆ V (G), we let
N(W ) :=

⋃
w∈W N(w) and N [W ] := N(W ) ∪W . For a set of vertices {v1, . . . , vr}, we use the

shorthand N(v1, . . . , vr) := N({v1, . . . , vr}). A vertex set C ⊆ V (G) is called a clique, if for each
pair of distinct vertices c1, c2 ∈ C, {c1, c2} ∈ E(G). A vertex set I ⊆ V (G) is called independent,
if for each pair of distinct vertices v1, v2 ∈ I, {v1, v2} /∈ E(G). A graph G is called bipartite, if
there is a partition (X,Y ) of its vertex set such that X and Y are independent.
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For two graphs G and H, we denote by H ⊆ G that H is a subgraph of G, i.e. that
V (H) ⊆ V (G) and E(H) ⊆ E(G). For a vertex set X ⊆ V (G), we denote by G[X] the subgraph
of G induced by X, i.e., G[X] := (X,E(G) ∩

(X
2
)
). We let G−X := G[V (G) \X] and we use

the shorthand G− v for G− {v}. For two disjoint vertex subsets X,Y ⊆ V (G), we denote by
G[X,Y ] the bipartite subgraph of G induced by (X,Y ), that is G[X,Y ] := (X ∪ Y, {{x, y} ∈
E(G) | x ∈ X, y ∈ Y }).

A subgraph P ⊆ G is called a path if all its vertices have degree at most two in P and there
are precisely two distinct vertices in V (P ) that have degree one in P , called the endpoints of P .
For s, t ∈ V (G), a path is called (s, t)-path if it is a path with endpoints s and t.

We call two edges e, f ∈ E(G) adjacent if they share an endpoint, i.e., if there exist vertices
v, w, x ∈ V (G) such that e = {v, w} and f = {v, x}. A matching is a set of pairwise non-adjacent
edges. We say that a matching M saturates a set of vertices W ⊆ V (G), if for all v ∈W , there
is a pair {v, w} ∈M .

Given a set of vertices X ⊆ V (G), we call the operation of adding to G a new vertex x with
neighborhood N(X) and deleting all vertices in X the contraction of X.

Exponential-Time Hypothesis (ETH). In 2001, Impagliazzo and Paturi made a conjecture
about the complexity of 3-Sat, the problem of determining whether a given Boolean formula
in conjunctive normal form with clauses of size at most 3 has a satisfying assignment. This
conjecture is known as the Exponential-Time Hypothesis (ETH) and has lead to a plethora of
conditional lower bounds, see, e.g., the survey [55] or [17, Chapter 14]. Formally, ETH can be
stated as:4

Conjecture 1 (ETH [44, 45]). There is an ε > 0 such that 3-Sat on n variables cannot be
solved in time O∗(2εn).

2 Standard Methods
In this section, we review some classic results in Vertex Cover kernelization. In particular,
we discuss the Buss kernel [8] in Subsection 2.1. Subsection 2.2 is devoted to the kernel based
on the notion of a crown decomposition [15,27] (see Definition 1). A linear-programming-based
kernel [12] is discussed in Subsection 2.3.

We would like to remark that the technical parts of the expositions given in the remainder
of this section are based on [17, Sections 2.2.1, 2.3 and 2.5] and we refer to this text for several
details.

2.1 Buss Kernelization

The first kernel for Vertex Cover appeared several years before the notion of kernelization
was formally introduced and is attributed to Buss [8]. It relies on two observations. The first
one is that by definition, there is no need to include an isolated vertex in a vertex cover, as it
does not have any incident edges that need to be covered.

Reduction R.1. If G has an isolated vertex v, then reduce (G, k) to (G− v, k).

The second observation is that, if G has a vertex v of degree more than k, then we have no
choice but to include v in any size-k vertex cover of G: If we did not include v, we would have

4The O∗-notation suppresses polynomial factors in n.
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to include all of its at least k + 1 neighbors, exceeding the budget of k vertices we are given.
Hence, G has a vertex cover of size k if and only if G− v has a vertex cover of size k − 1, so we
have observed that the following reduction rule is safe, meaning that the original instance is a
Yes-instance if and only if the reduced instance is a Yes-instance.

Reduction R.2. If G has a vertex v with deg(v) > k, then reduce (G, k) to (G− v, k − 1).

Now, after exhaustively applying Reduction R.2, G has maximum degree at most k, so if G
contains more than k2 edges, then we are dealing with a No-instance: It is not possible to
cover more than k2 edges with k vertices of degree at most k. On the other hand, if (G, k) is
a Yes-instance, then G has a vertex cover X of size at most k. After exhaustively applying
Reduction R.1, G does not contain any isolated vertices so we can assume that every vertex of
V (G) \X has a neighbor in X. Since the maximum degree of G is at most k, we can conclude
that |V (G) \X| ≤ k2, which implies that |V (G)| ≤ k2 + k. Hence, if G has more than k2 + k
vertices, we can again conclude that we are dealing with a No-instance. Since Reductions R.1
and R.2 clearly run in polynomial time, we have the following theorem.

Theorem 1 (Buss and Goldsmith [8]). Vertex Cover admits a kernel with at most k2+k
vertices and k2 edges.

2.2 Crown Reduction

The key insight above was that any vertex of degree at least k + 1 has to be contained in any
size-k vertex cover of a graph. The kernel we present in this section follows a similar motivation.
The goal is to identify a set of vertices that we can always assume to be contained in a size-k
vertex cover of a graph. In other words, we want to find a set of vertices S, such that if G
contains a vertex cover of size k then G contains a vertex cover of size k that contains S. The
process of identifying such a set S is based on a structural decomposition of the input graph,
called the crown decomposition. Formally, a crown decomposition is defined as follows and we
illustrate it in Figure 1.

Definition 1 (Crown Decomposition). Let G be a graph. A crown decomposition of G is a
partition (C,H,B) of V (G), where C is called the crown, H the head and B the body, such that
the following hold.

(i) C is a non-empty independent set in G.

(ii) There are no edges between vertices in C and vertices in B.

(iii) G[C,H] contains a matching that saturates H.

The motivation for using the above definition in Vertex Cover kernelization is as follows.
Suppose we are given a crown decomposition (C,H,B) of G and consider the bipartite graph
G[C,H]. Clearly, any vertex cover of G has to cover the edges in G[C ∪H]. However, by (iii) we
know that there is a matching in G[C,H] saturating H, hence any vertex cover of G[H,C] has
size at least |H|. On the other hand, H is a vertex cover of G[C,H] and since C is independent
by (i), of G[C ∪H]. This allows us to conclude that G has a vertex cover of size k if and only if
G− (C ∪H) has a vertex cover of size k − |H|. Hence, the following reduction rule is safe.

