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Abstract: We review the state-of-the-art knowledge of Tropical Atlantic Variability (TAV).
A well-developed observing system and sustained effort of the climate modeling community
have improved our understanding of TAV. It is dominated by the seasonal cycle, for which some
mechanisms have been identified. The interannual TAV presents a marked seasonality with three
dominant modes: (i) the Atlantic Zonal Mode (AZM), (ii) the Atlantic Meridional Mode (AMM) and
(iii) the variability in the Angola–Benguela Front (ABF). At longer time scales, the AMM is active and
low-frequency variations in the strength, periodicity, and spatial structure of the AZM are observed.
Also, changes in the mean position of the ABF occur. Climate models still show systematic biases in
the simulated TAV. Their causes are model-dependent and relate to drawbacks in the physics of the
models and to insufficient resolution of their atmospheric and oceanic components. The identified
causes for the biases can have local or remote origin, involving the global ocean and atmospheric
circulation. Although there is not a clear consensus regarding the role of model resolution in the
representation of the TAV, eddy-resolving ocean models combined with atmospheric models with
enhanced horizontal and vertical resolutions simulate smaller biases.

Keywords: Tropical Atlantic Variability; Tropical Atlantic climate; sea-surface temperature biases;
observational data; climate modeling

1. Introduction

The climate in the Tropical Atlantic (TA) shows significant seasonal to decadal (and longer)
variability (see e.g., [1–7]). This is characterized by strong sea-surface temperature (SST) variability in
the equatorial Atlantic Cold Tongue (ACT), where the amplitude of the SST seasonal cycle can reach
5–7 K [8]. Also, in the southeastern tropical Atlantic (SETA), strong seasonal and interannual variability
is observed in the coastal upwelling regions near the Angola–Benguela front (ABF, see Figure 1;
e.g., [9,10]). The variability of the climate system in the TA shows an inherently atmosphere–ocean
coupled behavior in which the evolution of the oceanic currents and upwelling systems is closely linked
to the evolution of the West African Monsoon, as well as to oceanic/land pressure systems. Changes in
the large-scale atmospheric systems lead to an associated meridional displacement of the Intertropical
Convergence Zone (ITCZ) and variations in regional surface winds [11]. In turn, these atmospheric
changes drive large- and regional-scale variations in the dynamics of the Tropical Atlantic Ocean. This
variability is modulated by several factors such as the regional air–sea interactions [12–14], the complex
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geometry of the Atlantic basin [15] and external factors—mainly the North Atlantic Oscillation (NAO)
and the El Niño Southern Oscillation (ENSO; [16–18]). See also [1,4] and references therein.

Figure 1. Bathymetry of the Tropical Atlantic in which the configurations of the main near-surface
currents are depicted. AgC refers to the Agulhas Current. In this figure, the Southeastern Tropical
Atlantic (SETA) and Angola–Benguela Front (ABF) regions are also highlighted.

The Tropical Atlantic climate is sensitive to changes in global oceanic circulation and the global
hydrological cycle, as the Tropical Atlantic is connected to the southern and northern branches of
the Atlantic Meridional Overturning Circulation and receives freshwater inputs from some of the
world’s largest rivers. All these factors set the characteristics of the Tropical Atlantic variability (TAV)
at seasonal, interannual, and even longer timescales. Starting from the interannual variability, this
can be represented by its two leading SST modes. The most relevant one is the Atlantic Zonal Mode
(AZM; [4,19,20]), which is governed by the equatorial ocean dynamics in response to surface winds,
like ENSO in the Pacific. This mode involves changes in the equatorial Atlantic cold tongue and results
in a concomitant vertical displacement of the equatorial thermocline. The second one, referred to as
the Atlantic Meridional Mode (AMM), is characterized by a cross-equatorial gradient of SST and wind
anomalies [17,21]. Their patterns and seasonality will be addressed in detail later in the text.

The variability in the TA largely influences the climate of the surrounding areas, weather, and
marine ecosystems, among others. Thus, its accurate prediction at seasonal and decadal timescales and
consistent projections by climate models are highly demanded by society, industry, and stakeholders
in order to prevent and mitigate potential damages associated with the tropical Atlantic SST variability
(e.g., [5,22–32]). Notwithstanding the rapid development of computational resources and improvements
in the representation of physical processes and numerical formulation, state-of-the-art climate models
are still not able to make accurate climate predictions. Therefore, climate projections under global
warming scenarios are uncertain in the region. This shortcoming may be closely related to problems of
climate models to reproduce the TA SST. In this respect, most models exhibit large and systematic SST
biases in the TA (e.g., [33–36]). To make this picture more complex, detected sources of the biases are
largely dependent on the particular climate model used.

The aim of this paper is to provide a general insight of the state-of-the-art of our knowledge of the
Tropical Atlantic Variability. We do not address in detail the different aspects related to the TAV to keep
the paper concise. Besides, recently, some good reviews about the observing system in the Tropical
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Atlantic (e.g., [5,6]), the Atlantic modes of variability [4] or modelling the TA climate (e.g., [7]) have been
published. Instead, we try to give an overview of these topics in a concise manner, and the reader can
resort to the specific reviews mentioned above for detailed information regarding one of these specific
topics. This paper is structured as follows. In Section 2, we briefly review the observational system that
provides data used for observational studies, model verification, and data assimilation in operational
and reanalysis systems. In Sections 3 and 4, we present the current state of our understanding of the
seasonal and interannual aspects of the Tropical Atlantic variability. In Section 5, we provide a brief
review of questions related to the low-frequency variability in the region. We discuss how realistically
the state-of-the-art coupled models reproduce the variability in Section 6. Finally, in Section 7, the
conclusions and outlook are given.

2. Observational Data

Here, we present the state-of-the-art in the observational aspects of the TAV. In this section, we
follow [5], where an extensive review of the observing system in the Tropical Atlantic is given with a
more detailed enumeration of the implied observational infrastructure.

2.1. Observing System

A better understanding of the TAV and the improvement of its representation in climate models
demands a well-developed observing system. The elements of this observing system can be quite
different in deployed capacity, technical implementation, spatial coverage, and the amount of data
they provide. Moreover, their coverage varies within different regions and is composed by in situ
observations (mooring arrays, Repeat Hydrographic Surveys and Ships of Opportunity, Surface drifting
buoys) and satellite observations.