Reduction R.3. If G has a crown decomposition (C,H,B), then reduce (G, k) to (G− (C ∪
H), k − |H|).
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C

H

B

Figure 1. Illustration of a crown decomposition (Definition 1). The bold edges in G[C, H] show a matching
saturating H.

However, two questions remain. Namely whether we can find a crown decomposition of a graph
in polynomial time and how to obtain the linear bound on the number of vertices in the resulting
kernel. Both questions are answered by the following lemma whose proof is based on classic
results in graph theory by König [51] and Hall [40], and polynomial-time algorithms for bipartite
matching such as the classic algorithm due to Hopcroft and Karp [43].5

Lemma 1 (Lemma 2.14 in [17] based on [15]). Let G be a graph on at least 3k+1 vertices.
There is a polynomial-time algorithm that either

1) finds a matching of size at least k + 1 in G; or

2) finds a crown decomposition of G.

Now, in Case 1) we can immediately conclude that (G, k) is a No-instance and in Case 2)
we can apply Reduction R.3. By an exhaustive application of Lemma 1 in combination with
Reduction R.3 (and Reduction R.1 to get rid of isolated vertices), we have the following theorem.

Theorem 2 (Chor et al. [15]). Vertex Cover admits a kernel with at most 3k vertices.

We would like to remark that recently, a kernel on 2k vertices that only uses crown decomposition
was obtained [57].

2.3 LP-Based Kernel

The Vertex Cover problem is one of many NP-hard problems that can be expressed as an
integer linear program [64], a fact which is commonly exploited in the field of approximation
algorithms [68]. In this section, we show how to use linear programming to obtain a kernel for
Vertex Cover on at most 2k vertices. We first recall how to formulate Vertex Cover as an
integer linear program.

For each vertex v ∈ V (G), we introduce a variable xv ∈ {0, 1} with the interpretation that
xv = 1 if and only if the vertex v is included in the vertex cover witnessed by a solution to
the (integer) linear program. We can then formulate the constraints in a natural way, directly
applying the definition of vertex covers: For each edge uv ∈ E(G), the requirement that at least
one of u and v has to be contained in the solution translates to the constraint xu +xv ≥ 1. Since
we are looking for a vertex cover of minimum size, the objective function minimizes the sum

5For a more fine-grained analysis one could apply the faster algorithm [60].



What is known about Vertex Cover Kernelization? 7

over all xv’s.

min
∑

v∈V (G)
xv

subject to xu + xv ≥ 1 ∀uv ∈ E(G) (1)
xv ∈ {0, 1} ∀v ∈ V (G) (2)

To make the program feasible to compute, we relax the integrality constraints (2) to xv ∈ R,
xv ≥ 0. (Note that we can drop the constraints xv ≤ 1 since the objective function is a
minimization.) The resulting linear program is solvable in polynomial time, but may not always
return a feasible solution for the original Vertex Cover instance. However, we are chasing a
different goal here, a kernelization algorithm.

Given an optimal solution (xv)v∈V (G) of the (relaxed) linear program, we define the sets
V0 := {v ∈ V (G) | xv < 1

2}, V1 := {v ∈ V (G) | xv > 1
2}, and V 1

2
:= {v ∈ V (G) | xv = 1

2}. The
key ingredient is the following theorem due to Nemhauser and Trotter [62].

Theorem 3 (Nemhauser and Trotter [62]). There is a minimum vertex cover X of G such
that V1 ⊆ X ⊆ V1 ∪ V 1

2
.

We derive a reduction rule from Theorem 3. First, we note that in any Yes-instance of Vertex
Cover,

∑
v∈V (G) xv ≤ k. Furthermore, let X be a vertex cover of G of size k with V1 ⊆ X

and X ∩ V0 = ∅ (whose existence is guaranteed by Theorem 3), then X \ V1 is a vertex cover
of G− (V0 ∪ V1) of size k − |V1|. Conversely, if G− (V0 ∪ V1) has a vertex cover X ′ of size k′,
we observe that by the constraints (1), for any edge vw ∈ E(G) with v ∈ V0, we have that
w ∈ V1. Hence, X ′∪V1 is a vertex cover of G of size k′+ |V1|. We have argued that the following
reduction rule is safe.

Reduction R.4. Let (xv)v∈V (G), V0, V 1
2
and V1 be as above. If

∑
v∈V (G) xv > k, then conclude

that we are dealing with a No-instance. Otherwise, reduce (G, k) to (G− V0 ∪ V1, k − |V1|).

The number of vertices in the reduced instance after applying Reduction R.4 is

|V (G) \ (V0 ∪ V1)| =
∣∣∣V 1

2

∣∣∣ =
∑

v∈V 1
2

2xv ≤ 2 ·
∑

v∈V (G)
xv ≤ 2k,

so we have obtained the following kernel for Vertex Cover.6

Theorem 4 (Chen et al. [12]). Vertex Cover admits a kernel with at most 2k vertices.

3 Towards the Barrier – What is the Maximum Minimum Ver-
tex Degree of the Kernel that Can be Achieved in Polynomial
Time?

In the previous section, we have seen that by Reduction R.2 we can kernelize all vertices whose
degree is larger than the target value k of the given vertex cover instance. Hence, after applying

6We would like to remark that while Linear Programming can be solved in polynomial time (and hence our
reduction runs in polynomial time), the corresponding algorithms are often slow in practice. However, for the case
of Vertex Cover there is good news: One can show that a solution of the above linear program can be found
via a reduction to Bipartite Matching (see, e.g., [17, Section 2.5]) which has fast practical algorithms.
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Chen et al. [13] d = 5 d = 6 d = 7 d = 10 d = 25 d = 100
1.2738k 1.3247k 1.2852k 1.2555k 1.1975k 1.1005k 1.0346k

Table 1. (Dependence on k of the) runtime of the resulting simple branching FPT-algorithm when using a
kernelization algorithm to minimum degree d, for several values of d, versus the current fastest known FPT-algorithm
for Vertex Cover [13].

this rule exhaustively there will be no vertex of degree larger than k in the kernelized instance.
But what about vertices of small degree? Vertices of degree zero, i.e., isolated vertices, can be
removed from a Vertex Cover instance according to Reduction R.1. Furthermore, we will see
below that there are fairly simple reduction rules that kernelize vertices of degree one and two
(see Reductions R.5 and R.7). A natural question arises: Can this process go on ‘forever’, i.e.,
can we, for any fixed constant d ∈ N, give a reduction rule that kernelizes all vertices of degree
d from a given Vertex Cover instance?

The answer to this question is probably not — even if the degree of the polynomial in the
runtime of the kernelization algorithm can depend on d: It is well-known (see, e.g., [17, 21,29])
that unless ETH fails, there is some barrier constant ζV C > 0 such that the fastest possible
algorithm for Vertex Cover runs in time (1 + ζV C)k · nO(1). If we could kernelize Vertex
Cover in polynomial time to arbitrarily large minimum degree, one could devise a straightforward
branching algorithm that runs in time (1 + ζV C − ε)k · nO(1), for some 0 < ε < ζV C , where ε can
be arbitrarily close to the value of ζV C . We coin the corresponding integer δV C ∈ N the barrier
degree of Vertex Cover kernelization and now prove formally its existence (assuming ETH).

Proposition 1. Unless ETH fails, there is some constant δV C ∈ N, such that Vertex Cover
cannot be kernelized to instances of minimum degree δV C .

Proof. Using standard arguments about branching algorithms (see, e.g., [17, Chapter 3]) one
can show that there is an algorithm solving vertex cover in time λk · nO(1), where λ satisfies

λ ≤ λd(λ− 1), (3)

if the input graph always has a vertex of degree at least d to branch on. Now suppose that
the statement of the proposition is false, then we can guarantee the existence of such a vertex
for constant but arbitrarily large d (with only polynomial time overhead at each stage of the
branching). Now let ε > 0 with ε < ζV C . (Note that this implies that ε < 1 as ζV C < 0.2738 [13].)
We substitute λ with (1 + ε) in (3) and obtain:

1 + ε ≤ (1 + ε)dε ⇐⇒ (1 + ε)d ≥ 1 + ε

ε
⇐⇒ d log(1 + ε) ≥ log

(1 + ε

ε

)

⇐⇒ d ≥
log
(

1+ε
ε

)
log(1 + ε) = log(1 + ε)− log(ε)

log(1 + ε) = 1− log(ε)
log(1 + ε) .

This shows that for any such ε, there is a constant dε ∈ N such that, if we could kernelize
Vertex Cover to minimum degree dε, then we could solve it in (1 + ε)k · nO(1) time, where
ε < ζV C by our choice. This contradicts ETH by, e.g., [29, Theorem 1]. �

The proof of Proposition 1 also provides some very natural motivation for the question of
kernelizing Vertex Cover to larger and larger minimum degree; such kernels immediately
provide new FPT-algorithms for the problem. In particular, kernelizing to minimum degree seven
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u v

N(v)

N [u]

(a) The situation of Reduction R.6.

N(a)

N(b)

v

a

b

N(a)

N(b)

zN [v]

G G′

(b) Illustration of Reduction R.7. Note that by Reduction R.6, we
can assume that a and b are not adjacent.

Figure 2. Illustrations of Reductions R.6 and R.7, respectively.

would already improve upon the current best known algorithm for Vertex Cover, yielding
first progress in a very attractive research question in over a decade! We illustrate the runtime
of such algorithms for several concrete values of d in Table 1.

In the remainder of this section, we present a set of reduction rules that were first observed
by Fellows and Stege [32] to kernelize a vertex cover instance to minimum degree ‘almost five’,
in the following sense: We show that a vertex can be kernelized if its degree is at most three or
its degree is four and there are more than two edges between the vertices in its neighborhood.

Before we give the reduction rules to kernelize vertices of degree one and two, we would like
to remark that later in the text, we introduce two auxiliary reduction rules, mostly to deal with
structures arising in the kernelization of vertices of degree three and four which as a byproduct
also kernelize degree one and two vertices. For explanatory purposes, however, we describe the
reduction rules for vertices of degree one and two separately first.

Reduction R.5. If G has a pendant edge {u, v} with deg(u) = 1, then reduce (G, k) to (G−
{u, v}, k − 1).

Proposition 2. Reduction R.5 is safe, i.e., if G has a pendant edge {u, v} with deg(u) = 1,
then G has a vertex cover of size k if and only if G− {u, v} has a vertex cover of size k − 1.

Proof. (⇒) Suppose G has a vertex cover X∗ of size k. Since {u, v} is an edge of G, at least
one of u and v is contained in X∗. If v /∈ X∗, then we let X := X∗ \ {u} ∪ {v}. Note that X is
a vertex cover since v is the only neighbor of u. If v ∈ X∗, we simply let X := X∗. Since v ∈ X,
X \ {v} is a vertex cover of G− {u, v} of size k − 1.

(⇐) Let X ′ be a vertex cover of G − {u, v} of size k − 1. We observe that any edge in
E(G) \ E(G − {u, v}) is incident with v and conclude that X ′ ∪ {v} is a vertex cover of G of
size k. �

Before we show how to kernelize degree two vertices, we give the first auxiliary reduction rule.

Reduction R.6. If G has two adjacent vertices u and v such that N(v) ⊆ N [u], then reduce
(G, k) to (G− u, k − 1).

For an illustration of the situation of Reduction R.6, see Figure 2a.

Proposition 3. Reduction R.6 is safe, i.e., if G has two adjacent vertices u and v, and
N(v) ⊆ N [u], then G contains a vertex cover of size k if and only if G− u has a vertex cover of
size k − 1.



10 M. R. Fellows et al.

Proof. (⇒) Suppose G has a vertex cover X∗ of size k. If u /∈ X∗ then N(u) must be in X∗, so
by assumption, it contains N [v] \ {u}. But then, X := X∗ \ {v} ∪ {u} is also a vertex cover of G
of size k, so we can assume that u ∈ X. Then, X \ {u} is a vertex cover of G− u of size k − 1.

(⇐) is immediate since for any vertex cover X ′ of G− u, X ′ ∪ {u} is a vertex cover of G. �

The next reduction rule takes care of vertices of degree two and is illustrated in Figure 2b.

Reduction R.7. If Reduction R.6 cannot be applied and G has a vertex v with deg(v) = 2,
then reduce (G, k) to (G′, k− 1), where G′ is the graph obtained from G by contracting N [v] to a
single vertex.

Proposition 4. Reduction R.7 is safe, i.e., under its stated conditions, G has a vertex cover of
size k if and only if G′ has a vertex cover of size k − 1.

Proof. Throughout the proof, we denote the neighborhood of v in G by N(v) = {a, b} and the
vertex in G′ that was created due to the contraction of N [v] by zN [v]. We can assume that
{a, b} /∈ E(G): If the edge {a, b} was present, then N(v) ⊆ N [a] (and N(v) ⊆ N [b]), so we could
have applied Reduction R.6.

(⇒) We observe that each edge in E(G′) \E(G) has an endpoint in {zN [v]} ∪N(a, b). Let X
be a vertex cover of G of size k. If X ∩N(v) = ∅, then {v} ∪N(a, b) ⊆ X and we can conclude
that X \ {v} is a vertex cover of G′. If N(v) ⊆ X, then X ′ := X \N(v) ∪ {zN [v]} is a vertex
cover of G′. (Note that in this case, X ′ has size at most k − 1 as well.) If X contains precisely
one vertex from N(v), assume w.l.o.g. that X ∩N(v) = {a}, then v ∈ X (otherwise the edge
{v, b} is not covered), so X \ {v, a} ∪ {zN [v]} is a vertex cover of G′ of size k − 1.