A great amount of in situ measurements derive from the Prediction and Research Moored Array
in the Tropical Atlantic (PIRATA) project (see Figure 2 of [5,6]), which currently consists of 18 moorings
that measure ocean temperature and salinity in the upper oceanic layers, near-surface air temperature,
relative humidity, wind velocity, rainfall, and incident shortwave radiation. Several moorings also
measure downward longwave radiation, atmospheric pressure, and surface ocean currents. PIRATA
provides daily-averaged data in real-time but the frequency of data transmission is being upgraded
to hourly averages. PIRATA is complemented by other smaller and more recent mooring systems.
Another important source of in situ measurements are the Argo array of autonomous floats. They
make profiles of temperature, salinity, and pressure in the upper 2000 m typically every 10 days [37].
Argo is expanding its measurement capabilities to include full-depth (4000–6000 m) profiles [38],
with nine deep floats in the TA (see Figure 2B of [5]). These Argo deep floats will constitute a good
addition to the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP), which
carries out high-quality, full-depth measurements in the global ocean approximately once every ten
years. The measurements from the GO-SHIP have high horizontal and vertical resolutions and measure
many different physical, chemical, and biological variables along several sections near the western and
eastern boundaries of the TA (see Figure 10 of [5]).

Operational data also comes from cruises. In this context, it is important to highlight the important
contribution of the ship-of-opportunity program (SOOP) and PIRATA. On one hand, the volunteer
merchant ships that participate in SOOP regularly traverse three transects in the TA, each of them
repeated approximately every 3 months (see Figure 10 of [5]). They measure the sea-surface salinity
(SSS), SST, and temperature in the upper 760 m. With the collected data, ocean large-scale circulation
and mesoscale variability can be deduced. On the other hand, the annual PIRATA servicing cruises
provide opportunities for repeated shipboard measurements and deployments of Argo floats, surface
drifters, ozone sondes, radiosondes and for water sample analysis to determine the concentrations of
the different dissolved components of the sea water.

A special mention deserves the array moorings and pressure-equipped inverted echo sounders
that have been installed to measure the shallow boundary currents and the deep western boundary
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currents at the Brazilian continental slope [39,40], the Angola Current [41], and the deep flow between
the continental slope and the mid-Atlantic ridge (see Figure 1; [42,43]). These arrays contribute to the
AMOC observing system. Figure 10 of [5] shows the locations of the boundary current arrays and
inverted echo sounders.

Surface drifters follow the ocean surface current, measuring the ocean surface circulation at high
resolution, and relaying the data via satellite. They measure SST, surface currents, and barometric
pressure and a few of them also collect subsurface temperature, surface and subsurface salinity, wind
velocity, and directional wave spectra. As part of the Global Drifter Program (GDP), an average of
92 drifters provide measurements at approximately hourly frequency (Figure 2 of [5]).

Satellites provide large amounts of data in real-time or near real-time regarding the ocean and the
atmosphere. For instance, they allow us to obtain estimates of SST, tropical rainfall, precipitable water,
sea-surface height (SSH), and, beginning from 2009, SSS at high spatial resolution (0.25◦). Available
satellites achieve a complete coverage of the TA in a few days. Satellite observations allow us to
improve the estimation of heat, moisture, and momentum surface flux estimates with better coverage,
resolution, and accuracy [44].

2.2. Reanalysis

In a reanalysis, observations are assimilated by a numerical model that generates a synthesized
estimate of the state the ocean and/or the atmosphere. They provide climatic information about the
ocean and the atmosphere that covers the entire globe. State-of-the-art reanalysis systems reconstruct
the recent past climate of the Earth and include the atmosphere, the ocean, the land, and waves and
sea ice (an up-to-date list of available reanalyses is keep in https://reanalyses.org/). The last generation
of ocean-atmosphere coupled reanalyses, as the Climate Forecast System Reanalysis (CFSR) [45]
and the Coupled ECMWF ReAnalysis of the Twentieth Century (CERA-20C) [46], take into account
air–sea interactions. These reanalyses therefore provide a more physically consistent state of the
two components of the climate system. CFSR has an atmospheric resolution of ~38 km and an
oceanic resolution of ~0.25◦ at the equator. The horizontal resolution of CERA-20C is ~25 km in the
atmosphere and ~37 km in the ocean at the equator. Due to their global coverage and availability of
data over long timescales, reanalyses can be used for the identification of the mechanisms of climate
variability. A major advantage of reanalysis is that they provide all atmospheric and/or oceanic
variables without spatial or temporal gaps. Also, the values of the different variables are constrained
by the data assimilation, which avoids large differences between data and observations. Although
assimilation helps to maintain the climate simulated by the numerical model used in the reanalysis
close to the observations, it also brings unphysical forcings and some caution should be taken when
using reanalysis data.

3. Seasonal Variability of the TA Climate

TAV involves changes on the seasonal time scale and is largely affected by the adjacent continents.
For instance, in the eastern equatorial Atlantic, surface winds, convective activity, and SST feature
a marked seasonal cycle ([47]; see Figure 2 for the seasonal cycle of SST). Changes in the SST in the
equatorial Atlantic do not have an equal duration: the seasonal cycle of the SST in the equator is
characterized by a rapid cooling, which peaks after three months, while it takes about nine months
to warm up the region. The cooling lasts from April to July and is caused by strong southeasterly
winds close to the equator. These winds produce upwelling (downwelling) and elevate (deepen)
the thermocline to the south (north) of the equator. The cooling intensifies the contrast between
warmer waters north of the equator and colder waters south and at the equator [48]. The low SST
along the equator in the Gulf of Guinea gives place to the ACT, which lasts the whole austral winter
(June-July-August; JJA). In turn, interannual SST variations within the ACT region profoundly affect
precipitation over West Africa and modulates the onset of the West African monsoon [30,49,50]. The
presence of the ACT creates a strong temperature gradient between ocean and land that is associated
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with a further strengthening of southerly winds. The seasonal ACT and the intensified winds coincide
with the northward migration of the rainband away from the equator onto the West African continent,
with intense precipitation reaching as far north as 15◦ N in boreal summer. The SST in this region
attains the maximum values in austral spring, when the ITCZ is closest to the equator.