(⇐) Let X ′ be a vertex cover of G′ of size k − 1. We distinguish the cases when zN [v] ∈ X ′
and when zN [v] /∈ X ′. In the former case, X ′ \ {zN [v]} ∪ {a, b} is a vertex cover of G, since each
edge in E(G) \ E(G′) is incident with a vertex in {a, b}. In the latter case, N(a, b) ⊆ X ′ since
zN [v] /∈ X ′, and we have that X ′ ∪ {v} is a vertex cover of G: Since {a, b} /∈ E(G), each edge in
E(G) \ E(G′) is incident with a vertex in {v} ∪N(a, b). In both cases, the size of the resulting
vertex cover is k. �

Before we proceed with kernelizing vertices of degree larger than two, we require one more
auxiliary reduction rule. This reduction rule will be crucially used to argue that we can exclude
certain structures appearing in the subgraphs induced by the neighborhoods of small-degree
vertices. It captures [32, Reductions R.4 and R.5] and is illustrated in Figure 3. Note that
due to its complexity, it will only be executed for vertices whose degree is bounded by a fixed
constant α (independent of k). In particular, for our purposes it will be sufficient to make use of
the following reduction for α ≤ 4.

Reduction R.8. Suppose G has a vertex v such that the following hold. There is a partition
(C1, C2) of NG(v) where |C1| ≥ |C2| and the following hold.

(i) Ci is a clique for all i ∈ [2].

(ii) Let M be the set of non-edges of G[C1, C2]. For each c1 ∈ C1, there is precisely one f ∈M
such that c1 ∈ f .

Then, reduce (G, k) to (G′, k − |C2|), where G′ is obtained from G by

(1.) deleting v and C2, and
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Figure 3. Illustration of Reduction R.8. Note that |C1| > |C2|, and the bold dotted lines between vertices of C1
and C2 are the set of non-edges M in G[C1, C2] satisfying condition (ii): For every vertex x ∈ C1 there is precisely
one element in M containing x.

(2.) for all {c1, c2} ∈M with c1 ∈ C1 and c2 ∈ C2, adding all edges between c1 and NG(c2).

Proposition 5. Reduction R.8 is safe, i.e. under its stated conditions, G has a vertex cover of
size k if and only if G′ has a vertex cover of size k − |C2|.

Proof. Since by assumption (i) of Reduction R.8, C1 and C2 are cliques in G, and since C1
remains a clique in G′, we make the following observation.

Observation 1. Every vertex cover of G contains at least |Ci| − 1 vertices from Ci for all
i ∈ [2], and every vertex cover of G′ contains at least |C1| − 1 vertices from C1.

We now prove the proposition by a case analysis on the structure of the intersection of vertex
covers of G and G′ with NG(v) = C1 ∪C2 and C1, respectively. Observation 1 will be used later
to argue that we covered all possible cases.

Claim 1. G contains a vertex cover X of size k such that NG(v) ⊆ X if and only if G′ contains
a vertex cover X ′ of size k − |C2| such that C1 ⊆ X ′.

Proof. (⇒) Let X be a vertex cover of G of size k such that NG(v) ⊆ X. (Note that we can
assume that v /∈ X.) We have that X ′ := X \ C2 is a vertex cover of G∗ := G− ({v} ∪ C2). By
construction, any edge in E(G′) \ E(G∗) is incident with a vertex in C1 ⊆ X ′, so X ′ is a vertex
cover of G′. Clearly, |X ′| = k − |C2|.

(⇐) Let X ′ be a vertex cover of G′ of size k − |C2| such that C1 ⊆ X ′. Then, X := X ′ ∪ C2
is a vertex cover of G, since every edge in E(G) \E(G′) is either incident with a vertex in C2 or
with v. For the latter case, we observe that NG(v) = (C1 ∪ C2) ⊆ X. Clearly, |X| = k. y

We observe that Claim 1 also covers the case when a size-k vertex cover of G misses precisely
one vertex from NG(v): Let X∗ be such a vertex cover and let c ∈ NG(v) \X. Since X∗ has
to contain an endpoint of the edge {v, c} and c /∈ X∗, we can conclude that v ∈ X∗. Now, we
simply let X := X∗ \ {v} ∪ {c} and observe that X is a vertex cover of G of size k such that
NG(v) ⊆ X.

Claim 2. G contains a vertex cover X of size k with |Ci \X| = 1 for all i ∈ [2] if and only if
G′ contains a vertex cover X ′ of size k − |C2| with |C1 \X ′| = 1.
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Proof. (⇒) Let X be a size-k vertex cover of G such that for all i ∈ [2], |Ci \X| = 1 and let
ci ∈ Ci \X be the unique vertex in Ci that is not contained in X. First, since ci /∈ X, we have
that v ∈ X, otherwise the edge {v, ci} is not covered by X. Furthermore, we can conclude that
{c1, c2} /∈ E(G), since if {c1, c2} was an edge of G, then this edge was not covered by X. Clearly,
since {c1, c2} /∈ E(G), we have that {c1, c2} /∈ E(G[C1, C2]), so {c1, c2} ∈M .

We have argued that {c1, c2} ∈ M , and by condition (ii) of Reduction R.8 we know that
{c1, c2} is the only element in M that contains c1. We now show that

X ′ := X ∩ V (G′) = X \ ({v} ∪ C2)

is a vertex cover of G′. Clearly, X ′ is a vertex cover of G∗ := G − ({v} ∪ C2). Now, consider
an edge e′ ∈ E(G′) \ E(G∗). By construction, one of the endpoints of e′, say x, is from C1. If
x 6= c1, then the edge e′ is covered by X ′, since C1 \ {c1} ⊆ X ′. Now suppose that x = c1 and
denote the other endpoint of e′ by y. Since e′ ∈ E(G′) \ E(G∗), following the construction of
Reduction R.8, we can conclude that there is some {c1, z} ∈M such that y ∈ NG(z). We can
infer that z = c2, since (ii) asserts that there is only one element in M that contains c1 and we
know by the above argument that {c1, c2} ∈ M . As X is a vertex cover of G and c2 /∈ X by
assumption, we know that y ∈ X, and so:

y ∈ NG(c2) ∩ V (G′) ⊆ X ∩ V (G′) = X ′,

hence the edge {c1, y} is covered by X ′. We can conclude that X ′ is a vertex cover of G′. Since
we obtained X ′ from X by removing from it the vertex v and |C2| − 1 vertices from C2, we have
that |X ′| = k − |C2|. Clearly, |C1 \X ′| = 1.

(⇐) Let X ′ be a vertex cover of G′ of size k − |C2| such that |C1 \X ′| = 1 and denote by
c1 ∈ C1 \X ′ the unique vertex of C1 that is not contained in X ′. Let furthermore c2 ∈ C2 be
such that {c1, c2} ∈ M . By condition (ii), such a vertex c2 exists and it is unique. We argue
that X := X ′ ∪ {v} ∪ (C2 \ {c2}) is a vertex cover of G. Suppose for a contradiction that there
is an edge e ∈ E(G) that is not covered by X. Since X ′ is a vertex cover of G′ and X ⊇ X ′,
we have that e ∈ E(G) \ E(G′). By construction, each such edge e has (at least) one endpoint
in {v} ∪ C2. Since {v} ∪ (C2 \ {c2}) ⊆ (NG[v] \ {c1, c2}) ⊆ X, we can conclude that c2 is an
endpoint of e, and the endpoint of e other than c2, say y, is contained in NG(c2) \ (NG[v] \ {c1}).
Since {c1, c2} ∈ M , it is a non-edge, and so y ∈ NG(c2) \ NG[v]. From the construction of
Reduction R.8, we infer that y ∈ NG(c2) ∩ V (G′) ⊆ NG′(c1) ∩ V (G′).

To conclude, since X ∩ V (G′) = X ′ ∩ V (G′), we have that if y /∈ X, then y /∈ X ′. Since
y ∈ NG′(c1) and c1 /∈ X ′ by assumption, the edge {c1, y} is not covered by X ′, a contradiction
with the assumption that X ′ was a vertex cover of G′. It is clear that |X| = k and that for all
i ∈ [2], |Ci \X| = 1. y

We are now ready to finalize the proof of safeness of Reduction R.8. Suppose G has a vertex
cover X of size k. Then, by Observation 1, we are in one of the following cases: (I) NG(v) ⊆ X,
(II) |NG(v) \X| = 1, or (III) for all i ∈ [2], |Ci \X| = 1. In cases (I) and (II), we can conclude
that G′ has a vertex cover of size k − |C2| by Claim 1 (and the remark thereafter). In case (III),
G′ has a vertex cover of size k − |C2| by Claim 2.

For the other direction, suppose G′ has a vertex cover X ′ of size k − |C2|. Again by
Observation 1, we are in one of the following two cases: (IV) C1 ⊆ X ′, or (V) |C1 \X ′| = 1. In
case (IV), we can use Claim 1 to conclude that G has a vertex cover of size k and in case (V) we
can use Claim 2. This finishes the proof of Proposition 5. �
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Figure 4. Illustration of Reduction R.9.

Before we turn to kernelizing degree-three vertices, we observe that a combination of
Reductions R.1, R.6 and R.8 kernelizes vertices of degree one and two as well. Suppose v is a
vertex of degree one in G whose only neighbor is u. Then, N(v) = {u} ⊆ N [u], so following
Reduction R.6, we could have removed the vertex u and decreased the parameter value by one.
In G− u, the vertex v is an isolated vertex, so by Reduction R.1 it can be removed. These two
steps together have the same effect as an application of Reduction R.5, the rule for kernelizing
vertices of degree one.

Next, suppose that v is a vertex of degree two and let {a, b} := N(v). There are two cases we
have to consider. If {a, b} ∈ E(G), then N(v) ⊆ N [a] and we could have applied Reduction R.6.
In the resulting instance whose graph is G − a, the vertex v is of degree one so it would be
removed by a combination of Reductions R.1 and R.6, following the same argument as above.
If {a, b} /∈ E(G), then v trivially satisfies the conditions of Reduction R.8 by considering the
partition of {a, b} into parts {a} and {b}. Applying Reduction R.8, we can remove the vertex v.

Observation 2. After an exhaustive application of Reductions R.1, R.6 and R.8 (where for
Reduction R.8, α = 2), the resulting graph has minimum degree three.

We are now ready to kernelize degree-three vertices.

Reduction R.9. If neither Reduction R.6 nor Reduction R.8 can be applied and G contains a
vertex v of degree three (where N(v) = {a, b, c}), then reduce (G, k) to (G′, k) where G′ is the
graph on vertex set V (G) \ {v} and edge set (E(G) ∩

(V (G′)
2
)
) ∪ F , where

F := {{a, b}, {b, c}} ∪ {{a, x} | x ∈ NG(b)} ∪ {{b, y} | y ∈ NG(c)} (4)
∪ {{c, z} | z ∈ NG(a)}.

We illustrate the above reduction rule in Figure 4.

Proposition 6. Reduction R.9 is safe, i.e., if its conditions are satisfied, then G contains a
vertex cover of size k if and only if G′ contains a vertex cover of size k.

Proof. We first show that we can assume that there are no edges between the vertices in N(v).

Claim. If neither Reduction R.6 nor Reduction R.8 can be applied, then N(v) = {a, b, c} is an
independent set in G.

Proof. If G[N(v)] contains at least two edges, then these two edges have a common endpoint,
say x ∈ N(v). But then, N(v) ⊆ N [x], so we could have applied Reduction R.6, a contradiction.
If G[N(v)] contains precisely one edge, assume w.l.o.g. that {a, b} ∈ E(G), then we could
have applied Reduction R.8 with C1 = {a, b}, and C2 = {c}. Clearly, {a, b} and {c} are
cliques and M := {{a, c}, {b, c}}, the set of non-edges of G[C1, C2], satisfies the conditions of
Reduction R.8(ii). y
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Due to the previous claim, we will assume that N(v) = {a, b, c} is an independent set
throughout the following.

Claim 3. If G has a vertex cover of size k, then G′ has a vertex cover of size at most k.

Proof. We first observe that, for each edge e′ ∈ E(G′), either e′ ∈ E(G− v) or e′ ∈ F . Hence,
any vertex cover X∗ of G− v is a vertex cover of G′ if each edge in F has an endpoint in X∗,
since by definition, X∗ contains an endpoint of each edge in E(G− v).

Let X be a vertex cover of G of size k. If v /∈ X, then N(v) = {a, b, c} ⊆ X. By (4), each
edge in F has at least one endpoint in {a, b, c} and hence in X, so we can conclude that X is a
vertex cover of G′ of size k.

Suppose v ∈ X and note for the remainder of the proof that X \{v} is a vertex cover of G−v
of size k− 1. We argue that we can assume that at most one vertex from N(v) is contained in X:
For the case that N(v) ⊆ X, we can apply the same argument as above to conclude that X \ {v}
is a vertex cover of G′ of size k − 1. If X contains precisely two vertices from N(v) = {a, b, c},
assume w.l.o.g. that {a, b} ⊆ X, then X ′ := X \ {v} ∪ {c} is a vertex cover of G′ of size k, since
again, X ′ contains N(v).

We assume that X contains at most one vertex from N(v). If X contains no vertex of N(v),
then X must contain all of NG(a, b, c). Hence the only edges in F that are not covered by X –
see (4) – are incident with the vertex b. Together with the fact that X \ {v} is a vertex cover of
G− v, we can conclude that X \ {v} ∪ {b} is a vertex cover of G′.