In this context, [15] proposed that the annual cycle in the eastern equatorial Atlantic is set by
continental monsoons, while local air–sea interactions only have a secondary influence. In contrast
with this, [51] suggested that ocean–atmosphere interactions play an important role in the march of
the seasonal cycle in the region. They hypothesized that the ACT intensifies the southerly winds in
the Gulf of Guinea and these push the rainband further north over the land. Supporting this point
of view, more recent studies have found that meridional SST and sea-level pressure (SLP) gradients
are closely related to meridional winds over the Gulf of Guinea [52–54]. While it is widely accepted
that the impact of the continental West African summer Monsoon (WAM) on ocean surface winds
contributes to a lowering of the SST, the importance of the SST cooling for the development of the
monsoonal winds, and subsequently the precipitation, is still debated. For instance, ref. [55] suggested
that the generation of the ACT is not very important for the development of the WAM, although this
has an impact on its strength.

Figure 2. Cont.
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Figure 2. (a–d) Climatology of seasonal sea surface temperature obtained from TropFlux (1979–2011)
(https://incois.gov.in/tropflux/index.jsp; accessed on 12 June 2019). (e–h) Climatology of surface wind
stress obtained from ERA-Interim (1979–2011) and seasonal anomaly of sea surface height from
annual-mean obtained from AVISO (1993–2000). December-January-February (DJF); March-April-May
(MAM); June-July-August (JJA); September-October-November (SON).

Regarding the western equatorial Atlantic, there is a consensus that in this region,
ocean–atmosphere interactions are important for the seasonal cycle of the ITCZ, surface winds
and the SST. In particular, a strong dependence of the seasonal cycle of surface winds in this region on
the underlying SST was identified. It was also found that surface wind convergence in this region
is rather related to convective heating anomalies than to the underlying SST and SLP gradients [53].
Recently, using a global atmospheric model, the authors of [54] tried to shed light on this controversy.
They found, in greater agreement with [51], that seasonal variations of precipitation over the equatorial
Atlantic are influenced by both the land and the ocean, with land surface temperatures being the main
driver of the continental rainfall. In accord with all previous results, they concluded that the coupling
between the ocean and the atmosphere plays a more important role in the western than in the eastern
equatorial Atlantic. Regarding the mechanisms of the seasonal variability, they found that the seasonal
evolution of the equatorial SST and the winds in the western equatorial Atlantic is consistent with
the positive Bjerknes feedback (see also [34]). They also concluded that a mechanism similar to the
wind-evaporation–SST feedback [56] might play a role in the western equatorial Atlantic. Finally, they
proposed that the pressure adjustment mechanism [57] could explain most of the variability in the
eastern Atlantic, but not in the central equatorial Atlantic, which can be influenced by the extratropical
interhemispheric differential heating that controls the large-scale Hadley Circulation.

Along with this, the South Atlantic Anticyclone (SAA) also experiences seasonal changes in
its position and intensity. This structure forms due to convective processes within South Africa

https://incois.gov.in/tropflux/index.jsp
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and South America in combination with orographic effect with midlatitude westerly winds and
trade easterlies [58,59]. In addition to this, the SAA is also set by cross-hemispheric effects of heat
sources located in the Northern Hemisphere [60]. The combination of these mechanisms results in an
intensification of the SAA in austral winter relative to austral summer. In austral summer, the strength
of the SAA has been linked to ocean–atmosphere interactions [61]. In more detail, in [61] it is claimed
that, in austral summer, the strengthening of the SAA relates to an enhanced SST zonal gradient. This
is sustained by warming in the western flank of the TA and cooling to the east of this basin. On the one
hand, southward heat transport from the equator to the south by the Brazilian current favors advection
of warmer air in the lower troposphere. On the other hand, colder conditions are maintained to the
east due to the development of the coastal Benguela upwelling system, which brings colder waters
to the surface. In contrast with this, it has also been proposed that the zonal gradients of SST only
play a minor role in the seasonal cycle of the SAA [33]. However, [34] suggested that conclusions
from [33] could be affected by the use of an uncoupled model and the fact that they only focus on
the winter season, when SAA is set by the monsoon [62]. Another mechanism related to the zonal
SST anomalies in the TA has been proposed by [59]. They suggest that cold and warm anomalies act
as sources of anticyclonic and cyclonic potential vorticity and induce along-shore wind anomalies
towards the equatorial Atlantic.

4. Interannual Variability in the TA

4.1. Climatological Patterns

The interannual TAV also presents a marked seasonality. Figure 3 shows the seasonal cycle of
the SST variability in the TA deduced from observations and reanalysis data. At the equator, the
interannual variability peaks in summer (June to July) in the central equatorial Atlantic (20◦ W–0◦) in
Figure 3a. The large variability extends to the western African coast. Another weaker peak appears in
winter (November to January) with less extending range. As previous studies concluded, the equatorial
variability is firmly phase-locked to summer (e.g., [63–66]), while the variability in the tropical Pacific
has a peak in winter (November to January) (e.g., [67]). The horizontal distribution of the summer TAV
is given in Figure 3b. In general, the equatorial TAV distributes in a L-shaped form from the Gulf of
Guinea to the ABF region and influences the precipitation activity along the western African region
(e.g., [68]). This L-shaped variability shows us that the equatorial variability is closely related to the
variability in the ABF region (e.g., [64,69]; [4] and references therein).

Figure 3c presents the climatological seasonal cycle of the SST variability in the ABF region.
In contrast to the equatorial variability (Figure 3a), the SST variability is maximized in spring (March to
April) along the southwestern African coast. In spring, the SST variability is limited in the coastal region
and the equatorial variability is quite modest (Figure 3d), indicating that the SST variability in the ABF
leads the equatorial SST variability in summer by about three months (e.g., [64]). Variability is also high
to the northeast Atlantic coast (Figure 3b,d). This region is associated with the Senegal–Mauritania
upwelling system and recently it has been found that this interannual variability is detected as Dakar
Niño/Niña [70]. However, the connection between the equatorial and northeastern Atlantic variability
has not been discussed yet.



Atmosphere 2019, 10, 502 8 of 25

Figure 3. (a) and (c) seasonal cycle of the observed sea-surface temperature (SST) (OISST, 1979–2010) one
standard deviation in the Equatorial (averaged between 3◦ S and 3◦ N) and Angola–Benguela Frontal
Zone (averaged 20◦ S–14◦ S). The observed SST standard deviation in (b) June and (d) March, respectively.