From now on, we assume that precisely one vertex of N(v) is contained in the vertex cover X
of G. If a ∈ X, then b, c /∈ X and hence NG(b, c) ⊆ X. Again, X \ {v} is a vertex cover of G− v
and we observe that any edge in e′ ∈ F that does not have an endpoint in X \ {v} is incident
with the vertex c. By (4), either e′ = {b, c} or e′ = {c, z} for some z ∈ N(a). We can conclude
that X \ {v} ∪ {c} is a vertex cover of G′. The remaining cases can be argued for similarly: If
b ∈ X, then X \ {v} ∪ {a} is a vertex cover of G′ and if c ∈ X, then X \ {v} ∪ {b} is a vertex
cover of G′. y

Claim 4. If G′ has a vertex cover of size k then G has a vertex cover of size k.

Proof. Throughout the following, let X ′ be a vertex cover of G′ of size k. Since {a, b, c} is not an
independent set in G′, we know that X ′ has to contain at least one vertex of {a, b, c}. If {a, b, c} =
N(v) ⊆ X ′, then X ′ contains an endpoint of each edge in E(G) \E(G′) = {{v, x} | x ∈ {a, b, c}},
so we can conclude that X ′ is a vertex cover of G.

We now consider the cases whenX ′ contains precisely two vertices from {a, b, c}. If {a, b} ⊆ X ′
and hence c /∈ X ′, then X ′ contains NG(a) as well, to cover the edges between the vertex c
and vertices in N(a). It follows that X ′ \ {a} is a vertex cover of G − v. Since each edge in
E(G) \ E(G− v) is incident with v, we can conclude that X ′ \ {a} ∪ {v} is a vertex cover of G.
By similar arguments we have that if X ′ ∩ {a, b, c} = {b, c}, then X ′ \ {b} ∪ {v} is a vertex cover
of G and if X ′ ∩ {a, b, c} = {a, c}, then X ′ \ {c} ∪ {v} is a vertex cover of G.

It remains to argue the case when X ′ contains precisely one vertex from {a, b, c}. Note that
the only possible such case is when this vertex is b. If X ′ contained only the vertex a (resp., c),
then the edge {b, c} (resp., {a, b}) would remain uncovered by X ′. Suppose X ′ ∩ {a, b, c} = {b},
so a, c /∈ X ′, implying that N(a, b, c) ⊆ X ′. Hence, X ′ \ {b} is a vertex cover of G − v and
X ′ \ {b} ∪ {v} is a vertex cover of G. y

In the light of Claims 3 and 4, the proposition is proved. �
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Figure 5. Illustration of Reduction R.10.

The next reduction rule kernelizes all vertices that have degree four and whose neighborhood
induces a subgraph with more than two edges.

Reduction R.10. If neither Reduction R.6 nor Reduction R.8 can be applied and G contains a
vertex v with degree four such that G[N(v)] has at least three edges, then we can assume that (up
to renaming the vertices in N(v) = {a, b, c, d}) G[N(v)] is an (a, d)-path. We reduce (G, k) to
(G′, k), where G′ is the graph on vertex set V (G) \ {v} and edge set (E(G) ∩

(V (G′)
2
)
) ∪ F , where

F :=
(
N(v)

2

)
∪ {{x, y} | x ∈ {a, b}, y ∈ N(d)} ∪ {{x, y} | x ∈ {c, d}, y ∈ N(a)}. (5)

We illustrate Reduction R.10 in Figure 5.

Proposition 7. Reduction R.10 is safe, i.e., if its conditions are satisfied, then G[N(v)] is a
path and G has a vertex cover of size k if and only if G′ has a vertex cover of size k.

Proof. We first justify the assumption that G[N(v)] induces a path.

Claim 5. If neither Reduction R.6 nor Reduction R.8 can be applied and G and v are as above,
then G[N(v)] induces a path.

Proof. Suppose not. If G[N(v)] contains at least five edges, then there has to be a vertex
x ∈ {a, b, c, d} which is incident with three of these edges. Hence, N(v) ⊆ N [x] and we could
have applied Reduction R.6, a contradiction.

Suppose there are four edges in G[N(v)]. There are only two non-isomorphic graphs on four
vertices and four edges, see the right hand side of Figure 6. If G[N(v)] induces a C4, assume
w.l.o.g. that its vertices appear in the order a− b− c− d− a, then we can partition NG(v) into
cliques C1 = {a, b} and C2 = {c, d}, and we observe that the set M := {{a, c}, {b, d}} of non-
edges of G[C1, C2] satisfies the condition of Reduction R.8(ii): For x ∈ {a, b} there is precisely
one element in M that contains x. We could have applied Reduction R.8, a contradiction. If
G[N(v)] induces an H4, assume w.l.o.g. that the 3-cycle is a− b− c− a and d is the pendant
vertex adjacent to c, then we have that N(v) ⊆ N [c] and we could have applied Reduction R.6.

We can assume that G[N(v)] contains precisely three edges. There are three pairwise non-
isomorphic graphs on four vertices and three edges, shown in the left-hand side of Figure 6. If
G[N(v)] induces a star (S4) with center a, then we have that N(v) ⊆ N [a], so we could have
applied Reduction R.6, a contradiction. If G[N(v)] induces a K3 ∪K1, then let C1 := {a, b, c} be
the vertices that induce a K3 and C2 = {d}, where d is the remaining vertex of N(v). Clearly,
C1 and C2 induce cliques and the set of non-edges of G[C1, C2] is such that it contains precisely
one element incident with each vertex in C1. Hence, we could have applied Reduction R.8, a
contradiction. We can conclude that the only case that has not been covered is when G[N(v)]
induces a P4, which proves the claim. y
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P4 K3 ∪K1 S4 C4 H4

Figure 6. In the left box, all pairwise non-isomorphic graphs on four vertices and three edges and in the right
box, all pairwise non-isomorphic graphs on four vertices and four edges are shown.

Claim 6. G contains a vertex cover of size k if and only if G′ contains a vertex cover of size k.

Proof. (⇒) Suppose G has a vertex cover X of size k. If N(v) ⊆ X, then every edge in
E(G′) \ E(G) has at least one endpoint in X by construction, so X is a vertex cover of G′ as
well. If X contains precisely three vertices of N(v), suppose w.l.o.g. that X ∩N(v) = {a, b, c},
then v has to be contained in X as well, otherwise the edge {v, d} remains uncovered. Hence,
X \ {v} ∪ {d} ⊇ N(v) is a vertex cover of G′ of size k.