4.2. Atlantic Zonal Mode

The interannual TAV consists of some leading climatic modes. Perhaps the most relevant one is
the so-called Atlantic Zonal Mode (AZM; e.g., [71]), often referred to as Atlantic Niño mode. AZM is
detected as a first mode of the Empirical Orthogonal Function (EOF). Figure 4a shows the horizontal
distribution of the first EOF mode of monthly SST anomalies from observations. The EOF mode is
calculated by 12-month anomalies from each monthly climatology. The first EOF mode features an
L-shaped which extends from the southwestern African coast toward South America in the equatorial
Atlantic. This distribution is quite similar to that of standard deviation of the SST in June (Figure 3b).
This first mode is observed frequently in June, as shown in Figure 4b of principal component (PC)
score of this mode and the mode varies from warm to cold phases in several years temporal scale.
In particular, the warm (cold) phases of this mode is regarded as Atlantic Niño (Niña) and has similar
characteristics relative to the El Niño/La Niña variability in the tropical Pacific.
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One of the most noticeable similarities between Atlantic and Pacific modes is related to their
dynamics: the generation and maintenance of the AZM is considered to be demonstrated by the
Bjerknes Feedback (BF) [72]. The first element of the BF is the connection between the equatorial
SST and zonal surface winds variabilities, as shown in Figure 5a. The zonal surface winds respond
sensitively to the equatorial central SST anomaly in the western basin of the equatorial Atlantic. This
indicates that the warm SST anomaly in the equatorial Atlantic decelerates tropical trade winds in most
of the equatorial Atlantic (acceleration by the cold SST anomaly, vice-versa). Conversely, the negative
regression is found over the Gulf of Guinea. This component is important in the AZM since this
connection describes the equatorial ocean–atmosphere interaction. For example, biased climate models
cannot capture this interaction well and, consequently, fail to reproduce realistically the behavior of
the TAV (e.g., [65,73,74]).

Figure 5. Three elements of Bjerknes Feedback (BF). (a) Correlation (contour, IC, 0.1) between ATL3
index (OISST) and zonal wind stress (ERA-Interim) and regression of zonal wind stress on ATL3 index.
(b) Correlation (contour) between sea surface height (AVISO) and zonal wind stress (ERA-Interim)
averaged over 2◦ S–2◦ N and 35◦ W–20◦ W and regression of sea surface height onto zonal wind
stress averaged over 2◦ S–2◦ N and 35◦ W–20◦ W. (c) Correlation (contour) between grid-wise sea
surface temperature (OISST) and sea surface height (AVISO) and regression (color) of sea surface
temperature onto sea surface height. For the calculation, all 12-month anomalies (detrended) from
monthly climatology are used. Similar figures are given by [63].

The second part of the BF is related to the internal ocean dynamics. Figure 5b shows the connection
between the zonal wind stress over the western TA basin and the SSH anomalies (SSH is a proxy of
thermocline depth). In the central to eastern equatorial Atlantic, SSH responds positively to the zonal
wind stress. This pattern invokes us to the westerly anomaly of the zonal wind stress induces the
downwelling in the sea surface to subsurface (deeper thermocline and higher SSH) and this signal
travels eastward via equatorial Kelvin Waves. The upwelling in the Atlantic Cold Tongue region is
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suppressed by the westerly anomaly over the western equatorial Atlantic. Moreover, the positive
regression of SSH extends more southward along the West African coast until 15◦ S. As a result, the
pattern of positive regression highly resembles that of the EOF first mode shown in Figure 4a. This can
be extended through the coastal Kelvin Waves, which is considered to be a remote contributor to the
interannual variability in the ABA (e.g., [69]). In contrast, the other upwelling in the Senegal–Mauritania
region does not seem to be relevant for the equatorial Atlantic variability in this respect (there is very
weak negative regression around 15◦ N)

The last piece of the BF is the association between the thermocline depth and the SST, shown
in Figure 5c. This component describes that deeper thermocline depth (higher SSH) is attributed to
the downwelling anomaly and, consequently, the SST becomes warmer due to less transport of cold
water from the ocean subsurface. The highly positive regression is found in the equatorial Atlantic,
Angola–Benguela area (ABA) and Senegal–Mauritania region, where the upwelling is vigorous and
cold SST is associated with the upwelling (e.g., [75]). The downwelling anomaly in the ACT region
induces the warm SST anomaly, and thus, the original SST warm anomaly in the first element of the BF
is amplified by the downwelling anomaly propagating from the west.

The BF can be identified in the zonal mode of both the tropical Pacific and Atlantic interannual
variability. However, the authors of [76] suggested some differences in the development of this mode
and its feedback mechanism in the two basins. In the tropical Pacific, the zonal mode exhibits a clear
asymmetry between warm and cold events with respect to strength, duration, and horizontal pattern
(e.g., [76–78]). Accordingly, the intensity of each element of the BF also differs largely between the
warm and cold events [76]. In contrast, the Atlantic mode shows a large symmetry with respect to
intensity, horizontal pattern, and BF elements [76].

In the TAV, we can identify both mechanical and thermodynamic processes, and their relative
contribution is still a matter of discussion. While, in general, it is widely accepted that the BF, a largely
mechanical process, is responsible for the development of the Atlantic Niño mode, some recent studies
point out that thermodynamic processes play a vital role for the evolution of this mode. For example,
ref. [79] found in an ensemble of multi-CGCM simulations that thermodynamics plays the leading role
in the development of the Atlantic Zonal Mode. According to their results, thermodynamic processes,
mainly through the surface latent heat flux, drive the Atlantic Niño mode and the related mechanism
is consistent with a first-order autoregressive process. They claim that the weakening of the equatorial
trade winds (associated with the activity of SAA) leads to the reduction of the release of surface latent
heat flux two months earlier than the typical Atlantic Niño events and this suppresses the heat flux
which induces the warm SST anomaly. In contrast, other modeling and observational studies discuss
that the role of thermodynamic processes in the TAV is mainly damping the SST anomalies and that are
those who induce the surface heat flux anomalies (e.g., [73,76]). In particular, in [72] it is pointed out
that the SST bias of a coupled model leads to an unrealistic thermodynamic positive role in the TAV.

The aforementioned dynamical and thermodynamic processes responsible for the evolution of
the TAV take place in the equatorial region. However, it has been suggested that off-equator processes
can substantially influence the initiation and development of the TAV. For instance, [80] showed that
in some of the Atlantic Niño events, the SST anomalies were generated north of the equator and are
advected meridionally by the ocean currents to the equator. Not only the surface, but the subsurface
equatorial Atlantic Ocean can be important for the TAV: vertically alternating deep zonal jets of short
vertical wavelength propagate their energy upward to the surface, connecting with surface zonal
current anomalies and eastern equatorial Atlantic temperature anomalies [81]. On the other hand, the
westward propagating Rossby waves reflect at the western boundary of the equatorial Atlantic. This
reflecting wave travels as Kelvin waves eastward and consequently contributes to the onset of the
Atlantic Niño/Niña events [82–84]. An even more important off-equator contributor to the Atlantic
Niño mode is South Atlantic Anticyclone. Ref. [64] showed that in observations and reanalysis data the
winter-to-spring (February–March) SAA variability is highly correlated with the summer (June–July)
Atlantic Niño mode. Moreover, [85] suggested that the SAA variability is transferred to the Atlantic
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Niño mode via anomalous tropical wind power: stronger SAA activity in February leads to an earlier
onset and further amplification of the ACT in summer (Atlantic Niña condition) and weaker SAA
delays the development of the ACT summer, resulting in Atlantic Niño. This connection between the
SAA and Atlantic Niño Mode can demonstrate a relationship between Atlantic Niño Mode and the
Benguela Niño Mode since the Benguela upwelling system is maintained by the Benguela low-level
jet associated with the SAA (e.g., [86–88]). These nonlocal features for the Atlantic Niño modes are
not found in the El Niño modes in the tropical Pacific. The discussion of the association between the
Atlantic Niño mode and the Benguela Niño mode will be later in the text.

One of the largest impacts of the Atlantic Niño Mode is exerted on the Intertropical Convergence
Zone (ITCZ). In summer, when the Atlantic Niño mode usually reaches its peak, the climatological ITCZ
is sitting in the north of the equator due to the West African Monsoon (WAM). At basin-scale, the WAM
is driven by the land–ocean temperature contrast between the African Continent and the South Atlantic
Ocean. However, at a regional scale, this climatological large-scale temperature gradient is changed by
a well-developed ACT, and the magnitude of the ACT anomalies contributes to the location of the ITCZ
and intensity of the WAM (e.g., [51,53,54]). Over the ACT, cumulus convection is inhibited because
of reduced atmospheric instability due to the colder SST (about 24 ◦C), according to the relationship
between tropical marine precipitation and underlying SST (e.g., [89–91]). The climatological land–sea
contrast is modified by the Atlantic Niño mode as shown in Figure 6. The precipitation associated with
the ITCZ is correlated positively to a large extent with the Atlantic Niño mode. Not only the equatorial
Atlantic, but also the western coastal African and South American countries are influenced by the
AZM [22]: north of the equator (5–10◦ N), a negative correlation of precipitation is found, indicating
that the ITCZ is displaced southward following the Atlantic Niño/Niña. The wind stress is also well
correlated to the AZM: the wind stress converges over the Atlantic 3 region (20◦ W–0◦, [85]) and a
westerly (easterly) anomaly is detected over the western equatorial Atlantic (Gulf of Guinea) showing
the resemblance of the first element of BF (Figure 5a). Additionally, the WAM is weakened, reinforced
by the Atlantic Niño/Niña over the Gulf of Guinea to the coastal region.

Figure 6. Correlation map between PC1 score and precipitation (color, GPCP, 1979–2015) and wind
stress (vector, ERA-Interim, 1979–2011) in June. The gray dots denote 95% significance level.

4.3. Atlantic Meridional Mode

The Atlantic Meridional Model (AMM), the second fundamental mode of the tropical Atlantic
variability, is captured as the second EOF of the monthly SST anomalies, as shown in Figure 7a.
The AMM has an interhemispheric dipole structure (e.g., [21,82]) opposite to the AZM, which has an
L-shaped peak in the Gulf of Guinea, as seen in Figure 2a. The AMM appears frequently in boreal
spring (April to May) as shown by the PC of 2nd EOF mode in Figure 7b. The main mechanism for
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the generation and maintenance of the AMM is the so-called wind-evaporation–SST (WES) feedback
(e.g., [92,93]). It also encompasses air–sea interactions, but the mechanisms responsible for the AZM are
different: during the negative phase of AMM, as shown in Figure 7a, negative SST anomalies are seen
in the North tropical Atlantic and positive SST anomalies in the South tropical Atlantic. Corresponding
to these SST anomalies, the sea level pressure (SLP) anomalies are positive and negative over the North
and South tropical Atlantic, respectively. The interhemispheric SLP dipole pattern drives the surface
wind anomalies, as shown in Figure 6, blowing from the North to South tropical Atlantic. Over the
north of the equator, this surface wind anomaly enhances the easterly trade winds. In contrast, south
of the equator, the trade winds are decelerated. These surface wind anomalies induce the positive and
negative (upward is positive) latent heat flux over the north and south tropical Atlantic anomalies
in Figure 8a. Consequently, the original SST anomalies are excited by the wind-driven evaporation
anomalies. The AMM also influences the ITCZ over the equatorial Atlantic: during the negative phase
of the AMM, the southerly surface wind anomalies result in a southward shift of the ITCZ as shown in
Figure 8b.

Figure 7. Same as Figure 4, but for EOF 2nd mode (a) and gray dots denote the PC score in April and
May for each year (b).

Figure 8. (a) Correlation map between PC2 score and latent heat flux (color, TropFlux, 1979–2015,
upward is positive) and surface wind stress (vector, ERA-Interim, 1979–2011). The gray dots denote
99% significance level and vector is only shown with 99% significance level. (b) same as Figure 4, but
for correlation of precipitation with PC2 score in May.

4.4. Benguela Niño/Niña

The strong interannual variability in the ABF, by similarity with the variability in the ATC, is
named Benguela Niño/Niña. The ABF variability has its peak amplitude in boreal spring (March
to April, e.g., [94]) as shown in Figure 3c. Even though the spatial distribution of the Benguela
Niño/Niña is limited, its influence on the local and regional weather/climate is not negligible. [95]
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showed that the Benguela Niños (warm event) enhances the precipitation over the coastal regions of
Angola and Namibia, and attributed this increase in precipitation to an associated anomalous moisture
flux convergence. Ref. [23] suggested that the Benguela Niño amplifies the moisture flux toward the
African continent, reaches the eastern coast of South Africa and consequently, the mesoscale convective
system is enhanced by the moisture flux due to the Benguela Niño in January, 2013.