From now on suppose that X contains precisely two vertices from N(v) and note that in all
of the following cases, v ∈ X. The only vertex covers of G[N(v)] of size two are {b, c}, {a, c}
and {b, d}. First observe that any triple of vertices from NG(v) covers the edges

(N(v)
2
)
, so we

do not have to consider them explicitly in the following discussion.
Suppose X ∩N(v) = {b, c}. Then, N(a, d) ⊆ X , so all edges in E(G′) \ E(G) \

(N(v)
2
)
are

covered by X. We can conclude that X \ {v} ∪ {a} (also X \ {v} ∪ {d}) is a vertex cover of
G′. If X ∩N(v) = {a, c}, then N(b, d) ⊆ X and all edges in E(G′) \ E(G) \

(N(v)
2
)
that are not

covered by X are between d and N(a), so X \ {v} ∪ {d} is a vertex cover of G′. Similarly, if
X ∩N(v) = {b, d}, then X \ {v} ∪ {a} is a vertex cover of G′. Since G[N(v)] does not have a
vertex cover of size at most 1, this concludes the proof of the first direction.

(⇐) Since NG(v) is a clique in G′, any vertex cover of G′ contains at least three vertices
from NG(v). Let X ′ be a vertex cover of G′ of size k. If NG(v) ⊆ X ′, then X ′ is also a vertex
cover of G since each edge in E(G) \E(G′) has an endpoint in NG(v). In the remainder, we can
assume that X ′ contains precisely three vertices from NG(v). Suppose X ′ ∩NG(v) = {a, b, c}.
Since d /∈ X ′, we have that N(a, d) ⊆ X ′, hence all edges between a and N(a) are covered by
N(a) ⊆ X ′. Together with the observation that {b, c} is a vertex cover of G[N(v)], we can
conclude that X ′ \ {a} ∪ {v} is a vertex cover of G. If X ′ ∩NG(v) = {a, b, d}, then N(a, c) ⊆ X ′
since c /∈ X ′. By the same reasoning as before, we can observe that X ′ \ {a} ∪ {v} is a vertex
cover of G. Similarly, if X ′ ∩NG(v) = {b, c, d} or if X ′ ∩NG(v) = {a, c, d} then we can argue
that X ′ \ {d} ∪ {v} is a vertex cover of G. y

Now, by Claim 5, we know that under the conditions stated in Reduction R.10, G[N(v)] induces
a path which together with Claim 6 proves the proposition. �

It is easy to see that Reductions R.5 to R.7, R.9 and R.10 can be executed in polynomial time.
We observe (naively) that Reduction R.8 can be executed in time O

(
n · 2α · αO(1)

)
, where α

denotes the degree of the vertex v. Since for our purposes, α ≤ 4 is sufficient, Reduction R.8
runs in polynomial time as well and we have the following theorem. (Note that none of the
presented reductions increases the parameter value.)

Theorem 5 (cf. Fellows and Stege [32]). There is a polynomial-time algorithm that given
an instance (G, k) of Vertex Cover outputs an equivalent instance (G′, k′), where k′ ≤ k,



What is known about Vertex Cover Kernelization? 17

G Hx0

x1

x2

(a)

G H

(b)

G H

(c)

G H ′

(d)

G H ′

(e)

Figure 7. Illustration of notation. (a) shows a graph G⊕H resulting from gluing G (darker background) and
H (lighter background). (b) shows a vertex cover of G⊕H compatible with {2}, minimizing the intersection
with V (H) and, thus, implying P G

H ({2}) = 4. (c) shows a vertex cover S of G ⊕H compatible with {0, 1, 2},
minimizing the intersection with V (H) and, thus, implying P G

H ({0, 1, 2}) = 3. Note that S is not necessarily
minimum or even minimal for G⊕H. (d) and (e) show the same as (b) and (c) but with the graph H ′ resulting
from the application of Reduction R.6 to a vertex in H, proving P G

H′ (X) = P G
H (X)− 1 for X ∈ {{2}, {0, 1, 2}}.

(I) the minimum degree of G′ is at least four and

(II) for all vertices v ∈ V (G′) with degG′(v) = 4, G′[N(v)] contains at most two edges.

4 Automated Vertex Cover Kernelization
Many reduction rules for various problems are instances of the same class that can be described
as “find a subgraph H with boundary X and replace it with a graph H∗”. For example,
Reduction R.7 can be formulated as “find a P3 (a, v, b) with boundary {a, b} (a kind of “local
surgery”) and replace it with zN [v]”. Note however, that boundary connections might change
during the replacement. Proposed reduction rules of this type can be checked in roughly 2|X|
times the time it takes to compute a minimum vertex cover in H and H∗.

Notation. See Figure 7 for an illustration. Let G be a graph in which t non-isolated vertices
x1, . . . , xt are bijectively labeled with the integers in [t]. Then, we call G t-boundaried. If
{x1, . . . , xt} is an independent set in G, we call G strongly t-boundaried. For a t-boundaried
graph H and a strongly t-boundaried graph G, we let G ⊕ H denote the result of gluing G
and H, that is, identifying the vertices with the same label in the disjoint union of G and H.
We call a set S ⊆ V (G) compatible with a set X ⊆ [t] in G if NG(xi) ⊆ S ⇐⇒ i ∈ X for all
i ∈ [t]. Let PGH : 2[t] → N be such that, for all X ⊆ [t], PGH (X) is the smallest number of vertices
of H contained in any vertex cover S of G⊕H that is compatible with X in G (and ∞ if no
such S exists). Then, we call PGH the profile of H in G. It turns out that the profile is indeed
independent of G, so we drop the superscript.

Lemma 2. Let G, G′ be strongly t-boundaried, let H be t-boundaried and let X ⊆ [t]. Then,
PGH (X) = PG

′
H (X) for all X ⊆ [t].

Proof. Let X ⊆ [t] and let S and S′ be vertex covers of G⊕H and G′ ⊕H that are compatible
with X in G and G′, respectively, such that |S ∩ V (H)| and |S′ ∩ V (H)| are minimum among
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all such vertex covers. To prove the claim, we show that S∗ := (S \ V (H)) ∪ (S′ ∩ V (H)) is
a vertex cover of G ⊕ H. By symmetry, the same follows for S and S′ inversed, which then
implies the lemma. Towards a contradiction, assume that G ⊕ H contains an edge uv such
that u, v /∈ S∗. Then, exactly one of u and v is in H as, otherwise, S is not a vertex cover of
G⊕H. Without loss of generality, let u ∈ V (H) and v /∈ V (H). Thus, u is a boundary vertex
xi and v /∈ S. Since S and S′ are compatible with X in G and G′, respectively, we know that
NG(xi) ⊆ S ⇐⇒ i ∈ X ⇐⇒ NG′(xi) ⊆ S′ and, as v ∈ NG(u) \ S, we have NG′(u) * S′.
However, since S′ is a vertex cover of G′ ⊕H, we have u ∈ S′, which contradicts u /∈ S∗ since
u ∈ V (H). �

We observe that two t-boundaried graphs H and H ′ with the same profile can be swapped
for one another in any graph G without changing the size of an optimal vertex cover, that is,
G ⊕ H and G ⊕ H ′ have the same vertex cover number. More generally, for any c ∈ N, we
say that H and H ′ are c-equivalent if ∀X⊆[t] PH(X) = PH′(X) + c. In this way, for any fixed
size t, the profile gives rise to an equivalence relation on the set of t-boundaried graphs. This
relation allows automated discovery of reduction rules that remove vertices with undesirable
properties from the input graph. The idea is, for each induced subgraph H having an undesirable
property Π, to replace H by some c-equivalent H ′ that does not suffer from Π, while reducing k
by c.