The origin of the Benguela Niño/Niña is still disputed by several studies. One possible mechanism
is local wind forcing (e.g., [96,97]). According to this hypothesis, the Angola–Benguela Frontal Zone
is maintained mainly by the tilting effect due to the upwelling and meridional confluence effect of
the Angola and Benguela Currents (see Figure 1 of this manuscript; see also [10]). Both frontogenetic
terms are related to the local wind stress forcing. Ref. [9,98,99] showed that the location of the
Angola–Benguela Frontal Zone is sensitive to the local wind stress curl. In refs. [100] and [35] it was
concluded that the anomalous negative wind stress curl over the frontal region, inducing the southward
penetration of the Angola Current transporting the warm water from the tropics and consequently, the
warm SST bias (similar situation as Benguela Niño) is generated in coupled models.

Another possible mechanism is a remote excitation from the equatorial Atlantic via Kelvin waves
(e.g., [64,69,94,101,102]). According to this, the zonal wind stress anomaly over the western equatorial
Atlantic forces the downwelling Kelvin waves to propagate eastward and along the West African coast.
These Kelvin waves continuously travel southward. Consequently, these downwelling anomalies
deepen the thermocline in the Angola–Benguela Frontal Zone and the warm SST anomalies are
generated. This mechanism is indicated in Figure 5 for the Bjerknes Feedback for the AZM. The signal
of the wind-forced Kelvin waves extends from the equatorial Atlantic to the Angola–Benguela Frontal
Zone (Figure 3b) and SST anomalies are highly related to the sea-surface height (thermocline depth)
anomalies in the front area.

Those arguments indicate a tight linkage between the AZM and Benguela Niño/Niña. In ref. [64] it
was shown that the Benguela events lead the AZM by a few months via variability in the SAA. Figure 9
gives lag-composite anomalies of SST and SLP obtained from observations and reanalysis data for
Atlantic Niño and Niña cases in June. The Atlantic Niño and Niña are defined as the Atlantic 3 index
larger and smaller than one standard deviation of Atlantic 3 index. In February, the most pronounced
SST anomalies are located in the south Atlantic and weak SST anomalies in the equatorial Atlantic in
both events. Noticeably, the negative and positive SLP anomalies are found around 30◦ S in warm
and cold events, respectively. From March to April, the SLP anomalies become larger over the South
Atlantic. Interestingly, the strong SST anomalies in the Angola–Benguela Frontal Zone are generated
in both cases. On the other hand, the SST anomalies in the equatorial Atlantic develop gradually in
spring. From May to June, the SLP anomalies over the South Atlantic disappear. The SST anomalies
in the equatorial Atlantic are maximized and consequently, Atlantic Niño and Niña are generated
in summer. This result is consistent with [52] and indicates that the spring Benguela Niño/Niña are
tightly connected to the summer Atlantic Niño/Niña and its connection could be made by the SAA.
However, the question about the mechanism how the SAA variability initiates the evolution of the
Atlantic Niño/Niña is still open. For instance, it has been proposed that these may be associated with a
southward position of the intertropical convergence zone (ITCZ). This culminates in the generation of
the so-called double ITCZ in boreal summer, driving an excessive precipitation from about 5◦ S to 10◦ S.
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Figure 9. Lagged-composite SST (color) and sea level pressure (contour) for (first row) warm and
(second row) cold events for the observations (TropFlux and ERA-Interim for 1980–2010). The events
are defined as detrended monthly ATL3 index anomalies that are higher and lower than one standard
deviation of ATL3 index in June. Lagged composites are examined from February to June.

5. Variability at Longer Time Scales

The TA also features an important variability at longer time scales which may be related to
either external forcings or internal variability (see e.g., [4]). Ref. [103] identified a surface warming
during the past six decades that is associated with a weakened AZM interannual variability. This
warming is greater in the eastern equator. They hypothesized that enhanced warming to the east
leads to greater atmospheric convection in the eastern equatorial basin, as well as to weakened trade
winds. The wind slackening to the east deepens the thermocline and leads to a stronger warming.
The flattened thermocline reduces the AZM variability by a reduction of thermocline feedback. They
suggested that these changes could be related to anthropogenic aerosols. However, the observed
low-frequency variability could also be associated with changes in the global ocean circulation, which
manifests through the AMOC variability or to the influence of the variability in higher latitudes and/or
other basins [104]. Low-frequency changes in the TAV are reflected in changes in the background state
of the ocean [105] and in the spatial structure of the AZM [106].

The changes in the AZM spatial pattern are accompanied by variations in its periodicity, explained
variance and regional impacts [105,106]. Of special relevance is the shift in the AZM behavior that
took place in the 1970s, when the positive SST anomalies that characterized the AZM changed to a
more basin-wide pattern, with positive anomalies covering the entire equatorial Atlantic. In the work
by [106] it is argued that the change in AZM characteristics impacted the AZM-ENSO teleconnection:
before the 1970s, the subsidence over the Maritime Continent produced by the Atlantic Niño was strong
enough to counteract the impact of the Pacific Walker circulation on surface winds, thus precluding the
teleconnection to occur. The change of the AZM spatial pattern and teleconnections could be explained
by the modulation by large-scale, low-frequency variability modes. Changes in the global background
state and the alteration of atmospheric teleconnections could cause the diversity of AZM patterns and
impacts along the observational record. However, these interpretations should be taken with caution.
The short observational period available (~100 years) does not rule out that they are a reflection
of internal variability. It is also possible that low-frequency variability changes the frequency of
occurrence of different types of variability in the AZM: [107] found in a GCM simulation that, similarly
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to ENSO [108], different kinds of Atlantic Niño events can be identified and that their teleconnections
to ENSO are of a different nature.

Of especial importance is the teleconnection with the tropical Pacific: the TA influences the Tropical
Pacific variability, in particular its strongest manifestation, ENSO, and vice-versa. This connection
is modulated by the Atlantic Multidecadal Oscillation (AMO) and involves both AZM and AMM
modes of variability [109]. The connection of the Tropical Pacific with the AZM is more active during
AMO negative phases [110,111], when the eastern equatorial Atlantic SST variability is enhanced due
to a shallower thermocline there [105]. According to [28], positive (negative) AZM events favor the
development of negative (positive) ENSO events through the strengthening (weakening) of the Walker
circulation. The resulting enhanced surface divergence in the central Pacific shallows (deepens) the
equatorial thermocline triggering coupled processes, and favoring the development of a negative
(positive) ENSO event.

ENSO is also affected by the AMM [109]: cooling in the North TA during boreal spring generates
a low-level anticyclonic flow over the eastern Pacific. On the western flank of this anticyclonic flow,
reduced wind speed and warm wet moist energy advection due to the southerly lead to SST warming
with enhanced convective activity in the following winter. Moreover, Wang et al. (2017) identify an
Atlantic capacitor mechanism according to which ENSO influences the North TA via an atmospheric
bridge (“charging”) and in turn, the NTA triggers the following ENSO via a subtropical teleconnection
(“discharging”, according to [109]. This feedback from the Atlantic North TA to ENSO, which enhances
the variability in the Pacific, is stronger in the positive phase of the AMO and has been active since the
early 1990s thanks to a more favorable background state provides by the positive phase of the AMO
and global warming.

The variability and the teleconnections associated to the AZM and AMM can change in the future
climate. For instance, ref. [112] found that projected warmer SSTs cause a modification of the influence
of the AZM on the Tropical Atlantic rainfall, the Asian monsoon, and the land surface temperature in
the extratropics, even when the AZM characteristics remains unchanged. In [113] it was found that
the doubling of atmospheric CO2 leads to a northward shift of the ITCZ in summer and fall and to a
damping of evaporation anomalies that weakens the WES feedback in the northern TA. This reduction
of WES feedback in the northern TA leads to a weakening of the AMM.

The changes in the TA variability modes caused by global warming would also affect the strength
of the relationship between the TAV and the tropical Pacific, where the Atlantic warming could cause a
reduction of the warming in the eastern tropical Pacific through modification of the Walker circulation.
These changes cause easterly surface wind anomalies in the central-west Pacific which are amplified
by coupled ocean–atmosphere processes [114]. The influence of the North TA on ENSO could be
modulated by the strength of the TA warming [115]. The modification of the TA–Tropical Pacific
teleconnection could also influence the frequency of strong ENSO events [116] and the occurrence of
different kinds of ENSO events [109].

A clear decadal variability signal can also be identified in the SETA region. For instance, ref. [117]
found, in the last decades, a southward latitudinal shift of the annual mean ABFZ position and a
reinforcement of the associated meridional temperature gradient. These changes are associated with
warming (cooling) of the ocean mixed layer temperatures equatorward (poleward) of the front over
the 1980–2014 period. They argued that oceanic cooling poleward of the ABFZ is primarily due to
enhanced advection of cooler water from the south and east, increased cooling by vertical diffusion, and
shoaling of the mixed-layer depth. In the atmosphere, these changes are related to an intensification
and a poleward shift of the South Atlantic subtropical anticyclone, hence the westward mixed layer
ocean currents intensify in the Benguela upwelling region along the Namibian coast. These results
could point to a role of changes in the oceanic circulation and the air/sea interactions mechanisms
proposed by [61].
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6. Modeling the Climate of the TA

Numerical models of different resolution and complexity have been used to gain insight into
long-term and decadal patterns and its variability, as well as for medium- and short-term prediction of
TA. Among them, Global Coupled Models (GCMs) are the most sophisticated tool, as they provide a
state-of-the-art description of climate [118]. Whilst the ability of coupled atmosphere–ocean general
circulation models to simulate the observed climate and its variability has improved over the last few
years, they still present strong differences with respect to observations. As the biases in the simulations
reduce our confidence in the use of climate predictions and projections delivered by current GCMs for
the Tropical Atlantic basin and adjacent regions, the scientific community, with the special contribution
of the CMIP, has made a special effort to improve model performance in the Tropical Oceans. This
effort culminated in a reduction of SST biases in the Tropical Pacific, but not much progress has been
done in the reduction of SST biases in the Tropical Atlantic [119].

GCMs generally overestimate the SSTs in the tropics (e.g., [100,120,121], where large SST biases in
the ACT constitute a major problem to realistically simulate rainfall provided by the Western African
Monsoon in present-day and future climates [122]. These biases have a marked seasonality, becoming
stronger in boreal summer and fall and reach their maximum in November–December [123]. However,
biases are largest in the eastern boundary of the TA, in the SETA region (see for instance, Figure 10,
which shows the biases for the AWI-CM coupled model). In this area, warm coastal biases in the
individual models that contribute to CMIP5 reach even more than 5 ◦C [119]. Also, precipitation in
current GCMs presents an excessively symmetric structure across the equator [120,124,125], resulting
in double ITCZ. Consistently with these rainfall biases, models also show errors in the simulation of
upper-tropospheric clouds in the tropics [126].

Figure 10. Mean SST bias for the 1988–2007 period in a present time simulation with the coupled global
model AWI-CM.

The causes for these systematic biases in the simulated TAV have been intensively examined
and they are strongly model dependent. Overall, warm errors are can be, roughly speaking, related
to (i) drawbacks in the physics of the ocean and atmospheric models and (ii) insufficient model
resolution in the horizontal and/or vertical coordinates of the individual atmospheric and oceanic
components of the coupled model [119,127,128]. A systematic drawback shared by many state-of-the-art
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coupled models is an underestimation of coastal upwelling [121]. This has been generally attributed
to a spurious weakening of the northward Benguela Current, as well as to an underestimation
of the strength of the Benguela low-level jet [87,88]. It has also been proposed that, even when
the simulated upwelling intensity is well captured, the misrepresentation of the sharp thermocline
characteristic of the TA culminates in upwelling of waters which are warmer than observed, therefore
contributing to coastal SST biases [34,129]. In turn, the simulated southward Angola Current tends to
be stronger than in observations due to an excessive negative wind stress curl in the near shore [91,130].
The misrepresentation of this near-current system, with the implied strengthening (weakening) of the
Angola Current (Benguela Current) results in a southward migration of the ABF [131]. Observations
indicate that the ABF is positioned close to 16◦ S [132], whilst in the CMIP5 ensemble mean, the
convergence area is displaced to the south by about 10◦. Another major source of warm SST biases is
sustained by an excessive shortwave radiative flux into the ocean due to an underestimation of low
marine stratiform clouds over the SETA [133–135]. Along with this, a deficient surface evaporation
due to an overestimation of near-surface humidity by the atmospheric component of GCMs within the
eastern TA has also been found to be a driver of SST biases [136].