Lemma 3. Let G be strongly t-boundaried, let H and H ′ be t-boundaried and c-equivalent for
some c ∈ N, and let k ∈ N. Then, G ⊕H has a vertex cover of size at most k if and only if
G⊕H ′ has a vertex cover of size at most k − c.

Proof. As “⇒” is completely analogous to “⇐”, we only prove the latter. To this end, let S be
a smallest vertex cover of G⊕H that, among all such vertex covers, minimizes |S ∩ V (H)|. Let
X := {i | NG(xi) ⊆ S} and note that S is compatible with X in G and |S ∩ V (H)| = PH(X).
Let S′ be a smallest vertex cover of G ⊕ H ′ that is compatible with X in G and, among all
such vertex covers, minimizes |S′ ∩ V (H ′)|. As H and H ′ are c-equivalent, we know that
|S ∩V (H)| = |S′ ∩V (H ′)|+ c. We show that S∗ := (S \V (H))∪ (S′ ∩V (H)) is a vertex cover of
G⊕H ′ (clearly, |S∗| ≤ |S\V (H)|+ |S′∩V (H ′)| = |S\V (H)|+ |S∩V (H)|+c = |S|+c). Towards
a contradiction, assume that there is an edge uv of G⊕H ′ with u, v /∈ S∗. If u, v /∈ V (H ′), then
S is not a vertex cover of G⊕H and, if u, v ∈ V (H ′), then S′ is not a vertex cover of G⊕H ′.
Thus, without loss of generality, u ∈ V (H ′) and v /∈ V (H ′), implying that u is a boundary
vertex xi. Since u /∈ S∗, we know that u /∈ S′ and, since S′ is a vertex cover of G⊕H ′, we have
NG(u) ⊆ S′. Since S′ is compatible with X, we have i ∈ X and, since S is compatible with X,
we have NG(u) ⊆ S, implying v ∈ S which contradicts v /∈ S∗ since v /∈ V (H). �

Given a t-boundaried graph H and a property Π, we can enumerate all t-boundaried graphs
H ′ that are c-equivalent to H for some c and that do not suffer from Π.

Two Examples. A proof-of-concept implementation7 was used to attack the remaining cases
of degree-four vertices (see Section 3). For a given t-boundaried graph H or profile PH and a
given number n, the implementation enumerates all strongly t-boundaried, n-vertex graphs H ′
and outputs H ′ if PH(X) = PH′(X) for all X ⊆ [t]. Feeding the graphs displayed in Figures 8a
and 9a, the implementation yielded, in 5s and 6s, respectively, reduction rules that remove
degree-four vertices whose neighborhood contains exactly two edges.

7https://github.com/igel-kun/VC_min_deg

https://github.com/igel-kun/VC_min_deg
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Figure 8. Illustration of Reduction R.11. (a) shows the degree-four vertex u with two edges in its neighborhood.
A–D represent the sets of neighbors of 0–3, respectively, in the rest of the graph (A–D may mutually intersect or
be empty). (b) shows the profile of (a) where the entry 3 at position (A, B, C, D) means that three vertices are
needed to cover all edges of (a), assuming all vertices in A, C, and D are already in the cover. Indeed, {u, 1, 2} is
a size-3 cover in this case. (c) shows a subgraph that is 0-equivalent to (a), that is, (b) is also the profile of (c).

Reduction R.11. Let G contain the 4-boundaried graph H depicted in Figure 8a as an induced
subgraph. Then, replace H by the 4-boundaried graph H ′ depicted in Figure 8c.

Reduction R.12. Let G contain the 4-boundaried graph H depicted in Figure 9a as an induced
subgraph. Then, replace H by the 4-boundaried graph H ′ depicted in Figure 9c.

By Lemma 3, correctness of Reductions R.11 and R.12 can be verified by convincing oneself
that the profiles in Figures 8 and 9 are indeed the profiles of the graphs of Figures 8c and 9c,
respectively (implying that the subgraphs are 0-equivalent).

Indeed, Reductions R.11 and R.12 cover all cases of degree-four vertices with two edges in
the neighborhood, leaving only the cases of one and no edges in the neighborhood in order to be
able to reduce to graphs of minimum degree five.

5 Conclusion and Open Problems
In Section 3, we have discussed the barrier degree constant δV C for Vertex Cover kernelization:
We observed that, for some δV C ∈ N, Vertex Cover cannot be kernelized to instances of
minimum degree δV C unless ETH fails. In terms of FPT algorithms, the equivalent concept is
that of the existence of the barrier constant ζV C > 0 which is such that there is no algorithm
for Vertex Cover running in time (1 + ζV C)k · nO(1) modulo ETH (e.g., [17,21,29]). So far
it is only known that ζV C < 0.2738 [13] and that δV C > 3 (Section 3, see also [32]). However,
observe that the question of determining the concrete value of δV C is much more tangible than
the one of finding the value of ζV C : Suppose one can show that a reduction rule that kernelizes
degree-d vertices violates ETH, for some d ∈ N. Then one might be able to adapt the gadgets
used in that proof to show an ETH-violation via a reduction rule for degree d + 1, d + 2, . . .
vertices as well. We pose: What is the exact value of δV C?

The main theme of this paper has been to gather (from hitherto unpublished sources), carefully
verify, and advance research on the question: to what minimum degree d can the (formidable
naturally parameterized) Vertex Cover problem be kernelized to kernels of minimum degree
d, even if the exponent of the polynomial running time bound grows wildly in d? ETH enforces
a limit.

Acknowledgements. We thank Carsten Schubert and André Nichterlein for pointing out
problems with Reductions R.7 and R.8 as well as Figures 8 and 9 in earlier versions of this work.
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Figure 9. Illustration of Reduction R.12. (a) shows the degree-four vertex u with two edges in its neighborhood.
A–D represent the sets of neighbors of 0–3, respectively, in the rest of the graph. (b) shows the profile of (a)
where the entry 2 at position (A, B, C, D) means that two vertices are needed to cover all edges of (a), assuming
all vertices in A, C, and D are already in the cover. Indeed, {u, 1} is a size-2 cover in this case. (c) shows a
subgraph that is 0-equivalent to (a), that is, (b) is also the profile of (c).
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