The biased SST in the TA is not only driven by these local factors, but can also be provoked by
remote forcings via teleconnections. For instance, westerly wind biases in the equatorial TA leads
to a spurious shoaling of the thermocline to the west, and a deepening of the thermocline to the
east [36,137,138] and this hampers the development of the Atlantic Cold Tongue [80]. The resulting
equatorial warm biases are subsequently advected along the equatorial strip and to the SETA via Kelvin
waves [36,139]. The existence of the westerly wind bias and associated errors in wind stress in the
equator can be a consequence of several factors, such as the underrepresentation of zonal momentum
flux across the top of the boundary layer [140] and/or excessive (deficient) rainfall over equatorial
Africa (South America) with insufficient lower-tropospheric diabatic heating over the Amazon [141].
The simulation of artificial barrier layers in the southeastern equatorial Atlantic could also hinder the
development of the cold tongue, contributing to the local warm SST bias [142]. Although the ultimate
reasons for the tropical Atlantic SST biases might be model dependent, the positive feedbacks between
wind stress, clouds, and SSTs seem to be key for maintaining and even enhancing the biases [34].

Recent results show that the biases can also be of remote origin. For instance, an incorrect
simulation of low-marine cloud cover in the southeastern tropical Pacific and Atlantic Oceans and
in the Southern Ocean affect the simulated position of the ITCZ, impacting the TAV [143]. Also,
an incorrect simulation of global circulation can affect the simulation of the SETA climate, as a weak
Atlantic meridional overturning circulation (AMOC; [144]) seems to be associated to a warm SETA
bias. Also, failures in the representation of the South Atlantic Anticyclone south of 20◦ S [34] and an
incorrect representation of the Agulhas leakage [129] could be important contributors to the warm bias
in the tropical Atlantic. Also, the authors of [145] found that cloud biases in the Southern Ocean could
be accountable for a large part of the double ITCZ bias.

A great effort has been devoted to unraveling the role of atmospheric and oceanic resolutions in
the representation of the TA climate, although there is not a clear consensus regarding this topic. While
some works claim that increasing the model resolution reduces warm biases notably (e.g., [146,147]),
other studies conclude that biases are only alleviated to a small extent in response to an increased model
resolution (e.g., [133,148]). This may be related to the fact that, in many studies, a simultaneous increase
of both oceanic and atmospheric model components is carried out. Besides changes in the oceanic
resolution in the compared runs, other parameterizations that could also affect the results obtained are
generally also performed. Ref. [146] argued that the use of an eddy-resolving ocean model results in an
improved simulation of coastal Benguela upwelling system which, in turn, lowers coastal biases in the
near shore. In the work by [130] it is shown that the combination of an eddy-resolving ocean model and
an atmospheric model with a nominal resolution of at least 0.5◦ is needed to realistically simulate the
Benguela upwelling system. The authors further claimed that this atmospheric resolution is required
for a better representation of the simulated wind stress curl near the African coast. In line with this, the
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model study of [149] highlighted that near-shore wind affects the representation of near-surface eastern
boundary currents and this has a concomitant impact on the SST. Regarding the vertical resolution of
the models, in ref. [147] it is concluded that an important reduction of warm biases in the TA occurs
when the horizontal and vertical resolution of the atmospheric model are simultaneously refined.

7. Conclusions and Outlook

The improvement of our understanding of the TAV is important from the scientific point of view
due to the impact that this variability has on the climate of Eastern South America and Western Africa,
as well as due to the connections between the climate tropical Atlantic and the Pacific. The question
also has societal and environmental implications, as the TAV influences the marine and land ecological
systems in the Atlantic and this has a significant impact on the societies of the implied countries. This
improvement should be based both on a better observing system and climate models. In [5], a good
discussion of the necessary steps for the improvement of the observing system can be found. As the
climate simulated by global coupled models still presents significant biases, the improvement of the
data assimilation techniques and the numerical models used for the generation of reanalysis is also
desirable. In this regard, the development of coupled systems for forecast and reanalysis looks very
promising. In view of the strengths and weaknesses of state-of-the-art coupled models to simulate
the climate variability of the TA, it is clear that the modeling community still has to face important
challenges. Presently, model resolution continues to be a limitation for the available computational
resources. Higher horizontal resolution of the corresponding atmospheric and oceanic components
can have a positive impact on the simulation of the TA climate. On one hand, an increased atmospheric
resolution will allow a better representation of wind stress curl near the African coast. This, in turn,
will lead to an improved simulation of the Angola and Benguela currents. On the other hand, a
refinement in the horizontal resolution of the oceanic component (to ~5–10 km) will improve the
representation of the mesoscale ocean circulation associated with strong coastal currents and will
drive an intensification of the Benguela upwelling system. Both will contribute to a reduction of SST
warm biases in the SETA. In this regard, a new generation of oceanic models on unstructured grids
(see e.g., [150]) brings the possibility of running climate simulations at eddy-resolving resolutions
in the ocean component with acceptable computational costs. The SST equatorial biases are related
to the equatorial westerly wind bias in March–May, which deepens the thermocline and inhibits
cooling during the subsequent June–August upwelling season [33,141], pointing to the role of the
atmospheric model in bias generation. As shown by [147], an enhanced horizontal and vertical
atmospheric resolution contributes to alleviate these biases. Another factor that may contribute to the
cold tongue bias relates to deficiencies in vertical mixing parameterizations that lead to problems in
the representation of the oceanic thermocline [100].

Also important is the question of the relative importance of the dynamics and the thermodynamical
forcing for the generation of the biases in SETA. Another feature of concern regards the achievement
of an improved simulation of the ITCZ [124,125]. The Atlantic ITCZ simulated by current models is
usually shifted southward. Although this shift is exacerbated by the coupling, this is already present
in atmosphere-only simulations [151]. This shift is probably caused by an incorrect simulation of
stratocumulus clouds. Another possible cause is a weak AMOC, which generates a cold SST bias in the
North Atlantic and warm bias in the Atlantic cold tongue [152].
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